]> git.ipfire.org Git - people/arne_f/kernel.git/blob - arch/x86/kernel/cpu/common.c
x86/bugs: Add ITLB_MULTIHIT bug infrastructure
[people/arne_f/kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 #include <asm/intel-family.h>
51 #include <asm/cpu_device_id.h>
52
53 #ifdef CONFIG_X86_LOCAL_APIC
54 #include <asm/uv/uv.h>
55 #endif
56
57 #include "cpu.h"
58
59 u32 elf_hwcap2 __read_mostly;
60
61 /* all of these masks are initialized in setup_cpu_local_masks() */
62 cpumask_var_t cpu_initialized_mask;
63 cpumask_var_t cpu_callout_mask;
64 cpumask_var_t cpu_callin_mask;
65
66 /* representing cpus for which sibling maps can be computed */
67 cpumask_var_t cpu_sibling_setup_mask;
68
69 /* Number of siblings per CPU package */
70 int smp_num_siblings = 1;
71 EXPORT_SYMBOL(smp_num_siblings);
72
73 /* Last level cache ID of each logical CPU */
74 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
75
76 /* correctly size the local cpu masks */
77 void __init setup_cpu_local_masks(void)
78 {
79 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
80 alloc_bootmem_cpumask_var(&cpu_callin_mask);
81 alloc_bootmem_cpumask_var(&cpu_callout_mask);
82 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
83 }
84
85 static void default_init(struct cpuinfo_x86 *c)
86 {
87 #ifdef CONFIG_X86_64
88 cpu_detect_cache_sizes(c);
89 #else
90 /* Not much we can do here... */
91 /* Check if at least it has cpuid */
92 if (c->cpuid_level == -1) {
93 /* No cpuid. It must be an ancient CPU */
94 if (c->x86 == 4)
95 strcpy(c->x86_model_id, "486");
96 else if (c->x86 == 3)
97 strcpy(c->x86_model_id, "386");
98 }
99 #endif
100 }
101
102 static const struct cpu_dev default_cpu = {
103 .c_init = default_init,
104 .c_vendor = "Unknown",
105 .c_x86_vendor = X86_VENDOR_UNKNOWN,
106 };
107
108 static const struct cpu_dev *this_cpu = &default_cpu;
109
110 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
111 #ifdef CONFIG_X86_64
112 /*
113 * We need valid kernel segments for data and code in long mode too
114 * IRET will check the segment types kkeil 2000/10/28
115 * Also sysret mandates a special GDT layout
116 *
117 * TLS descriptors are currently at a different place compared to i386.
118 * Hopefully nobody expects them at a fixed place (Wine?)
119 */
120 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
121 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
122 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
123 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
124 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
125 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
126 #else
127 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
128 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
129 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
130 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
131 /*
132 * Segments used for calling PnP BIOS have byte granularity.
133 * They code segments and data segments have fixed 64k limits,
134 * the transfer segment sizes are set at run time.
135 */
136 /* 32-bit code */
137 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
138 /* 16-bit code */
139 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
140 /* 16-bit data */
141 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
142 /* 16-bit data */
143 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
144 /* 16-bit data */
145 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
146 /*
147 * The APM segments have byte granularity and their bases
148 * are set at run time. All have 64k limits.
149 */
150 /* 32-bit code */
151 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
152 /* 16-bit code */
153 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
154 /* data */
155 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
156
157 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
158 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
159 GDT_STACK_CANARY_INIT
160 #endif
161 } };
162 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
163
164 static int __init x86_mpx_setup(char *s)
165 {
166 /* require an exact match without trailing characters */
167 if (strlen(s))
168 return 0;
169
170 /* do not emit a message if the feature is not present */
171 if (!boot_cpu_has(X86_FEATURE_MPX))
172 return 1;
173
174 setup_clear_cpu_cap(X86_FEATURE_MPX);
175 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
176 return 1;
177 }
178 __setup("nompx", x86_mpx_setup);
179
180 #ifdef CONFIG_X86_64
181 static int __init x86_nopcid_setup(char *s)
182 {
183 /* nopcid doesn't accept parameters */
184 if (s)
185 return -EINVAL;
186
187 /* do not emit a message if the feature is not present */
188 if (!boot_cpu_has(X86_FEATURE_PCID))
189 return 0;
190
191 setup_clear_cpu_cap(X86_FEATURE_PCID);
192 pr_info("nopcid: PCID feature disabled\n");
193 return 0;
194 }
195 early_param("nopcid", x86_nopcid_setup);
196 #endif
197
198 static int __init x86_noinvpcid_setup(char *s)
199 {
200 /* noinvpcid doesn't accept parameters */
201 if (s)
202 return -EINVAL;
203
204 /* do not emit a message if the feature is not present */
205 if (!boot_cpu_has(X86_FEATURE_INVPCID))
206 return 0;
207
208 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
209 pr_info("noinvpcid: INVPCID feature disabled\n");
210 return 0;
211 }
212 early_param("noinvpcid", x86_noinvpcid_setup);
213
214 #ifdef CONFIG_X86_32
215 static int cachesize_override = -1;
216 static int disable_x86_serial_nr = 1;
217
218 static int __init cachesize_setup(char *str)
219 {
220 get_option(&str, &cachesize_override);
221 return 1;
222 }
223 __setup("cachesize=", cachesize_setup);
224
225 static int __init x86_sep_setup(char *s)
226 {
227 setup_clear_cpu_cap(X86_FEATURE_SEP);
228 return 1;
229 }
230 __setup("nosep", x86_sep_setup);
231
232 /* Standard macro to see if a specific flag is changeable */
233 static inline int flag_is_changeable_p(u32 flag)
234 {
235 u32 f1, f2;
236
237 /*
238 * Cyrix and IDT cpus allow disabling of CPUID
239 * so the code below may return different results
240 * when it is executed before and after enabling
241 * the CPUID. Add "volatile" to not allow gcc to
242 * optimize the subsequent calls to this function.
243 */
244 asm volatile ("pushfl \n\t"
245 "pushfl \n\t"
246 "popl %0 \n\t"
247 "movl %0, %1 \n\t"
248 "xorl %2, %0 \n\t"
249 "pushl %0 \n\t"
250 "popfl \n\t"
251 "pushfl \n\t"
252 "popl %0 \n\t"
253 "popfl \n\t"
254
255 : "=&r" (f1), "=&r" (f2)
256 : "ir" (flag));
257
258 return ((f1^f2) & flag) != 0;
259 }
260
261 /* Probe for the CPUID instruction */
262 int have_cpuid_p(void)
263 {
264 return flag_is_changeable_p(X86_EFLAGS_ID);
265 }
266
267 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
268 {
269 unsigned long lo, hi;
270
271 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
272 return;
273
274 /* Disable processor serial number: */
275
276 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
277 lo |= 0x200000;
278 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
279
280 pr_notice("CPU serial number disabled.\n");
281 clear_cpu_cap(c, X86_FEATURE_PN);
282
283 /* Disabling the serial number may affect the cpuid level */
284 c->cpuid_level = cpuid_eax(0);
285 }
286
287 static int __init x86_serial_nr_setup(char *s)
288 {
289 disable_x86_serial_nr = 0;
290 return 1;
291 }
292 __setup("serialnumber", x86_serial_nr_setup);
293 #else
294 static inline int flag_is_changeable_p(u32 flag)
295 {
296 return 1;
297 }
298 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
299 {
300 }
301 #endif
302
303 static __init int setup_disable_smep(char *arg)
304 {
305 setup_clear_cpu_cap(X86_FEATURE_SMEP);
306 /* Check for things that depend on SMEP being enabled: */
307 check_mpx_erratum(&boot_cpu_data);
308 return 1;
309 }
310 __setup("nosmep", setup_disable_smep);
311
312 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
313 {
314 if (cpu_has(c, X86_FEATURE_SMEP))
315 cr4_set_bits(X86_CR4_SMEP);
316 }
317
318 static __init int setup_disable_smap(char *arg)
319 {
320 setup_clear_cpu_cap(X86_FEATURE_SMAP);
321 return 1;
322 }
323 __setup("nosmap", setup_disable_smap);
324
325 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
326 {
327 unsigned long eflags = native_save_fl();
328
329 /* This should have been cleared long ago */
330 BUG_ON(eflags & X86_EFLAGS_AC);
331
332 if (cpu_has(c, X86_FEATURE_SMAP)) {
333 #ifdef CONFIG_X86_SMAP
334 cr4_set_bits(X86_CR4_SMAP);
335 #else
336 cr4_clear_bits(X86_CR4_SMAP);
337 #endif
338 }
339 }
340
341 /*
342 * Protection Keys are not available in 32-bit mode.
343 */
344 static bool pku_disabled;
345
346 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
347 {
348 /* check the boot processor, plus compile options for PKU: */
349 if (!cpu_feature_enabled(X86_FEATURE_PKU))
350 return;
351 /* checks the actual processor's cpuid bits: */
352 if (!cpu_has(c, X86_FEATURE_PKU))
353 return;
354 if (pku_disabled)
355 return;
356
357 cr4_set_bits(X86_CR4_PKE);
358 /*
359 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
360 * cpuid bit to be set. We need to ensure that we
361 * update that bit in this CPU's "cpu_info".
362 */
363 get_cpu_cap(c);
364 }
365
366 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
367 static __init int setup_disable_pku(char *arg)
368 {
369 /*
370 * Do not clear the X86_FEATURE_PKU bit. All of the
371 * runtime checks are against OSPKE so clearing the
372 * bit does nothing.
373 *
374 * This way, we will see "pku" in cpuinfo, but not
375 * "ospke", which is exactly what we want. It shows
376 * that the CPU has PKU, but the OS has not enabled it.
377 * This happens to be exactly how a system would look
378 * if we disabled the config option.
379 */
380 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
381 pku_disabled = true;
382 return 1;
383 }
384 __setup("nopku", setup_disable_pku);
385 #endif /* CONFIG_X86_64 */
386
387 /*
388 * Some CPU features depend on higher CPUID levels, which may not always
389 * be available due to CPUID level capping or broken virtualization
390 * software. Add those features to this table to auto-disable them.
391 */
392 struct cpuid_dependent_feature {
393 u32 feature;
394 u32 level;
395 };
396
397 static const struct cpuid_dependent_feature
398 cpuid_dependent_features[] = {
399 { X86_FEATURE_MWAIT, 0x00000005 },
400 { X86_FEATURE_DCA, 0x00000009 },
401 { X86_FEATURE_XSAVE, 0x0000000d },
402 { 0, 0 }
403 };
404
405 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
406 {
407 const struct cpuid_dependent_feature *df;
408
409 for (df = cpuid_dependent_features; df->feature; df++) {
410
411 if (!cpu_has(c, df->feature))
412 continue;
413 /*
414 * Note: cpuid_level is set to -1 if unavailable, but
415 * extended_extended_level is set to 0 if unavailable
416 * and the legitimate extended levels are all negative
417 * when signed; hence the weird messing around with
418 * signs here...
419 */
420 if (!((s32)df->level < 0 ?
421 (u32)df->level > (u32)c->extended_cpuid_level :
422 (s32)df->level > (s32)c->cpuid_level))
423 continue;
424
425 clear_cpu_cap(c, df->feature);
426 if (!warn)
427 continue;
428
429 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
430 x86_cap_flag(df->feature), df->level);
431 }
432 }
433
434 /*
435 * Naming convention should be: <Name> [(<Codename>)]
436 * This table only is used unless init_<vendor>() below doesn't set it;
437 * in particular, if CPUID levels 0x80000002..4 are supported, this
438 * isn't used
439 */
440
441 /* Look up CPU names by table lookup. */
442 static const char *table_lookup_model(struct cpuinfo_x86 *c)
443 {
444 #ifdef CONFIG_X86_32
445 const struct legacy_cpu_model_info *info;
446
447 if (c->x86_model >= 16)
448 return NULL; /* Range check */
449
450 if (!this_cpu)
451 return NULL;
452
453 info = this_cpu->legacy_models;
454
455 while (info->family) {
456 if (info->family == c->x86)
457 return info->model_names[c->x86_model];
458 info++;
459 }
460 #endif
461 return NULL; /* Not found */
462 }
463
464 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
465 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
466
467 void load_percpu_segment(int cpu)
468 {
469 #ifdef CONFIG_X86_32
470 loadsegment(fs, __KERNEL_PERCPU);
471 #else
472 __loadsegment_simple(gs, 0);
473 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
474 #endif
475 load_stack_canary_segment();
476 }
477
478 #ifdef CONFIG_X86_32
479 /* The 32-bit entry code needs to find cpu_entry_area. */
480 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
481 #endif
482
483 #ifdef CONFIG_X86_64
484 /*
485 * Special IST stacks which the CPU switches to when it calls
486 * an IST-marked descriptor entry. Up to 7 stacks (hardware
487 * limit), all of them are 4K, except the debug stack which
488 * is 8K.
489 */
490 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
491 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
492 [DEBUG_STACK - 1] = DEBUG_STKSZ
493 };
494 #endif
495
496 /* Load the original GDT from the per-cpu structure */
497 void load_direct_gdt(int cpu)
498 {
499 struct desc_ptr gdt_descr;
500
501 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
502 gdt_descr.size = GDT_SIZE - 1;
503 load_gdt(&gdt_descr);
504 }
505 EXPORT_SYMBOL_GPL(load_direct_gdt);
506
507 /* Load a fixmap remapping of the per-cpu GDT */
508 void load_fixmap_gdt(int cpu)
509 {
510 struct desc_ptr gdt_descr;
511
512 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
513 gdt_descr.size = GDT_SIZE - 1;
514 load_gdt(&gdt_descr);
515 }
516 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
517
518 /*
519 * Current gdt points %fs at the "master" per-cpu area: after this,
520 * it's on the real one.
521 */
522 void switch_to_new_gdt(int cpu)
523 {
524 /* Load the original GDT */
525 load_direct_gdt(cpu);
526 /* Reload the per-cpu base */
527 load_percpu_segment(cpu);
528 }
529
530 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
531
532 static void get_model_name(struct cpuinfo_x86 *c)
533 {
534 unsigned int *v;
535 char *p, *q, *s;
536
537 if (c->extended_cpuid_level < 0x80000004)
538 return;
539
540 v = (unsigned int *)c->x86_model_id;
541 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
542 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
543 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
544 c->x86_model_id[48] = 0;
545
546 /* Trim whitespace */
547 p = q = s = &c->x86_model_id[0];
548
549 while (*p == ' ')
550 p++;
551
552 while (*p) {
553 /* Note the last non-whitespace index */
554 if (!isspace(*p))
555 s = q;
556
557 *q++ = *p++;
558 }
559
560 *(s + 1) = '\0';
561 }
562
563 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
564 {
565 unsigned int n, dummy, ebx, ecx, edx, l2size;
566
567 n = c->extended_cpuid_level;
568
569 if (n >= 0x80000005) {
570 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
571 c->x86_cache_size = (ecx>>24) + (edx>>24);
572 #ifdef CONFIG_X86_64
573 /* On K8 L1 TLB is inclusive, so don't count it */
574 c->x86_tlbsize = 0;
575 #endif
576 }
577
578 if (n < 0x80000006) /* Some chips just has a large L1. */
579 return;
580
581 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
582 l2size = ecx >> 16;
583
584 #ifdef CONFIG_X86_64
585 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
586 #else
587 /* do processor-specific cache resizing */
588 if (this_cpu->legacy_cache_size)
589 l2size = this_cpu->legacy_cache_size(c, l2size);
590
591 /* Allow user to override all this if necessary. */
592 if (cachesize_override != -1)
593 l2size = cachesize_override;
594
595 if (l2size == 0)
596 return; /* Again, no L2 cache is possible */
597 #endif
598
599 c->x86_cache_size = l2size;
600 }
601
602 u16 __read_mostly tlb_lli_4k[NR_INFO];
603 u16 __read_mostly tlb_lli_2m[NR_INFO];
604 u16 __read_mostly tlb_lli_4m[NR_INFO];
605 u16 __read_mostly tlb_lld_4k[NR_INFO];
606 u16 __read_mostly tlb_lld_2m[NR_INFO];
607 u16 __read_mostly tlb_lld_4m[NR_INFO];
608 u16 __read_mostly tlb_lld_1g[NR_INFO];
609
610 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
611 {
612 if (this_cpu->c_detect_tlb)
613 this_cpu->c_detect_tlb(c);
614
615 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
616 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
617 tlb_lli_4m[ENTRIES]);
618
619 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
620 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
621 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
622 }
623
624 int detect_ht_early(struct cpuinfo_x86 *c)
625 {
626 #ifdef CONFIG_SMP
627 u32 eax, ebx, ecx, edx;
628
629 if (!cpu_has(c, X86_FEATURE_HT))
630 return -1;
631
632 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
633 return -1;
634
635 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
636 return -1;
637
638 cpuid(1, &eax, &ebx, &ecx, &edx);
639
640 smp_num_siblings = (ebx & 0xff0000) >> 16;
641 if (smp_num_siblings == 1)
642 pr_info_once("CPU0: Hyper-Threading is disabled\n");
643 #endif
644 return 0;
645 }
646
647 void detect_ht(struct cpuinfo_x86 *c)
648 {
649 #ifdef CONFIG_SMP
650 int index_msb, core_bits;
651
652 if (detect_ht_early(c) < 0)
653 return;
654
655 index_msb = get_count_order(smp_num_siblings);
656 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
657
658 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
659
660 index_msb = get_count_order(smp_num_siblings);
661
662 core_bits = get_count_order(c->x86_max_cores);
663
664 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
665 ((1 << core_bits) - 1);
666 #endif
667 }
668
669 static void get_cpu_vendor(struct cpuinfo_x86 *c)
670 {
671 char *v = c->x86_vendor_id;
672 int i;
673
674 for (i = 0; i < X86_VENDOR_NUM; i++) {
675 if (!cpu_devs[i])
676 break;
677
678 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
679 (cpu_devs[i]->c_ident[1] &&
680 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
681
682 this_cpu = cpu_devs[i];
683 c->x86_vendor = this_cpu->c_x86_vendor;
684 return;
685 }
686 }
687
688 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
689 "CPU: Your system may be unstable.\n", v);
690
691 c->x86_vendor = X86_VENDOR_UNKNOWN;
692 this_cpu = &default_cpu;
693 }
694
695 void cpu_detect(struct cpuinfo_x86 *c)
696 {
697 /* Get vendor name */
698 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
699 (unsigned int *)&c->x86_vendor_id[0],
700 (unsigned int *)&c->x86_vendor_id[8],
701 (unsigned int *)&c->x86_vendor_id[4]);
702
703 c->x86 = 4;
704 /* Intel-defined flags: level 0x00000001 */
705 if (c->cpuid_level >= 0x00000001) {
706 u32 junk, tfms, cap0, misc;
707
708 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
709 c->x86 = x86_family(tfms);
710 c->x86_model = x86_model(tfms);
711 c->x86_stepping = x86_stepping(tfms);
712
713 if (cap0 & (1<<19)) {
714 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
715 c->x86_cache_alignment = c->x86_clflush_size;
716 }
717 }
718 }
719
720 static void apply_forced_caps(struct cpuinfo_x86 *c)
721 {
722 int i;
723
724 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
725 c->x86_capability[i] &= ~cpu_caps_cleared[i];
726 c->x86_capability[i] |= cpu_caps_set[i];
727 }
728 }
729
730 static void init_speculation_control(struct cpuinfo_x86 *c)
731 {
732 /*
733 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
734 * and they also have a different bit for STIBP support. Also,
735 * a hypervisor might have set the individual AMD bits even on
736 * Intel CPUs, for finer-grained selection of what's available.
737 */
738 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
739 set_cpu_cap(c, X86_FEATURE_IBRS);
740 set_cpu_cap(c, X86_FEATURE_IBPB);
741 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
742 }
743
744 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
745 set_cpu_cap(c, X86_FEATURE_STIBP);
746
747 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
748 cpu_has(c, X86_FEATURE_VIRT_SSBD))
749 set_cpu_cap(c, X86_FEATURE_SSBD);
750
751 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
752 set_cpu_cap(c, X86_FEATURE_IBRS);
753 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
754 }
755
756 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
757 set_cpu_cap(c, X86_FEATURE_IBPB);
758
759 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
760 set_cpu_cap(c, X86_FEATURE_STIBP);
761 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
762 }
763
764 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
765 set_cpu_cap(c, X86_FEATURE_SSBD);
766 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
767 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
768 }
769 }
770
771 static void init_cqm(struct cpuinfo_x86 *c)
772 {
773 if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
774 c->x86_cache_max_rmid = -1;
775 c->x86_cache_occ_scale = -1;
776 return;
777 }
778
779 /* will be overridden if occupancy monitoring exists */
780 c->x86_cache_max_rmid = cpuid_ebx(0xf);
781
782 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
783 cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
784 cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
785 u32 eax, ebx, ecx, edx;
786
787 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
788 cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
789
790 c->x86_cache_max_rmid = ecx;
791 c->x86_cache_occ_scale = ebx;
792 }
793 }
794
795 void get_cpu_cap(struct cpuinfo_x86 *c)
796 {
797 u32 eax, ebx, ecx, edx;
798
799 /* Intel-defined flags: level 0x00000001 */
800 if (c->cpuid_level >= 0x00000001) {
801 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
802
803 c->x86_capability[CPUID_1_ECX] = ecx;
804 c->x86_capability[CPUID_1_EDX] = edx;
805 }
806
807 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
808 if (c->cpuid_level >= 0x00000006)
809 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
810
811 /* Additional Intel-defined flags: level 0x00000007 */
812 if (c->cpuid_level >= 0x00000007) {
813 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
814 c->x86_capability[CPUID_7_0_EBX] = ebx;
815 c->x86_capability[CPUID_7_ECX] = ecx;
816 c->x86_capability[CPUID_7_EDX] = edx;
817 }
818
819 /* Extended state features: level 0x0000000d */
820 if (c->cpuid_level >= 0x0000000d) {
821 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
822
823 c->x86_capability[CPUID_D_1_EAX] = eax;
824 }
825
826 /* AMD-defined flags: level 0x80000001 */
827 eax = cpuid_eax(0x80000000);
828 c->extended_cpuid_level = eax;
829
830 if ((eax & 0xffff0000) == 0x80000000) {
831 if (eax >= 0x80000001) {
832 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
833
834 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
835 c->x86_capability[CPUID_8000_0001_EDX] = edx;
836 }
837 }
838
839 if (c->extended_cpuid_level >= 0x80000007) {
840 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
841
842 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
843 c->x86_power = edx;
844 }
845
846 if (c->extended_cpuid_level >= 0x80000008) {
847 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
848
849 c->x86_virt_bits = (eax >> 8) & 0xff;
850 c->x86_phys_bits = eax & 0xff;
851 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
852 }
853 #ifdef CONFIG_X86_32
854 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
855 c->x86_phys_bits = 36;
856 #endif
857
858 if (c->extended_cpuid_level >= 0x8000000a)
859 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
860
861 init_scattered_cpuid_features(c);
862 init_speculation_control(c);
863 init_cqm(c);
864
865 /*
866 * Clear/Set all flags overridden by options, after probe.
867 * This needs to happen each time we re-probe, which may happen
868 * several times during CPU initialization.
869 */
870 apply_forced_caps(c);
871 }
872
873 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
874 {
875 #ifdef CONFIG_X86_32
876 int i;
877
878 /*
879 * First of all, decide if this is a 486 or higher
880 * It's a 486 if we can modify the AC flag
881 */
882 if (flag_is_changeable_p(X86_EFLAGS_AC))
883 c->x86 = 4;
884 else
885 c->x86 = 3;
886
887 for (i = 0; i < X86_VENDOR_NUM; i++)
888 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
889 c->x86_vendor_id[0] = 0;
890 cpu_devs[i]->c_identify(c);
891 if (c->x86_vendor_id[0]) {
892 get_cpu_vendor(c);
893 break;
894 }
895 }
896 #endif
897 c->x86_cache_bits = c->x86_phys_bits;
898 }
899
900 #define NO_SPECULATION BIT(0)
901 #define NO_MELTDOWN BIT(1)
902 #define NO_SSB BIT(2)
903 #define NO_L1TF BIT(3)
904 #define NO_MDS BIT(4)
905 #define MSBDS_ONLY BIT(5)
906 #define NO_SWAPGS BIT(6)
907 #define NO_ITLB_MULTIHIT BIT(7)
908
909 #define VULNWL(_vendor, _family, _model, _whitelist) \
910 { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
911
912 #define VULNWL_INTEL(model, whitelist) \
913 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
914
915 #define VULNWL_AMD(family, whitelist) \
916 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
917
918 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
919 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
920 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
921 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
922 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
923
924 /* Intel Family 6 */
925 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
926 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
927 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
928 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
929 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
930
931 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
932 VULNWL_INTEL(ATOM_SILVERMONT_X, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
933 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
934 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
935 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
936 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
937
938 VULNWL_INTEL(CORE_YONAH, NO_SSB),
939
940 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
941
942 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
943 VULNWL_INTEL(ATOM_GOLDMONT_X, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
944 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
945
946 /*
947 * Technically, swapgs isn't serializing on AMD (despite it previously
948 * being documented as such in the APM). But according to AMD, %gs is
949 * updated non-speculatively, and the issuing of %gs-relative memory
950 * operands will be blocked until the %gs update completes, which is
951 * good enough for our purposes.
952 */
953
954 /* AMD Family 0xf - 0x12 */
955 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
956 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
957 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
958 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
959
960 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
961 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
962 {}
963 };
964
965 static bool __init cpu_matches(unsigned long which)
966 {
967 const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
968
969 return m && !!(m->driver_data & which);
970 }
971
972 u64 x86_read_arch_cap_msr(void)
973 {
974 u64 ia32_cap = 0;
975
976 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
977 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
978
979 return ia32_cap;
980 }
981
982 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
983 {
984 u64 ia32_cap = x86_read_arch_cap_msr();
985
986 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
987 if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
988 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
989
990 if (cpu_matches(NO_SPECULATION))
991 return;
992
993 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
994 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
995
996 if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
997 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
998 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
999
1000 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1001 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1002
1003 if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1004 setup_force_cpu_bug(X86_BUG_MDS);
1005 if (cpu_matches(MSBDS_ONLY))
1006 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1007 }
1008
1009 if (!cpu_matches(NO_SWAPGS))
1010 setup_force_cpu_bug(X86_BUG_SWAPGS);
1011
1012 /*
1013 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1014 * - TSX is supported or
1015 * - TSX_CTRL is present
1016 *
1017 * TSX_CTRL check is needed for cases when TSX could be disabled before
1018 * the kernel boot e.g. kexec.
1019 * TSX_CTRL check alone is not sufficient for cases when the microcode
1020 * update is not present or running as guest that don't get TSX_CTRL.
1021 */
1022 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1023 (cpu_has(c, X86_FEATURE_RTM) ||
1024 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1025 setup_force_cpu_bug(X86_BUG_TAA);
1026
1027 if (cpu_matches(NO_MELTDOWN))
1028 return;
1029
1030 /* Rogue Data Cache Load? No! */
1031 if (ia32_cap & ARCH_CAP_RDCL_NO)
1032 return;
1033
1034 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1035
1036 if (cpu_matches(NO_L1TF))
1037 return;
1038
1039 setup_force_cpu_bug(X86_BUG_L1TF);
1040 }
1041
1042 /*
1043 * Do minimum CPU detection early.
1044 * Fields really needed: vendor, cpuid_level, family, model, mask,
1045 * cache alignment.
1046 * The others are not touched to avoid unwanted side effects.
1047 *
1048 * WARNING: this function is only called on the BP. Don't add code here
1049 * that is supposed to run on all CPUs.
1050 */
1051 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1052 {
1053 #ifdef CONFIG_X86_64
1054 c->x86_clflush_size = 64;
1055 c->x86_phys_bits = 36;
1056 c->x86_virt_bits = 48;
1057 #else
1058 c->x86_clflush_size = 32;
1059 c->x86_phys_bits = 32;
1060 c->x86_virt_bits = 32;
1061 #endif
1062 c->x86_cache_alignment = c->x86_clflush_size;
1063
1064 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1065 c->extended_cpuid_level = 0;
1066
1067 /* cyrix could have cpuid enabled via c_identify()*/
1068 if (have_cpuid_p()) {
1069 cpu_detect(c);
1070 get_cpu_vendor(c);
1071 get_cpu_cap(c);
1072 setup_force_cpu_cap(X86_FEATURE_CPUID);
1073
1074 if (this_cpu->c_early_init)
1075 this_cpu->c_early_init(c);
1076
1077 c->cpu_index = 0;
1078 filter_cpuid_features(c, false);
1079
1080 if (this_cpu->c_bsp_init)
1081 this_cpu->c_bsp_init(c);
1082 } else {
1083 identify_cpu_without_cpuid(c);
1084 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1085 }
1086
1087 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1088
1089 cpu_set_bug_bits(c);
1090
1091 fpu__init_system(c);
1092
1093 #ifdef CONFIG_X86_32
1094 /*
1095 * Regardless of whether PCID is enumerated, the SDM says
1096 * that it can't be enabled in 32-bit mode.
1097 */
1098 setup_clear_cpu_cap(X86_FEATURE_PCID);
1099 #endif
1100 }
1101
1102 void __init early_cpu_init(void)
1103 {
1104 const struct cpu_dev *const *cdev;
1105 int count = 0;
1106
1107 #ifdef CONFIG_PROCESSOR_SELECT
1108 pr_info("KERNEL supported cpus:\n");
1109 #endif
1110
1111 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1112 const struct cpu_dev *cpudev = *cdev;
1113
1114 if (count >= X86_VENDOR_NUM)
1115 break;
1116 cpu_devs[count] = cpudev;
1117 count++;
1118
1119 #ifdef CONFIG_PROCESSOR_SELECT
1120 {
1121 unsigned int j;
1122
1123 for (j = 0; j < 2; j++) {
1124 if (!cpudev->c_ident[j])
1125 continue;
1126 pr_info(" %s %s\n", cpudev->c_vendor,
1127 cpudev->c_ident[j]);
1128 }
1129 }
1130 #endif
1131 }
1132 early_identify_cpu(&boot_cpu_data);
1133 }
1134
1135 /*
1136 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1137 * unfortunately, that's not true in practice because of early VIA
1138 * chips and (more importantly) broken virtualizers that are not easy
1139 * to detect. In the latter case it doesn't even *fail* reliably, so
1140 * probing for it doesn't even work. Disable it completely on 32-bit
1141 * unless we can find a reliable way to detect all the broken cases.
1142 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1143 */
1144 static void detect_nopl(struct cpuinfo_x86 *c)
1145 {
1146 #ifdef CONFIG_X86_32
1147 clear_cpu_cap(c, X86_FEATURE_NOPL);
1148 #else
1149 set_cpu_cap(c, X86_FEATURE_NOPL);
1150 #endif
1151 }
1152
1153 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1154 {
1155 #ifdef CONFIG_X86_64
1156 /*
1157 * Empirically, writing zero to a segment selector on AMD does
1158 * not clear the base, whereas writing zero to a segment
1159 * selector on Intel does clear the base. Intel's behavior
1160 * allows slightly faster context switches in the common case
1161 * where GS is unused by the prev and next threads.
1162 *
1163 * Since neither vendor documents this anywhere that I can see,
1164 * detect it directly instead of hardcoding the choice by
1165 * vendor.
1166 *
1167 * I've designated AMD's behavior as the "bug" because it's
1168 * counterintuitive and less friendly.
1169 */
1170
1171 unsigned long old_base, tmp;
1172 rdmsrl(MSR_FS_BASE, old_base);
1173 wrmsrl(MSR_FS_BASE, 1);
1174 loadsegment(fs, 0);
1175 rdmsrl(MSR_FS_BASE, tmp);
1176 if (tmp != 0)
1177 set_cpu_bug(c, X86_BUG_NULL_SEG);
1178 wrmsrl(MSR_FS_BASE, old_base);
1179 #endif
1180 }
1181
1182 static void generic_identify(struct cpuinfo_x86 *c)
1183 {
1184 c->extended_cpuid_level = 0;
1185
1186 if (!have_cpuid_p())
1187 identify_cpu_without_cpuid(c);
1188
1189 /* cyrix could have cpuid enabled via c_identify()*/
1190 if (!have_cpuid_p())
1191 return;
1192
1193 cpu_detect(c);
1194
1195 get_cpu_vendor(c);
1196
1197 get_cpu_cap(c);
1198
1199 if (c->cpuid_level >= 0x00000001) {
1200 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1201 #ifdef CONFIG_X86_32
1202 # ifdef CONFIG_SMP
1203 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1204 # else
1205 c->apicid = c->initial_apicid;
1206 # endif
1207 #endif
1208 c->phys_proc_id = c->initial_apicid;
1209 }
1210
1211 get_model_name(c); /* Default name */
1212
1213 detect_nopl(c);
1214
1215 detect_null_seg_behavior(c);
1216
1217 /*
1218 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1219 * systems that run Linux at CPL > 0 may or may not have the
1220 * issue, but, even if they have the issue, there's absolutely
1221 * nothing we can do about it because we can't use the real IRET
1222 * instruction.
1223 *
1224 * NB: For the time being, only 32-bit kernels support
1225 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1226 * whether to apply espfix using paravirt hooks. If any
1227 * non-paravirt system ever shows up that does *not* have the
1228 * ESPFIX issue, we can change this.
1229 */
1230 #ifdef CONFIG_X86_32
1231 # ifdef CONFIG_PARAVIRT
1232 do {
1233 extern void native_iret(void);
1234 if (pv_cpu_ops.iret == native_iret)
1235 set_cpu_bug(c, X86_BUG_ESPFIX);
1236 } while (0);
1237 # else
1238 set_cpu_bug(c, X86_BUG_ESPFIX);
1239 # endif
1240 #endif
1241 }
1242
1243 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1244 {
1245 /*
1246 * The heavy lifting of max_rmid and cache_occ_scale are handled
1247 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1248 * in case CQM bits really aren't there in this CPU.
1249 */
1250 if (c != &boot_cpu_data) {
1251 boot_cpu_data.x86_cache_max_rmid =
1252 min(boot_cpu_data.x86_cache_max_rmid,
1253 c->x86_cache_max_rmid);
1254 }
1255 }
1256
1257 /*
1258 * Validate that ACPI/mptables have the same information about the
1259 * effective APIC id and update the package map.
1260 */
1261 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1262 {
1263 #ifdef CONFIG_SMP
1264 unsigned int apicid, cpu = smp_processor_id();
1265
1266 apicid = apic->cpu_present_to_apicid(cpu);
1267
1268 if (apicid != c->apicid) {
1269 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1270 cpu, apicid, c->initial_apicid);
1271 }
1272 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1273 #else
1274 c->logical_proc_id = 0;
1275 #endif
1276 }
1277
1278 /*
1279 * This does the hard work of actually picking apart the CPU stuff...
1280 */
1281 static void identify_cpu(struct cpuinfo_x86 *c)
1282 {
1283 int i;
1284
1285 c->loops_per_jiffy = loops_per_jiffy;
1286 c->x86_cache_size = 0;
1287 c->x86_vendor = X86_VENDOR_UNKNOWN;
1288 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1289 c->x86_vendor_id[0] = '\0'; /* Unset */
1290 c->x86_model_id[0] = '\0'; /* Unset */
1291 c->x86_max_cores = 1;
1292 c->x86_coreid_bits = 0;
1293 c->cu_id = 0xff;
1294 #ifdef CONFIG_X86_64
1295 c->x86_clflush_size = 64;
1296 c->x86_phys_bits = 36;
1297 c->x86_virt_bits = 48;
1298 #else
1299 c->cpuid_level = -1; /* CPUID not detected */
1300 c->x86_clflush_size = 32;
1301 c->x86_phys_bits = 32;
1302 c->x86_virt_bits = 32;
1303 #endif
1304 c->x86_cache_alignment = c->x86_clflush_size;
1305 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1306
1307 generic_identify(c);
1308
1309 if (this_cpu->c_identify)
1310 this_cpu->c_identify(c);
1311
1312 /* Clear/Set all flags overridden by options, after probe */
1313 apply_forced_caps(c);
1314
1315 #ifdef CONFIG_X86_64
1316 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1317 #endif
1318
1319 /*
1320 * Vendor-specific initialization. In this section we
1321 * canonicalize the feature flags, meaning if there are
1322 * features a certain CPU supports which CPUID doesn't
1323 * tell us, CPUID claiming incorrect flags, or other bugs,
1324 * we handle them here.
1325 *
1326 * At the end of this section, c->x86_capability better
1327 * indicate the features this CPU genuinely supports!
1328 */
1329 if (this_cpu->c_init)
1330 this_cpu->c_init(c);
1331
1332 /* Disable the PN if appropriate */
1333 squash_the_stupid_serial_number(c);
1334
1335 /* Set up SMEP/SMAP */
1336 setup_smep(c);
1337 setup_smap(c);
1338
1339 /*
1340 * The vendor-specific functions might have changed features.
1341 * Now we do "generic changes."
1342 */
1343
1344 /* Filter out anything that depends on CPUID levels we don't have */
1345 filter_cpuid_features(c, true);
1346
1347 /* If the model name is still unset, do table lookup. */
1348 if (!c->x86_model_id[0]) {
1349 const char *p;
1350 p = table_lookup_model(c);
1351 if (p)
1352 strcpy(c->x86_model_id, p);
1353 else
1354 /* Last resort... */
1355 sprintf(c->x86_model_id, "%02x/%02x",
1356 c->x86, c->x86_model);
1357 }
1358
1359 #ifdef CONFIG_X86_64
1360 detect_ht(c);
1361 #endif
1362
1363 x86_init_rdrand(c);
1364 x86_init_cache_qos(c);
1365 setup_pku(c);
1366
1367 /*
1368 * Clear/Set all flags overridden by options, need do it
1369 * before following smp all cpus cap AND.
1370 */
1371 apply_forced_caps(c);
1372
1373 /*
1374 * On SMP, boot_cpu_data holds the common feature set between
1375 * all CPUs; so make sure that we indicate which features are
1376 * common between the CPUs. The first time this routine gets
1377 * executed, c == &boot_cpu_data.
1378 */
1379 if (c != &boot_cpu_data) {
1380 /* AND the already accumulated flags with these */
1381 for (i = 0; i < NCAPINTS; i++)
1382 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1383
1384 /* OR, i.e. replicate the bug flags */
1385 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1386 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1387 }
1388
1389 /* Init Machine Check Exception if available. */
1390 mcheck_cpu_init(c);
1391
1392 select_idle_routine(c);
1393
1394 #ifdef CONFIG_NUMA
1395 numa_add_cpu(smp_processor_id());
1396 #endif
1397 }
1398
1399 /*
1400 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1401 * on 32-bit kernels:
1402 */
1403 #ifdef CONFIG_X86_32
1404 void enable_sep_cpu(void)
1405 {
1406 struct tss_struct *tss;
1407 int cpu;
1408
1409 if (!boot_cpu_has(X86_FEATURE_SEP))
1410 return;
1411
1412 cpu = get_cpu();
1413 tss = &per_cpu(cpu_tss_rw, cpu);
1414
1415 /*
1416 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1417 * see the big comment in struct x86_hw_tss's definition.
1418 */
1419
1420 tss->x86_tss.ss1 = __KERNEL_CS;
1421 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1422 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1423 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1424
1425 put_cpu();
1426 }
1427 #endif
1428
1429 void __init identify_boot_cpu(void)
1430 {
1431 identify_cpu(&boot_cpu_data);
1432 #ifdef CONFIG_X86_32
1433 sysenter_setup();
1434 enable_sep_cpu();
1435 #endif
1436 cpu_detect_tlb(&boot_cpu_data);
1437 tsx_init();
1438 }
1439
1440 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1441 {
1442 BUG_ON(c == &boot_cpu_data);
1443 identify_cpu(c);
1444 #ifdef CONFIG_X86_32
1445 enable_sep_cpu();
1446 #endif
1447 mtrr_ap_init();
1448 validate_apic_and_package_id(c);
1449 x86_spec_ctrl_setup_ap();
1450 }
1451
1452 static __init int setup_noclflush(char *arg)
1453 {
1454 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1455 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1456 return 1;
1457 }
1458 __setup("noclflush", setup_noclflush);
1459
1460 void print_cpu_info(struct cpuinfo_x86 *c)
1461 {
1462 const char *vendor = NULL;
1463
1464 if (c->x86_vendor < X86_VENDOR_NUM) {
1465 vendor = this_cpu->c_vendor;
1466 } else {
1467 if (c->cpuid_level >= 0)
1468 vendor = c->x86_vendor_id;
1469 }
1470
1471 if (vendor && !strstr(c->x86_model_id, vendor))
1472 pr_cont("%s ", vendor);
1473
1474 if (c->x86_model_id[0])
1475 pr_cont("%s", c->x86_model_id);
1476 else
1477 pr_cont("%d86", c->x86);
1478
1479 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1480
1481 if (c->x86_stepping || c->cpuid_level >= 0)
1482 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1483 else
1484 pr_cont(")\n");
1485 }
1486
1487 /*
1488 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1489 * But we need to keep a dummy __setup around otherwise it would
1490 * show up as an environment variable for init.
1491 */
1492 static __init int setup_clearcpuid(char *arg)
1493 {
1494 return 1;
1495 }
1496 __setup("clearcpuid=", setup_clearcpuid);
1497
1498 #ifdef CONFIG_X86_64
1499 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1500 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1501
1502 /*
1503 * The following percpu variables are hot. Align current_task to
1504 * cacheline size such that they fall in the same cacheline.
1505 */
1506 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1507 &init_task;
1508 EXPORT_PER_CPU_SYMBOL(current_task);
1509
1510 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1511 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1512
1513 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1514
1515 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1516 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1517
1518 /* May not be marked __init: used by software suspend */
1519 void syscall_init(void)
1520 {
1521 extern char _entry_trampoline[];
1522 extern char entry_SYSCALL_64_trampoline[];
1523
1524 int cpu = smp_processor_id();
1525 unsigned long SYSCALL64_entry_trampoline =
1526 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1527 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1528
1529 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1530 if (static_cpu_has(X86_FEATURE_PTI))
1531 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1532 else
1533 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1534
1535 #ifdef CONFIG_IA32_EMULATION
1536 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1537 /*
1538 * This only works on Intel CPUs.
1539 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1540 * This does not cause SYSENTER to jump to the wrong location, because
1541 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1542 */
1543 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1544 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1545 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1546 #else
1547 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1548 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1549 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1550 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1551 #endif
1552
1553 /* Flags to clear on syscall */
1554 wrmsrl(MSR_SYSCALL_MASK,
1555 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1556 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1557 }
1558
1559 /*
1560 * Copies of the original ist values from the tss are only accessed during
1561 * debugging, no special alignment required.
1562 */
1563 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1564
1565 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1566 DEFINE_PER_CPU(int, debug_stack_usage);
1567
1568 int is_debug_stack(unsigned long addr)
1569 {
1570 return __this_cpu_read(debug_stack_usage) ||
1571 (addr <= __this_cpu_read(debug_stack_addr) &&
1572 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1573 }
1574 NOKPROBE_SYMBOL(is_debug_stack);
1575
1576 DEFINE_PER_CPU(u32, debug_idt_ctr);
1577
1578 void debug_stack_set_zero(void)
1579 {
1580 this_cpu_inc(debug_idt_ctr);
1581 load_current_idt();
1582 }
1583 NOKPROBE_SYMBOL(debug_stack_set_zero);
1584
1585 void debug_stack_reset(void)
1586 {
1587 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1588 return;
1589 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1590 load_current_idt();
1591 }
1592 NOKPROBE_SYMBOL(debug_stack_reset);
1593
1594 #else /* CONFIG_X86_64 */
1595
1596 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1597 EXPORT_PER_CPU_SYMBOL(current_task);
1598 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1599 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1600
1601 /*
1602 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1603 * the top of the kernel stack. Use an extra percpu variable to track the
1604 * top of the kernel stack directly.
1605 */
1606 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1607 (unsigned long)&init_thread_union + THREAD_SIZE;
1608 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1609
1610 #ifdef CONFIG_CC_STACKPROTECTOR
1611 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1612 #endif
1613
1614 #endif /* CONFIG_X86_64 */
1615
1616 /*
1617 * Clear all 6 debug registers:
1618 */
1619 static void clear_all_debug_regs(void)
1620 {
1621 int i;
1622
1623 for (i = 0; i < 8; i++) {
1624 /* Ignore db4, db5 */
1625 if ((i == 4) || (i == 5))
1626 continue;
1627
1628 set_debugreg(0, i);
1629 }
1630 }
1631
1632 #ifdef CONFIG_KGDB
1633 /*
1634 * Restore debug regs if using kgdbwait and you have a kernel debugger
1635 * connection established.
1636 */
1637 static void dbg_restore_debug_regs(void)
1638 {
1639 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1640 arch_kgdb_ops.correct_hw_break();
1641 }
1642 #else /* ! CONFIG_KGDB */
1643 #define dbg_restore_debug_regs()
1644 #endif /* ! CONFIG_KGDB */
1645
1646 static void wait_for_master_cpu(int cpu)
1647 {
1648 #ifdef CONFIG_SMP
1649 /*
1650 * wait for ACK from master CPU before continuing
1651 * with AP initialization
1652 */
1653 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1654 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1655 cpu_relax();
1656 #endif
1657 }
1658
1659 /*
1660 * cpu_init() initializes state that is per-CPU. Some data is already
1661 * initialized (naturally) in the bootstrap process, such as the GDT
1662 * and IDT. We reload them nevertheless, this function acts as a
1663 * 'CPU state barrier', nothing should get across.
1664 * A lot of state is already set up in PDA init for 64 bit
1665 */
1666 #ifdef CONFIG_X86_64
1667
1668 void cpu_init(void)
1669 {
1670 struct orig_ist *oist;
1671 struct task_struct *me;
1672 struct tss_struct *t;
1673 unsigned long v;
1674 int cpu = raw_smp_processor_id();
1675 int i;
1676
1677 wait_for_master_cpu(cpu);
1678
1679 /*
1680 * Initialize the CR4 shadow before doing anything that could
1681 * try to read it.
1682 */
1683 cr4_init_shadow();
1684
1685 if (cpu)
1686 load_ucode_ap();
1687
1688 t = &per_cpu(cpu_tss_rw, cpu);
1689 oist = &per_cpu(orig_ist, cpu);
1690
1691 #ifdef CONFIG_NUMA
1692 if (this_cpu_read(numa_node) == 0 &&
1693 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1694 set_numa_node(early_cpu_to_node(cpu));
1695 #endif
1696
1697 me = current;
1698
1699 pr_debug("Initializing CPU#%d\n", cpu);
1700
1701 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1702
1703 /*
1704 * Initialize the per-CPU GDT with the boot GDT,
1705 * and set up the GDT descriptor:
1706 */
1707
1708 switch_to_new_gdt(cpu);
1709 loadsegment(fs, 0);
1710
1711 load_current_idt();
1712
1713 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1714 syscall_init();
1715
1716 wrmsrl(MSR_FS_BASE, 0);
1717 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1718 barrier();
1719
1720 x86_configure_nx();
1721 x2apic_setup();
1722
1723 /*
1724 * set up and load the per-CPU TSS
1725 */
1726 if (!oist->ist[0]) {
1727 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1728
1729 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1730 estacks += exception_stack_sizes[v];
1731 oist->ist[v] = t->x86_tss.ist[v] =
1732 (unsigned long)estacks;
1733 if (v == DEBUG_STACK-1)
1734 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1735 }
1736 }
1737
1738 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1739
1740 /*
1741 * <= is required because the CPU will access up to
1742 * 8 bits beyond the end of the IO permission bitmap.
1743 */
1744 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1745 t->io_bitmap[i] = ~0UL;
1746
1747 mmgrab(&init_mm);
1748 me->active_mm = &init_mm;
1749 BUG_ON(me->mm);
1750 initialize_tlbstate_and_flush();
1751 enter_lazy_tlb(&init_mm, me);
1752
1753 /*
1754 * Initialize the TSS. sp0 points to the entry trampoline stack
1755 * regardless of what task is running.
1756 */
1757 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1758 load_TR_desc();
1759 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1760
1761 load_mm_ldt(&init_mm);
1762
1763 clear_all_debug_regs();
1764 dbg_restore_debug_regs();
1765
1766 fpu__init_cpu();
1767
1768 if (is_uv_system())
1769 uv_cpu_init();
1770
1771 load_fixmap_gdt(cpu);
1772 }
1773
1774 #else
1775
1776 void cpu_init(void)
1777 {
1778 int cpu = smp_processor_id();
1779 struct task_struct *curr = current;
1780 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1781
1782 wait_for_master_cpu(cpu);
1783
1784 /*
1785 * Initialize the CR4 shadow before doing anything that could
1786 * try to read it.
1787 */
1788 cr4_init_shadow();
1789
1790 show_ucode_info_early();
1791
1792 pr_info("Initializing CPU#%d\n", cpu);
1793
1794 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1795 boot_cpu_has(X86_FEATURE_TSC) ||
1796 boot_cpu_has(X86_FEATURE_DE))
1797 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1798
1799 load_current_idt();
1800 switch_to_new_gdt(cpu);
1801
1802 /*
1803 * Set up and load the per-CPU TSS and LDT
1804 */
1805 mmgrab(&init_mm);
1806 curr->active_mm = &init_mm;
1807 BUG_ON(curr->mm);
1808 initialize_tlbstate_and_flush();
1809 enter_lazy_tlb(&init_mm, curr);
1810
1811 /*
1812 * Initialize the TSS. Don't bother initializing sp0, as the initial
1813 * task never enters user mode.
1814 */
1815 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1816 load_TR_desc();
1817
1818 load_mm_ldt(&init_mm);
1819
1820 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1821
1822 #ifdef CONFIG_DOUBLEFAULT
1823 /* Set up doublefault TSS pointer in the GDT */
1824 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1825 #endif
1826
1827 clear_all_debug_regs();
1828 dbg_restore_debug_regs();
1829
1830 fpu__init_cpu();
1831
1832 load_fixmap_gdt(cpu);
1833 }
1834 #endif
1835
1836 static void bsp_resume(void)
1837 {
1838 if (this_cpu->c_bsp_resume)
1839 this_cpu->c_bsp_resume(&boot_cpu_data);
1840 }
1841
1842 static struct syscore_ops cpu_syscore_ops = {
1843 .resume = bsp_resume,
1844 };
1845
1846 static int __init init_cpu_syscore(void)
1847 {
1848 register_syscore_ops(&cpu_syscore_ops);
1849 return 0;
1850 }
1851 core_initcall(init_cpu_syscore);
1852
1853 /*
1854 * The microcode loader calls this upon late microcode load to recheck features,
1855 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1856 * hotplug lock.
1857 */
1858 void microcode_check(void)
1859 {
1860 struct cpuinfo_x86 info;
1861
1862 perf_check_microcode();
1863
1864 /* Reload CPUID max function as it might've changed. */
1865 info.cpuid_level = cpuid_eax(0);
1866
1867 /*
1868 * Copy all capability leafs to pick up the synthetic ones so that
1869 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1870 * get overwritten in get_cpu_cap().
1871 */
1872 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1873
1874 get_cpu_cap(&info);
1875
1876 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1877 return;
1878
1879 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1880 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1881 }