]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - arch/x86/kernel/vm86_32.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[thirdparty/kernel/linux.git] / arch / x86 / kernel / vm86_32.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
6 * stack - Manfred Spraul <manfred@colorfullife.com>
7 *
8 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
9 * them correctly. Now the emulation will be in a
10 * consistent state after stackfaults - Kasper Dupont
11 * <kasperd@daimi.au.dk>
12 *
13 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
14 * <kasperd@daimi.au.dk>
15 *
16 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
17 * caused by Kasper Dupont's changes - Stas Sergeev
18 *
19 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
20 * Kasper Dupont <kasperd@daimi.au.dk>
21 *
22 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
23 * Kasper Dupont <kasperd@daimi.au.dk>
24 *
25 * 9 apr 2002 - Changed stack access macros to jump to a label
26 * instead of returning to userspace. This simplifies
27 * do_int, and is needed by handle_vm6_fault. Kasper
28 * Dupont <kasperd@daimi.au.dk>
29 *
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/capability.h>
35 #include <linux/errno.h>
36 #include <linux/interrupt.h>
37 #include <linux/syscalls.h>
38 #include <linux/sched.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/kernel.h>
41 #include <linux/signal.h>
42 #include <linux/string.h>
43 #include <linux/mm.h>
44 #include <linux/smp.h>
45 #include <linux/highmem.h>
46 #include <linux/ptrace.h>
47 #include <linux/audit.h>
48 #include <linux/stddef.h>
49 #include <linux/slab.h>
50 #include <linux/security.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/io.h>
54 #include <asm/tlbflush.h>
55 #include <asm/irq.h>
56 #include <asm/traps.h>
57 #include <asm/vm86.h>
58
59 /*
60 * Known problems:
61 *
62 * Interrupt handling is not guaranteed:
63 * - a real x86 will disable all interrupts for one instruction
64 * after a "mov ss,xx" to make stack handling atomic even without
65 * the 'lss' instruction. We can't guarantee this in v86 mode,
66 * as the next instruction might result in a page fault or similar.
67 * - a real x86 will have interrupts disabled for one instruction
68 * past the 'sti' that enables them. We don't bother with all the
69 * details yet.
70 *
71 * Let's hope these problems do not actually matter for anything.
72 */
73
74
75 /*
76 * 8- and 16-bit register defines..
77 */
78 #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
79 #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
80 #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
81 #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
82
83 /*
84 * virtual flags (16 and 32-bit versions)
85 */
86 #define VFLAGS (*(unsigned short *)&(current->thread.vm86->veflags))
87 #define VEFLAGS (current->thread.vm86->veflags)
88
89 #define set_flags(X, new, mask) \
90 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
91
92 #define SAFE_MASK (0xDD5)
93 #define RETURN_MASK (0xDFF)
94
95 void save_v86_state(struct kernel_vm86_regs *regs, int retval)
96 {
97 struct tss_struct *tss;
98 struct task_struct *tsk = current;
99 struct vm86plus_struct __user *user;
100 struct vm86 *vm86 = current->thread.vm86;
101 long err = 0;
102
103 /*
104 * This gets called from entry.S with interrupts disabled, but
105 * from process context. Enable interrupts here, before trying
106 * to access user space.
107 */
108 local_irq_enable();
109
110 if (!vm86 || !vm86->user_vm86) {
111 pr_alert("no user_vm86: BAD\n");
112 do_exit(SIGSEGV);
113 }
114 set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
115 user = vm86->user_vm86;
116
117 if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
118 sizeof(struct vm86plus_struct) :
119 sizeof(struct vm86_struct))) {
120 pr_alert("could not access userspace vm86 info\n");
121 do_exit(SIGSEGV);
122 }
123
124 put_user_try {
125 put_user_ex(regs->pt.bx, &user->regs.ebx);
126 put_user_ex(regs->pt.cx, &user->regs.ecx);
127 put_user_ex(regs->pt.dx, &user->regs.edx);
128 put_user_ex(regs->pt.si, &user->regs.esi);
129 put_user_ex(regs->pt.di, &user->regs.edi);
130 put_user_ex(regs->pt.bp, &user->regs.ebp);
131 put_user_ex(regs->pt.ax, &user->regs.eax);
132 put_user_ex(regs->pt.ip, &user->regs.eip);
133 put_user_ex(regs->pt.cs, &user->regs.cs);
134 put_user_ex(regs->pt.flags, &user->regs.eflags);
135 put_user_ex(regs->pt.sp, &user->regs.esp);
136 put_user_ex(regs->pt.ss, &user->regs.ss);
137 put_user_ex(regs->es, &user->regs.es);
138 put_user_ex(regs->ds, &user->regs.ds);
139 put_user_ex(regs->fs, &user->regs.fs);
140 put_user_ex(regs->gs, &user->regs.gs);
141
142 put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
143 } put_user_catch(err);
144 if (err) {
145 pr_alert("could not access userspace vm86 info\n");
146 do_exit(SIGSEGV);
147 }
148
149 tss = &per_cpu(cpu_tss, get_cpu());
150 tsk->thread.sp0 = vm86->saved_sp0;
151 tsk->thread.sysenter_cs = __KERNEL_CS;
152 load_sp0(tss, &tsk->thread);
153 vm86->saved_sp0 = 0;
154 put_cpu();
155
156 memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
157
158 lazy_load_gs(vm86->regs32.gs);
159
160 regs->pt.ax = retval;
161 }
162
163 static void mark_screen_rdonly(struct mm_struct *mm)
164 {
165 struct vm_area_struct *vma;
166 spinlock_t *ptl;
167 pgd_t *pgd;
168 p4d_t *p4d;
169 pud_t *pud;
170 pmd_t *pmd;
171 pte_t *pte;
172 int i;
173
174 down_write(&mm->mmap_sem);
175 pgd = pgd_offset(mm, 0xA0000);
176 if (pgd_none_or_clear_bad(pgd))
177 goto out;
178 p4d = p4d_offset(pgd, 0xA0000);
179 if (p4d_none_or_clear_bad(p4d))
180 goto out;
181 pud = pud_offset(p4d, 0xA0000);
182 if (pud_none_or_clear_bad(pud))
183 goto out;
184 pmd = pmd_offset(pud, 0xA0000);
185
186 if (pmd_trans_huge(*pmd)) {
187 vma = find_vma(mm, 0xA0000);
188 split_huge_pmd(vma, pmd, 0xA0000);
189 }
190 if (pmd_none_or_clear_bad(pmd))
191 goto out;
192 pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
193 for (i = 0; i < 32; i++) {
194 if (pte_present(*pte))
195 set_pte(pte, pte_wrprotect(*pte));
196 pte++;
197 }
198 pte_unmap_unlock(pte, ptl);
199 out:
200 up_write(&mm->mmap_sem);
201 flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, 0UL);
202 }
203
204
205
206 static int do_vm86_irq_handling(int subfunction, int irqnumber);
207 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
208
209 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
210 {
211 return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
212 }
213
214
215 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
216 {
217 switch (cmd) {
218 case VM86_REQUEST_IRQ:
219 case VM86_FREE_IRQ:
220 case VM86_GET_IRQ_BITS:
221 case VM86_GET_AND_RESET_IRQ:
222 return do_vm86_irq_handling(cmd, (int)arg);
223 case VM86_PLUS_INSTALL_CHECK:
224 /*
225 * NOTE: on old vm86 stuff this will return the error
226 * from access_ok(), because the subfunction is
227 * interpreted as (invalid) address to vm86_struct.
228 * So the installation check works.
229 */
230 return 0;
231 }
232
233 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
234 return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
235 }
236
237
238 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
239 {
240 struct tss_struct *tss;
241 struct task_struct *tsk = current;
242 struct vm86 *vm86 = tsk->thread.vm86;
243 struct kernel_vm86_regs vm86regs;
244 struct pt_regs *regs = current_pt_regs();
245 unsigned long err = 0;
246
247 err = security_mmap_addr(0);
248 if (err) {
249 /*
250 * vm86 cannot virtualize the address space, so vm86 users
251 * need to manage the low 1MB themselves using mmap. Given
252 * that BIOS places important data in the first page, vm86
253 * is essentially useless if mmap_min_addr != 0. DOSEMU,
254 * for example, won't even bother trying to use vm86 if it
255 * can't map a page at virtual address 0.
256 *
257 * To reduce the available kernel attack surface, simply
258 * disallow vm86(old) for users who cannot mmap at va 0.
259 *
260 * The implementation of security_mmap_addr will allow
261 * suitably privileged users to map va 0 even if
262 * vm.mmap_min_addr is set above 0, and we want this
263 * behavior for vm86 as well, as it ensures that legacy
264 * tools like vbetool will not fail just because of
265 * vm.mmap_min_addr.
266 */
267 pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d). Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
268 current->comm, task_pid_nr(current),
269 from_kuid_munged(&init_user_ns, current_uid()));
270 return -EPERM;
271 }
272
273 if (!vm86) {
274 if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
275 return -ENOMEM;
276 tsk->thread.vm86 = vm86;
277 }
278 if (vm86->saved_sp0)
279 return -EPERM;
280
281 if (!access_ok(VERIFY_READ, user_vm86, plus ?
282 sizeof(struct vm86_struct) :
283 sizeof(struct vm86plus_struct)))
284 return -EFAULT;
285
286 memset(&vm86regs, 0, sizeof(vm86regs));
287 get_user_try {
288 unsigned short seg;
289 get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
290 get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
291 get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
292 get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
293 get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
294 get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
295 get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
296 get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
297 get_user_ex(seg, &user_vm86->regs.cs);
298 vm86regs.pt.cs = seg;
299 get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
300 get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
301 get_user_ex(seg, &user_vm86->regs.ss);
302 vm86regs.pt.ss = seg;
303 get_user_ex(vm86regs.es, &user_vm86->regs.es);
304 get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
305 get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
306 get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
307
308 get_user_ex(vm86->flags, &user_vm86->flags);
309 get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
310 get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
311 } get_user_catch(err);
312 if (err)
313 return err;
314
315 if (copy_from_user(&vm86->int_revectored,
316 &user_vm86->int_revectored,
317 sizeof(struct revectored_struct)))
318 return -EFAULT;
319 if (copy_from_user(&vm86->int21_revectored,
320 &user_vm86->int21_revectored,
321 sizeof(struct revectored_struct)))
322 return -EFAULT;
323 if (plus) {
324 if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
325 sizeof(struct vm86plus_info_struct)))
326 return -EFAULT;
327 vm86->vm86plus.is_vm86pus = 1;
328 } else
329 memset(&vm86->vm86plus, 0,
330 sizeof(struct vm86plus_info_struct));
331
332 memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
333 vm86->user_vm86 = user_vm86;
334
335 /*
336 * The flags register is also special: we cannot trust that the user
337 * has set it up safely, so this makes sure interrupt etc flags are
338 * inherited from protected mode.
339 */
340 VEFLAGS = vm86regs.pt.flags;
341 vm86regs.pt.flags &= SAFE_MASK;
342 vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
343 vm86regs.pt.flags |= X86_VM_MASK;
344
345 vm86regs.pt.orig_ax = regs->orig_ax;
346
347 switch (vm86->cpu_type) {
348 case CPU_286:
349 vm86->veflags_mask = 0;
350 break;
351 case CPU_386:
352 vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
353 break;
354 case CPU_486:
355 vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
356 break;
357 default:
358 vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
359 break;
360 }
361
362 /*
363 * Save old state
364 */
365 vm86->saved_sp0 = tsk->thread.sp0;
366 lazy_save_gs(vm86->regs32.gs);
367
368 tss = &per_cpu(cpu_tss, get_cpu());
369 /* make room for real-mode segments */
370 tsk->thread.sp0 += 16;
371
372 if (static_cpu_has(X86_FEATURE_SEP))
373 tsk->thread.sysenter_cs = 0;
374
375 load_sp0(tss, &tsk->thread);
376 put_cpu();
377
378 if (vm86->flags & VM86_SCREEN_BITMAP)
379 mark_screen_rdonly(tsk->mm);
380
381 memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
382 force_iret();
383 return regs->ax;
384 }
385
386 static inline void set_IF(struct kernel_vm86_regs *regs)
387 {
388 VEFLAGS |= X86_EFLAGS_VIF;
389 }
390
391 static inline void clear_IF(struct kernel_vm86_regs *regs)
392 {
393 VEFLAGS &= ~X86_EFLAGS_VIF;
394 }
395
396 static inline void clear_TF(struct kernel_vm86_regs *regs)
397 {
398 regs->pt.flags &= ~X86_EFLAGS_TF;
399 }
400
401 static inline void clear_AC(struct kernel_vm86_regs *regs)
402 {
403 regs->pt.flags &= ~X86_EFLAGS_AC;
404 }
405
406 /*
407 * It is correct to call set_IF(regs) from the set_vflags_*
408 * functions. However someone forgot to call clear_IF(regs)
409 * in the opposite case.
410 * After the command sequence CLI PUSHF STI POPF you should
411 * end up with interrupts disabled, but you ended up with
412 * interrupts enabled.
413 * ( I was testing my own changes, but the only bug I
414 * could find was in a function I had not changed. )
415 * [KD]
416 */
417
418 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
419 {
420 set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
421 set_flags(regs->pt.flags, flags, SAFE_MASK);
422 if (flags & X86_EFLAGS_IF)
423 set_IF(regs);
424 else
425 clear_IF(regs);
426 }
427
428 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
429 {
430 set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
431 set_flags(regs->pt.flags, flags, SAFE_MASK);
432 if (flags & X86_EFLAGS_IF)
433 set_IF(regs);
434 else
435 clear_IF(regs);
436 }
437
438 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
439 {
440 unsigned long flags = regs->pt.flags & RETURN_MASK;
441
442 if (VEFLAGS & X86_EFLAGS_VIF)
443 flags |= X86_EFLAGS_IF;
444 flags |= X86_EFLAGS_IOPL;
445 return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
446 }
447
448 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
449 {
450 return test_bit(nr, bitmap->__map);
451 }
452
453 #define val_byte(val, n) (((__u8 *)&val)[n])
454
455 #define pushb(base, ptr, val, err_label) \
456 do { \
457 __u8 __val = val; \
458 ptr--; \
459 if (put_user(__val, base + ptr) < 0) \
460 goto err_label; \
461 } while (0)
462
463 #define pushw(base, ptr, val, err_label) \
464 do { \
465 __u16 __val = val; \
466 ptr--; \
467 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
468 goto err_label; \
469 ptr--; \
470 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
471 goto err_label; \
472 } while (0)
473
474 #define pushl(base, ptr, val, err_label) \
475 do { \
476 __u32 __val = val; \
477 ptr--; \
478 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
479 goto err_label; \
480 ptr--; \
481 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
482 goto err_label; \
483 ptr--; \
484 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
485 goto err_label; \
486 ptr--; \
487 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
488 goto err_label; \
489 } while (0)
490
491 #define popb(base, ptr, err_label) \
492 ({ \
493 __u8 __res; \
494 if (get_user(__res, base + ptr) < 0) \
495 goto err_label; \
496 ptr++; \
497 __res; \
498 })
499
500 #define popw(base, ptr, err_label) \
501 ({ \
502 __u16 __res; \
503 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
504 goto err_label; \
505 ptr++; \
506 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
507 goto err_label; \
508 ptr++; \
509 __res; \
510 })
511
512 #define popl(base, ptr, err_label) \
513 ({ \
514 __u32 __res; \
515 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
516 goto err_label; \
517 ptr++; \
518 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
519 goto err_label; \
520 ptr++; \
521 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
522 goto err_label; \
523 ptr++; \
524 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
525 goto err_label; \
526 ptr++; \
527 __res; \
528 })
529
530 /* There are so many possible reasons for this function to return
531 * VM86_INTx, so adding another doesn't bother me. We can expect
532 * userspace programs to be able to handle it. (Getting a problem
533 * in userspace is always better than an Oops anyway.) [KD]
534 */
535 static void do_int(struct kernel_vm86_regs *regs, int i,
536 unsigned char __user *ssp, unsigned short sp)
537 {
538 unsigned long __user *intr_ptr;
539 unsigned long segoffs;
540 struct vm86 *vm86 = current->thread.vm86;
541
542 if (regs->pt.cs == BIOSSEG)
543 goto cannot_handle;
544 if (is_revectored(i, &vm86->int_revectored))
545 goto cannot_handle;
546 if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
547 goto cannot_handle;
548 intr_ptr = (unsigned long __user *) (i << 2);
549 if (get_user(segoffs, intr_ptr))
550 goto cannot_handle;
551 if ((segoffs >> 16) == BIOSSEG)
552 goto cannot_handle;
553 pushw(ssp, sp, get_vflags(regs), cannot_handle);
554 pushw(ssp, sp, regs->pt.cs, cannot_handle);
555 pushw(ssp, sp, IP(regs), cannot_handle);
556 regs->pt.cs = segoffs >> 16;
557 SP(regs) -= 6;
558 IP(regs) = segoffs & 0xffff;
559 clear_TF(regs);
560 clear_IF(regs);
561 clear_AC(regs);
562 return;
563
564 cannot_handle:
565 save_v86_state(regs, VM86_INTx + (i << 8));
566 }
567
568 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
569 {
570 struct vm86 *vm86 = current->thread.vm86;
571
572 if (vm86->vm86plus.is_vm86pus) {
573 if ((trapno == 3) || (trapno == 1)) {
574 save_v86_state(regs, VM86_TRAP + (trapno << 8));
575 return 0;
576 }
577 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
578 return 0;
579 }
580 if (trapno != 1)
581 return 1; /* we let this handle by the calling routine */
582 current->thread.trap_nr = trapno;
583 current->thread.error_code = error_code;
584 force_sig(SIGTRAP, current);
585 return 0;
586 }
587
588 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
589 {
590 unsigned char opcode;
591 unsigned char __user *csp;
592 unsigned char __user *ssp;
593 unsigned short ip, sp, orig_flags;
594 int data32, pref_done;
595 struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
596
597 #define CHECK_IF_IN_TRAP \
598 if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
599 newflags |= X86_EFLAGS_TF
600
601 orig_flags = *(unsigned short *)&regs->pt.flags;
602
603 csp = (unsigned char __user *) (regs->pt.cs << 4);
604 ssp = (unsigned char __user *) (regs->pt.ss << 4);
605 sp = SP(regs);
606 ip = IP(regs);
607
608 data32 = 0;
609 pref_done = 0;
610 do {
611 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
612 case 0x66: /* 32-bit data */ data32 = 1; break;
613 case 0x67: /* 32-bit address */ break;
614 case 0x2e: /* CS */ break;
615 case 0x3e: /* DS */ break;
616 case 0x26: /* ES */ break;
617 case 0x36: /* SS */ break;
618 case 0x65: /* GS */ break;
619 case 0x64: /* FS */ break;
620 case 0xf2: /* repnz */ break;
621 case 0xf3: /* rep */ break;
622 default: pref_done = 1;
623 }
624 } while (!pref_done);
625
626 switch (opcode) {
627
628 /* pushf */
629 case 0x9c:
630 if (data32) {
631 pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
632 SP(regs) -= 4;
633 } else {
634 pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
635 SP(regs) -= 2;
636 }
637 IP(regs) = ip;
638 goto vm86_fault_return;
639
640 /* popf */
641 case 0x9d:
642 {
643 unsigned long newflags;
644 if (data32) {
645 newflags = popl(ssp, sp, simulate_sigsegv);
646 SP(regs) += 4;
647 } else {
648 newflags = popw(ssp, sp, simulate_sigsegv);
649 SP(regs) += 2;
650 }
651 IP(regs) = ip;
652 CHECK_IF_IN_TRAP;
653 if (data32)
654 set_vflags_long(newflags, regs);
655 else
656 set_vflags_short(newflags, regs);
657
658 goto check_vip;
659 }
660
661 /* int xx */
662 case 0xcd: {
663 int intno = popb(csp, ip, simulate_sigsegv);
664 IP(regs) = ip;
665 if (vmpi->vm86dbg_active) {
666 if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
667 save_v86_state(regs, VM86_INTx + (intno << 8));
668 return;
669 }
670 }
671 do_int(regs, intno, ssp, sp);
672 return;
673 }
674
675 /* iret */
676 case 0xcf:
677 {
678 unsigned long newip;
679 unsigned long newcs;
680 unsigned long newflags;
681 if (data32) {
682 newip = popl(ssp, sp, simulate_sigsegv);
683 newcs = popl(ssp, sp, simulate_sigsegv);
684 newflags = popl(ssp, sp, simulate_sigsegv);
685 SP(regs) += 12;
686 } else {
687 newip = popw(ssp, sp, simulate_sigsegv);
688 newcs = popw(ssp, sp, simulate_sigsegv);
689 newflags = popw(ssp, sp, simulate_sigsegv);
690 SP(regs) += 6;
691 }
692 IP(regs) = newip;
693 regs->pt.cs = newcs;
694 CHECK_IF_IN_TRAP;
695 if (data32) {
696 set_vflags_long(newflags, regs);
697 } else {
698 set_vflags_short(newflags, regs);
699 }
700 goto check_vip;
701 }
702
703 /* cli */
704 case 0xfa:
705 IP(regs) = ip;
706 clear_IF(regs);
707 goto vm86_fault_return;
708
709 /* sti */
710 /*
711 * Damn. This is incorrect: the 'sti' instruction should actually
712 * enable interrupts after the /next/ instruction. Not good.
713 *
714 * Probably needs some horsing around with the TF flag. Aiee..
715 */
716 case 0xfb:
717 IP(regs) = ip;
718 set_IF(regs);
719 goto check_vip;
720
721 default:
722 save_v86_state(regs, VM86_UNKNOWN);
723 }
724
725 return;
726
727 check_vip:
728 if (VEFLAGS & X86_EFLAGS_VIP) {
729 save_v86_state(regs, VM86_STI);
730 return;
731 }
732
733 vm86_fault_return:
734 if (vmpi->force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
735 save_v86_state(regs, VM86_PICRETURN);
736 return;
737 }
738 if (orig_flags & X86_EFLAGS_TF)
739 handle_vm86_trap(regs, 0, X86_TRAP_DB);
740 return;
741
742 simulate_sigsegv:
743 /* FIXME: After a long discussion with Stas we finally
744 * agreed, that this is wrong. Here we should
745 * really send a SIGSEGV to the user program.
746 * But how do we create the correct context? We
747 * are inside a general protection fault handler
748 * and has just returned from a page fault handler.
749 * The correct context for the signal handler
750 * should be a mixture of the two, but how do we
751 * get the information? [KD]
752 */
753 save_v86_state(regs, VM86_UNKNOWN);
754 }
755
756 /* ---------------- vm86 special IRQ passing stuff ----------------- */
757
758 #define VM86_IRQNAME "vm86irq"
759
760 static struct vm86_irqs {
761 struct task_struct *tsk;
762 int sig;
763 } vm86_irqs[16];
764
765 static DEFINE_SPINLOCK(irqbits_lock);
766 static int irqbits;
767
768 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
769 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
770 | (1 << SIGUNUSED))
771
772 static irqreturn_t irq_handler(int intno, void *dev_id)
773 {
774 int irq_bit;
775 unsigned long flags;
776
777 spin_lock_irqsave(&irqbits_lock, flags);
778 irq_bit = 1 << intno;
779 if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
780 goto out;
781 irqbits |= irq_bit;
782 if (vm86_irqs[intno].sig)
783 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
784 /*
785 * IRQ will be re-enabled when user asks for the irq (whether
786 * polling or as a result of the signal)
787 */
788 disable_irq_nosync(intno);
789 spin_unlock_irqrestore(&irqbits_lock, flags);
790 return IRQ_HANDLED;
791
792 out:
793 spin_unlock_irqrestore(&irqbits_lock, flags);
794 return IRQ_NONE;
795 }
796
797 static inline void free_vm86_irq(int irqnumber)
798 {
799 unsigned long flags;
800
801 free_irq(irqnumber, NULL);
802 vm86_irqs[irqnumber].tsk = NULL;
803
804 spin_lock_irqsave(&irqbits_lock, flags);
805 irqbits &= ~(1 << irqnumber);
806 spin_unlock_irqrestore(&irqbits_lock, flags);
807 }
808
809 void release_vm86_irqs(struct task_struct *task)
810 {
811 int i;
812 for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
813 if (vm86_irqs[i].tsk == task)
814 free_vm86_irq(i);
815 }
816
817 static inline int get_and_reset_irq(int irqnumber)
818 {
819 int bit;
820 unsigned long flags;
821 int ret = 0;
822
823 if (invalid_vm86_irq(irqnumber)) return 0;
824 if (vm86_irqs[irqnumber].tsk != current) return 0;
825 spin_lock_irqsave(&irqbits_lock, flags);
826 bit = irqbits & (1 << irqnumber);
827 irqbits &= ~bit;
828 if (bit) {
829 enable_irq(irqnumber);
830 ret = 1;
831 }
832
833 spin_unlock_irqrestore(&irqbits_lock, flags);
834 return ret;
835 }
836
837
838 static int do_vm86_irq_handling(int subfunction, int irqnumber)
839 {
840 int ret;
841 switch (subfunction) {
842 case VM86_GET_AND_RESET_IRQ: {
843 return get_and_reset_irq(irqnumber);
844 }
845 case VM86_GET_IRQ_BITS: {
846 return irqbits;
847 }
848 case VM86_REQUEST_IRQ: {
849 int sig = irqnumber >> 8;
850 int irq = irqnumber & 255;
851 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
852 if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
853 if (invalid_vm86_irq(irq)) return -EPERM;
854 if (vm86_irqs[irq].tsk) return -EPERM;
855 ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
856 if (ret) return ret;
857 vm86_irqs[irq].sig = sig;
858 vm86_irqs[irq].tsk = current;
859 return irq;
860 }
861 case VM86_FREE_IRQ: {
862 if (invalid_vm86_irq(irqnumber)) return -EPERM;
863 if (!vm86_irqs[irqnumber].tsk) return 0;
864 if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
865 free_vm86_irq(irqnumber);
866 return 0;
867 }
868 }
869 return -EINVAL;
870 }
871