]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/kernel/process_64.c
x86/entry/64: Use the TSS sp2 slot for SYSCALL/SYSRET scratch space
[thirdparty/kernel/stable.git] / arch / x86 / kernel / process_64.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 *
7 * X86-64 port
8 * Andi Kleen.
9 *
10 * CPU hotplug support - ashok.raj@intel.com
11 */
12
13 /*
14 * This file handles the architecture-dependent parts of process handling..
15 */
16
17 #include <linux/cpu.h>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/fs.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/elfcore.h>
26 #include <linux/smp.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/export.h>
32 #include <linux/ptrace.h>
33 #include <linux/notifier.h>
34 #include <linux/kprobes.h>
35 #include <linux/kdebug.h>
36 #include <linux/prctl.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/ftrace.h>
40 #include <linux/syscalls.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/processor.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/mmu_context.h>
46 #include <asm/prctl.h>
47 #include <asm/desc.h>
48 #include <asm/proto.h>
49 #include <asm/ia32.h>
50 #include <asm/syscalls.h>
51 #include <asm/debugreg.h>
52 #include <asm/switch_to.h>
53 #include <asm/xen/hypervisor.h>
54 #include <asm/vdso.h>
55 #include <asm/intel_rdt_sched.h>
56 #include <asm/unistd.h>
57 #ifdef CONFIG_IA32_EMULATION
58 /* Not included via unistd.h */
59 #include <asm/unistd_32_ia32.h>
60 #endif
61
62 /* Prints also some state that isn't saved in the pt_regs */
63 void __show_regs(struct pt_regs *regs, int all)
64 {
65 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
66 unsigned long d0, d1, d2, d3, d6, d7;
67 unsigned int fsindex, gsindex;
68 unsigned int ds, cs, es;
69
70 show_iret_regs(regs);
71
72 if (regs->orig_ax != -1)
73 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
74 else
75 pr_cont("\n");
76
77 printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
78 regs->ax, regs->bx, regs->cx);
79 printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
80 regs->dx, regs->si, regs->di);
81 printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
82 regs->bp, regs->r8, regs->r9);
83 printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
84 regs->r10, regs->r11, regs->r12);
85 printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
86 regs->r13, regs->r14, regs->r15);
87
88 if (!all)
89 return;
90
91 asm("movl %%ds,%0" : "=r" (ds));
92 asm("movl %%cs,%0" : "=r" (cs));
93 asm("movl %%es,%0" : "=r" (es));
94 asm("movl %%fs,%0" : "=r" (fsindex));
95 asm("movl %%gs,%0" : "=r" (gsindex));
96
97 rdmsrl(MSR_FS_BASE, fs);
98 rdmsrl(MSR_GS_BASE, gs);
99 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
100
101 cr0 = read_cr0();
102 cr2 = read_cr2();
103 cr3 = __read_cr3();
104 cr4 = __read_cr4();
105
106 printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
107 fs, fsindex, gs, gsindex, shadowgs);
108 printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
109 es, cr0);
110 printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
111 cr4);
112
113 get_debugreg(d0, 0);
114 get_debugreg(d1, 1);
115 get_debugreg(d2, 2);
116 get_debugreg(d3, 3);
117 get_debugreg(d6, 6);
118 get_debugreg(d7, 7);
119
120 /* Only print out debug registers if they are in their non-default state. */
121 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
122 (d6 == DR6_RESERVED) && (d7 == 0x400))) {
123 printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
124 d0, d1, d2);
125 printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
126 d3, d6, d7);
127 }
128
129 if (boot_cpu_has(X86_FEATURE_OSPKE))
130 printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
131 }
132
133 void release_thread(struct task_struct *dead_task)
134 {
135 if (dead_task->mm) {
136 #ifdef CONFIG_MODIFY_LDT_SYSCALL
137 if (dead_task->mm->context.ldt) {
138 pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
139 dead_task->comm,
140 dead_task->mm->context.ldt->entries,
141 dead_task->mm->context.ldt->nr_entries);
142 BUG();
143 }
144 #endif
145 }
146 }
147
148 enum which_selector {
149 FS,
150 GS
151 };
152
153 /*
154 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
155 * not available. The goal is to be reasonably fast on non-FSGSBASE systems.
156 * It's forcibly inlined because it'll generate better code and this function
157 * is hot.
158 */
159 static __always_inline void save_base_legacy(struct task_struct *prev_p,
160 unsigned short selector,
161 enum which_selector which)
162 {
163 if (likely(selector == 0)) {
164 /*
165 * On Intel (without X86_BUG_NULL_SEG), the segment base could
166 * be the pre-existing saved base or it could be zero. On AMD
167 * (with X86_BUG_NULL_SEG), the segment base could be almost
168 * anything.
169 *
170 * This branch is very hot (it's hit twice on almost every
171 * context switch between 64-bit programs), and avoiding
172 * the RDMSR helps a lot, so we just assume that whatever
173 * value is already saved is correct. This matches historical
174 * Linux behavior, so it won't break existing applications.
175 *
176 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
177 * report that the base is zero, it needs to actually be zero:
178 * see the corresponding logic in load_seg_legacy.
179 */
180 } else {
181 /*
182 * If the selector is 1, 2, or 3, then the base is zero on
183 * !X86_BUG_NULL_SEG CPUs and could be anything on
184 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux
185 * has never attempted to preserve the base across context
186 * switches.
187 *
188 * If selector > 3, then it refers to a real segment, and
189 * saving the base isn't necessary.
190 */
191 if (which == FS)
192 prev_p->thread.fsbase = 0;
193 else
194 prev_p->thread.gsbase = 0;
195 }
196 }
197
198 static __always_inline void save_fsgs(struct task_struct *task)
199 {
200 savesegment(fs, task->thread.fsindex);
201 savesegment(gs, task->thread.gsindex);
202 save_base_legacy(task, task->thread.fsindex, FS);
203 save_base_legacy(task, task->thread.gsindex, GS);
204 }
205
206 #if IS_ENABLED(CONFIG_KVM)
207 /*
208 * While a process is running,current->thread.fsbase and current->thread.gsbase
209 * may not match the corresponding CPU registers (see save_base_legacy()). KVM
210 * wants an efficient way to save and restore FSBASE and GSBASE.
211 * When FSGSBASE extensions are enabled, this will have to use RD{FS,GS}BASE.
212 */
213 void save_fsgs_for_kvm(void)
214 {
215 save_fsgs(current);
216 }
217 EXPORT_SYMBOL_GPL(save_fsgs_for_kvm);
218 #endif
219
220 static __always_inline void loadseg(enum which_selector which,
221 unsigned short sel)
222 {
223 if (which == FS)
224 loadsegment(fs, sel);
225 else
226 load_gs_index(sel);
227 }
228
229 static __always_inline void load_seg_legacy(unsigned short prev_index,
230 unsigned long prev_base,
231 unsigned short next_index,
232 unsigned long next_base,
233 enum which_selector which)
234 {
235 if (likely(next_index <= 3)) {
236 /*
237 * The next task is using 64-bit TLS, is not using this
238 * segment at all, or is having fun with arcane CPU features.
239 */
240 if (next_base == 0) {
241 /*
242 * Nasty case: on AMD CPUs, we need to forcibly zero
243 * the base.
244 */
245 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
246 loadseg(which, __USER_DS);
247 loadseg(which, next_index);
248 } else {
249 /*
250 * We could try to exhaustively detect cases
251 * under which we can skip the segment load,
252 * but there's really only one case that matters
253 * for performance: if both the previous and
254 * next states are fully zeroed, we can skip
255 * the load.
256 *
257 * (This assumes that prev_base == 0 has no
258 * false positives. This is the case on
259 * Intel-style CPUs.)
260 */
261 if (likely(prev_index | next_index | prev_base))
262 loadseg(which, next_index);
263 }
264 } else {
265 if (prev_index != next_index)
266 loadseg(which, next_index);
267 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
268 next_base);
269 }
270 } else {
271 /*
272 * The next task is using a real segment. Loading the selector
273 * is sufficient.
274 */
275 loadseg(which, next_index);
276 }
277 }
278
279 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
280 unsigned long arg, struct task_struct *p, unsigned long tls)
281 {
282 int err;
283 struct pt_regs *childregs;
284 struct fork_frame *fork_frame;
285 struct inactive_task_frame *frame;
286 struct task_struct *me = current;
287
288 childregs = task_pt_regs(p);
289 fork_frame = container_of(childregs, struct fork_frame, regs);
290 frame = &fork_frame->frame;
291 frame->bp = 0;
292 frame->ret_addr = (unsigned long) ret_from_fork;
293 p->thread.sp = (unsigned long) fork_frame;
294 p->thread.io_bitmap_ptr = NULL;
295
296 savesegment(gs, p->thread.gsindex);
297 p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
298 savesegment(fs, p->thread.fsindex);
299 p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
300 savesegment(es, p->thread.es);
301 savesegment(ds, p->thread.ds);
302 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
303
304 if (unlikely(p->flags & PF_KTHREAD)) {
305 /* kernel thread */
306 memset(childregs, 0, sizeof(struct pt_regs));
307 frame->bx = sp; /* function */
308 frame->r12 = arg;
309 return 0;
310 }
311 frame->bx = 0;
312 *childregs = *current_pt_regs();
313
314 childregs->ax = 0;
315 if (sp)
316 childregs->sp = sp;
317
318 err = -ENOMEM;
319 if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
320 p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
321 IO_BITMAP_BYTES, GFP_KERNEL);
322 if (!p->thread.io_bitmap_ptr) {
323 p->thread.io_bitmap_max = 0;
324 return -ENOMEM;
325 }
326 set_tsk_thread_flag(p, TIF_IO_BITMAP);
327 }
328
329 /*
330 * Set a new TLS for the child thread?
331 */
332 if (clone_flags & CLONE_SETTLS) {
333 #ifdef CONFIG_IA32_EMULATION
334 if (in_ia32_syscall())
335 err = do_set_thread_area(p, -1,
336 (struct user_desc __user *)tls, 0);
337 else
338 #endif
339 err = do_arch_prctl_64(p, ARCH_SET_FS, tls);
340 if (err)
341 goto out;
342 }
343 err = 0;
344 out:
345 if (err && p->thread.io_bitmap_ptr) {
346 kfree(p->thread.io_bitmap_ptr);
347 p->thread.io_bitmap_max = 0;
348 }
349
350 return err;
351 }
352
353 static void
354 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
355 unsigned long new_sp,
356 unsigned int _cs, unsigned int _ss, unsigned int _ds)
357 {
358 WARN_ON_ONCE(regs != current_pt_regs());
359
360 if (static_cpu_has(X86_BUG_NULL_SEG)) {
361 /* Loading zero below won't clear the base. */
362 loadsegment(fs, __USER_DS);
363 load_gs_index(__USER_DS);
364 }
365
366 loadsegment(fs, 0);
367 loadsegment(es, _ds);
368 loadsegment(ds, _ds);
369 load_gs_index(0);
370
371 regs->ip = new_ip;
372 regs->sp = new_sp;
373 regs->cs = _cs;
374 regs->ss = _ss;
375 regs->flags = X86_EFLAGS_IF;
376 force_iret();
377 }
378
379 void
380 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
381 {
382 start_thread_common(regs, new_ip, new_sp,
383 __USER_CS, __USER_DS, 0);
384 }
385 EXPORT_SYMBOL_GPL(start_thread);
386
387 #ifdef CONFIG_COMPAT
388 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
389 {
390 start_thread_common(regs, new_ip, new_sp,
391 test_thread_flag(TIF_X32)
392 ? __USER_CS : __USER32_CS,
393 __USER_DS, __USER_DS);
394 }
395 #endif
396
397 /*
398 * switch_to(x,y) should switch tasks from x to y.
399 *
400 * This could still be optimized:
401 * - fold all the options into a flag word and test it with a single test.
402 * - could test fs/gs bitsliced
403 *
404 * Kprobes not supported here. Set the probe on schedule instead.
405 * Function graph tracer not supported too.
406 */
407 __visible __notrace_funcgraph struct task_struct *
408 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
409 {
410 struct thread_struct *prev = &prev_p->thread;
411 struct thread_struct *next = &next_p->thread;
412 struct fpu *prev_fpu = &prev->fpu;
413 struct fpu *next_fpu = &next->fpu;
414 int cpu = smp_processor_id();
415 struct tss_struct *tss = &per_cpu(cpu_tss_rw, cpu);
416
417 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
418 this_cpu_read(irq_count) != -1);
419
420 switch_fpu_prepare(prev_fpu, cpu);
421
422 /* We must save %fs and %gs before load_TLS() because
423 * %fs and %gs may be cleared by load_TLS().
424 *
425 * (e.g. xen_load_tls())
426 */
427 save_fsgs(prev_p);
428
429 /*
430 * Load TLS before restoring any segments so that segment loads
431 * reference the correct GDT entries.
432 */
433 load_TLS(next, cpu);
434
435 /*
436 * Leave lazy mode, flushing any hypercalls made here. This
437 * must be done after loading TLS entries in the GDT but before
438 * loading segments that might reference them, and and it must
439 * be done before fpu__restore(), so the TS bit is up to
440 * date.
441 */
442 arch_end_context_switch(next_p);
443
444 /* Switch DS and ES.
445 *
446 * Reading them only returns the selectors, but writing them (if
447 * nonzero) loads the full descriptor from the GDT or LDT. The
448 * LDT for next is loaded in switch_mm, and the GDT is loaded
449 * above.
450 *
451 * We therefore need to write new values to the segment
452 * registers on every context switch unless both the new and old
453 * values are zero.
454 *
455 * Note that we don't need to do anything for CS and SS, as
456 * those are saved and restored as part of pt_regs.
457 */
458 savesegment(es, prev->es);
459 if (unlikely(next->es | prev->es))
460 loadsegment(es, next->es);
461
462 savesegment(ds, prev->ds);
463 if (unlikely(next->ds | prev->ds))
464 loadsegment(ds, next->ds);
465
466 load_seg_legacy(prev->fsindex, prev->fsbase,
467 next->fsindex, next->fsbase, FS);
468 load_seg_legacy(prev->gsindex, prev->gsbase,
469 next->gsindex, next->gsbase, GS);
470
471 switch_fpu_finish(next_fpu, cpu);
472
473 /*
474 * Switch the PDA and FPU contexts.
475 */
476 this_cpu_write(current_task, next_p);
477 this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
478
479 /* Reload sp0. */
480 update_task_stack(next_p);
481
482 /*
483 * Now maybe reload the debug registers and handle I/O bitmaps
484 */
485 if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
486 task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
487 __switch_to_xtra(prev_p, next_p, tss);
488
489 #ifdef CONFIG_XEN_PV
490 /*
491 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
492 * current_pt_regs()->flags may not match the current task's
493 * intended IOPL. We need to switch it manually.
494 */
495 if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
496 prev->iopl != next->iopl))
497 xen_set_iopl_mask(next->iopl);
498 #endif
499
500 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
501 /*
502 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
503 * does not update the cached descriptor. As a result, if we
504 * do SYSRET while SS is NULL, we'll end up in user mode with
505 * SS apparently equal to __USER_DS but actually unusable.
506 *
507 * The straightforward workaround would be to fix it up just
508 * before SYSRET, but that would slow down the system call
509 * fast paths. Instead, we ensure that SS is never NULL in
510 * system call context. We do this by replacing NULL SS
511 * selectors at every context switch. SYSCALL sets up a valid
512 * SS, so the only way to get NULL is to re-enter the kernel
513 * from CPL 3 through an interrupt. Since that can't happen
514 * in the same task as a running syscall, we are guaranteed to
515 * context switch between every interrupt vector entry and a
516 * subsequent SYSRET.
517 *
518 * We read SS first because SS reads are much faster than
519 * writes. Out of caution, we force SS to __KERNEL_DS even if
520 * it previously had a different non-NULL value.
521 */
522 unsigned short ss_sel;
523 savesegment(ss, ss_sel);
524 if (ss_sel != __KERNEL_DS)
525 loadsegment(ss, __KERNEL_DS);
526 }
527
528 /* Load the Intel cache allocation PQR MSR. */
529 intel_rdt_sched_in();
530
531 return prev_p;
532 }
533
534 void set_personality_64bit(void)
535 {
536 /* inherit personality from parent */
537
538 /* Make sure to be in 64bit mode */
539 clear_thread_flag(TIF_IA32);
540 clear_thread_flag(TIF_ADDR32);
541 clear_thread_flag(TIF_X32);
542 /* Pretend that this comes from a 64bit execve */
543 task_pt_regs(current)->orig_ax = __NR_execve;
544 current_thread_info()->status &= ~TS_COMPAT;
545
546 /* Ensure the corresponding mm is not marked. */
547 if (current->mm)
548 current->mm->context.ia32_compat = 0;
549
550 /* TBD: overwrites user setup. Should have two bits.
551 But 64bit processes have always behaved this way,
552 so it's not too bad. The main problem is just that
553 32bit childs are affected again. */
554 current->personality &= ~READ_IMPLIES_EXEC;
555 }
556
557 static void __set_personality_x32(void)
558 {
559 #ifdef CONFIG_X86_X32
560 clear_thread_flag(TIF_IA32);
561 set_thread_flag(TIF_X32);
562 if (current->mm)
563 current->mm->context.ia32_compat = TIF_X32;
564 current->personality &= ~READ_IMPLIES_EXEC;
565 /*
566 * in_compat_syscall() uses the presence of the x32 syscall bit
567 * flag to determine compat status. The x86 mmap() code relies on
568 * the syscall bitness so set x32 syscall bit right here to make
569 * in_compat_syscall() work during exec().
570 *
571 * Pretend to come from a x32 execve.
572 */
573 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
574 current_thread_info()->status &= ~TS_COMPAT;
575 #endif
576 }
577
578 static void __set_personality_ia32(void)
579 {
580 #ifdef CONFIG_IA32_EMULATION
581 set_thread_flag(TIF_IA32);
582 clear_thread_flag(TIF_X32);
583 if (current->mm)
584 current->mm->context.ia32_compat = TIF_IA32;
585 current->personality |= force_personality32;
586 /* Prepare the first "return" to user space */
587 task_pt_regs(current)->orig_ax = __NR_ia32_execve;
588 current_thread_info()->status |= TS_COMPAT;
589 #endif
590 }
591
592 void set_personality_ia32(bool x32)
593 {
594 /* Make sure to be in 32bit mode */
595 set_thread_flag(TIF_ADDR32);
596
597 if (x32)
598 __set_personality_x32();
599 else
600 __set_personality_ia32();
601 }
602 EXPORT_SYMBOL_GPL(set_personality_ia32);
603
604 #ifdef CONFIG_CHECKPOINT_RESTORE
605 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
606 {
607 int ret;
608
609 ret = map_vdso_once(image, addr);
610 if (ret)
611 return ret;
612
613 return (long)image->size;
614 }
615 #endif
616
617 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
618 {
619 int ret = 0;
620 int doit = task == current;
621 int cpu;
622
623 switch (option) {
624 case ARCH_SET_GS:
625 if (arg2 >= TASK_SIZE_MAX)
626 return -EPERM;
627 cpu = get_cpu();
628 task->thread.gsindex = 0;
629 task->thread.gsbase = arg2;
630 if (doit) {
631 load_gs_index(0);
632 ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, arg2);
633 }
634 put_cpu();
635 break;
636 case ARCH_SET_FS:
637 /* Not strictly needed for fs, but do it for symmetry
638 with gs */
639 if (arg2 >= TASK_SIZE_MAX)
640 return -EPERM;
641 cpu = get_cpu();
642 task->thread.fsindex = 0;
643 task->thread.fsbase = arg2;
644 if (doit) {
645 /* set the selector to 0 to not confuse __switch_to */
646 loadsegment(fs, 0);
647 ret = wrmsrl_safe(MSR_FS_BASE, arg2);
648 }
649 put_cpu();
650 break;
651 case ARCH_GET_FS: {
652 unsigned long base;
653
654 if (doit)
655 rdmsrl(MSR_FS_BASE, base);
656 else
657 base = task->thread.fsbase;
658 ret = put_user(base, (unsigned long __user *)arg2);
659 break;
660 }
661 case ARCH_GET_GS: {
662 unsigned long base;
663
664 if (doit)
665 rdmsrl(MSR_KERNEL_GS_BASE, base);
666 else
667 base = task->thread.gsbase;
668 ret = put_user(base, (unsigned long __user *)arg2);
669 break;
670 }
671
672 #ifdef CONFIG_CHECKPOINT_RESTORE
673 # ifdef CONFIG_X86_X32_ABI
674 case ARCH_MAP_VDSO_X32:
675 return prctl_map_vdso(&vdso_image_x32, arg2);
676 # endif
677 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
678 case ARCH_MAP_VDSO_32:
679 return prctl_map_vdso(&vdso_image_32, arg2);
680 # endif
681 case ARCH_MAP_VDSO_64:
682 return prctl_map_vdso(&vdso_image_64, arg2);
683 #endif
684
685 default:
686 ret = -EINVAL;
687 break;
688 }
689
690 return ret;
691 }
692
693 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
694 {
695 long ret;
696
697 ret = do_arch_prctl_64(current, option, arg2);
698 if (ret == -EINVAL)
699 ret = do_arch_prctl_common(current, option, arg2);
700
701 return ret;
702 }
703
704 #ifdef CONFIG_IA32_EMULATION
705 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
706 {
707 return do_arch_prctl_common(current, option, arg2);
708 }
709 #endif
710
711 unsigned long KSTK_ESP(struct task_struct *task)
712 {
713 return task_pt_regs(task)->sp;
714 }