]> git.ipfire.org Git - people/arne_f/kernel.git/blob - arch/x86/kernel/e820.c
Merge branch 'linus' into x86/mm to pick up fixes and to fix conflicts
[people/arne_f/kernel.git] / arch / x86 / kernel / e820.c
1 /*
2 * Low level x86 E820 memory map handling functions.
3 *
4 * The firmware and bootloader passes us the "E820 table", which is the primary
5 * physical memory layout description available about x86 systems.
6 *
7 * The kernel takes the E820 memory layout and optionally modifies it with
8 * quirks and other tweaks, and feeds that into the generic Linux memory
9 * allocation code routines via a platform independent interface (memblock, etc.).
10 */
11 #include <linux/crash_dump.h>
12 #include <linux/bootmem.h>
13 #include <linux/suspend.h>
14 #include <linux/acpi.h>
15 #include <linux/firmware-map.h>
16 #include <linux/memblock.h>
17 #include <linux/sort.h>
18
19 #include <asm/e820/api.h>
20 #include <asm/setup.h>
21
22 /*
23 * We organize the E820 table into three main data structures:
24 *
25 * - 'e820_table_firmware': the original firmware version passed to us by the
26 * bootloader - not modified by the kernel. It is composed of two parts:
27 * the first 128 E820 memory entries in boot_params.e820_table and the remaining
28 * (if any) entries of the SETUP_E820_EXT nodes. We use this to:
29 *
30 * - inform the user about the firmware's notion of memory layout
31 * via /sys/firmware/memmap
32 *
33 * - the hibernation code uses it to generate a kernel-independent MD5
34 * fingerprint of the physical memory layout of a system.
35 *
36 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
37 * passed to us by the bootloader - the major difference between
38 * e820_table_firmware[] and this one is that, the latter marks the setup_data
39 * list created by the EFI boot stub as reserved, so that kexec can reuse the
40 * setup_data information in the second kernel. Besides, e820_table_kexec[]
41 * might also be modified by the kexec itself to fake a mptable.
42 * We use this to:
43 *
44 * - kexec, which is a bootloader in disguise, uses the original E820
45 * layout to pass to the kexec-ed kernel. This way the original kernel
46 * can have a restricted E820 map while the kexec()-ed kexec-kernel
47 * can have access to full memory - etc.
48 *
49 * - 'e820_table': this is the main E820 table that is massaged by the
50 * low level x86 platform code, or modified by boot parameters, before
51 * passed on to higher level MM layers.
52 *
53 * Once the E820 map has been converted to the standard Linux memory layout
54 * information its role stops - modifying it has no effect and does not get
55 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
56 * specific memory layout data during early bootup.
57 */
58 static struct e820_table e820_table_init __initdata;
59 static struct e820_table e820_table_kexec_init __initdata;
60 static struct e820_table e820_table_firmware_init __initdata;
61
62 struct e820_table *e820_table __refdata = &e820_table_init;
63 struct e820_table *e820_table_kexec __refdata = &e820_table_kexec_init;
64 struct e820_table *e820_table_firmware __refdata = &e820_table_firmware_init;
65
66 /* For PCI or other memory-mapped resources */
67 unsigned long pci_mem_start = 0xaeedbabe;
68 #ifdef CONFIG_PCI
69 EXPORT_SYMBOL(pci_mem_start);
70 #endif
71
72 /*
73 * This function checks if any part of the range <start,end> is mapped
74 * with type.
75 */
76 bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
77 {
78 int i;
79
80 for (i = 0; i < e820_table->nr_entries; i++) {
81 struct e820_entry *entry = &e820_table->entries[i];
82
83 if (type && entry->type != type)
84 continue;
85 if (entry->addr >= end || entry->addr + entry->size <= start)
86 continue;
87 return 1;
88 }
89 return 0;
90 }
91 EXPORT_SYMBOL_GPL(e820__mapped_any);
92
93 /*
94 * This function checks if the entire <start,end> range is mapped with 'type'.
95 *
96 * Note: this function only works correctly once the E820 table is sorted and
97 * not-overlapping (at least for the range specified), which is the case normally.
98 */
99 static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
100 enum e820_type type)
101 {
102 int i;
103
104 for (i = 0; i < e820_table->nr_entries; i++) {
105 struct e820_entry *entry = &e820_table->entries[i];
106
107 if (type && entry->type != type)
108 continue;
109
110 /* Is the region (part) in overlap with the current region? */
111 if (entry->addr >= end || entry->addr + entry->size <= start)
112 continue;
113
114 /*
115 * If the region is at the beginning of <start,end> we move
116 * 'start' to the end of the region since it's ok until there
117 */
118 if (entry->addr <= start)
119 start = entry->addr + entry->size;
120
121 /*
122 * If 'start' is now at or beyond 'end', we're done, full
123 * coverage of the desired range exists:
124 */
125 if (start >= end)
126 return entry;
127 }
128
129 return NULL;
130 }
131
132 /*
133 * This function checks if the entire range <start,end> is mapped with type.
134 */
135 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
136 {
137 return __e820__mapped_all(start, end, type);
138 }
139
140 /*
141 * This function returns the type associated with the range <start,end>.
142 */
143 int e820__get_entry_type(u64 start, u64 end)
144 {
145 struct e820_entry *entry = __e820__mapped_all(start, end, 0);
146
147 return entry ? entry->type : -EINVAL;
148 }
149
150 /*
151 * Add a memory region to the kernel E820 map.
152 */
153 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
154 {
155 int x = table->nr_entries;
156
157 if (x >= ARRAY_SIZE(table->entries)) {
158 pr_err("e820: too many entries; ignoring [mem %#010llx-%#010llx]\n", start, start + size - 1);
159 return;
160 }
161
162 table->entries[x].addr = start;
163 table->entries[x].size = size;
164 table->entries[x].type = type;
165 table->nr_entries++;
166 }
167
168 void __init e820__range_add(u64 start, u64 size, enum e820_type type)
169 {
170 __e820__range_add(e820_table, start, size, type);
171 }
172
173 static void __init e820_print_type(enum e820_type type)
174 {
175 switch (type) {
176 case E820_TYPE_RAM: /* Fall through: */
177 case E820_TYPE_RESERVED_KERN: pr_cont("usable"); break;
178 case E820_TYPE_RESERVED: pr_cont("reserved"); break;
179 case E820_TYPE_ACPI: pr_cont("ACPI data"); break;
180 case E820_TYPE_NVS: pr_cont("ACPI NVS"); break;
181 case E820_TYPE_UNUSABLE: pr_cont("unusable"); break;
182 case E820_TYPE_PMEM: /* Fall through: */
183 case E820_TYPE_PRAM: pr_cont("persistent (type %u)", type); break;
184 default: pr_cont("type %u", type); break;
185 }
186 }
187
188 void __init e820__print_table(char *who)
189 {
190 int i;
191
192 for (i = 0; i < e820_table->nr_entries; i++) {
193 pr_info("%s: [mem %#018Lx-%#018Lx] ", who,
194 e820_table->entries[i].addr,
195 e820_table->entries[i].addr + e820_table->entries[i].size - 1);
196
197 e820_print_type(e820_table->entries[i].type);
198 pr_cont("\n");
199 }
200 }
201
202 /*
203 * Sanitize an E820 map.
204 *
205 * Some E820 layouts include overlapping entries. The following
206 * replaces the original E820 map with a new one, removing overlaps,
207 * and resolving conflicting memory types in favor of highest
208 * numbered type.
209 *
210 * The input parameter 'entries' points to an array of 'struct
211 * e820_entry' which on entry has elements in the range [0, *nr_entries)
212 * valid, and which has space for up to max_nr_entries entries.
213 * On return, the resulting sanitized E820 map entries will be in
214 * overwritten in the same location, starting at 'entries'.
215 *
216 * The integer pointed to by nr_entries must be valid on entry (the
217 * current number of valid entries located at 'entries'). If the
218 * sanitizing succeeds the *nr_entries will be updated with the new
219 * number of valid entries (something no more than max_nr_entries).
220 *
221 * The return value from e820__update_table() is zero if it
222 * successfully 'sanitized' the map entries passed in, and is -1
223 * if it did nothing, which can happen if either of (1) it was
224 * only passed one map entry, or (2) any of the input map entries
225 * were invalid (start + size < start, meaning that the size was
226 * so big the described memory range wrapped around through zero.)
227 *
228 * Visually we're performing the following
229 * (1,2,3,4 = memory types)...
230 *
231 * Sample memory map (w/overlaps):
232 * ____22__________________
233 * ______________________4_
234 * ____1111________________
235 * _44_____________________
236 * 11111111________________
237 * ____________________33__
238 * ___________44___________
239 * __________33333_________
240 * ______________22________
241 * ___________________2222_
242 * _________111111111______
243 * _____________________11_
244 * _________________4______
245 *
246 * Sanitized equivalent (no overlap):
247 * 1_______________________
248 * _44_____________________
249 * ___1____________________
250 * ____22__________________
251 * ______11________________
252 * _________1______________
253 * __________3_____________
254 * ___________44___________
255 * _____________33_________
256 * _______________2________
257 * ________________1_______
258 * _________________4______
259 * ___________________2____
260 * ____________________33__
261 * ______________________4_
262 */
263 struct change_member {
264 /* Pointer to the original entry: */
265 struct e820_entry *entry;
266 /* Address for this change point: */
267 unsigned long long addr;
268 };
269
270 static struct change_member change_point_list[2*E820_MAX_ENTRIES] __initdata;
271 static struct change_member *change_point[2*E820_MAX_ENTRIES] __initdata;
272 static struct e820_entry *overlap_list[E820_MAX_ENTRIES] __initdata;
273 static struct e820_entry new_entries[E820_MAX_ENTRIES] __initdata;
274
275 static int __init cpcompare(const void *a, const void *b)
276 {
277 struct change_member * const *app = a, * const *bpp = b;
278 const struct change_member *ap = *app, *bp = *bpp;
279
280 /*
281 * Inputs are pointers to two elements of change_point[]. If their
282 * addresses are not equal, their difference dominates. If the addresses
283 * are equal, then consider one that represents the end of its region
284 * to be greater than one that does not.
285 */
286 if (ap->addr != bp->addr)
287 return ap->addr > bp->addr ? 1 : -1;
288
289 return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
290 }
291
292 int __init e820__update_table(struct e820_table *table)
293 {
294 struct e820_entry *entries = table->entries;
295 u32 max_nr_entries = ARRAY_SIZE(table->entries);
296 enum e820_type current_type, last_type;
297 unsigned long long last_addr;
298 u32 new_nr_entries, overlap_entries;
299 u32 i, chg_idx, chg_nr;
300
301 /* If there's only one memory region, don't bother: */
302 if (table->nr_entries < 2)
303 return -1;
304
305 BUG_ON(table->nr_entries > max_nr_entries);
306
307 /* Bail out if we find any unreasonable addresses in the map: */
308 for (i = 0; i < table->nr_entries; i++) {
309 if (entries[i].addr + entries[i].size < entries[i].addr)
310 return -1;
311 }
312
313 /* Create pointers for initial change-point information (for sorting): */
314 for (i = 0; i < 2 * table->nr_entries; i++)
315 change_point[i] = &change_point_list[i];
316
317 /*
318 * Record all known change-points (starting and ending addresses),
319 * omitting empty memory regions:
320 */
321 chg_idx = 0;
322 for (i = 0; i < table->nr_entries; i++) {
323 if (entries[i].size != 0) {
324 change_point[chg_idx]->addr = entries[i].addr;
325 change_point[chg_idx++]->entry = &entries[i];
326 change_point[chg_idx]->addr = entries[i].addr + entries[i].size;
327 change_point[chg_idx++]->entry = &entries[i];
328 }
329 }
330 chg_nr = chg_idx;
331
332 /* Sort change-point list by memory addresses (low -> high): */
333 sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
334
335 /* Create a new memory map, removing overlaps: */
336 overlap_entries = 0; /* Number of entries in the overlap table */
337 new_nr_entries = 0; /* Index for creating new map entries */
338 last_type = 0; /* Start with undefined memory type */
339 last_addr = 0; /* Start with 0 as last starting address */
340
341 /* Loop through change-points, determining effect on the new map: */
342 for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
343 /* Keep track of all overlapping entries */
344 if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
345 /* Add map entry to overlap list (> 1 entry implies an overlap) */
346 overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
347 } else {
348 /* Remove entry from list (order independent, so swap with last): */
349 for (i = 0; i < overlap_entries; i++) {
350 if (overlap_list[i] == change_point[chg_idx]->entry)
351 overlap_list[i] = overlap_list[overlap_entries-1];
352 }
353 overlap_entries--;
354 }
355 /*
356 * If there are overlapping entries, decide which
357 * "type" to use (larger value takes precedence --
358 * 1=usable, 2,3,4,4+=unusable)
359 */
360 current_type = 0;
361 for (i = 0; i < overlap_entries; i++) {
362 if (overlap_list[i]->type > current_type)
363 current_type = overlap_list[i]->type;
364 }
365
366 /* Continue building up new map based on this information: */
367 if (current_type != last_type || current_type == E820_TYPE_PRAM) {
368 if (last_type != 0) {
369 new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
370 /* Move forward only if the new size was non-zero: */
371 if (new_entries[new_nr_entries].size != 0)
372 /* No more space left for new entries? */
373 if (++new_nr_entries >= max_nr_entries)
374 break;
375 }
376 if (current_type != 0) {
377 new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
378 new_entries[new_nr_entries].type = current_type;
379 last_addr = change_point[chg_idx]->addr;
380 }
381 last_type = current_type;
382 }
383 }
384
385 /* Copy the new entries into the original location: */
386 memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
387 table->nr_entries = new_nr_entries;
388
389 return 0;
390 }
391
392 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
393 {
394 struct boot_e820_entry *entry = entries;
395
396 while (nr_entries) {
397 u64 start = entry->addr;
398 u64 size = entry->size;
399 u64 end = start + size - 1;
400 u32 type = entry->type;
401
402 /* Ignore the entry on 64-bit overflow: */
403 if (start > end && likely(size))
404 return -1;
405
406 e820__range_add(start, size, type);
407
408 entry++;
409 nr_entries--;
410 }
411 return 0;
412 }
413
414 /*
415 * Copy the BIOS E820 map into a safe place.
416 *
417 * Sanity-check it while we're at it..
418 *
419 * If we're lucky and live on a modern system, the setup code
420 * will have given us a memory map that we can use to properly
421 * set up memory. If we aren't, we'll fake a memory map.
422 */
423 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
424 {
425 /* Only one memory region (or negative)? Ignore it */
426 if (nr_entries < 2)
427 return -1;
428
429 return __append_e820_table(entries, nr_entries);
430 }
431
432 static u64 __init
433 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
434 {
435 u64 end;
436 unsigned int i;
437 u64 real_updated_size = 0;
438
439 BUG_ON(old_type == new_type);
440
441 if (size > (ULLONG_MAX - start))
442 size = ULLONG_MAX - start;
443
444 end = start + size;
445 printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
446 e820_print_type(old_type);
447 pr_cont(" ==> ");
448 e820_print_type(new_type);
449 pr_cont("\n");
450
451 for (i = 0; i < table->nr_entries; i++) {
452 struct e820_entry *entry = &table->entries[i];
453 u64 final_start, final_end;
454 u64 entry_end;
455
456 if (entry->type != old_type)
457 continue;
458
459 entry_end = entry->addr + entry->size;
460
461 /* Completely covered by new range? */
462 if (entry->addr >= start && entry_end <= end) {
463 entry->type = new_type;
464 real_updated_size += entry->size;
465 continue;
466 }
467
468 /* New range is completely covered? */
469 if (entry->addr < start && entry_end > end) {
470 __e820__range_add(table, start, size, new_type);
471 __e820__range_add(table, end, entry_end - end, entry->type);
472 entry->size = start - entry->addr;
473 real_updated_size += size;
474 continue;
475 }
476
477 /* Partially covered: */
478 final_start = max(start, entry->addr);
479 final_end = min(end, entry_end);
480 if (final_start >= final_end)
481 continue;
482
483 __e820__range_add(table, final_start, final_end - final_start, new_type);
484
485 real_updated_size += final_end - final_start;
486
487 /*
488 * Left range could be head or tail, so need to update
489 * its size first:
490 */
491 entry->size -= final_end - final_start;
492 if (entry->addr < final_start)
493 continue;
494
495 entry->addr = final_end;
496 }
497 return real_updated_size;
498 }
499
500 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
501 {
502 return __e820__range_update(e820_table, start, size, old_type, new_type);
503 }
504
505 static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
506 {
507 return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
508 }
509
510 /* Remove a range of memory from the E820 table: */
511 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
512 {
513 int i;
514 u64 end;
515 u64 real_removed_size = 0;
516
517 if (size > (ULLONG_MAX - start))
518 size = ULLONG_MAX - start;
519
520 end = start + size;
521 printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
522 if (check_type)
523 e820_print_type(old_type);
524 pr_cont("\n");
525
526 for (i = 0; i < e820_table->nr_entries; i++) {
527 struct e820_entry *entry = &e820_table->entries[i];
528 u64 final_start, final_end;
529 u64 entry_end;
530
531 if (check_type && entry->type != old_type)
532 continue;
533
534 entry_end = entry->addr + entry->size;
535
536 /* Completely covered? */
537 if (entry->addr >= start && entry_end <= end) {
538 real_removed_size += entry->size;
539 memset(entry, 0, sizeof(*entry));
540 continue;
541 }
542
543 /* Is the new range completely covered? */
544 if (entry->addr < start && entry_end > end) {
545 e820__range_add(end, entry_end - end, entry->type);
546 entry->size = start - entry->addr;
547 real_removed_size += size;
548 continue;
549 }
550
551 /* Partially covered: */
552 final_start = max(start, entry->addr);
553 final_end = min(end, entry_end);
554 if (final_start >= final_end)
555 continue;
556
557 real_removed_size += final_end - final_start;
558
559 /*
560 * Left range could be head or tail, so need to update
561 * the size first:
562 */
563 entry->size -= final_end - final_start;
564 if (entry->addr < final_start)
565 continue;
566
567 entry->addr = final_end;
568 }
569 return real_removed_size;
570 }
571
572 void __init e820__update_table_print(void)
573 {
574 if (e820__update_table(e820_table))
575 return;
576
577 pr_info("e820: modified physical RAM map:\n");
578 e820__print_table("modified");
579 }
580
581 static void __init e820__update_table_kexec(void)
582 {
583 e820__update_table(e820_table_kexec);
584 }
585
586 #define MAX_GAP_END 0x100000000ull
587
588 /*
589 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
590 */
591 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
592 {
593 unsigned long long last = MAX_GAP_END;
594 int i = e820_table->nr_entries;
595 int found = 0;
596
597 while (--i >= 0) {
598 unsigned long long start = e820_table->entries[i].addr;
599 unsigned long long end = start + e820_table->entries[i].size;
600
601 /*
602 * Since "last" is at most 4GB, we know we'll
603 * fit in 32 bits if this condition is true:
604 */
605 if (last > end) {
606 unsigned long gap = last - end;
607
608 if (gap >= *gapsize) {
609 *gapsize = gap;
610 *gapstart = end;
611 found = 1;
612 }
613 }
614 if (start < last)
615 last = start;
616 }
617 return found;
618 }
619
620 /*
621 * Search for the biggest gap in the low 32 bits of the E820
622 * memory space. We pass this space to the PCI subsystem, so
623 * that it can assign MMIO resources for hotplug or
624 * unconfigured devices in.
625 *
626 * Hopefully the BIOS let enough space left.
627 */
628 __init void e820__setup_pci_gap(void)
629 {
630 unsigned long gapstart, gapsize;
631 int found;
632
633 gapsize = 0x400000;
634 found = e820_search_gap(&gapstart, &gapsize);
635
636 if (!found) {
637 #ifdef CONFIG_X86_64
638 gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
639 pr_err(
640 "e820: Cannot find an available gap in the 32-bit address range\n"
641 "e820: PCI devices with unassigned 32-bit BARs may not work!\n");
642 #else
643 gapstart = 0x10000000;
644 #endif
645 }
646
647 /*
648 * e820__reserve_resources_late() protects stolen RAM already:
649 */
650 pci_mem_start = gapstart;
651
652 pr_info("e820: [mem %#010lx-%#010lx] available for PCI devices\n", gapstart, gapstart + gapsize - 1);
653 }
654
655 /*
656 * Called late during init, in free_initmem().
657 *
658 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
659 *
660 * Copy them to a (usually much smaller) dynamically allocated area that is
661 * sized precisely after the number of e820 entries.
662 *
663 * This is done after we've performed all the fixes and tweaks to the tables.
664 * All functions which modify them are __init functions, which won't exist
665 * after free_initmem().
666 */
667 __init void e820__reallocate_tables(void)
668 {
669 struct e820_table *n;
670 int size;
671
672 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
673 n = kmalloc(size, GFP_KERNEL);
674 BUG_ON(!n);
675 memcpy(n, e820_table, size);
676 e820_table = n;
677
678 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
679 n = kmalloc(size, GFP_KERNEL);
680 BUG_ON(!n);
681 memcpy(n, e820_table_kexec, size);
682 e820_table_kexec = n;
683
684 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
685 n = kmalloc(size, GFP_KERNEL);
686 BUG_ON(!n);
687 memcpy(n, e820_table_firmware, size);
688 e820_table_firmware = n;
689 }
690
691 /*
692 * Because of the small fixed size of struct boot_params, only the first
693 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
694 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
695 * struct setup_data, which is parsed here.
696 */
697 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
698 {
699 int entries;
700 struct boot_e820_entry *extmap;
701 struct setup_data *sdata;
702
703 sdata = early_memremap(phys_addr, data_len);
704 entries = sdata->len / sizeof(*extmap);
705 extmap = (struct boot_e820_entry *)(sdata->data);
706
707 __append_e820_table(extmap, entries);
708 e820__update_table(e820_table);
709
710 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
711 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
712
713 early_memunmap(sdata, data_len);
714 pr_info("e820: extended physical RAM map:\n");
715 e820__print_table("extended");
716 }
717
718 /*
719 * Find the ranges of physical addresses that do not correspond to
720 * E820 RAM areas and register the corresponding pages as 'nosave' for
721 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
722 *
723 * This function requires the E820 map to be sorted and without any
724 * overlapping entries.
725 */
726 void __init e820__register_nosave_regions(unsigned long limit_pfn)
727 {
728 int i;
729 unsigned long pfn = 0;
730
731 for (i = 0; i < e820_table->nr_entries; i++) {
732 struct e820_entry *entry = &e820_table->entries[i];
733
734 if (pfn < PFN_UP(entry->addr))
735 register_nosave_region(pfn, PFN_UP(entry->addr));
736
737 pfn = PFN_DOWN(entry->addr + entry->size);
738
739 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
740 register_nosave_region(PFN_UP(entry->addr), pfn);
741
742 if (pfn >= limit_pfn)
743 break;
744 }
745 }
746
747 #ifdef CONFIG_ACPI
748 /*
749 * Register ACPI NVS memory regions, so that we can save/restore them during
750 * hibernation and the subsequent resume:
751 */
752 static int __init e820__register_nvs_regions(void)
753 {
754 int i;
755
756 for (i = 0; i < e820_table->nr_entries; i++) {
757 struct e820_entry *entry = &e820_table->entries[i];
758
759 if (entry->type == E820_TYPE_NVS)
760 acpi_nvs_register(entry->addr, entry->size);
761 }
762
763 return 0;
764 }
765 core_initcall(e820__register_nvs_regions);
766 #endif
767
768 /*
769 * Allocate the requested number of bytes with the requsted alignment
770 * and return (the physical address) to the caller. Also register this
771 * range in the 'kexec' E820 table as a reserved range.
772 *
773 * This allows kexec to fake a new mptable, as if it came from the real
774 * system.
775 */
776 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
777 {
778 u64 addr;
779
780 addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
781 if (addr) {
782 e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
783 pr_info("e820: update e820_table_kexec for e820__memblock_alloc_reserved()\n");
784 e820__update_table_kexec();
785 }
786
787 return addr;
788 }
789
790 #ifdef CONFIG_X86_32
791 # ifdef CONFIG_X86_PAE
792 # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT))
793 # else
794 # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT))
795 # endif
796 #else /* CONFIG_X86_32 */
797 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
798 #endif
799
800 /*
801 * Find the highest page frame number we have available
802 */
803 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
804 {
805 int i;
806 unsigned long last_pfn = 0;
807 unsigned long max_arch_pfn = MAX_ARCH_PFN;
808
809 for (i = 0; i < e820_table->nr_entries; i++) {
810 struct e820_entry *entry = &e820_table->entries[i];
811 unsigned long start_pfn;
812 unsigned long end_pfn;
813
814 if (entry->type != type)
815 continue;
816
817 start_pfn = entry->addr >> PAGE_SHIFT;
818 end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
819
820 if (start_pfn >= limit_pfn)
821 continue;
822 if (end_pfn > limit_pfn) {
823 last_pfn = limit_pfn;
824 break;
825 }
826 if (end_pfn > last_pfn)
827 last_pfn = end_pfn;
828 }
829
830 if (last_pfn > max_arch_pfn)
831 last_pfn = max_arch_pfn;
832
833 pr_info("e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
834 last_pfn, max_arch_pfn);
835 return last_pfn;
836 }
837
838 unsigned long __init e820__end_of_ram_pfn(void)
839 {
840 return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
841 }
842
843 unsigned long __init e820__end_of_low_ram_pfn(void)
844 {
845 return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
846 }
847
848 static void __init early_panic(char *msg)
849 {
850 early_printk(msg);
851 panic(msg);
852 }
853
854 static int userdef __initdata;
855
856 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
857 static int __init parse_memopt(char *p)
858 {
859 u64 mem_size;
860
861 if (!p)
862 return -EINVAL;
863
864 if (!strcmp(p, "nopentium")) {
865 #ifdef CONFIG_X86_32
866 setup_clear_cpu_cap(X86_FEATURE_PSE);
867 return 0;
868 #else
869 pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
870 return -EINVAL;
871 #endif
872 }
873
874 userdef = 1;
875 mem_size = memparse(p, &p);
876
877 /* Don't remove all memory when getting "mem={invalid}" parameter: */
878 if (mem_size == 0)
879 return -EINVAL;
880
881 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
882
883 return 0;
884 }
885 early_param("mem", parse_memopt);
886
887 static int __init parse_memmap_one(char *p)
888 {
889 char *oldp;
890 u64 start_at, mem_size;
891
892 if (!p)
893 return -EINVAL;
894
895 if (!strncmp(p, "exactmap", 8)) {
896 #ifdef CONFIG_CRASH_DUMP
897 /*
898 * If we are doing a crash dump, we still need to know
899 * the real memory size before the original memory map is
900 * reset.
901 */
902 saved_max_pfn = e820__end_of_ram_pfn();
903 #endif
904 e820_table->nr_entries = 0;
905 userdef = 1;
906 return 0;
907 }
908
909 oldp = p;
910 mem_size = memparse(p, &p);
911 if (p == oldp)
912 return -EINVAL;
913
914 userdef = 1;
915 if (*p == '@') {
916 start_at = memparse(p+1, &p);
917 e820__range_add(start_at, mem_size, E820_TYPE_RAM);
918 } else if (*p == '#') {
919 start_at = memparse(p+1, &p);
920 e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
921 } else if (*p == '$') {
922 start_at = memparse(p+1, &p);
923 e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
924 } else if (*p == '!') {
925 start_at = memparse(p+1, &p);
926 e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
927 } else {
928 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
929 }
930
931 return *p == '\0' ? 0 : -EINVAL;
932 }
933
934 static int __init parse_memmap_opt(char *str)
935 {
936 while (str) {
937 char *k = strchr(str, ',');
938
939 if (k)
940 *k++ = 0;
941
942 parse_memmap_one(str);
943 str = k;
944 }
945
946 return 0;
947 }
948 early_param("memmap", parse_memmap_opt);
949
950 /*
951 * Reserve all entries from the bootloader's extensible data nodes list,
952 * because if present we are going to use it later on to fetch e820
953 * entries from it:
954 */
955 void __init e820__reserve_setup_data(void)
956 {
957 struct setup_data *data;
958 u64 pa_data;
959
960 pa_data = boot_params.hdr.setup_data;
961 if (!pa_data)
962 return;
963
964 while (pa_data) {
965 data = early_memremap(pa_data, sizeof(*data));
966 e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
967 e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
968 pa_data = data->next;
969 early_memunmap(data, sizeof(*data));
970 }
971
972 e820__update_table(e820_table);
973 e820__update_table(e820_table_kexec);
974
975 pr_info("extended physical RAM map:\n");
976 e820__print_table("reserve setup_data");
977 }
978
979 /*
980 * Called after parse_early_param(), after early parameters (such as mem=)
981 * have been processed, in which case we already have an E820 table filled in
982 * via the parameter callback function(s), but it's not sorted and printed yet:
983 */
984 void __init e820__finish_early_params(void)
985 {
986 if (userdef) {
987 if (e820__update_table(e820_table) < 0)
988 early_panic("Invalid user supplied memory map");
989
990 pr_info("e820: user-defined physical RAM map:\n");
991 e820__print_table("user");
992 }
993 }
994
995 static const char *__init e820_type_to_string(struct e820_entry *entry)
996 {
997 switch (entry->type) {
998 case E820_TYPE_RESERVED_KERN: /* Fall-through: */
999 case E820_TYPE_RAM: return "System RAM";
1000 case E820_TYPE_ACPI: return "ACPI Tables";
1001 case E820_TYPE_NVS: return "ACPI Non-volatile Storage";
1002 case E820_TYPE_UNUSABLE: return "Unusable memory";
1003 case E820_TYPE_PRAM: return "Persistent Memory (legacy)";
1004 case E820_TYPE_PMEM: return "Persistent Memory";
1005 case E820_TYPE_RESERVED: return "Reserved";
1006 default: return "Unknown E820 type";
1007 }
1008 }
1009
1010 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1011 {
1012 switch (entry->type) {
1013 case E820_TYPE_RESERVED_KERN: /* Fall-through: */
1014 case E820_TYPE_RAM: return IORESOURCE_SYSTEM_RAM;
1015 case E820_TYPE_ACPI: /* Fall-through: */
1016 case E820_TYPE_NVS: /* Fall-through: */
1017 case E820_TYPE_UNUSABLE: /* Fall-through: */
1018 case E820_TYPE_PRAM: /* Fall-through: */
1019 case E820_TYPE_PMEM: /* Fall-through: */
1020 case E820_TYPE_RESERVED: /* Fall-through: */
1021 default: return IORESOURCE_MEM;
1022 }
1023 }
1024
1025 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1026 {
1027 switch (entry->type) {
1028 case E820_TYPE_ACPI: return IORES_DESC_ACPI_TABLES;
1029 case E820_TYPE_NVS: return IORES_DESC_ACPI_NV_STORAGE;
1030 case E820_TYPE_PMEM: return IORES_DESC_PERSISTENT_MEMORY;
1031 case E820_TYPE_PRAM: return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1032 case E820_TYPE_RESERVED_KERN: /* Fall-through: */
1033 case E820_TYPE_RAM: /* Fall-through: */
1034 case E820_TYPE_UNUSABLE: /* Fall-through: */
1035 case E820_TYPE_RESERVED: /* Fall-through: */
1036 default: return IORES_DESC_NONE;
1037 }
1038 }
1039
1040 static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1041 {
1042 /* this is the legacy bios/dos rom-shadow + mmio region */
1043 if (res->start < (1ULL<<20))
1044 return true;
1045
1046 /*
1047 * Treat persistent memory like device memory, i.e. reserve it
1048 * for exclusive use of a driver
1049 */
1050 switch (type) {
1051 case E820_TYPE_RESERVED:
1052 case E820_TYPE_PRAM:
1053 case E820_TYPE_PMEM:
1054 return false;
1055 case E820_TYPE_RESERVED_KERN:
1056 case E820_TYPE_RAM:
1057 case E820_TYPE_ACPI:
1058 case E820_TYPE_NVS:
1059 case E820_TYPE_UNUSABLE:
1060 default:
1061 return true;
1062 }
1063 }
1064
1065 /*
1066 * Mark E820 reserved areas as busy for the resource manager:
1067 */
1068
1069 static struct resource __initdata *e820_res;
1070
1071 void __init e820__reserve_resources(void)
1072 {
1073 int i;
1074 struct resource *res;
1075 u64 end;
1076
1077 res = alloc_bootmem(sizeof(*res) * e820_table->nr_entries);
1078 e820_res = res;
1079
1080 for (i = 0; i < e820_table->nr_entries; i++) {
1081 struct e820_entry *entry = e820_table->entries + i;
1082
1083 end = entry->addr + entry->size - 1;
1084 if (end != (resource_size_t)end) {
1085 res++;
1086 continue;
1087 }
1088 res->start = entry->addr;
1089 res->end = end;
1090 res->name = e820_type_to_string(entry);
1091 res->flags = e820_type_to_iomem_type(entry);
1092 res->desc = e820_type_to_iores_desc(entry);
1093
1094 /*
1095 * Don't register the region that could be conflicted with
1096 * PCI device BAR resources and insert them later in
1097 * pcibios_resource_survey():
1098 */
1099 if (do_mark_busy(entry->type, res)) {
1100 res->flags |= IORESOURCE_BUSY;
1101 insert_resource(&iomem_resource, res);
1102 }
1103 res++;
1104 }
1105
1106 /* Expose the bootloader-provided memory layout to the sysfs. */
1107 for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1108 struct e820_entry *entry = e820_table_firmware->entries + i;
1109
1110 firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1111 }
1112 }
1113
1114 /*
1115 * How much should we pad the end of RAM, depending on where it is?
1116 */
1117 static unsigned long __init ram_alignment(resource_size_t pos)
1118 {
1119 unsigned long mb = pos >> 20;
1120
1121 /* To 64kB in the first megabyte */
1122 if (!mb)
1123 return 64*1024;
1124
1125 /* To 1MB in the first 16MB */
1126 if (mb < 16)
1127 return 1024*1024;
1128
1129 /* To 64MB for anything above that */
1130 return 64*1024*1024;
1131 }
1132
1133 #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1134
1135 void __init e820__reserve_resources_late(void)
1136 {
1137 int i;
1138 struct resource *res;
1139
1140 res = e820_res;
1141 for (i = 0; i < e820_table->nr_entries; i++) {
1142 if (!res->parent && res->end)
1143 insert_resource_expand_to_fit(&iomem_resource, res);
1144 res++;
1145 }
1146
1147 /*
1148 * Try to bump up RAM regions to reasonable boundaries, to
1149 * avoid stolen RAM:
1150 */
1151 for (i = 0; i < e820_table->nr_entries; i++) {
1152 struct e820_entry *entry = &e820_table->entries[i];
1153 u64 start, end;
1154
1155 if (entry->type != E820_TYPE_RAM)
1156 continue;
1157
1158 start = entry->addr + entry->size;
1159 end = round_up(start, ram_alignment(start)) - 1;
1160 if (end > MAX_RESOURCE_SIZE)
1161 end = MAX_RESOURCE_SIZE;
1162 if (start >= end)
1163 continue;
1164
1165 printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1166 reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1167 }
1168 }
1169
1170 /*
1171 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1172 */
1173 char *__init e820__memory_setup_default(void)
1174 {
1175 char *who = "BIOS-e820";
1176
1177 /*
1178 * Try to copy the BIOS-supplied E820-map.
1179 *
1180 * Otherwise fake a memory map; one section from 0k->640k,
1181 * the next section from 1mb->appropriate_mem_k
1182 */
1183 if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1184 u64 mem_size;
1185
1186 /* Compare results from other methods and take the one that gives more RAM: */
1187 if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1188 mem_size = boot_params.screen_info.ext_mem_k;
1189 who = "BIOS-88";
1190 } else {
1191 mem_size = boot_params.alt_mem_k;
1192 who = "BIOS-e801";
1193 }
1194
1195 e820_table->nr_entries = 0;
1196 e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1197 e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1198 }
1199
1200 /* We just appended a lot of ranges, sanitize the table: */
1201 e820__update_table(e820_table);
1202
1203 return who;
1204 }
1205
1206 /*
1207 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1208 * E820 map - with an optional platform quirk available for virtual platforms
1209 * to override this method of boot environment processing:
1210 */
1211 void __init e820__memory_setup(void)
1212 {
1213 char *who;
1214
1215 /* This is a firmware interface ABI - make sure we don't break it: */
1216 BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1217
1218 who = x86_init.resources.memory_setup();
1219
1220 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1221 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1222
1223 pr_info("e820: BIOS-provided physical RAM map:\n");
1224 e820__print_table(who);
1225 }
1226
1227 void __init e820__memblock_setup(void)
1228 {
1229 int i;
1230 u64 end;
1231
1232 /*
1233 * The bootstrap memblock region count maximum is 128 entries
1234 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1235 * than that - so allow memblock resizing.
1236 *
1237 * This is safe, because this call happens pretty late during x86 setup,
1238 * so we know about reserved memory regions already. (This is important
1239 * so that memblock resizing does no stomp over reserved areas.)
1240 */
1241 memblock_allow_resize();
1242
1243 for (i = 0; i < e820_table->nr_entries; i++) {
1244 struct e820_entry *entry = &e820_table->entries[i];
1245
1246 end = entry->addr + entry->size;
1247 if (end != (resource_size_t)end)
1248 continue;
1249
1250 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1251 continue;
1252
1253 memblock_add(entry->addr, entry->size);
1254 }
1255
1256 /* Throw away partial pages: */
1257 memblock_trim_memory(PAGE_SIZE);
1258
1259 memblock_dump_all();
1260 }