]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/kernel/process.c
35d674157fdae67ea6b2dee7eab5b14fdec2adb0
[thirdparty/kernel/stable.git] / arch / x86 / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/tick.h>
25 #include <linux/cpuidle.h>
26 #include <trace/events/power.h>
27 #include <linux/hw_breakpoint.h>
28 #include <asm/cpu.h>
29 #include <asm/apic.h>
30 #include <asm/syscalls.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42
43 /*
44 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
45 * no more per-task TSS's. The TSS size is kept cacheline-aligned
46 * so they are allowed to end up in the .data..cacheline_aligned
47 * section. Since TSS's are completely CPU-local, we want them
48 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
49 */
50 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
51 .x86_tss = {
52 /*
53 * .sp0 is only used when entering ring 0 from a lower
54 * privilege level. Since the init task never runs anything
55 * but ring 0 code, there is no need for a valid value here.
56 * Poison it.
57 */
58 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
59 #ifdef CONFIG_X86_32
60 .ss0 = __KERNEL_DS,
61 .ss1 = __KERNEL_CS,
62 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
63 #endif
64 },
65 #ifdef CONFIG_X86_32
66 /*
67 * Note that the .io_bitmap member must be extra-big. This is because
68 * the CPU will access an additional byte beyond the end of the IO
69 * permission bitmap. The extra byte must be all 1 bits, and must
70 * be within the limit.
71 */
72 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
73 #endif
74 .SYSENTER_stack_canary = STACK_END_MAGIC,
75 };
76 EXPORT_PER_CPU_SYMBOL(cpu_tss);
77
78 DEFINE_PER_CPU(bool, __tss_limit_invalid);
79 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
80
81 /*
82 * this gets called so that we can store lazy state into memory and copy the
83 * current task into the new thread.
84 */
85 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
86 {
87 memcpy(dst, src, arch_task_struct_size);
88 #ifdef CONFIG_VM86
89 dst->thread.vm86 = NULL;
90 #endif
91
92 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
93 }
94
95 /*
96 * Free current thread data structures etc..
97 */
98 void exit_thread(struct task_struct *tsk)
99 {
100 struct thread_struct *t = &tsk->thread;
101 unsigned long *bp = t->io_bitmap_ptr;
102 struct fpu *fpu = &t->fpu;
103
104 if (bp) {
105 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
106
107 t->io_bitmap_ptr = NULL;
108 clear_thread_flag(TIF_IO_BITMAP);
109 /*
110 * Careful, clear this in the TSS too:
111 */
112 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
113 t->io_bitmap_max = 0;
114 put_cpu();
115 kfree(bp);
116 }
117
118 free_vm86(t);
119
120 fpu__drop(fpu);
121 }
122
123 void flush_thread(void)
124 {
125 struct task_struct *tsk = current;
126
127 flush_ptrace_hw_breakpoint(tsk);
128 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
129
130 fpu__clear(&tsk->thread.fpu);
131 }
132
133 void disable_TSC(void)
134 {
135 preempt_disable();
136 if (!test_and_set_thread_flag(TIF_NOTSC))
137 /*
138 * Must flip the CPU state synchronously with
139 * TIF_NOTSC in the current running context.
140 */
141 cr4_set_bits(X86_CR4_TSD);
142 preempt_enable();
143 }
144
145 static void enable_TSC(void)
146 {
147 preempt_disable();
148 if (test_and_clear_thread_flag(TIF_NOTSC))
149 /*
150 * Must flip the CPU state synchronously with
151 * TIF_NOTSC in the current running context.
152 */
153 cr4_clear_bits(X86_CR4_TSD);
154 preempt_enable();
155 }
156
157 int get_tsc_mode(unsigned long adr)
158 {
159 unsigned int val;
160
161 if (test_thread_flag(TIF_NOTSC))
162 val = PR_TSC_SIGSEGV;
163 else
164 val = PR_TSC_ENABLE;
165
166 return put_user(val, (unsigned int __user *)adr);
167 }
168
169 int set_tsc_mode(unsigned int val)
170 {
171 if (val == PR_TSC_SIGSEGV)
172 disable_TSC();
173 else if (val == PR_TSC_ENABLE)
174 enable_TSC();
175 else
176 return -EINVAL;
177
178 return 0;
179 }
180
181 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
182
183 static void set_cpuid_faulting(bool on)
184 {
185 u64 msrval;
186
187 msrval = this_cpu_read(msr_misc_features_shadow);
188 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
189 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
190 this_cpu_write(msr_misc_features_shadow, msrval);
191 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
192 }
193
194 static void disable_cpuid(void)
195 {
196 preempt_disable();
197 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
198 /*
199 * Must flip the CPU state synchronously with
200 * TIF_NOCPUID in the current running context.
201 */
202 set_cpuid_faulting(true);
203 }
204 preempt_enable();
205 }
206
207 static void enable_cpuid(void)
208 {
209 preempt_disable();
210 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
211 /*
212 * Must flip the CPU state synchronously with
213 * TIF_NOCPUID in the current running context.
214 */
215 set_cpuid_faulting(false);
216 }
217 preempt_enable();
218 }
219
220 static int get_cpuid_mode(void)
221 {
222 return !test_thread_flag(TIF_NOCPUID);
223 }
224
225 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
226 {
227 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
228 return -ENODEV;
229
230 if (cpuid_enabled)
231 enable_cpuid();
232 else
233 disable_cpuid();
234
235 return 0;
236 }
237
238 /*
239 * Called immediately after a successful exec.
240 */
241 void arch_setup_new_exec(void)
242 {
243 /* If cpuid was previously disabled for this task, re-enable it. */
244 if (test_thread_flag(TIF_NOCPUID))
245 enable_cpuid();
246 }
247
248 static inline void switch_to_bitmap(struct tss_struct *tss,
249 struct thread_struct *prev,
250 struct thread_struct *next,
251 unsigned long tifp, unsigned long tifn)
252 {
253 if (tifn & _TIF_IO_BITMAP) {
254 /*
255 * Copy the relevant range of the IO bitmap.
256 * Normally this is 128 bytes or less:
257 */
258 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
259 max(prev->io_bitmap_max, next->io_bitmap_max));
260 /*
261 * Make sure that the TSS limit is correct for the CPU
262 * to notice the IO bitmap.
263 */
264 refresh_tss_limit();
265 } else if (tifp & _TIF_IO_BITMAP) {
266 /*
267 * Clear any possible leftover bits:
268 */
269 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
270 }
271 }
272
273 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
274 struct tss_struct *tss)
275 {
276 struct thread_struct *prev, *next;
277 unsigned long tifp, tifn;
278
279 prev = &prev_p->thread;
280 next = &next_p->thread;
281
282 tifn = READ_ONCE(task_thread_info(next_p)->flags);
283 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
284 switch_to_bitmap(tss, prev, next, tifp, tifn);
285
286 propagate_user_return_notify(prev_p, next_p);
287
288 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
289 arch_has_block_step()) {
290 unsigned long debugctl, msk;
291
292 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
293 debugctl &= ~DEBUGCTLMSR_BTF;
294 msk = tifn & _TIF_BLOCKSTEP;
295 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
296 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
297 }
298
299 if ((tifp ^ tifn) & _TIF_NOTSC)
300 cr4_toggle_bits(X86_CR4_TSD);
301
302 if ((tifp ^ tifn) & _TIF_NOCPUID)
303 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
304 }
305
306 /*
307 * Idle related variables and functions
308 */
309 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
310 EXPORT_SYMBOL(boot_option_idle_override);
311
312 static void (*x86_idle)(void);
313
314 #ifndef CONFIG_SMP
315 static inline void play_dead(void)
316 {
317 BUG();
318 }
319 #endif
320
321 void arch_cpu_idle_enter(void)
322 {
323 tsc_verify_tsc_adjust(false);
324 local_touch_nmi();
325 }
326
327 void arch_cpu_idle_dead(void)
328 {
329 play_dead();
330 }
331
332 /*
333 * Called from the generic idle code.
334 */
335 void arch_cpu_idle(void)
336 {
337 x86_idle();
338 }
339
340 /*
341 * We use this if we don't have any better idle routine..
342 */
343 void __cpuidle default_idle(void)
344 {
345 trace_cpu_idle_rcuidle(1, smp_processor_id());
346 safe_halt();
347 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
348 }
349 #ifdef CONFIG_APM_MODULE
350 EXPORT_SYMBOL(default_idle);
351 #endif
352
353 #ifdef CONFIG_XEN
354 bool xen_set_default_idle(void)
355 {
356 bool ret = !!x86_idle;
357
358 x86_idle = default_idle;
359
360 return ret;
361 }
362 #endif
363
364 void stop_this_cpu(void *dummy)
365 {
366 local_irq_disable();
367 /*
368 * Remove this CPU:
369 */
370 set_cpu_online(smp_processor_id(), false);
371 disable_local_APIC();
372 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
373
374 for (;;) {
375 /*
376 * Use wbinvd followed by hlt to stop the processor. This
377 * provides support for kexec on a processor that supports
378 * SME. With kexec, going from SME inactive to SME active
379 * requires clearing cache entries so that addresses without
380 * the encryption bit set don't corrupt the same physical
381 * address that has the encryption bit set when caches are
382 * flushed. To achieve this a wbinvd is performed followed by
383 * a hlt. Even if the processor is not in the kexec/SME
384 * scenario this only adds a wbinvd to a halting processor.
385 */
386 asm volatile("wbinvd; hlt" : : : "memory");
387 }
388 }
389
390 /*
391 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
392 * states (local apic timer and TSC stop).
393 */
394 static void amd_e400_idle(void)
395 {
396 /*
397 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
398 * gets set after static_cpu_has() places have been converted via
399 * alternatives.
400 */
401 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
402 default_idle();
403 return;
404 }
405
406 tick_broadcast_enter();
407
408 default_idle();
409
410 /*
411 * The switch back from broadcast mode needs to be called with
412 * interrupts disabled.
413 */
414 local_irq_disable();
415 tick_broadcast_exit();
416 local_irq_enable();
417 }
418
419 /*
420 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
421 * We can't rely on cpuidle installing MWAIT, because it will not load
422 * on systems that support only C1 -- so the boot default must be MWAIT.
423 *
424 * Some AMD machines are the opposite, they depend on using HALT.
425 *
426 * So for default C1, which is used during boot until cpuidle loads,
427 * use MWAIT-C1 on Intel HW that has it, else use HALT.
428 */
429 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
430 {
431 if (c->x86_vendor != X86_VENDOR_INTEL)
432 return 0;
433
434 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
435 return 0;
436
437 return 1;
438 }
439
440 /*
441 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
442 * with interrupts enabled and no flags, which is backwards compatible with the
443 * original MWAIT implementation.
444 */
445 static __cpuidle void mwait_idle(void)
446 {
447 if (!current_set_polling_and_test()) {
448 trace_cpu_idle_rcuidle(1, smp_processor_id());
449 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
450 mb(); /* quirk */
451 clflush((void *)&current_thread_info()->flags);
452 mb(); /* quirk */
453 }
454
455 __monitor((void *)&current_thread_info()->flags, 0, 0);
456 if (!need_resched())
457 __sti_mwait(0, 0);
458 else
459 local_irq_enable();
460 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
461 } else {
462 local_irq_enable();
463 }
464 __current_clr_polling();
465 }
466
467 void select_idle_routine(const struct cpuinfo_x86 *c)
468 {
469 #ifdef CONFIG_SMP
470 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
471 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
472 #endif
473 if (x86_idle || boot_option_idle_override == IDLE_POLL)
474 return;
475
476 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
477 pr_info("using AMD E400 aware idle routine\n");
478 x86_idle = amd_e400_idle;
479 } else if (prefer_mwait_c1_over_halt(c)) {
480 pr_info("using mwait in idle threads\n");
481 x86_idle = mwait_idle;
482 } else
483 x86_idle = default_idle;
484 }
485
486 void amd_e400_c1e_apic_setup(void)
487 {
488 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
489 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
490 local_irq_disable();
491 tick_broadcast_force();
492 local_irq_enable();
493 }
494 }
495
496 void __init arch_post_acpi_subsys_init(void)
497 {
498 u32 lo, hi;
499
500 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
501 return;
502
503 /*
504 * AMD E400 detection needs to happen after ACPI has been enabled. If
505 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
506 * MSR_K8_INT_PENDING_MSG.
507 */
508 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
509 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
510 return;
511
512 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
513
514 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
515 mark_tsc_unstable("TSC halt in AMD C1E");
516 pr_info("System has AMD C1E enabled\n");
517 }
518
519 static int __init idle_setup(char *str)
520 {
521 if (!str)
522 return -EINVAL;
523
524 if (!strcmp(str, "poll")) {
525 pr_info("using polling idle threads\n");
526 boot_option_idle_override = IDLE_POLL;
527 cpu_idle_poll_ctrl(true);
528 } else if (!strcmp(str, "halt")) {
529 /*
530 * When the boot option of idle=halt is added, halt is
531 * forced to be used for CPU idle. In such case CPU C2/C3
532 * won't be used again.
533 * To continue to load the CPU idle driver, don't touch
534 * the boot_option_idle_override.
535 */
536 x86_idle = default_idle;
537 boot_option_idle_override = IDLE_HALT;
538 } else if (!strcmp(str, "nomwait")) {
539 /*
540 * If the boot option of "idle=nomwait" is added,
541 * it means that mwait will be disabled for CPU C2/C3
542 * states. In such case it won't touch the variable
543 * of boot_option_idle_override.
544 */
545 boot_option_idle_override = IDLE_NOMWAIT;
546 } else
547 return -1;
548
549 return 0;
550 }
551 early_param("idle", idle_setup);
552
553 unsigned long arch_align_stack(unsigned long sp)
554 {
555 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
556 sp -= get_random_int() % 8192;
557 return sp & ~0xf;
558 }
559
560 unsigned long arch_randomize_brk(struct mm_struct *mm)
561 {
562 return randomize_page(mm->brk, 0x02000000);
563 }
564
565 /*
566 * Called from fs/proc with a reference on @p to find the function
567 * which called into schedule(). This needs to be done carefully
568 * because the task might wake up and we might look at a stack
569 * changing under us.
570 */
571 unsigned long get_wchan(struct task_struct *p)
572 {
573 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
574 int count = 0;
575
576 if (!p || p == current || p->state == TASK_RUNNING)
577 return 0;
578
579 if (!try_get_task_stack(p))
580 return 0;
581
582 start = (unsigned long)task_stack_page(p);
583 if (!start)
584 goto out;
585
586 /*
587 * Layout of the stack page:
588 *
589 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
590 * PADDING
591 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
592 * stack
593 * ----------- bottom = start
594 *
595 * The tasks stack pointer points at the location where the
596 * framepointer is stored. The data on the stack is:
597 * ... IP FP ... IP FP
598 *
599 * We need to read FP and IP, so we need to adjust the upper
600 * bound by another unsigned long.
601 */
602 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
603 top -= 2 * sizeof(unsigned long);
604 bottom = start;
605
606 sp = READ_ONCE(p->thread.sp);
607 if (sp < bottom || sp > top)
608 goto out;
609
610 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
611 do {
612 if (fp < bottom || fp > top)
613 goto out;
614 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
615 if (!in_sched_functions(ip)) {
616 ret = ip;
617 goto out;
618 }
619 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
620 } while (count++ < 16 && p->state != TASK_RUNNING);
621
622 out:
623 put_task_stack(p);
624 return ret;
625 }
626
627 long do_arch_prctl_common(struct task_struct *task, int option,
628 unsigned long cpuid_enabled)
629 {
630 switch (option) {
631 case ARCH_GET_CPUID:
632 return get_cpuid_mode();
633 case ARCH_SET_CPUID:
634 return set_cpuid_mode(task, cpuid_enabled);
635 }
636
637 return -EINVAL;
638 }