]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/kernel/setup.c
x86/fpu/xstate: Restore supervisor states for signal return
[thirdparty/linux.git] / arch / x86 / kernel / setup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * This file contains the setup_arch() code, which handles the architecture-dependent
6 * parts of early kernel initialization.
7 */
8 #include <linux/console.h>
9 #include <linux/crash_dump.h>
10 #include <linux/dmi.h>
11 #include <linux/efi.h>
12 #include <linux/init_ohci1394_dma.h>
13 #include <linux/initrd.h>
14 #include <linux/iscsi_ibft.h>
15 #include <linux/memblock.h>
16 #include <linux/pci.h>
17 #include <linux/root_dev.h>
18 #include <linux/sfi.h>
19 #include <linux/hugetlb.h>
20 #include <linux/tboot.h>
21 #include <linux/usb/xhci-dbgp.h>
22
23 #include <uapi/linux/mount.h>
24
25 #include <xen/xen.h>
26
27 #include <asm/apic.h>
28 #include <asm/bios_ebda.h>
29 #include <asm/bugs.h>
30 #include <asm/cpu.h>
31 #include <asm/efi.h>
32 #include <asm/gart.h>
33 #include <asm/hypervisor.h>
34 #include <asm/io_apic.h>
35 #include <asm/kasan.h>
36 #include <asm/kaslr.h>
37 #include <asm/mce.h>
38 #include <asm/mtrr.h>
39 #include <asm/realmode.h>
40 #include <asm/olpc_ofw.h>
41 #include <asm/pci-direct.h>
42 #include <asm/prom.h>
43 #include <asm/proto.h>
44 #include <asm/unwind.h>
45 #include <asm/vsyscall.h>
46 #include <linux/vmalloc.h>
47
48 /*
49 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
50 * max_pfn_mapped: highest directly mapped pfn > 4 GB
51 *
52 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
53 * represented by pfn_mapped[].
54 */
55 unsigned long max_low_pfn_mapped;
56 unsigned long max_pfn_mapped;
57
58 #ifdef CONFIG_DMI
59 RESERVE_BRK(dmi_alloc, 65536);
60 #endif
61
62
63 /*
64 * Range of the BSS area. The size of the BSS area is determined
65 * at link time, with RESERVE_BRK*() facility reserving additional
66 * chunks.
67 */
68 unsigned long _brk_start = (unsigned long)__brk_base;
69 unsigned long _brk_end = (unsigned long)__brk_base;
70
71 struct boot_params boot_params;
72
73 /*
74 * These are the four main kernel memory regions, we put them into
75 * the resource tree so that kdump tools and other debugging tools
76 * recover it:
77 */
78
79 static struct resource rodata_resource = {
80 .name = "Kernel rodata",
81 .start = 0,
82 .end = 0,
83 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
84 };
85
86 static struct resource data_resource = {
87 .name = "Kernel data",
88 .start = 0,
89 .end = 0,
90 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
91 };
92
93 static struct resource code_resource = {
94 .name = "Kernel code",
95 .start = 0,
96 .end = 0,
97 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
98 };
99
100 static struct resource bss_resource = {
101 .name = "Kernel bss",
102 .start = 0,
103 .end = 0,
104 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
105 };
106
107
108 #ifdef CONFIG_X86_32
109 /* CPU data as detected by the assembly code in head_32.S */
110 struct cpuinfo_x86 new_cpu_data;
111
112 /* Common CPU data for all CPUs */
113 struct cpuinfo_x86 boot_cpu_data __read_mostly;
114 EXPORT_SYMBOL(boot_cpu_data);
115
116 unsigned int def_to_bigsmp;
117
118 /* For MCA, but anyone else can use it if they want */
119 unsigned int machine_id;
120 unsigned int machine_submodel_id;
121 unsigned int BIOS_revision;
122
123 struct apm_info apm_info;
124 EXPORT_SYMBOL(apm_info);
125
126 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
127 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
128 struct ist_info ist_info;
129 EXPORT_SYMBOL(ist_info);
130 #else
131 struct ist_info ist_info;
132 #endif
133
134 #else
135 struct cpuinfo_x86 boot_cpu_data __read_mostly;
136 EXPORT_SYMBOL(boot_cpu_data);
137 #endif
138
139
140 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
141 __visible unsigned long mmu_cr4_features __ro_after_init;
142 #else
143 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
144 #endif
145
146 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
147 int bootloader_type, bootloader_version;
148
149 /*
150 * Setup options
151 */
152 struct screen_info screen_info;
153 EXPORT_SYMBOL(screen_info);
154 struct edid_info edid_info;
155 EXPORT_SYMBOL_GPL(edid_info);
156
157 extern int root_mountflags;
158
159 unsigned long saved_video_mode;
160
161 #define RAMDISK_IMAGE_START_MASK 0x07FF
162 #define RAMDISK_PROMPT_FLAG 0x8000
163 #define RAMDISK_LOAD_FLAG 0x4000
164
165 static char __initdata command_line[COMMAND_LINE_SIZE];
166 #ifdef CONFIG_CMDLINE_BOOL
167 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
168 #endif
169
170 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
171 struct edd edd;
172 #ifdef CONFIG_EDD_MODULE
173 EXPORT_SYMBOL(edd);
174 #endif
175 /**
176 * copy_edd() - Copy the BIOS EDD information
177 * from boot_params into a safe place.
178 *
179 */
180 static inline void __init copy_edd(void)
181 {
182 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
183 sizeof(edd.mbr_signature));
184 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
185 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
186 edd.edd_info_nr = boot_params.eddbuf_entries;
187 }
188 #else
189 static inline void __init copy_edd(void)
190 {
191 }
192 #endif
193
194 void * __init extend_brk(size_t size, size_t align)
195 {
196 size_t mask = align - 1;
197 void *ret;
198
199 BUG_ON(_brk_start == 0);
200 BUG_ON(align & mask);
201
202 _brk_end = (_brk_end + mask) & ~mask;
203 BUG_ON((char *)(_brk_end + size) > __brk_limit);
204
205 ret = (void *)_brk_end;
206 _brk_end += size;
207
208 memset(ret, 0, size);
209
210 return ret;
211 }
212
213 #ifdef CONFIG_X86_32
214 static void __init cleanup_highmap(void)
215 {
216 }
217 #endif
218
219 static void __init reserve_brk(void)
220 {
221 if (_brk_end > _brk_start)
222 memblock_reserve(__pa_symbol(_brk_start),
223 _brk_end - _brk_start);
224
225 /* Mark brk area as locked down and no longer taking any
226 new allocations */
227 _brk_start = 0;
228 }
229
230 u64 relocated_ramdisk;
231
232 #ifdef CONFIG_BLK_DEV_INITRD
233
234 static u64 __init get_ramdisk_image(void)
235 {
236 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
237
238 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
239
240 return ramdisk_image;
241 }
242 static u64 __init get_ramdisk_size(void)
243 {
244 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
245
246 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
247
248 return ramdisk_size;
249 }
250
251 static void __init relocate_initrd(void)
252 {
253 /* Assume only end is not page aligned */
254 u64 ramdisk_image = get_ramdisk_image();
255 u64 ramdisk_size = get_ramdisk_size();
256 u64 area_size = PAGE_ALIGN(ramdisk_size);
257
258 /* We need to move the initrd down into directly mapped mem */
259 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
260 area_size, PAGE_SIZE);
261
262 if (!relocated_ramdisk)
263 panic("Cannot find place for new RAMDISK of size %lld\n",
264 ramdisk_size);
265
266 /* Note: this includes all the mem currently occupied by
267 the initrd, we rely on that fact to keep the data intact. */
268 memblock_reserve(relocated_ramdisk, area_size);
269 initrd_start = relocated_ramdisk + PAGE_OFFSET;
270 initrd_end = initrd_start + ramdisk_size;
271 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
272 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
273
274 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
275
276 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
277 " [mem %#010llx-%#010llx]\n",
278 ramdisk_image, ramdisk_image + ramdisk_size - 1,
279 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
280 }
281
282 static void __init early_reserve_initrd(void)
283 {
284 /* Assume only end is not page aligned */
285 u64 ramdisk_image = get_ramdisk_image();
286 u64 ramdisk_size = get_ramdisk_size();
287 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
288
289 if (!boot_params.hdr.type_of_loader ||
290 !ramdisk_image || !ramdisk_size)
291 return; /* No initrd provided by bootloader */
292
293 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
294 }
295 static void __init reserve_initrd(void)
296 {
297 /* Assume only end is not page aligned */
298 u64 ramdisk_image = get_ramdisk_image();
299 u64 ramdisk_size = get_ramdisk_size();
300 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
301 u64 mapped_size;
302
303 if (!boot_params.hdr.type_of_loader ||
304 !ramdisk_image || !ramdisk_size)
305 return; /* No initrd provided by bootloader */
306
307 initrd_start = 0;
308
309 mapped_size = memblock_mem_size(max_pfn_mapped);
310 if (ramdisk_size >= (mapped_size>>1))
311 panic("initrd too large to handle, "
312 "disabling initrd (%lld needed, %lld available)\n",
313 ramdisk_size, mapped_size>>1);
314
315 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
316 ramdisk_end - 1);
317
318 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
319 PFN_DOWN(ramdisk_end))) {
320 /* All are mapped, easy case */
321 initrd_start = ramdisk_image + PAGE_OFFSET;
322 initrd_end = initrd_start + ramdisk_size;
323 return;
324 }
325
326 relocate_initrd();
327
328 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
329 }
330
331 #else
332 static void __init early_reserve_initrd(void)
333 {
334 }
335 static void __init reserve_initrd(void)
336 {
337 }
338 #endif /* CONFIG_BLK_DEV_INITRD */
339
340 static void __init parse_setup_data(void)
341 {
342 struct setup_data *data;
343 u64 pa_data, pa_next;
344
345 pa_data = boot_params.hdr.setup_data;
346 while (pa_data) {
347 u32 data_len, data_type;
348
349 data = early_memremap(pa_data, sizeof(*data));
350 data_len = data->len + sizeof(struct setup_data);
351 data_type = data->type;
352 pa_next = data->next;
353 early_memunmap(data, sizeof(*data));
354
355 switch (data_type) {
356 case SETUP_E820_EXT:
357 e820__memory_setup_extended(pa_data, data_len);
358 break;
359 case SETUP_DTB:
360 add_dtb(pa_data);
361 break;
362 case SETUP_EFI:
363 parse_efi_setup(pa_data, data_len);
364 break;
365 default:
366 break;
367 }
368 pa_data = pa_next;
369 }
370 }
371
372 static void __init memblock_x86_reserve_range_setup_data(void)
373 {
374 struct setup_data *data;
375 u64 pa_data;
376
377 pa_data = boot_params.hdr.setup_data;
378 while (pa_data) {
379 data = early_memremap(pa_data, sizeof(*data));
380 memblock_reserve(pa_data, sizeof(*data) + data->len);
381
382 if (data->type == SETUP_INDIRECT &&
383 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
384 memblock_reserve(((struct setup_indirect *)data->data)->addr,
385 ((struct setup_indirect *)data->data)->len);
386
387 pa_data = data->next;
388 early_memunmap(data, sizeof(*data));
389 }
390 }
391
392 /*
393 * --------- Crashkernel reservation ------------------------------
394 */
395
396 #ifdef CONFIG_KEXEC_CORE
397
398 /* 16M alignment for crash kernel regions */
399 #define CRASH_ALIGN SZ_16M
400
401 /*
402 * Keep the crash kernel below this limit.
403 *
404 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
405 * due to mapping restrictions.
406 *
407 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
408 * the upper limit of system RAM in 4-level paging mode. Since the kdump
409 * jump could be from 5-level paging to 4-level paging, the jump will fail if
410 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
411 * no good way to detect the paging mode of the target kernel which will be
412 * loaded for dumping.
413 */
414 #ifdef CONFIG_X86_32
415 # define CRASH_ADDR_LOW_MAX SZ_512M
416 # define CRASH_ADDR_HIGH_MAX SZ_512M
417 #else
418 # define CRASH_ADDR_LOW_MAX SZ_4G
419 # define CRASH_ADDR_HIGH_MAX SZ_64T
420 #endif
421
422 static int __init reserve_crashkernel_low(void)
423 {
424 #ifdef CONFIG_X86_64
425 unsigned long long base, low_base = 0, low_size = 0;
426 unsigned long total_low_mem;
427 int ret;
428
429 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
430
431 /* crashkernel=Y,low */
432 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
433 if (ret) {
434 /*
435 * two parts from kernel/dma/swiotlb.c:
436 * -swiotlb size: user-specified with swiotlb= or default.
437 *
438 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
439 * to 8M for other buffers that may need to stay low too. Also
440 * make sure we allocate enough extra low memory so that we
441 * don't run out of DMA buffers for 32-bit devices.
442 */
443 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
444 } else {
445 /* passed with crashkernel=0,low ? */
446 if (!low_size)
447 return 0;
448 }
449
450 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
451 if (!low_base) {
452 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
453 (unsigned long)(low_size >> 20));
454 return -ENOMEM;
455 }
456
457 ret = memblock_reserve(low_base, low_size);
458 if (ret) {
459 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
460 return ret;
461 }
462
463 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
464 (unsigned long)(low_size >> 20),
465 (unsigned long)(low_base >> 20),
466 (unsigned long)(total_low_mem >> 20));
467
468 crashk_low_res.start = low_base;
469 crashk_low_res.end = low_base + low_size - 1;
470 insert_resource(&iomem_resource, &crashk_low_res);
471 #endif
472 return 0;
473 }
474
475 static void __init reserve_crashkernel(void)
476 {
477 unsigned long long crash_size, crash_base, total_mem;
478 bool high = false;
479 int ret;
480
481 total_mem = memblock_phys_mem_size();
482
483 /* crashkernel=XM */
484 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
485 if (ret != 0 || crash_size <= 0) {
486 /* crashkernel=X,high */
487 ret = parse_crashkernel_high(boot_command_line, total_mem,
488 &crash_size, &crash_base);
489 if (ret != 0 || crash_size <= 0)
490 return;
491 high = true;
492 }
493
494 if (xen_pv_domain()) {
495 pr_info("Ignoring crashkernel for a Xen PV domain\n");
496 return;
497 }
498
499 /* 0 means: find the address automatically */
500 if (!crash_base) {
501 /*
502 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
503 * crashkernel=x,high reserves memory over 4G, also allocates
504 * 256M extra low memory for DMA buffers and swiotlb.
505 * But the extra memory is not required for all machines.
506 * So try low memory first and fall back to high memory
507 * unless "crashkernel=size[KMG],high" is specified.
508 */
509 if (!high)
510 crash_base = memblock_find_in_range(CRASH_ALIGN,
511 CRASH_ADDR_LOW_MAX,
512 crash_size, CRASH_ALIGN);
513 if (!crash_base)
514 crash_base = memblock_find_in_range(CRASH_ALIGN,
515 CRASH_ADDR_HIGH_MAX,
516 crash_size, CRASH_ALIGN);
517 if (!crash_base) {
518 pr_info("crashkernel reservation failed - No suitable area found.\n");
519 return;
520 }
521 } else {
522 unsigned long long start;
523
524 start = memblock_find_in_range(crash_base,
525 crash_base + crash_size,
526 crash_size, 1 << 20);
527 if (start != crash_base) {
528 pr_info("crashkernel reservation failed - memory is in use.\n");
529 return;
530 }
531 }
532 ret = memblock_reserve(crash_base, crash_size);
533 if (ret) {
534 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
535 return;
536 }
537
538 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
539 memblock_free(crash_base, crash_size);
540 return;
541 }
542
543 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
544 (unsigned long)(crash_size >> 20),
545 (unsigned long)(crash_base >> 20),
546 (unsigned long)(total_mem >> 20));
547
548 crashk_res.start = crash_base;
549 crashk_res.end = crash_base + crash_size - 1;
550 insert_resource(&iomem_resource, &crashk_res);
551 }
552 #else
553 static void __init reserve_crashkernel(void)
554 {
555 }
556 #endif
557
558 static struct resource standard_io_resources[] = {
559 { .name = "dma1", .start = 0x00, .end = 0x1f,
560 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
561 { .name = "pic1", .start = 0x20, .end = 0x21,
562 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
563 { .name = "timer0", .start = 0x40, .end = 0x43,
564 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
565 { .name = "timer1", .start = 0x50, .end = 0x53,
566 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
567 { .name = "keyboard", .start = 0x60, .end = 0x60,
568 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
569 { .name = "keyboard", .start = 0x64, .end = 0x64,
570 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
571 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
572 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
573 { .name = "pic2", .start = 0xa0, .end = 0xa1,
574 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
575 { .name = "dma2", .start = 0xc0, .end = 0xdf,
576 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
577 { .name = "fpu", .start = 0xf0, .end = 0xff,
578 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
579 };
580
581 void __init reserve_standard_io_resources(void)
582 {
583 int i;
584
585 /* request I/O space for devices used on all i[345]86 PCs */
586 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
587 request_resource(&ioport_resource, &standard_io_resources[i]);
588
589 }
590
591 static __init void reserve_ibft_region(void)
592 {
593 unsigned long addr, size = 0;
594
595 addr = find_ibft_region(&size);
596
597 if (size)
598 memblock_reserve(addr, size);
599 }
600
601 static bool __init snb_gfx_workaround_needed(void)
602 {
603 #ifdef CONFIG_PCI
604 int i;
605 u16 vendor, devid;
606 static const __initconst u16 snb_ids[] = {
607 0x0102,
608 0x0112,
609 0x0122,
610 0x0106,
611 0x0116,
612 0x0126,
613 0x010a,
614 };
615
616 /* Assume no if something weird is going on with PCI */
617 if (!early_pci_allowed())
618 return false;
619
620 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
621 if (vendor != 0x8086)
622 return false;
623
624 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
625 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
626 if (devid == snb_ids[i])
627 return true;
628 #endif
629
630 return false;
631 }
632
633 /*
634 * Sandy Bridge graphics has trouble with certain ranges, exclude
635 * them from allocation.
636 */
637 static void __init trim_snb_memory(void)
638 {
639 static const __initconst unsigned long bad_pages[] = {
640 0x20050000,
641 0x20110000,
642 0x20130000,
643 0x20138000,
644 0x40004000,
645 };
646 int i;
647
648 if (!snb_gfx_workaround_needed())
649 return;
650
651 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
652
653 /*
654 * Reserve all memory below the 1 MB mark that has not
655 * already been reserved.
656 */
657 memblock_reserve(0, 1<<20);
658
659 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
660 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
661 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
662 bad_pages[i]);
663 }
664 }
665
666 /*
667 * Here we put platform-specific memory range workarounds, i.e.
668 * memory known to be corrupt or otherwise in need to be reserved on
669 * specific platforms.
670 *
671 * If this gets used more widely it could use a real dispatch mechanism.
672 */
673 static void __init trim_platform_memory_ranges(void)
674 {
675 trim_snb_memory();
676 }
677
678 static void __init trim_bios_range(void)
679 {
680 /*
681 * A special case is the first 4Kb of memory;
682 * This is a BIOS owned area, not kernel ram, but generally
683 * not listed as such in the E820 table.
684 *
685 * This typically reserves additional memory (64KiB by default)
686 * since some BIOSes are known to corrupt low memory. See the
687 * Kconfig help text for X86_RESERVE_LOW.
688 */
689 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
690
691 /*
692 * special case: Some BIOSes report the PC BIOS
693 * area (640Kb -> 1Mb) as RAM even though it is not.
694 * take them out.
695 */
696 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
697
698 e820__update_table(e820_table);
699 }
700
701 /* called before trim_bios_range() to spare extra sanitize */
702 static void __init e820_add_kernel_range(void)
703 {
704 u64 start = __pa_symbol(_text);
705 u64 size = __pa_symbol(_end) - start;
706
707 /*
708 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
709 * attempt to fix it by adding the range. We may have a confused BIOS,
710 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
711 * exclude kernel range. If we really are running on top non-RAM,
712 * we will crash later anyways.
713 */
714 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
715 return;
716
717 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
718 e820__range_remove(start, size, E820_TYPE_RAM, 0);
719 e820__range_add(start, size, E820_TYPE_RAM);
720 }
721
722 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
723
724 static int __init parse_reservelow(char *p)
725 {
726 unsigned long long size;
727
728 if (!p)
729 return -EINVAL;
730
731 size = memparse(p, &p);
732
733 if (size < 4096)
734 size = 4096;
735
736 if (size > 640*1024)
737 size = 640*1024;
738
739 reserve_low = size;
740
741 return 0;
742 }
743
744 early_param("reservelow", parse_reservelow);
745
746 static void __init trim_low_memory_range(void)
747 {
748 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
749 }
750
751 /*
752 * Dump out kernel offset information on panic.
753 */
754 static int
755 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
756 {
757 if (kaslr_enabled()) {
758 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
759 kaslr_offset(),
760 __START_KERNEL,
761 __START_KERNEL_map,
762 MODULES_VADDR-1);
763 } else {
764 pr_emerg("Kernel Offset: disabled\n");
765 }
766
767 return 0;
768 }
769
770 /*
771 * Determine if we were loaded by an EFI loader. If so, then we have also been
772 * passed the efi memmap, systab, etc., so we should use these data structures
773 * for initialization. Note, the efi init code path is determined by the
774 * global efi_enabled. This allows the same kernel image to be used on existing
775 * systems (with a traditional BIOS) as well as on EFI systems.
776 */
777 /*
778 * setup_arch - architecture-specific boot-time initializations
779 *
780 * Note: On x86_64, fixmaps are ready for use even before this is called.
781 */
782
783 void __init setup_arch(char **cmdline_p)
784 {
785 /*
786 * Reserve the memory occupied by the kernel between _text and
787 * __end_of_kernel_reserve symbols. Any kernel sections after the
788 * __end_of_kernel_reserve symbol must be explicitly reserved with a
789 * separate memblock_reserve() or they will be discarded.
790 */
791 memblock_reserve(__pa_symbol(_text),
792 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
793
794 /*
795 * Make sure page 0 is always reserved because on systems with
796 * L1TF its contents can be leaked to user processes.
797 */
798 memblock_reserve(0, PAGE_SIZE);
799
800 early_reserve_initrd();
801
802 /*
803 * At this point everything still needed from the boot loader
804 * or BIOS or kernel text should be early reserved or marked not
805 * RAM in e820. All other memory is free game.
806 */
807
808 #ifdef CONFIG_X86_32
809 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
810
811 /*
812 * copy kernel address range established so far and switch
813 * to the proper swapper page table
814 */
815 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
816 initial_page_table + KERNEL_PGD_BOUNDARY,
817 KERNEL_PGD_PTRS);
818
819 load_cr3(swapper_pg_dir);
820 /*
821 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
822 * a cr3 based tlb flush, so the following __flush_tlb_all()
823 * will not flush anything because the CPU quirk which clears
824 * X86_FEATURE_PGE has not been invoked yet. Though due to the
825 * load_cr3() above the TLB has been flushed already. The
826 * quirk is invoked before subsequent calls to __flush_tlb_all()
827 * so proper operation is guaranteed.
828 */
829 __flush_tlb_all();
830 #else
831 printk(KERN_INFO "Command line: %s\n", boot_command_line);
832 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
833 #endif
834
835 /*
836 * If we have OLPC OFW, we might end up relocating the fixmap due to
837 * reserve_top(), so do this before touching the ioremap area.
838 */
839 olpc_ofw_detect();
840
841 idt_setup_early_traps();
842 early_cpu_init();
843 arch_init_ideal_nops();
844 jump_label_init();
845 early_ioremap_init();
846
847 setup_olpc_ofw_pgd();
848
849 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
850 screen_info = boot_params.screen_info;
851 edid_info = boot_params.edid_info;
852 #ifdef CONFIG_X86_32
853 apm_info.bios = boot_params.apm_bios_info;
854 ist_info = boot_params.ist_info;
855 #endif
856 saved_video_mode = boot_params.hdr.vid_mode;
857 bootloader_type = boot_params.hdr.type_of_loader;
858 if ((bootloader_type >> 4) == 0xe) {
859 bootloader_type &= 0xf;
860 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
861 }
862 bootloader_version = bootloader_type & 0xf;
863 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
864
865 #ifdef CONFIG_BLK_DEV_RAM
866 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
867 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
868 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
869 #endif
870 #ifdef CONFIG_EFI
871 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
872 EFI32_LOADER_SIGNATURE, 4)) {
873 set_bit(EFI_BOOT, &efi.flags);
874 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
875 EFI64_LOADER_SIGNATURE, 4)) {
876 set_bit(EFI_BOOT, &efi.flags);
877 set_bit(EFI_64BIT, &efi.flags);
878 }
879 #endif
880
881 x86_init.oem.arch_setup();
882
883 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
884 e820__memory_setup();
885 parse_setup_data();
886
887 copy_edd();
888
889 if (!boot_params.hdr.root_flags)
890 root_mountflags &= ~MS_RDONLY;
891 init_mm.start_code = (unsigned long) _text;
892 init_mm.end_code = (unsigned long) _etext;
893 init_mm.end_data = (unsigned long) _edata;
894 init_mm.brk = _brk_end;
895
896 code_resource.start = __pa_symbol(_text);
897 code_resource.end = __pa_symbol(_etext)-1;
898 rodata_resource.start = __pa_symbol(__start_rodata);
899 rodata_resource.end = __pa_symbol(__end_rodata)-1;
900 data_resource.start = __pa_symbol(_sdata);
901 data_resource.end = __pa_symbol(_edata)-1;
902 bss_resource.start = __pa_symbol(__bss_start);
903 bss_resource.end = __pa_symbol(__bss_stop)-1;
904
905 #ifdef CONFIG_CMDLINE_BOOL
906 #ifdef CONFIG_CMDLINE_OVERRIDE
907 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
908 #else
909 if (builtin_cmdline[0]) {
910 /* append boot loader cmdline to builtin */
911 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
912 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
913 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
914 }
915 #endif
916 #endif
917
918 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
919 *cmdline_p = command_line;
920
921 /*
922 * x86_configure_nx() is called before parse_early_param() to detect
923 * whether hardware doesn't support NX (so that the early EHCI debug
924 * console setup can safely call set_fixmap()). It may then be called
925 * again from within noexec_setup() during parsing early parameters
926 * to honor the respective command line option.
927 */
928 x86_configure_nx();
929
930 parse_early_param();
931
932 if (efi_enabled(EFI_BOOT))
933 efi_memblock_x86_reserve_range();
934 #ifdef CONFIG_MEMORY_HOTPLUG
935 /*
936 * Memory used by the kernel cannot be hot-removed because Linux
937 * cannot migrate the kernel pages. When memory hotplug is
938 * enabled, we should prevent memblock from allocating memory
939 * for the kernel.
940 *
941 * ACPI SRAT records all hotpluggable memory ranges. But before
942 * SRAT is parsed, we don't know about it.
943 *
944 * The kernel image is loaded into memory at very early time. We
945 * cannot prevent this anyway. So on NUMA system, we set any
946 * node the kernel resides in as un-hotpluggable.
947 *
948 * Since on modern servers, one node could have double-digit
949 * gigabytes memory, we can assume the memory around the kernel
950 * image is also un-hotpluggable. So before SRAT is parsed, just
951 * allocate memory near the kernel image to try the best to keep
952 * the kernel away from hotpluggable memory.
953 */
954 if (movable_node_is_enabled())
955 memblock_set_bottom_up(true);
956 #endif
957
958 x86_report_nx();
959
960 /* after early param, so could get panic from serial */
961 memblock_x86_reserve_range_setup_data();
962
963 if (acpi_mps_check()) {
964 #ifdef CONFIG_X86_LOCAL_APIC
965 disable_apic = 1;
966 #endif
967 setup_clear_cpu_cap(X86_FEATURE_APIC);
968 }
969
970 e820__reserve_setup_data();
971 e820__finish_early_params();
972
973 if (efi_enabled(EFI_BOOT))
974 efi_init();
975
976 dmi_setup();
977
978 /*
979 * VMware detection requires dmi to be available, so this
980 * needs to be done after dmi_setup(), for the boot CPU.
981 */
982 init_hypervisor_platform();
983
984 tsc_early_init();
985 x86_init.resources.probe_roms();
986
987 /* after parse_early_param, so could debug it */
988 insert_resource(&iomem_resource, &code_resource);
989 insert_resource(&iomem_resource, &rodata_resource);
990 insert_resource(&iomem_resource, &data_resource);
991 insert_resource(&iomem_resource, &bss_resource);
992
993 e820_add_kernel_range();
994 trim_bios_range();
995 #ifdef CONFIG_X86_32
996 if (ppro_with_ram_bug()) {
997 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
998 E820_TYPE_RESERVED);
999 e820__update_table(e820_table);
1000 printk(KERN_INFO "fixed physical RAM map:\n");
1001 e820__print_table("bad_ppro");
1002 }
1003 #else
1004 early_gart_iommu_check();
1005 #endif
1006
1007 /*
1008 * partially used pages are not usable - thus
1009 * we are rounding upwards:
1010 */
1011 max_pfn = e820__end_of_ram_pfn();
1012
1013 /* update e820 for memory not covered by WB MTRRs */
1014 mtrr_bp_init();
1015 if (mtrr_trim_uncached_memory(max_pfn))
1016 max_pfn = e820__end_of_ram_pfn();
1017
1018 max_possible_pfn = max_pfn;
1019
1020 /*
1021 * This call is required when the CPU does not support PAT. If
1022 * mtrr_bp_init() invoked it already via pat_init() the call has no
1023 * effect.
1024 */
1025 init_cache_modes();
1026
1027 /*
1028 * Define random base addresses for memory sections after max_pfn is
1029 * defined and before each memory section base is used.
1030 */
1031 kernel_randomize_memory();
1032
1033 #ifdef CONFIG_X86_32
1034 /* max_low_pfn get updated here */
1035 find_low_pfn_range();
1036 #else
1037 check_x2apic();
1038
1039 /* How many end-of-memory variables you have, grandma! */
1040 /* need this before calling reserve_initrd */
1041 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1042 max_low_pfn = e820__end_of_low_ram_pfn();
1043 else
1044 max_low_pfn = max_pfn;
1045
1046 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1047 #endif
1048
1049 /*
1050 * Find and reserve possible boot-time SMP configuration:
1051 */
1052 find_smp_config();
1053
1054 reserve_ibft_region();
1055
1056 early_alloc_pgt_buf();
1057
1058 /*
1059 * Need to conclude brk, before e820__memblock_setup()
1060 * it could use memblock_find_in_range, could overlap with
1061 * brk area.
1062 */
1063 reserve_brk();
1064
1065 cleanup_highmap();
1066
1067 memblock_set_current_limit(ISA_END_ADDRESS);
1068 e820__memblock_setup();
1069
1070 reserve_bios_regions();
1071
1072 efi_fake_memmap();
1073 efi_find_mirror();
1074 efi_esrt_init();
1075
1076 /*
1077 * The EFI specification says that boot service code won't be
1078 * called after ExitBootServices(). This is, in fact, a lie.
1079 */
1080 efi_reserve_boot_services();
1081
1082 /* preallocate 4k for mptable mpc */
1083 e820__memblock_alloc_reserved_mpc_new();
1084
1085 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1086 setup_bios_corruption_check();
1087 #endif
1088
1089 #ifdef CONFIG_X86_32
1090 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1091 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1092 #endif
1093
1094 reserve_real_mode();
1095
1096 trim_platform_memory_ranges();
1097 trim_low_memory_range();
1098
1099 init_mem_mapping();
1100
1101 idt_setup_early_pf();
1102
1103 /*
1104 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1105 * with the current CR4 value. This may not be necessary, but
1106 * auditing all the early-boot CR4 manipulation would be needed to
1107 * rule it out.
1108 *
1109 * Mask off features that don't work outside long mode (just
1110 * PCIDE for now).
1111 */
1112 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1113
1114 memblock_set_current_limit(get_max_mapped());
1115
1116 /*
1117 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1118 */
1119
1120 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1121 if (init_ohci1394_dma_early)
1122 init_ohci1394_dma_on_all_controllers();
1123 #endif
1124 /* Allocate bigger log buffer */
1125 setup_log_buf(1);
1126
1127 if (efi_enabled(EFI_BOOT)) {
1128 switch (boot_params.secure_boot) {
1129 case efi_secureboot_mode_disabled:
1130 pr_info("Secure boot disabled\n");
1131 break;
1132 case efi_secureboot_mode_enabled:
1133 pr_info("Secure boot enabled\n");
1134 break;
1135 default:
1136 pr_info("Secure boot could not be determined\n");
1137 break;
1138 }
1139 }
1140
1141 reserve_initrd();
1142
1143 acpi_table_upgrade();
1144
1145 vsmp_init();
1146
1147 io_delay_init();
1148
1149 early_platform_quirks();
1150
1151 /*
1152 * Parse the ACPI tables for possible boot-time SMP configuration.
1153 */
1154 acpi_boot_table_init();
1155
1156 early_acpi_boot_init();
1157
1158 initmem_init();
1159 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1160
1161 if (boot_cpu_has(X86_FEATURE_GBPAGES))
1162 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1163
1164 /*
1165 * Reserve memory for crash kernel after SRAT is parsed so that it
1166 * won't consume hotpluggable memory.
1167 */
1168 reserve_crashkernel();
1169
1170 memblock_find_dma_reserve();
1171
1172 if (!early_xdbc_setup_hardware())
1173 early_xdbc_register_console();
1174
1175 x86_init.paging.pagetable_init();
1176
1177 kasan_init();
1178
1179 /*
1180 * Sync back kernel address range.
1181 *
1182 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1183 * this call?
1184 */
1185 sync_initial_page_table();
1186
1187 tboot_probe();
1188
1189 map_vsyscall();
1190
1191 generic_apic_probe();
1192
1193 early_quirks();
1194
1195 /*
1196 * Read APIC and some other early information from ACPI tables.
1197 */
1198 acpi_boot_init();
1199 sfi_init();
1200 x86_dtb_init();
1201
1202 /*
1203 * get boot-time SMP configuration:
1204 */
1205 get_smp_config();
1206
1207 /*
1208 * Systems w/o ACPI and mptables might not have it mapped the local
1209 * APIC yet, but prefill_possible_map() might need to access it.
1210 */
1211 init_apic_mappings();
1212
1213 prefill_possible_map();
1214
1215 init_cpu_to_node();
1216
1217 io_apic_init_mappings();
1218
1219 x86_init.hyper.guest_late_init();
1220
1221 e820__reserve_resources();
1222 e820__register_nosave_regions(max_pfn);
1223
1224 x86_init.resources.reserve_resources();
1225
1226 e820__setup_pci_gap();
1227
1228 #ifdef CONFIG_VT
1229 #if defined(CONFIG_VGA_CONSOLE)
1230 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1231 conswitchp = &vga_con;
1232 #endif
1233 #endif
1234 x86_init.oem.banner();
1235
1236 x86_init.timers.wallclock_init();
1237
1238 mcheck_init();
1239
1240 register_refined_jiffies(CLOCK_TICK_RATE);
1241
1242 #ifdef CONFIG_EFI
1243 if (efi_enabled(EFI_BOOT))
1244 efi_apply_memmap_quirks();
1245 #endif
1246
1247 unwind_init();
1248 }
1249
1250 #ifdef CONFIG_X86_32
1251
1252 static struct resource video_ram_resource = {
1253 .name = "Video RAM area",
1254 .start = 0xa0000,
1255 .end = 0xbffff,
1256 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1257 };
1258
1259 void __init i386_reserve_resources(void)
1260 {
1261 request_resource(&iomem_resource, &video_ram_resource);
1262 reserve_standard_io_resources();
1263 }
1264
1265 #endif /* CONFIG_X86_32 */
1266
1267 static struct notifier_block kernel_offset_notifier = {
1268 .notifier_call = dump_kernel_offset
1269 };
1270
1271 static int __init register_kernel_offset_dumper(void)
1272 {
1273 atomic_notifier_chain_register(&panic_notifier_list,
1274 &kernel_offset_notifier);
1275 return 0;
1276 }
1277 __initcall(register_kernel_offset_dumper);