]> git.ipfire.org Git - people/ms/linux.git/blob - arch/x86/kernel/io_apic_64.c
Merge branch 'linus' into x86/x2apic
[people/ms/linux.git] / arch / x86 / kernel / io_apic_64.c
1 /*
2 * Intel IO-APIC support for multi-Pentium hosts.
3 *
4 * Copyright (C) 1997, 1998, 1999, 2000 Ingo Molnar, Hajnalka Szabo
5 *
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
8 *
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
14 *
15 * Fixes
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
18 * and Rolf G. Tews
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
21 */
22
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/acpi.h>
31 #include <linux/sysdev.h>
32 #include <linux/msi.h>
33 #include <linux/htirq.h>
34 #include <linux/dmar.h>
35 #include <linux/jiffies.h>
36 #ifdef CONFIG_ACPI
37 #include <acpi/acpi_bus.h>
38 #endif
39 #include <linux/bootmem.h>
40 #include <linux/dmar.h>
41
42 #include <asm/idle.h>
43 #include <asm/io.h>
44 #include <asm/smp.h>
45 #include <asm/desc.h>
46 #include <asm/proto.h>
47 #include <asm/acpi.h>
48 #include <asm/dma.h>
49 #include <asm/nmi.h>
50 #include <asm/msidef.h>
51 #include <asm/hypertransport.h>
52 #include <asm/irq_remapping.h>
53
54 #include <mach_ipi.h>
55 #include <mach_apic.h>
56
57 struct irq_cfg {
58 cpumask_t domain;
59 cpumask_t old_domain;
60 unsigned move_cleanup_count;
61 u8 vector;
62 u8 move_in_progress : 1;
63 };
64
65 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
66 static struct irq_cfg irq_cfg[NR_IRQS] __read_mostly = {
67 [0] = { .domain = CPU_MASK_ALL, .vector = IRQ0_VECTOR, },
68 [1] = { .domain = CPU_MASK_ALL, .vector = IRQ1_VECTOR, },
69 [2] = { .domain = CPU_MASK_ALL, .vector = IRQ2_VECTOR, },
70 [3] = { .domain = CPU_MASK_ALL, .vector = IRQ3_VECTOR, },
71 [4] = { .domain = CPU_MASK_ALL, .vector = IRQ4_VECTOR, },
72 [5] = { .domain = CPU_MASK_ALL, .vector = IRQ5_VECTOR, },
73 [6] = { .domain = CPU_MASK_ALL, .vector = IRQ6_VECTOR, },
74 [7] = { .domain = CPU_MASK_ALL, .vector = IRQ7_VECTOR, },
75 [8] = { .domain = CPU_MASK_ALL, .vector = IRQ8_VECTOR, },
76 [9] = { .domain = CPU_MASK_ALL, .vector = IRQ9_VECTOR, },
77 [10] = { .domain = CPU_MASK_ALL, .vector = IRQ10_VECTOR, },
78 [11] = { .domain = CPU_MASK_ALL, .vector = IRQ11_VECTOR, },
79 [12] = { .domain = CPU_MASK_ALL, .vector = IRQ12_VECTOR, },
80 [13] = { .domain = CPU_MASK_ALL, .vector = IRQ13_VECTOR, },
81 [14] = { .domain = CPU_MASK_ALL, .vector = IRQ14_VECTOR, },
82 [15] = { .domain = CPU_MASK_ALL, .vector = IRQ15_VECTOR, },
83 };
84
85 static int assign_irq_vector(int irq, cpumask_t mask);
86
87 int first_system_vector = 0xfe;
88
89 char system_vectors[NR_VECTORS] = { [0 ... NR_VECTORS-1] = SYS_VECTOR_FREE};
90
91 #define __apicdebuginit __init
92
93 int sis_apic_bug; /* not actually supported, dummy for compile */
94
95 static int no_timer_check;
96
97 static int disable_timer_pin_1 __initdata;
98
99 int timer_through_8259 __initdata;
100
101 /* Where if anywhere is the i8259 connect in external int mode */
102 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
103
104 static DEFINE_SPINLOCK(ioapic_lock);
105 DEFINE_SPINLOCK(vector_lock);
106
107 /*
108 * # of IRQ routing registers
109 */
110 int nr_ioapic_registers[MAX_IO_APICS];
111
112 /* I/O APIC RTE contents at the OS boot up */
113 struct IO_APIC_route_entry *early_ioapic_entries[MAX_IO_APICS];
114
115 /* I/O APIC entries */
116 struct mp_config_ioapic mp_ioapics[MAX_IO_APICS];
117 int nr_ioapics;
118
119 /* MP IRQ source entries */
120 struct mp_config_intsrc mp_irqs[MAX_IRQ_SOURCES];
121
122 /* # of MP IRQ source entries */
123 int mp_irq_entries;
124
125 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
126
127 /*
128 * Rough estimation of how many shared IRQs there are, can
129 * be changed anytime.
130 */
131 #define MAX_PLUS_SHARED_IRQS NR_IRQS
132 #define PIN_MAP_SIZE (MAX_PLUS_SHARED_IRQS + NR_IRQS)
133
134 /*
135 * This is performance-critical, we want to do it O(1)
136 *
137 * the indexing order of this array favors 1:1 mappings
138 * between pins and IRQs.
139 */
140
141 static struct irq_pin_list {
142 short apic, pin, next;
143 } irq_2_pin[PIN_MAP_SIZE];
144
145 struct io_apic {
146 unsigned int index;
147 unsigned int unused[3];
148 unsigned int data;
149 };
150
151 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
152 {
153 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
154 + (mp_ioapics[idx].mp_apicaddr & ~PAGE_MASK);
155 }
156
157 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
158 {
159 struct io_apic __iomem *io_apic = io_apic_base(apic);
160 writel(reg, &io_apic->index);
161 return readl(&io_apic->data);
162 }
163
164 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
165 {
166 struct io_apic __iomem *io_apic = io_apic_base(apic);
167 writel(reg, &io_apic->index);
168 writel(value, &io_apic->data);
169 }
170
171 /*
172 * Re-write a value: to be used for read-modify-write
173 * cycles where the read already set up the index register.
174 */
175 static inline void io_apic_modify(unsigned int apic, unsigned int value)
176 {
177 struct io_apic __iomem *io_apic = io_apic_base(apic);
178 writel(value, &io_apic->data);
179 }
180
181 static bool io_apic_level_ack_pending(unsigned int irq)
182 {
183 struct irq_pin_list *entry;
184 unsigned long flags;
185
186 spin_lock_irqsave(&ioapic_lock, flags);
187 entry = irq_2_pin + irq;
188 for (;;) {
189 unsigned int reg;
190 int pin;
191
192 pin = entry->pin;
193 if (pin == -1)
194 break;
195 reg = io_apic_read(entry->apic, 0x10 + pin*2);
196 /* Is the remote IRR bit set? */
197 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
198 spin_unlock_irqrestore(&ioapic_lock, flags);
199 return true;
200 }
201 if (!entry->next)
202 break;
203 entry = irq_2_pin + entry->next;
204 }
205 spin_unlock_irqrestore(&ioapic_lock, flags);
206
207 return false;
208 }
209
210 /*
211 * Synchronize the IO-APIC and the CPU by doing
212 * a dummy read from the IO-APIC
213 */
214 static inline void io_apic_sync(unsigned int apic)
215 {
216 struct io_apic __iomem *io_apic = io_apic_base(apic);
217 readl(&io_apic->data);
218 }
219
220 #define __DO_ACTION(R, ACTION, FINAL) \
221 \
222 { \
223 int pin; \
224 struct irq_pin_list *entry = irq_2_pin + irq; \
225 \
226 BUG_ON(irq >= NR_IRQS); \
227 for (;;) { \
228 unsigned int reg; \
229 pin = entry->pin; \
230 if (pin == -1) \
231 break; \
232 reg = io_apic_read(entry->apic, 0x10 + R + pin*2); \
233 reg ACTION; \
234 io_apic_modify(entry->apic, reg); \
235 FINAL; \
236 if (!entry->next) \
237 break; \
238 entry = irq_2_pin + entry->next; \
239 } \
240 }
241
242 union entry_union {
243 struct { u32 w1, w2; };
244 struct IO_APIC_route_entry entry;
245 };
246
247 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
248 {
249 union entry_union eu;
250 unsigned long flags;
251 spin_lock_irqsave(&ioapic_lock, flags);
252 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
253 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
254 spin_unlock_irqrestore(&ioapic_lock, flags);
255 return eu.entry;
256 }
257
258 /*
259 * When we write a new IO APIC routing entry, we need to write the high
260 * word first! If the mask bit in the low word is clear, we will enable
261 * the interrupt, and we need to make sure the entry is fully populated
262 * before that happens.
263 */
264 static void
265 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
266 {
267 union entry_union eu;
268 eu.entry = e;
269 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
270 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
271 }
272
273 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
274 {
275 unsigned long flags;
276 spin_lock_irqsave(&ioapic_lock, flags);
277 __ioapic_write_entry(apic, pin, e);
278 spin_unlock_irqrestore(&ioapic_lock, flags);
279 }
280
281 /*
282 * When we mask an IO APIC routing entry, we need to write the low
283 * word first, in order to set the mask bit before we change the
284 * high bits!
285 */
286 static void ioapic_mask_entry(int apic, int pin)
287 {
288 unsigned long flags;
289 union entry_union eu = { .entry.mask = 1 };
290
291 spin_lock_irqsave(&ioapic_lock, flags);
292 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
293 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
294 spin_unlock_irqrestore(&ioapic_lock, flags);
295 }
296
297 #ifdef CONFIG_SMP
298 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, u8 vector)
299 {
300 int apic, pin;
301 struct irq_pin_list *entry = irq_2_pin + irq;
302
303 BUG_ON(irq >= NR_IRQS);
304 for (;;) {
305 unsigned int reg;
306 apic = entry->apic;
307 pin = entry->pin;
308 if (pin == -1)
309 break;
310 /*
311 * With interrupt-remapping, destination information comes
312 * from interrupt-remapping table entry.
313 */
314 if (!irq_remapped(irq))
315 io_apic_write(apic, 0x11 + pin*2, dest);
316 reg = io_apic_read(apic, 0x10 + pin*2);
317 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
318 reg |= vector;
319 io_apic_modify(apic, reg);
320 if (!entry->next)
321 break;
322 entry = irq_2_pin + entry->next;
323 }
324 }
325
326 static void set_ioapic_affinity_irq(unsigned int irq, cpumask_t mask)
327 {
328 struct irq_cfg *cfg = irq_cfg + irq;
329 unsigned long flags;
330 unsigned int dest;
331 cpumask_t tmp;
332
333 cpus_and(tmp, mask, cpu_online_map);
334 if (cpus_empty(tmp))
335 return;
336
337 if (assign_irq_vector(irq, mask))
338 return;
339
340 cpus_and(tmp, cfg->domain, mask);
341 dest = cpu_mask_to_apicid(tmp);
342
343 /*
344 * Only the high 8 bits are valid.
345 */
346 dest = SET_APIC_LOGICAL_ID(dest);
347
348 spin_lock_irqsave(&ioapic_lock, flags);
349 __target_IO_APIC_irq(irq, dest, cfg->vector);
350 irq_desc[irq].affinity = mask;
351 spin_unlock_irqrestore(&ioapic_lock, flags);
352 }
353 #endif
354
355 /*
356 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
357 * shared ISA-space IRQs, so we have to support them. We are super
358 * fast in the common case, and fast for shared ISA-space IRQs.
359 */
360 static void add_pin_to_irq(unsigned int irq, int apic, int pin)
361 {
362 static int first_free_entry = NR_IRQS;
363 struct irq_pin_list *entry = irq_2_pin + irq;
364
365 BUG_ON(irq >= NR_IRQS);
366 while (entry->next)
367 entry = irq_2_pin + entry->next;
368
369 if (entry->pin != -1) {
370 entry->next = first_free_entry;
371 entry = irq_2_pin + entry->next;
372 if (++first_free_entry >= PIN_MAP_SIZE)
373 panic("io_apic.c: ran out of irq_2_pin entries!");
374 }
375 entry->apic = apic;
376 entry->pin = pin;
377 }
378
379 /*
380 * Reroute an IRQ to a different pin.
381 */
382 static void __init replace_pin_at_irq(unsigned int irq,
383 int oldapic, int oldpin,
384 int newapic, int newpin)
385 {
386 struct irq_pin_list *entry = irq_2_pin + irq;
387
388 while (1) {
389 if (entry->apic == oldapic && entry->pin == oldpin) {
390 entry->apic = newapic;
391 entry->pin = newpin;
392 }
393 if (!entry->next)
394 break;
395 entry = irq_2_pin + entry->next;
396 }
397 }
398
399
400 #define DO_ACTION(name,R,ACTION, FINAL) \
401 \
402 static void name##_IO_APIC_irq (unsigned int irq) \
403 __DO_ACTION(R, ACTION, FINAL)
404
405 /* mask = 1 */
406 DO_ACTION(__mask, 0, |= IO_APIC_REDIR_MASKED, io_apic_sync(entry->apic))
407
408 /* mask = 0 */
409 DO_ACTION(__unmask, 0, &= ~IO_APIC_REDIR_MASKED, )
410
411 static void mask_IO_APIC_irq (unsigned int irq)
412 {
413 unsigned long flags;
414
415 spin_lock_irqsave(&ioapic_lock, flags);
416 __mask_IO_APIC_irq(irq);
417 spin_unlock_irqrestore(&ioapic_lock, flags);
418 }
419
420 static void unmask_IO_APIC_irq (unsigned int irq)
421 {
422 unsigned long flags;
423
424 spin_lock_irqsave(&ioapic_lock, flags);
425 __unmask_IO_APIC_irq(irq);
426 spin_unlock_irqrestore(&ioapic_lock, flags);
427 }
428
429 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
430 {
431 struct IO_APIC_route_entry entry;
432
433 /* Check delivery_mode to be sure we're not clearing an SMI pin */
434 entry = ioapic_read_entry(apic, pin);
435 if (entry.delivery_mode == dest_SMI)
436 return;
437 /*
438 * Disable it in the IO-APIC irq-routing table:
439 */
440 ioapic_mask_entry(apic, pin);
441 }
442
443 static void clear_IO_APIC (void)
444 {
445 int apic, pin;
446
447 for (apic = 0; apic < nr_ioapics; apic++)
448 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
449 clear_IO_APIC_pin(apic, pin);
450 }
451
452 /*
453 * Saves and masks all the unmasked IO-APIC RTE's
454 */
455 int save_mask_IO_APIC_setup(void)
456 {
457 union IO_APIC_reg_01 reg_01;
458 unsigned long flags;
459 int apic, pin;
460
461 /*
462 * The number of IO-APIC IRQ registers (== #pins):
463 */
464 for (apic = 0; apic < nr_ioapics; apic++) {
465 spin_lock_irqsave(&ioapic_lock, flags);
466 reg_01.raw = io_apic_read(apic, 1);
467 spin_unlock_irqrestore(&ioapic_lock, flags);
468 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
469 }
470
471 for (apic = 0; apic < nr_ioapics; apic++) {
472 early_ioapic_entries[apic] =
473 kzalloc(sizeof(struct IO_APIC_route_entry) *
474 nr_ioapic_registers[apic], GFP_KERNEL);
475 if (!early_ioapic_entries[apic])
476 return -ENOMEM;
477 }
478
479 for (apic = 0; apic < nr_ioapics; apic++)
480 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
481 struct IO_APIC_route_entry entry;
482
483 entry = early_ioapic_entries[apic][pin] =
484 ioapic_read_entry(apic, pin);
485 if (!entry.mask) {
486 entry.mask = 1;
487 ioapic_write_entry(apic, pin, entry);
488 }
489 }
490 return 0;
491 }
492
493 void restore_IO_APIC_setup(void)
494 {
495 int apic, pin;
496
497 for (apic = 0; apic < nr_ioapics; apic++)
498 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
499 ioapic_write_entry(apic, pin,
500 early_ioapic_entries[apic][pin]);
501 }
502
503 void reinit_intr_remapped_IO_APIC(int intr_remapping)
504 {
505 /*
506 * for now plain restore of previous settings.
507 * TBD: In the case of OS enabling interrupt-remapping,
508 * IO-APIC RTE's need to be setup to point to interrupt-remapping
509 * table entries. for now, do a plain restore, and wait for
510 * the setup_IO_APIC_irqs() to do proper initialization.
511 */
512 restore_IO_APIC_setup();
513 }
514
515 int skip_ioapic_setup;
516 int ioapic_force;
517
518 static int __init parse_noapic(char *str)
519 {
520 disable_ioapic_setup();
521 return 0;
522 }
523 early_param("noapic", parse_noapic);
524
525 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
526 static int __init disable_timer_pin_setup(char *arg)
527 {
528 disable_timer_pin_1 = 1;
529 return 1;
530 }
531 __setup("disable_timer_pin_1", disable_timer_pin_setup);
532
533
534 /*
535 * Find the IRQ entry number of a certain pin.
536 */
537 static int find_irq_entry(int apic, int pin, int type)
538 {
539 int i;
540
541 for (i = 0; i < mp_irq_entries; i++)
542 if (mp_irqs[i].mp_irqtype == type &&
543 (mp_irqs[i].mp_dstapic == mp_ioapics[apic].mp_apicid ||
544 mp_irqs[i].mp_dstapic == MP_APIC_ALL) &&
545 mp_irqs[i].mp_dstirq == pin)
546 return i;
547
548 return -1;
549 }
550
551 /*
552 * Find the pin to which IRQ[irq] (ISA) is connected
553 */
554 static int __init find_isa_irq_pin(int irq, int type)
555 {
556 int i;
557
558 for (i = 0; i < mp_irq_entries; i++) {
559 int lbus = mp_irqs[i].mp_srcbus;
560
561 if (test_bit(lbus, mp_bus_not_pci) &&
562 (mp_irqs[i].mp_irqtype == type) &&
563 (mp_irqs[i].mp_srcbusirq == irq))
564
565 return mp_irqs[i].mp_dstirq;
566 }
567 return -1;
568 }
569
570 static int __init find_isa_irq_apic(int irq, int type)
571 {
572 int i;
573
574 for (i = 0; i < mp_irq_entries; i++) {
575 int lbus = mp_irqs[i].mp_srcbus;
576
577 if (test_bit(lbus, mp_bus_not_pci) &&
578 (mp_irqs[i].mp_irqtype == type) &&
579 (mp_irqs[i].mp_srcbusirq == irq))
580 break;
581 }
582 if (i < mp_irq_entries) {
583 int apic;
584 for(apic = 0; apic < nr_ioapics; apic++) {
585 if (mp_ioapics[apic].mp_apicid == mp_irqs[i].mp_dstapic)
586 return apic;
587 }
588 }
589
590 return -1;
591 }
592
593 /*
594 * Find a specific PCI IRQ entry.
595 * Not an __init, possibly needed by modules
596 */
597 static int pin_2_irq(int idx, int apic, int pin);
598
599 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin)
600 {
601 int apic, i, best_guess = -1;
602
603 apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
604 bus, slot, pin);
605 if (test_bit(bus, mp_bus_not_pci)) {
606 apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
607 return -1;
608 }
609 for (i = 0; i < mp_irq_entries; i++) {
610 int lbus = mp_irqs[i].mp_srcbus;
611
612 for (apic = 0; apic < nr_ioapics; apic++)
613 if (mp_ioapics[apic].mp_apicid == mp_irqs[i].mp_dstapic ||
614 mp_irqs[i].mp_dstapic == MP_APIC_ALL)
615 break;
616
617 if (!test_bit(lbus, mp_bus_not_pci) &&
618 !mp_irqs[i].mp_irqtype &&
619 (bus == lbus) &&
620 (slot == ((mp_irqs[i].mp_srcbusirq >> 2) & 0x1f))) {
621 int irq = pin_2_irq(i,apic,mp_irqs[i].mp_dstirq);
622
623 if (!(apic || IO_APIC_IRQ(irq)))
624 continue;
625
626 if (pin == (mp_irqs[i].mp_srcbusirq & 3))
627 return irq;
628 /*
629 * Use the first all-but-pin matching entry as a
630 * best-guess fuzzy result for broken mptables.
631 */
632 if (best_guess < 0)
633 best_guess = irq;
634 }
635 }
636 BUG_ON(best_guess >= NR_IRQS);
637 return best_guess;
638 }
639
640 /* ISA interrupts are always polarity zero edge triggered,
641 * when listed as conforming in the MP table. */
642
643 #define default_ISA_trigger(idx) (0)
644 #define default_ISA_polarity(idx) (0)
645
646 /* PCI interrupts are always polarity one level triggered,
647 * when listed as conforming in the MP table. */
648
649 #define default_PCI_trigger(idx) (1)
650 #define default_PCI_polarity(idx) (1)
651
652 static int MPBIOS_polarity(int idx)
653 {
654 int bus = mp_irqs[idx].mp_srcbus;
655 int polarity;
656
657 /*
658 * Determine IRQ line polarity (high active or low active):
659 */
660 switch (mp_irqs[idx].mp_irqflag & 3)
661 {
662 case 0: /* conforms, ie. bus-type dependent polarity */
663 if (test_bit(bus, mp_bus_not_pci))
664 polarity = default_ISA_polarity(idx);
665 else
666 polarity = default_PCI_polarity(idx);
667 break;
668 case 1: /* high active */
669 {
670 polarity = 0;
671 break;
672 }
673 case 2: /* reserved */
674 {
675 printk(KERN_WARNING "broken BIOS!!\n");
676 polarity = 1;
677 break;
678 }
679 case 3: /* low active */
680 {
681 polarity = 1;
682 break;
683 }
684 default: /* invalid */
685 {
686 printk(KERN_WARNING "broken BIOS!!\n");
687 polarity = 1;
688 break;
689 }
690 }
691 return polarity;
692 }
693
694 static int MPBIOS_trigger(int idx)
695 {
696 int bus = mp_irqs[idx].mp_srcbus;
697 int trigger;
698
699 /*
700 * Determine IRQ trigger mode (edge or level sensitive):
701 */
702 switch ((mp_irqs[idx].mp_irqflag>>2) & 3)
703 {
704 case 0: /* conforms, ie. bus-type dependent */
705 if (test_bit(bus, mp_bus_not_pci))
706 trigger = default_ISA_trigger(idx);
707 else
708 trigger = default_PCI_trigger(idx);
709 break;
710 case 1: /* edge */
711 {
712 trigger = 0;
713 break;
714 }
715 case 2: /* reserved */
716 {
717 printk(KERN_WARNING "broken BIOS!!\n");
718 trigger = 1;
719 break;
720 }
721 case 3: /* level */
722 {
723 trigger = 1;
724 break;
725 }
726 default: /* invalid */
727 {
728 printk(KERN_WARNING "broken BIOS!!\n");
729 trigger = 0;
730 break;
731 }
732 }
733 return trigger;
734 }
735
736 static inline int irq_polarity(int idx)
737 {
738 return MPBIOS_polarity(idx);
739 }
740
741 static inline int irq_trigger(int idx)
742 {
743 return MPBIOS_trigger(idx);
744 }
745
746 static int pin_2_irq(int idx, int apic, int pin)
747 {
748 int irq, i;
749 int bus = mp_irqs[idx].mp_srcbus;
750
751 /*
752 * Debugging check, we are in big trouble if this message pops up!
753 */
754 if (mp_irqs[idx].mp_dstirq != pin)
755 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
756
757 if (test_bit(bus, mp_bus_not_pci)) {
758 irq = mp_irqs[idx].mp_srcbusirq;
759 } else {
760 /*
761 * PCI IRQs are mapped in order
762 */
763 i = irq = 0;
764 while (i < apic)
765 irq += nr_ioapic_registers[i++];
766 irq += pin;
767 }
768 BUG_ON(irq >= NR_IRQS);
769 return irq;
770 }
771
772 static int __assign_irq_vector(int irq, cpumask_t mask)
773 {
774 /*
775 * NOTE! The local APIC isn't very good at handling
776 * multiple interrupts at the same interrupt level.
777 * As the interrupt level is determined by taking the
778 * vector number and shifting that right by 4, we
779 * want to spread these out a bit so that they don't
780 * all fall in the same interrupt level.
781 *
782 * Also, we've got to be careful not to trash gate
783 * 0x80, because int 0x80 is hm, kind of importantish. ;)
784 */
785 static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
786 unsigned int old_vector;
787 int cpu;
788 struct irq_cfg *cfg;
789
790 BUG_ON((unsigned)irq >= NR_IRQS);
791 cfg = &irq_cfg[irq];
792
793 /* Only try and allocate irqs on cpus that are present */
794 cpus_and(mask, mask, cpu_online_map);
795
796 if ((cfg->move_in_progress) || cfg->move_cleanup_count)
797 return -EBUSY;
798
799 old_vector = cfg->vector;
800 if (old_vector) {
801 cpumask_t tmp;
802 cpus_and(tmp, cfg->domain, mask);
803 if (!cpus_empty(tmp))
804 return 0;
805 }
806
807 for_each_cpu_mask(cpu, mask) {
808 cpumask_t domain, new_mask;
809 int new_cpu;
810 int vector, offset;
811
812 domain = vector_allocation_domain(cpu);
813 cpus_and(new_mask, domain, cpu_online_map);
814
815 vector = current_vector;
816 offset = current_offset;
817 next:
818 vector += 8;
819 if (vector >= first_system_vector) {
820 /* If we run out of vectors on large boxen, must share them. */
821 offset = (offset + 1) % 8;
822 vector = FIRST_DEVICE_VECTOR + offset;
823 }
824 if (unlikely(current_vector == vector))
825 continue;
826 if (vector == IA32_SYSCALL_VECTOR)
827 goto next;
828 for_each_cpu_mask(new_cpu, new_mask)
829 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
830 goto next;
831 /* Found one! */
832 current_vector = vector;
833 current_offset = offset;
834 if (old_vector) {
835 cfg->move_in_progress = 1;
836 cfg->old_domain = cfg->domain;
837 }
838 for_each_cpu_mask(new_cpu, new_mask)
839 per_cpu(vector_irq, new_cpu)[vector] = irq;
840 cfg->vector = vector;
841 cfg->domain = domain;
842 return 0;
843 }
844 return -ENOSPC;
845 }
846
847 static int assign_irq_vector(int irq, cpumask_t mask)
848 {
849 int err;
850 unsigned long flags;
851
852 spin_lock_irqsave(&vector_lock, flags);
853 err = __assign_irq_vector(irq, mask);
854 spin_unlock_irqrestore(&vector_lock, flags);
855 return err;
856 }
857
858 static void __clear_irq_vector(int irq)
859 {
860 struct irq_cfg *cfg;
861 cpumask_t mask;
862 int cpu, vector;
863
864 BUG_ON((unsigned)irq >= NR_IRQS);
865 cfg = &irq_cfg[irq];
866 BUG_ON(!cfg->vector);
867
868 vector = cfg->vector;
869 cpus_and(mask, cfg->domain, cpu_online_map);
870 for_each_cpu_mask(cpu, mask)
871 per_cpu(vector_irq, cpu)[vector] = -1;
872
873 cfg->vector = 0;
874 cpus_clear(cfg->domain);
875 }
876
877 static void __setup_vector_irq(int cpu)
878 {
879 /* Initialize vector_irq on a new cpu */
880 /* This function must be called with vector_lock held */
881 int irq, vector;
882
883 /* Mark the inuse vectors */
884 for (irq = 0; irq < NR_IRQS; ++irq) {
885 if (!cpu_isset(cpu, irq_cfg[irq].domain))
886 continue;
887 vector = irq_cfg[irq].vector;
888 per_cpu(vector_irq, cpu)[vector] = irq;
889 }
890 /* Mark the free vectors */
891 for (vector = 0; vector < NR_VECTORS; ++vector) {
892 irq = per_cpu(vector_irq, cpu)[vector];
893 if (irq < 0)
894 continue;
895 if (!cpu_isset(cpu, irq_cfg[irq].domain))
896 per_cpu(vector_irq, cpu)[vector] = -1;
897 }
898 }
899
900 void setup_vector_irq(int cpu)
901 {
902 spin_lock(&vector_lock);
903 __setup_vector_irq(smp_processor_id());
904 spin_unlock(&vector_lock);
905 }
906
907
908 static struct irq_chip ioapic_chip;
909 #ifdef CONFIG_INTR_REMAP
910 static struct irq_chip ir_ioapic_chip;
911 #endif
912
913 static void ioapic_register_intr(int irq, unsigned long trigger)
914 {
915 if (trigger)
916 irq_desc[irq].status |= IRQ_LEVEL;
917 else
918 irq_desc[irq].status &= ~IRQ_LEVEL;
919
920 #ifdef CONFIG_INTR_REMAP
921 if (irq_remapped(irq)) {
922 irq_desc[irq].status |= IRQ_MOVE_PCNTXT;
923 if (trigger)
924 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
925 handle_fasteoi_irq,
926 "fasteoi");
927 else
928 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
929 handle_edge_irq, "edge");
930 return;
931 }
932 #endif
933 if (trigger)
934 set_irq_chip_and_handler_name(irq, &ioapic_chip,
935 handle_fasteoi_irq,
936 "fasteoi");
937 else
938 set_irq_chip_and_handler_name(irq, &ioapic_chip,
939 handle_edge_irq, "edge");
940 }
941
942 static int setup_ioapic_entry(int apic, int irq,
943 struct IO_APIC_route_entry *entry,
944 unsigned int destination, int trigger,
945 int polarity, int vector)
946 {
947 /*
948 * add it to the IO-APIC irq-routing table:
949 */
950 memset(entry,0,sizeof(*entry));
951
952 #ifdef CONFIG_INTR_REMAP
953 if (intr_remapping_enabled) {
954 struct intel_iommu *iommu = map_ioapic_to_ir(apic);
955 struct irte irte;
956 struct IR_IO_APIC_route_entry *ir_entry =
957 (struct IR_IO_APIC_route_entry *) entry;
958 int index;
959
960 if (!iommu)
961 panic("No mapping iommu for ioapic %d\n", apic);
962
963 index = alloc_irte(iommu, irq, 1);
964 if (index < 0)
965 panic("Failed to allocate IRTE for ioapic %d\n", apic);
966
967 memset(&irte, 0, sizeof(irte));
968
969 irte.present = 1;
970 irte.dst_mode = INT_DEST_MODE;
971 irte.trigger_mode = trigger;
972 irte.dlvry_mode = INT_DELIVERY_MODE;
973 irte.vector = vector;
974 irte.dest_id = IRTE_DEST(destination);
975
976 modify_irte(irq, &irte);
977
978 ir_entry->index2 = (index >> 15) & 0x1;
979 ir_entry->zero = 0;
980 ir_entry->format = 1;
981 ir_entry->index = (index & 0x7fff);
982 } else
983 #endif
984 {
985 entry->delivery_mode = INT_DELIVERY_MODE;
986 entry->dest_mode = INT_DEST_MODE;
987 entry->dest = destination;
988 }
989
990 entry->mask = 0; /* enable IRQ */
991 entry->trigger = trigger;
992 entry->polarity = polarity;
993 entry->vector = vector;
994
995 /* Mask level triggered irqs.
996 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
997 */
998 if (trigger)
999 entry->mask = 1;
1000 return 0;
1001 }
1002
1003 static void setup_IO_APIC_irq(int apic, int pin, unsigned int irq,
1004 int trigger, int polarity)
1005 {
1006 struct irq_cfg *cfg = irq_cfg + irq;
1007 struct IO_APIC_route_entry entry;
1008 cpumask_t mask;
1009
1010 if (!IO_APIC_IRQ(irq))
1011 return;
1012
1013 mask = TARGET_CPUS;
1014 if (assign_irq_vector(irq, mask))
1015 return;
1016
1017 cpus_and(mask, cfg->domain, mask);
1018
1019 apic_printk(APIC_VERBOSE,KERN_DEBUG
1020 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1021 "IRQ %d Mode:%i Active:%i)\n",
1022 apic, mp_ioapics[apic].mp_apicid, pin, cfg->vector,
1023 irq, trigger, polarity);
1024
1025
1026 if (setup_ioapic_entry(mp_ioapics[apic].mp_apicid, irq, &entry,
1027 cpu_mask_to_apicid(mask), trigger, polarity,
1028 cfg->vector)) {
1029 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1030 mp_ioapics[apic].mp_apicid, pin);
1031 __clear_irq_vector(irq);
1032 return;
1033 }
1034
1035 ioapic_register_intr(irq, trigger);
1036 if (irq < 16)
1037 disable_8259A_irq(irq);
1038
1039 ioapic_write_entry(apic, pin, entry);
1040 }
1041
1042 static void __init setup_IO_APIC_irqs(void)
1043 {
1044 int apic, pin, idx, irq, first_notcon = 1;
1045
1046 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1047
1048 for (apic = 0; apic < nr_ioapics; apic++) {
1049 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1050
1051 idx = find_irq_entry(apic,pin,mp_INT);
1052 if (idx == -1) {
1053 if (first_notcon) {
1054 apic_printk(APIC_VERBOSE, KERN_DEBUG " IO-APIC (apicid-pin) %d-%d", mp_ioapics[apic].mp_apicid, pin);
1055 first_notcon = 0;
1056 } else
1057 apic_printk(APIC_VERBOSE, ", %d-%d", mp_ioapics[apic].mp_apicid, pin);
1058 continue;
1059 }
1060 if (!first_notcon) {
1061 apic_printk(APIC_VERBOSE, " not connected.\n");
1062 first_notcon = 1;
1063 }
1064
1065 irq = pin_2_irq(idx, apic, pin);
1066 add_pin_to_irq(irq, apic, pin);
1067
1068 setup_IO_APIC_irq(apic, pin, irq,
1069 irq_trigger(idx), irq_polarity(idx));
1070 }
1071 }
1072
1073 if (!first_notcon)
1074 apic_printk(APIC_VERBOSE, " not connected.\n");
1075 }
1076
1077 /*
1078 * Set up the timer pin, possibly with the 8259A-master behind.
1079 */
1080 static void __init setup_timer_IRQ0_pin(unsigned int apic, unsigned int pin,
1081 int vector)
1082 {
1083 struct IO_APIC_route_entry entry;
1084
1085 if (intr_remapping_enabled)
1086 return;
1087
1088 memset(&entry, 0, sizeof(entry));
1089
1090 /*
1091 * We use logical delivery to get the timer IRQ
1092 * to the first CPU.
1093 */
1094 entry.dest_mode = INT_DEST_MODE;
1095 entry.mask = 1; /* mask IRQ now */
1096 entry.dest = cpu_mask_to_apicid(TARGET_CPUS);
1097 entry.delivery_mode = INT_DELIVERY_MODE;
1098 entry.polarity = 0;
1099 entry.trigger = 0;
1100 entry.vector = vector;
1101
1102 /*
1103 * The timer IRQ doesn't have to know that behind the
1104 * scene we may have a 8259A-master in AEOI mode ...
1105 */
1106 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1107
1108 /*
1109 * Add it to the IO-APIC irq-routing table:
1110 */
1111 ioapic_write_entry(apic, pin, entry);
1112 }
1113
1114 void __apicdebuginit print_IO_APIC(void)
1115 {
1116 int apic, i;
1117 union IO_APIC_reg_00 reg_00;
1118 union IO_APIC_reg_01 reg_01;
1119 union IO_APIC_reg_02 reg_02;
1120 unsigned long flags;
1121
1122 if (apic_verbosity == APIC_QUIET)
1123 return;
1124
1125 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1126 for (i = 0; i < nr_ioapics; i++)
1127 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1128 mp_ioapics[i].mp_apicid, nr_ioapic_registers[i]);
1129
1130 /*
1131 * We are a bit conservative about what we expect. We have to
1132 * know about every hardware change ASAP.
1133 */
1134 printk(KERN_INFO "testing the IO APIC.......................\n");
1135
1136 for (apic = 0; apic < nr_ioapics; apic++) {
1137
1138 spin_lock_irqsave(&ioapic_lock, flags);
1139 reg_00.raw = io_apic_read(apic, 0);
1140 reg_01.raw = io_apic_read(apic, 1);
1141 if (reg_01.bits.version >= 0x10)
1142 reg_02.raw = io_apic_read(apic, 2);
1143 spin_unlock_irqrestore(&ioapic_lock, flags);
1144
1145 printk("\n");
1146 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].mp_apicid);
1147 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1148 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1149
1150 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1151 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1152
1153 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1154 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1155
1156 if (reg_01.bits.version >= 0x10) {
1157 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1158 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1159 }
1160
1161 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1162
1163 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1164 " Stat Dmod Deli Vect: \n");
1165
1166 for (i = 0; i <= reg_01.bits.entries; i++) {
1167 struct IO_APIC_route_entry entry;
1168
1169 entry = ioapic_read_entry(apic, i);
1170
1171 printk(KERN_DEBUG " %02x %03X ",
1172 i,
1173 entry.dest
1174 );
1175
1176 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1177 entry.mask,
1178 entry.trigger,
1179 entry.irr,
1180 entry.polarity,
1181 entry.delivery_status,
1182 entry.dest_mode,
1183 entry.delivery_mode,
1184 entry.vector
1185 );
1186 }
1187 }
1188 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1189 for (i = 0; i < NR_IRQS; i++) {
1190 struct irq_pin_list *entry = irq_2_pin + i;
1191 if (entry->pin < 0)
1192 continue;
1193 printk(KERN_DEBUG "IRQ%d ", i);
1194 for (;;) {
1195 printk("-> %d:%d", entry->apic, entry->pin);
1196 if (!entry->next)
1197 break;
1198 entry = irq_2_pin + entry->next;
1199 }
1200 printk("\n");
1201 }
1202
1203 printk(KERN_INFO ".................................... done.\n");
1204
1205 return;
1206 }
1207
1208 #if 0
1209
1210 static __apicdebuginit void print_APIC_bitfield (int base)
1211 {
1212 unsigned int v;
1213 int i, j;
1214
1215 if (apic_verbosity == APIC_QUIET)
1216 return;
1217
1218 printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG);
1219 for (i = 0; i < 8; i++) {
1220 v = apic_read(base + i*0x10);
1221 for (j = 0; j < 32; j++) {
1222 if (v & (1<<j))
1223 printk("1");
1224 else
1225 printk("0");
1226 }
1227 printk("\n");
1228 }
1229 }
1230
1231 void __apicdebuginit print_local_APIC(void * dummy)
1232 {
1233 unsigned int v, ver, maxlvt;
1234 unsigned long icr;
1235
1236 if (apic_verbosity == APIC_QUIET)
1237 return;
1238
1239 printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1240 smp_processor_id(), hard_smp_processor_id());
1241 v = apic_read(APIC_ID);
1242 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1243 v = apic_read(APIC_LVR);
1244 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1245 ver = GET_APIC_VERSION(v);
1246 maxlvt = lapic_get_maxlvt();
1247
1248 v = apic_read(APIC_TASKPRI);
1249 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1250
1251 v = apic_read(APIC_ARBPRI);
1252 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1253 v & APIC_ARBPRI_MASK);
1254 v = apic_read(APIC_PROCPRI);
1255 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1256
1257 v = apic_read(APIC_EOI);
1258 printk(KERN_DEBUG "... APIC EOI: %08x\n", v);
1259 v = apic_read(APIC_RRR);
1260 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1261 v = apic_read(APIC_LDR);
1262 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1263 v = apic_read(APIC_DFR);
1264 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1265 v = apic_read(APIC_SPIV);
1266 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1267
1268 printk(KERN_DEBUG "... APIC ISR field:\n");
1269 print_APIC_bitfield(APIC_ISR);
1270 printk(KERN_DEBUG "... APIC TMR field:\n");
1271 print_APIC_bitfield(APIC_TMR);
1272 printk(KERN_DEBUG "... APIC IRR field:\n");
1273 print_APIC_bitfield(APIC_IRR);
1274
1275 v = apic_read(APIC_ESR);
1276 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1277
1278 icr = apic_icr_read();
1279 printk(KERN_DEBUG "... APIC ICR: %08x\n", icr);
1280 printk(KERN_DEBUG "... APIC ICR2: %08x\n", icr >> 32);
1281
1282 v = apic_read(APIC_LVTT);
1283 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1284
1285 if (maxlvt > 3) { /* PC is LVT#4. */
1286 v = apic_read(APIC_LVTPC);
1287 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1288 }
1289 v = apic_read(APIC_LVT0);
1290 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1291 v = apic_read(APIC_LVT1);
1292 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1293
1294 if (maxlvt > 2) { /* ERR is LVT#3. */
1295 v = apic_read(APIC_LVTERR);
1296 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1297 }
1298
1299 v = apic_read(APIC_TMICT);
1300 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1301 v = apic_read(APIC_TMCCT);
1302 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1303 v = apic_read(APIC_TDCR);
1304 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1305 printk("\n");
1306 }
1307
1308 void print_all_local_APICs (void)
1309 {
1310 on_each_cpu(print_local_APIC, NULL, 1);
1311 }
1312
1313 void __apicdebuginit print_PIC(void)
1314 {
1315 unsigned int v;
1316 unsigned long flags;
1317
1318 if (apic_verbosity == APIC_QUIET)
1319 return;
1320
1321 printk(KERN_DEBUG "\nprinting PIC contents\n");
1322
1323 spin_lock_irqsave(&i8259A_lock, flags);
1324
1325 v = inb(0xa1) << 8 | inb(0x21);
1326 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1327
1328 v = inb(0xa0) << 8 | inb(0x20);
1329 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1330
1331 outb(0x0b,0xa0);
1332 outb(0x0b,0x20);
1333 v = inb(0xa0) << 8 | inb(0x20);
1334 outb(0x0a,0xa0);
1335 outb(0x0a,0x20);
1336
1337 spin_unlock_irqrestore(&i8259A_lock, flags);
1338
1339 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1340
1341 v = inb(0x4d1) << 8 | inb(0x4d0);
1342 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1343 }
1344
1345 #endif /* 0 */
1346
1347 void __init enable_IO_APIC(void)
1348 {
1349 union IO_APIC_reg_01 reg_01;
1350 int i8259_apic, i8259_pin;
1351 int i, apic;
1352 unsigned long flags;
1353
1354 for (i = 0; i < PIN_MAP_SIZE; i++) {
1355 irq_2_pin[i].pin = -1;
1356 irq_2_pin[i].next = 0;
1357 }
1358
1359 /*
1360 * The number of IO-APIC IRQ registers (== #pins):
1361 */
1362 for (apic = 0; apic < nr_ioapics; apic++) {
1363 spin_lock_irqsave(&ioapic_lock, flags);
1364 reg_01.raw = io_apic_read(apic, 1);
1365 spin_unlock_irqrestore(&ioapic_lock, flags);
1366 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
1367 }
1368 for(apic = 0; apic < nr_ioapics; apic++) {
1369 int pin;
1370 /* See if any of the pins is in ExtINT mode */
1371 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1372 struct IO_APIC_route_entry entry;
1373 entry = ioapic_read_entry(apic, pin);
1374
1375 /* If the interrupt line is enabled and in ExtInt mode
1376 * I have found the pin where the i8259 is connected.
1377 */
1378 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1379 ioapic_i8259.apic = apic;
1380 ioapic_i8259.pin = pin;
1381 goto found_i8259;
1382 }
1383 }
1384 }
1385 found_i8259:
1386 /* Look to see what if the MP table has reported the ExtINT */
1387 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
1388 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1389 /* Trust the MP table if nothing is setup in the hardware */
1390 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1391 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1392 ioapic_i8259.pin = i8259_pin;
1393 ioapic_i8259.apic = i8259_apic;
1394 }
1395 /* Complain if the MP table and the hardware disagree */
1396 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1397 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1398 {
1399 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1400 }
1401
1402 /*
1403 * Do not trust the IO-APIC being empty at bootup
1404 */
1405 clear_IO_APIC();
1406 }
1407
1408 /*
1409 * Not an __init, needed by the reboot code
1410 */
1411 void disable_IO_APIC(void)
1412 {
1413 /*
1414 * Clear the IO-APIC before rebooting:
1415 */
1416 clear_IO_APIC();
1417
1418 /*
1419 * If the i8259 is routed through an IOAPIC
1420 * Put that IOAPIC in virtual wire mode
1421 * so legacy interrupts can be delivered.
1422 */
1423 if (ioapic_i8259.pin != -1) {
1424 struct IO_APIC_route_entry entry;
1425
1426 memset(&entry, 0, sizeof(entry));
1427 entry.mask = 0; /* Enabled */
1428 entry.trigger = 0; /* Edge */
1429 entry.irr = 0;
1430 entry.polarity = 0; /* High */
1431 entry.delivery_status = 0;
1432 entry.dest_mode = 0; /* Physical */
1433 entry.delivery_mode = dest_ExtINT; /* ExtInt */
1434 entry.vector = 0;
1435 entry.dest = read_apic_id();
1436
1437 /*
1438 * Add it to the IO-APIC irq-routing table:
1439 */
1440 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
1441 }
1442
1443 disconnect_bsp_APIC(ioapic_i8259.pin != -1);
1444 }
1445
1446 /*
1447 * There is a nasty bug in some older SMP boards, their mptable lies
1448 * about the timer IRQ. We do the following to work around the situation:
1449 *
1450 * - timer IRQ defaults to IO-APIC IRQ
1451 * - if this function detects that timer IRQs are defunct, then we fall
1452 * back to ISA timer IRQs
1453 */
1454 static int __init timer_irq_works(void)
1455 {
1456 unsigned long t1 = jiffies;
1457 unsigned long flags;
1458
1459 local_save_flags(flags);
1460 local_irq_enable();
1461 /* Let ten ticks pass... */
1462 mdelay((10 * 1000) / HZ);
1463 local_irq_restore(flags);
1464
1465 /*
1466 * Expect a few ticks at least, to be sure some possible
1467 * glue logic does not lock up after one or two first
1468 * ticks in a non-ExtINT mode. Also the local APIC
1469 * might have cached one ExtINT interrupt. Finally, at
1470 * least one tick may be lost due to delays.
1471 */
1472
1473 /* jiffies wrap? */
1474 if (time_after(jiffies, t1 + 4))
1475 return 1;
1476 return 0;
1477 }
1478
1479 /*
1480 * In the SMP+IOAPIC case it might happen that there are an unspecified
1481 * number of pending IRQ events unhandled. These cases are very rare,
1482 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
1483 * better to do it this way as thus we do not have to be aware of
1484 * 'pending' interrupts in the IRQ path, except at this point.
1485 */
1486 /*
1487 * Edge triggered needs to resend any interrupt
1488 * that was delayed but this is now handled in the device
1489 * independent code.
1490 */
1491
1492 /*
1493 * Starting up a edge-triggered IO-APIC interrupt is
1494 * nasty - we need to make sure that we get the edge.
1495 * If it is already asserted for some reason, we need
1496 * return 1 to indicate that is was pending.
1497 *
1498 * This is not complete - we should be able to fake
1499 * an edge even if it isn't on the 8259A...
1500 */
1501
1502 static unsigned int startup_ioapic_irq(unsigned int irq)
1503 {
1504 int was_pending = 0;
1505 unsigned long flags;
1506
1507 spin_lock_irqsave(&ioapic_lock, flags);
1508 if (irq < 16) {
1509 disable_8259A_irq(irq);
1510 if (i8259A_irq_pending(irq))
1511 was_pending = 1;
1512 }
1513 __unmask_IO_APIC_irq(irq);
1514 spin_unlock_irqrestore(&ioapic_lock, flags);
1515
1516 return was_pending;
1517 }
1518
1519 static int ioapic_retrigger_irq(unsigned int irq)
1520 {
1521 struct irq_cfg *cfg = &irq_cfg[irq];
1522 cpumask_t mask;
1523 unsigned long flags;
1524
1525 spin_lock_irqsave(&vector_lock, flags);
1526 mask = cpumask_of_cpu(first_cpu(cfg->domain));
1527 send_IPI_mask(mask, cfg->vector);
1528 spin_unlock_irqrestore(&vector_lock, flags);
1529
1530 return 1;
1531 }
1532
1533 /*
1534 * Level and edge triggered IO-APIC interrupts need different handling,
1535 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
1536 * handled with the level-triggered descriptor, but that one has slightly
1537 * more overhead. Level-triggered interrupts cannot be handled with the
1538 * edge-triggered handler, without risking IRQ storms and other ugly
1539 * races.
1540 */
1541
1542 #ifdef CONFIG_SMP
1543
1544 #ifdef CONFIG_INTR_REMAP
1545 static void ir_irq_migration(struct work_struct *work);
1546
1547 static DECLARE_DELAYED_WORK(ir_migration_work, ir_irq_migration);
1548
1549 /*
1550 * Migrate the IO-APIC irq in the presence of intr-remapping.
1551 *
1552 * For edge triggered, irq migration is a simple atomic update(of vector
1553 * and cpu destination) of IRTE and flush the hardware cache.
1554 *
1555 * For level triggered, we need to modify the io-apic RTE aswell with the update
1556 * vector information, along with modifying IRTE with vector and destination.
1557 * So irq migration for level triggered is little bit more complex compared to
1558 * edge triggered migration. But the good news is, we use the same algorithm
1559 * for level triggered migration as we have today, only difference being,
1560 * we now initiate the irq migration from process context instead of the
1561 * interrupt context.
1562 *
1563 * In future, when we do a directed EOI (combined with cpu EOI broadcast
1564 * suppression) to the IO-APIC, level triggered irq migration will also be
1565 * as simple as edge triggered migration and we can do the irq migration
1566 * with a simple atomic update to IO-APIC RTE.
1567 */
1568 static void migrate_ioapic_irq(int irq, cpumask_t mask)
1569 {
1570 struct irq_cfg *cfg = irq_cfg + irq;
1571 struct irq_desc *desc = irq_desc + irq;
1572 cpumask_t tmp, cleanup_mask;
1573 struct irte irte;
1574 int modify_ioapic_rte = desc->status & IRQ_LEVEL;
1575 unsigned int dest;
1576 unsigned long flags;
1577
1578 cpus_and(tmp, mask, cpu_online_map);
1579 if (cpus_empty(tmp))
1580 return;
1581
1582 if (get_irte(irq, &irte))
1583 return;
1584
1585 if (assign_irq_vector(irq, mask))
1586 return;
1587
1588 cpus_and(tmp, cfg->domain, mask);
1589 dest = cpu_mask_to_apicid(tmp);
1590
1591 if (modify_ioapic_rte) {
1592 spin_lock_irqsave(&ioapic_lock, flags);
1593 __target_IO_APIC_irq(irq, dest, cfg->vector);
1594 spin_unlock_irqrestore(&ioapic_lock, flags);
1595 }
1596
1597 irte.vector = cfg->vector;
1598 irte.dest_id = IRTE_DEST(dest);
1599
1600 /*
1601 * Modified the IRTE and flushes the Interrupt entry cache.
1602 */
1603 modify_irte(irq, &irte);
1604
1605 if (cfg->move_in_progress) {
1606 cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map);
1607 cfg->move_cleanup_count = cpus_weight(cleanup_mask);
1608 send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
1609 cfg->move_in_progress = 0;
1610 }
1611
1612 irq_desc[irq].affinity = mask;
1613 }
1614
1615 static int migrate_irq_remapped_level(int irq)
1616 {
1617 int ret = -1;
1618
1619 mask_IO_APIC_irq(irq);
1620
1621 if (io_apic_level_ack_pending(irq)) {
1622 /*
1623 * Interrupt in progress. Migrating irq now will change the
1624 * vector information in the IO-APIC RTE and that will confuse
1625 * the EOI broadcast performed by cpu.
1626 * So, delay the irq migration to the next instance.
1627 */
1628 schedule_delayed_work(&ir_migration_work, 1);
1629 goto unmask;
1630 }
1631
1632 /* everthing is clear. we have right of way */
1633 migrate_ioapic_irq(irq, irq_desc[irq].pending_mask);
1634
1635 ret = 0;
1636 irq_desc[irq].status &= ~IRQ_MOVE_PENDING;
1637 cpus_clear(irq_desc[irq].pending_mask);
1638
1639 unmask:
1640 unmask_IO_APIC_irq(irq);
1641 return ret;
1642 }
1643
1644 static void ir_irq_migration(struct work_struct *work)
1645 {
1646 int irq;
1647
1648 for (irq = 0; irq < NR_IRQS; irq++) {
1649 struct irq_desc *desc = irq_desc + irq;
1650 if (desc->status & IRQ_MOVE_PENDING) {
1651 unsigned long flags;
1652
1653 spin_lock_irqsave(&desc->lock, flags);
1654 if (!desc->chip->set_affinity ||
1655 !(desc->status & IRQ_MOVE_PENDING)) {
1656 desc->status &= ~IRQ_MOVE_PENDING;
1657 spin_unlock_irqrestore(&desc->lock, flags);
1658 continue;
1659 }
1660
1661 desc->chip->set_affinity(irq,
1662 irq_desc[irq].pending_mask);
1663 spin_unlock_irqrestore(&desc->lock, flags);
1664 }
1665 }
1666 }
1667
1668 /*
1669 * Migrates the IRQ destination in the process context.
1670 */
1671 static void set_ir_ioapic_affinity_irq(unsigned int irq, cpumask_t mask)
1672 {
1673 if (irq_desc[irq].status & IRQ_LEVEL) {
1674 irq_desc[irq].status |= IRQ_MOVE_PENDING;
1675 irq_desc[irq].pending_mask = mask;
1676 migrate_irq_remapped_level(irq);
1677 return;
1678 }
1679
1680 migrate_ioapic_irq(irq, mask);
1681 }
1682 #endif
1683
1684 asmlinkage void smp_irq_move_cleanup_interrupt(void)
1685 {
1686 unsigned vector, me;
1687 ack_APIC_irq();
1688 exit_idle();
1689 irq_enter();
1690
1691 me = smp_processor_id();
1692 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
1693 unsigned int irq;
1694 struct irq_desc *desc;
1695 struct irq_cfg *cfg;
1696 irq = __get_cpu_var(vector_irq)[vector];
1697 if (irq >= NR_IRQS)
1698 continue;
1699
1700 desc = irq_desc + irq;
1701 cfg = irq_cfg + irq;
1702 spin_lock(&desc->lock);
1703 if (!cfg->move_cleanup_count)
1704 goto unlock;
1705
1706 if ((vector == cfg->vector) && cpu_isset(me, cfg->domain))
1707 goto unlock;
1708
1709 __get_cpu_var(vector_irq)[vector] = -1;
1710 cfg->move_cleanup_count--;
1711 unlock:
1712 spin_unlock(&desc->lock);
1713 }
1714
1715 irq_exit();
1716 }
1717
1718 static void irq_complete_move(unsigned int irq)
1719 {
1720 struct irq_cfg *cfg = irq_cfg + irq;
1721 unsigned vector, me;
1722
1723 if (likely(!cfg->move_in_progress))
1724 return;
1725
1726 vector = ~get_irq_regs()->orig_ax;
1727 me = smp_processor_id();
1728 if ((vector == cfg->vector) && cpu_isset(me, cfg->domain)) {
1729 cpumask_t cleanup_mask;
1730
1731 cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map);
1732 cfg->move_cleanup_count = cpus_weight(cleanup_mask);
1733 send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
1734 cfg->move_in_progress = 0;
1735 }
1736 }
1737 #else
1738 static inline void irq_complete_move(unsigned int irq) {}
1739 #endif
1740 #ifdef CONFIG_INTR_REMAP
1741 static void ack_x2apic_level(unsigned int irq)
1742 {
1743 ack_x2APIC_irq();
1744 }
1745
1746 static void ack_x2apic_edge(unsigned int irq)
1747 {
1748 ack_x2APIC_irq();
1749 }
1750 #endif
1751
1752 static void ack_apic_edge(unsigned int irq)
1753 {
1754 irq_complete_move(irq);
1755 move_native_irq(irq);
1756 ack_APIC_irq();
1757 }
1758
1759 static void ack_apic_level(unsigned int irq)
1760 {
1761 int do_unmask_irq = 0;
1762
1763 irq_complete_move(irq);
1764 #ifdef CONFIG_GENERIC_PENDING_IRQ
1765 /* If we are moving the irq we need to mask it */
1766 if (unlikely(irq_desc[irq].status & IRQ_MOVE_PENDING)) {
1767 do_unmask_irq = 1;
1768 mask_IO_APIC_irq(irq);
1769 }
1770 #endif
1771
1772 /*
1773 * We must acknowledge the irq before we move it or the acknowledge will
1774 * not propagate properly.
1775 */
1776 ack_APIC_irq();
1777
1778 /* Now we can move and renable the irq */
1779 if (unlikely(do_unmask_irq)) {
1780 /* Only migrate the irq if the ack has been received.
1781 *
1782 * On rare occasions the broadcast level triggered ack gets
1783 * delayed going to ioapics, and if we reprogram the
1784 * vector while Remote IRR is still set the irq will never
1785 * fire again.
1786 *
1787 * To prevent this scenario we read the Remote IRR bit
1788 * of the ioapic. This has two effects.
1789 * - On any sane system the read of the ioapic will
1790 * flush writes (and acks) going to the ioapic from
1791 * this cpu.
1792 * - We get to see if the ACK has actually been delivered.
1793 *
1794 * Based on failed experiments of reprogramming the
1795 * ioapic entry from outside of irq context starting
1796 * with masking the ioapic entry and then polling until
1797 * Remote IRR was clear before reprogramming the
1798 * ioapic I don't trust the Remote IRR bit to be
1799 * completey accurate.
1800 *
1801 * However there appears to be no other way to plug
1802 * this race, so if the Remote IRR bit is not
1803 * accurate and is causing problems then it is a hardware bug
1804 * and you can go talk to the chipset vendor about it.
1805 */
1806 if (!io_apic_level_ack_pending(irq))
1807 move_masked_irq(irq);
1808 unmask_IO_APIC_irq(irq);
1809 }
1810 }
1811
1812 static struct irq_chip ioapic_chip __read_mostly = {
1813 .name = "IO-APIC",
1814 .startup = startup_ioapic_irq,
1815 .mask = mask_IO_APIC_irq,
1816 .unmask = unmask_IO_APIC_irq,
1817 .ack = ack_apic_edge,
1818 .eoi = ack_apic_level,
1819 #ifdef CONFIG_SMP
1820 .set_affinity = set_ioapic_affinity_irq,
1821 #endif
1822 .retrigger = ioapic_retrigger_irq,
1823 };
1824
1825 #ifdef CONFIG_INTR_REMAP
1826 static struct irq_chip ir_ioapic_chip __read_mostly = {
1827 .name = "IR-IO-APIC",
1828 .startup = startup_ioapic_irq,
1829 .mask = mask_IO_APIC_irq,
1830 .unmask = unmask_IO_APIC_irq,
1831 .ack = ack_x2apic_edge,
1832 .eoi = ack_x2apic_level,
1833 #ifdef CONFIG_SMP
1834 .set_affinity = set_ir_ioapic_affinity_irq,
1835 #endif
1836 .retrigger = ioapic_retrigger_irq,
1837 };
1838 #endif
1839
1840 static inline void init_IO_APIC_traps(void)
1841 {
1842 int irq;
1843
1844 /*
1845 * NOTE! The local APIC isn't very good at handling
1846 * multiple interrupts at the same interrupt level.
1847 * As the interrupt level is determined by taking the
1848 * vector number and shifting that right by 4, we
1849 * want to spread these out a bit so that they don't
1850 * all fall in the same interrupt level.
1851 *
1852 * Also, we've got to be careful not to trash gate
1853 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1854 */
1855 for (irq = 0; irq < NR_IRQS ; irq++) {
1856 if (IO_APIC_IRQ(irq) && !irq_cfg[irq].vector) {
1857 /*
1858 * Hmm.. We don't have an entry for this,
1859 * so default to an old-fashioned 8259
1860 * interrupt if we can..
1861 */
1862 if (irq < 16)
1863 make_8259A_irq(irq);
1864 else
1865 /* Strange. Oh, well.. */
1866 irq_desc[irq].chip = &no_irq_chip;
1867 }
1868 }
1869 }
1870
1871 static void unmask_lapic_irq(unsigned int irq)
1872 {
1873 unsigned long v;
1874
1875 v = apic_read(APIC_LVT0);
1876 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
1877 }
1878
1879 static void mask_lapic_irq(unsigned int irq)
1880 {
1881 unsigned long v;
1882
1883 v = apic_read(APIC_LVT0);
1884 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
1885 }
1886
1887 static void ack_lapic_irq (unsigned int irq)
1888 {
1889 ack_APIC_irq();
1890 }
1891
1892 static struct irq_chip lapic_chip __read_mostly = {
1893 .name = "local-APIC",
1894 .mask = mask_lapic_irq,
1895 .unmask = unmask_lapic_irq,
1896 .ack = ack_lapic_irq,
1897 };
1898
1899 static void lapic_register_intr(int irq)
1900 {
1901 irq_desc[irq].status &= ~IRQ_LEVEL;
1902 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
1903 "edge");
1904 }
1905
1906 static void __init setup_nmi(void)
1907 {
1908 /*
1909 * Dirty trick to enable the NMI watchdog ...
1910 * We put the 8259A master into AEOI mode and
1911 * unmask on all local APICs LVT0 as NMI.
1912 *
1913 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
1914 * is from Maciej W. Rozycki - so we do not have to EOI from
1915 * the NMI handler or the timer interrupt.
1916 */
1917 printk(KERN_INFO "activating NMI Watchdog ...");
1918
1919 enable_NMI_through_LVT0();
1920
1921 printk(" done.\n");
1922 }
1923
1924 /*
1925 * This looks a bit hackish but it's about the only one way of sending
1926 * a few INTA cycles to 8259As and any associated glue logic. ICR does
1927 * not support the ExtINT mode, unfortunately. We need to send these
1928 * cycles as some i82489DX-based boards have glue logic that keeps the
1929 * 8259A interrupt line asserted until INTA. --macro
1930 */
1931 static inline void __init unlock_ExtINT_logic(void)
1932 {
1933 int apic, pin, i;
1934 struct IO_APIC_route_entry entry0, entry1;
1935 unsigned char save_control, save_freq_select;
1936
1937 pin = find_isa_irq_pin(8, mp_INT);
1938 apic = find_isa_irq_apic(8, mp_INT);
1939 if (pin == -1)
1940 return;
1941
1942 entry0 = ioapic_read_entry(apic, pin);
1943
1944 clear_IO_APIC_pin(apic, pin);
1945
1946 memset(&entry1, 0, sizeof(entry1));
1947
1948 entry1.dest_mode = 0; /* physical delivery */
1949 entry1.mask = 0; /* unmask IRQ now */
1950 entry1.dest = hard_smp_processor_id();
1951 entry1.delivery_mode = dest_ExtINT;
1952 entry1.polarity = entry0.polarity;
1953 entry1.trigger = 0;
1954 entry1.vector = 0;
1955
1956 ioapic_write_entry(apic, pin, entry1);
1957
1958 save_control = CMOS_READ(RTC_CONTROL);
1959 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
1960 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
1961 RTC_FREQ_SELECT);
1962 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
1963
1964 i = 100;
1965 while (i-- > 0) {
1966 mdelay(10);
1967 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
1968 i -= 10;
1969 }
1970
1971 CMOS_WRITE(save_control, RTC_CONTROL);
1972 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1973 clear_IO_APIC_pin(apic, pin);
1974
1975 ioapic_write_entry(apic, pin, entry0);
1976 }
1977
1978 /*
1979 * This code may look a bit paranoid, but it's supposed to cooperate with
1980 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
1981 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
1982 * fanatically on his truly buggy board.
1983 *
1984 * FIXME: really need to revamp this for modern platforms only.
1985 */
1986 static inline void __init check_timer(void)
1987 {
1988 struct irq_cfg *cfg = irq_cfg + 0;
1989 int apic1, pin1, apic2, pin2;
1990 unsigned long flags;
1991 int no_pin1 = 0;
1992
1993 local_irq_save(flags);
1994
1995 /*
1996 * get/set the timer IRQ vector:
1997 */
1998 disable_8259A_irq(0);
1999 assign_irq_vector(0, TARGET_CPUS);
2000
2001 /*
2002 * As IRQ0 is to be enabled in the 8259A, the virtual
2003 * wire has to be disabled in the local APIC.
2004 */
2005 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2006 init_8259A(1);
2007
2008 pin1 = find_isa_irq_pin(0, mp_INT);
2009 apic1 = find_isa_irq_apic(0, mp_INT);
2010 pin2 = ioapic_i8259.pin;
2011 apic2 = ioapic_i8259.apic;
2012
2013 apic_printk(APIC_VERBOSE,KERN_INFO "..TIMER: vector=0x%02X apic1=%d pin1=%d apic2=%d pin2=%d\n",
2014 cfg->vector, apic1, pin1, apic2, pin2);
2015
2016 /*
2017 * Some BIOS writers are clueless and report the ExtINTA
2018 * I/O APIC input from the cascaded 8259A as the timer
2019 * interrupt input. So just in case, if only one pin
2020 * was found above, try it both directly and through the
2021 * 8259A.
2022 */
2023 if (pin1 == -1) {
2024 if (intr_remapping_enabled)
2025 panic("BIOS bug: timer not connected to IO-APIC");
2026 pin1 = pin2;
2027 apic1 = apic2;
2028 no_pin1 = 1;
2029 } else if (pin2 == -1) {
2030 pin2 = pin1;
2031 apic2 = apic1;
2032 }
2033
2034 if (pin1 != -1) {
2035 /*
2036 * Ok, does IRQ0 through the IOAPIC work?
2037 */
2038 if (no_pin1) {
2039 add_pin_to_irq(0, apic1, pin1);
2040 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2041 }
2042 unmask_IO_APIC_irq(0);
2043 if (!no_timer_check && timer_irq_works()) {
2044 if (nmi_watchdog == NMI_IO_APIC) {
2045 setup_nmi();
2046 enable_8259A_irq(0);
2047 }
2048 if (disable_timer_pin_1 > 0)
2049 clear_IO_APIC_pin(0, pin1);
2050 goto out;
2051 }
2052 if (intr_remapping_enabled)
2053 panic("timer doesn't work through Interrupt-remapped IO-APIC");
2054 clear_IO_APIC_pin(apic1, pin1);
2055 if (!no_pin1)
2056 apic_printk(APIC_QUIET,KERN_ERR "..MP-BIOS bug: "
2057 "8254 timer not connected to IO-APIC\n");
2058
2059 apic_printk(APIC_VERBOSE,KERN_INFO
2060 "...trying to set up timer (IRQ0) "
2061 "through the 8259A ... ");
2062 apic_printk(APIC_VERBOSE,"\n..... (found apic %d pin %d) ...",
2063 apic2, pin2);
2064 /*
2065 * legacy devices should be connected to IO APIC #0
2066 */
2067 replace_pin_at_irq(0, apic1, pin1, apic2, pin2);
2068 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2069 unmask_IO_APIC_irq(0);
2070 enable_8259A_irq(0);
2071 if (timer_irq_works()) {
2072 apic_printk(APIC_VERBOSE," works.\n");
2073 timer_through_8259 = 1;
2074 if (nmi_watchdog == NMI_IO_APIC) {
2075 disable_8259A_irq(0);
2076 setup_nmi();
2077 enable_8259A_irq(0);
2078 }
2079 goto out;
2080 }
2081 /*
2082 * Cleanup, just in case ...
2083 */
2084 disable_8259A_irq(0);
2085 clear_IO_APIC_pin(apic2, pin2);
2086 apic_printk(APIC_VERBOSE," failed.\n");
2087 }
2088
2089 if (nmi_watchdog == NMI_IO_APIC) {
2090 printk(KERN_WARNING "timer doesn't work through the IO-APIC - disabling NMI Watchdog!\n");
2091 nmi_watchdog = NMI_NONE;
2092 }
2093
2094 apic_printk(APIC_VERBOSE, KERN_INFO "...trying to set up timer as Virtual Wire IRQ...");
2095
2096 lapic_register_intr(0);
2097 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
2098 enable_8259A_irq(0);
2099
2100 if (timer_irq_works()) {
2101 apic_printk(APIC_VERBOSE," works.\n");
2102 goto out;
2103 }
2104 disable_8259A_irq(0);
2105 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
2106 apic_printk(APIC_VERBOSE," failed.\n");
2107
2108 apic_printk(APIC_VERBOSE, KERN_INFO "...trying to set up timer as ExtINT IRQ...");
2109
2110 init_8259A(0);
2111 make_8259A_irq(0);
2112 apic_write(APIC_LVT0, APIC_DM_EXTINT);
2113
2114 unlock_ExtINT_logic();
2115
2116 if (timer_irq_works()) {
2117 apic_printk(APIC_VERBOSE," works.\n");
2118 goto out;
2119 }
2120 apic_printk(APIC_VERBOSE," failed :(.\n");
2121 panic("IO-APIC + timer doesn't work! Try using the 'noapic' kernel parameter\n");
2122 out:
2123 local_irq_restore(flags);
2124 }
2125
2126 static int __init notimercheck(char *s)
2127 {
2128 no_timer_check = 1;
2129 return 1;
2130 }
2131 __setup("no_timer_check", notimercheck);
2132
2133 /*
2134 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
2135 * to devices. However there may be an I/O APIC pin available for
2136 * this interrupt regardless. The pin may be left unconnected, but
2137 * typically it will be reused as an ExtINT cascade interrupt for
2138 * the master 8259A. In the MPS case such a pin will normally be
2139 * reported as an ExtINT interrupt in the MP table. With ACPI
2140 * there is no provision for ExtINT interrupts, and in the absence
2141 * of an override it would be treated as an ordinary ISA I/O APIC
2142 * interrupt, that is edge-triggered and unmasked by default. We
2143 * used to do this, but it caused problems on some systems because
2144 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
2145 * the same ExtINT cascade interrupt to drive the local APIC of the
2146 * bootstrap processor. Therefore we refrain from routing IRQ2 to
2147 * the I/O APIC in all cases now. No actual device should request
2148 * it anyway. --macro
2149 */
2150 #define PIC_IRQS (1<<2)
2151
2152 void __init setup_IO_APIC(void)
2153 {
2154
2155 /*
2156 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
2157 */
2158
2159 io_apic_irqs = ~PIC_IRQS;
2160
2161 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
2162
2163 sync_Arb_IDs();
2164 setup_IO_APIC_irqs();
2165 init_IO_APIC_traps();
2166 check_timer();
2167 if (!acpi_ioapic)
2168 print_IO_APIC();
2169 }
2170
2171 struct sysfs_ioapic_data {
2172 struct sys_device dev;
2173 struct IO_APIC_route_entry entry[0];
2174 };
2175 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
2176
2177 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
2178 {
2179 struct IO_APIC_route_entry *entry;
2180 struct sysfs_ioapic_data *data;
2181 int i;
2182
2183 data = container_of(dev, struct sysfs_ioapic_data, dev);
2184 entry = data->entry;
2185 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
2186 *entry = ioapic_read_entry(dev->id, i);
2187
2188 return 0;
2189 }
2190
2191 static int ioapic_resume(struct sys_device *dev)
2192 {
2193 struct IO_APIC_route_entry *entry;
2194 struct sysfs_ioapic_data *data;
2195 unsigned long flags;
2196 union IO_APIC_reg_00 reg_00;
2197 int i;
2198
2199 data = container_of(dev, struct sysfs_ioapic_data, dev);
2200 entry = data->entry;
2201
2202 spin_lock_irqsave(&ioapic_lock, flags);
2203 reg_00.raw = io_apic_read(dev->id, 0);
2204 if (reg_00.bits.ID != mp_ioapics[dev->id].mp_apicid) {
2205 reg_00.bits.ID = mp_ioapics[dev->id].mp_apicid;
2206 io_apic_write(dev->id, 0, reg_00.raw);
2207 }
2208 spin_unlock_irqrestore(&ioapic_lock, flags);
2209 for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
2210 ioapic_write_entry(dev->id, i, entry[i]);
2211
2212 return 0;
2213 }
2214
2215 static struct sysdev_class ioapic_sysdev_class = {
2216 .name = "ioapic",
2217 .suspend = ioapic_suspend,
2218 .resume = ioapic_resume,
2219 };
2220
2221 static int __init ioapic_init_sysfs(void)
2222 {
2223 struct sys_device * dev;
2224 int i, size, error;
2225
2226 error = sysdev_class_register(&ioapic_sysdev_class);
2227 if (error)
2228 return error;
2229
2230 for (i = 0; i < nr_ioapics; i++ ) {
2231 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
2232 * sizeof(struct IO_APIC_route_entry);
2233 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
2234 if (!mp_ioapic_data[i]) {
2235 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
2236 continue;
2237 }
2238 dev = &mp_ioapic_data[i]->dev;
2239 dev->id = i;
2240 dev->cls = &ioapic_sysdev_class;
2241 error = sysdev_register(dev);
2242 if (error) {
2243 kfree(mp_ioapic_data[i]);
2244 mp_ioapic_data[i] = NULL;
2245 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
2246 continue;
2247 }
2248 }
2249
2250 return 0;
2251 }
2252
2253 device_initcall(ioapic_init_sysfs);
2254
2255 /*
2256 * Dynamic irq allocate and deallocation
2257 */
2258 int create_irq(void)
2259 {
2260 /* Allocate an unused irq */
2261 int irq;
2262 int new;
2263 unsigned long flags;
2264
2265 irq = -ENOSPC;
2266 spin_lock_irqsave(&vector_lock, flags);
2267 for (new = (NR_IRQS - 1); new >= 0; new--) {
2268 if (platform_legacy_irq(new))
2269 continue;
2270 if (irq_cfg[new].vector != 0)
2271 continue;
2272 if (__assign_irq_vector(new, TARGET_CPUS) == 0)
2273 irq = new;
2274 break;
2275 }
2276 spin_unlock_irqrestore(&vector_lock, flags);
2277
2278 if (irq >= 0) {
2279 dynamic_irq_init(irq);
2280 }
2281 return irq;
2282 }
2283
2284 void destroy_irq(unsigned int irq)
2285 {
2286 unsigned long flags;
2287
2288 dynamic_irq_cleanup(irq);
2289
2290 #ifdef CONFIG_INTR_REMAP
2291 free_irte(irq);
2292 #endif
2293 spin_lock_irqsave(&vector_lock, flags);
2294 __clear_irq_vector(irq);
2295 spin_unlock_irqrestore(&vector_lock, flags);
2296 }
2297
2298 /*
2299 * MSI message composition
2300 */
2301 #ifdef CONFIG_PCI_MSI
2302 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
2303 {
2304 struct irq_cfg *cfg = irq_cfg + irq;
2305 int err;
2306 unsigned dest;
2307 cpumask_t tmp;
2308
2309 tmp = TARGET_CPUS;
2310 err = assign_irq_vector(irq, tmp);
2311 if (err)
2312 return err;
2313
2314 cpus_and(tmp, cfg->domain, tmp);
2315 dest = cpu_mask_to_apicid(tmp);
2316
2317 #ifdef CONFIG_INTR_REMAP
2318 if (irq_remapped(irq)) {
2319 struct irte irte;
2320 int ir_index;
2321 u16 sub_handle;
2322
2323 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
2324 BUG_ON(ir_index == -1);
2325
2326 memset (&irte, 0, sizeof(irte));
2327
2328 irte.present = 1;
2329 irte.dst_mode = INT_DEST_MODE;
2330 irte.trigger_mode = 0; /* edge */
2331 irte.dlvry_mode = INT_DELIVERY_MODE;
2332 irte.vector = cfg->vector;
2333 irte.dest_id = IRTE_DEST(dest);
2334
2335 modify_irte(irq, &irte);
2336
2337 msg->address_hi = MSI_ADDR_BASE_HI;
2338 msg->data = sub_handle;
2339 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
2340 MSI_ADDR_IR_SHV |
2341 MSI_ADDR_IR_INDEX1(ir_index) |
2342 MSI_ADDR_IR_INDEX2(ir_index);
2343 } else
2344 #endif
2345 {
2346 msg->address_hi = MSI_ADDR_BASE_HI;
2347 msg->address_lo =
2348 MSI_ADDR_BASE_LO |
2349 ((INT_DEST_MODE == 0) ?
2350 MSI_ADDR_DEST_MODE_PHYSICAL:
2351 MSI_ADDR_DEST_MODE_LOGICAL) |
2352 ((INT_DELIVERY_MODE != dest_LowestPrio) ?
2353 MSI_ADDR_REDIRECTION_CPU:
2354 MSI_ADDR_REDIRECTION_LOWPRI) |
2355 MSI_ADDR_DEST_ID(dest);
2356
2357 msg->data =
2358 MSI_DATA_TRIGGER_EDGE |
2359 MSI_DATA_LEVEL_ASSERT |
2360 ((INT_DELIVERY_MODE != dest_LowestPrio) ?
2361 MSI_DATA_DELIVERY_FIXED:
2362 MSI_DATA_DELIVERY_LOWPRI) |
2363 MSI_DATA_VECTOR(cfg->vector);
2364 }
2365 return err;
2366 }
2367
2368 #ifdef CONFIG_SMP
2369 static void set_msi_irq_affinity(unsigned int irq, cpumask_t mask)
2370 {
2371 struct irq_cfg *cfg = irq_cfg + irq;
2372 struct msi_msg msg;
2373 unsigned int dest;
2374 cpumask_t tmp;
2375
2376 cpus_and(tmp, mask, cpu_online_map);
2377 if (cpus_empty(tmp))
2378 return;
2379
2380 if (assign_irq_vector(irq, mask))
2381 return;
2382
2383 cpus_and(tmp, cfg->domain, mask);
2384 dest = cpu_mask_to_apicid(tmp);
2385
2386 read_msi_msg(irq, &msg);
2387
2388 msg.data &= ~MSI_DATA_VECTOR_MASK;
2389 msg.data |= MSI_DATA_VECTOR(cfg->vector);
2390 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
2391 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
2392
2393 write_msi_msg(irq, &msg);
2394 irq_desc[irq].affinity = mask;
2395 }
2396
2397 #ifdef CONFIG_INTR_REMAP
2398 /*
2399 * Migrate the MSI irq to another cpumask. This migration is
2400 * done in the process context using interrupt-remapping hardware.
2401 */
2402 static void ir_set_msi_irq_affinity(unsigned int irq, cpumask_t mask)
2403 {
2404 struct irq_cfg *cfg = irq_cfg + irq;
2405 unsigned int dest;
2406 cpumask_t tmp, cleanup_mask;
2407 struct irte irte;
2408
2409 cpus_and(tmp, mask, cpu_online_map);
2410 if (cpus_empty(tmp))
2411 return;
2412
2413 if (get_irte(irq, &irte))
2414 return;
2415
2416 if (assign_irq_vector(irq, mask))
2417 return;
2418
2419 cpus_and(tmp, cfg->domain, mask);
2420 dest = cpu_mask_to_apicid(tmp);
2421
2422 irte.vector = cfg->vector;
2423 irte.dest_id = IRTE_DEST(dest);
2424
2425 /*
2426 * atomically update the IRTE with the new destination and vector.
2427 */
2428 modify_irte(irq, &irte);
2429
2430 /*
2431 * After this point, all the interrupts will start arriving
2432 * at the new destination. So, time to cleanup the previous
2433 * vector allocation.
2434 */
2435 if (cfg->move_in_progress) {
2436 cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map);
2437 cfg->move_cleanup_count = cpus_weight(cleanup_mask);
2438 send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2439 cfg->move_in_progress = 0;
2440 }
2441
2442 irq_desc[irq].affinity = mask;
2443 }
2444 #endif
2445 #endif /* CONFIG_SMP */
2446
2447 /*
2448 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
2449 * which implement the MSI or MSI-X Capability Structure.
2450 */
2451 static struct irq_chip msi_chip = {
2452 .name = "PCI-MSI",
2453 .unmask = unmask_msi_irq,
2454 .mask = mask_msi_irq,
2455 .ack = ack_apic_edge,
2456 #ifdef CONFIG_SMP
2457 .set_affinity = set_msi_irq_affinity,
2458 #endif
2459 .retrigger = ioapic_retrigger_irq,
2460 };
2461
2462 #ifdef CONFIG_INTR_REMAP
2463 static struct irq_chip msi_ir_chip = {
2464 .name = "IR-PCI-MSI",
2465 .unmask = unmask_msi_irq,
2466 .mask = mask_msi_irq,
2467 .ack = ack_x2apic_edge,
2468 #ifdef CONFIG_SMP
2469 .set_affinity = ir_set_msi_irq_affinity,
2470 #endif
2471 .retrigger = ioapic_retrigger_irq,
2472 };
2473
2474 /*
2475 * Map the PCI dev to the corresponding remapping hardware unit
2476 * and allocate 'nvec' consecutive interrupt-remapping table entries
2477 * in it.
2478 */
2479 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
2480 {
2481 struct intel_iommu *iommu;
2482 int index;
2483
2484 iommu = map_dev_to_ir(dev);
2485 if (!iommu) {
2486 printk(KERN_ERR
2487 "Unable to map PCI %s to iommu\n", pci_name(dev));
2488 return -ENOENT;
2489 }
2490
2491 index = alloc_irte(iommu, irq, nvec);
2492 if (index < 0) {
2493 printk(KERN_ERR
2494 "Unable to allocate %d IRTE for PCI %s\n", nvec,
2495 pci_name(dev));
2496 return -ENOSPC;
2497 }
2498 return index;
2499 }
2500 #endif
2501
2502 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc, int irq)
2503 {
2504 int ret;
2505 struct msi_msg msg;
2506
2507 ret = msi_compose_msg(dev, irq, &msg);
2508 if (ret < 0)
2509 return ret;
2510
2511 set_irq_msi(irq, desc);
2512 write_msi_msg(irq, &msg);
2513
2514 #ifdef CONFIG_INTR_REMAP
2515 if (irq_remapped(irq)) {
2516 struct irq_desc *desc = irq_desc + irq;
2517 /*
2518 * irq migration in process context
2519 */
2520 desc->status |= IRQ_MOVE_PCNTXT;
2521 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
2522 } else
2523 #endif
2524 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
2525
2526 return 0;
2527 }
2528
2529 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
2530 {
2531 int irq, ret;
2532
2533 irq = create_irq();
2534 if (irq < 0)
2535 return irq;
2536
2537 #ifdef CONFIG_INTR_REMAP
2538 if (!intr_remapping_enabled)
2539 goto no_ir;
2540
2541 ret = msi_alloc_irte(dev, irq, 1);
2542 if (ret < 0)
2543 goto error;
2544 no_ir:
2545 #endif
2546 ret = setup_msi_irq(dev, desc, irq);
2547 if (ret < 0) {
2548 destroy_irq(irq);
2549 return ret;
2550 }
2551 return 0;
2552
2553 #ifdef CONFIG_INTR_REMAP
2554 error:
2555 destroy_irq(irq);
2556 return ret;
2557 #endif
2558 }
2559
2560 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
2561 {
2562 int irq, ret, sub_handle;
2563 struct msi_desc *desc;
2564 #ifdef CONFIG_INTR_REMAP
2565 struct intel_iommu *iommu = 0;
2566 int index = 0;
2567 #endif
2568
2569 sub_handle = 0;
2570 list_for_each_entry(desc, &dev->msi_list, list) {
2571 irq = create_irq();
2572 if (irq < 0)
2573 return irq;
2574 #ifdef CONFIG_INTR_REMAP
2575 if (!intr_remapping_enabled)
2576 goto no_ir;
2577
2578 if (!sub_handle) {
2579 /*
2580 * allocate the consecutive block of IRTE's
2581 * for 'nvec'
2582 */
2583 index = msi_alloc_irte(dev, irq, nvec);
2584 if (index < 0) {
2585 ret = index;
2586 goto error;
2587 }
2588 } else {
2589 iommu = map_dev_to_ir(dev);
2590 if (!iommu) {
2591 ret = -ENOENT;
2592 goto error;
2593 }
2594 /*
2595 * setup the mapping between the irq and the IRTE
2596 * base index, the sub_handle pointing to the
2597 * appropriate interrupt remap table entry.
2598 */
2599 set_irte_irq(irq, iommu, index, sub_handle);
2600 }
2601 no_ir:
2602 #endif
2603 ret = setup_msi_irq(dev, desc, irq);
2604 if (ret < 0)
2605 goto error;
2606 sub_handle++;
2607 }
2608 return 0;
2609
2610 error:
2611 destroy_irq(irq);
2612 return ret;
2613 }
2614
2615 void arch_teardown_msi_irq(unsigned int irq)
2616 {
2617 destroy_irq(irq);
2618 }
2619
2620 #ifdef CONFIG_DMAR
2621 #ifdef CONFIG_SMP
2622 static void dmar_msi_set_affinity(unsigned int irq, cpumask_t mask)
2623 {
2624 struct irq_cfg *cfg = irq_cfg + irq;
2625 struct msi_msg msg;
2626 unsigned int dest;
2627 cpumask_t tmp;
2628
2629 cpus_and(tmp, mask, cpu_online_map);
2630 if (cpus_empty(tmp))
2631 return;
2632
2633 if (assign_irq_vector(irq, mask))
2634 return;
2635
2636 cpus_and(tmp, cfg->domain, mask);
2637 dest = cpu_mask_to_apicid(tmp);
2638
2639 dmar_msi_read(irq, &msg);
2640
2641 msg.data &= ~MSI_DATA_VECTOR_MASK;
2642 msg.data |= MSI_DATA_VECTOR(cfg->vector);
2643 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
2644 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
2645
2646 dmar_msi_write(irq, &msg);
2647 irq_desc[irq].affinity = mask;
2648 }
2649 #endif /* CONFIG_SMP */
2650
2651 struct irq_chip dmar_msi_type = {
2652 .name = "DMAR_MSI",
2653 .unmask = dmar_msi_unmask,
2654 .mask = dmar_msi_mask,
2655 .ack = ack_apic_edge,
2656 #ifdef CONFIG_SMP
2657 .set_affinity = dmar_msi_set_affinity,
2658 #endif
2659 .retrigger = ioapic_retrigger_irq,
2660 };
2661
2662 int arch_setup_dmar_msi(unsigned int irq)
2663 {
2664 int ret;
2665 struct msi_msg msg;
2666
2667 ret = msi_compose_msg(NULL, irq, &msg);
2668 if (ret < 0)
2669 return ret;
2670 dmar_msi_write(irq, &msg);
2671 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
2672 "edge");
2673 return 0;
2674 }
2675 #endif
2676
2677 #endif /* CONFIG_PCI_MSI */
2678 /*
2679 * Hypertransport interrupt support
2680 */
2681 #ifdef CONFIG_HT_IRQ
2682
2683 #ifdef CONFIG_SMP
2684
2685 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
2686 {
2687 struct ht_irq_msg msg;
2688 fetch_ht_irq_msg(irq, &msg);
2689
2690 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
2691 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
2692
2693 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
2694 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
2695
2696 write_ht_irq_msg(irq, &msg);
2697 }
2698
2699 static void set_ht_irq_affinity(unsigned int irq, cpumask_t mask)
2700 {
2701 struct irq_cfg *cfg = irq_cfg + irq;
2702 unsigned int dest;
2703 cpumask_t tmp;
2704
2705 cpus_and(tmp, mask, cpu_online_map);
2706 if (cpus_empty(tmp))
2707 return;
2708
2709 if (assign_irq_vector(irq, mask))
2710 return;
2711
2712 cpus_and(tmp, cfg->domain, mask);
2713 dest = cpu_mask_to_apicid(tmp);
2714
2715 target_ht_irq(irq, dest, cfg->vector);
2716 irq_desc[irq].affinity = mask;
2717 }
2718 #endif
2719
2720 static struct irq_chip ht_irq_chip = {
2721 .name = "PCI-HT",
2722 .mask = mask_ht_irq,
2723 .unmask = unmask_ht_irq,
2724 .ack = ack_apic_edge,
2725 #ifdef CONFIG_SMP
2726 .set_affinity = set_ht_irq_affinity,
2727 #endif
2728 .retrigger = ioapic_retrigger_irq,
2729 };
2730
2731 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
2732 {
2733 struct irq_cfg *cfg = irq_cfg + irq;
2734 int err;
2735 cpumask_t tmp;
2736
2737 tmp = TARGET_CPUS;
2738 err = assign_irq_vector(irq, tmp);
2739 if (!err) {
2740 struct ht_irq_msg msg;
2741 unsigned dest;
2742
2743 cpus_and(tmp, cfg->domain, tmp);
2744 dest = cpu_mask_to_apicid(tmp);
2745
2746 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
2747
2748 msg.address_lo =
2749 HT_IRQ_LOW_BASE |
2750 HT_IRQ_LOW_DEST_ID(dest) |
2751 HT_IRQ_LOW_VECTOR(cfg->vector) |
2752 ((INT_DEST_MODE == 0) ?
2753 HT_IRQ_LOW_DM_PHYSICAL :
2754 HT_IRQ_LOW_DM_LOGICAL) |
2755 HT_IRQ_LOW_RQEOI_EDGE |
2756 ((INT_DELIVERY_MODE != dest_LowestPrio) ?
2757 HT_IRQ_LOW_MT_FIXED :
2758 HT_IRQ_LOW_MT_ARBITRATED) |
2759 HT_IRQ_LOW_IRQ_MASKED;
2760
2761 write_ht_irq_msg(irq, &msg);
2762
2763 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
2764 handle_edge_irq, "edge");
2765 }
2766 return err;
2767 }
2768 #endif /* CONFIG_HT_IRQ */
2769
2770 /* --------------------------------------------------------------------------
2771 ACPI-based IOAPIC Configuration
2772 -------------------------------------------------------------------------- */
2773
2774 #ifdef CONFIG_ACPI
2775
2776 #define IO_APIC_MAX_ID 0xFE
2777
2778 int __init io_apic_get_redir_entries (int ioapic)
2779 {
2780 union IO_APIC_reg_01 reg_01;
2781 unsigned long flags;
2782
2783 spin_lock_irqsave(&ioapic_lock, flags);
2784 reg_01.raw = io_apic_read(ioapic, 1);
2785 spin_unlock_irqrestore(&ioapic_lock, flags);
2786
2787 return reg_01.bits.entries;
2788 }
2789
2790
2791 int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity)
2792 {
2793 if (!IO_APIC_IRQ(irq)) {
2794 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
2795 ioapic);
2796 return -EINVAL;
2797 }
2798
2799 /*
2800 * IRQs < 16 are already in the irq_2_pin[] map
2801 */
2802 if (irq >= 16)
2803 add_pin_to_irq(irq, ioapic, pin);
2804
2805 setup_IO_APIC_irq(ioapic, pin, irq, triggering, polarity);
2806
2807 return 0;
2808 }
2809
2810
2811 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
2812 {
2813 int i;
2814
2815 if (skip_ioapic_setup)
2816 return -1;
2817
2818 for (i = 0; i < mp_irq_entries; i++)
2819 if (mp_irqs[i].mp_irqtype == mp_INT &&
2820 mp_irqs[i].mp_srcbusirq == bus_irq)
2821 break;
2822 if (i >= mp_irq_entries)
2823 return -1;
2824
2825 *trigger = irq_trigger(i);
2826 *polarity = irq_polarity(i);
2827 return 0;
2828 }
2829
2830 #endif /* CONFIG_ACPI */
2831
2832 /*
2833 * This function currently is only a helper for the i386 smp boot process where
2834 * we need to reprogram the ioredtbls to cater for the cpus which have come online
2835 * so mask in all cases should simply be TARGET_CPUS
2836 */
2837 #ifdef CONFIG_SMP
2838 void __init setup_ioapic_dest(void)
2839 {
2840 int pin, ioapic, irq, irq_entry;
2841
2842 if (skip_ioapic_setup == 1)
2843 return;
2844
2845 for (ioapic = 0; ioapic < nr_ioapics; ioapic++) {
2846 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
2847 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
2848 if (irq_entry == -1)
2849 continue;
2850 irq = pin_2_irq(irq_entry, ioapic, pin);
2851
2852 /* setup_IO_APIC_irqs could fail to get vector for some device
2853 * when you have too many devices, because at that time only boot
2854 * cpu is online.
2855 */
2856 if (!irq_cfg[irq].vector)
2857 setup_IO_APIC_irq(ioapic, pin, irq,
2858 irq_trigger(irq_entry),
2859 irq_polarity(irq_entry));
2860 #ifdef CONFIG_INTR_REMAP
2861 else if (intr_remapping_enabled)
2862 set_ir_ioapic_affinity_irq(irq, TARGET_CPUS);
2863 #endif
2864 else
2865 set_ioapic_affinity_irq(irq, TARGET_CPUS);
2866 }
2867
2868 }
2869 }
2870 #endif
2871
2872 #define IOAPIC_RESOURCE_NAME_SIZE 11
2873
2874 static struct resource *ioapic_resources;
2875
2876 static struct resource * __init ioapic_setup_resources(void)
2877 {
2878 unsigned long n;
2879 struct resource *res;
2880 char *mem;
2881 int i;
2882
2883 if (nr_ioapics <= 0)
2884 return NULL;
2885
2886 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
2887 n *= nr_ioapics;
2888
2889 mem = alloc_bootmem(n);
2890 res = (void *)mem;
2891
2892 if (mem != NULL) {
2893 mem += sizeof(struct resource) * nr_ioapics;
2894
2895 for (i = 0; i < nr_ioapics; i++) {
2896 res[i].name = mem;
2897 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
2898 sprintf(mem, "IOAPIC %u", i);
2899 mem += IOAPIC_RESOURCE_NAME_SIZE;
2900 }
2901 }
2902
2903 ioapic_resources = res;
2904
2905 return res;
2906 }
2907
2908 void __init ioapic_init_mappings(void)
2909 {
2910 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
2911 struct resource *ioapic_res;
2912 int i;
2913
2914 ioapic_res = ioapic_setup_resources();
2915 for (i = 0; i < nr_ioapics; i++) {
2916 if (smp_found_config) {
2917 ioapic_phys = mp_ioapics[i].mp_apicaddr;
2918 } else {
2919 ioapic_phys = (unsigned long)
2920 alloc_bootmem_pages(PAGE_SIZE);
2921 ioapic_phys = __pa(ioapic_phys);
2922 }
2923 set_fixmap_nocache(idx, ioapic_phys);
2924 apic_printk(APIC_VERBOSE,
2925 "mapped IOAPIC to %016lx (%016lx)\n",
2926 __fix_to_virt(idx), ioapic_phys);
2927 idx++;
2928
2929 if (ioapic_res != NULL) {
2930 ioapic_res->start = ioapic_phys;
2931 ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
2932 ioapic_res++;
2933 }
2934 }
2935 }
2936
2937 static int __init ioapic_insert_resources(void)
2938 {
2939 int i;
2940 struct resource *r = ioapic_resources;
2941
2942 if (!r) {
2943 printk(KERN_ERR
2944 "IO APIC resources could be not be allocated.\n");
2945 return -1;
2946 }
2947
2948 for (i = 0; i < nr_ioapics; i++) {
2949 insert_resource(&iomem_resource, r);
2950 r++;
2951 }
2952
2953 return 0;
2954 }
2955
2956 /* Insert the IO APIC resources after PCI initialization has occured to handle
2957 * IO APICS that are mapped in on a BAR in PCI space. */
2958 late_initcall(ioapic_insert_resources);
2959