]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/kernel/process.c
Merge tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / arch / x86 / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/cpu.h>
9 #include <linux/prctl.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/idle.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/pm.h>
19 #include <linux/tick.h>
20 #include <linux/random.h>
21 #include <linux/user-return-notifier.h>
22 #include <linux/dmi.h>
23 #include <linux/utsname.h>
24 #include <linux/stackprotector.h>
25 #include <linux/cpuidle.h>
26 #include <linux/acpi.h>
27 #include <linux/elf-randomize.h>
28 #include <linux/static_call.h>
29 #include <trace/events/power.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/entry-common.h>
32 #include <asm/cpu.h>
33 #include <asm/apic.h>
34 #include <linux/uaccess.h>
35 #include <asm/mwait.h>
36 #include <asm/fpu/api.h>
37 #include <asm/fpu/sched.h>
38 #include <asm/fpu/xstate.h>
39 #include <asm/debugreg.h>
40 #include <asm/nmi.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mce.h>
43 #include <asm/vm86.h>
44 #include <asm/switch_to.h>
45 #include <asm/desc.h>
46 #include <asm/prctl.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/io_bitmap.h>
49 #include <asm/proto.h>
50 #include <asm/frame.h>
51 #include <asm/unwind.h>
52 #include <asm/tdx.h>
53 #include <asm/mmu_context.h>
54 #include <asm/shstk.h>
55
56 #include "process.h"
57
58 /*
59 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
60 * no more per-task TSS's. The TSS size is kept cacheline-aligned
61 * so they are allowed to end up in the .data..cacheline_aligned
62 * section. Since TSS's are completely CPU-local, we want them
63 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
64 */
65 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
66 .x86_tss = {
67 /*
68 * .sp0 is only used when entering ring 0 from a lower
69 * privilege level. Since the init task never runs anything
70 * but ring 0 code, there is no need for a valid value here.
71 * Poison it.
72 */
73 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
74
75 #ifdef CONFIG_X86_32
76 .sp1 = TOP_OF_INIT_STACK,
77
78 .ss0 = __KERNEL_DS,
79 .ss1 = __KERNEL_CS,
80 #endif
81 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
82 },
83 };
84 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
85
86 DEFINE_PER_CPU(bool, __tss_limit_invalid);
87 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
88
89 /*
90 * this gets called so that we can store lazy state into memory and copy the
91 * current task into the new thread.
92 */
93 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
94 {
95 memcpy(dst, src, arch_task_struct_size);
96 #ifdef CONFIG_VM86
97 dst->thread.vm86 = NULL;
98 #endif
99 /* Drop the copied pointer to current's fpstate */
100 dst->thread.fpu.fpstate = NULL;
101
102 return 0;
103 }
104
105 #ifdef CONFIG_X86_64
106 void arch_release_task_struct(struct task_struct *tsk)
107 {
108 if (fpu_state_size_dynamic())
109 fpstate_free(&tsk->thread.fpu);
110 }
111 #endif
112
113 /*
114 * Free thread data structures etc..
115 */
116 void exit_thread(struct task_struct *tsk)
117 {
118 struct thread_struct *t = &tsk->thread;
119 struct fpu *fpu = &t->fpu;
120
121 if (test_thread_flag(TIF_IO_BITMAP))
122 io_bitmap_exit(tsk);
123
124 free_vm86(t);
125
126 shstk_free(tsk);
127 fpu__drop(fpu);
128 }
129
130 static int set_new_tls(struct task_struct *p, unsigned long tls)
131 {
132 struct user_desc __user *utls = (struct user_desc __user *)tls;
133
134 if (in_ia32_syscall())
135 return do_set_thread_area(p, -1, utls, 0);
136 else
137 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
138 }
139
140 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
141 int (*fn)(void *), void *fn_arg)
142 {
143 schedule_tail(prev);
144
145 /* Is this a kernel thread? */
146 if (unlikely(fn)) {
147 fn(fn_arg);
148 /*
149 * A kernel thread is allowed to return here after successfully
150 * calling kernel_execve(). Exit to userspace to complete the
151 * execve() syscall.
152 */
153 regs->ax = 0;
154 }
155
156 syscall_exit_to_user_mode(regs);
157 }
158
159 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
160 {
161 unsigned long clone_flags = args->flags;
162 unsigned long sp = args->stack;
163 unsigned long tls = args->tls;
164 struct inactive_task_frame *frame;
165 struct fork_frame *fork_frame;
166 struct pt_regs *childregs;
167 unsigned long new_ssp;
168 int ret = 0;
169
170 childregs = task_pt_regs(p);
171 fork_frame = container_of(childregs, struct fork_frame, regs);
172 frame = &fork_frame->frame;
173
174 frame->bp = encode_frame_pointer(childregs);
175 frame->ret_addr = (unsigned long) ret_from_fork_asm;
176 p->thread.sp = (unsigned long) fork_frame;
177 p->thread.io_bitmap = NULL;
178 p->thread.iopl_warn = 0;
179 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
180
181 #ifdef CONFIG_X86_64
182 current_save_fsgs();
183 p->thread.fsindex = current->thread.fsindex;
184 p->thread.fsbase = current->thread.fsbase;
185 p->thread.gsindex = current->thread.gsindex;
186 p->thread.gsbase = current->thread.gsbase;
187
188 savesegment(es, p->thread.es);
189 savesegment(ds, p->thread.ds);
190
191 if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
192 set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
193 #else
194 p->thread.sp0 = (unsigned long) (childregs + 1);
195 savesegment(gs, p->thread.gs);
196 /*
197 * Clear all status flags including IF and set fixed bit. 64bit
198 * does not have this initialization as the frame does not contain
199 * flags. The flags consistency (especially vs. AC) is there
200 * ensured via objtool, which lacks 32bit support.
201 */
202 frame->flags = X86_EFLAGS_FIXED;
203 #endif
204
205 /*
206 * Allocate a new shadow stack for thread if needed. If shadow stack,
207 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
208 * update it.
209 */
210 new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
211 if (IS_ERR_VALUE(new_ssp))
212 return PTR_ERR((void *)new_ssp);
213
214 fpu_clone(p, clone_flags, args->fn, new_ssp);
215
216 /* Kernel thread ? */
217 if (unlikely(p->flags & PF_KTHREAD)) {
218 p->thread.pkru = pkru_get_init_value();
219 memset(childregs, 0, sizeof(struct pt_regs));
220 kthread_frame_init(frame, args->fn, args->fn_arg);
221 return 0;
222 }
223
224 /*
225 * Clone current's PKRU value from hardware. tsk->thread.pkru
226 * is only valid when scheduled out.
227 */
228 p->thread.pkru = read_pkru();
229
230 frame->bx = 0;
231 *childregs = *current_pt_regs();
232 childregs->ax = 0;
233 if (sp)
234 childregs->sp = sp;
235
236 if (unlikely(args->fn)) {
237 /*
238 * A user space thread, but it doesn't return to
239 * ret_after_fork().
240 *
241 * In order to indicate that to tools like gdb,
242 * we reset the stack and instruction pointers.
243 *
244 * It does the same kernel frame setup to return to a kernel
245 * function that a kernel thread does.
246 */
247 childregs->sp = 0;
248 childregs->ip = 0;
249 kthread_frame_init(frame, args->fn, args->fn_arg);
250 return 0;
251 }
252
253 /* Set a new TLS for the child thread? */
254 if (clone_flags & CLONE_SETTLS)
255 ret = set_new_tls(p, tls);
256
257 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
258 io_bitmap_share(p);
259
260 /*
261 * If copy_thread() if failing, don't leak the shadow stack possibly
262 * allocated in shstk_alloc_thread_stack() above.
263 */
264 if (ret)
265 shstk_free(p);
266
267 return ret;
268 }
269
270 static void pkru_flush_thread(void)
271 {
272 /*
273 * If PKRU is enabled the default PKRU value has to be loaded into
274 * the hardware right here (similar to context switch).
275 */
276 pkru_write_default();
277 }
278
279 void flush_thread(void)
280 {
281 struct task_struct *tsk = current;
282
283 flush_ptrace_hw_breakpoint(tsk);
284 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
285
286 fpu_flush_thread();
287 pkru_flush_thread();
288 }
289
290 void disable_TSC(void)
291 {
292 preempt_disable();
293 if (!test_and_set_thread_flag(TIF_NOTSC))
294 /*
295 * Must flip the CPU state synchronously with
296 * TIF_NOTSC in the current running context.
297 */
298 cr4_set_bits(X86_CR4_TSD);
299 preempt_enable();
300 }
301
302 static void enable_TSC(void)
303 {
304 preempt_disable();
305 if (test_and_clear_thread_flag(TIF_NOTSC))
306 /*
307 * Must flip the CPU state synchronously with
308 * TIF_NOTSC in the current running context.
309 */
310 cr4_clear_bits(X86_CR4_TSD);
311 preempt_enable();
312 }
313
314 int get_tsc_mode(unsigned long adr)
315 {
316 unsigned int val;
317
318 if (test_thread_flag(TIF_NOTSC))
319 val = PR_TSC_SIGSEGV;
320 else
321 val = PR_TSC_ENABLE;
322
323 return put_user(val, (unsigned int __user *)adr);
324 }
325
326 int set_tsc_mode(unsigned int val)
327 {
328 if (val == PR_TSC_SIGSEGV)
329 disable_TSC();
330 else if (val == PR_TSC_ENABLE)
331 enable_TSC();
332 else
333 return -EINVAL;
334
335 return 0;
336 }
337
338 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
339
340 static void set_cpuid_faulting(bool on)
341 {
342 u64 msrval;
343
344 msrval = this_cpu_read(msr_misc_features_shadow);
345 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
346 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
347 this_cpu_write(msr_misc_features_shadow, msrval);
348 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
349 }
350
351 static void disable_cpuid(void)
352 {
353 preempt_disable();
354 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
355 /*
356 * Must flip the CPU state synchronously with
357 * TIF_NOCPUID in the current running context.
358 */
359 set_cpuid_faulting(true);
360 }
361 preempt_enable();
362 }
363
364 static void enable_cpuid(void)
365 {
366 preempt_disable();
367 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
368 /*
369 * Must flip the CPU state synchronously with
370 * TIF_NOCPUID in the current running context.
371 */
372 set_cpuid_faulting(false);
373 }
374 preempt_enable();
375 }
376
377 static int get_cpuid_mode(void)
378 {
379 return !test_thread_flag(TIF_NOCPUID);
380 }
381
382 static int set_cpuid_mode(unsigned long cpuid_enabled)
383 {
384 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
385 return -ENODEV;
386
387 if (cpuid_enabled)
388 enable_cpuid();
389 else
390 disable_cpuid();
391
392 return 0;
393 }
394
395 /*
396 * Called immediately after a successful exec.
397 */
398 void arch_setup_new_exec(void)
399 {
400 /* If cpuid was previously disabled for this task, re-enable it. */
401 if (test_thread_flag(TIF_NOCPUID))
402 enable_cpuid();
403
404 /*
405 * Don't inherit TIF_SSBD across exec boundary when
406 * PR_SPEC_DISABLE_NOEXEC is used.
407 */
408 if (test_thread_flag(TIF_SSBD) &&
409 task_spec_ssb_noexec(current)) {
410 clear_thread_flag(TIF_SSBD);
411 task_clear_spec_ssb_disable(current);
412 task_clear_spec_ssb_noexec(current);
413 speculation_ctrl_update(read_thread_flags());
414 }
415
416 mm_reset_untag_mask(current->mm);
417 }
418
419 #ifdef CONFIG_X86_IOPL_IOPERM
420 static inline void switch_to_bitmap(unsigned long tifp)
421 {
422 /*
423 * Invalidate I/O bitmap if the previous task used it. This prevents
424 * any possible leakage of an active I/O bitmap.
425 *
426 * If the next task has an I/O bitmap it will handle it on exit to
427 * user mode.
428 */
429 if (tifp & _TIF_IO_BITMAP)
430 tss_invalidate_io_bitmap();
431 }
432
433 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
434 {
435 /*
436 * Copy at least the byte range of the incoming tasks bitmap which
437 * covers the permitted I/O ports.
438 *
439 * If the previous task which used an I/O bitmap had more bits
440 * permitted, then the copy needs to cover those as well so they
441 * get turned off.
442 */
443 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
444 max(tss->io_bitmap.prev_max, iobm->max));
445
446 /*
447 * Store the new max and the sequence number of this bitmap
448 * and a pointer to the bitmap itself.
449 */
450 tss->io_bitmap.prev_max = iobm->max;
451 tss->io_bitmap.prev_sequence = iobm->sequence;
452 }
453
454 /**
455 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
456 */
457 void native_tss_update_io_bitmap(void)
458 {
459 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
460 struct thread_struct *t = &current->thread;
461 u16 *base = &tss->x86_tss.io_bitmap_base;
462
463 if (!test_thread_flag(TIF_IO_BITMAP)) {
464 native_tss_invalidate_io_bitmap();
465 return;
466 }
467
468 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
469 *base = IO_BITMAP_OFFSET_VALID_ALL;
470 } else {
471 struct io_bitmap *iobm = t->io_bitmap;
472
473 /*
474 * Only copy bitmap data when the sequence number differs. The
475 * update time is accounted to the incoming task.
476 */
477 if (tss->io_bitmap.prev_sequence != iobm->sequence)
478 tss_copy_io_bitmap(tss, iobm);
479
480 /* Enable the bitmap */
481 *base = IO_BITMAP_OFFSET_VALID_MAP;
482 }
483
484 /*
485 * Make sure that the TSS limit is covering the IO bitmap. It might have
486 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
487 * access from user space to trigger a #GP because tbe bitmap is outside
488 * the TSS limit.
489 */
490 refresh_tss_limit();
491 }
492 #else /* CONFIG_X86_IOPL_IOPERM */
493 static inline void switch_to_bitmap(unsigned long tifp) { }
494 #endif
495
496 #ifdef CONFIG_SMP
497
498 struct ssb_state {
499 struct ssb_state *shared_state;
500 raw_spinlock_t lock;
501 unsigned int disable_state;
502 unsigned long local_state;
503 };
504
505 #define LSTATE_SSB 0
506
507 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
508
509 void speculative_store_bypass_ht_init(void)
510 {
511 struct ssb_state *st = this_cpu_ptr(&ssb_state);
512 unsigned int this_cpu = smp_processor_id();
513 unsigned int cpu;
514
515 st->local_state = 0;
516
517 /*
518 * Shared state setup happens once on the first bringup
519 * of the CPU. It's not destroyed on CPU hotunplug.
520 */
521 if (st->shared_state)
522 return;
523
524 raw_spin_lock_init(&st->lock);
525
526 /*
527 * Go over HT siblings and check whether one of them has set up the
528 * shared state pointer already.
529 */
530 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
531 if (cpu == this_cpu)
532 continue;
533
534 if (!per_cpu(ssb_state, cpu).shared_state)
535 continue;
536
537 /* Link it to the state of the sibling: */
538 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
539 return;
540 }
541
542 /*
543 * First HT sibling to come up on the core. Link shared state of
544 * the first HT sibling to itself. The siblings on the same core
545 * which come up later will see the shared state pointer and link
546 * themselves to the state of this CPU.
547 */
548 st->shared_state = st;
549 }
550
551 /*
552 * Logic is: First HT sibling enables SSBD for both siblings in the core
553 * and last sibling to disable it, disables it for the whole core. This how
554 * MSR_SPEC_CTRL works in "hardware":
555 *
556 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
557 */
558 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
559 {
560 struct ssb_state *st = this_cpu_ptr(&ssb_state);
561 u64 msr = x86_amd_ls_cfg_base;
562
563 if (!static_cpu_has(X86_FEATURE_ZEN)) {
564 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
565 wrmsrl(MSR_AMD64_LS_CFG, msr);
566 return;
567 }
568
569 if (tifn & _TIF_SSBD) {
570 /*
571 * Since this can race with prctl(), block reentry on the
572 * same CPU.
573 */
574 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
575 return;
576
577 msr |= x86_amd_ls_cfg_ssbd_mask;
578
579 raw_spin_lock(&st->shared_state->lock);
580 /* First sibling enables SSBD: */
581 if (!st->shared_state->disable_state)
582 wrmsrl(MSR_AMD64_LS_CFG, msr);
583 st->shared_state->disable_state++;
584 raw_spin_unlock(&st->shared_state->lock);
585 } else {
586 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
587 return;
588
589 raw_spin_lock(&st->shared_state->lock);
590 st->shared_state->disable_state--;
591 if (!st->shared_state->disable_state)
592 wrmsrl(MSR_AMD64_LS_CFG, msr);
593 raw_spin_unlock(&st->shared_state->lock);
594 }
595 }
596 #else
597 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
598 {
599 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
600
601 wrmsrl(MSR_AMD64_LS_CFG, msr);
602 }
603 #endif
604
605 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
606 {
607 /*
608 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
609 * so ssbd_tif_to_spec_ctrl() just works.
610 */
611 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
612 }
613
614 /*
615 * Update the MSRs managing speculation control, during context switch.
616 *
617 * tifp: Previous task's thread flags
618 * tifn: Next task's thread flags
619 */
620 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
621 unsigned long tifn)
622 {
623 unsigned long tif_diff = tifp ^ tifn;
624 u64 msr = x86_spec_ctrl_base;
625 bool updmsr = false;
626
627 lockdep_assert_irqs_disabled();
628
629 /* Handle change of TIF_SSBD depending on the mitigation method. */
630 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
631 if (tif_diff & _TIF_SSBD)
632 amd_set_ssb_virt_state(tifn);
633 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
634 if (tif_diff & _TIF_SSBD)
635 amd_set_core_ssb_state(tifn);
636 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
637 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
638 updmsr |= !!(tif_diff & _TIF_SSBD);
639 msr |= ssbd_tif_to_spec_ctrl(tifn);
640 }
641
642 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
643 if (IS_ENABLED(CONFIG_SMP) &&
644 static_branch_unlikely(&switch_to_cond_stibp)) {
645 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
646 msr |= stibp_tif_to_spec_ctrl(tifn);
647 }
648
649 if (updmsr)
650 update_spec_ctrl_cond(msr);
651 }
652
653 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
654 {
655 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
656 if (task_spec_ssb_disable(tsk))
657 set_tsk_thread_flag(tsk, TIF_SSBD);
658 else
659 clear_tsk_thread_flag(tsk, TIF_SSBD);
660
661 if (task_spec_ib_disable(tsk))
662 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
663 else
664 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
665 }
666 /* Return the updated threadinfo flags*/
667 return read_task_thread_flags(tsk);
668 }
669
670 void speculation_ctrl_update(unsigned long tif)
671 {
672 unsigned long flags;
673
674 /* Forced update. Make sure all relevant TIF flags are different */
675 local_irq_save(flags);
676 __speculation_ctrl_update(~tif, tif);
677 local_irq_restore(flags);
678 }
679
680 /* Called from seccomp/prctl update */
681 void speculation_ctrl_update_current(void)
682 {
683 preempt_disable();
684 speculation_ctrl_update(speculation_ctrl_update_tif(current));
685 preempt_enable();
686 }
687
688 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
689 {
690 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
691
692 newval = cr4 ^ mask;
693 if (newval != cr4) {
694 this_cpu_write(cpu_tlbstate.cr4, newval);
695 __write_cr4(newval);
696 }
697 }
698
699 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
700 {
701 unsigned long tifp, tifn;
702
703 tifn = read_task_thread_flags(next_p);
704 tifp = read_task_thread_flags(prev_p);
705
706 switch_to_bitmap(tifp);
707
708 propagate_user_return_notify(prev_p, next_p);
709
710 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
711 arch_has_block_step()) {
712 unsigned long debugctl, msk;
713
714 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
715 debugctl &= ~DEBUGCTLMSR_BTF;
716 msk = tifn & _TIF_BLOCKSTEP;
717 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
718 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
719 }
720
721 if ((tifp ^ tifn) & _TIF_NOTSC)
722 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
723
724 if ((tifp ^ tifn) & _TIF_NOCPUID)
725 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
726
727 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
728 __speculation_ctrl_update(tifp, tifn);
729 } else {
730 speculation_ctrl_update_tif(prev_p);
731 tifn = speculation_ctrl_update_tif(next_p);
732
733 /* Enforce MSR update to ensure consistent state */
734 __speculation_ctrl_update(~tifn, tifn);
735 }
736 }
737
738 /*
739 * Idle related variables and functions
740 */
741 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
742 EXPORT_SYMBOL(boot_option_idle_override);
743
744 /*
745 * We use this if we don't have any better idle routine..
746 */
747 void __cpuidle default_idle(void)
748 {
749 raw_safe_halt();
750 raw_local_irq_disable();
751 }
752 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
753 EXPORT_SYMBOL(default_idle);
754 #endif
755
756 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
757
758 static bool x86_idle_set(void)
759 {
760 return !!static_call_query(x86_idle);
761 }
762
763 #ifndef CONFIG_SMP
764 static inline void __noreturn play_dead(void)
765 {
766 BUG();
767 }
768 #endif
769
770 void arch_cpu_idle_enter(void)
771 {
772 tsc_verify_tsc_adjust(false);
773 local_touch_nmi();
774 }
775
776 void __noreturn arch_cpu_idle_dead(void)
777 {
778 play_dead();
779 }
780
781 /*
782 * Called from the generic idle code.
783 */
784 void __cpuidle arch_cpu_idle(void)
785 {
786 static_call(x86_idle)();
787 }
788 EXPORT_SYMBOL_GPL(arch_cpu_idle);
789
790 #ifdef CONFIG_XEN
791 bool xen_set_default_idle(void)
792 {
793 bool ret = x86_idle_set();
794
795 static_call_update(x86_idle, default_idle);
796
797 return ret;
798 }
799 #endif
800
801 struct cpumask cpus_stop_mask;
802
803 void __noreturn stop_this_cpu(void *dummy)
804 {
805 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
806 unsigned int cpu = smp_processor_id();
807
808 local_irq_disable();
809
810 /*
811 * Remove this CPU from the online mask and disable it
812 * unconditionally. This might be redundant in case that the reboot
813 * vector was handled late and stop_other_cpus() sent an NMI.
814 *
815 * According to SDM and APM NMIs can be accepted even after soft
816 * disabling the local APIC.
817 */
818 set_cpu_online(cpu, false);
819 disable_local_APIC();
820 mcheck_cpu_clear(c);
821
822 /*
823 * Use wbinvd on processors that support SME. This provides support
824 * for performing a successful kexec when going from SME inactive
825 * to SME active (or vice-versa). The cache must be cleared so that
826 * if there are entries with the same physical address, both with and
827 * without the encryption bit, they don't race each other when flushed
828 * and potentially end up with the wrong entry being committed to
829 * memory.
830 *
831 * Test the CPUID bit directly because the machine might've cleared
832 * X86_FEATURE_SME due to cmdline options.
833 */
834 if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
835 native_wbinvd();
836
837 /*
838 * This brings a cache line back and dirties it, but
839 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
840 * observed that all CPUs reported stop. This write will invalidate
841 * the related cache line on this CPU.
842 */
843 cpumask_clear_cpu(cpu, &cpus_stop_mask);
844
845 for (;;) {
846 /*
847 * Use native_halt() so that memory contents don't change
848 * (stack usage and variables) after possibly issuing the
849 * native_wbinvd() above.
850 */
851 native_halt();
852 }
853 }
854
855 /*
856 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
857 * states (local apic timer and TSC stop).
858 *
859 * XXX this function is completely buggered vs RCU and tracing.
860 */
861 static void amd_e400_idle(void)
862 {
863 /*
864 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
865 * gets set after static_cpu_has() places have been converted via
866 * alternatives.
867 */
868 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
869 default_idle();
870 return;
871 }
872
873 tick_broadcast_enter();
874
875 default_idle();
876
877 tick_broadcast_exit();
878 }
879
880 /*
881 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
882 * exists and whenever MONITOR/MWAIT extensions are present there is at
883 * least one C1 substate.
884 *
885 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
886 * is passed to kernel commandline parameter.
887 */
888 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
889 {
890 u32 eax, ebx, ecx, edx;
891
892 /* User has disallowed the use of MWAIT. Fallback to HALT */
893 if (boot_option_idle_override == IDLE_NOMWAIT)
894 return 0;
895
896 /* MWAIT is not supported on this platform. Fallback to HALT */
897 if (!cpu_has(c, X86_FEATURE_MWAIT))
898 return 0;
899
900 /* Monitor has a bug. Fallback to HALT */
901 if (boot_cpu_has_bug(X86_BUG_MONITOR))
902 return 0;
903
904 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
905
906 /*
907 * If MWAIT extensions are not available, it is safe to use MWAIT
908 * with EAX=0, ECX=0.
909 */
910 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
911 return 1;
912
913 /*
914 * If MWAIT extensions are available, there should be at least one
915 * MWAIT C1 substate present.
916 */
917 return (edx & MWAIT_C1_SUBSTATE_MASK);
918 }
919
920 /*
921 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
922 * with interrupts enabled and no flags, which is backwards compatible with the
923 * original MWAIT implementation.
924 */
925 static __cpuidle void mwait_idle(void)
926 {
927 if (!current_set_polling_and_test()) {
928 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
929 mb(); /* quirk */
930 clflush((void *)&current_thread_info()->flags);
931 mb(); /* quirk */
932 }
933
934 __monitor((void *)&current_thread_info()->flags, 0, 0);
935 if (!need_resched()) {
936 __sti_mwait(0, 0);
937 raw_local_irq_disable();
938 }
939 }
940 __current_clr_polling();
941 }
942
943 void select_idle_routine(const struct cpuinfo_x86 *c)
944 {
945 #ifdef CONFIG_SMP
946 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
947 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
948 #endif
949 if (x86_idle_set() || boot_option_idle_override == IDLE_POLL)
950 return;
951
952 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
953 pr_info("using AMD E400 aware idle routine\n");
954 static_call_update(x86_idle, amd_e400_idle);
955 } else if (prefer_mwait_c1_over_halt(c)) {
956 pr_info("using mwait in idle threads\n");
957 static_call_update(x86_idle, mwait_idle);
958 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
959 pr_info("using TDX aware idle routine\n");
960 static_call_update(x86_idle, tdx_safe_halt);
961 } else
962 static_call_update(x86_idle, default_idle);
963 }
964
965 void amd_e400_c1e_apic_setup(void)
966 {
967 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
968 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
969 local_irq_disable();
970 tick_broadcast_force();
971 local_irq_enable();
972 }
973 }
974
975 void __init arch_post_acpi_subsys_init(void)
976 {
977 u32 lo, hi;
978
979 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
980 return;
981
982 /*
983 * AMD E400 detection needs to happen after ACPI has been enabled. If
984 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
985 * MSR_K8_INT_PENDING_MSG.
986 */
987 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
988 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
989 return;
990
991 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
992
993 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
994 mark_tsc_unstable("TSC halt in AMD C1E");
995 pr_info("System has AMD C1E enabled\n");
996 }
997
998 static int __init idle_setup(char *str)
999 {
1000 if (!str)
1001 return -EINVAL;
1002
1003 if (!strcmp(str, "poll")) {
1004 pr_info("using polling idle threads\n");
1005 boot_option_idle_override = IDLE_POLL;
1006 cpu_idle_poll_ctrl(true);
1007 } else if (!strcmp(str, "halt")) {
1008 /*
1009 * When the boot option of idle=halt is added, halt is
1010 * forced to be used for CPU idle. In such case CPU C2/C3
1011 * won't be used again.
1012 * To continue to load the CPU idle driver, don't touch
1013 * the boot_option_idle_override.
1014 */
1015 static_call_update(x86_idle, default_idle);
1016 boot_option_idle_override = IDLE_HALT;
1017 } else if (!strcmp(str, "nomwait")) {
1018 /*
1019 * If the boot option of "idle=nomwait" is added,
1020 * it means that mwait will be disabled for CPU C1/C2/C3
1021 * states.
1022 */
1023 boot_option_idle_override = IDLE_NOMWAIT;
1024 } else
1025 return -1;
1026
1027 return 0;
1028 }
1029 early_param("idle", idle_setup);
1030
1031 unsigned long arch_align_stack(unsigned long sp)
1032 {
1033 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1034 sp -= get_random_u32_below(8192);
1035 return sp & ~0xf;
1036 }
1037
1038 unsigned long arch_randomize_brk(struct mm_struct *mm)
1039 {
1040 return randomize_page(mm->brk, 0x02000000);
1041 }
1042
1043 /*
1044 * Called from fs/proc with a reference on @p to find the function
1045 * which called into schedule(). This needs to be done carefully
1046 * because the task might wake up and we might look at a stack
1047 * changing under us.
1048 */
1049 unsigned long __get_wchan(struct task_struct *p)
1050 {
1051 struct unwind_state state;
1052 unsigned long addr = 0;
1053
1054 if (!try_get_task_stack(p))
1055 return 0;
1056
1057 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1058 unwind_next_frame(&state)) {
1059 addr = unwind_get_return_address(&state);
1060 if (!addr)
1061 break;
1062 if (in_sched_functions(addr))
1063 continue;
1064 break;
1065 }
1066
1067 put_task_stack(p);
1068
1069 return addr;
1070 }
1071
1072 long do_arch_prctl_common(int option, unsigned long arg2)
1073 {
1074 switch (option) {
1075 case ARCH_GET_CPUID:
1076 return get_cpuid_mode();
1077 case ARCH_SET_CPUID:
1078 return set_cpuid_mode(arg2);
1079 case ARCH_GET_XCOMP_SUPP:
1080 case ARCH_GET_XCOMP_PERM:
1081 case ARCH_REQ_XCOMP_PERM:
1082 case ARCH_GET_XCOMP_GUEST_PERM:
1083 case ARCH_REQ_XCOMP_GUEST_PERM:
1084 return fpu_xstate_prctl(option, arg2);
1085 }
1086
1087 return -EINVAL;
1088 }