]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/kernel/cpu/common.c
Merge tag 'v6.8-rc4' into x86/percpu, to resolve conflicts and refresh the branch
[thirdparty/linux.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/uv/uv.h>
65 #include <asm/ia32.h>
66 #include <asm/set_memory.h>
67 #include <asm/traps.h>
68 #include <asm/sev.h>
69 #include <asm/tdx.h>
70
71 #include "cpu.h"
72
73 u32 elf_hwcap2 __read_mostly;
74
75 /* Number of siblings per CPU package */
76 int smp_num_siblings = 1;
77 EXPORT_SYMBOL(smp_num_siblings);
78
79 static struct ppin_info {
80 int feature;
81 int msr_ppin_ctl;
82 int msr_ppin;
83 } ppin_info[] = {
84 [X86_VENDOR_INTEL] = {
85 .feature = X86_FEATURE_INTEL_PPIN,
86 .msr_ppin_ctl = MSR_PPIN_CTL,
87 .msr_ppin = MSR_PPIN
88 },
89 [X86_VENDOR_AMD] = {
90 .feature = X86_FEATURE_AMD_PPIN,
91 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
92 .msr_ppin = MSR_AMD_PPIN
93 },
94 };
95
96 static const struct x86_cpu_id ppin_cpuids[] = {
97 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
98 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
99
100 /* Legacy models without CPUID enumeration */
101 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
102 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
103 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
104 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
105 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
106 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
107 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
108 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
109 X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
110 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
111 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
112
113 {}
114 };
115
116 static void ppin_init(struct cpuinfo_x86 *c)
117 {
118 const struct x86_cpu_id *id;
119 unsigned long long val;
120 struct ppin_info *info;
121
122 id = x86_match_cpu(ppin_cpuids);
123 if (!id)
124 return;
125
126 /*
127 * Testing the presence of the MSR is not enough. Need to check
128 * that the PPIN_CTL allows reading of the PPIN.
129 */
130 info = (struct ppin_info *)id->driver_data;
131
132 if (rdmsrl_safe(info->msr_ppin_ctl, &val))
133 goto clear_ppin;
134
135 if ((val & 3UL) == 1UL) {
136 /* PPIN locked in disabled mode */
137 goto clear_ppin;
138 }
139
140 /* If PPIN is disabled, try to enable */
141 if (!(val & 2UL)) {
142 wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
143 rdmsrl_safe(info->msr_ppin_ctl, &val);
144 }
145
146 /* Is the enable bit set? */
147 if (val & 2UL) {
148 c->ppin = __rdmsr(info->msr_ppin);
149 set_cpu_cap(c, info->feature);
150 return;
151 }
152
153 clear_ppin:
154 clear_cpu_cap(c, info->feature);
155 }
156
157 static void default_init(struct cpuinfo_x86 *c)
158 {
159 #ifdef CONFIG_X86_64
160 cpu_detect_cache_sizes(c);
161 #else
162 /* Not much we can do here... */
163 /* Check if at least it has cpuid */
164 if (c->cpuid_level == -1) {
165 /* No cpuid. It must be an ancient CPU */
166 if (c->x86 == 4)
167 strcpy(c->x86_model_id, "486");
168 else if (c->x86 == 3)
169 strcpy(c->x86_model_id, "386");
170 }
171 #endif
172 }
173
174 static const struct cpu_dev default_cpu = {
175 .c_init = default_init,
176 .c_vendor = "Unknown",
177 .c_x86_vendor = X86_VENDOR_UNKNOWN,
178 };
179
180 static const struct cpu_dev *this_cpu = &default_cpu;
181
182 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
183 #ifdef CONFIG_X86_64
184 /*
185 * We need valid kernel segments for data and code in long mode too
186 * IRET will check the segment types kkeil 2000/10/28
187 * Also sysret mandates a special GDT layout
188 *
189 * TLS descriptors are currently at a different place compared to i386.
190 * Hopefully nobody expects them at a fixed place (Wine?)
191 */
192 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
193 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
194 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
195 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
196 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
197 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
198 #else
199 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
200 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
201 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
202 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
203 /*
204 * Segments used for calling PnP BIOS have byte granularity.
205 * They code segments and data segments have fixed 64k limits,
206 * the transfer segment sizes are set at run time.
207 */
208 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
209 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
210 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
211 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
212 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
213 /*
214 * The APM segments have byte granularity and their bases
215 * are set at run time. All have 64k limits.
216 */
217 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
218 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
219 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
220
221 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
222 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
223 #endif
224 } };
225 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
226
227 #ifdef CONFIG_X86_64
228 static int __init x86_nopcid_setup(char *s)
229 {
230 /* nopcid doesn't accept parameters */
231 if (s)
232 return -EINVAL;
233
234 /* do not emit a message if the feature is not present */
235 if (!boot_cpu_has(X86_FEATURE_PCID))
236 return 0;
237
238 setup_clear_cpu_cap(X86_FEATURE_PCID);
239 pr_info("nopcid: PCID feature disabled\n");
240 return 0;
241 }
242 early_param("nopcid", x86_nopcid_setup);
243 #endif
244
245 static int __init x86_noinvpcid_setup(char *s)
246 {
247 /* noinvpcid doesn't accept parameters */
248 if (s)
249 return -EINVAL;
250
251 /* do not emit a message if the feature is not present */
252 if (!boot_cpu_has(X86_FEATURE_INVPCID))
253 return 0;
254
255 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
256 pr_info("noinvpcid: INVPCID feature disabled\n");
257 return 0;
258 }
259 early_param("noinvpcid", x86_noinvpcid_setup);
260
261 #ifdef CONFIG_X86_32
262 static int cachesize_override = -1;
263 static int disable_x86_serial_nr = 1;
264
265 static int __init cachesize_setup(char *str)
266 {
267 get_option(&str, &cachesize_override);
268 return 1;
269 }
270 __setup("cachesize=", cachesize_setup);
271
272 /* Standard macro to see if a specific flag is changeable */
273 static inline int flag_is_changeable_p(u32 flag)
274 {
275 u32 f1, f2;
276
277 /*
278 * Cyrix and IDT cpus allow disabling of CPUID
279 * so the code below may return different results
280 * when it is executed before and after enabling
281 * the CPUID. Add "volatile" to not allow gcc to
282 * optimize the subsequent calls to this function.
283 */
284 asm volatile ("pushfl \n\t"
285 "pushfl \n\t"
286 "popl %0 \n\t"
287 "movl %0, %1 \n\t"
288 "xorl %2, %0 \n\t"
289 "pushl %0 \n\t"
290 "popfl \n\t"
291 "pushfl \n\t"
292 "popl %0 \n\t"
293 "popfl \n\t"
294
295 : "=&r" (f1), "=&r" (f2)
296 : "ir" (flag));
297
298 return ((f1^f2) & flag) != 0;
299 }
300
301 /* Probe for the CPUID instruction */
302 int have_cpuid_p(void)
303 {
304 return flag_is_changeable_p(X86_EFLAGS_ID);
305 }
306
307 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
308 {
309 unsigned long lo, hi;
310
311 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
312 return;
313
314 /* Disable processor serial number: */
315
316 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
317 lo |= 0x200000;
318 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
319
320 pr_notice("CPU serial number disabled.\n");
321 clear_cpu_cap(c, X86_FEATURE_PN);
322
323 /* Disabling the serial number may affect the cpuid level */
324 c->cpuid_level = cpuid_eax(0);
325 }
326
327 static int __init x86_serial_nr_setup(char *s)
328 {
329 disable_x86_serial_nr = 0;
330 return 1;
331 }
332 __setup("serialnumber", x86_serial_nr_setup);
333 #else
334 static inline int flag_is_changeable_p(u32 flag)
335 {
336 return 1;
337 }
338 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
339 {
340 }
341 #endif
342
343 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
344 {
345 if (cpu_has(c, X86_FEATURE_SMEP))
346 cr4_set_bits(X86_CR4_SMEP);
347 }
348
349 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
350 {
351 unsigned long eflags = native_save_fl();
352
353 /* This should have been cleared long ago */
354 BUG_ON(eflags & X86_EFLAGS_AC);
355
356 if (cpu_has(c, X86_FEATURE_SMAP))
357 cr4_set_bits(X86_CR4_SMAP);
358 }
359
360 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
361 {
362 /* Check the boot processor, plus build option for UMIP. */
363 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
364 goto out;
365
366 /* Check the current processor's cpuid bits. */
367 if (!cpu_has(c, X86_FEATURE_UMIP))
368 goto out;
369
370 cr4_set_bits(X86_CR4_UMIP);
371
372 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
373
374 return;
375
376 out:
377 /*
378 * Make sure UMIP is disabled in case it was enabled in a
379 * previous boot (e.g., via kexec).
380 */
381 cr4_clear_bits(X86_CR4_UMIP);
382 }
383
384 /* These bits should not change their value after CPU init is finished. */
385 static const unsigned long cr4_pinned_mask =
386 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
387 X86_CR4_FSGSBASE | X86_CR4_CET;
388 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
389 static unsigned long cr4_pinned_bits __ro_after_init;
390
391 void native_write_cr0(unsigned long val)
392 {
393 unsigned long bits_missing = 0;
394
395 set_register:
396 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
397
398 if (static_branch_likely(&cr_pinning)) {
399 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
400 bits_missing = X86_CR0_WP;
401 val |= bits_missing;
402 goto set_register;
403 }
404 /* Warn after we've set the missing bits. */
405 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
406 }
407 }
408 EXPORT_SYMBOL(native_write_cr0);
409
410 void __no_profile native_write_cr4(unsigned long val)
411 {
412 unsigned long bits_changed = 0;
413
414 set_register:
415 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
416
417 if (static_branch_likely(&cr_pinning)) {
418 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
419 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
420 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
421 goto set_register;
422 }
423 /* Warn after we've corrected the changed bits. */
424 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
425 bits_changed);
426 }
427 }
428 #if IS_MODULE(CONFIG_LKDTM)
429 EXPORT_SYMBOL_GPL(native_write_cr4);
430 #endif
431
432 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
433 {
434 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
435
436 lockdep_assert_irqs_disabled();
437
438 newval = (cr4 & ~clear) | set;
439 if (newval != cr4) {
440 this_cpu_write(cpu_tlbstate.cr4, newval);
441 __write_cr4(newval);
442 }
443 }
444 EXPORT_SYMBOL(cr4_update_irqsoff);
445
446 /* Read the CR4 shadow. */
447 unsigned long cr4_read_shadow(void)
448 {
449 return this_cpu_read(cpu_tlbstate.cr4);
450 }
451 EXPORT_SYMBOL_GPL(cr4_read_shadow);
452
453 void cr4_init(void)
454 {
455 unsigned long cr4 = __read_cr4();
456
457 if (boot_cpu_has(X86_FEATURE_PCID))
458 cr4 |= X86_CR4_PCIDE;
459 if (static_branch_likely(&cr_pinning))
460 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
461
462 __write_cr4(cr4);
463
464 /* Initialize cr4 shadow for this CPU. */
465 this_cpu_write(cpu_tlbstate.cr4, cr4);
466 }
467
468 /*
469 * Once CPU feature detection is finished (and boot params have been
470 * parsed), record any of the sensitive CR bits that are set, and
471 * enable CR pinning.
472 */
473 static void __init setup_cr_pinning(void)
474 {
475 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
476 static_key_enable(&cr_pinning.key);
477 }
478
479 static __init int x86_nofsgsbase_setup(char *arg)
480 {
481 /* Require an exact match without trailing characters. */
482 if (strlen(arg))
483 return 0;
484
485 /* Do not emit a message if the feature is not present. */
486 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
487 return 1;
488
489 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
490 pr_info("FSGSBASE disabled via kernel command line\n");
491 return 1;
492 }
493 __setup("nofsgsbase", x86_nofsgsbase_setup);
494
495 /*
496 * Protection Keys are not available in 32-bit mode.
497 */
498 static bool pku_disabled;
499
500 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
501 {
502 if (c == &boot_cpu_data) {
503 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
504 return;
505 /*
506 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
507 * bit to be set. Enforce it.
508 */
509 setup_force_cpu_cap(X86_FEATURE_OSPKE);
510
511 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
512 return;
513 }
514
515 cr4_set_bits(X86_CR4_PKE);
516 /* Load the default PKRU value */
517 pkru_write_default();
518 }
519
520 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
521 static __init int setup_disable_pku(char *arg)
522 {
523 /*
524 * Do not clear the X86_FEATURE_PKU bit. All of the
525 * runtime checks are against OSPKE so clearing the
526 * bit does nothing.
527 *
528 * This way, we will see "pku" in cpuinfo, but not
529 * "ospke", which is exactly what we want. It shows
530 * that the CPU has PKU, but the OS has not enabled it.
531 * This happens to be exactly how a system would look
532 * if we disabled the config option.
533 */
534 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
535 pku_disabled = true;
536 return 1;
537 }
538 __setup("nopku", setup_disable_pku);
539 #endif
540
541 #ifdef CONFIG_X86_KERNEL_IBT
542
543 __noendbr u64 ibt_save(bool disable)
544 {
545 u64 msr = 0;
546
547 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
548 rdmsrl(MSR_IA32_S_CET, msr);
549 if (disable)
550 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
551 }
552
553 return msr;
554 }
555
556 __noendbr void ibt_restore(u64 save)
557 {
558 u64 msr;
559
560 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
561 rdmsrl(MSR_IA32_S_CET, msr);
562 msr &= ~CET_ENDBR_EN;
563 msr |= (save & CET_ENDBR_EN);
564 wrmsrl(MSR_IA32_S_CET, msr);
565 }
566 }
567
568 #endif
569
570 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
571 {
572 bool user_shstk, kernel_ibt;
573
574 if (!IS_ENABLED(CONFIG_X86_CET))
575 return;
576
577 kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
578 user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
579 IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
580
581 if (!kernel_ibt && !user_shstk)
582 return;
583
584 if (user_shstk)
585 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
586
587 if (kernel_ibt)
588 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
589 else
590 wrmsrl(MSR_IA32_S_CET, 0);
591
592 cr4_set_bits(X86_CR4_CET);
593
594 if (kernel_ibt && ibt_selftest()) {
595 pr_err("IBT selftest: Failed!\n");
596 wrmsrl(MSR_IA32_S_CET, 0);
597 setup_clear_cpu_cap(X86_FEATURE_IBT);
598 }
599 }
600
601 __noendbr void cet_disable(void)
602 {
603 if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
604 cpu_feature_enabled(X86_FEATURE_SHSTK)))
605 return;
606
607 wrmsrl(MSR_IA32_S_CET, 0);
608 wrmsrl(MSR_IA32_U_CET, 0);
609 }
610
611 /*
612 * Some CPU features depend on higher CPUID levels, which may not always
613 * be available due to CPUID level capping or broken virtualization
614 * software. Add those features to this table to auto-disable them.
615 */
616 struct cpuid_dependent_feature {
617 u32 feature;
618 u32 level;
619 };
620
621 static const struct cpuid_dependent_feature
622 cpuid_dependent_features[] = {
623 { X86_FEATURE_MWAIT, 0x00000005 },
624 { X86_FEATURE_DCA, 0x00000009 },
625 { X86_FEATURE_XSAVE, 0x0000000d },
626 { 0, 0 }
627 };
628
629 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
630 {
631 const struct cpuid_dependent_feature *df;
632
633 for (df = cpuid_dependent_features; df->feature; df++) {
634
635 if (!cpu_has(c, df->feature))
636 continue;
637 /*
638 * Note: cpuid_level is set to -1 if unavailable, but
639 * extended_extended_level is set to 0 if unavailable
640 * and the legitimate extended levels are all negative
641 * when signed; hence the weird messing around with
642 * signs here...
643 */
644 if (!((s32)df->level < 0 ?
645 (u32)df->level > (u32)c->extended_cpuid_level :
646 (s32)df->level > (s32)c->cpuid_level))
647 continue;
648
649 clear_cpu_cap(c, df->feature);
650 if (!warn)
651 continue;
652
653 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
654 x86_cap_flag(df->feature), df->level);
655 }
656 }
657
658 /*
659 * Naming convention should be: <Name> [(<Codename>)]
660 * This table only is used unless init_<vendor>() below doesn't set it;
661 * in particular, if CPUID levels 0x80000002..4 are supported, this
662 * isn't used
663 */
664
665 /* Look up CPU names by table lookup. */
666 static const char *table_lookup_model(struct cpuinfo_x86 *c)
667 {
668 #ifdef CONFIG_X86_32
669 const struct legacy_cpu_model_info *info;
670
671 if (c->x86_model >= 16)
672 return NULL; /* Range check */
673
674 if (!this_cpu)
675 return NULL;
676
677 info = this_cpu->legacy_models;
678
679 while (info->family) {
680 if (info->family == c->x86)
681 return info->model_names[c->x86_model];
682 info++;
683 }
684 #endif
685 return NULL; /* Not found */
686 }
687
688 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
689 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
690 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
691
692 #ifdef CONFIG_X86_32
693 /* The 32-bit entry code needs to find cpu_entry_area. */
694 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
695 #endif
696
697 /* Load the original GDT from the per-cpu structure */
698 void load_direct_gdt(int cpu)
699 {
700 struct desc_ptr gdt_descr;
701
702 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
703 gdt_descr.size = GDT_SIZE - 1;
704 load_gdt(&gdt_descr);
705 }
706 EXPORT_SYMBOL_GPL(load_direct_gdt);
707
708 /* Load a fixmap remapping of the per-cpu GDT */
709 void load_fixmap_gdt(int cpu)
710 {
711 struct desc_ptr gdt_descr;
712
713 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
714 gdt_descr.size = GDT_SIZE - 1;
715 load_gdt(&gdt_descr);
716 }
717 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
718
719 /**
720 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
721 * @cpu: The CPU number for which this is invoked
722 *
723 * Invoked during early boot to switch from early GDT and early per CPU to
724 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
725 * switch is implicit by loading the direct GDT. On 64bit this requires
726 * to update GSBASE.
727 */
728 void __init switch_gdt_and_percpu_base(int cpu)
729 {
730 load_direct_gdt(cpu);
731
732 #ifdef CONFIG_X86_64
733 /*
734 * No need to load %gs. It is already correct.
735 *
736 * Writing %gs on 64bit would zero GSBASE which would make any per
737 * CPU operation up to the point of the wrmsrl() fault.
738 *
739 * Set GSBASE to the new offset. Until the wrmsrl() happens the
740 * early mapping is still valid. That means the GSBASE update will
741 * lose any prior per CPU data which was not copied over in
742 * setup_per_cpu_areas().
743 *
744 * This works even with stackprotector enabled because the
745 * per CPU stack canary is 0 in both per CPU areas.
746 */
747 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
748 #else
749 /*
750 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
751 * it is required to load FS again so that the 'hidden' part is
752 * updated from the new GDT. Up to this point the early per CPU
753 * translation is active. Any content of the early per CPU data
754 * which was not copied over in setup_per_cpu_areas() is lost.
755 */
756 loadsegment(fs, __KERNEL_PERCPU);
757 #endif
758 }
759
760 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
761
762 static void get_model_name(struct cpuinfo_x86 *c)
763 {
764 unsigned int *v;
765 char *p, *q, *s;
766
767 if (c->extended_cpuid_level < 0x80000004)
768 return;
769
770 v = (unsigned int *)c->x86_model_id;
771 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
772 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
773 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
774 c->x86_model_id[48] = 0;
775
776 /* Trim whitespace */
777 p = q = s = &c->x86_model_id[0];
778
779 while (*p == ' ')
780 p++;
781
782 while (*p) {
783 /* Note the last non-whitespace index */
784 if (!isspace(*p))
785 s = q;
786
787 *q++ = *p++;
788 }
789
790 *(s + 1) = '\0';
791 }
792
793 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
794 {
795 unsigned int eax, ebx, ecx, edx;
796
797 c->x86_max_cores = 1;
798 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
799 return;
800
801 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
802 if (eax & 0x1f)
803 c->x86_max_cores = (eax >> 26) + 1;
804 }
805
806 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
807 {
808 unsigned int n, dummy, ebx, ecx, edx, l2size;
809
810 n = c->extended_cpuid_level;
811
812 if (n >= 0x80000005) {
813 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
814 c->x86_cache_size = (ecx>>24) + (edx>>24);
815 #ifdef CONFIG_X86_64
816 /* On K8 L1 TLB is inclusive, so don't count it */
817 c->x86_tlbsize = 0;
818 #endif
819 }
820
821 if (n < 0x80000006) /* Some chips just has a large L1. */
822 return;
823
824 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
825 l2size = ecx >> 16;
826
827 #ifdef CONFIG_X86_64
828 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
829 #else
830 /* do processor-specific cache resizing */
831 if (this_cpu->legacy_cache_size)
832 l2size = this_cpu->legacy_cache_size(c, l2size);
833
834 /* Allow user to override all this if necessary. */
835 if (cachesize_override != -1)
836 l2size = cachesize_override;
837
838 if (l2size == 0)
839 return; /* Again, no L2 cache is possible */
840 #endif
841
842 c->x86_cache_size = l2size;
843 }
844
845 u16 __read_mostly tlb_lli_4k[NR_INFO];
846 u16 __read_mostly tlb_lli_2m[NR_INFO];
847 u16 __read_mostly tlb_lli_4m[NR_INFO];
848 u16 __read_mostly tlb_lld_4k[NR_INFO];
849 u16 __read_mostly tlb_lld_2m[NR_INFO];
850 u16 __read_mostly tlb_lld_4m[NR_INFO];
851 u16 __read_mostly tlb_lld_1g[NR_INFO];
852
853 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
854 {
855 if (this_cpu->c_detect_tlb)
856 this_cpu->c_detect_tlb(c);
857
858 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
859 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
860 tlb_lli_4m[ENTRIES]);
861
862 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
863 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
864 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
865 }
866
867 int detect_ht_early(struct cpuinfo_x86 *c)
868 {
869 #ifdef CONFIG_SMP
870 u32 eax, ebx, ecx, edx;
871
872 if (!cpu_has(c, X86_FEATURE_HT))
873 return -1;
874
875 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
876 return -1;
877
878 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
879 return -1;
880
881 cpuid(1, &eax, &ebx, &ecx, &edx);
882
883 smp_num_siblings = (ebx & 0xff0000) >> 16;
884 if (smp_num_siblings == 1)
885 pr_info_once("CPU0: Hyper-Threading is disabled\n");
886 #endif
887 return 0;
888 }
889
890 void detect_ht(struct cpuinfo_x86 *c)
891 {
892 #ifdef CONFIG_SMP
893 int index_msb, core_bits;
894
895 if (detect_ht_early(c) < 0)
896 return;
897
898 index_msb = get_count_order(smp_num_siblings);
899 c->topo.pkg_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb);
900
901 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
902
903 index_msb = get_count_order(smp_num_siblings);
904
905 core_bits = get_count_order(c->x86_max_cores);
906
907 c->topo.core_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb) &
908 ((1 << core_bits) - 1);
909 #endif
910 }
911
912 static void get_cpu_vendor(struct cpuinfo_x86 *c)
913 {
914 char *v = c->x86_vendor_id;
915 int i;
916
917 for (i = 0; i < X86_VENDOR_NUM; i++) {
918 if (!cpu_devs[i])
919 break;
920
921 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
922 (cpu_devs[i]->c_ident[1] &&
923 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
924
925 this_cpu = cpu_devs[i];
926 c->x86_vendor = this_cpu->c_x86_vendor;
927 return;
928 }
929 }
930
931 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
932 "CPU: Your system may be unstable.\n", v);
933
934 c->x86_vendor = X86_VENDOR_UNKNOWN;
935 this_cpu = &default_cpu;
936 }
937
938 void cpu_detect(struct cpuinfo_x86 *c)
939 {
940 /* Get vendor name */
941 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
942 (unsigned int *)&c->x86_vendor_id[0],
943 (unsigned int *)&c->x86_vendor_id[8],
944 (unsigned int *)&c->x86_vendor_id[4]);
945
946 c->x86 = 4;
947 /* Intel-defined flags: level 0x00000001 */
948 if (c->cpuid_level >= 0x00000001) {
949 u32 junk, tfms, cap0, misc;
950
951 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
952 c->x86 = x86_family(tfms);
953 c->x86_model = x86_model(tfms);
954 c->x86_stepping = x86_stepping(tfms);
955
956 if (cap0 & (1<<19)) {
957 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
958 c->x86_cache_alignment = c->x86_clflush_size;
959 }
960 }
961 }
962
963 static void apply_forced_caps(struct cpuinfo_x86 *c)
964 {
965 int i;
966
967 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
968 c->x86_capability[i] &= ~cpu_caps_cleared[i];
969 c->x86_capability[i] |= cpu_caps_set[i];
970 }
971 }
972
973 static void init_speculation_control(struct cpuinfo_x86 *c)
974 {
975 /*
976 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
977 * and they also have a different bit for STIBP support. Also,
978 * a hypervisor might have set the individual AMD bits even on
979 * Intel CPUs, for finer-grained selection of what's available.
980 */
981 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
982 set_cpu_cap(c, X86_FEATURE_IBRS);
983 set_cpu_cap(c, X86_FEATURE_IBPB);
984 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
985 }
986
987 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
988 set_cpu_cap(c, X86_FEATURE_STIBP);
989
990 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
991 cpu_has(c, X86_FEATURE_VIRT_SSBD))
992 set_cpu_cap(c, X86_FEATURE_SSBD);
993
994 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
995 set_cpu_cap(c, X86_FEATURE_IBRS);
996 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
997 }
998
999 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1000 set_cpu_cap(c, X86_FEATURE_IBPB);
1001
1002 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1003 set_cpu_cap(c, X86_FEATURE_STIBP);
1004 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1005 }
1006
1007 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1008 set_cpu_cap(c, X86_FEATURE_SSBD);
1009 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1010 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1011 }
1012 }
1013
1014 void get_cpu_cap(struct cpuinfo_x86 *c)
1015 {
1016 u32 eax, ebx, ecx, edx;
1017
1018 /* Intel-defined flags: level 0x00000001 */
1019 if (c->cpuid_level >= 0x00000001) {
1020 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1021
1022 c->x86_capability[CPUID_1_ECX] = ecx;
1023 c->x86_capability[CPUID_1_EDX] = edx;
1024 }
1025
1026 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1027 if (c->cpuid_level >= 0x00000006)
1028 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1029
1030 /* Additional Intel-defined flags: level 0x00000007 */
1031 if (c->cpuid_level >= 0x00000007) {
1032 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1033 c->x86_capability[CPUID_7_0_EBX] = ebx;
1034 c->x86_capability[CPUID_7_ECX] = ecx;
1035 c->x86_capability[CPUID_7_EDX] = edx;
1036
1037 /* Check valid sub-leaf index before accessing it */
1038 if (eax >= 1) {
1039 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1040 c->x86_capability[CPUID_7_1_EAX] = eax;
1041 }
1042 }
1043
1044 /* Extended state features: level 0x0000000d */
1045 if (c->cpuid_level >= 0x0000000d) {
1046 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1047
1048 c->x86_capability[CPUID_D_1_EAX] = eax;
1049 }
1050
1051 /* AMD-defined flags: level 0x80000001 */
1052 eax = cpuid_eax(0x80000000);
1053 c->extended_cpuid_level = eax;
1054
1055 if ((eax & 0xffff0000) == 0x80000000) {
1056 if (eax >= 0x80000001) {
1057 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1058
1059 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1060 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1061 }
1062 }
1063
1064 if (c->extended_cpuid_level >= 0x80000007) {
1065 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1066
1067 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1068 c->x86_power = edx;
1069 }
1070
1071 if (c->extended_cpuid_level >= 0x80000008) {
1072 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1073 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1074 }
1075
1076 if (c->extended_cpuid_level >= 0x8000000a)
1077 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1078
1079 if (c->extended_cpuid_level >= 0x8000001f)
1080 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1081
1082 if (c->extended_cpuid_level >= 0x80000021)
1083 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1084
1085 init_scattered_cpuid_features(c);
1086 init_speculation_control(c);
1087
1088 /*
1089 * Clear/Set all flags overridden by options, after probe.
1090 * This needs to happen each time we re-probe, which may happen
1091 * several times during CPU initialization.
1092 */
1093 apply_forced_caps(c);
1094 }
1095
1096 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1097 {
1098 u32 eax, ebx, ecx, edx;
1099 bool vp_bits_from_cpuid = true;
1100
1101 if (!cpu_has(c, X86_FEATURE_CPUID) ||
1102 (c->extended_cpuid_level < 0x80000008))
1103 vp_bits_from_cpuid = false;
1104
1105 if (vp_bits_from_cpuid) {
1106 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1107
1108 c->x86_virt_bits = (eax >> 8) & 0xff;
1109 c->x86_phys_bits = eax & 0xff;
1110 } else {
1111 if (IS_ENABLED(CONFIG_X86_64)) {
1112 c->x86_clflush_size = 64;
1113 c->x86_phys_bits = 36;
1114 c->x86_virt_bits = 48;
1115 } else {
1116 c->x86_clflush_size = 32;
1117 c->x86_virt_bits = 32;
1118 c->x86_phys_bits = 32;
1119
1120 if (cpu_has(c, X86_FEATURE_PAE) ||
1121 cpu_has(c, X86_FEATURE_PSE36))
1122 c->x86_phys_bits = 36;
1123 }
1124 }
1125 c->x86_cache_bits = c->x86_phys_bits;
1126 c->x86_cache_alignment = c->x86_clflush_size;
1127 }
1128
1129 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1130 {
1131 #ifdef CONFIG_X86_32
1132 int i;
1133
1134 /*
1135 * First of all, decide if this is a 486 or higher
1136 * It's a 486 if we can modify the AC flag
1137 */
1138 if (flag_is_changeable_p(X86_EFLAGS_AC))
1139 c->x86 = 4;
1140 else
1141 c->x86 = 3;
1142
1143 for (i = 0; i < X86_VENDOR_NUM; i++)
1144 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1145 c->x86_vendor_id[0] = 0;
1146 cpu_devs[i]->c_identify(c);
1147 if (c->x86_vendor_id[0]) {
1148 get_cpu_vendor(c);
1149 break;
1150 }
1151 }
1152 #endif
1153 }
1154
1155 #define NO_SPECULATION BIT(0)
1156 #define NO_MELTDOWN BIT(1)
1157 #define NO_SSB BIT(2)
1158 #define NO_L1TF BIT(3)
1159 #define NO_MDS BIT(4)
1160 #define MSBDS_ONLY BIT(5)
1161 #define NO_SWAPGS BIT(6)
1162 #define NO_ITLB_MULTIHIT BIT(7)
1163 #define NO_SPECTRE_V2 BIT(8)
1164 #define NO_MMIO BIT(9)
1165 #define NO_EIBRS_PBRSB BIT(10)
1166
1167 #define VULNWL(vendor, family, model, whitelist) \
1168 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1169
1170 #define VULNWL_INTEL(model, whitelist) \
1171 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1172
1173 #define VULNWL_AMD(family, whitelist) \
1174 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1175
1176 #define VULNWL_HYGON(family, whitelist) \
1177 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1178
1179 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1180 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1181 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1182 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1183 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1184 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1185 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1186
1187 /* Intel Family 6 */
1188 VULNWL_INTEL(TIGERLAKE, NO_MMIO),
1189 VULNWL_INTEL(TIGERLAKE_L, NO_MMIO),
1190 VULNWL_INTEL(ALDERLAKE, NO_MMIO),
1191 VULNWL_INTEL(ALDERLAKE_L, NO_MMIO),
1192
1193 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1194 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1195 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1196 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1197 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1198
1199 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1200 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1201 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1202 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1203 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1204 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1205
1206 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1207
1208 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1209 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1210
1211 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1212 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1213 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1214
1215 /*
1216 * Technically, swapgs isn't serializing on AMD (despite it previously
1217 * being documented as such in the APM). But according to AMD, %gs is
1218 * updated non-speculatively, and the issuing of %gs-relative memory
1219 * operands will be blocked until the %gs update completes, which is
1220 * good enough for our purposes.
1221 */
1222
1223 VULNWL_INTEL(ATOM_TREMONT, NO_EIBRS_PBRSB),
1224 VULNWL_INTEL(ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1225 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1226
1227 /* AMD Family 0xf - 0x12 */
1228 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1229 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1230 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1231 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1232
1233 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1234 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1235 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1236
1237 /* Zhaoxin Family 7 */
1238 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1239 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1240 {}
1241 };
1242
1243 #define VULNBL(vendor, family, model, blacklist) \
1244 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1245
1246 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1247 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1248 INTEL_FAM6_##model, steppings, \
1249 X86_FEATURE_ANY, issues)
1250
1251 #define VULNBL_AMD(family, blacklist) \
1252 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1253
1254 #define VULNBL_HYGON(family, blacklist) \
1255 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1256
1257 #define SRBDS BIT(0)
1258 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1259 #define MMIO BIT(1)
1260 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1261 #define MMIO_SBDS BIT(2)
1262 /* CPU is affected by RETbleed, speculating where you would not expect it */
1263 #define RETBLEED BIT(3)
1264 /* CPU is affected by SMT (cross-thread) return predictions */
1265 #define SMT_RSB BIT(4)
1266 /* CPU is affected by SRSO */
1267 #define SRSO BIT(5)
1268 /* CPU is affected by GDS */
1269 #define GDS BIT(6)
1270
1271 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1272 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1273 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1274 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1275 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1276 VULNBL_INTEL_STEPPINGS(HASWELL_X, X86_STEPPING_ANY, MMIO),
1277 VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPING_ANY, MMIO),
1278 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1279 VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO),
1280 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1281 VULNBL_INTEL_STEPPINGS(SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
1282 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1283 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1284 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1285 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1286 VULNBL_INTEL_STEPPINGS(CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
1287 VULNBL_INTEL_STEPPINGS(ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1288 VULNBL_INTEL_STEPPINGS(ICELAKE_D, X86_STEPPING_ANY, MMIO | GDS),
1289 VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPING_ANY, MMIO | GDS),
1290 VULNBL_INTEL_STEPPINGS(COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1291 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
1292 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1293 VULNBL_INTEL_STEPPINGS(TIGERLAKE_L, X86_STEPPING_ANY, GDS),
1294 VULNBL_INTEL_STEPPINGS(TIGERLAKE, X86_STEPPING_ANY, GDS),
1295 VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1296 VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
1297 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1298 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO),
1299 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1300
1301 VULNBL_AMD(0x15, RETBLEED),
1302 VULNBL_AMD(0x16, RETBLEED),
1303 VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1304 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1305 VULNBL_AMD(0x19, SRSO),
1306 {}
1307 };
1308
1309 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1310 {
1311 const struct x86_cpu_id *m = x86_match_cpu(table);
1312
1313 return m && !!(m->driver_data & which);
1314 }
1315
1316 u64 x86_read_arch_cap_msr(void)
1317 {
1318 u64 ia32_cap = 0;
1319
1320 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1321 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1322
1323 return ia32_cap;
1324 }
1325
1326 static bool arch_cap_mmio_immune(u64 ia32_cap)
1327 {
1328 return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1329 ia32_cap & ARCH_CAP_PSDP_NO &&
1330 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1331 }
1332
1333 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1334 {
1335 u64 ia32_cap = x86_read_arch_cap_msr();
1336
1337 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1338 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1339 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1340 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1341
1342 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1343 return;
1344
1345 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1346
1347 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1348 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1349
1350 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1351 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1352 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1353 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1354
1355 /*
1356 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1357 * flag and protect from vendor-specific bugs via the whitelist.
1358 */
1359 if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1360 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1361 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1362 !(ia32_cap & ARCH_CAP_PBRSB_NO))
1363 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1364 }
1365
1366 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1367 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1368 setup_force_cpu_bug(X86_BUG_MDS);
1369 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1370 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1371 }
1372
1373 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1374 setup_force_cpu_bug(X86_BUG_SWAPGS);
1375
1376 /*
1377 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1378 * - TSX is supported or
1379 * - TSX_CTRL is present
1380 *
1381 * TSX_CTRL check is needed for cases when TSX could be disabled before
1382 * the kernel boot e.g. kexec.
1383 * TSX_CTRL check alone is not sufficient for cases when the microcode
1384 * update is not present or running as guest that don't get TSX_CTRL.
1385 */
1386 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1387 (cpu_has(c, X86_FEATURE_RTM) ||
1388 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1389 setup_force_cpu_bug(X86_BUG_TAA);
1390
1391 /*
1392 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1393 * in the vulnerability blacklist.
1394 *
1395 * Some of the implications and mitigation of Shared Buffers Data
1396 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1397 * SRBDS.
1398 */
1399 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1400 cpu_has(c, X86_FEATURE_RDSEED)) &&
1401 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1402 setup_force_cpu_bug(X86_BUG_SRBDS);
1403
1404 /*
1405 * Processor MMIO Stale Data bug enumeration
1406 *
1407 * Affected CPU list is generally enough to enumerate the vulnerability,
1408 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1409 * not want the guest to enumerate the bug.
1410 *
1411 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1412 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1413 */
1414 if (!arch_cap_mmio_immune(ia32_cap)) {
1415 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1416 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1417 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1418 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1419 }
1420
1421 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1422 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1423 setup_force_cpu_bug(X86_BUG_RETBLEED);
1424 }
1425
1426 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1427 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1428
1429 if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1430 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1431 setup_force_cpu_bug(X86_BUG_SRSO);
1432 }
1433
1434 /*
1435 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1436 * an affected processor, the VMM may have disabled the use of GATHER by
1437 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1438 * which means that AVX will be disabled.
1439 */
1440 if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1441 boot_cpu_has(X86_FEATURE_AVX))
1442 setup_force_cpu_bug(X86_BUG_GDS);
1443
1444 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1445 return;
1446
1447 /* Rogue Data Cache Load? No! */
1448 if (ia32_cap & ARCH_CAP_RDCL_NO)
1449 return;
1450
1451 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1452
1453 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1454 return;
1455
1456 setup_force_cpu_bug(X86_BUG_L1TF);
1457 }
1458
1459 /*
1460 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1461 * unfortunately, that's not true in practice because of early VIA
1462 * chips and (more importantly) broken virtualizers that are not easy
1463 * to detect. In the latter case it doesn't even *fail* reliably, so
1464 * probing for it doesn't even work. Disable it completely on 32-bit
1465 * unless we can find a reliable way to detect all the broken cases.
1466 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1467 */
1468 static void detect_nopl(void)
1469 {
1470 #ifdef CONFIG_X86_32
1471 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1472 #else
1473 setup_force_cpu_cap(X86_FEATURE_NOPL);
1474 #endif
1475 }
1476
1477 /*
1478 * We parse cpu parameters early because fpu__init_system() is executed
1479 * before parse_early_param().
1480 */
1481 static void __init cpu_parse_early_param(void)
1482 {
1483 char arg[128];
1484 char *argptr = arg, *opt;
1485 int arglen, taint = 0;
1486
1487 #ifdef CONFIG_X86_32
1488 if (cmdline_find_option_bool(boot_command_line, "no387"))
1489 #ifdef CONFIG_MATH_EMULATION
1490 setup_clear_cpu_cap(X86_FEATURE_FPU);
1491 #else
1492 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1493 #endif
1494
1495 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1496 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1497 #endif
1498
1499 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1500 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1501
1502 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1503 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1504
1505 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1506 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1507
1508 if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1509 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1510
1511 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1512 if (arglen <= 0)
1513 return;
1514
1515 pr_info("Clearing CPUID bits:");
1516
1517 while (argptr) {
1518 bool found __maybe_unused = false;
1519 unsigned int bit;
1520
1521 opt = strsep(&argptr, ",");
1522
1523 /*
1524 * Handle naked numbers first for feature flags which don't
1525 * have names.
1526 */
1527 if (!kstrtouint(opt, 10, &bit)) {
1528 if (bit < NCAPINTS * 32) {
1529
1530 /* empty-string, i.e., ""-defined feature flags */
1531 if (!x86_cap_flags[bit])
1532 pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1533 else
1534 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1535
1536 setup_clear_cpu_cap(bit);
1537 taint++;
1538 }
1539 /*
1540 * The assumption is that there are no feature names with only
1541 * numbers in the name thus go to the next argument.
1542 */
1543 continue;
1544 }
1545
1546 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1547 if (!x86_cap_flag(bit))
1548 continue;
1549
1550 if (strcmp(x86_cap_flag(bit), opt))
1551 continue;
1552
1553 pr_cont(" %s", opt);
1554 setup_clear_cpu_cap(bit);
1555 taint++;
1556 found = true;
1557 break;
1558 }
1559
1560 if (!found)
1561 pr_cont(" (unknown: %s)", opt);
1562 }
1563 pr_cont("\n");
1564
1565 if (taint)
1566 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1567 }
1568
1569 /*
1570 * Do minimum CPU detection early.
1571 * Fields really needed: vendor, cpuid_level, family, model, mask,
1572 * cache alignment.
1573 * The others are not touched to avoid unwanted side effects.
1574 *
1575 * WARNING: this function is only called on the boot CPU. Don't add code
1576 * here that is supposed to run on all CPUs.
1577 */
1578 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1579 {
1580 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1581 c->extended_cpuid_level = 0;
1582
1583 if (!have_cpuid_p())
1584 identify_cpu_without_cpuid(c);
1585
1586 /* cyrix could have cpuid enabled via c_identify()*/
1587 if (have_cpuid_p()) {
1588 cpu_detect(c);
1589 get_cpu_vendor(c);
1590 get_cpu_cap(c);
1591 setup_force_cpu_cap(X86_FEATURE_CPUID);
1592 cpu_parse_early_param();
1593
1594 if (this_cpu->c_early_init)
1595 this_cpu->c_early_init(c);
1596
1597 c->cpu_index = 0;
1598 filter_cpuid_features(c, false);
1599
1600 if (this_cpu->c_bsp_init)
1601 this_cpu->c_bsp_init(c);
1602 } else {
1603 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1604 }
1605
1606 get_cpu_address_sizes(c);
1607
1608 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1609
1610 cpu_set_bug_bits(c);
1611
1612 sld_setup(c);
1613
1614 #ifdef CONFIG_X86_32
1615 /*
1616 * Regardless of whether PCID is enumerated, the SDM says
1617 * that it can't be enabled in 32-bit mode.
1618 */
1619 setup_clear_cpu_cap(X86_FEATURE_PCID);
1620 #endif
1621
1622 /*
1623 * Later in the boot process pgtable_l5_enabled() relies on
1624 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1625 * enabled by this point we need to clear the feature bit to avoid
1626 * false-positives at the later stage.
1627 *
1628 * pgtable_l5_enabled() can be false here for several reasons:
1629 * - 5-level paging is disabled compile-time;
1630 * - it's 32-bit kernel;
1631 * - machine doesn't support 5-level paging;
1632 * - user specified 'no5lvl' in kernel command line.
1633 */
1634 if (!pgtable_l5_enabled())
1635 setup_clear_cpu_cap(X86_FEATURE_LA57);
1636
1637 detect_nopl();
1638 }
1639
1640 void __init early_cpu_init(void)
1641 {
1642 const struct cpu_dev *const *cdev;
1643 int count = 0;
1644
1645 #ifdef CONFIG_PROCESSOR_SELECT
1646 pr_info("KERNEL supported cpus:\n");
1647 #endif
1648
1649 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1650 const struct cpu_dev *cpudev = *cdev;
1651
1652 if (count >= X86_VENDOR_NUM)
1653 break;
1654 cpu_devs[count] = cpudev;
1655 count++;
1656
1657 #ifdef CONFIG_PROCESSOR_SELECT
1658 {
1659 unsigned int j;
1660
1661 for (j = 0; j < 2; j++) {
1662 if (!cpudev->c_ident[j])
1663 continue;
1664 pr_info(" %s %s\n", cpudev->c_vendor,
1665 cpudev->c_ident[j]);
1666 }
1667 }
1668 #endif
1669 }
1670 early_identify_cpu(&boot_cpu_data);
1671 }
1672
1673 static bool detect_null_seg_behavior(void)
1674 {
1675 /*
1676 * Empirically, writing zero to a segment selector on AMD does
1677 * not clear the base, whereas writing zero to a segment
1678 * selector on Intel does clear the base. Intel's behavior
1679 * allows slightly faster context switches in the common case
1680 * where GS is unused by the prev and next threads.
1681 *
1682 * Since neither vendor documents this anywhere that I can see,
1683 * detect it directly instead of hard-coding the choice by
1684 * vendor.
1685 *
1686 * I've designated AMD's behavior as the "bug" because it's
1687 * counterintuitive and less friendly.
1688 */
1689
1690 unsigned long old_base, tmp;
1691 rdmsrl(MSR_FS_BASE, old_base);
1692 wrmsrl(MSR_FS_BASE, 1);
1693 loadsegment(fs, 0);
1694 rdmsrl(MSR_FS_BASE, tmp);
1695 wrmsrl(MSR_FS_BASE, old_base);
1696 return tmp == 0;
1697 }
1698
1699 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1700 {
1701 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1702 if (!IS_ENABLED(CONFIG_X86_64))
1703 return;
1704
1705 if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1706 return;
1707
1708 /*
1709 * CPUID bit above wasn't set. If this kernel is still running
1710 * as a HV guest, then the HV has decided not to advertize
1711 * that CPUID bit for whatever reason. For example, one
1712 * member of the migration pool might be vulnerable. Which
1713 * means, the bug is present: set the BUG flag and return.
1714 */
1715 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1716 set_cpu_bug(c, X86_BUG_NULL_SEG);
1717 return;
1718 }
1719
1720 /*
1721 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1722 * 0x18 is the respective family for Hygon.
1723 */
1724 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1725 detect_null_seg_behavior())
1726 return;
1727
1728 /* All the remaining ones are affected */
1729 set_cpu_bug(c, X86_BUG_NULL_SEG);
1730 }
1731
1732 static void generic_identify(struct cpuinfo_x86 *c)
1733 {
1734 c->extended_cpuid_level = 0;
1735
1736 if (!have_cpuid_p())
1737 identify_cpu_without_cpuid(c);
1738
1739 /* cyrix could have cpuid enabled via c_identify()*/
1740 if (!have_cpuid_p())
1741 return;
1742
1743 cpu_detect(c);
1744
1745 get_cpu_vendor(c);
1746
1747 get_cpu_cap(c);
1748
1749 get_cpu_address_sizes(c);
1750
1751 if (c->cpuid_level >= 0x00000001) {
1752 c->topo.initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1753 #ifdef CONFIG_X86_32
1754 # ifdef CONFIG_SMP
1755 c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1756 # else
1757 c->topo.apicid = c->topo.initial_apicid;
1758 # endif
1759 #endif
1760 c->topo.pkg_id = c->topo.initial_apicid;
1761 }
1762
1763 get_model_name(c); /* Default name */
1764
1765 /*
1766 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1767 * systems that run Linux at CPL > 0 may or may not have the
1768 * issue, but, even if they have the issue, there's absolutely
1769 * nothing we can do about it because we can't use the real IRET
1770 * instruction.
1771 *
1772 * NB: For the time being, only 32-bit kernels support
1773 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1774 * whether to apply espfix using paravirt hooks. If any
1775 * non-paravirt system ever shows up that does *not* have the
1776 * ESPFIX issue, we can change this.
1777 */
1778 #ifdef CONFIG_X86_32
1779 set_cpu_bug(c, X86_BUG_ESPFIX);
1780 #endif
1781 }
1782
1783 /*
1784 * Validate that ACPI/mptables have the same information about the
1785 * effective APIC id and update the package map.
1786 */
1787 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1788 {
1789 #ifdef CONFIG_SMP
1790 unsigned int cpu = smp_processor_id();
1791 u32 apicid;
1792
1793 apicid = apic->cpu_present_to_apicid(cpu);
1794
1795 if (apicid != c->topo.apicid) {
1796 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1797 cpu, apicid, c->topo.initial_apicid);
1798 }
1799 BUG_ON(topology_update_package_map(c->topo.pkg_id, cpu));
1800 BUG_ON(topology_update_die_map(c->topo.die_id, cpu));
1801 #else
1802 c->topo.logical_pkg_id = 0;
1803 #endif
1804 }
1805
1806 /*
1807 * This does the hard work of actually picking apart the CPU stuff...
1808 */
1809 static void identify_cpu(struct cpuinfo_x86 *c)
1810 {
1811 int i;
1812
1813 c->loops_per_jiffy = loops_per_jiffy;
1814 c->x86_cache_size = 0;
1815 c->x86_vendor = X86_VENDOR_UNKNOWN;
1816 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1817 c->x86_vendor_id[0] = '\0'; /* Unset */
1818 c->x86_model_id[0] = '\0'; /* Unset */
1819 c->x86_max_cores = 1;
1820 c->x86_coreid_bits = 0;
1821 c->topo.cu_id = 0xff;
1822 c->topo.llc_id = BAD_APICID;
1823 c->topo.l2c_id = BAD_APICID;
1824 #ifdef CONFIG_X86_64
1825 c->x86_clflush_size = 64;
1826 c->x86_phys_bits = 36;
1827 c->x86_virt_bits = 48;
1828 #else
1829 c->cpuid_level = -1; /* CPUID not detected */
1830 c->x86_clflush_size = 32;
1831 c->x86_phys_bits = 32;
1832 c->x86_virt_bits = 32;
1833 #endif
1834 c->x86_cache_alignment = c->x86_clflush_size;
1835 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1836 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1837 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1838 #endif
1839
1840 generic_identify(c);
1841
1842 if (this_cpu->c_identify)
1843 this_cpu->c_identify(c);
1844
1845 /* Clear/Set all flags overridden by options, after probe */
1846 apply_forced_caps(c);
1847
1848 #ifdef CONFIG_X86_64
1849 c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1850 #endif
1851
1852
1853 /*
1854 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1855 * Hygon will clear it in ->c_init() below.
1856 */
1857 set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1858
1859 /*
1860 * Vendor-specific initialization. In this section we
1861 * canonicalize the feature flags, meaning if there are
1862 * features a certain CPU supports which CPUID doesn't
1863 * tell us, CPUID claiming incorrect flags, or other bugs,
1864 * we handle them here.
1865 *
1866 * At the end of this section, c->x86_capability better
1867 * indicate the features this CPU genuinely supports!
1868 */
1869 if (this_cpu->c_init)
1870 this_cpu->c_init(c);
1871
1872 /* Disable the PN if appropriate */
1873 squash_the_stupid_serial_number(c);
1874
1875 /* Set up SMEP/SMAP/UMIP */
1876 setup_smep(c);
1877 setup_smap(c);
1878 setup_umip(c);
1879
1880 /* Enable FSGSBASE instructions if available. */
1881 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1882 cr4_set_bits(X86_CR4_FSGSBASE);
1883 elf_hwcap2 |= HWCAP2_FSGSBASE;
1884 }
1885
1886 /*
1887 * The vendor-specific functions might have changed features.
1888 * Now we do "generic changes."
1889 */
1890
1891 /* Filter out anything that depends on CPUID levels we don't have */
1892 filter_cpuid_features(c, true);
1893
1894 /* If the model name is still unset, do table lookup. */
1895 if (!c->x86_model_id[0]) {
1896 const char *p;
1897 p = table_lookup_model(c);
1898 if (p)
1899 strcpy(c->x86_model_id, p);
1900 else
1901 /* Last resort... */
1902 sprintf(c->x86_model_id, "%02x/%02x",
1903 c->x86, c->x86_model);
1904 }
1905
1906 #ifdef CONFIG_X86_64
1907 detect_ht(c);
1908 #endif
1909
1910 x86_init_rdrand(c);
1911 setup_pku(c);
1912 setup_cet(c);
1913
1914 /*
1915 * Clear/Set all flags overridden by options, need do it
1916 * before following smp all cpus cap AND.
1917 */
1918 apply_forced_caps(c);
1919
1920 /*
1921 * On SMP, boot_cpu_data holds the common feature set between
1922 * all CPUs; so make sure that we indicate which features are
1923 * common between the CPUs. The first time this routine gets
1924 * executed, c == &boot_cpu_data.
1925 */
1926 if (c != &boot_cpu_data) {
1927 /* AND the already accumulated flags with these */
1928 for (i = 0; i < NCAPINTS; i++)
1929 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1930
1931 /* OR, i.e. replicate the bug flags */
1932 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1933 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1934 }
1935
1936 ppin_init(c);
1937
1938 /* Init Machine Check Exception if available. */
1939 mcheck_cpu_init(c);
1940
1941 select_idle_routine(c);
1942
1943 #ifdef CONFIG_NUMA
1944 numa_add_cpu(smp_processor_id());
1945 #endif
1946 }
1947
1948 /*
1949 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1950 * on 32-bit kernels:
1951 */
1952 #ifdef CONFIG_X86_32
1953 void enable_sep_cpu(void)
1954 {
1955 struct tss_struct *tss;
1956 int cpu;
1957
1958 if (!boot_cpu_has(X86_FEATURE_SEP))
1959 return;
1960
1961 cpu = get_cpu();
1962 tss = &per_cpu(cpu_tss_rw, cpu);
1963
1964 /*
1965 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1966 * see the big comment in struct x86_hw_tss's definition.
1967 */
1968
1969 tss->x86_tss.ss1 = __KERNEL_CS;
1970 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1971 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1972 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1973
1974 put_cpu();
1975 }
1976 #endif
1977
1978 static __init void identify_boot_cpu(void)
1979 {
1980 identify_cpu(&boot_cpu_data);
1981 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1982 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1983 #ifdef CONFIG_X86_32
1984 enable_sep_cpu();
1985 #endif
1986 cpu_detect_tlb(&boot_cpu_data);
1987 setup_cr_pinning();
1988
1989 tsx_init();
1990 tdx_init();
1991 lkgs_init();
1992 }
1993
1994 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1995 {
1996 BUG_ON(c == &boot_cpu_data);
1997 identify_cpu(c);
1998 #ifdef CONFIG_X86_32
1999 enable_sep_cpu();
2000 #endif
2001 validate_apic_and_package_id(c);
2002 x86_spec_ctrl_setup_ap();
2003 update_srbds_msr();
2004 if (boot_cpu_has_bug(X86_BUG_GDS))
2005 update_gds_msr();
2006
2007 tsx_ap_init();
2008 }
2009
2010 void print_cpu_info(struct cpuinfo_x86 *c)
2011 {
2012 const char *vendor = NULL;
2013
2014 if (c->x86_vendor < X86_VENDOR_NUM) {
2015 vendor = this_cpu->c_vendor;
2016 } else {
2017 if (c->cpuid_level >= 0)
2018 vendor = c->x86_vendor_id;
2019 }
2020
2021 if (vendor && !strstr(c->x86_model_id, vendor))
2022 pr_cont("%s ", vendor);
2023
2024 if (c->x86_model_id[0])
2025 pr_cont("%s", c->x86_model_id);
2026 else
2027 pr_cont("%d86", c->x86);
2028
2029 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2030
2031 if (c->x86_stepping || c->cpuid_level >= 0)
2032 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2033 else
2034 pr_cont(")\n");
2035 }
2036
2037 /*
2038 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
2039 * function prevents it from becoming an environment variable for init.
2040 */
2041 static __init int setup_clearcpuid(char *arg)
2042 {
2043 return 1;
2044 }
2045 __setup("clearcpuid=", setup_clearcpuid);
2046
2047 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2048 .current_task = &init_task,
2049 .preempt_count = INIT_PREEMPT_COUNT,
2050 .top_of_stack = TOP_OF_INIT_STACK,
2051 };
2052 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2053 EXPORT_PER_CPU_SYMBOL(const_pcpu_hot);
2054
2055 #ifdef CONFIG_X86_64
2056 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2057 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2058 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2059
2060 static void wrmsrl_cstar(unsigned long val)
2061 {
2062 /*
2063 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2064 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2065 * guest. Avoid the pointless write on all Intel CPUs.
2066 */
2067 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2068 wrmsrl(MSR_CSTAR, val);
2069 }
2070
2071 /* May not be marked __init: used by software suspend */
2072 void syscall_init(void)
2073 {
2074 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2075 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2076
2077 if (ia32_enabled()) {
2078 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2079 /*
2080 * This only works on Intel CPUs.
2081 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2082 * This does not cause SYSENTER to jump to the wrong location, because
2083 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2084 */
2085 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2086 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2087 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2088 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2089 } else {
2090 wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2091 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2092 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2093 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2094 }
2095
2096 /*
2097 * Flags to clear on syscall; clear as much as possible
2098 * to minimize user space-kernel interference.
2099 */
2100 wrmsrl(MSR_SYSCALL_MASK,
2101 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2102 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2103 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2104 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2105 X86_EFLAGS_AC|X86_EFLAGS_ID);
2106 }
2107
2108 #else /* CONFIG_X86_64 */
2109
2110 #ifdef CONFIG_STACKPROTECTOR
2111 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2112 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2113 #endif
2114
2115 #endif /* CONFIG_X86_64 */
2116
2117 /*
2118 * Clear all 6 debug registers:
2119 */
2120 static void clear_all_debug_regs(void)
2121 {
2122 int i;
2123
2124 for (i = 0; i < 8; i++) {
2125 /* Ignore db4, db5 */
2126 if ((i == 4) || (i == 5))
2127 continue;
2128
2129 set_debugreg(0, i);
2130 }
2131 }
2132
2133 #ifdef CONFIG_KGDB
2134 /*
2135 * Restore debug regs if using kgdbwait and you have a kernel debugger
2136 * connection established.
2137 */
2138 static void dbg_restore_debug_regs(void)
2139 {
2140 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2141 arch_kgdb_ops.correct_hw_break();
2142 }
2143 #else /* ! CONFIG_KGDB */
2144 #define dbg_restore_debug_regs()
2145 #endif /* ! CONFIG_KGDB */
2146
2147 static inline void setup_getcpu(int cpu)
2148 {
2149 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2150 struct desc_struct d = { };
2151
2152 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2153 wrmsr(MSR_TSC_AUX, cpudata, 0);
2154
2155 /* Store CPU and node number in limit. */
2156 d.limit0 = cpudata;
2157 d.limit1 = cpudata >> 16;
2158
2159 d.type = 5; /* RO data, expand down, accessed */
2160 d.dpl = 3; /* Visible to user code */
2161 d.s = 1; /* Not a system segment */
2162 d.p = 1; /* Present */
2163 d.d = 1; /* 32-bit */
2164
2165 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2166 }
2167
2168 #ifdef CONFIG_X86_64
2169 static inline void tss_setup_ist(struct tss_struct *tss)
2170 {
2171 /* Set up the per-CPU TSS IST stacks */
2172 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2173 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2174 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2175 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2176 /* Only mapped when SEV-ES is active */
2177 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2178 }
2179 #else /* CONFIG_X86_64 */
2180 static inline void tss_setup_ist(struct tss_struct *tss) { }
2181 #endif /* !CONFIG_X86_64 */
2182
2183 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2184 {
2185 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2186
2187 #ifdef CONFIG_X86_IOPL_IOPERM
2188 tss->io_bitmap.prev_max = 0;
2189 tss->io_bitmap.prev_sequence = 0;
2190 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2191 /*
2192 * Invalidate the extra array entry past the end of the all
2193 * permission bitmap as required by the hardware.
2194 */
2195 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2196 #endif
2197 }
2198
2199 /*
2200 * Setup everything needed to handle exceptions from the IDT, including the IST
2201 * exceptions which use paranoid_entry().
2202 */
2203 void cpu_init_exception_handling(void)
2204 {
2205 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2206 int cpu = raw_smp_processor_id();
2207
2208 /* paranoid_entry() gets the CPU number from the GDT */
2209 setup_getcpu(cpu);
2210
2211 /* IST vectors need TSS to be set up. */
2212 tss_setup_ist(tss);
2213 tss_setup_io_bitmap(tss);
2214 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2215
2216 load_TR_desc();
2217
2218 /* GHCB needs to be setup to handle #VC. */
2219 setup_ghcb();
2220
2221 /* Finally load the IDT */
2222 load_current_idt();
2223 }
2224
2225 /*
2226 * cpu_init() initializes state that is per-CPU. Some data is already
2227 * initialized (naturally) in the bootstrap process, such as the GDT. We
2228 * reload it nevertheless, this function acts as a 'CPU state barrier',
2229 * nothing should get across.
2230 */
2231 void cpu_init(void)
2232 {
2233 struct task_struct *cur = current;
2234 int cpu = raw_smp_processor_id();
2235
2236 #ifdef CONFIG_NUMA
2237 if (this_cpu_read(numa_node) == 0 &&
2238 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2239 set_numa_node(early_cpu_to_node(cpu));
2240 #endif
2241 pr_debug("Initializing CPU#%d\n", cpu);
2242
2243 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2244 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2245 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2246
2247 if (IS_ENABLED(CONFIG_X86_64)) {
2248 loadsegment(fs, 0);
2249 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2250 syscall_init();
2251
2252 wrmsrl(MSR_FS_BASE, 0);
2253 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2254 barrier();
2255
2256 x2apic_setup();
2257 }
2258
2259 mmgrab(&init_mm);
2260 cur->active_mm = &init_mm;
2261 BUG_ON(cur->mm);
2262 initialize_tlbstate_and_flush();
2263 enter_lazy_tlb(&init_mm, cur);
2264
2265 /*
2266 * sp0 points to the entry trampoline stack regardless of what task
2267 * is running.
2268 */
2269 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2270
2271 load_mm_ldt(&init_mm);
2272
2273 clear_all_debug_regs();
2274 dbg_restore_debug_regs();
2275
2276 doublefault_init_cpu_tss();
2277
2278 if (is_uv_system())
2279 uv_cpu_init();
2280
2281 load_fixmap_gdt(cpu);
2282 }
2283
2284 #ifdef CONFIG_MICROCODE_LATE_LOADING
2285 /**
2286 * store_cpu_caps() - Store a snapshot of CPU capabilities
2287 * @curr_info: Pointer where to store it
2288 *
2289 * Returns: None
2290 */
2291 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2292 {
2293 /* Reload CPUID max function as it might've changed. */
2294 curr_info->cpuid_level = cpuid_eax(0);
2295
2296 /* Copy all capability leafs and pick up the synthetic ones. */
2297 memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2298 sizeof(curr_info->x86_capability));
2299
2300 /* Get the hardware CPUID leafs */
2301 get_cpu_cap(curr_info);
2302 }
2303
2304 /**
2305 * microcode_check() - Check if any CPU capabilities changed after an update.
2306 * @prev_info: CPU capabilities stored before an update.
2307 *
2308 * The microcode loader calls this upon late microcode load to recheck features,
2309 * only when microcode has been updated. Caller holds and CPU hotplug lock.
2310 *
2311 * Return: None
2312 */
2313 void microcode_check(struct cpuinfo_x86 *prev_info)
2314 {
2315 struct cpuinfo_x86 curr_info;
2316
2317 perf_check_microcode();
2318
2319 amd_check_microcode();
2320
2321 store_cpu_caps(&curr_info);
2322
2323 if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2324 sizeof(prev_info->x86_capability)))
2325 return;
2326
2327 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2328 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2329 }
2330 #endif
2331
2332 /*
2333 * Invoked from core CPU hotplug code after hotplug operations
2334 */
2335 void arch_smt_update(void)
2336 {
2337 /* Handle the speculative execution misfeatures */
2338 cpu_bugs_smt_update();
2339 /* Check whether IPI broadcasting can be enabled */
2340 apic_smt_update();
2341 }
2342
2343 void __init arch_cpu_finalize_init(void)
2344 {
2345 identify_boot_cpu();
2346
2347 /*
2348 * identify_boot_cpu() initialized SMT support information, let the
2349 * core code know.
2350 */
2351 cpu_smt_set_num_threads(smp_num_siblings, smp_num_siblings);
2352
2353 if (!IS_ENABLED(CONFIG_SMP)) {
2354 pr_info("CPU: ");
2355 print_cpu_info(&boot_cpu_data);
2356 }
2357
2358 cpu_select_mitigations();
2359
2360 arch_smt_update();
2361
2362 if (IS_ENABLED(CONFIG_X86_32)) {
2363 /*
2364 * Check whether this is a real i386 which is not longer
2365 * supported and fixup the utsname.
2366 */
2367 if (boot_cpu_data.x86 < 4)
2368 panic("Kernel requires i486+ for 'invlpg' and other features");
2369
2370 init_utsname()->machine[1] =
2371 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2372 }
2373
2374 /*
2375 * Must be before alternatives because it might set or clear
2376 * feature bits.
2377 */
2378 fpu__init_system();
2379 fpu__init_cpu();
2380
2381 alternative_instructions();
2382
2383 if (IS_ENABLED(CONFIG_X86_64)) {
2384 /*
2385 * Make sure the first 2MB area is not mapped by huge pages
2386 * There are typically fixed size MTRRs in there and overlapping
2387 * MTRRs into large pages causes slow downs.
2388 *
2389 * Right now we don't do that with gbpages because there seems
2390 * very little benefit for that case.
2391 */
2392 if (!direct_gbpages)
2393 set_memory_4k((unsigned long)__va(0), 1);
2394 } else {
2395 fpu__init_check_bugs();
2396 }
2397
2398 /*
2399 * This needs to be called before any devices perform DMA
2400 * operations that might use the SWIOTLB bounce buffers. It will
2401 * mark the bounce buffers as decrypted so that their usage will
2402 * not cause "plain-text" data to be decrypted when accessed. It
2403 * must be called after late_time_init() so that Hyper-V x86/x64
2404 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2405 */
2406 mem_encrypt_init();
2407 }