]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/kernel/process_64.c
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / arch / x86 / kernel / process_64.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 *
8 * X86-64 port
9 * Andi Kleen.
10 *
11 * CPU hotplug support - ashok.raj@intel.com
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of process handling..
16 */
17
18 #include <linux/cpu.h>
19 #include <linux/errno.h>
20 #include <linux/sched.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/fs.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/elfcore.h>
27 #include <linux/smp.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/export.h>
33 #include <linux/ptrace.h>
34 #include <linux/notifier.h>
35 #include <linux/kprobes.h>
36 #include <linux/kdebug.h>
37 #include <linux/prctl.h>
38 #include <linux/uaccess.h>
39 #include <linux/io.h>
40 #include <linux/ftrace.h>
41 #include <linux/syscalls.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/processor.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/mmu_context.h>
47 #include <asm/prctl.h>
48 #include <asm/desc.h>
49 #include <asm/proto.h>
50 #include <asm/ia32.h>
51 #include <asm/debugreg.h>
52 #include <asm/switch_to.h>
53 #include <asm/xen/hypervisor.h>
54 #include <asm/vdso.h>
55 #include <asm/resctrl.h>
56 #include <asm/unistd.h>
57 #include <asm/fsgsbase.h>
58 #ifdef CONFIG_IA32_EMULATION
59 /* Not included via unistd.h */
60 #include <asm/unistd_32_ia32.h>
61 #endif
62
63 #include "process.h"
64
65 /* Prints also some state that isn't saved in the pt_regs */
66 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode)
67 {
68 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
69 unsigned long d0, d1, d2, d3, d6, d7;
70 unsigned int fsindex, gsindex;
71 unsigned int ds, es;
72
73 show_iret_regs(regs);
74
75 if (regs->orig_ax != -1)
76 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
77 else
78 pr_cont("\n");
79
80 printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
81 regs->ax, regs->bx, regs->cx);
82 printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
83 regs->dx, regs->si, regs->di);
84 printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
85 regs->bp, regs->r8, regs->r9);
86 printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
87 regs->r10, regs->r11, regs->r12);
88 printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
89 regs->r13, regs->r14, regs->r15);
90
91 if (mode == SHOW_REGS_SHORT)
92 return;
93
94 if (mode == SHOW_REGS_USER) {
95 rdmsrl(MSR_FS_BASE, fs);
96 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
97 printk(KERN_DEFAULT "FS: %016lx GS: %016lx\n",
98 fs, shadowgs);
99 return;
100 }
101
102 asm("movl %%ds,%0" : "=r" (ds));
103 asm("movl %%es,%0" : "=r" (es));
104 asm("movl %%fs,%0" : "=r" (fsindex));
105 asm("movl %%gs,%0" : "=r" (gsindex));
106
107 rdmsrl(MSR_FS_BASE, fs);
108 rdmsrl(MSR_GS_BASE, gs);
109 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
110
111 cr0 = read_cr0();
112 cr2 = read_cr2();
113 cr3 = __read_cr3();
114 cr4 = __read_cr4();
115
116 printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
117 fs, fsindex, gs, gsindex, shadowgs);
118 printk(KERN_DEFAULT "CS: %04lx DS: %04x ES: %04x CR0: %016lx\n", regs->cs, ds,
119 es, cr0);
120 printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
121 cr4);
122
123 get_debugreg(d0, 0);
124 get_debugreg(d1, 1);
125 get_debugreg(d2, 2);
126 get_debugreg(d3, 3);
127 get_debugreg(d6, 6);
128 get_debugreg(d7, 7);
129
130 /* Only print out debug registers if they are in their non-default state. */
131 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
132 (d6 == DR6_RESERVED) && (d7 == 0x400))) {
133 printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
134 d0, d1, d2);
135 printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
136 d3, d6, d7);
137 }
138
139 if (boot_cpu_has(X86_FEATURE_OSPKE))
140 printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
141 }
142
143 void release_thread(struct task_struct *dead_task)
144 {
145 WARN_ON(dead_task->mm);
146 }
147
148 enum which_selector {
149 FS,
150 GS
151 };
152
153 /*
154 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
155 * not available. The goal is to be reasonably fast on non-FSGSBASE systems.
156 * It's forcibly inlined because it'll generate better code and this function
157 * is hot.
158 */
159 static __always_inline void save_base_legacy(struct task_struct *prev_p,
160 unsigned short selector,
161 enum which_selector which)
162 {
163 if (likely(selector == 0)) {
164 /*
165 * On Intel (without X86_BUG_NULL_SEG), the segment base could
166 * be the pre-existing saved base or it could be zero. On AMD
167 * (with X86_BUG_NULL_SEG), the segment base could be almost
168 * anything.
169 *
170 * This branch is very hot (it's hit twice on almost every
171 * context switch between 64-bit programs), and avoiding
172 * the RDMSR helps a lot, so we just assume that whatever
173 * value is already saved is correct. This matches historical
174 * Linux behavior, so it won't break existing applications.
175 *
176 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
177 * report that the base is zero, it needs to actually be zero:
178 * see the corresponding logic in load_seg_legacy.
179 */
180 } else {
181 /*
182 * If the selector is 1, 2, or 3, then the base is zero on
183 * !X86_BUG_NULL_SEG CPUs and could be anything on
184 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux
185 * has never attempted to preserve the base across context
186 * switches.
187 *
188 * If selector > 3, then it refers to a real segment, and
189 * saving the base isn't necessary.
190 */
191 if (which == FS)
192 prev_p->thread.fsbase = 0;
193 else
194 prev_p->thread.gsbase = 0;
195 }
196 }
197
198 static __always_inline void save_fsgs(struct task_struct *task)
199 {
200 savesegment(fs, task->thread.fsindex);
201 savesegment(gs, task->thread.gsindex);
202 save_base_legacy(task, task->thread.fsindex, FS);
203 save_base_legacy(task, task->thread.gsindex, GS);
204 }
205
206 #if IS_ENABLED(CONFIG_KVM)
207 /*
208 * While a process is running,current->thread.fsbase and current->thread.gsbase
209 * may not match the corresponding CPU registers (see save_base_legacy()). KVM
210 * wants an efficient way to save and restore FSBASE and GSBASE.
211 * When FSGSBASE extensions are enabled, this will have to use RD{FS,GS}BASE.
212 */
213 void save_fsgs_for_kvm(void)
214 {
215 save_fsgs(current);
216 }
217 EXPORT_SYMBOL_GPL(save_fsgs_for_kvm);
218 #endif
219
220 static __always_inline void loadseg(enum which_selector which,
221 unsigned short sel)
222 {
223 if (which == FS)
224 loadsegment(fs, sel);
225 else
226 load_gs_index(sel);
227 }
228
229 static __always_inline void load_seg_legacy(unsigned short prev_index,
230 unsigned long prev_base,
231 unsigned short next_index,
232 unsigned long next_base,
233 enum which_selector which)
234 {
235 if (likely(next_index <= 3)) {
236 /*
237 * The next task is using 64-bit TLS, is not using this
238 * segment at all, or is having fun with arcane CPU features.
239 */
240 if (next_base == 0) {
241 /*
242 * Nasty case: on AMD CPUs, we need to forcibly zero
243 * the base.
244 */
245 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
246 loadseg(which, __USER_DS);
247 loadseg(which, next_index);
248 } else {
249 /*
250 * We could try to exhaustively detect cases
251 * under which we can skip the segment load,
252 * but there's really only one case that matters
253 * for performance: if both the previous and
254 * next states are fully zeroed, we can skip
255 * the load.
256 *
257 * (This assumes that prev_base == 0 has no
258 * false positives. This is the case on
259 * Intel-style CPUs.)
260 */
261 if (likely(prev_index | next_index | prev_base))
262 loadseg(which, next_index);
263 }
264 } else {
265 if (prev_index != next_index)
266 loadseg(which, next_index);
267 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
268 next_base);
269 }
270 } else {
271 /*
272 * The next task is using a real segment. Loading the selector
273 * is sufficient.
274 */
275 loadseg(which, next_index);
276 }
277 }
278
279 static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
280 struct thread_struct *next)
281 {
282 load_seg_legacy(prev->fsindex, prev->fsbase,
283 next->fsindex, next->fsbase, FS);
284 load_seg_legacy(prev->gsindex, prev->gsbase,
285 next->gsindex, next->gsbase, GS);
286 }
287
288 static unsigned long x86_fsgsbase_read_task(struct task_struct *task,
289 unsigned short selector)
290 {
291 unsigned short idx = selector >> 3;
292 unsigned long base;
293
294 if (likely((selector & SEGMENT_TI_MASK) == 0)) {
295 if (unlikely(idx >= GDT_ENTRIES))
296 return 0;
297
298 /*
299 * There are no user segments in the GDT with nonzero bases
300 * other than the TLS segments.
301 */
302 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
303 return 0;
304
305 idx -= GDT_ENTRY_TLS_MIN;
306 base = get_desc_base(&task->thread.tls_array[idx]);
307 } else {
308 #ifdef CONFIG_MODIFY_LDT_SYSCALL
309 struct ldt_struct *ldt;
310
311 /*
312 * If performance here mattered, we could protect the LDT
313 * with RCU. This is a slow path, though, so we can just
314 * take the mutex.
315 */
316 mutex_lock(&task->mm->context.lock);
317 ldt = task->mm->context.ldt;
318 if (unlikely(idx >= ldt->nr_entries))
319 base = 0;
320 else
321 base = get_desc_base(ldt->entries + idx);
322 mutex_unlock(&task->mm->context.lock);
323 #else
324 base = 0;
325 #endif
326 }
327
328 return base;
329 }
330
331 unsigned long x86_fsbase_read_task(struct task_struct *task)
332 {
333 unsigned long fsbase;
334
335 if (task == current)
336 fsbase = x86_fsbase_read_cpu();
337 else if (task->thread.fsindex == 0)
338 fsbase = task->thread.fsbase;
339 else
340 fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
341
342 return fsbase;
343 }
344
345 unsigned long x86_gsbase_read_task(struct task_struct *task)
346 {
347 unsigned long gsbase;
348
349 if (task == current)
350 gsbase = x86_gsbase_read_cpu_inactive();
351 else if (task->thread.gsindex == 0)
352 gsbase = task->thread.gsbase;
353 else
354 gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
355
356 return gsbase;
357 }
358
359 void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
360 {
361 WARN_ON_ONCE(task == current);
362
363 task->thread.fsbase = fsbase;
364 }
365
366 void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
367 {
368 WARN_ON_ONCE(task == current);
369
370 task->thread.gsbase = gsbase;
371 }
372
373 static void
374 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
375 unsigned long new_sp,
376 unsigned int _cs, unsigned int _ss, unsigned int _ds)
377 {
378 WARN_ON_ONCE(regs != current_pt_regs());
379
380 if (static_cpu_has(X86_BUG_NULL_SEG)) {
381 /* Loading zero below won't clear the base. */
382 loadsegment(fs, __USER_DS);
383 load_gs_index(__USER_DS);
384 }
385
386 loadsegment(fs, 0);
387 loadsegment(es, _ds);
388 loadsegment(ds, _ds);
389 load_gs_index(0);
390
391 regs->ip = new_ip;
392 regs->sp = new_sp;
393 regs->cs = _cs;
394 regs->ss = _ss;
395 regs->flags = X86_EFLAGS_IF;
396 }
397
398 void
399 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
400 {
401 start_thread_common(regs, new_ip, new_sp,
402 __USER_CS, __USER_DS, 0);
403 }
404 EXPORT_SYMBOL_GPL(start_thread);
405
406 #ifdef CONFIG_COMPAT
407 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
408 {
409 start_thread_common(regs, new_ip, new_sp,
410 test_thread_flag(TIF_X32)
411 ? __USER_CS : __USER32_CS,
412 __USER_DS, __USER_DS);
413 }
414 #endif
415
416 /*
417 * switch_to(x,y) should switch tasks from x to y.
418 *
419 * This could still be optimized:
420 * - fold all the options into a flag word and test it with a single test.
421 * - could test fs/gs bitsliced
422 *
423 * Kprobes not supported here. Set the probe on schedule instead.
424 * Function graph tracer not supported too.
425 */
426 __visible __notrace_funcgraph struct task_struct *
427 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
428 {
429 struct thread_struct *prev = &prev_p->thread;
430 struct thread_struct *next = &next_p->thread;
431 struct fpu *prev_fpu = &prev->fpu;
432 struct fpu *next_fpu = &next->fpu;
433 int cpu = smp_processor_id();
434
435 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
436 this_cpu_read(irq_count) != -1);
437
438 if (!test_thread_flag(TIF_NEED_FPU_LOAD))
439 switch_fpu_prepare(prev_fpu, cpu);
440
441 /* We must save %fs and %gs before load_TLS() because
442 * %fs and %gs may be cleared by load_TLS().
443 *
444 * (e.g. xen_load_tls())
445 */
446 save_fsgs(prev_p);
447
448 /*
449 * Load TLS before restoring any segments so that segment loads
450 * reference the correct GDT entries.
451 */
452 load_TLS(next, cpu);
453
454 /*
455 * Leave lazy mode, flushing any hypercalls made here. This
456 * must be done after loading TLS entries in the GDT but before
457 * loading segments that might reference them.
458 */
459 arch_end_context_switch(next_p);
460
461 /* Switch DS and ES.
462 *
463 * Reading them only returns the selectors, but writing them (if
464 * nonzero) loads the full descriptor from the GDT or LDT. The
465 * LDT for next is loaded in switch_mm, and the GDT is loaded
466 * above.
467 *
468 * We therefore need to write new values to the segment
469 * registers on every context switch unless both the new and old
470 * values are zero.
471 *
472 * Note that we don't need to do anything for CS and SS, as
473 * those are saved and restored as part of pt_regs.
474 */
475 savesegment(es, prev->es);
476 if (unlikely(next->es | prev->es))
477 loadsegment(es, next->es);
478
479 savesegment(ds, prev->ds);
480 if (unlikely(next->ds | prev->ds))
481 loadsegment(ds, next->ds);
482
483 x86_fsgsbase_load(prev, next);
484
485 /*
486 * Switch the PDA and FPU contexts.
487 */
488 this_cpu_write(current_task, next_p);
489 this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
490
491 switch_fpu_finish(next_fpu);
492
493 /* Reload sp0. */
494 update_task_stack(next_p);
495
496 switch_to_extra(prev_p, next_p);
497
498 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
499 /*
500 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
501 * does not update the cached descriptor. As a result, if we
502 * do SYSRET while SS is NULL, we'll end up in user mode with
503 * SS apparently equal to __USER_DS but actually unusable.
504 *
505 * The straightforward workaround would be to fix it up just
506 * before SYSRET, but that would slow down the system call
507 * fast paths. Instead, we ensure that SS is never NULL in
508 * system call context. We do this by replacing NULL SS
509 * selectors at every context switch. SYSCALL sets up a valid
510 * SS, so the only way to get NULL is to re-enter the kernel
511 * from CPL 3 through an interrupt. Since that can't happen
512 * in the same task as a running syscall, we are guaranteed to
513 * context switch between every interrupt vector entry and a
514 * subsequent SYSRET.
515 *
516 * We read SS first because SS reads are much faster than
517 * writes. Out of caution, we force SS to __KERNEL_DS even if
518 * it previously had a different non-NULL value.
519 */
520 unsigned short ss_sel;
521 savesegment(ss, ss_sel);
522 if (ss_sel != __KERNEL_DS)
523 loadsegment(ss, __KERNEL_DS);
524 }
525
526 /* Load the Intel cache allocation PQR MSR. */
527 resctrl_sched_in();
528
529 return prev_p;
530 }
531
532 void set_personality_64bit(void)
533 {
534 /* inherit personality from parent */
535
536 /* Make sure to be in 64bit mode */
537 clear_thread_flag(TIF_IA32);
538 clear_thread_flag(TIF_ADDR32);
539 clear_thread_flag(TIF_X32);
540 /* Pretend that this comes from a 64bit execve */
541 task_pt_regs(current)->orig_ax = __NR_execve;
542 current_thread_info()->status &= ~TS_COMPAT;
543
544 /* Ensure the corresponding mm is not marked. */
545 if (current->mm)
546 current->mm->context.ia32_compat = 0;
547
548 /* TBD: overwrites user setup. Should have two bits.
549 But 64bit processes have always behaved this way,
550 so it's not too bad. The main problem is just that
551 32bit children are affected again. */
552 current->personality &= ~READ_IMPLIES_EXEC;
553 }
554
555 static void __set_personality_x32(void)
556 {
557 #ifdef CONFIG_X86_X32
558 clear_thread_flag(TIF_IA32);
559 set_thread_flag(TIF_X32);
560 if (current->mm)
561 current->mm->context.ia32_compat = TIF_X32;
562 current->personality &= ~READ_IMPLIES_EXEC;
563 /*
564 * in_32bit_syscall() uses the presence of the x32 syscall bit
565 * flag to determine compat status. The x86 mmap() code relies on
566 * the syscall bitness so set x32 syscall bit right here to make
567 * in_32bit_syscall() work during exec().
568 *
569 * Pretend to come from a x32 execve.
570 */
571 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
572 current_thread_info()->status &= ~TS_COMPAT;
573 #endif
574 }
575
576 static void __set_personality_ia32(void)
577 {
578 #ifdef CONFIG_IA32_EMULATION
579 set_thread_flag(TIF_IA32);
580 clear_thread_flag(TIF_X32);
581 if (current->mm)
582 current->mm->context.ia32_compat = TIF_IA32;
583 current->personality |= force_personality32;
584 /* Prepare the first "return" to user space */
585 task_pt_regs(current)->orig_ax = __NR_ia32_execve;
586 current_thread_info()->status |= TS_COMPAT;
587 #endif
588 }
589
590 void set_personality_ia32(bool x32)
591 {
592 /* Make sure to be in 32bit mode */
593 set_thread_flag(TIF_ADDR32);
594
595 if (x32)
596 __set_personality_x32();
597 else
598 __set_personality_ia32();
599 }
600 EXPORT_SYMBOL_GPL(set_personality_ia32);
601
602 #ifdef CONFIG_CHECKPOINT_RESTORE
603 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
604 {
605 int ret;
606
607 ret = map_vdso_once(image, addr);
608 if (ret)
609 return ret;
610
611 return (long)image->size;
612 }
613 #endif
614
615 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
616 {
617 int ret = 0;
618
619 switch (option) {
620 case ARCH_SET_GS: {
621 if (unlikely(arg2 >= TASK_SIZE_MAX))
622 return -EPERM;
623
624 preempt_disable();
625 /*
626 * ARCH_SET_GS has always overwritten the index
627 * and the base. Zero is the most sensible value
628 * to put in the index, and is the only value that
629 * makes any sense if FSGSBASE is unavailable.
630 */
631 if (task == current) {
632 loadseg(GS, 0);
633 x86_gsbase_write_cpu_inactive(arg2);
634
635 /*
636 * On non-FSGSBASE systems, save_base_legacy() expects
637 * that we also fill in thread.gsbase.
638 */
639 task->thread.gsbase = arg2;
640
641 } else {
642 task->thread.gsindex = 0;
643 x86_gsbase_write_task(task, arg2);
644 }
645 preempt_enable();
646 break;
647 }
648 case ARCH_SET_FS: {
649 /*
650 * Not strictly needed for %fs, but do it for symmetry
651 * with %gs
652 */
653 if (unlikely(arg2 >= TASK_SIZE_MAX))
654 return -EPERM;
655
656 preempt_disable();
657 /*
658 * Set the selector to 0 for the same reason
659 * as %gs above.
660 */
661 if (task == current) {
662 loadseg(FS, 0);
663 x86_fsbase_write_cpu(arg2);
664
665 /*
666 * On non-FSGSBASE systems, save_base_legacy() expects
667 * that we also fill in thread.fsbase.
668 */
669 task->thread.fsbase = arg2;
670 } else {
671 task->thread.fsindex = 0;
672 x86_fsbase_write_task(task, arg2);
673 }
674 preempt_enable();
675 break;
676 }
677 case ARCH_GET_FS: {
678 unsigned long base = x86_fsbase_read_task(task);
679
680 ret = put_user(base, (unsigned long __user *)arg2);
681 break;
682 }
683 case ARCH_GET_GS: {
684 unsigned long base = x86_gsbase_read_task(task);
685
686 ret = put_user(base, (unsigned long __user *)arg2);
687 break;
688 }
689
690 #ifdef CONFIG_CHECKPOINT_RESTORE
691 # ifdef CONFIG_X86_X32_ABI
692 case ARCH_MAP_VDSO_X32:
693 return prctl_map_vdso(&vdso_image_x32, arg2);
694 # endif
695 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
696 case ARCH_MAP_VDSO_32:
697 return prctl_map_vdso(&vdso_image_32, arg2);
698 # endif
699 case ARCH_MAP_VDSO_64:
700 return prctl_map_vdso(&vdso_image_64, arg2);
701 #endif
702
703 default:
704 ret = -EINVAL;
705 break;
706 }
707
708 return ret;
709 }
710
711 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
712 {
713 long ret;
714
715 ret = do_arch_prctl_64(current, option, arg2);
716 if (ret == -EINVAL)
717 ret = do_arch_prctl_common(current, option, arg2);
718
719 return ret;
720 }
721
722 #ifdef CONFIG_IA32_EMULATION
723 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
724 {
725 return do_arch_prctl_common(current, option, arg2);
726 }
727 #endif
728
729 unsigned long KSTK_ESP(struct task_struct *task)
730 {
731 return task_pt_regs(task)->sp;
732 }