]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/kernel/cpu/microcode/core.c
x86/microcode: Remove the driver announcement and version
[thirdparty/linux.git] / arch / x86 / kernel / cpu / microcode / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * CPU Microcode Update Driver for Linux
4 *
5 * Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
6 * 2006 Shaohua Li <shaohua.li@intel.com>
7 * 2013-2016 Borislav Petkov <bp@alien8.de>
8 *
9 * X86 CPU microcode early update for Linux:
10 *
11 * Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
12 * H Peter Anvin" <hpa@zytor.com>
13 * (C) 2015 Borislav Petkov <bp@alien8.de>
14 *
15 * This driver allows to upgrade microcode on x86 processors.
16 */
17
18 #define pr_fmt(fmt) "microcode: " fmt
19
20 #include <linux/platform_device.h>
21 #include <linux/stop_machine.h>
22 #include <linux/syscore_ops.h>
23 #include <linux/miscdevice.h>
24 #include <linux/capability.h>
25 #include <linux/firmware.h>
26 #include <linux/cpumask.h>
27 #include <linux/kernel.h>
28 #include <linux/delay.h>
29 #include <linux/mutex.h>
30 #include <linux/cpu.h>
31 #include <linux/nmi.h>
32 #include <linux/fs.h>
33 #include <linux/mm.h>
34
35 #include <asm/apic.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/perf_event.h>
38 #include <asm/processor.h>
39 #include <asm/cmdline.h>
40 #include <asm/setup.h>
41
42 #include "internal.h"
43
44 static struct microcode_ops *microcode_ops;
45 bool dis_ucode_ldr = true;
46
47 bool force_minrev = IS_ENABLED(CONFIG_MICROCODE_LATE_FORCE_MINREV);
48 module_param(force_minrev, bool, S_IRUSR | S_IWUSR);
49
50 /*
51 * Synchronization.
52 *
53 * All non cpu-hotplug-callback call sites use:
54 *
55 * - cpus_read_lock/unlock() to synchronize with
56 * the cpu-hotplug-callback call sites.
57 *
58 * We guarantee that only a single cpu is being
59 * updated at any particular moment of time.
60 */
61 struct ucode_cpu_info ucode_cpu_info[NR_CPUS];
62
63 struct cpu_info_ctx {
64 struct cpu_signature *cpu_sig;
65 int err;
66 };
67
68 /*
69 * Those patch levels cannot be updated to newer ones and thus should be final.
70 */
71 static u32 final_levels[] = {
72 0x01000098,
73 0x0100009f,
74 0x010000af,
75 0, /* T-101 terminator */
76 };
77
78 /*
79 * Check the current patch level on this CPU.
80 *
81 * Returns:
82 * - true: if update should stop
83 * - false: otherwise
84 */
85 static bool amd_check_current_patch_level(void)
86 {
87 u32 lvl, dummy, i;
88 u32 *levels;
89
90 native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
91
92 levels = final_levels;
93
94 for (i = 0; levels[i]; i++) {
95 if (lvl == levels[i])
96 return true;
97 }
98 return false;
99 }
100
101 static bool __init check_loader_disabled_bsp(void)
102 {
103 static const char *__dis_opt_str = "dis_ucode_ldr";
104 const char *cmdline = boot_command_line;
105 const char *option = __dis_opt_str;
106
107 /*
108 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not
109 * completely accurate as xen pv guests don't see that CPUID bit set but
110 * that's good enough as they don't land on the BSP path anyway.
111 */
112 if (native_cpuid_ecx(1) & BIT(31))
113 return true;
114
115 if (x86_cpuid_vendor() == X86_VENDOR_AMD) {
116 if (amd_check_current_patch_level())
117 return true;
118 }
119
120 if (cmdline_find_option_bool(cmdline, option) <= 0)
121 dis_ucode_ldr = false;
122
123 return dis_ucode_ldr;
124 }
125
126 void __init load_ucode_bsp(void)
127 {
128 unsigned int cpuid_1_eax;
129 bool intel = true;
130
131 if (!have_cpuid_p())
132 return;
133
134 cpuid_1_eax = native_cpuid_eax(1);
135
136 switch (x86_cpuid_vendor()) {
137 case X86_VENDOR_INTEL:
138 if (x86_family(cpuid_1_eax) < 6)
139 return;
140 break;
141
142 case X86_VENDOR_AMD:
143 if (x86_family(cpuid_1_eax) < 0x10)
144 return;
145 intel = false;
146 break;
147
148 default:
149 return;
150 }
151
152 if (check_loader_disabled_bsp())
153 return;
154
155 if (intel)
156 load_ucode_intel_bsp();
157 else
158 load_ucode_amd_bsp(cpuid_1_eax);
159 }
160
161 void load_ucode_ap(void)
162 {
163 unsigned int cpuid_1_eax;
164
165 if (dis_ucode_ldr)
166 return;
167
168 cpuid_1_eax = native_cpuid_eax(1);
169
170 switch (x86_cpuid_vendor()) {
171 case X86_VENDOR_INTEL:
172 if (x86_family(cpuid_1_eax) >= 6)
173 load_ucode_intel_ap();
174 break;
175 case X86_VENDOR_AMD:
176 if (x86_family(cpuid_1_eax) >= 0x10)
177 load_ucode_amd_ap(cpuid_1_eax);
178 break;
179 default:
180 break;
181 }
182 }
183
184 struct cpio_data __init find_microcode_in_initrd(const char *path)
185 {
186 #ifdef CONFIG_BLK_DEV_INITRD
187 unsigned long start = 0;
188 size_t size;
189
190 #ifdef CONFIG_X86_32
191 size = boot_params.hdr.ramdisk_size;
192 /* Early load on BSP has a temporary mapping. */
193 if (size)
194 start = initrd_start_early;
195
196 #else /* CONFIG_X86_64 */
197 size = (unsigned long)boot_params.ext_ramdisk_size << 32;
198 size |= boot_params.hdr.ramdisk_size;
199
200 if (size) {
201 start = (unsigned long)boot_params.ext_ramdisk_image << 32;
202 start |= boot_params.hdr.ramdisk_image;
203 start += PAGE_OFFSET;
204 }
205 #endif
206
207 /*
208 * Fixup the start address: after reserve_initrd() runs, initrd_start
209 * has the virtual address of the beginning of the initrd. It also
210 * possibly relocates the ramdisk. In either case, initrd_start contains
211 * the updated address so use that instead.
212 */
213 if (initrd_start)
214 start = initrd_start;
215
216 return find_cpio_data(path, (void *)start, size, NULL);
217 #else /* !CONFIG_BLK_DEV_INITRD */
218 return (struct cpio_data){ NULL, 0, "" };
219 #endif
220 }
221
222 static void reload_early_microcode(unsigned int cpu)
223 {
224 int vendor, family;
225
226 vendor = x86_cpuid_vendor();
227 family = x86_cpuid_family();
228
229 switch (vendor) {
230 case X86_VENDOR_INTEL:
231 if (family >= 6)
232 reload_ucode_intel();
233 break;
234 case X86_VENDOR_AMD:
235 if (family >= 0x10)
236 reload_ucode_amd(cpu);
237 break;
238 default:
239 break;
240 }
241 }
242
243 /* fake device for request_firmware */
244 static struct platform_device *microcode_pdev;
245
246 #ifdef CONFIG_MICROCODE_LATE_LOADING
247 /*
248 * Late loading dance. Why the heavy-handed stomp_machine effort?
249 *
250 * - HT siblings must be idle and not execute other code while the other sibling
251 * is loading microcode in order to avoid any negative interactions caused by
252 * the loading.
253 *
254 * - In addition, microcode update on the cores must be serialized until this
255 * requirement can be relaxed in the future. Right now, this is conservative
256 * and good.
257 */
258 enum sibling_ctrl {
259 /* Spinwait with timeout */
260 SCTRL_WAIT,
261 /* Invoke the microcode_apply() callback */
262 SCTRL_APPLY,
263 /* Proceed without invoking the microcode_apply() callback */
264 SCTRL_DONE,
265 };
266
267 struct microcode_ctrl {
268 enum sibling_ctrl ctrl;
269 enum ucode_state result;
270 unsigned int ctrl_cpu;
271 bool nmi_enabled;
272 };
273
274 DEFINE_STATIC_KEY_FALSE(microcode_nmi_handler_enable);
275 static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl);
276 static atomic_t late_cpus_in, offline_in_nmi;
277 static unsigned int loops_per_usec;
278 static cpumask_t cpu_offline_mask;
279
280 static noinstr bool wait_for_cpus(atomic_t *cnt)
281 {
282 unsigned int timeout, loops;
283
284 WARN_ON_ONCE(raw_atomic_dec_return(cnt) < 0);
285
286 for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
287 if (!raw_atomic_read(cnt))
288 return true;
289
290 for (loops = 0; loops < loops_per_usec; loops++)
291 cpu_relax();
292
293 /* If invoked directly, tickle the NMI watchdog */
294 if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
295 instrumentation_begin();
296 touch_nmi_watchdog();
297 instrumentation_end();
298 }
299 }
300 /* Prevent the late comers from making progress and let them time out */
301 raw_atomic_inc(cnt);
302 return false;
303 }
304
305 static noinstr bool wait_for_ctrl(void)
306 {
307 unsigned int timeout, loops;
308
309 for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
310 if (raw_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT)
311 return true;
312
313 for (loops = 0; loops < loops_per_usec; loops++)
314 cpu_relax();
315
316 /* If invoked directly, tickle the NMI watchdog */
317 if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
318 instrumentation_begin();
319 touch_nmi_watchdog();
320 instrumentation_end();
321 }
322 }
323 return false;
324 }
325
326 /*
327 * Protected against instrumentation up to the point where the primary
328 * thread completed the update. See microcode_nmi_handler() for details.
329 */
330 static noinstr bool load_secondary_wait(unsigned int ctrl_cpu)
331 {
332 /* Initial rendezvous to ensure that all CPUs have arrived */
333 if (!wait_for_cpus(&late_cpus_in)) {
334 raw_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
335 return false;
336 }
337
338 /*
339 * Wait for primary threads to complete. If one of them hangs due
340 * to the update, there is no way out. This is non-recoverable
341 * because the CPU might hold locks or resources and confuse the
342 * scheduler, watchdogs etc. There is no way to safely evacuate the
343 * machine.
344 */
345 if (wait_for_ctrl())
346 return true;
347
348 instrumentation_begin();
349 panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu);
350 instrumentation_end();
351 }
352
353 /*
354 * Protected against instrumentation up to the point where the primary
355 * thread completed the update. See microcode_nmi_handler() for details.
356 */
357 static noinstr void load_secondary(unsigned int cpu)
358 {
359 unsigned int ctrl_cpu = raw_cpu_read(ucode_ctrl.ctrl_cpu);
360 enum ucode_state ret;
361
362 if (!load_secondary_wait(ctrl_cpu)) {
363 instrumentation_begin();
364 pr_err_once("load: %d CPUs timed out\n",
365 atomic_read(&late_cpus_in) - 1);
366 instrumentation_end();
367 return;
368 }
369
370 /* Primary thread completed. Allow to invoke instrumentable code */
371 instrumentation_begin();
372 /*
373 * If the primary succeeded then invoke the apply() callback,
374 * otherwise copy the state from the primary thread.
375 */
376 if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY)
377 ret = microcode_ops->apply_microcode(cpu);
378 else
379 ret = per_cpu(ucode_ctrl.result, ctrl_cpu);
380
381 this_cpu_write(ucode_ctrl.result, ret);
382 this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
383 instrumentation_end();
384 }
385
386 static void __load_primary(unsigned int cpu)
387 {
388 struct cpumask *secondaries = topology_sibling_cpumask(cpu);
389 enum sibling_ctrl ctrl;
390 enum ucode_state ret;
391 unsigned int sibling;
392
393 /* Initial rendezvous to ensure that all CPUs have arrived */
394 if (!wait_for_cpus(&late_cpus_in)) {
395 this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
396 pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1);
397 return;
398 }
399
400 ret = microcode_ops->apply_microcode(cpu);
401 this_cpu_write(ucode_ctrl.result, ret);
402 this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
403
404 /*
405 * If the update was successful, let the siblings run the apply()
406 * callback. If not, tell them it's done. This also covers the
407 * case where the CPU has uniform loading at package or system
408 * scope implemented but does not advertise it.
409 */
410 if (ret == UCODE_UPDATED || ret == UCODE_OK)
411 ctrl = SCTRL_APPLY;
412 else
413 ctrl = SCTRL_DONE;
414
415 for_each_cpu(sibling, secondaries) {
416 if (sibling != cpu)
417 per_cpu(ucode_ctrl.ctrl, sibling) = ctrl;
418 }
419 }
420
421 static bool kick_offline_cpus(unsigned int nr_offl)
422 {
423 unsigned int cpu, timeout;
424
425 for_each_cpu(cpu, &cpu_offline_mask) {
426 /* Enable the rendezvous handler and send NMI */
427 per_cpu(ucode_ctrl.nmi_enabled, cpu) = true;
428 apic_send_nmi_to_offline_cpu(cpu);
429 }
430
431 /* Wait for them to arrive */
432 for (timeout = 0; timeout < (USEC_PER_SEC / 2); timeout++) {
433 if (atomic_read(&offline_in_nmi) == nr_offl)
434 return true;
435 udelay(1);
436 }
437 /* Let the others time out */
438 return false;
439 }
440
441 static void release_offline_cpus(void)
442 {
443 unsigned int cpu;
444
445 for_each_cpu(cpu, &cpu_offline_mask)
446 per_cpu(ucode_ctrl.ctrl, cpu) = SCTRL_DONE;
447 }
448
449 static void load_primary(unsigned int cpu)
450 {
451 unsigned int nr_offl = cpumask_weight(&cpu_offline_mask);
452 bool proceed = true;
453
454 /* Kick soft-offlined SMT siblings if required */
455 if (!cpu && nr_offl)
456 proceed = kick_offline_cpus(nr_offl);
457
458 /* If the soft-offlined CPUs did not respond, abort */
459 if (proceed)
460 __load_primary(cpu);
461
462 /* Unconditionally release soft-offlined SMT siblings if required */
463 if (!cpu && nr_offl)
464 release_offline_cpus();
465 }
466
467 /*
468 * Minimal stub rendezvous handler for soft-offlined CPUs which participate
469 * in the NMI rendezvous to protect against a concurrent NMI on affected
470 * CPUs.
471 */
472 void noinstr microcode_offline_nmi_handler(void)
473 {
474 if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
475 return;
476 raw_cpu_write(ucode_ctrl.nmi_enabled, false);
477 raw_cpu_write(ucode_ctrl.result, UCODE_OFFLINE);
478 raw_atomic_inc(&offline_in_nmi);
479 wait_for_ctrl();
480 }
481
482 static noinstr bool microcode_update_handler(void)
483 {
484 unsigned int cpu = raw_smp_processor_id();
485
486 if (raw_cpu_read(ucode_ctrl.ctrl_cpu) == cpu) {
487 instrumentation_begin();
488 load_primary(cpu);
489 instrumentation_end();
490 } else {
491 load_secondary(cpu);
492 }
493
494 instrumentation_begin();
495 touch_nmi_watchdog();
496 instrumentation_end();
497
498 return true;
499 }
500
501 /*
502 * Protection against instrumentation is required for CPUs which are not
503 * safe against an NMI which is delivered to the secondary SMT sibling
504 * while the primary thread updates the microcode. Instrumentation can end
505 * up in #INT3, #DB and #PF. The IRET from those exceptions reenables NMI
506 * which is the opposite of what the NMI rendezvous is trying to achieve.
507 *
508 * The primary thread is safe versus instrumentation as the actual
509 * microcode update handles this correctly. It's only the sibling code
510 * path which must be NMI safe until the primary thread completed the
511 * update.
512 */
513 bool noinstr microcode_nmi_handler(void)
514 {
515 if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
516 return false;
517
518 raw_cpu_write(ucode_ctrl.nmi_enabled, false);
519 return microcode_update_handler();
520 }
521
522 static int load_cpus_stopped(void *unused)
523 {
524 if (microcode_ops->use_nmi) {
525 /* Enable the NMI handler and raise NMI */
526 this_cpu_write(ucode_ctrl.nmi_enabled, true);
527 apic->send_IPI(smp_processor_id(), NMI_VECTOR);
528 } else {
529 /* Just invoke the handler directly */
530 microcode_update_handler();
531 }
532 return 0;
533 }
534
535 static int load_late_stop_cpus(bool is_safe)
536 {
537 unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0;
538 unsigned int nr_offl, offline = 0;
539 int old_rev = boot_cpu_data.microcode;
540 struct cpuinfo_x86 prev_info;
541
542 if (!is_safe) {
543 pr_err("Late microcode loading without minimal revision check.\n");
544 pr_err("You should switch to early loading, if possible.\n");
545 }
546
547 atomic_set(&late_cpus_in, num_online_cpus());
548 atomic_set(&offline_in_nmi, 0);
549 loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000);
550
551 /*
552 * Take a snapshot before the microcode update in order to compare and
553 * check whether any bits changed after an update.
554 */
555 store_cpu_caps(&prev_info);
556
557 if (microcode_ops->use_nmi)
558 static_branch_enable_cpuslocked(&microcode_nmi_handler_enable);
559
560 stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask);
561
562 if (microcode_ops->use_nmi)
563 static_branch_disable_cpuslocked(&microcode_nmi_handler_enable);
564
565 /* Analyze the results */
566 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
567 switch (per_cpu(ucode_ctrl.result, cpu)) {
568 case UCODE_UPDATED: updated++; break;
569 case UCODE_TIMEOUT: timedout++; break;
570 case UCODE_OK: siblings++; break;
571 case UCODE_OFFLINE: offline++; break;
572 default: failed++; break;
573 }
574 }
575
576 if (microcode_ops->finalize_late_load)
577 microcode_ops->finalize_late_load(!updated);
578
579 if (!updated) {
580 /* Nothing changed. */
581 if (!failed && !timedout)
582 return 0;
583
584 nr_offl = cpumask_weight(&cpu_offline_mask);
585 if (offline < nr_offl) {
586 pr_warn("%u offline siblings did not respond.\n",
587 nr_offl - atomic_read(&offline_in_nmi));
588 return -EIO;
589 }
590 pr_err("update failed: %u CPUs failed %u CPUs timed out\n",
591 failed, timedout);
592 return -EIO;
593 }
594
595 if (!is_safe || failed || timedout)
596 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
597
598 pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings);
599 if (failed || timedout) {
600 pr_err("load incomplete. %u CPUs timed out or failed\n",
601 num_online_cpus() - (updated + siblings));
602 }
603 pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode);
604 microcode_check(&prev_info);
605
606 return updated + siblings == num_online_cpus() ? 0 : -EIO;
607 }
608
609 /*
610 * This function does two things:
611 *
612 * 1) Ensure that all required CPUs which are present and have been booted
613 * once are online.
614 *
615 * To pass this check, all primary threads must be online.
616 *
617 * If the microcode load is not safe against NMI then all SMT threads
618 * must be online as well because they still react to NMIs when they are
619 * soft-offlined and parked in one of the play_dead() variants. So if a
620 * NMI hits while the primary thread updates the microcode the resulting
621 * behaviour is undefined. The default play_dead() implementation on
622 * modern CPUs uses MWAIT, which is also not guaranteed to be safe
623 * against a microcode update which affects MWAIT.
624 *
625 * As soft-offlined CPUs still react on NMIs, the SMT sibling
626 * restriction can be lifted when the vendor driver signals to use NMI
627 * for rendezvous and the APIC provides a mechanism to send an NMI to a
628 * soft-offlined CPU. The soft-offlined CPUs are then able to
629 * participate in the rendezvous in a trivial stub handler.
630 *
631 * 2) Initialize the per CPU control structure and create a cpumask
632 * which contains "offline"; secondary threads, so they can be handled
633 * correctly by a control CPU.
634 */
635 static bool setup_cpus(void)
636 {
637 struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, };
638 bool allow_smt_offline;
639 unsigned int cpu;
640
641 allow_smt_offline = microcode_ops->nmi_safe ||
642 (microcode_ops->use_nmi && apic->nmi_to_offline_cpu);
643
644 cpumask_clear(&cpu_offline_mask);
645
646 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
647 /*
648 * Offline CPUs sit in one of the play_dead() functions
649 * with interrupts disabled, but they still react on NMIs
650 * and execute arbitrary code. Also MWAIT being updated
651 * while the offline CPU sits there is not necessarily safe
652 * on all CPU variants.
653 *
654 * Mark them in the offline_cpus mask which will be handled
655 * by CPU0 later in the update process.
656 *
657 * Ensure that the primary thread is online so that it is
658 * guaranteed that all cores are updated.
659 */
660 if (!cpu_online(cpu)) {
661 if (topology_is_primary_thread(cpu) || !allow_smt_offline) {
662 pr_err("CPU %u not online, loading aborted\n", cpu);
663 return false;
664 }
665 cpumask_set_cpu(cpu, &cpu_offline_mask);
666 per_cpu(ucode_ctrl, cpu) = ctrl;
667 continue;
668 }
669
670 /*
671 * Initialize the per CPU state. This is core scope for now,
672 * but prepared to take package or system scope into account.
673 */
674 ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu));
675 per_cpu(ucode_ctrl, cpu) = ctrl;
676 }
677 return true;
678 }
679
680 static int load_late_locked(void)
681 {
682 if (!setup_cpus())
683 return -EBUSY;
684
685 switch (microcode_ops->request_microcode_fw(0, &microcode_pdev->dev)) {
686 case UCODE_NEW:
687 return load_late_stop_cpus(false);
688 case UCODE_NEW_SAFE:
689 return load_late_stop_cpus(true);
690 case UCODE_NFOUND:
691 return -ENOENT;
692 default:
693 return -EBADFD;
694 }
695 }
696
697 static ssize_t reload_store(struct device *dev,
698 struct device_attribute *attr,
699 const char *buf, size_t size)
700 {
701 unsigned long val;
702 ssize_t ret;
703
704 ret = kstrtoul(buf, 0, &val);
705 if (ret || val != 1)
706 return -EINVAL;
707
708 cpus_read_lock();
709 ret = load_late_locked();
710 cpus_read_unlock();
711
712 return ret ? : size;
713 }
714
715 static DEVICE_ATTR_WO(reload);
716 #endif
717
718 static ssize_t version_show(struct device *dev,
719 struct device_attribute *attr, char *buf)
720 {
721 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
722
723 return sprintf(buf, "0x%x\n", uci->cpu_sig.rev);
724 }
725
726 static ssize_t processor_flags_show(struct device *dev,
727 struct device_attribute *attr, char *buf)
728 {
729 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
730
731 return sprintf(buf, "0x%x\n", uci->cpu_sig.pf);
732 }
733
734 static DEVICE_ATTR_RO(version);
735 static DEVICE_ATTR_RO(processor_flags);
736
737 static struct attribute *mc_default_attrs[] = {
738 &dev_attr_version.attr,
739 &dev_attr_processor_flags.attr,
740 NULL
741 };
742
743 static const struct attribute_group mc_attr_group = {
744 .attrs = mc_default_attrs,
745 .name = "microcode",
746 };
747
748 static void microcode_fini_cpu(int cpu)
749 {
750 if (microcode_ops->microcode_fini_cpu)
751 microcode_ops->microcode_fini_cpu(cpu);
752 }
753
754 /**
755 * microcode_bsp_resume - Update boot CPU microcode during resume.
756 */
757 void microcode_bsp_resume(void)
758 {
759 int cpu = smp_processor_id();
760 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
761
762 if (uci->mc)
763 microcode_ops->apply_microcode(cpu);
764 else
765 reload_early_microcode(cpu);
766 }
767
768 static struct syscore_ops mc_syscore_ops = {
769 .resume = microcode_bsp_resume,
770 };
771
772 static int mc_cpu_online(unsigned int cpu)
773 {
774 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
775 struct device *dev = get_cpu_device(cpu);
776
777 memset(uci, 0, sizeof(*uci));
778
779 microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig);
780 cpu_data(cpu).microcode = uci->cpu_sig.rev;
781 if (!cpu)
782 boot_cpu_data.microcode = uci->cpu_sig.rev;
783
784 if (sysfs_create_group(&dev->kobj, &mc_attr_group))
785 pr_err("Failed to create group for CPU%d\n", cpu);
786 return 0;
787 }
788
789 static int mc_cpu_down_prep(unsigned int cpu)
790 {
791 struct device *dev = get_cpu_device(cpu);
792
793 microcode_fini_cpu(cpu);
794 sysfs_remove_group(&dev->kobj, &mc_attr_group);
795 return 0;
796 }
797
798 static struct attribute *cpu_root_microcode_attrs[] = {
799 #ifdef CONFIG_MICROCODE_LATE_LOADING
800 &dev_attr_reload.attr,
801 #endif
802 NULL
803 };
804
805 static const struct attribute_group cpu_root_microcode_group = {
806 .name = "microcode",
807 .attrs = cpu_root_microcode_attrs,
808 };
809
810 static int __init microcode_init(void)
811 {
812 struct device *dev_root;
813 struct cpuinfo_x86 *c = &boot_cpu_data;
814 int error;
815
816 if (dis_ucode_ldr)
817 return -EINVAL;
818
819 if (c->x86_vendor == X86_VENDOR_INTEL)
820 microcode_ops = init_intel_microcode();
821 else if (c->x86_vendor == X86_VENDOR_AMD)
822 microcode_ops = init_amd_microcode();
823 else
824 pr_err("no support for this CPU vendor\n");
825
826 if (!microcode_ops)
827 return -ENODEV;
828
829 microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0);
830 if (IS_ERR(microcode_pdev))
831 return PTR_ERR(microcode_pdev);
832
833 dev_root = bus_get_dev_root(&cpu_subsys);
834 if (dev_root) {
835 error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group);
836 put_device(dev_root);
837 if (error) {
838 pr_err("Error creating microcode group!\n");
839 goto out_pdev;
840 }
841 }
842
843 register_syscore_ops(&mc_syscore_ops);
844 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online",
845 mc_cpu_online, mc_cpu_down_prep);
846
847 return 0;
848
849 out_pdev:
850 platform_device_unregister(microcode_pdev);
851 return error;
852
853 }
854 late_initcall(microcode_init);