]> git.ipfire.org Git - people/arne_f/kernel.git/blob - arch/x86/kernel/cpu/perf_event.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[people/arne_f/kernel.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32
33 static u64 perf_event_mask __read_mostly;
34
35 /* The maximal number of PEBS events: */
36 #define MAX_PEBS_EVENTS 4
37
38 /* The size of a BTS record in bytes: */
39 #define BTS_RECORD_SIZE 24
40
41 /* The size of a per-cpu BTS buffer in bytes: */
42 #define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
43
44 /* The BTS overflow threshold in bytes from the end of the buffer: */
45 #define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
46
47
48 /*
49 * Bits in the debugctlmsr controlling branch tracing.
50 */
51 #define X86_DEBUGCTL_TR (1 << 6)
52 #define X86_DEBUGCTL_BTS (1 << 7)
53 #define X86_DEBUGCTL_BTINT (1 << 8)
54 #define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
55 #define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
56
57 /*
58 * A debug store configuration.
59 *
60 * We only support architectures that use 64bit fields.
61 */
62 struct debug_store {
63 u64 bts_buffer_base;
64 u64 bts_index;
65 u64 bts_absolute_maximum;
66 u64 bts_interrupt_threshold;
67 u64 pebs_buffer_base;
68 u64 pebs_index;
69 u64 pebs_absolute_maximum;
70 u64 pebs_interrupt_threshold;
71 u64 pebs_event_reset[MAX_PEBS_EVENTS];
72 };
73
74 struct event_constraint {
75 union {
76 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
77 u64 idxmsk64;
78 };
79 u64 code;
80 u64 cmask;
81 int weight;
82 };
83
84 struct amd_nb {
85 int nb_id; /* NorthBridge id */
86 int refcnt; /* reference count */
87 struct perf_event *owners[X86_PMC_IDX_MAX];
88 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
89 };
90
91 struct cpu_hw_events {
92 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
93 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
94 unsigned long interrupts;
95 int enabled;
96 struct debug_store *ds;
97
98 int n_events;
99 int n_added;
100 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
101 u64 tags[X86_PMC_IDX_MAX];
102 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
103 struct amd_nb *amd_nb;
104 };
105
106 #define __EVENT_CONSTRAINT(c, n, m, w) {\
107 { .idxmsk64 = (n) }, \
108 .code = (c), \
109 .cmask = (m), \
110 .weight = (w), \
111 }
112
113 #define EVENT_CONSTRAINT(c, n, m) \
114 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
115
116 #define INTEL_EVENT_CONSTRAINT(c, n) \
117 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
118
119 #define FIXED_EVENT_CONSTRAINT(c, n) \
120 EVENT_CONSTRAINT(c, (1ULL << (32+n)), INTEL_ARCH_FIXED_MASK)
121
122 #define EVENT_CONSTRAINT_END \
123 EVENT_CONSTRAINT(0, 0, 0)
124
125 #define for_each_event_constraint(e, c) \
126 for ((e) = (c); (e)->cmask; (e)++)
127
128 /*
129 * struct x86_pmu - generic x86 pmu
130 */
131 struct x86_pmu {
132 const char *name;
133 int version;
134 int (*handle_irq)(struct pt_regs *);
135 void (*disable_all)(void);
136 void (*enable_all)(void);
137 void (*enable)(struct perf_event *);
138 void (*disable)(struct perf_event *);
139 unsigned eventsel;
140 unsigned perfctr;
141 u64 (*event_map)(int);
142 u64 (*raw_event)(u64);
143 int max_events;
144 int num_events;
145 int num_events_fixed;
146 int event_bits;
147 u64 event_mask;
148 int apic;
149 u64 max_period;
150 u64 intel_ctrl;
151 void (*enable_bts)(u64 config);
152 void (*disable_bts)(void);
153
154 struct event_constraint *
155 (*get_event_constraints)(struct cpu_hw_events *cpuc,
156 struct perf_event *event);
157
158 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
159 struct perf_event *event);
160 struct event_constraint *event_constraints;
161
162 void (*cpu_prepare)(int cpu);
163 void (*cpu_starting)(int cpu);
164 void (*cpu_dying)(int cpu);
165 void (*cpu_dead)(int cpu);
166 };
167
168 static struct x86_pmu x86_pmu __read_mostly;
169
170 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
171 .enabled = 1,
172 };
173
174 static int x86_perf_event_set_period(struct perf_event *event);
175
176 /*
177 * Generalized hw caching related hw_event table, filled
178 * in on a per model basis. A value of 0 means
179 * 'not supported', -1 means 'hw_event makes no sense on
180 * this CPU', any other value means the raw hw_event
181 * ID.
182 */
183
184 #define C(x) PERF_COUNT_HW_CACHE_##x
185
186 static u64 __read_mostly hw_cache_event_ids
187 [PERF_COUNT_HW_CACHE_MAX]
188 [PERF_COUNT_HW_CACHE_OP_MAX]
189 [PERF_COUNT_HW_CACHE_RESULT_MAX];
190
191 /*
192 * Propagate event elapsed time into the generic event.
193 * Can only be executed on the CPU where the event is active.
194 * Returns the delta events processed.
195 */
196 static u64
197 x86_perf_event_update(struct perf_event *event)
198 {
199 struct hw_perf_event *hwc = &event->hw;
200 int shift = 64 - x86_pmu.event_bits;
201 u64 prev_raw_count, new_raw_count;
202 int idx = hwc->idx;
203 s64 delta;
204
205 if (idx == X86_PMC_IDX_FIXED_BTS)
206 return 0;
207
208 /*
209 * Careful: an NMI might modify the previous event value.
210 *
211 * Our tactic to handle this is to first atomically read and
212 * exchange a new raw count - then add that new-prev delta
213 * count to the generic event atomically:
214 */
215 again:
216 prev_raw_count = atomic64_read(&hwc->prev_count);
217 rdmsrl(hwc->event_base + idx, new_raw_count);
218
219 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
220 new_raw_count) != prev_raw_count)
221 goto again;
222
223 /*
224 * Now we have the new raw value and have updated the prev
225 * timestamp already. We can now calculate the elapsed delta
226 * (event-)time and add that to the generic event.
227 *
228 * Careful, not all hw sign-extends above the physical width
229 * of the count.
230 */
231 delta = (new_raw_count << shift) - (prev_raw_count << shift);
232 delta >>= shift;
233
234 atomic64_add(delta, &event->count);
235 atomic64_sub(delta, &hwc->period_left);
236
237 return new_raw_count;
238 }
239
240 static atomic_t active_events;
241 static DEFINE_MUTEX(pmc_reserve_mutex);
242
243 static bool reserve_pmc_hardware(void)
244 {
245 #ifdef CONFIG_X86_LOCAL_APIC
246 int i;
247
248 if (nmi_watchdog == NMI_LOCAL_APIC)
249 disable_lapic_nmi_watchdog();
250
251 for (i = 0; i < x86_pmu.num_events; i++) {
252 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
253 goto perfctr_fail;
254 }
255
256 for (i = 0; i < x86_pmu.num_events; i++) {
257 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
258 goto eventsel_fail;
259 }
260 #endif
261
262 return true;
263
264 #ifdef CONFIG_X86_LOCAL_APIC
265 eventsel_fail:
266 for (i--; i >= 0; i--)
267 release_evntsel_nmi(x86_pmu.eventsel + i);
268
269 i = x86_pmu.num_events;
270
271 perfctr_fail:
272 for (i--; i >= 0; i--)
273 release_perfctr_nmi(x86_pmu.perfctr + i);
274
275 if (nmi_watchdog == NMI_LOCAL_APIC)
276 enable_lapic_nmi_watchdog();
277
278 return false;
279 #endif
280 }
281
282 static void release_pmc_hardware(void)
283 {
284 #ifdef CONFIG_X86_LOCAL_APIC
285 int i;
286
287 for (i = 0; i < x86_pmu.num_events; i++) {
288 release_perfctr_nmi(x86_pmu.perfctr + i);
289 release_evntsel_nmi(x86_pmu.eventsel + i);
290 }
291
292 if (nmi_watchdog == NMI_LOCAL_APIC)
293 enable_lapic_nmi_watchdog();
294 #endif
295 }
296
297 static inline bool bts_available(void)
298 {
299 return x86_pmu.enable_bts != NULL;
300 }
301
302 static void init_debug_store_on_cpu(int cpu)
303 {
304 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
305
306 if (!ds)
307 return;
308
309 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
310 (u32)((u64)(unsigned long)ds),
311 (u32)((u64)(unsigned long)ds >> 32));
312 }
313
314 static void fini_debug_store_on_cpu(int cpu)
315 {
316 if (!per_cpu(cpu_hw_events, cpu).ds)
317 return;
318
319 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
320 }
321
322 static void release_bts_hardware(void)
323 {
324 int cpu;
325
326 if (!bts_available())
327 return;
328
329 get_online_cpus();
330
331 for_each_online_cpu(cpu)
332 fini_debug_store_on_cpu(cpu);
333
334 for_each_possible_cpu(cpu) {
335 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
336
337 if (!ds)
338 continue;
339
340 per_cpu(cpu_hw_events, cpu).ds = NULL;
341
342 kfree((void *)(unsigned long)ds->bts_buffer_base);
343 kfree(ds);
344 }
345
346 put_online_cpus();
347 }
348
349 static int reserve_bts_hardware(void)
350 {
351 int cpu, err = 0;
352
353 if (!bts_available())
354 return 0;
355
356 get_online_cpus();
357
358 for_each_possible_cpu(cpu) {
359 struct debug_store *ds;
360 void *buffer;
361
362 err = -ENOMEM;
363 buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
364 if (unlikely(!buffer))
365 break;
366
367 ds = kzalloc(sizeof(*ds), GFP_KERNEL);
368 if (unlikely(!ds)) {
369 kfree(buffer);
370 break;
371 }
372
373 ds->bts_buffer_base = (u64)(unsigned long)buffer;
374 ds->bts_index = ds->bts_buffer_base;
375 ds->bts_absolute_maximum =
376 ds->bts_buffer_base + BTS_BUFFER_SIZE;
377 ds->bts_interrupt_threshold =
378 ds->bts_absolute_maximum - BTS_OVFL_TH;
379
380 per_cpu(cpu_hw_events, cpu).ds = ds;
381 err = 0;
382 }
383
384 if (err)
385 release_bts_hardware();
386 else {
387 for_each_online_cpu(cpu)
388 init_debug_store_on_cpu(cpu);
389 }
390
391 put_online_cpus();
392
393 return err;
394 }
395
396 static void hw_perf_event_destroy(struct perf_event *event)
397 {
398 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
399 release_pmc_hardware();
400 release_bts_hardware();
401 mutex_unlock(&pmc_reserve_mutex);
402 }
403 }
404
405 static inline int x86_pmu_initialized(void)
406 {
407 return x86_pmu.handle_irq != NULL;
408 }
409
410 static inline int
411 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
412 {
413 unsigned int cache_type, cache_op, cache_result;
414 u64 config, val;
415
416 config = attr->config;
417
418 cache_type = (config >> 0) & 0xff;
419 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
420 return -EINVAL;
421
422 cache_op = (config >> 8) & 0xff;
423 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
424 return -EINVAL;
425
426 cache_result = (config >> 16) & 0xff;
427 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
428 return -EINVAL;
429
430 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
431
432 if (val == 0)
433 return -ENOENT;
434
435 if (val == -1)
436 return -EINVAL;
437
438 hwc->config |= val;
439
440 return 0;
441 }
442
443 /*
444 * Setup the hardware configuration for a given attr_type
445 */
446 static int __hw_perf_event_init(struct perf_event *event)
447 {
448 struct perf_event_attr *attr = &event->attr;
449 struct hw_perf_event *hwc = &event->hw;
450 u64 config;
451 int err;
452
453 if (!x86_pmu_initialized())
454 return -ENODEV;
455
456 err = 0;
457 if (!atomic_inc_not_zero(&active_events)) {
458 mutex_lock(&pmc_reserve_mutex);
459 if (atomic_read(&active_events) == 0) {
460 if (!reserve_pmc_hardware())
461 err = -EBUSY;
462 else
463 err = reserve_bts_hardware();
464 }
465 if (!err)
466 atomic_inc(&active_events);
467 mutex_unlock(&pmc_reserve_mutex);
468 }
469 if (err)
470 return err;
471
472 event->destroy = hw_perf_event_destroy;
473
474 /*
475 * Generate PMC IRQs:
476 * (keep 'enabled' bit clear for now)
477 */
478 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
479
480 hwc->idx = -1;
481 hwc->last_cpu = -1;
482 hwc->last_tag = ~0ULL;
483
484 /*
485 * Count user and OS events unless requested not to.
486 */
487 if (!attr->exclude_user)
488 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
489 if (!attr->exclude_kernel)
490 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
491
492 if (!hwc->sample_period) {
493 hwc->sample_period = x86_pmu.max_period;
494 hwc->last_period = hwc->sample_period;
495 atomic64_set(&hwc->period_left, hwc->sample_period);
496 } else {
497 /*
498 * If we have a PMU initialized but no APIC
499 * interrupts, we cannot sample hardware
500 * events (user-space has to fall back and
501 * sample via a hrtimer based software event):
502 */
503 if (!x86_pmu.apic)
504 return -EOPNOTSUPP;
505 }
506
507 /*
508 * Raw hw_event type provide the config in the hw_event structure
509 */
510 if (attr->type == PERF_TYPE_RAW) {
511 hwc->config |= x86_pmu.raw_event(attr->config);
512 if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
513 perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
514 return -EACCES;
515 return 0;
516 }
517
518 if (attr->type == PERF_TYPE_HW_CACHE)
519 return set_ext_hw_attr(hwc, attr);
520
521 if (attr->config >= x86_pmu.max_events)
522 return -EINVAL;
523
524 /*
525 * The generic map:
526 */
527 config = x86_pmu.event_map(attr->config);
528
529 if (config == 0)
530 return -ENOENT;
531
532 if (config == -1LL)
533 return -EINVAL;
534
535 /*
536 * Branch tracing:
537 */
538 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
539 (hwc->sample_period == 1)) {
540 /* BTS is not supported by this architecture. */
541 if (!bts_available())
542 return -EOPNOTSUPP;
543
544 /* BTS is currently only allowed for user-mode. */
545 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
546 return -EOPNOTSUPP;
547 }
548
549 hwc->config |= config;
550
551 return 0;
552 }
553
554 static void x86_pmu_disable_all(void)
555 {
556 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
557 int idx;
558
559 for (idx = 0; idx < x86_pmu.num_events; idx++) {
560 u64 val;
561
562 if (!test_bit(idx, cpuc->active_mask))
563 continue;
564 rdmsrl(x86_pmu.eventsel + idx, val);
565 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
566 continue;
567 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
568 wrmsrl(x86_pmu.eventsel + idx, val);
569 }
570 }
571
572 void hw_perf_disable(void)
573 {
574 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
575
576 if (!x86_pmu_initialized())
577 return;
578
579 if (!cpuc->enabled)
580 return;
581
582 cpuc->n_added = 0;
583 cpuc->enabled = 0;
584 barrier();
585
586 x86_pmu.disable_all();
587 }
588
589 static void x86_pmu_enable_all(void)
590 {
591 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
592 int idx;
593
594 for (idx = 0; idx < x86_pmu.num_events; idx++) {
595 struct perf_event *event = cpuc->events[idx];
596 u64 val;
597
598 if (!test_bit(idx, cpuc->active_mask))
599 continue;
600
601 val = event->hw.config;
602 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
603 wrmsrl(x86_pmu.eventsel + idx, val);
604 }
605 }
606
607 static const struct pmu pmu;
608
609 static inline int is_x86_event(struct perf_event *event)
610 {
611 return event->pmu == &pmu;
612 }
613
614 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
615 {
616 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
617 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
618 int i, j, w, wmax, num = 0;
619 struct hw_perf_event *hwc;
620
621 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
622
623 for (i = 0; i < n; i++) {
624 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
625 constraints[i] = c;
626 }
627
628 /*
629 * fastpath, try to reuse previous register
630 */
631 for (i = 0; i < n; i++) {
632 hwc = &cpuc->event_list[i]->hw;
633 c = constraints[i];
634
635 /* never assigned */
636 if (hwc->idx == -1)
637 break;
638
639 /* constraint still honored */
640 if (!test_bit(hwc->idx, c->idxmsk))
641 break;
642
643 /* not already used */
644 if (test_bit(hwc->idx, used_mask))
645 break;
646
647 __set_bit(hwc->idx, used_mask);
648 if (assign)
649 assign[i] = hwc->idx;
650 }
651 if (i == n)
652 goto done;
653
654 /*
655 * begin slow path
656 */
657
658 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
659
660 /*
661 * weight = number of possible counters
662 *
663 * 1 = most constrained, only works on one counter
664 * wmax = least constrained, works on any counter
665 *
666 * assign events to counters starting with most
667 * constrained events.
668 */
669 wmax = x86_pmu.num_events;
670
671 /*
672 * when fixed event counters are present,
673 * wmax is incremented by 1 to account
674 * for one more choice
675 */
676 if (x86_pmu.num_events_fixed)
677 wmax++;
678
679 for (w = 1, num = n; num && w <= wmax; w++) {
680 /* for each event */
681 for (i = 0; num && i < n; i++) {
682 c = constraints[i];
683 hwc = &cpuc->event_list[i]->hw;
684
685 if (c->weight != w)
686 continue;
687
688 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
689 if (!test_bit(j, used_mask))
690 break;
691 }
692
693 if (j == X86_PMC_IDX_MAX)
694 break;
695
696 __set_bit(j, used_mask);
697
698 if (assign)
699 assign[i] = j;
700 num--;
701 }
702 }
703 done:
704 /*
705 * scheduling failed or is just a simulation,
706 * free resources if necessary
707 */
708 if (!assign || num) {
709 for (i = 0; i < n; i++) {
710 if (x86_pmu.put_event_constraints)
711 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
712 }
713 }
714 return num ? -ENOSPC : 0;
715 }
716
717 /*
718 * dogrp: true if must collect siblings events (group)
719 * returns total number of events and error code
720 */
721 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
722 {
723 struct perf_event *event;
724 int n, max_count;
725
726 max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
727
728 /* current number of events already accepted */
729 n = cpuc->n_events;
730
731 if (is_x86_event(leader)) {
732 if (n >= max_count)
733 return -ENOSPC;
734 cpuc->event_list[n] = leader;
735 n++;
736 }
737 if (!dogrp)
738 return n;
739
740 list_for_each_entry(event, &leader->sibling_list, group_entry) {
741 if (!is_x86_event(event) ||
742 event->state <= PERF_EVENT_STATE_OFF)
743 continue;
744
745 if (n >= max_count)
746 return -ENOSPC;
747
748 cpuc->event_list[n] = event;
749 n++;
750 }
751 return n;
752 }
753
754 static inline void x86_assign_hw_event(struct perf_event *event,
755 struct cpu_hw_events *cpuc, int i)
756 {
757 struct hw_perf_event *hwc = &event->hw;
758
759 hwc->idx = cpuc->assign[i];
760 hwc->last_cpu = smp_processor_id();
761 hwc->last_tag = ++cpuc->tags[i];
762
763 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
764 hwc->config_base = 0;
765 hwc->event_base = 0;
766 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
767 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
768 /*
769 * We set it so that event_base + idx in wrmsr/rdmsr maps to
770 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
771 */
772 hwc->event_base =
773 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
774 } else {
775 hwc->config_base = x86_pmu.eventsel;
776 hwc->event_base = x86_pmu.perfctr;
777 }
778 }
779
780 static inline int match_prev_assignment(struct hw_perf_event *hwc,
781 struct cpu_hw_events *cpuc,
782 int i)
783 {
784 return hwc->idx == cpuc->assign[i] &&
785 hwc->last_cpu == smp_processor_id() &&
786 hwc->last_tag == cpuc->tags[i];
787 }
788
789 static int x86_pmu_start(struct perf_event *event);
790 static void x86_pmu_stop(struct perf_event *event);
791
792 void hw_perf_enable(void)
793 {
794 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
795 struct perf_event *event;
796 struct hw_perf_event *hwc;
797 int i;
798
799 if (!x86_pmu_initialized())
800 return;
801
802 if (cpuc->enabled)
803 return;
804
805 if (cpuc->n_added) {
806 int n_running = cpuc->n_events - cpuc->n_added;
807 /*
808 * apply assignment obtained either from
809 * hw_perf_group_sched_in() or x86_pmu_enable()
810 *
811 * step1: save events moving to new counters
812 * step2: reprogram moved events into new counters
813 */
814 for (i = 0; i < n_running; i++) {
815 event = cpuc->event_list[i];
816 hwc = &event->hw;
817
818 /*
819 * we can avoid reprogramming counter if:
820 * - assigned same counter as last time
821 * - running on same CPU as last time
822 * - no other event has used the counter since
823 */
824 if (hwc->idx == -1 ||
825 match_prev_assignment(hwc, cpuc, i))
826 continue;
827
828 x86_pmu_stop(event);
829 }
830
831 for (i = 0; i < cpuc->n_events; i++) {
832 event = cpuc->event_list[i];
833 hwc = &event->hw;
834
835 if (!match_prev_assignment(hwc, cpuc, i))
836 x86_assign_hw_event(event, cpuc, i);
837 else if (i < n_running)
838 continue;
839
840 x86_pmu_start(event);
841 }
842 cpuc->n_added = 0;
843 perf_events_lapic_init();
844 }
845
846 cpuc->enabled = 1;
847 barrier();
848
849 x86_pmu.enable_all();
850 }
851
852 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc)
853 {
854 (void)checking_wrmsrl(hwc->config_base + hwc->idx,
855 hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
856 }
857
858 static inline void x86_pmu_disable_event(struct perf_event *event)
859 {
860 struct hw_perf_event *hwc = &event->hw;
861 (void)checking_wrmsrl(hwc->config_base + hwc->idx, hwc->config);
862 }
863
864 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
865
866 /*
867 * Set the next IRQ period, based on the hwc->period_left value.
868 * To be called with the event disabled in hw:
869 */
870 static int
871 x86_perf_event_set_period(struct perf_event *event)
872 {
873 struct hw_perf_event *hwc = &event->hw;
874 s64 left = atomic64_read(&hwc->period_left);
875 s64 period = hwc->sample_period;
876 int err, ret = 0, idx = hwc->idx;
877
878 if (idx == X86_PMC_IDX_FIXED_BTS)
879 return 0;
880
881 /*
882 * If we are way outside a reasonable range then just skip forward:
883 */
884 if (unlikely(left <= -period)) {
885 left = period;
886 atomic64_set(&hwc->period_left, left);
887 hwc->last_period = period;
888 ret = 1;
889 }
890
891 if (unlikely(left <= 0)) {
892 left += period;
893 atomic64_set(&hwc->period_left, left);
894 hwc->last_period = period;
895 ret = 1;
896 }
897 /*
898 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
899 */
900 if (unlikely(left < 2))
901 left = 2;
902
903 if (left > x86_pmu.max_period)
904 left = x86_pmu.max_period;
905
906 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
907
908 /*
909 * The hw event starts counting from this event offset,
910 * mark it to be able to extra future deltas:
911 */
912 atomic64_set(&hwc->prev_count, (u64)-left);
913
914 err = checking_wrmsrl(hwc->event_base + idx,
915 (u64)(-left) & x86_pmu.event_mask);
916
917 perf_event_update_userpage(event);
918
919 return ret;
920 }
921
922 static void x86_pmu_enable_event(struct perf_event *event)
923 {
924 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
925 if (cpuc->enabled)
926 __x86_pmu_enable_event(&event->hw);
927 }
928
929 /*
930 * activate a single event
931 *
932 * The event is added to the group of enabled events
933 * but only if it can be scehduled with existing events.
934 *
935 * Called with PMU disabled. If successful and return value 1,
936 * then guaranteed to call perf_enable() and hw_perf_enable()
937 */
938 static int x86_pmu_enable(struct perf_event *event)
939 {
940 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
941 struct hw_perf_event *hwc;
942 int assign[X86_PMC_IDX_MAX];
943 int n, n0, ret;
944
945 hwc = &event->hw;
946
947 n0 = cpuc->n_events;
948 n = collect_events(cpuc, event, false);
949 if (n < 0)
950 return n;
951
952 ret = x86_schedule_events(cpuc, n, assign);
953 if (ret)
954 return ret;
955 /*
956 * copy new assignment, now we know it is possible
957 * will be used by hw_perf_enable()
958 */
959 memcpy(cpuc->assign, assign, n*sizeof(int));
960
961 cpuc->n_events = n;
962 cpuc->n_added += n - n0;
963
964 return 0;
965 }
966
967 static int x86_pmu_start(struct perf_event *event)
968 {
969 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
970 int idx = event->hw.idx;
971
972 if (idx == -1)
973 return -EAGAIN;
974
975 x86_perf_event_set_period(event);
976 cpuc->events[idx] = event;
977 __set_bit(idx, cpuc->active_mask);
978 x86_pmu.enable(event);
979 perf_event_update_userpage(event);
980
981 return 0;
982 }
983
984 static void x86_pmu_unthrottle(struct perf_event *event)
985 {
986 int ret = x86_pmu_start(event);
987 WARN_ON_ONCE(ret);
988 }
989
990 void perf_event_print_debug(void)
991 {
992 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
993 struct cpu_hw_events *cpuc;
994 unsigned long flags;
995 int cpu, idx;
996
997 if (!x86_pmu.num_events)
998 return;
999
1000 local_irq_save(flags);
1001
1002 cpu = smp_processor_id();
1003 cpuc = &per_cpu(cpu_hw_events, cpu);
1004
1005 if (x86_pmu.version >= 2) {
1006 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1007 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1008 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1009 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1010
1011 pr_info("\n");
1012 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1013 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1014 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1015 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1016 }
1017 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1018
1019 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1020 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1021 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1022
1023 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1024
1025 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1026 cpu, idx, pmc_ctrl);
1027 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1028 cpu, idx, pmc_count);
1029 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1030 cpu, idx, prev_left);
1031 }
1032 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
1033 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1034
1035 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1036 cpu, idx, pmc_count);
1037 }
1038 local_irq_restore(flags);
1039 }
1040
1041 static void x86_pmu_stop(struct perf_event *event)
1042 {
1043 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1044 struct hw_perf_event *hwc = &event->hw;
1045 int idx = hwc->idx;
1046
1047 if (!__test_and_clear_bit(idx, cpuc->active_mask))
1048 return;
1049
1050 x86_pmu.disable(event);
1051
1052 /*
1053 * Drain the remaining delta count out of a event
1054 * that we are disabling:
1055 */
1056 x86_perf_event_update(event);
1057
1058 cpuc->events[idx] = NULL;
1059 }
1060
1061 static void x86_pmu_disable(struct perf_event *event)
1062 {
1063 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1064 int i;
1065
1066 x86_pmu_stop(event);
1067
1068 for (i = 0; i < cpuc->n_events; i++) {
1069 if (event == cpuc->event_list[i]) {
1070
1071 if (x86_pmu.put_event_constraints)
1072 x86_pmu.put_event_constraints(cpuc, event);
1073
1074 while (++i < cpuc->n_events)
1075 cpuc->event_list[i-1] = cpuc->event_list[i];
1076
1077 --cpuc->n_events;
1078 break;
1079 }
1080 }
1081 perf_event_update_userpage(event);
1082 }
1083
1084 static int x86_pmu_handle_irq(struct pt_regs *regs)
1085 {
1086 struct perf_sample_data data;
1087 struct cpu_hw_events *cpuc;
1088 struct perf_event *event;
1089 struct hw_perf_event *hwc;
1090 int idx, handled = 0;
1091 u64 val;
1092
1093 perf_sample_data_init(&data, 0);
1094
1095 cpuc = &__get_cpu_var(cpu_hw_events);
1096
1097 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1098 if (!test_bit(idx, cpuc->active_mask))
1099 continue;
1100
1101 event = cpuc->events[idx];
1102 hwc = &event->hw;
1103
1104 val = x86_perf_event_update(event);
1105 if (val & (1ULL << (x86_pmu.event_bits - 1)))
1106 continue;
1107
1108 /*
1109 * event overflow
1110 */
1111 handled = 1;
1112 data.period = event->hw.last_period;
1113
1114 if (!x86_perf_event_set_period(event))
1115 continue;
1116
1117 if (perf_event_overflow(event, 1, &data, regs))
1118 x86_pmu_stop(event);
1119 }
1120
1121 if (handled)
1122 inc_irq_stat(apic_perf_irqs);
1123
1124 return handled;
1125 }
1126
1127 void smp_perf_pending_interrupt(struct pt_regs *regs)
1128 {
1129 irq_enter();
1130 ack_APIC_irq();
1131 inc_irq_stat(apic_pending_irqs);
1132 perf_event_do_pending();
1133 irq_exit();
1134 }
1135
1136 void set_perf_event_pending(void)
1137 {
1138 #ifdef CONFIG_X86_LOCAL_APIC
1139 if (!x86_pmu.apic || !x86_pmu_initialized())
1140 return;
1141
1142 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1143 #endif
1144 }
1145
1146 void perf_events_lapic_init(void)
1147 {
1148 #ifdef CONFIG_X86_LOCAL_APIC
1149 if (!x86_pmu.apic || !x86_pmu_initialized())
1150 return;
1151
1152 /*
1153 * Always use NMI for PMU
1154 */
1155 apic_write(APIC_LVTPC, APIC_DM_NMI);
1156 #endif
1157 }
1158
1159 static int __kprobes
1160 perf_event_nmi_handler(struct notifier_block *self,
1161 unsigned long cmd, void *__args)
1162 {
1163 struct die_args *args = __args;
1164 struct pt_regs *regs;
1165
1166 if (!atomic_read(&active_events))
1167 return NOTIFY_DONE;
1168
1169 switch (cmd) {
1170 case DIE_NMI:
1171 case DIE_NMI_IPI:
1172 break;
1173
1174 default:
1175 return NOTIFY_DONE;
1176 }
1177
1178 regs = args->regs;
1179
1180 #ifdef CONFIG_X86_LOCAL_APIC
1181 apic_write(APIC_LVTPC, APIC_DM_NMI);
1182 #endif
1183 /*
1184 * Can't rely on the handled return value to say it was our NMI, two
1185 * events could trigger 'simultaneously' raising two back-to-back NMIs.
1186 *
1187 * If the first NMI handles both, the latter will be empty and daze
1188 * the CPU.
1189 */
1190 x86_pmu.handle_irq(regs);
1191
1192 return NOTIFY_STOP;
1193 }
1194
1195 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1196 .notifier_call = perf_event_nmi_handler,
1197 .next = NULL,
1198 .priority = 1
1199 };
1200
1201 static struct event_constraint unconstrained;
1202 static struct event_constraint emptyconstraint;
1203
1204 static struct event_constraint *
1205 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1206 {
1207 struct event_constraint *c;
1208
1209 if (x86_pmu.event_constraints) {
1210 for_each_event_constraint(c, x86_pmu.event_constraints) {
1211 if ((event->hw.config & c->cmask) == c->code)
1212 return c;
1213 }
1214 }
1215
1216 return &unconstrained;
1217 }
1218
1219 static int x86_event_sched_in(struct perf_event *event,
1220 struct perf_cpu_context *cpuctx)
1221 {
1222 int ret = 0;
1223
1224 event->state = PERF_EVENT_STATE_ACTIVE;
1225 event->oncpu = smp_processor_id();
1226 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1227
1228 if (!is_x86_event(event))
1229 ret = event->pmu->enable(event);
1230
1231 if (!ret && !is_software_event(event))
1232 cpuctx->active_oncpu++;
1233
1234 if (!ret && event->attr.exclusive)
1235 cpuctx->exclusive = 1;
1236
1237 return ret;
1238 }
1239
1240 static void x86_event_sched_out(struct perf_event *event,
1241 struct perf_cpu_context *cpuctx)
1242 {
1243 event->state = PERF_EVENT_STATE_INACTIVE;
1244 event->oncpu = -1;
1245
1246 if (!is_x86_event(event))
1247 event->pmu->disable(event);
1248
1249 event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1250
1251 if (!is_software_event(event))
1252 cpuctx->active_oncpu--;
1253
1254 if (event->attr.exclusive || !cpuctx->active_oncpu)
1255 cpuctx->exclusive = 0;
1256 }
1257
1258 /*
1259 * Called to enable a whole group of events.
1260 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1261 * Assumes the caller has disabled interrupts and has
1262 * frozen the PMU with hw_perf_save_disable.
1263 *
1264 * called with PMU disabled. If successful and return value 1,
1265 * then guaranteed to call perf_enable() and hw_perf_enable()
1266 */
1267 int hw_perf_group_sched_in(struct perf_event *leader,
1268 struct perf_cpu_context *cpuctx,
1269 struct perf_event_context *ctx)
1270 {
1271 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1272 struct perf_event *sub;
1273 int assign[X86_PMC_IDX_MAX];
1274 int n0, n1, ret;
1275
1276 /* n0 = total number of events */
1277 n0 = collect_events(cpuc, leader, true);
1278 if (n0 < 0)
1279 return n0;
1280
1281 ret = x86_schedule_events(cpuc, n0, assign);
1282 if (ret)
1283 return ret;
1284
1285 ret = x86_event_sched_in(leader, cpuctx);
1286 if (ret)
1287 return ret;
1288
1289 n1 = 1;
1290 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1291 if (sub->state > PERF_EVENT_STATE_OFF) {
1292 ret = x86_event_sched_in(sub, cpuctx);
1293 if (ret)
1294 goto undo;
1295 ++n1;
1296 }
1297 }
1298 /*
1299 * copy new assignment, now we know it is possible
1300 * will be used by hw_perf_enable()
1301 */
1302 memcpy(cpuc->assign, assign, n0*sizeof(int));
1303
1304 cpuc->n_events = n0;
1305 cpuc->n_added += n1;
1306 ctx->nr_active += n1;
1307
1308 /*
1309 * 1 means successful and events are active
1310 * This is not quite true because we defer
1311 * actual activation until hw_perf_enable() but
1312 * this way we* ensure caller won't try to enable
1313 * individual events
1314 */
1315 return 1;
1316 undo:
1317 x86_event_sched_out(leader, cpuctx);
1318 n0 = 1;
1319 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1320 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
1321 x86_event_sched_out(sub, cpuctx);
1322 if (++n0 == n1)
1323 break;
1324 }
1325 }
1326 return ret;
1327 }
1328
1329 #include "perf_event_amd.c"
1330 #include "perf_event_p6.c"
1331 #include "perf_event_intel.c"
1332
1333 static int __cpuinit
1334 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1335 {
1336 unsigned int cpu = (long)hcpu;
1337
1338 switch (action & ~CPU_TASKS_FROZEN) {
1339 case CPU_UP_PREPARE:
1340 if (x86_pmu.cpu_prepare)
1341 x86_pmu.cpu_prepare(cpu);
1342 break;
1343
1344 case CPU_STARTING:
1345 if (x86_pmu.cpu_starting)
1346 x86_pmu.cpu_starting(cpu);
1347 break;
1348
1349 case CPU_DYING:
1350 if (x86_pmu.cpu_dying)
1351 x86_pmu.cpu_dying(cpu);
1352 break;
1353
1354 case CPU_DEAD:
1355 if (x86_pmu.cpu_dead)
1356 x86_pmu.cpu_dead(cpu);
1357 break;
1358
1359 default:
1360 break;
1361 }
1362
1363 return NOTIFY_OK;
1364 }
1365
1366 static void __init pmu_check_apic(void)
1367 {
1368 if (cpu_has_apic)
1369 return;
1370
1371 x86_pmu.apic = 0;
1372 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1373 pr_info("no hardware sampling interrupt available.\n");
1374 }
1375
1376 void __init init_hw_perf_events(void)
1377 {
1378 struct event_constraint *c;
1379 int err;
1380
1381 pr_info("Performance Events: ");
1382
1383 switch (boot_cpu_data.x86_vendor) {
1384 case X86_VENDOR_INTEL:
1385 err = intel_pmu_init();
1386 break;
1387 case X86_VENDOR_AMD:
1388 err = amd_pmu_init();
1389 break;
1390 default:
1391 return;
1392 }
1393 if (err != 0) {
1394 pr_cont("no PMU driver, software events only.\n");
1395 return;
1396 }
1397
1398 pmu_check_apic();
1399
1400 pr_cont("%s PMU driver.\n", x86_pmu.name);
1401
1402 if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
1403 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1404 x86_pmu.num_events, X86_PMC_MAX_GENERIC);
1405 x86_pmu.num_events = X86_PMC_MAX_GENERIC;
1406 }
1407 perf_event_mask = (1 << x86_pmu.num_events) - 1;
1408 perf_max_events = x86_pmu.num_events;
1409
1410 if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
1411 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1412 x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
1413 x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
1414 }
1415
1416 perf_event_mask |=
1417 ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
1418 x86_pmu.intel_ctrl = perf_event_mask;
1419
1420 perf_events_lapic_init();
1421 register_die_notifier(&perf_event_nmi_notifier);
1422
1423 unconstrained = (struct event_constraint)
1424 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
1425 0, x86_pmu.num_events);
1426
1427 if (x86_pmu.event_constraints) {
1428 for_each_event_constraint(c, x86_pmu.event_constraints) {
1429 if (c->cmask != INTEL_ARCH_FIXED_MASK)
1430 continue;
1431
1432 c->idxmsk64 |= (1ULL << x86_pmu.num_events) - 1;
1433 c->weight += x86_pmu.num_events;
1434 }
1435 }
1436
1437 pr_info("... version: %d\n", x86_pmu.version);
1438 pr_info("... bit width: %d\n", x86_pmu.event_bits);
1439 pr_info("... generic registers: %d\n", x86_pmu.num_events);
1440 pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
1441 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1442 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
1443 pr_info("... event mask: %016Lx\n", perf_event_mask);
1444
1445 perf_cpu_notifier(x86_pmu_notifier);
1446 }
1447
1448 static inline void x86_pmu_read(struct perf_event *event)
1449 {
1450 x86_perf_event_update(event);
1451 }
1452
1453 static const struct pmu pmu = {
1454 .enable = x86_pmu_enable,
1455 .disable = x86_pmu_disable,
1456 .start = x86_pmu_start,
1457 .stop = x86_pmu_stop,
1458 .read = x86_pmu_read,
1459 .unthrottle = x86_pmu_unthrottle,
1460 };
1461
1462 /*
1463 * validate a single event group
1464 *
1465 * validation include:
1466 * - check events are compatible which each other
1467 * - events do not compete for the same counter
1468 * - number of events <= number of counters
1469 *
1470 * validation ensures the group can be loaded onto the
1471 * PMU if it was the only group available.
1472 */
1473 static int validate_group(struct perf_event *event)
1474 {
1475 struct perf_event *leader = event->group_leader;
1476 struct cpu_hw_events *fake_cpuc;
1477 int ret, n;
1478
1479 ret = -ENOMEM;
1480 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1481 if (!fake_cpuc)
1482 goto out;
1483
1484 /*
1485 * the event is not yet connected with its
1486 * siblings therefore we must first collect
1487 * existing siblings, then add the new event
1488 * before we can simulate the scheduling
1489 */
1490 ret = -ENOSPC;
1491 n = collect_events(fake_cpuc, leader, true);
1492 if (n < 0)
1493 goto out_free;
1494
1495 fake_cpuc->n_events = n;
1496 n = collect_events(fake_cpuc, event, false);
1497 if (n < 0)
1498 goto out_free;
1499
1500 fake_cpuc->n_events = n;
1501
1502 ret = x86_schedule_events(fake_cpuc, n, NULL);
1503
1504 out_free:
1505 kfree(fake_cpuc);
1506 out:
1507 return ret;
1508 }
1509
1510 const struct pmu *hw_perf_event_init(struct perf_event *event)
1511 {
1512 const struct pmu *tmp;
1513 int err;
1514
1515 err = __hw_perf_event_init(event);
1516 if (!err) {
1517 /*
1518 * we temporarily connect event to its pmu
1519 * such that validate_group() can classify
1520 * it as an x86 event using is_x86_event()
1521 */
1522 tmp = event->pmu;
1523 event->pmu = &pmu;
1524
1525 if (event->group_leader != event)
1526 err = validate_group(event);
1527
1528 event->pmu = tmp;
1529 }
1530 if (err) {
1531 if (event->destroy)
1532 event->destroy(event);
1533 return ERR_PTR(err);
1534 }
1535
1536 return &pmu;
1537 }
1538
1539 /*
1540 * callchain support
1541 */
1542
1543 static inline
1544 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1545 {
1546 if (entry->nr < PERF_MAX_STACK_DEPTH)
1547 entry->ip[entry->nr++] = ip;
1548 }
1549
1550 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1551 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
1552
1553
1554 static void
1555 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1556 {
1557 /* Ignore warnings */
1558 }
1559
1560 static void backtrace_warning(void *data, char *msg)
1561 {
1562 /* Ignore warnings */
1563 }
1564
1565 static int backtrace_stack(void *data, char *name)
1566 {
1567 return 0;
1568 }
1569
1570 static void backtrace_address(void *data, unsigned long addr, int reliable)
1571 {
1572 struct perf_callchain_entry *entry = data;
1573
1574 if (reliable)
1575 callchain_store(entry, addr);
1576 }
1577
1578 static const struct stacktrace_ops backtrace_ops = {
1579 .warning = backtrace_warning,
1580 .warning_symbol = backtrace_warning_symbol,
1581 .stack = backtrace_stack,
1582 .address = backtrace_address,
1583 .walk_stack = print_context_stack_bp,
1584 };
1585
1586 #include "../dumpstack.h"
1587
1588 static void
1589 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1590 {
1591 callchain_store(entry, PERF_CONTEXT_KERNEL);
1592 callchain_store(entry, regs->ip);
1593
1594 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1595 }
1596
1597 /*
1598 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
1599 */
1600 static unsigned long
1601 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
1602 {
1603 unsigned long offset, addr = (unsigned long)from;
1604 int type = in_nmi() ? KM_NMI : KM_IRQ0;
1605 unsigned long size, len = 0;
1606 struct page *page;
1607 void *map;
1608 int ret;
1609
1610 do {
1611 ret = __get_user_pages_fast(addr, 1, 0, &page);
1612 if (!ret)
1613 break;
1614
1615 offset = addr & (PAGE_SIZE - 1);
1616 size = min(PAGE_SIZE - offset, n - len);
1617
1618 map = kmap_atomic(page, type);
1619 memcpy(to, map+offset, size);
1620 kunmap_atomic(map, type);
1621 put_page(page);
1622
1623 len += size;
1624 to += size;
1625 addr += size;
1626
1627 } while (len < n);
1628
1629 return len;
1630 }
1631
1632 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1633 {
1634 unsigned long bytes;
1635
1636 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
1637
1638 return bytes == sizeof(*frame);
1639 }
1640
1641 static void
1642 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1643 {
1644 struct stack_frame frame;
1645 const void __user *fp;
1646
1647 if (!user_mode(regs))
1648 regs = task_pt_regs(current);
1649
1650 fp = (void __user *)regs->bp;
1651
1652 callchain_store(entry, PERF_CONTEXT_USER);
1653 callchain_store(entry, regs->ip);
1654
1655 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1656 frame.next_frame = NULL;
1657 frame.return_address = 0;
1658
1659 if (!copy_stack_frame(fp, &frame))
1660 break;
1661
1662 if ((unsigned long)fp < regs->sp)
1663 break;
1664
1665 callchain_store(entry, frame.return_address);
1666 fp = frame.next_frame;
1667 }
1668 }
1669
1670 static void
1671 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1672 {
1673 int is_user;
1674
1675 if (!regs)
1676 return;
1677
1678 is_user = user_mode(regs);
1679
1680 if (is_user && current->state != TASK_RUNNING)
1681 return;
1682
1683 if (!is_user)
1684 perf_callchain_kernel(regs, entry);
1685
1686 if (current->mm)
1687 perf_callchain_user(regs, entry);
1688 }
1689
1690 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1691 {
1692 struct perf_callchain_entry *entry;
1693
1694 if (in_nmi())
1695 entry = &__get_cpu_var(pmc_nmi_entry);
1696 else
1697 entry = &__get_cpu_var(pmc_irq_entry);
1698
1699 entry->nr = 0;
1700
1701 perf_do_callchain(regs, entry);
1702
1703 return entry;
1704 }
1705
1706 #ifdef CONFIG_EVENT_TRACING
1707 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
1708 {
1709 regs->ip = ip;
1710 /*
1711 * perf_arch_fetch_caller_regs adds another call, we need to increment
1712 * the skip level
1713 */
1714 regs->bp = rewind_frame_pointer(skip + 1);
1715 regs->cs = __KERNEL_CS;
1716 local_save_flags(regs->flags);
1717 }
1718 #endif