]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/kernel/process_64.c
01b119bebb680169f39c4ff33c3c1145224c84ea
[thirdparty/kernel/stable.git] / arch / x86 / kernel / process_64.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 *
7 * X86-64 port
8 * Andi Kleen.
9 *
10 * CPU hotplug support - ashok.raj@intel.com
11 */
12
13 /*
14 * This file handles the architecture-dependent parts of process handling..
15 */
16
17 #include <linux/cpu.h>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/fs.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/elfcore.h>
26 #include <linux/smp.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/export.h>
32 #include <linux/ptrace.h>
33 #include <linux/notifier.h>
34 #include <linux/kprobes.h>
35 #include <linux/kdebug.h>
36 #include <linux/prctl.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/ftrace.h>
40 #include <linux/syscalls.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/processor.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/mmu_context.h>
46 #include <asm/prctl.h>
47 #include <asm/desc.h>
48 #include <asm/proto.h>
49 #include <asm/ia32.h>
50 #include <asm/syscalls.h>
51 #include <asm/debugreg.h>
52 #include <asm/switch_to.h>
53 #include <asm/xen/hypervisor.h>
54 #include <asm/vdso.h>
55 #include <asm/intel_rdt_sched.h>
56 #include <asm/unistd.h>
57 #ifdef CONFIG_IA32_EMULATION
58 /* Not included via unistd.h */
59 #include <asm/unistd_32_ia32.h>
60 #endif
61
62 __visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
63
64 /* Prints also some state that isn't saved in the pt_regs */
65 void __show_regs(struct pt_regs *regs, int all)
66 {
67 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
68 unsigned long d0, d1, d2, d3, d6, d7;
69 unsigned int fsindex, gsindex;
70 unsigned int ds, cs, es;
71
72 show_iret_regs(regs);
73
74 if (regs->orig_ax != -1)
75 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
76 else
77 pr_cont("\n");
78
79 printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
80 regs->ax, regs->bx, regs->cx);
81 printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
82 regs->dx, regs->si, regs->di);
83 printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
84 regs->bp, regs->r8, regs->r9);
85 printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
86 regs->r10, regs->r11, regs->r12);
87 printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
88 regs->r13, regs->r14, regs->r15);
89
90 if (!all)
91 return;
92
93 asm("movl %%ds,%0" : "=r" (ds));
94 asm("movl %%cs,%0" : "=r" (cs));
95 asm("movl %%es,%0" : "=r" (es));
96 asm("movl %%fs,%0" : "=r" (fsindex));
97 asm("movl %%gs,%0" : "=r" (gsindex));
98
99 rdmsrl(MSR_FS_BASE, fs);
100 rdmsrl(MSR_GS_BASE, gs);
101 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
102
103 cr0 = read_cr0();
104 cr2 = read_cr2();
105 cr3 = __read_cr3();
106 cr4 = __read_cr4();
107
108 printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
109 fs, fsindex, gs, gsindex, shadowgs);
110 printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
111 es, cr0);
112 printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
113 cr4);
114
115 get_debugreg(d0, 0);
116 get_debugreg(d1, 1);
117 get_debugreg(d2, 2);
118 get_debugreg(d3, 3);
119 get_debugreg(d6, 6);
120 get_debugreg(d7, 7);
121
122 /* Only print out debug registers if they are in their non-default state. */
123 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
124 (d6 == DR6_RESERVED) && (d7 == 0x400))) {
125 printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
126 d0, d1, d2);
127 printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
128 d3, d6, d7);
129 }
130
131 if (boot_cpu_has(X86_FEATURE_OSPKE))
132 printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
133 }
134
135 void release_thread(struct task_struct *dead_task)
136 {
137 if (dead_task->mm) {
138 #ifdef CONFIG_MODIFY_LDT_SYSCALL
139 if (dead_task->mm->context.ldt) {
140 pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
141 dead_task->comm,
142 dead_task->mm->context.ldt->entries,
143 dead_task->mm->context.ldt->nr_entries);
144 BUG();
145 }
146 #endif
147 }
148 }
149
150 enum which_selector {
151 FS,
152 GS
153 };
154
155 /*
156 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
157 * not available. The goal is to be reasonably fast on non-FSGSBASE systems.
158 * It's forcibly inlined because it'll generate better code and this function
159 * is hot.
160 */
161 static __always_inline void save_base_legacy(struct task_struct *prev_p,
162 unsigned short selector,
163 enum which_selector which)
164 {
165 if (likely(selector == 0)) {
166 /*
167 * On Intel (without X86_BUG_NULL_SEG), the segment base could
168 * be the pre-existing saved base or it could be zero. On AMD
169 * (with X86_BUG_NULL_SEG), the segment base could be almost
170 * anything.
171 *
172 * This branch is very hot (it's hit twice on almost every
173 * context switch between 64-bit programs), and avoiding
174 * the RDMSR helps a lot, so we just assume that whatever
175 * value is already saved is correct. This matches historical
176 * Linux behavior, so it won't break existing applications.
177 *
178 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
179 * report that the base is zero, it needs to actually be zero:
180 * see the corresponding logic in load_seg_legacy.
181 */
182 } else {
183 /*
184 * If the selector is 1, 2, or 3, then the base is zero on
185 * !X86_BUG_NULL_SEG CPUs and could be anything on
186 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux
187 * has never attempted to preserve the base across context
188 * switches.
189 *
190 * If selector > 3, then it refers to a real segment, and
191 * saving the base isn't necessary.
192 */
193 if (which == FS)
194 prev_p->thread.fsbase = 0;
195 else
196 prev_p->thread.gsbase = 0;
197 }
198 }
199
200 static __always_inline void save_fsgs(struct task_struct *task)
201 {
202 savesegment(fs, task->thread.fsindex);
203 savesegment(gs, task->thread.gsindex);
204 save_base_legacy(task, task->thread.fsindex, FS);
205 save_base_legacy(task, task->thread.gsindex, GS);
206 }
207
208 static __always_inline void loadseg(enum which_selector which,
209 unsigned short sel)
210 {
211 if (which == FS)
212 loadsegment(fs, sel);
213 else
214 load_gs_index(sel);
215 }
216
217 static __always_inline void load_seg_legacy(unsigned short prev_index,
218 unsigned long prev_base,
219 unsigned short next_index,
220 unsigned long next_base,
221 enum which_selector which)
222 {
223 if (likely(next_index <= 3)) {
224 /*
225 * The next task is using 64-bit TLS, is not using this
226 * segment at all, or is having fun with arcane CPU features.
227 */
228 if (next_base == 0) {
229 /*
230 * Nasty case: on AMD CPUs, we need to forcibly zero
231 * the base.
232 */
233 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
234 loadseg(which, __USER_DS);
235 loadseg(which, next_index);
236 } else {
237 /*
238 * We could try to exhaustively detect cases
239 * under which we can skip the segment load,
240 * but there's really only one case that matters
241 * for performance: if both the previous and
242 * next states are fully zeroed, we can skip
243 * the load.
244 *
245 * (This assumes that prev_base == 0 has no
246 * false positives. This is the case on
247 * Intel-style CPUs.)
248 */
249 if (likely(prev_index | next_index | prev_base))
250 loadseg(which, next_index);
251 }
252 } else {
253 if (prev_index != next_index)
254 loadseg(which, next_index);
255 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
256 next_base);
257 }
258 } else {
259 /*
260 * The next task is using a real segment. Loading the selector
261 * is sufficient.
262 */
263 loadseg(which, next_index);
264 }
265 }
266
267 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
268 unsigned long arg, struct task_struct *p, unsigned long tls)
269 {
270 int err;
271 struct pt_regs *childregs;
272 struct fork_frame *fork_frame;
273 struct inactive_task_frame *frame;
274 struct task_struct *me = current;
275
276 childregs = task_pt_regs(p);
277 fork_frame = container_of(childregs, struct fork_frame, regs);
278 frame = &fork_frame->frame;
279 frame->bp = 0;
280 frame->ret_addr = (unsigned long) ret_from_fork;
281 p->thread.sp = (unsigned long) fork_frame;
282 p->thread.io_bitmap_ptr = NULL;
283
284 savesegment(gs, p->thread.gsindex);
285 p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
286 savesegment(fs, p->thread.fsindex);
287 p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
288 savesegment(es, p->thread.es);
289 savesegment(ds, p->thread.ds);
290 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
291
292 if (unlikely(p->flags & PF_KTHREAD)) {
293 /* kernel thread */
294 memset(childregs, 0, sizeof(struct pt_regs));
295 frame->bx = sp; /* function */
296 frame->r12 = arg;
297 return 0;
298 }
299 frame->bx = 0;
300 *childregs = *current_pt_regs();
301
302 childregs->ax = 0;
303 if (sp)
304 childregs->sp = sp;
305
306 err = -ENOMEM;
307 if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
308 p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
309 IO_BITMAP_BYTES, GFP_KERNEL);
310 if (!p->thread.io_bitmap_ptr) {
311 p->thread.io_bitmap_max = 0;
312 return -ENOMEM;
313 }
314 set_tsk_thread_flag(p, TIF_IO_BITMAP);
315 }
316
317 /*
318 * Set a new TLS for the child thread?
319 */
320 if (clone_flags & CLONE_SETTLS) {
321 #ifdef CONFIG_IA32_EMULATION
322 if (in_ia32_syscall())
323 err = do_set_thread_area(p, -1,
324 (struct user_desc __user *)tls, 0);
325 else
326 #endif
327 err = do_arch_prctl_64(p, ARCH_SET_FS, tls);
328 if (err)
329 goto out;
330 }
331 err = 0;
332 out:
333 if (err && p->thread.io_bitmap_ptr) {
334 kfree(p->thread.io_bitmap_ptr);
335 p->thread.io_bitmap_max = 0;
336 }
337
338 return err;
339 }
340
341 static void
342 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
343 unsigned long new_sp,
344 unsigned int _cs, unsigned int _ss, unsigned int _ds)
345 {
346 WARN_ON_ONCE(regs != current_pt_regs());
347
348 if (static_cpu_has(X86_BUG_NULL_SEG)) {
349 /* Loading zero below won't clear the base. */
350 loadsegment(fs, __USER_DS);
351 load_gs_index(__USER_DS);
352 }
353
354 loadsegment(fs, 0);
355 loadsegment(es, _ds);
356 loadsegment(ds, _ds);
357 load_gs_index(0);
358
359 regs->ip = new_ip;
360 regs->sp = new_sp;
361 regs->cs = _cs;
362 regs->ss = _ss;
363 regs->flags = X86_EFLAGS_IF;
364 force_iret();
365 }
366
367 void
368 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
369 {
370 start_thread_common(regs, new_ip, new_sp,
371 __USER_CS, __USER_DS, 0);
372 }
373
374 #ifdef CONFIG_COMPAT
375 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
376 {
377 start_thread_common(regs, new_ip, new_sp,
378 test_thread_flag(TIF_X32)
379 ? __USER_CS : __USER32_CS,
380 __USER_DS, __USER_DS);
381 }
382 #endif
383
384 /*
385 * switch_to(x,y) should switch tasks from x to y.
386 *
387 * This could still be optimized:
388 * - fold all the options into a flag word and test it with a single test.
389 * - could test fs/gs bitsliced
390 *
391 * Kprobes not supported here. Set the probe on schedule instead.
392 * Function graph tracer not supported too.
393 */
394 __visible __notrace_funcgraph struct task_struct *
395 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
396 {
397 struct thread_struct *prev = &prev_p->thread;
398 struct thread_struct *next = &next_p->thread;
399 struct fpu *prev_fpu = &prev->fpu;
400 struct fpu *next_fpu = &next->fpu;
401 int cpu = smp_processor_id();
402 struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
403
404 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
405 this_cpu_read(irq_count) != -1);
406
407 switch_fpu_prepare(prev_fpu, cpu);
408
409 /* We must save %fs and %gs before load_TLS() because
410 * %fs and %gs may be cleared by load_TLS().
411 *
412 * (e.g. xen_load_tls())
413 */
414 save_fsgs(prev_p);
415
416 /*
417 * Load TLS before restoring any segments so that segment loads
418 * reference the correct GDT entries.
419 */
420 load_TLS(next, cpu);
421
422 /*
423 * Leave lazy mode, flushing any hypercalls made here. This
424 * must be done after loading TLS entries in the GDT but before
425 * loading segments that might reference them, and and it must
426 * be done before fpu__restore(), so the TS bit is up to
427 * date.
428 */
429 arch_end_context_switch(next_p);
430
431 /* Switch DS and ES.
432 *
433 * Reading them only returns the selectors, but writing them (if
434 * nonzero) loads the full descriptor from the GDT or LDT. The
435 * LDT for next is loaded in switch_mm, and the GDT is loaded
436 * above.
437 *
438 * We therefore need to write new values to the segment
439 * registers on every context switch unless both the new and old
440 * values are zero.
441 *
442 * Note that we don't need to do anything for CS and SS, as
443 * those are saved and restored as part of pt_regs.
444 */
445 savesegment(es, prev->es);
446 if (unlikely(next->es | prev->es))
447 loadsegment(es, next->es);
448
449 savesegment(ds, prev->ds);
450 if (unlikely(next->ds | prev->ds))
451 loadsegment(ds, next->ds);
452
453 load_seg_legacy(prev->fsindex, prev->fsbase,
454 next->fsindex, next->fsbase, FS);
455 load_seg_legacy(prev->gsindex, prev->gsbase,
456 next->gsindex, next->gsbase, GS);
457
458 switch_fpu_finish(next_fpu, cpu);
459
460 /*
461 * Switch the PDA and FPU contexts.
462 */
463 this_cpu_write(current_task, next_p);
464
465 /* Reload sp0. */
466 update_sp0(next_p);
467
468 /*
469 * Now maybe reload the debug registers and handle I/O bitmaps
470 */
471 if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
472 task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
473 __switch_to_xtra(prev_p, next_p, tss);
474
475 #ifdef CONFIG_XEN_PV
476 /*
477 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
478 * current_pt_regs()->flags may not match the current task's
479 * intended IOPL. We need to switch it manually.
480 */
481 if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
482 prev->iopl != next->iopl))
483 xen_set_iopl_mask(next->iopl);
484 #endif
485
486 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
487 /*
488 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
489 * does not update the cached descriptor. As a result, if we
490 * do SYSRET while SS is NULL, we'll end up in user mode with
491 * SS apparently equal to __USER_DS but actually unusable.
492 *
493 * The straightforward workaround would be to fix it up just
494 * before SYSRET, but that would slow down the system call
495 * fast paths. Instead, we ensure that SS is never NULL in
496 * system call context. We do this by replacing NULL SS
497 * selectors at every context switch. SYSCALL sets up a valid
498 * SS, so the only way to get NULL is to re-enter the kernel
499 * from CPL 3 through an interrupt. Since that can't happen
500 * in the same task as a running syscall, we are guaranteed to
501 * context switch between every interrupt vector entry and a
502 * subsequent SYSRET.
503 *
504 * We read SS first because SS reads are much faster than
505 * writes. Out of caution, we force SS to __KERNEL_DS even if
506 * it previously had a different non-NULL value.
507 */
508 unsigned short ss_sel;
509 savesegment(ss, ss_sel);
510 if (ss_sel != __KERNEL_DS)
511 loadsegment(ss, __KERNEL_DS);
512 }
513
514 /* Load the Intel cache allocation PQR MSR. */
515 intel_rdt_sched_in();
516
517 return prev_p;
518 }
519
520 void set_personality_64bit(void)
521 {
522 /* inherit personality from parent */
523
524 /* Make sure to be in 64bit mode */
525 clear_thread_flag(TIF_IA32);
526 clear_thread_flag(TIF_ADDR32);
527 clear_thread_flag(TIF_X32);
528 /* Pretend that this comes from a 64bit execve */
529 task_pt_regs(current)->orig_ax = __NR_execve;
530
531 /* Ensure the corresponding mm is not marked. */
532 if (current->mm)
533 current->mm->context.ia32_compat = 0;
534
535 /* TBD: overwrites user setup. Should have two bits.
536 But 64bit processes have always behaved this way,
537 so it's not too bad. The main problem is just that
538 32bit childs are affected again. */
539 current->personality &= ~READ_IMPLIES_EXEC;
540 }
541
542 static void __set_personality_x32(void)
543 {
544 #ifdef CONFIG_X86_X32
545 clear_thread_flag(TIF_IA32);
546 set_thread_flag(TIF_X32);
547 if (current->mm)
548 current->mm->context.ia32_compat = TIF_X32;
549 current->personality &= ~READ_IMPLIES_EXEC;
550 /*
551 * in_compat_syscall() uses the presence of the x32 syscall bit
552 * flag to determine compat status. The x86 mmap() code relies on
553 * the syscall bitness so set x32 syscall bit right here to make
554 * in_compat_syscall() work during exec().
555 *
556 * Pretend to come from a x32 execve.
557 */
558 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
559 current->thread.status &= ~TS_COMPAT;
560 #endif
561 }
562
563 static void __set_personality_ia32(void)
564 {
565 #ifdef CONFIG_IA32_EMULATION
566 set_thread_flag(TIF_IA32);
567 clear_thread_flag(TIF_X32);
568 if (current->mm)
569 current->mm->context.ia32_compat = TIF_IA32;
570 current->personality |= force_personality32;
571 /* Prepare the first "return" to user space */
572 task_pt_regs(current)->orig_ax = __NR_ia32_execve;
573 current->thread.status |= TS_COMPAT;
574 #endif
575 }
576
577 void set_personality_ia32(bool x32)
578 {
579 /* Make sure to be in 32bit mode */
580 set_thread_flag(TIF_ADDR32);
581
582 if (x32)
583 __set_personality_x32();
584 else
585 __set_personality_ia32();
586 }
587 EXPORT_SYMBOL_GPL(set_personality_ia32);
588
589 #ifdef CONFIG_CHECKPOINT_RESTORE
590 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
591 {
592 int ret;
593
594 ret = map_vdso_once(image, addr);
595 if (ret)
596 return ret;
597
598 return (long)image->size;
599 }
600 #endif
601
602 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
603 {
604 int ret = 0;
605 int doit = task == current;
606 int cpu;
607
608 switch (option) {
609 case ARCH_SET_GS:
610 if (arg2 >= TASK_SIZE_MAX)
611 return -EPERM;
612 cpu = get_cpu();
613 task->thread.gsindex = 0;
614 task->thread.gsbase = arg2;
615 if (doit) {
616 load_gs_index(0);
617 ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, arg2);
618 }
619 put_cpu();
620 break;
621 case ARCH_SET_FS:
622 /* Not strictly needed for fs, but do it for symmetry
623 with gs */
624 if (arg2 >= TASK_SIZE_MAX)
625 return -EPERM;
626 cpu = get_cpu();
627 task->thread.fsindex = 0;
628 task->thread.fsbase = arg2;
629 if (doit) {
630 /* set the selector to 0 to not confuse __switch_to */
631 loadsegment(fs, 0);
632 ret = wrmsrl_safe(MSR_FS_BASE, arg2);
633 }
634 put_cpu();
635 break;
636 case ARCH_GET_FS: {
637 unsigned long base;
638
639 if (doit)
640 rdmsrl(MSR_FS_BASE, base);
641 else
642 base = task->thread.fsbase;
643 ret = put_user(base, (unsigned long __user *)arg2);
644 break;
645 }
646 case ARCH_GET_GS: {
647 unsigned long base;
648
649 if (doit)
650 rdmsrl(MSR_KERNEL_GS_BASE, base);
651 else
652 base = task->thread.gsbase;
653 ret = put_user(base, (unsigned long __user *)arg2);
654 break;
655 }
656
657 #ifdef CONFIG_CHECKPOINT_RESTORE
658 # ifdef CONFIG_X86_X32_ABI
659 case ARCH_MAP_VDSO_X32:
660 return prctl_map_vdso(&vdso_image_x32, arg2);
661 # endif
662 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
663 case ARCH_MAP_VDSO_32:
664 return prctl_map_vdso(&vdso_image_32, arg2);
665 # endif
666 case ARCH_MAP_VDSO_64:
667 return prctl_map_vdso(&vdso_image_64, arg2);
668 #endif
669
670 default:
671 ret = -EINVAL;
672 break;
673 }
674
675 return ret;
676 }
677
678 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
679 {
680 long ret;
681
682 ret = do_arch_prctl_64(current, option, arg2);
683 if (ret == -EINVAL)
684 ret = do_arch_prctl_common(current, option, arg2);
685
686 return ret;
687 }
688
689 #ifdef CONFIG_IA32_EMULATION
690 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
691 {
692 return do_arch_prctl_common(current, option, arg2);
693 }
694 #endif
695
696 unsigned long KSTK_ESP(struct task_struct *task)
697 {
698 return task_pt_regs(task)->sp;
699 }