]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/kernel/smpboot.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / arch / x86 / kernel / smpboot.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * x86 SMP booting functions
4 *
5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 * Copyright 2001 Andi Kleen, SuSE Labs.
8 *
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
11 *
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
15 *
16 * Fixes
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
27 * from Jose Renau
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
38 */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/stackprotector.h>
55 #include <linux/gfp.h>
56 #include <linux/cpuidle.h>
57 #include <linux/numa.h>
58
59 #include <asm/acpi.h>
60 #include <asm/desc.h>
61 #include <asm/nmi.h>
62 #include <asm/irq.h>
63 #include <asm/realmode.h>
64 #include <asm/cpu.h>
65 #include <asm/numa.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83
84 /* representing HT siblings of each logical CPU */
85 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
86 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
87
88 /* representing HT and core siblings of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91
92 /* representing HT, core, and die siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
95
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
97
98 /* Per CPU bogomips and other parameters */
99 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
100 EXPORT_PER_CPU_SYMBOL(cpu_info);
101
102 /* Logical package management. We might want to allocate that dynamically */
103 unsigned int __max_logical_packages __read_mostly;
104 EXPORT_SYMBOL(__max_logical_packages);
105 static unsigned int logical_packages __read_mostly;
106 static unsigned int logical_die __read_mostly;
107
108 /* Maximum number of SMT threads on any online core */
109 int __read_mostly __max_smt_threads = 1;
110
111 /* Flag to indicate if a complete sched domain rebuild is required */
112 bool x86_topology_update;
113
114 int arch_update_cpu_topology(void)
115 {
116 int retval = x86_topology_update;
117
118 x86_topology_update = false;
119 return retval;
120 }
121
122 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
123 {
124 unsigned long flags;
125
126 spin_lock_irqsave(&rtc_lock, flags);
127 CMOS_WRITE(0xa, 0xf);
128 spin_unlock_irqrestore(&rtc_lock, flags);
129 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
130 start_eip >> 4;
131 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
132 start_eip & 0xf;
133 }
134
135 static inline void smpboot_restore_warm_reset_vector(void)
136 {
137 unsigned long flags;
138
139 /*
140 * Paranoid: Set warm reset code and vector here back
141 * to default values.
142 */
143 spin_lock_irqsave(&rtc_lock, flags);
144 CMOS_WRITE(0, 0xf);
145 spin_unlock_irqrestore(&rtc_lock, flags);
146
147 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
148 }
149
150 static void init_freq_invariance(bool secondary);
151
152 /*
153 * Report back to the Boot Processor during boot time or to the caller processor
154 * during CPU online.
155 */
156 static void smp_callin(void)
157 {
158 int cpuid;
159
160 /*
161 * If waken up by an INIT in an 82489DX configuration
162 * cpu_callout_mask guarantees we don't get here before
163 * an INIT_deassert IPI reaches our local APIC, so it is
164 * now safe to touch our local APIC.
165 */
166 cpuid = smp_processor_id();
167
168 /*
169 * the boot CPU has finished the init stage and is spinning
170 * on callin_map until we finish. We are free to set up this
171 * CPU, first the APIC. (this is probably redundant on most
172 * boards)
173 */
174 apic_ap_setup();
175
176 /*
177 * Save our processor parameters. Note: this information
178 * is needed for clock calibration.
179 */
180 smp_store_cpu_info(cpuid);
181
182 /*
183 * The topology information must be up to date before
184 * calibrate_delay() and notify_cpu_starting().
185 */
186 set_cpu_sibling_map(raw_smp_processor_id());
187
188 init_freq_invariance(true);
189
190 /*
191 * Get our bogomips.
192 * Update loops_per_jiffy in cpu_data. Previous call to
193 * smp_store_cpu_info() stored a value that is close but not as
194 * accurate as the value just calculated.
195 */
196 calibrate_delay();
197 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
198 pr_debug("Stack at about %p\n", &cpuid);
199
200 wmb();
201
202 notify_cpu_starting(cpuid);
203
204 /*
205 * Allow the master to continue.
206 */
207 cpumask_set_cpu(cpuid, cpu_callin_mask);
208 }
209
210 static int cpu0_logical_apicid;
211 static int enable_start_cpu0;
212 /*
213 * Activate a secondary processor.
214 */
215 static void notrace start_secondary(void *unused)
216 {
217 /*
218 * Don't put *anything* except direct CPU state initialization
219 * before cpu_init(), SMP booting is too fragile that we want to
220 * limit the things done here to the most necessary things.
221 */
222 cr4_init();
223
224 #ifdef CONFIG_X86_32
225 /* switch away from the initial page table */
226 load_cr3(swapper_pg_dir);
227 __flush_tlb_all();
228 #endif
229 load_current_idt();
230 cpu_init();
231 x86_cpuinit.early_percpu_clock_init();
232 preempt_disable();
233 smp_callin();
234
235 enable_start_cpu0 = 0;
236
237 /* otherwise gcc will move up smp_processor_id before the cpu_init */
238 barrier();
239 /*
240 * Check TSC synchronization with the boot CPU:
241 */
242 check_tsc_sync_target();
243
244 speculative_store_bypass_ht_init();
245
246 /*
247 * Lock vector_lock, set CPU online and bring the vector
248 * allocator online. Online must be set with vector_lock held
249 * to prevent a concurrent irq setup/teardown from seeing a
250 * half valid vector space.
251 */
252 lock_vector_lock();
253 set_cpu_online(smp_processor_id(), true);
254 lapic_online();
255 unlock_vector_lock();
256 cpu_set_state_online(smp_processor_id());
257 x86_platform.nmi_init();
258
259 /* enable local interrupts */
260 local_irq_enable();
261
262 /* to prevent fake stack check failure in clock setup */
263 boot_init_stack_canary();
264
265 x86_cpuinit.setup_percpu_clockev();
266
267 wmb();
268 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
269 }
270
271 /**
272 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
273 * @cpu: CPU to check
274 */
275 bool topology_is_primary_thread(unsigned int cpu)
276 {
277 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
278 }
279
280 /**
281 * topology_smt_supported - Check whether SMT is supported by the CPUs
282 */
283 bool topology_smt_supported(void)
284 {
285 return smp_num_siblings > 1;
286 }
287
288 /**
289 * topology_phys_to_logical_pkg - Map a physical package id to a logical
290 *
291 * Returns logical package id or -1 if not found
292 */
293 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
294 {
295 int cpu;
296
297 for_each_possible_cpu(cpu) {
298 struct cpuinfo_x86 *c = &cpu_data(cpu);
299
300 if (c->initialized && c->phys_proc_id == phys_pkg)
301 return c->logical_proc_id;
302 }
303 return -1;
304 }
305 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
306 /**
307 * topology_phys_to_logical_die - Map a physical die id to logical
308 *
309 * Returns logical die id or -1 if not found
310 */
311 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
312 {
313 int cpu;
314 int proc_id = cpu_data(cur_cpu).phys_proc_id;
315
316 for_each_possible_cpu(cpu) {
317 struct cpuinfo_x86 *c = &cpu_data(cpu);
318
319 if (c->initialized && c->cpu_die_id == die_id &&
320 c->phys_proc_id == proc_id)
321 return c->logical_die_id;
322 }
323 return -1;
324 }
325 EXPORT_SYMBOL(topology_phys_to_logical_die);
326
327 /**
328 * topology_update_package_map - Update the physical to logical package map
329 * @pkg: The physical package id as retrieved via CPUID
330 * @cpu: The cpu for which this is updated
331 */
332 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
333 {
334 int new;
335
336 /* Already available somewhere? */
337 new = topology_phys_to_logical_pkg(pkg);
338 if (new >= 0)
339 goto found;
340
341 new = logical_packages++;
342 if (new != pkg) {
343 pr_info("CPU %u Converting physical %u to logical package %u\n",
344 cpu, pkg, new);
345 }
346 found:
347 cpu_data(cpu).logical_proc_id = new;
348 return 0;
349 }
350 /**
351 * topology_update_die_map - Update the physical to logical die map
352 * @die: The die id as retrieved via CPUID
353 * @cpu: The cpu for which this is updated
354 */
355 int topology_update_die_map(unsigned int die, unsigned int cpu)
356 {
357 int new;
358
359 /* Already available somewhere? */
360 new = topology_phys_to_logical_die(die, cpu);
361 if (new >= 0)
362 goto found;
363
364 new = logical_die++;
365 if (new != die) {
366 pr_info("CPU %u Converting physical %u to logical die %u\n",
367 cpu, die, new);
368 }
369 found:
370 cpu_data(cpu).logical_die_id = new;
371 return 0;
372 }
373
374 void __init smp_store_boot_cpu_info(void)
375 {
376 int id = 0; /* CPU 0 */
377 struct cpuinfo_x86 *c = &cpu_data(id);
378
379 *c = boot_cpu_data;
380 c->cpu_index = id;
381 topology_update_package_map(c->phys_proc_id, id);
382 topology_update_die_map(c->cpu_die_id, id);
383 c->initialized = true;
384 }
385
386 /*
387 * The bootstrap kernel entry code has set these up. Save them for
388 * a given CPU
389 */
390 void smp_store_cpu_info(int id)
391 {
392 struct cpuinfo_x86 *c = &cpu_data(id);
393
394 /* Copy boot_cpu_data only on the first bringup */
395 if (!c->initialized)
396 *c = boot_cpu_data;
397 c->cpu_index = id;
398 /*
399 * During boot time, CPU0 has this setup already. Save the info when
400 * bringing up AP or offlined CPU0.
401 */
402 identify_secondary_cpu(c);
403 c->initialized = true;
404 }
405
406 static bool
407 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
408 {
409 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
410
411 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
412 }
413
414 static bool
415 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
416 {
417 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
418
419 return !WARN_ONCE(!topology_same_node(c, o),
420 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
421 "[node: %d != %d]. Ignoring dependency.\n",
422 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
423 }
424
425 #define link_mask(mfunc, c1, c2) \
426 do { \
427 cpumask_set_cpu((c1), mfunc(c2)); \
428 cpumask_set_cpu((c2), mfunc(c1)); \
429 } while (0)
430
431 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
432 {
433 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
434 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
435
436 if (c->phys_proc_id == o->phys_proc_id &&
437 c->cpu_die_id == o->cpu_die_id &&
438 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
439 if (c->cpu_core_id == o->cpu_core_id)
440 return topology_sane(c, o, "smt");
441
442 if ((c->cu_id != 0xff) &&
443 (o->cu_id != 0xff) &&
444 (c->cu_id == o->cu_id))
445 return topology_sane(c, o, "smt");
446 }
447
448 } else if (c->phys_proc_id == o->phys_proc_id &&
449 c->cpu_die_id == o->cpu_die_id &&
450 c->cpu_core_id == o->cpu_core_id) {
451 return topology_sane(c, o, "smt");
452 }
453
454 return false;
455 }
456
457 /*
458 * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
459 *
460 * These are Intel CPUs that enumerate an LLC that is shared by
461 * multiple NUMA nodes. The LLC on these systems is shared for
462 * off-package data access but private to the NUMA node (half
463 * of the package) for on-package access.
464 *
465 * CPUID (the source of the information about the LLC) can only
466 * enumerate the cache as being shared *or* unshared, but not
467 * this particular configuration. The CPU in this case enumerates
468 * the cache to be shared across the entire package (spanning both
469 * NUMA nodes).
470 */
471
472 static const struct x86_cpu_id snc_cpu[] = {
473 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
474 {}
475 };
476
477 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
478 {
479 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
480
481 /* Do not match if we do not have a valid APICID for cpu: */
482 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
483 return false;
484
485 /* Do not match if LLC id does not match: */
486 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
487 return false;
488
489 /*
490 * Allow the SNC topology without warning. Return of false
491 * means 'c' does not share the LLC of 'o'. This will be
492 * reflected to userspace.
493 */
494 if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
495 return false;
496
497 return topology_sane(c, o, "llc");
498 }
499
500 /*
501 * Unlike the other levels, we do not enforce keeping a
502 * multicore group inside a NUMA node. If this happens, we will
503 * discard the MC level of the topology later.
504 */
505 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
506 {
507 if (c->phys_proc_id == o->phys_proc_id)
508 return true;
509 return false;
510 }
511
512 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
513 {
514 if ((c->phys_proc_id == o->phys_proc_id) &&
515 (c->cpu_die_id == o->cpu_die_id))
516 return true;
517 return false;
518 }
519
520
521 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
522 static inline int x86_sched_itmt_flags(void)
523 {
524 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
525 }
526
527 #ifdef CONFIG_SCHED_MC
528 static int x86_core_flags(void)
529 {
530 return cpu_core_flags() | x86_sched_itmt_flags();
531 }
532 #endif
533 #ifdef CONFIG_SCHED_SMT
534 static int x86_smt_flags(void)
535 {
536 return cpu_smt_flags() | x86_sched_itmt_flags();
537 }
538 #endif
539 #endif
540
541 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
542 #ifdef CONFIG_SCHED_SMT
543 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
544 #endif
545 #ifdef CONFIG_SCHED_MC
546 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
547 #endif
548 { NULL, },
549 };
550
551 static struct sched_domain_topology_level x86_topology[] = {
552 #ifdef CONFIG_SCHED_SMT
553 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
554 #endif
555 #ifdef CONFIG_SCHED_MC
556 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
557 #endif
558 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
559 { NULL, },
560 };
561
562 /*
563 * Set if a package/die has multiple NUMA nodes inside.
564 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
565 * Sub-NUMA Clustering have this.
566 */
567 static bool x86_has_numa_in_package;
568
569 void set_cpu_sibling_map(int cpu)
570 {
571 bool has_smt = smp_num_siblings > 1;
572 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
573 struct cpuinfo_x86 *c = &cpu_data(cpu);
574 struct cpuinfo_x86 *o;
575 int i, threads;
576
577 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
578
579 if (!has_mp) {
580 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
581 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
582 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
583 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
584 c->booted_cores = 1;
585 return;
586 }
587
588 for_each_cpu(i, cpu_sibling_setup_mask) {
589 o = &cpu_data(i);
590
591 if ((i == cpu) || (has_smt && match_smt(c, o)))
592 link_mask(topology_sibling_cpumask, cpu, i);
593
594 if ((i == cpu) || (has_mp && match_llc(c, o)))
595 link_mask(cpu_llc_shared_mask, cpu, i);
596
597 }
598
599 /*
600 * This needs a separate iteration over the cpus because we rely on all
601 * topology_sibling_cpumask links to be set-up.
602 */
603 for_each_cpu(i, cpu_sibling_setup_mask) {
604 o = &cpu_data(i);
605
606 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
607 link_mask(topology_core_cpumask, cpu, i);
608
609 /*
610 * Does this new cpu bringup a new core?
611 */
612 if (cpumask_weight(
613 topology_sibling_cpumask(cpu)) == 1) {
614 /*
615 * for each core in package, increment
616 * the booted_cores for this new cpu
617 */
618 if (cpumask_first(
619 topology_sibling_cpumask(i)) == i)
620 c->booted_cores++;
621 /*
622 * increment the core count for all
623 * the other cpus in this package
624 */
625 if (i != cpu)
626 cpu_data(i).booted_cores++;
627 } else if (i != cpu && !c->booted_cores)
628 c->booted_cores = cpu_data(i).booted_cores;
629 }
630 if (match_pkg(c, o) && !topology_same_node(c, o))
631 x86_has_numa_in_package = true;
632
633 if ((i == cpu) || (has_mp && match_die(c, o)))
634 link_mask(topology_die_cpumask, cpu, i);
635 }
636
637 threads = cpumask_weight(topology_sibling_cpumask(cpu));
638 if (threads > __max_smt_threads)
639 __max_smt_threads = threads;
640 }
641
642 /* maps the cpu to the sched domain representing multi-core */
643 const struct cpumask *cpu_coregroup_mask(int cpu)
644 {
645 return cpu_llc_shared_mask(cpu);
646 }
647
648 static void impress_friends(void)
649 {
650 int cpu;
651 unsigned long bogosum = 0;
652 /*
653 * Allow the user to impress friends.
654 */
655 pr_debug("Before bogomips\n");
656 for_each_possible_cpu(cpu)
657 if (cpumask_test_cpu(cpu, cpu_callout_mask))
658 bogosum += cpu_data(cpu).loops_per_jiffy;
659 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
660 num_online_cpus(),
661 bogosum/(500000/HZ),
662 (bogosum/(5000/HZ))%100);
663
664 pr_debug("Before bogocount - setting activated=1\n");
665 }
666
667 void __inquire_remote_apic(int apicid)
668 {
669 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
670 const char * const names[] = { "ID", "VERSION", "SPIV" };
671 int timeout;
672 u32 status;
673
674 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
675
676 for (i = 0; i < ARRAY_SIZE(regs); i++) {
677 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
678
679 /*
680 * Wait for idle.
681 */
682 status = safe_apic_wait_icr_idle();
683 if (status)
684 pr_cont("a previous APIC delivery may have failed\n");
685
686 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
687
688 timeout = 0;
689 do {
690 udelay(100);
691 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
692 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
693
694 switch (status) {
695 case APIC_ICR_RR_VALID:
696 status = apic_read(APIC_RRR);
697 pr_cont("%08x\n", status);
698 break;
699 default:
700 pr_cont("failed\n");
701 }
702 }
703 }
704
705 /*
706 * The Multiprocessor Specification 1.4 (1997) example code suggests
707 * that there should be a 10ms delay between the BSP asserting INIT
708 * and de-asserting INIT, when starting a remote processor.
709 * But that slows boot and resume on modern processors, which include
710 * many cores and don't require that delay.
711 *
712 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
713 * Modern processor families are quirked to remove the delay entirely.
714 */
715 #define UDELAY_10MS_DEFAULT 10000
716
717 static unsigned int init_udelay = UINT_MAX;
718
719 static int __init cpu_init_udelay(char *str)
720 {
721 get_option(&str, &init_udelay);
722
723 return 0;
724 }
725 early_param("cpu_init_udelay", cpu_init_udelay);
726
727 static void __init smp_quirk_init_udelay(void)
728 {
729 /* if cmdline changed it from default, leave it alone */
730 if (init_udelay != UINT_MAX)
731 return;
732
733 /* if modern processor, use no delay */
734 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
735 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
736 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
737 init_udelay = 0;
738 return;
739 }
740 /* else, use legacy delay */
741 init_udelay = UDELAY_10MS_DEFAULT;
742 }
743
744 /*
745 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
746 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
747 * won't ... remember to clear down the APIC, etc later.
748 */
749 int
750 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
751 {
752 unsigned long send_status, accept_status = 0;
753 int maxlvt;
754
755 /* Target chip */
756 /* Boot on the stack */
757 /* Kick the second */
758 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
759
760 pr_debug("Waiting for send to finish...\n");
761 send_status = safe_apic_wait_icr_idle();
762
763 /*
764 * Give the other CPU some time to accept the IPI.
765 */
766 udelay(200);
767 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
768 maxlvt = lapic_get_maxlvt();
769 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
770 apic_write(APIC_ESR, 0);
771 accept_status = (apic_read(APIC_ESR) & 0xEF);
772 }
773 pr_debug("NMI sent\n");
774
775 if (send_status)
776 pr_err("APIC never delivered???\n");
777 if (accept_status)
778 pr_err("APIC delivery error (%lx)\n", accept_status);
779
780 return (send_status | accept_status);
781 }
782
783 static int
784 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
785 {
786 unsigned long send_status = 0, accept_status = 0;
787 int maxlvt, num_starts, j;
788
789 maxlvt = lapic_get_maxlvt();
790
791 /*
792 * Be paranoid about clearing APIC errors.
793 */
794 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
795 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
796 apic_write(APIC_ESR, 0);
797 apic_read(APIC_ESR);
798 }
799
800 pr_debug("Asserting INIT\n");
801
802 /*
803 * Turn INIT on target chip
804 */
805 /*
806 * Send IPI
807 */
808 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
809 phys_apicid);
810
811 pr_debug("Waiting for send to finish...\n");
812 send_status = safe_apic_wait_icr_idle();
813
814 udelay(init_udelay);
815
816 pr_debug("Deasserting INIT\n");
817
818 /* Target chip */
819 /* Send IPI */
820 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
821
822 pr_debug("Waiting for send to finish...\n");
823 send_status = safe_apic_wait_icr_idle();
824
825 mb();
826
827 /*
828 * Should we send STARTUP IPIs ?
829 *
830 * Determine this based on the APIC version.
831 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
832 */
833 if (APIC_INTEGRATED(boot_cpu_apic_version))
834 num_starts = 2;
835 else
836 num_starts = 0;
837
838 /*
839 * Run STARTUP IPI loop.
840 */
841 pr_debug("#startup loops: %d\n", num_starts);
842
843 for (j = 1; j <= num_starts; j++) {
844 pr_debug("Sending STARTUP #%d\n", j);
845 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
846 apic_write(APIC_ESR, 0);
847 apic_read(APIC_ESR);
848 pr_debug("After apic_write\n");
849
850 /*
851 * STARTUP IPI
852 */
853
854 /* Target chip */
855 /* Boot on the stack */
856 /* Kick the second */
857 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
858 phys_apicid);
859
860 /*
861 * Give the other CPU some time to accept the IPI.
862 */
863 if (init_udelay == 0)
864 udelay(10);
865 else
866 udelay(300);
867
868 pr_debug("Startup point 1\n");
869
870 pr_debug("Waiting for send to finish...\n");
871 send_status = safe_apic_wait_icr_idle();
872
873 /*
874 * Give the other CPU some time to accept the IPI.
875 */
876 if (init_udelay == 0)
877 udelay(10);
878 else
879 udelay(200);
880
881 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
882 apic_write(APIC_ESR, 0);
883 accept_status = (apic_read(APIC_ESR) & 0xEF);
884 if (send_status || accept_status)
885 break;
886 }
887 pr_debug("After Startup\n");
888
889 if (send_status)
890 pr_err("APIC never delivered???\n");
891 if (accept_status)
892 pr_err("APIC delivery error (%lx)\n", accept_status);
893
894 return (send_status | accept_status);
895 }
896
897 /* reduce the number of lines printed when booting a large cpu count system */
898 static void announce_cpu(int cpu, int apicid)
899 {
900 static int current_node = NUMA_NO_NODE;
901 int node = early_cpu_to_node(cpu);
902 static int width, node_width;
903
904 if (!width)
905 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
906
907 if (!node_width)
908 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
909
910 if (cpu == 1)
911 printk(KERN_INFO "x86: Booting SMP configuration:\n");
912
913 if (system_state < SYSTEM_RUNNING) {
914 if (node != current_node) {
915 if (current_node > (-1))
916 pr_cont("\n");
917 current_node = node;
918
919 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
920 node_width - num_digits(node), " ", node);
921 }
922
923 /* Add padding for the BSP */
924 if (cpu == 1)
925 pr_cont("%*s", width + 1, " ");
926
927 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
928
929 } else
930 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
931 node, cpu, apicid);
932 }
933
934 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
935 {
936 int cpu;
937
938 cpu = smp_processor_id();
939 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
940 return NMI_HANDLED;
941
942 return NMI_DONE;
943 }
944
945 /*
946 * Wake up AP by INIT, INIT, STARTUP sequence.
947 *
948 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
949 * boot-strap code which is not a desired behavior for waking up BSP. To
950 * void the boot-strap code, wake up CPU0 by NMI instead.
951 *
952 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
953 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
954 * We'll change this code in the future to wake up hard offlined CPU0 if
955 * real platform and request are available.
956 */
957 static int
958 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
959 int *cpu0_nmi_registered)
960 {
961 int id;
962 int boot_error;
963
964 preempt_disable();
965
966 /*
967 * Wake up AP by INIT, INIT, STARTUP sequence.
968 */
969 if (cpu) {
970 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
971 goto out;
972 }
973
974 /*
975 * Wake up BSP by nmi.
976 *
977 * Register a NMI handler to help wake up CPU0.
978 */
979 boot_error = register_nmi_handler(NMI_LOCAL,
980 wakeup_cpu0_nmi, 0, "wake_cpu0");
981
982 if (!boot_error) {
983 enable_start_cpu0 = 1;
984 *cpu0_nmi_registered = 1;
985 if (apic->dest_logical == APIC_DEST_LOGICAL)
986 id = cpu0_logical_apicid;
987 else
988 id = apicid;
989 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
990 }
991
992 out:
993 preempt_enable();
994
995 return boot_error;
996 }
997
998 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
999 {
1000 int ret;
1001
1002 /* Just in case we booted with a single CPU. */
1003 alternatives_enable_smp();
1004
1005 per_cpu(current_task, cpu) = idle;
1006
1007 /* Initialize the interrupt stack(s) */
1008 ret = irq_init_percpu_irqstack(cpu);
1009 if (ret)
1010 return ret;
1011
1012 #ifdef CONFIG_X86_32
1013 /* Stack for startup_32 can be just as for start_secondary onwards */
1014 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1015 #else
1016 initial_gs = per_cpu_offset(cpu);
1017 #endif
1018 return 0;
1019 }
1020
1021 /*
1022 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1023 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1024 * Returns zero if CPU booted OK, else error code from
1025 * ->wakeup_secondary_cpu.
1026 */
1027 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1028 int *cpu0_nmi_registered)
1029 {
1030 /* start_ip had better be page-aligned! */
1031 unsigned long start_ip = real_mode_header->trampoline_start;
1032
1033 unsigned long boot_error = 0;
1034 unsigned long timeout;
1035
1036 idle->thread.sp = (unsigned long)task_pt_regs(idle);
1037 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1038 initial_code = (unsigned long)start_secondary;
1039 initial_stack = idle->thread.sp;
1040
1041 /* Enable the espfix hack for this CPU */
1042 init_espfix_ap(cpu);
1043
1044 /* So we see what's up */
1045 announce_cpu(cpu, apicid);
1046
1047 /*
1048 * This grunge runs the startup process for
1049 * the targeted processor.
1050 */
1051
1052 if (x86_platform.legacy.warm_reset) {
1053
1054 pr_debug("Setting warm reset code and vector.\n");
1055
1056 smpboot_setup_warm_reset_vector(start_ip);
1057 /*
1058 * Be paranoid about clearing APIC errors.
1059 */
1060 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1061 apic_write(APIC_ESR, 0);
1062 apic_read(APIC_ESR);
1063 }
1064 }
1065
1066 /*
1067 * AP might wait on cpu_callout_mask in cpu_init() with
1068 * cpu_initialized_mask set if previous attempt to online
1069 * it timed-out. Clear cpu_initialized_mask so that after
1070 * INIT/SIPI it could start with a clean state.
1071 */
1072 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1073 smp_mb();
1074
1075 /*
1076 * Wake up a CPU in difference cases:
1077 * - Use the method in the APIC driver if it's defined
1078 * Otherwise,
1079 * - Use an INIT boot APIC message for APs or NMI for BSP.
1080 */
1081 if (apic->wakeup_secondary_cpu)
1082 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1083 else
1084 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1085 cpu0_nmi_registered);
1086
1087 if (!boot_error) {
1088 /*
1089 * Wait 10s total for first sign of life from AP
1090 */
1091 boot_error = -1;
1092 timeout = jiffies + 10*HZ;
1093 while (time_before(jiffies, timeout)) {
1094 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1095 /*
1096 * Tell AP to proceed with initialization
1097 */
1098 cpumask_set_cpu(cpu, cpu_callout_mask);
1099 boot_error = 0;
1100 break;
1101 }
1102 schedule();
1103 }
1104 }
1105
1106 if (!boot_error) {
1107 /*
1108 * Wait till AP completes initial initialization
1109 */
1110 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1111 /*
1112 * Allow other tasks to run while we wait for the
1113 * AP to come online. This also gives a chance
1114 * for the MTRR work(triggered by the AP coming online)
1115 * to be completed in the stop machine context.
1116 */
1117 schedule();
1118 }
1119 }
1120
1121 if (x86_platform.legacy.warm_reset) {
1122 /*
1123 * Cleanup possible dangling ends...
1124 */
1125 smpboot_restore_warm_reset_vector();
1126 }
1127
1128 return boot_error;
1129 }
1130
1131 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1132 {
1133 int apicid = apic->cpu_present_to_apicid(cpu);
1134 int cpu0_nmi_registered = 0;
1135 unsigned long flags;
1136 int err, ret = 0;
1137
1138 lockdep_assert_irqs_enabled();
1139
1140 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1141
1142 if (apicid == BAD_APICID ||
1143 !physid_isset(apicid, phys_cpu_present_map) ||
1144 !apic->apic_id_valid(apicid)) {
1145 pr_err("%s: bad cpu %d\n", __func__, cpu);
1146 return -EINVAL;
1147 }
1148
1149 /*
1150 * Already booted CPU?
1151 */
1152 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1153 pr_debug("do_boot_cpu %d Already started\n", cpu);
1154 return -ENOSYS;
1155 }
1156
1157 /*
1158 * Save current MTRR state in case it was changed since early boot
1159 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1160 */
1161 mtrr_save_state();
1162
1163 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1164 err = cpu_check_up_prepare(cpu);
1165 if (err && err != -EBUSY)
1166 return err;
1167
1168 /* the FPU context is blank, nobody can own it */
1169 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1170
1171 err = common_cpu_up(cpu, tidle);
1172 if (err)
1173 return err;
1174
1175 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1176 if (err) {
1177 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1178 ret = -EIO;
1179 goto unreg_nmi;
1180 }
1181
1182 /*
1183 * Check TSC synchronization with the AP (keep irqs disabled
1184 * while doing so):
1185 */
1186 local_irq_save(flags);
1187 check_tsc_sync_source(cpu);
1188 local_irq_restore(flags);
1189
1190 while (!cpu_online(cpu)) {
1191 cpu_relax();
1192 touch_nmi_watchdog();
1193 }
1194
1195 unreg_nmi:
1196 /*
1197 * Clean up the nmi handler. Do this after the callin and callout sync
1198 * to avoid impact of possible long unregister time.
1199 */
1200 if (cpu0_nmi_registered)
1201 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1202
1203 return ret;
1204 }
1205
1206 /**
1207 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1208 */
1209 void arch_disable_smp_support(void)
1210 {
1211 disable_ioapic_support();
1212 }
1213
1214 /*
1215 * Fall back to non SMP mode after errors.
1216 *
1217 * RED-PEN audit/test this more. I bet there is more state messed up here.
1218 */
1219 static __init void disable_smp(void)
1220 {
1221 pr_info("SMP disabled\n");
1222
1223 disable_ioapic_support();
1224
1225 init_cpu_present(cpumask_of(0));
1226 init_cpu_possible(cpumask_of(0));
1227
1228 if (smp_found_config)
1229 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1230 else
1231 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1232 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1233 cpumask_set_cpu(0, topology_core_cpumask(0));
1234 cpumask_set_cpu(0, topology_die_cpumask(0));
1235 }
1236
1237 /*
1238 * Various sanity checks.
1239 */
1240 static void __init smp_sanity_check(void)
1241 {
1242 preempt_disable();
1243
1244 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1245 if (def_to_bigsmp && nr_cpu_ids > 8) {
1246 unsigned int cpu;
1247 unsigned nr;
1248
1249 pr_warn("More than 8 CPUs detected - skipping them\n"
1250 "Use CONFIG_X86_BIGSMP\n");
1251
1252 nr = 0;
1253 for_each_present_cpu(cpu) {
1254 if (nr >= 8)
1255 set_cpu_present(cpu, false);
1256 nr++;
1257 }
1258
1259 nr = 0;
1260 for_each_possible_cpu(cpu) {
1261 if (nr >= 8)
1262 set_cpu_possible(cpu, false);
1263 nr++;
1264 }
1265
1266 nr_cpu_ids = 8;
1267 }
1268 #endif
1269
1270 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1271 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1272 hard_smp_processor_id());
1273
1274 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1275 }
1276
1277 /*
1278 * Should not be necessary because the MP table should list the boot
1279 * CPU too, but we do it for the sake of robustness anyway.
1280 */
1281 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1282 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1283 boot_cpu_physical_apicid);
1284 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1285 }
1286 preempt_enable();
1287 }
1288
1289 static void __init smp_cpu_index_default(void)
1290 {
1291 int i;
1292 struct cpuinfo_x86 *c;
1293
1294 for_each_possible_cpu(i) {
1295 c = &cpu_data(i);
1296 /* mark all to hotplug */
1297 c->cpu_index = nr_cpu_ids;
1298 }
1299 }
1300
1301 static void __init smp_get_logical_apicid(void)
1302 {
1303 if (x2apic_mode)
1304 cpu0_logical_apicid = apic_read(APIC_LDR);
1305 else
1306 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1307 }
1308
1309 /*
1310 * Prepare for SMP bootup.
1311 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1312 * for common interface support.
1313 */
1314 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1315 {
1316 unsigned int i;
1317
1318 smp_cpu_index_default();
1319
1320 /*
1321 * Setup boot CPU information
1322 */
1323 smp_store_boot_cpu_info(); /* Final full version of the data */
1324 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1325 mb();
1326
1327 for_each_possible_cpu(i) {
1328 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1329 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1330 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1331 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1332 }
1333
1334 /*
1335 * Set 'default' x86 topology, this matches default_topology() in that
1336 * it has NUMA nodes as a topology level. See also
1337 * native_smp_cpus_done().
1338 *
1339 * Must be done before set_cpus_sibling_map() is ran.
1340 */
1341 set_sched_topology(x86_topology);
1342
1343 set_cpu_sibling_map(0);
1344 init_freq_invariance(false);
1345 smp_sanity_check();
1346
1347 switch (apic_intr_mode) {
1348 case APIC_PIC:
1349 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1350 disable_smp();
1351 return;
1352 case APIC_SYMMETRIC_IO_NO_ROUTING:
1353 disable_smp();
1354 /* Setup local timer */
1355 x86_init.timers.setup_percpu_clockev();
1356 return;
1357 case APIC_VIRTUAL_WIRE:
1358 case APIC_SYMMETRIC_IO:
1359 break;
1360 }
1361
1362 /* Setup local timer */
1363 x86_init.timers.setup_percpu_clockev();
1364
1365 smp_get_logical_apicid();
1366
1367 pr_info("CPU0: ");
1368 print_cpu_info(&cpu_data(0));
1369
1370 uv_system_init();
1371
1372 set_mtrr_aps_delayed_init();
1373
1374 smp_quirk_init_udelay();
1375
1376 speculative_store_bypass_ht_init();
1377 }
1378
1379 void arch_enable_nonboot_cpus_begin(void)
1380 {
1381 set_mtrr_aps_delayed_init();
1382 }
1383
1384 void arch_enable_nonboot_cpus_end(void)
1385 {
1386 mtrr_aps_init();
1387 }
1388
1389 /*
1390 * Early setup to make printk work.
1391 */
1392 void __init native_smp_prepare_boot_cpu(void)
1393 {
1394 int me = smp_processor_id();
1395 switch_to_new_gdt(me);
1396 /* already set me in cpu_online_mask in boot_cpu_init() */
1397 cpumask_set_cpu(me, cpu_callout_mask);
1398 cpu_set_state_online(me);
1399 native_pv_lock_init();
1400 }
1401
1402 void __init calculate_max_logical_packages(void)
1403 {
1404 int ncpus;
1405
1406 /*
1407 * Today neither Intel nor AMD support heterogenous systems so
1408 * extrapolate the boot cpu's data to all packages.
1409 */
1410 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1411 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1412 pr_info("Max logical packages: %u\n", __max_logical_packages);
1413 }
1414
1415 void __init native_smp_cpus_done(unsigned int max_cpus)
1416 {
1417 pr_debug("Boot done\n");
1418
1419 calculate_max_logical_packages();
1420
1421 if (x86_has_numa_in_package)
1422 set_sched_topology(x86_numa_in_package_topology);
1423
1424 nmi_selftest();
1425 impress_friends();
1426 mtrr_aps_init();
1427 }
1428
1429 static int __initdata setup_possible_cpus = -1;
1430 static int __init _setup_possible_cpus(char *str)
1431 {
1432 get_option(&str, &setup_possible_cpus);
1433 return 0;
1434 }
1435 early_param("possible_cpus", _setup_possible_cpus);
1436
1437
1438 /*
1439 * cpu_possible_mask should be static, it cannot change as cpu's
1440 * are onlined, or offlined. The reason is per-cpu data-structures
1441 * are allocated by some modules at init time, and don't expect to
1442 * do this dynamically on cpu arrival/departure.
1443 * cpu_present_mask on the other hand can change dynamically.
1444 * In case when cpu_hotplug is not compiled, then we resort to current
1445 * behaviour, which is cpu_possible == cpu_present.
1446 * - Ashok Raj
1447 *
1448 * Three ways to find out the number of additional hotplug CPUs:
1449 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1450 * - The user can overwrite it with possible_cpus=NUM
1451 * - Otherwise don't reserve additional CPUs.
1452 * We do this because additional CPUs waste a lot of memory.
1453 * -AK
1454 */
1455 __init void prefill_possible_map(void)
1456 {
1457 int i, possible;
1458
1459 /* No boot processor was found in mptable or ACPI MADT */
1460 if (!num_processors) {
1461 if (boot_cpu_has(X86_FEATURE_APIC)) {
1462 int apicid = boot_cpu_physical_apicid;
1463 int cpu = hard_smp_processor_id();
1464
1465 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1466
1467 /* Make sure boot cpu is enumerated */
1468 if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1469 apic->apic_id_valid(apicid))
1470 generic_processor_info(apicid, boot_cpu_apic_version);
1471 }
1472
1473 if (!num_processors)
1474 num_processors = 1;
1475 }
1476
1477 i = setup_max_cpus ?: 1;
1478 if (setup_possible_cpus == -1) {
1479 possible = num_processors;
1480 #ifdef CONFIG_HOTPLUG_CPU
1481 if (setup_max_cpus)
1482 possible += disabled_cpus;
1483 #else
1484 if (possible > i)
1485 possible = i;
1486 #endif
1487 } else
1488 possible = setup_possible_cpus;
1489
1490 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1491
1492 /* nr_cpu_ids could be reduced via nr_cpus= */
1493 if (possible > nr_cpu_ids) {
1494 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1495 possible, nr_cpu_ids);
1496 possible = nr_cpu_ids;
1497 }
1498
1499 #ifdef CONFIG_HOTPLUG_CPU
1500 if (!setup_max_cpus)
1501 #endif
1502 if (possible > i) {
1503 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1504 possible, setup_max_cpus);
1505 possible = i;
1506 }
1507
1508 nr_cpu_ids = possible;
1509
1510 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1511 possible, max_t(int, possible - num_processors, 0));
1512
1513 reset_cpu_possible_mask();
1514
1515 for (i = 0; i < possible; i++)
1516 set_cpu_possible(i, true);
1517 }
1518
1519 #ifdef CONFIG_HOTPLUG_CPU
1520
1521 /* Recompute SMT state for all CPUs on offline */
1522 static void recompute_smt_state(void)
1523 {
1524 int max_threads, cpu;
1525
1526 max_threads = 0;
1527 for_each_online_cpu (cpu) {
1528 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1529
1530 if (threads > max_threads)
1531 max_threads = threads;
1532 }
1533 __max_smt_threads = max_threads;
1534 }
1535
1536 static void remove_siblinginfo(int cpu)
1537 {
1538 int sibling;
1539 struct cpuinfo_x86 *c = &cpu_data(cpu);
1540
1541 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1542 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1543 /*/
1544 * last thread sibling in this cpu core going down
1545 */
1546 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1547 cpu_data(sibling).booted_cores--;
1548 }
1549
1550 for_each_cpu(sibling, topology_die_cpumask(cpu))
1551 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1552 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1553 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1554 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1555 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1556 cpumask_clear(cpu_llc_shared_mask(cpu));
1557 cpumask_clear(topology_sibling_cpumask(cpu));
1558 cpumask_clear(topology_core_cpumask(cpu));
1559 cpumask_clear(topology_die_cpumask(cpu));
1560 c->cpu_core_id = 0;
1561 c->booted_cores = 0;
1562 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1563 recompute_smt_state();
1564 }
1565
1566 static void remove_cpu_from_maps(int cpu)
1567 {
1568 set_cpu_online(cpu, false);
1569 cpumask_clear_cpu(cpu, cpu_callout_mask);
1570 cpumask_clear_cpu(cpu, cpu_callin_mask);
1571 /* was set by cpu_init() */
1572 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1573 numa_remove_cpu(cpu);
1574 }
1575
1576 void cpu_disable_common(void)
1577 {
1578 int cpu = smp_processor_id();
1579
1580 remove_siblinginfo(cpu);
1581
1582 /* It's now safe to remove this processor from the online map */
1583 lock_vector_lock();
1584 remove_cpu_from_maps(cpu);
1585 unlock_vector_lock();
1586 fixup_irqs();
1587 lapic_offline();
1588 }
1589
1590 int native_cpu_disable(void)
1591 {
1592 int ret;
1593
1594 ret = lapic_can_unplug_cpu();
1595 if (ret)
1596 return ret;
1597
1598 /*
1599 * Disable the local APIC. Otherwise IPI broadcasts will reach
1600 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1601 * messages.
1602 */
1603 apic_soft_disable();
1604 cpu_disable_common();
1605
1606 return 0;
1607 }
1608
1609 int common_cpu_die(unsigned int cpu)
1610 {
1611 int ret = 0;
1612
1613 /* We don't do anything here: idle task is faking death itself. */
1614
1615 /* They ack this in play_dead() by setting CPU_DEAD */
1616 if (cpu_wait_death(cpu, 5)) {
1617 if (system_state == SYSTEM_RUNNING)
1618 pr_info("CPU %u is now offline\n", cpu);
1619 } else {
1620 pr_err("CPU %u didn't die...\n", cpu);
1621 ret = -1;
1622 }
1623
1624 return ret;
1625 }
1626
1627 void native_cpu_die(unsigned int cpu)
1628 {
1629 common_cpu_die(cpu);
1630 }
1631
1632 void play_dead_common(void)
1633 {
1634 idle_task_exit();
1635
1636 /* Ack it */
1637 (void)cpu_report_death();
1638
1639 /*
1640 * With physical CPU hotplug, we should halt the cpu
1641 */
1642 local_irq_disable();
1643 }
1644
1645 static bool wakeup_cpu0(void)
1646 {
1647 if (smp_processor_id() == 0 && enable_start_cpu0)
1648 return true;
1649
1650 return false;
1651 }
1652
1653 /*
1654 * We need to flush the caches before going to sleep, lest we have
1655 * dirty data in our caches when we come back up.
1656 */
1657 static inline void mwait_play_dead(void)
1658 {
1659 unsigned int eax, ebx, ecx, edx;
1660 unsigned int highest_cstate = 0;
1661 unsigned int highest_subcstate = 0;
1662 void *mwait_ptr;
1663 int i;
1664
1665 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1666 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1667 return;
1668 if (!this_cpu_has(X86_FEATURE_MWAIT))
1669 return;
1670 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1671 return;
1672 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1673 return;
1674
1675 eax = CPUID_MWAIT_LEAF;
1676 ecx = 0;
1677 native_cpuid(&eax, &ebx, &ecx, &edx);
1678
1679 /*
1680 * eax will be 0 if EDX enumeration is not valid.
1681 * Initialized below to cstate, sub_cstate value when EDX is valid.
1682 */
1683 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1684 eax = 0;
1685 } else {
1686 edx >>= MWAIT_SUBSTATE_SIZE;
1687 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1688 if (edx & MWAIT_SUBSTATE_MASK) {
1689 highest_cstate = i;
1690 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1691 }
1692 }
1693 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1694 (highest_subcstate - 1);
1695 }
1696
1697 /*
1698 * This should be a memory location in a cache line which is
1699 * unlikely to be touched by other processors. The actual
1700 * content is immaterial as it is not actually modified in any way.
1701 */
1702 mwait_ptr = &current_thread_info()->flags;
1703
1704 wbinvd();
1705
1706 while (1) {
1707 /*
1708 * The CLFLUSH is a workaround for erratum AAI65 for
1709 * the Xeon 7400 series. It's not clear it is actually
1710 * needed, but it should be harmless in either case.
1711 * The WBINVD is insufficient due to the spurious-wakeup
1712 * case where we return around the loop.
1713 */
1714 mb();
1715 clflush(mwait_ptr);
1716 mb();
1717 __monitor(mwait_ptr, 0, 0);
1718 mb();
1719 __mwait(eax, 0);
1720 /*
1721 * If NMI wants to wake up CPU0, start CPU0.
1722 */
1723 if (wakeup_cpu0())
1724 start_cpu0();
1725 }
1726 }
1727
1728 void hlt_play_dead(void)
1729 {
1730 if (__this_cpu_read(cpu_info.x86) >= 4)
1731 wbinvd();
1732
1733 while (1) {
1734 native_halt();
1735 /*
1736 * If NMI wants to wake up CPU0, start CPU0.
1737 */
1738 if (wakeup_cpu0())
1739 start_cpu0();
1740 }
1741 }
1742
1743 void native_play_dead(void)
1744 {
1745 play_dead_common();
1746 tboot_shutdown(TB_SHUTDOWN_WFS);
1747
1748 mwait_play_dead(); /* Only returns on failure */
1749 if (cpuidle_play_dead())
1750 hlt_play_dead();
1751 }
1752
1753 #else /* ... !CONFIG_HOTPLUG_CPU */
1754 int native_cpu_disable(void)
1755 {
1756 return -ENOSYS;
1757 }
1758
1759 void native_cpu_die(unsigned int cpu)
1760 {
1761 /* We said "no" in __cpu_disable */
1762 BUG();
1763 }
1764
1765 void native_play_dead(void)
1766 {
1767 BUG();
1768 }
1769
1770 #endif
1771
1772 /*
1773 * APERF/MPERF frequency ratio computation.
1774 *
1775 * The scheduler wants to do frequency invariant accounting and needs a <1
1776 * ratio to account for the 'current' frequency, corresponding to
1777 * freq_curr / freq_max.
1778 *
1779 * Since the frequency freq_curr on x86 is controlled by micro-controller and
1780 * our P-state setting is little more than a request/hint, we need to observe
1781 * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1782 * interval after discarding idle time. This is given by:
1783 *
1784 * BusyMHz = delta_APERF / delta_MPERF * freq_base
1785 *
1786 * where freq_base is the max non-turbo P-state.
1787 *
1788 * The freq_max term has to be set to a somewhat arbitrary value, because we
1789 * can't know which turbo states will be available at a given point in time:
1790 * it all depends on the thermal headroom of the entire package. We set it to
1791 * the turbo level with 4 cores active.
1792 *
1793 * Benchmarks show that's a good compromise between the 1C turbo ratio
1794 * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1795 * which would ignore the entire turbo range (a conspicuous part, making
1796 * freq_curr/freq_max always maxed out).
1797 *
1798 * An exception to the heuristic above is the Atom uarch, where we choose the
1799 * highest turbo level for freq_max since Atom's are generally oriented towards
1800 * power efficiency.
1801 *
1802 * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1803 * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1804 */
1805
1806 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1807
1808 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1809 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1810 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1811 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1812
1813 void arch_set_max_freq_ratio(bool turbo_disabled)
1814 {
1815 arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1816 arch_turbo_freq_ratio;
1817 }
1818
1819 static bool turbo_disabled(void)
1820 {
1821 u64 misc_en;
1822 int err;
1823
1824 err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1825 if (err)
1826 return false;
1827
1828 return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1829 }
1830
1831 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1832 {
1833 int err;
1834
1835 err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1836 if (err)
1837 return false;
1838
1839 err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1840 if (err)
1841 return false;
1842
1843 *base_freq = (*base_freq >> 16) & 0x3F; /* max P state */
1844 *turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */
1845
1846 return true;
1847 }
1848
1849 #include <asm/cpu_device_id.h>
1850 #include <asm/intel-family.h>
1851
1852 #define ICPU(model) \
1853 {X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF, 0}
1854
1855 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1856 ICPU(INTEL_FAM6_XEON_PHI_KNL),
1857 ICPU(INTEL_FAM6_XEON_PHI_KNM),
1858 {}
1859 };
1860
1861 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1862 ICPU(INTEL_FAM6_SKYLAKE_X),
1863 {}
1864 };
1865
1866 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1867 ICPU(INTEL_FAM6_ATOM_GOLDMONT),
1868 ICPU(INTEL_FAM6_ATOM_GOLDMONT_D),
1869 ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS),
1870 {}
1871 };
1872
1873 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1874 int num_delta_fratio)
1875 {
1876 int fratio, delta_fratio, found;
1877 int err, i;
1878 u64 msr;
1879
1880 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1881 if (err)
1882 return false;
1883
1884 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1885
1886 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1887 if (err)
1888 return false;
1889
1890 fratio = (msr >> 8) & 0xFF;
1891 i = 16;
1892 found = 0;
1893 do {
1894 if (found >= num_delta_fratio) {
1895 *turbo_freq = fratio;
1896 return true;
1897 }
1898
1899 delta_fratio = (msr >> (i + 5)) & 0x7;
1900
1901 if (delta_fratio) {
1902 found += 1;
1903 fratio -= delta_fratio;
1904 }
1905
1906 i += 8;
1907 } while (i < 64);
1908
1909 return true;
1910 }
1911
1912 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1913 {
1914 u64 ratios, counts;
1915 u32 group_size;
1916 int err, i;
1917
1918 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1919 if (err)
1920 return false;
1921
1922 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1923
1924 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1925 if (err)
1926 return false;
1927
1928 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1929 if (err)
1930 return false;
1931
1932 for (i = 0; i < 64; i += 8) {
1933 group_size = (counts >> i) & 0xFF;
1934 if (group_size >= size) {
1935 *turbo_freq = (ratios >> i) & 0xFF;
1936 return true;
1937 }
1938 }
1939
1940 return false;
1941 }
1942
1943 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1944 {
1945 u64 msr;
1946 int err;
1947
1948 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1949 if (err)
1950 return false;
1951
1952 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1953 if (err)
1954 return false;
1955
1956 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1957 *turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */
1958
1959 /* The CPU may have less than 4 cores */
1960 if (!*turbo_freq)
1961 *turbo_freq = msr & 0xFF; /* 1C turbo */
1962
1963 return true;
1964 }
1965
1966 static bool intel_set_max_freq_ratio(void)
1967 {
1968 u64 base_freq, turbo_freq;
1969
1970 if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1971 goto out;
1972
1973 if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1974 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1975 goto out;
1976
1977 if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1978 knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1979 goto out;
1980
1981 if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1982 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
1983 goto out;
1984
1985 if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
1986 goto out;
1987
1988 return false;
1989
1990 out:
1991 /*
1992 * Some hypervisors advertise X86_FEATURE_APERFMPERF
1993 * but then fill all MSR's with zeroes.
1994 */
1995 if (!base_freq) {
1996 pr_debug("Couldn't determine cpu base frequency, necessary for scale-invariant accounting.\n");
1997 return false;
1998 }
1999
2000 arch_turbo_freq_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE,
2001 base_freq);
2002 arch_set_max_freq_ratio(turbo_disabled());
2003 return true;
2004 }
2005
2006 static void init_counter_refs(void)
2007 {
2008 u64 aperf, mperf;
2009
2010 rdmsrl(MSR_IA32_APERF, aperf);
2011 rdmsrl(MSR_IA32_MPERF, mperf);
2012
2013 this_cpu_write(arch_prev_aperf, aperf);
2014 this_cpu_write(arch_prev_mperf, mperf);
2015 }
2016
2017 static void init_freq_invariance(bool secondary)
2018 {
2019 bool ret = false;
2020
2021 if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2022 return;
2023
2024 if (secondary) {
2025 if (static_branch_likely(&arch_scale_freq_key)) {
2026 init_counter_refs();
2027 }
2028 return;
2029 }
2030
2031 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2032 ret = intel_set_max_freq_ratio();
2033
2034 if (ret) {
2035 init_counter_refs();
2036 static_branch_enable(&arch_scale_freq_key);
2037 } else {
2038 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2039 }
2040 }
2041
2042 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2043
2044 void arch_scale_freq_tick(void)
2045 {
2046 u64 freq_scale;
2047 u64 aperf, mperf;
2048 u64 acnt, mcnt;
2049
2050 if (!arch_scale_freq_invariant())
2051 return;
2052
2053 rdmsrl(MSR_IA32_APERF, aperf);
2054 rdmsrl(MSR_IA32_MPERF, mperf);
2055
2056 acnt = aperf - this_cpu_read(arch_prev_aperf);
2057 mcnt = mperf - this_cpu_read(arch_prev_mperf);
2058 if (!mcnt)
2059 return;
2060
2061 this_cpu_write(arch_prev_aperf, aperf);
2062 this_cpu_write(arch_prev_mperf, mperf);
2063
2064 acnt <<= 2*SCHED_CAPACITY_SHIFT;
2065 mcnt *= arch_max_freq_ratio;
2066
2067 freq_scale = div64_u64(acnt, mcnt);
2068
2069 if (freq_scale > SCHED_CAPACITY_SCALE)
2070 freq_scale = SCHED_CAPACITY_SCALE;
2071
2072 this_cpu_write(arch_freq_scale, freq_scale);
2073 }