]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/kvm/cpuid.c
Merge tag 'kvm-x86-misc-6.6' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/linux.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 * cpuid support routines
5 *
6 * derived from arch/x86/kvm/x86.c
7 *
8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9 * Copyright IBM Corporation, 2008
10 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kvm_host.h>
14 #include "linux/lockdep.h"
15 #include <linux/export.h>
16 #include <linux/vmalloc.h>
17 #include <linux/uaccess.h>
18 #include <linux/sched/stat.h>
19
20 #include <asm/processor.h>
21 #include <asm/user.h>
22 #include <asm/fpu/xstate.h>
23 #include <asm/sgx.h>
24 #include <asm/cpuid.h>
25 #include "cpuid.h"
26 #include "lapic.h"
27 #include "mmu.h"
28 #include "trace.h"
29 #include "pmu.h"
30 #include "xen.h"
31
32 /*
33 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35 */
36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38
39 u32 xstate_required_size(u64 xstate_bv, bool compacted)
40 {
41 int feature_bit = 0;
42 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
43
44 xstate_bv &= XFEATURE_MASK_EXTEND;
45 while (xstate_bv) {
46 if (xstate_bv & 0x1) {
47 u32 eax, ebx, ecx, edx, offset;
48 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
49 /* ECX[1]: 64B alignment in compacted form */
50 if (compacted)
51 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
52 else
53 offset = ebx;
54 ret = max(ret, offset + eax);
55 }
56
57 xstate_bv >>= 1;
58 feature_bit++;
59 }
60
61 return ret;
62 }
63
64 #define F feature_bit
65
66 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
67 #define SF(name) \
68 ({ \
69 BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES); \
70 (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0); \
71 })
72
73 /*
74 * Magic value used by KVM when querying userspace-provided CPUID entries and
75 * doesn't care about the CPIUD index because the index of the function in
76 * question is not significant. Note, this magic value must have at least one
77 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
78 * to avoid false positives when processing guest CPUID input.
79 */
80 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
81
82 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
83 struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
84 {
85 struct kvm_cpuid_entry2 *e;
86 int i;
87
88 /*
89 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
90 * with IRQs disabled is disallowed. The CPUID model can legitimately
91 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
92 * typically disabled in KVM only when KVM is in a performance critical
93 * path, e.g. the core VM-Enter/VM-Exit run loop. Nothing will break
94 * if this rule is violated, this assertion is purely to flag potential
95 * performance issues. If this fires, consider moving the lookup out
96 * of the hotpath, e.g. by caching information during CPUID updates.
97 */
98 lockdep_assert_irqs_enabled();
99
100 for (i = 0; i < nent; i++) {
101 e = &entries[i];
102
103 if (e->function != function)
104 continue;
105
106 /*
107 * If the index isn't significant, use the first entry with a
108 * matching function. It's userspace's responsibilty to not
109 * provide "duplicate" entries in all cases.
110 */
111 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
112 return e;
113
114
115 /*
116 * Similarly, use the first matching entry if KVM is doing a
117 * lookup (as opposed to emulating CPUID) for a function that's
118 * architecturally defined as not having a significant index.
119 */
120 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
121 /*
122 * Direct lookups from KVM should not diverge from what
123 * KVM defines internally (the architectural behavior).
124 */
125 WARN_ON_ONCE(cpuid_function_is_indexed(function));
126 return e;
127 }
128 }
129
130 return NULL;
131 }
132
133 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
134 struct kvm_cpuid_entry2 *entries,
135 int nent)
136 {
137 struct kvm_cpuid_entry2 *best;
138 u64 xfeatures;
139
140 /*
141 * The existing code assumes virtual address is 48-bit or 57-bit in the
142 * canonical address checks; exit if it is ever changed.
143 */
144 best = cpuid_entry2_find(entries, nent, 0x80000008,
145 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
146 if (best) {
147 int vaddr_bits = (best->eax & 0xff00) >> 8;
148
149 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150 return -EINVAL;
151 }
152
153 /*
154 * Exposing dynamic xfeatures to the guest requires additional
155 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156 */
157 best = cpuid_entry2_find(entries, nent, 0xd, 0);
158 if (!best)
159 return 0;
160
161 xfeatures = best->eax | ((u64)best->edx << 32);
162 xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163 if (!xfeatures)
164 return 0;
165
166 return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167 }
168
169 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
170 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
171 int nent)
172 {
173 struct kvm_cpuid_entry2 *orig;
174 int i;
175
176 if (nent != vcpu->arch.cpuid_nent)
177 return -EINVAL;
178
179 for (i = 0; i < nent; i++) {
180 orig = &vcpu->arch.cpuid_entries[i];
181 if (e2[i].function != orig->function ||
182 e2[i].index != orig->index ||
183 e2[i].flags != orig->flags ||
184 e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
185 e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
186 return -EINVAL;
187 }
188
189 return 0;
190 }
191
192 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
193 const char *sig)
194 {
195 struct kvm_hypervisor_cpuid cpuid = {};
196 struct kvm_cpuid_entry2 *entry;
197 u32 base;
198
199 for_each_possible_hypervisor_cpuid_base(base) {
200 entry = kvm_find_cpuid_entry(vcpu, base);
201
202 if (entry) {
203 u32 signature[3];
204
205 signature[0] = entry->ebx;
206 signature[1] = entry->ecx;
207 signature[2] = entry->edx;
208
209 if (!memcmp(signature, sig, sizeof(signature))) {
210 cpuid.base = base;
211 cpuid.limit = entry->eax;
212 break;
213 }
214 }
215 }
216
217 return cpuid;
218 }
219
220 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
221 struct kvm_cpuid_entry2 *entries, int nent)
222 {
223 u32 base = vcpu->arch.kvm_cpuid.base;
224
225 if (!base)
226 return NULL;
227
228 return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
229 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
230 }
231
232 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
233 {
234 return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
235 vcpu->arch.cpuid_nent);
236 }
237
238 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
239 {
240 struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
241
242 /*
243 * save the feature bitmap to avoid cpuid lookup for every PV
244 * operation
245 */
246 if (best)
247 vcpu->arch.pv_cpuid.features = best->eax;
248 }
249
250 /*
251 * Calculate guest's supported XCR0 taking into account guest CPUID data and
252 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
253 */
254 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
255 {
256 struct kvm_cpuid_entry2 *best;
257
258 best = cpuid_entry2_find(entries, nent, 0xd, 0);
259 if (!best)
260 return 0;
261
262 return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
263 }
264
265 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
266 int nent)
267 {
268 struct kvm_cpuid_entry2 *best;
269
270 best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
271 if (best) {
272 /* Update OSXSAVE bit */
273 if (boot_cpu_has(X86_FEATURE_XSAVE))
274 cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
275 kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
276
277 cpuid_entry_change(best, X86_FEATURE_APIC,
278 vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
279 }
280
281 best = cpuid_entry2_find(entries, nent, 7, 0);
282 if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
283 cpuid_entry_change(best, X86_FEATURE_OSPKE,
284 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
285
286 best = cpuid_entry2_find(entries, nent, 0xD, 0);
287 if (best)
288 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
289
290 best = cpuid_entry2_find(entries, nent, 0xD, 1);
291 if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
292 cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
293 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
294
295 best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
296 if (kvm_hlt_in_guest(vcpu->kvm) && best &&
297 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
298 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
299
300 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
301 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
302 if (best)
303 cpuid_entry_change(best, X86_FEATURE_MWAIT,
304 vcpu->arch.ia32_misc_enable_msr &
305 MSR_IA32_MISC_ENABLE_MWAIT);
306 }
307 }
308
309 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
310 {
311 __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
312 }
313 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
314
315 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
316 {
317 struct kvm_cpuid_entry2 *entry;
318
319 entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
320 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
321 return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
322 }
323
324 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
325 {
326 struct kvm_lapic *apic = vcpu->arch.apic;
327 struct kvm_cpuid_entry2 *best;
328 bool allow_gbpages;
329
330 BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
331 bitmap_zero(vcpu->arch.governed_features.enabled,
332 KVM_MAX_NR_GOVERNED_FEATURES);
333
334 /*
335 * If TDP is enabled, let the guest use GBPAGES if they're supported in
336 * hardware. The hardware page walker doesn't let KVM disable GBPAGES,
337 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
338 * walk for performance and complexity reasons. Not to mention KVM
339 * _can't_ solve the problem because GVA->GPA walks aren't visible to
340 * KVM once a TDP translation is installed. Mimic hardware behavior so
341 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
342 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
343 * and can install smaller shadow pages if the host lacks 1GiB support.
344 */
345 allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
346 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
347 if (allow_gbpages)
348 kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
349
350 best = kvm_find_cpuid_entry(vcpu, 1);
351 if (best && apic) {
352 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
353 apic->lapic_timer.timer_mode_mask = 3 << 17;
354 else
355 apic->lapic_timer.timer_mode_mask = 1 << 17;
356
357 kvm_apic_set_version(vcpu);
358 }
359
360 vcpu->arch.guest_supported_xcr0 =
361 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
362
363 /*
364 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
365 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
366 * supported by the host.
367 */
368 vcpu->arch.guest_fpu.fpstate->user_xfeatures = vcpu->arch.guest_supported_xcr0 |
369 XFEATURE_MASK_FPSSE;
370
371 kvm_update_pv_runtime(vcpu);
372
373 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
374 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
375
376 kvm_pmu_refresh(vcpu);
377 vcpu->arch.cr4_guest_rsvd_bits =
378 __cr4_reserved_bits(guest_cpuid_has, vcpu);
379
380 kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
381 vcpu->arch.cpuid_nent));
382
383 /* Invoke the vendor callback only after the above state is updated. */
384 static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
385
386 /*
387 * Except for the MMU, which needs to do its thing any vendor specific
388 * adjustments to the reserved GPA bits.
389 */
390 kvm_mmu_after_set_cpuid(vcpu);
391 }
392
393 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
394 {
395 struct kvm_cpuid_entry2 *best;
396
397 best = kvm_find_cpuid_entry(vcpu, 0x80000000);
398 if (!best || best->eax < 0x80000008)
399 goto not_found;
400 best = kvm_find_cpuid_entry(vcpu, 0x80000008);
401 if (best)
402 return best->eax & 0xff;
403 not_found:
404 return 36;
405 }
406
407 /*
408 * This "raw" version returns the reserved GPA bits without any adjustments for
409 * encryption technologies that usurp bits. The raw mask should be used if and
410 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
411 */
412 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
413 {
414 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
415 }
416
417 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
418 int nent)
419 {
420 int r;
421
422 __kvm_update_cpuid_runtime(vcpu, e2, nent);
423
424 /*
425 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
426 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
427 * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
428 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
429 * the core vCPU model on the fly. It would've been better to forbid any
430 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
431 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
432 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
433 * whether the supplied CPUID data is equal to what's already set.
434 */
435 if (kvm_vcpu_has_run(vcpu)) {
436 r = kvm_cpuid_check_equal(vcpu, e2, nent);
437 if (r)
438 return r;
439
440 kvfree(e2);
441 return 0;
442 }
443
444 if (kvm_cpuid_has_hyperv(e2, nent)) {
445 r = kvm_hv_vcpu_init(vcpu);
446 if (r)
447 return r;
448 }
449
450 r = kvm_check_cpuid(vcpu, e2, nent);
451 if (r)
452 return r;
453
454 kvfree(vcpu->arch.cpuid_entries);
455 vcpu->arch.cpuid_entries = e2;
456 vcpu->arch.cpuid_nent = nent;
457
458 vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
459 vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
460 kvm_vcpu_after_set_cpuid(vcpu);
461
462 return 0;
463 }
464
465 /* when an old userspace process fills a new kernel module */
466 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
467 struct kvm_cpuid *cpuid,
468 struct kvm_cpuid_entry __user *entries)
469 {
470 int r, i;
471 struct kvm_cpuid_entry *e = NULL;
472 struct kvm_cpuid_entry2 *e2 = NULL;
473
474 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
475 return -E2BIG;
476
477 if (cpuid->nent) {
478 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
479 if (IS_ERR(e))
480 return PTR_ERR(e);
481
482 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
483 if (!e2) {
484 r = -ENOMEM;
485 goto out_free_cpuid;
486 }
487 }
488 for (i = 0; i < cpuid->nent; i++) {
489 e2[i].function = e[i].function;
490 e2[i].eax = e[i].eax;
491 e2[i].ebx = e[i].ebx;
492 e2[i].ecx = e[i].ecx;
493 e2[i].edx = e[i].edx;
494 e2[i].index = 0;
495 e2[i].flags = 0;
496 e2[i].padding[0] = 0;
497 e2[i].padding[1] = 0;
498 e2[i].padding[2] = 0;
499 }
500
501 r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
502 if (r)
503 kvfree(e2);
504
505 out_free_cpuid:
506 kvfree(e);
507
508 return r;
509 }
510
511 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
512 struct kvm_cpuid2 *cpuid,
513 struct kvm_cpuid_entry2 __user *entries)
514 {
515 struct kvm_cpuid_entry2 *e2 = NULL;
516 int r;
517
518 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
519 return -E2BIG;
520
521 if (cpuid->nent) {
522 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
523 if (IS_ERR(e2))
524 return PTR_ERR(e2);
525 }
526
527 r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
528 if (r)
529 kvfree(e2);
530
531 return r;
532 }
533
534 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
535 struct kvm_cpuid2 *cpuid,
536 struct kvm_cpuid_entry2 __user *entries)
537 {
538 if (cpuid->nent < vcpu->arch.cpuid_nent)
539 return -E2BIG;
540
541 if (copy_to_user(entries, vcpu->arch.cpuid_entries,
542 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
543 return -EFAULT;
544
545 cpuid->nent = vcpu->arch.cpuid_nent;
546 return 0;
547 }
548
549 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
550 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
551 {
552 const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
553 struct kvm_cpuid_entry2 entry;
554
555 reverse_cpuid_check(leaf);
556
557 cpuid_count(cpuid.function, cpuid.index,
558 &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
559
560 kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
561 }
562
563 static __always_inline
564 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
565 {
566 /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
567 BUILD_BUG_ON(leaf < NCAPINTS);
568
569 kvm_cpu_caps[leaf] = mask;
570
571 __kvm_cpu_cap_mask(leaf);
572 }
573
574 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
575 {
576 /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
577 BUILD_BUG_ON(leaf >= NCAPINTS);
578
579 kvm_cpu_caps[leaf] &= mask;
580
581 __kvm_cpu_cap_mask(leaf);
582 }
583
584 void kvm_set_cpu_caps(void)
585 {
586 #ifdef CONFIG_X86_64
587 unsigned int f_gbpages = F(GBPAGES);
588 unsigned int f_lm = F(LM);
589 unsigned int f_xfd = F(XFD);
590 #else
591 unsigned int f_gbpages = 0;
592 unsigned int f_lm = 0;
593 unsigned int f_xfd = 0;
594 #endif
595 memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
596
597 BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
598 sizeof(boot_cpu_data.x86_capability));
599
600 memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
601 sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
602
603 kvm_cpu_cap_mask(CPUID_1_ECX,
604 /*
605 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
606 * advertised to guests via CPUID!
607 */
608 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
609 0 /* DS-CPL, VMX, SMX, EST */ |
610 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
611 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
612 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
613 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
614 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
615 F(F16C) | F(RDRAND)
616 );
617 /* KVM emulates x2apic in software irrespective of host support. */
618 kvm_cpu_cap_set(X86_FEATURE_X2APIC);
619
620 kvm_cpu_cap_mask(CPUID_1_EDX,
621 F(FPU) | F(VME) | F(DE) | F(PSE) |
622 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
623 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
624 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
625 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
626 0 /* Reserved, DS, ACPI */ | F(MMX) |
627 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
628 0 /* HTT, TM, Reserved, PBE */
629 );
630
631 kvm_cpu_cap_mask(CPUID_7_0_EBX,
632 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
633 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
634 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
635 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
636 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
637 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
638 F(AVX512VL));
639
640 kvm_cpu_cap_mask(CPUID_7_ECX,
641 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
642 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
643 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
644 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
645 F(SGX_LC) | F(BUS_LOCK_DETECT)
646 );
647 /* Set LA57 based on hardware capability. */
648 if (cpuid_ecx(7) & F(LA57))
649 kvm_cpu_cap_set(X86_FEATURE_LA57);
650
651 /*
652 * PKU not yet implemented for shadow paging and requires OSPKE
653 * to be set on the host. Clear it if that is not the case
654 */
655 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
656 kvm_cpu_cap_clear(X86_FEATURE_PKU);
657
658 kvm_cpu_cap_mask(CPUID_7_EDX,
659 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
660 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
661 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
662 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
663 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
664 );
665
666 /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
667 kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
668 kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
669
670 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
671 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
672 if (boot_cpu_has(X86_FEATURE_STIBP))
673 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
674 if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
675 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
676
677 kvm_cpu_cap_mask(CPUID_7_1_EAX,
678 F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
679 F(FZRM) | F(FSRS) | F(FSRC) |
680 F(AMX_FP16) | F(AVX_IFMA)
681 );
682
683 kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
684 F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
685 F(AMX_COMPLEX)
686 );
687
688 kvm_cpu_cap_mask(CPUID_D_1_EAX,
689 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
690 );
691
692 kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
693 SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
694 );
695
696 kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
697 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
698 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
699 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
700 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
701 F(TOPOEXT) | 0 /* PERFCTR_CORE */
702 );
703
704 kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
705 F(FPU) | F(VME) | F(DE) | F(PSE) |
706 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
707 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
708 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
709 F(PAT) | F(PSE36) | 0 /* Reserved */ |
710 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
711 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
712 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
713 );
714
715 if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
716 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
717
718 kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
719 SF(CONSTANT_TSC)
720 );
721
722 kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
723 F(CLZERO) | F(XSAVEERPTR) |
724 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
725 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
726 F(AMD_PSFD)
727 );
728
729 /*
730 * AMD has separate bits for each SPEC_CTRL bit.
731 * arch/x86/kernel/cpu/bugs.c is kind enough to
732 * record that in cpufeatures so use them.
733 */
734 if (boot_cpu_has(X86_FEATURE_IBPB))
735 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
736 if (boot_cpu_has(X86_FEATURE_IBRS))
737 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
738 if (boot_cpu_has(X86_FEATURE_STIBP))
739 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
740 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
741 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
742 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
743 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
744 /*
745 * The preference is to use SPEC CTRL MSR instead of the
746 * VIRT_SPEC MSR.
747 */
748 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
749 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
750 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
751
752 /*
753 * Hide all SVM features by default, SVM will set the cap bits for
754 * features it emulates and/or exposes for L1.
755 */
756 kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
757
758 kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
759 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
760 F(SME_COHERENT));
761
762 kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
763 F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
764 F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */
765 );
766
767 if (cpu_feature_enabled(X86_FEATURE_SRSO_NO))
768 kvm_cpu_cap_set(X86_FEATURE_SRSO_NO);
769
770 kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
771 F(PERFMON_V2)
772 );
773
774 /*
775 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
776 * KVM's supported CPUID if the feature is reported as supported by the
777 * kernel. LFENCE_RDTSC was a Linux-defined synthetic feature long
778 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
779 * CPUs that support SSE2. On CPUs that don't support AMD's leaf,
780 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
781 * the mask with the raw host CPUID, and reporting support in AMD's
782 * leaf can make it easier for userspace to detect the feature.
783 */
784 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
785 kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
786 if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
787 kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
788 kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
789
790 kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
791 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
792 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
793 F(PMM) | F(PMM_EN)
794 );
795
796 /*
797 * Hide RDTSCP and RDPID if either feature is reported as supported but
798 * probing MSR_TSC_AUX failed. This is purely a sanity check and
799 * should never happen, but the guest will likely crash if RDTSCP or
800 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
801 * the past. For example, the sanity check may fire if this instance of
802 * KVM is running as L1 on top of an older, broken KVM.
803 */
804 if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
805 kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
806 !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
807 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
808 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
809 }
810 }
811 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
812
813 struct kvm_cpuid_array {
814 struct kvm_cpuid_entry2 *entries;
815 int maxnent;
816 int nent;
817 };
818
819 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
820 {
821 if (array->nent >= array->maxnent)
822 return NULL;
823
824 return &array->entries[array->nent++];
825 }
826
827 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
828 u32 function, u32 index)
829 {
830 struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
831
832 if (!entry)
833 return NULL;
834
835 memset(entry, 0, sizeof(*entry));
836 entry->function = function;
837 entry->index = index;
838 switch (function & 0xC0000000) {
839 case 0x40000000:
840 /* Hypervisor leaves are always synthesized by __do_cpuid_func. */
841 return entry;
842
843 case 0x80000000:
844 /*
845 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
846 * would result in out-of-bounds calls to do_host_cpuid.
847 */
848 {
849 static int max_cpuid_80000000;
850 if (!READ_ONCE(max_cpuid_80000000))
851 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
852 if (function > READ_ONCE(max_cpuid_80000000))
853 return entry;
854 }
855 break;
856
857 default:
858 break;
859 }
860
861 cpuid_count(entry->function, entry->index,
862 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
863
864 if (cpuid_function_is_indexed(function))
865 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
866
867 return entry;
868 }
869
870 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
871 {
872 struct kvm_cpuid_entry2 *entry;
873
874 if (array->nent >= array->maxnent)
875 return -E2BIG;
876
877 entry = &array->entries[array->nent];
878 entry->function = func;
879 entry->index = 0;
880 entry->flags = 0;
881
882 switch (func) {
883 case 0:
884 entry->eax = 7;
885 ++array->nent;
886 break;
887 case 1:
888 entry->ecx = F(MOVBE);
889 ++array->nent;
890 break;
891 case 7:
892 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
893 entry->eax = 0;
894 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
895 entry->ecx = F(RDPID);
896 ++array->nent;
897 break;
898 default:
899 break;
900 }
901
902 return 0;
903 }
904
905 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
906 {
907 struct kvm_cpuid_entry2 *entry;
908 int r, i, max_idx;
909
910 /* all calls to cpuid_count() should be made on the same cpu */
911 get_cpu();
912
913 r = -E2BIG;
914
915 entry = do_host_cpuid(array, function, 0);
916 if (!entry)
917 goto out;
918
919 switch (function) {
920 case 0:
921 /* Limited to the highest leaf implemented in KVM. */
922 entry->eax = min(entry->eax, 0x1fU);
923 break;
924 case 1:
925 cpuid_entry_override(entry, CPUID_1_EDX);
926 cpuid_entry_override(entry, CPUID_1_ECX);
927 break;
928 case 2:
929 /*
930 * On ancient CPUs, function 2 entries are STATEFUL. That is,
931 * CPUID(function=2, index=0) may return different results each
932 * time, with the least-significant byte in EAX enumerating the
933 * number of times software should do CPUID(2, 0).
934 *
935 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
936 * idiotic. Intel's SDM states that EAX & 0xff "will always
937 * return 01H. Software should ignore this value and not
938 * interpret it as an informational descriptor", while AMD's
939 * APM states that CPUID(2) is reserved.
940 *
941 * WARN if a frankenstein CPU that supports virtualization and
942 * a stateful CPUID.0x2 is encountered.
943 */
944 WARN_ON_ONCE((entry->eax & 0xff) > 1);
945 break;
946 /* functions 4 and 0x8000001d have additional index. */
947 case 4:
948 case 0x8000001d:
949 /*
950 * Read entries until the cache type in the previous entry is
951 * zero, i.e. indicates an invalid entry.
952 */
953 for (i = 1; entry->eax & 0x1f; ++i) {
954 entry = do_host_cpuid(array, function, i);
955 if (!entry)
956 goto out;
957 }
958 break;
959 case 6: /* Thermal management */
960 entry->eax = 0x4; /* allow ARAT */
961 entry->ebx = 0;
962 entry->ecx = 0;
963 entry->edx = 0;
964 break;
965 /* function 7 has additional index. */
966 case 7:
967 entry->eax = min(entry->eax, 1u);
968 cpuid_entry_override(entry, CPUID_7_0_EBX);
969 cpuid_entry_override(entry, CPUID_7_ECX);
970 cpuid_entry_override(entry, CPUID_7_EDX);
971
972 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
973 if (entry->eax == 1) {
974 entry = do_host_cpuid(array, function, 1);
975 if (!entry)
976 goto out;
977
978 cpuid_entry_override(entry, CPUID_7_1_EAX);
979 cpuid_entry_override(entry, CPUID_7_1_EDX);
980 entry->ebx = 0;
981 entry->ecx = 0;
982 }
983 break;
984 case 0xa: { /* Architectural Performance Monitoring */
985 union cpuid10_eax eax;
986 union cpuid10_edx edx;
987
988 if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
989 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
990 break;
991 }
992
993 eax.split.version_id = kvm_pmu_cap.version;
994 eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
995 eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
996 eax.split.mask_length = kvm_pmu_cap.events_mask_len;
997 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
998 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
999
1000 if (kvm_pmu_cap.version)
1001 edx.split.anythread_deprecated = 1;
1002 edx.split.reserved1 = 0;
1003 edx.split.reserved2 = 0;
1004
1005 entry->eax = eax.full;
1006 entry->ebx = kvm_pmu_cap.events_mask;
1007 entry->ecx = 0;
1008 entry->edx = edx.full;
1009 break;
1010 }
1011 case 0x1f:
1012 case 0xb:
1013 /*
1014 * No topology; a valid topology is indicated by the presence
1015 * of subleaf 1.
1016 */
1017 entry->eax = entry->ebx = entry->ecx = 0;
1018 break;
1019 case 0xd: {
1020 u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1021 u64 permitted_xss = kvm_caps.supported_xss;
1022
1023 entry->eax &= permitted_xcr0;
1024 entry->ebx = xstate_required_size(permitted_xcr0, false);
1025 entry->ecx = entry->ebx;
1026 entry->edx &= permitted_xcr0 >> 32;
1027 if (!permitted_xcr0)
1028 break;
1029
1030 entry = do_host_cpuid(array, function, 1);
1031 if (!entry)
1032 goto out;
1033
1034 cpuid_entry_override(entry, CPUID_D_1_EAX);
1035 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1036 entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1037 true);
1038 else {
1039 WARN_ON_ONCE(permitted_xss != 0);
1040 entry->ebx = 0;
1041 }
1042 entry->ecx &= permitted_xss;
1043 entry->edx &= permitted_xss >> 32;
1044
1045 for (i = 2; i < 64; ++i) {
1046 bool s_state;
1047 if (permitted_xcr0 & BIT_ULL(i))
1048 s_state = false;
1049 else if (permitted_xss & BIT_ULL(i))
1050 s_state = true;
1051 else
1052 continue;
1053
1054 entry = do_host_cpuid(array, function, i);
1055 if (!entry)
1056 goto out;
1057
1058 /*
1059 * The supported check above should have filtered out
1060 * invalid sub-leafs. Only valid sub-leafs should
1061 * reach this point, and they should have a non-zero
1062 * save state size. Furthermore, check whether the
1063 * processor agrees with permitted_xcr0/permitted_xss
1064 * on whether this is an XCR0- or IA32_XSS-managed area.
1065 */
1066 if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1067 --array->nent;
1068 continue;
1069 }
1070
1071 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1072 entry->ecx &= ~BIT_ULL(2);
1073 entry->edx = 0;
1074 }
1075 break;
1076 }
1077 case 0x12:
1078 /* Intel SGX */
1079 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1080 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1081 break;
1082 }
1083
1084 /*
1085 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1086 * and max enclave sizes. The SGX sub-features and MISCSELECT
1087 * are restricted by kernel and KVM capabilities (like most
1088 * feature flags), while enclave size is unrestricted.
1089 */
1090 cpuid_entry_override(entry, CPUID_12_EAX);
1091 entry->ebx &= SGX_MISC_EXINFO;
1092
1093 entry = do_host_cpuid(array, function, 1);
1094 if (!entry)
1095 goto out;
1096
1097 /*
1098 * Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la
1099 * feature flags. Advertise all supported flags, including
1100 * privileged attributes that require explicit opt-in from
1101 * userspace. ATTRIBUTES.XFRM is not adjusted as userspace is
1102 * expected to derive it from supported XCR0.
1103 */
1104 entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1105 entry->ebx &= 0;
1106 break;
1107 /* Intel PT */
1108 case 0x14:
1109 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1110 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1111 break;
1112 }
1113
1114 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1115 if (!do_host_cpuid(array, function, i))
1116 goto out;
1117 }
1118 break;
1119 /* Intel AMX TILE */
1120 case 0x1d:
1121 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1122 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1123 break;
1124 }
1125
1126 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1127 if (!do_host_cpuid(array, function, i))
1128 goto out;
1129 }
1130 break;
1131 case 0x1e: /* TMUL information */
1132 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1133 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1134 break;
1135 }
1136 break;
1137 case KVM_CPUID_SIGNATURE: {
1138 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1139 entry->eax = KVM_CPUID_FEATURES;
1140 entry->ebx = sigptr[0];
1141 entry->ecx = sigptr[1];
1142 entry->edx = sigptr[2];
1143 break;
1144 }
1145 case KVM_CPUID_FEATURES:
1146 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1147 (1 << KVM_FEATURE_NOP_IO_DELAY) |
1148 (1 << KVM_FEATURE_CLOCKSOURCE2) |
1149 (1 << KVM_FEATURE_ASYNC_PF) |
1150 (1 << KVM_FEATURE_PV_EOI) |
1151 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1152 (1 << KVM_FEATURE_PV_UNHALT) |
1153 (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1154 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1155 (1 << KVM_FEATURE_PV_SEND_IPI) |
1156 (1 << KVM_FEATURE_POLL_CONTROL) |
1157 (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1158 (1 << KVM_FEATURE_ASYNC_PF_INT);
1159
1160 if (sched_info_on())
1161 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1162
1163 entry->ebx = 0;
1164 entry->ecx = 0;
1165 entry->edx = 0;
1166 break;
1167 case 0x80000000:
1168 entry->eax = min(entry->eax, 0x80000022);
1169 /*
1170 * Serializing LFENCE is reported in a multitude of ways, and
1171 * NullSegClearsBase is not reported in CPUID on Zen2; help
1172 * userspace by providing the CPUID leaf ourselves.
1173 *
1174 * However, only do it if the host has CPUID leaf 0x8000001d.
1175 * QEMU thinks that it can query the host blindly for that
1176 * CPUID leaf if KVM reports that it supports 0x8000001d or
1177 * above. The processor merrily returns values from the
1178 * highest Intel leaf which QEMU tries to use as the guest's
1179 * 0x8000001d. Even worse, this can result in an infinite
1180 * loop if said highest leaf has no subleaves indexed by ECX.
1181 */
1182 if (entry->eax >= 0x8000001d &&
1183 (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1184 || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1185 entry->eax = max(entry->eax, 0x80000021);
1186 break;
1187 case 0x80000001:
1188 entry->ebx &= ~GENMASK(27, 16);
1189 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1190 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1191 break;
1192 case 0x80000005:
1193 /* Pass host L1 cache and TLB info. */
1194 break;
1195 case 0x80000006:
1196 /* Drop reserved bits, pass host L2 cache and TLB info. */
1197 entry->edx &= ~GENMASK(17, 16);
1198 break;
1199 case 0x80000007: /* Advanced power management */
1200 cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1201
1202 /* mask against host */
1203 entry->edx &= boot_cpu_data.x86_power;
1204 entry->eax = entry->ebx = entry->ecx = 0;
1205 break;
1206 case 0x80000008: {
1207 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1208 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1209 unsigned phys_as = entry->eax & 0xff;
1210
1211 /*
1212 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1213 * the guest operates in the same PA space as the host, i.e.
1214 * reductions in MAXPHYADDR for memory encryption affect shadow
1215 * paging, too.
1216 *
1217 * If TDP is enabled but an explicit guest MAXPHYADDR is not
1218 * provided, use the raw bare metal MAXPHYADDR as reductions to
1219 * the HPAs do not affect GPAs.
1220 */
1221 if (!tdp_enabled)
1222 g_phys_as = boot_cpu_data.x86_phys_bits;
1223 else if (!g_phys_as)
1224 g_phys_as = phys_as;
1225
1226 entry->eax = g_phys_as | (virt_as << 8);
1227 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1228 entry->edx = 0;
1229 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1230 break;
1231 }
1232 case 0x8000000A:
1233 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1234 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1235 break;
1236 }
1237 entry->eax = 1; /* SVM revision 1 */
1238 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1239 ASID emulation to nested SVM */
1240 entry->ecx = 0; /* Reserved */
1241 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1242 break;
1243 case 0x80000019:
1244 entry->ecx = entry->edx = 0;
1245 break;
1246 case 0x8000001a:
1247 entry->eax &= GENMASK(2, 0);
1248 entry->ebx = entry->ecx = entry->edx = 0;
1249 break;
1250 case 0x8000001e:
1251 /* Do not return host topology information. */
1252 entry->eax = entry->ebx = entry->ecx = 0;
1253 entry->edx = 0; /* reserved */
1254 break;
1255 case 0x8000001F:
1256 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1257 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1258 } else {
1259 cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1260 /* Clear NumVMPL since KVM does not support VMPL. */
1261 entry->ebx &= ~GENMASK(31, 12);
1262 /*
1263 * Enumerate '0' for "PA bits reduction", the adjusted
1264 * MAXPHYADDR is enumerated directly (see 0x80000008).
1265 */
1266 entry->ebx &= ~GENMASK(11, 6);
1267 }
1268 break;
1269 case 0x80000020:
1270 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1271 break;
1272 case 0x80000021:
1273 entry->ebx = entry->ecx = entry->edx = 0;
1274 cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1275 break;
1276 /* AMD Extended Performance Monitoring and Debug */
1277 case 0x80000022: {
1278 union cpuid_0x80000022_ebx ebx;
1279
1280 entry->ecx = entry->edx = 0;
1281 if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1282 entry->eax = entry->ebx;
1283 break;
1284 }
1285
1286 cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1287
1288 if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1289 ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1290 else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1291 ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1292 else
1293 ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1294
1295 entry->ebx = ebx.full;
1296 break;
1297 }
1298 /*Add support for Centaur's CPUID instruction*/
1299 case 0xC0000000:
1300 /*Just support up to 0xC0000004 now*/
1301 entry->eax = min(entry->eax, 0xC0000004);
1302 break;
1303 case 0xC0000001:
1304 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1305 break;
1306 case 3: /* Processor serial number */
1307 case 5: /* MONITOR/MWAIT */
1308 case 0xC0000002:
1309 case 0xC0000003:
1310 case 0xC0000004:
1311 default:
1312 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1313 break;
1314 }
1315
1316 r = 0;
1317
1318 out:
1319 put_cpu();
1320
1321 return r;
1322 }
1323
1324 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1325 unsigned int type)
1326 {
1327 if (type == KVM_GET_EMULATED_CPUID)
1328 return __do_cpuid_func_emulated(array, func);
1329
1330 return __do_cpuid_func(array, func);
1331 }
1332
1333 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1334
1335 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1336 unsigned int type)
1337 {
1338 u32 limit;
1339 int r;
1340
1341 if (func == CENTAUR_CPUID_SIGNATURE &&
1342 boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1343 return 0;
1344
1345 r = do_cpuid_func(array, func, type);
1346 if (r)
1347 return r;
1348
1349 limit = array->entries[array->nent - 1].eax;
1350 for (func = func + 1; func <= limit; ++func) {
1351 r = do_cpuid_func(array, func, type);
1352 if (r)
1353 break;
1354 }
1355
1356 return r;
1357 }
1358
1359 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1360 __u32 num_entries, unsigned int ioctl_type)
1361 {
1362 int i;
1363 __u32 pad[3];
1364
1365 if (ioctl_type != KVM_GET_EMULATED_CPUID)
1366 return false;
1367
1368 /*
1369 * We want to make sure that ->padding is being passed clean from
1370 * userspace in case we want to use it for something in the future.
1371 *
1372 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1373 * have to give ourselves satisfied only with the emulated side. /me
1374 * sheds a tear.
1375 */
1376 for (i = 0; i < num_entries; i++) {
1377 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1378 return true;
1379
1380 if (pad[0] || pad[1] || pad[2])
1381 return true;
1382 }
1383 return false;
1384 }
1385
1386 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1387 struct kvm_cpuid_entry2 __user *entries,
1388 unsigned int type)
1389 {
1390 static const u32 funcs[] = {
1391 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1392 };
1393
1394 struct kvm_cpuid_array array = {
1395 .nent = 0,
1396 };
1397 int r, i;
1398
1399 if (cpuid->nent < 1)
1400 return -E2BIG;
1401 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1402 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1403
1404 if (sanity_check_entries(entries, cpuid->nent, type))
1405 return -EINVAL;
1406
1407 array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1408 if (!array.entries)
1409 return -ENOMEM;
1410
1411 array.maxnent = cpuid->nent;
1412
1413 for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1414 r = get_cpuid_func(&array, funcs[i], type);
1415 if (r)
1416 goto out_free;
1417 }
1418 cpuid->nent = array.nent;
1419
1420 if (copy_to_user(entries, array.entries,
1421 array.nent * sizeof(struct kvm_cpuid_entry2)))
1422 r = -EFAULT;
1423
1424 out_free:
1425 kvfree(array.entries);
1426 return r;
1427 }
1428
1429 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1430 u32 function, u32 index)
1431 {
1432 return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1433 function, index);
1434 }
1435 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1436
1437 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1438 u32 function)
1439 {
1440 return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1441 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1442 }
1443 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1444
1445 /*
1446 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1447 * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
1448 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1449 * range. Centaur/VIA follows Intel semantics.
1450 *
1451 * A leaf is considered out-of-range if its function is higher than the maximum
1452 * supported leaf of its associated class or if its associated class does not
1453 * exist.
1454 *
1455 * There are three primary classes to be considered, with their respective
1456 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
1457 * class exists if a guest CPUID entry for its <base> leaf exists. For a given
1458 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1459 *
1460 * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1461 * - Hypervisor: 0x40000000 - 0x4fffffff
1462 * - Extended: 0x80000000 - 0xbfffffff
1463 * - Centaur: 0xc0000000 - 0xcfffffff
1464 *
1465 * The Hypervisor class is further subdivided into sub-classes that each act as
1466 * their own independent class associated with a 0x100 byte range. E.g. if Qemu
1467 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1468 * CPUID sub-classes are:
1469 *
1470 * - HyperV: 0x40000000 - 0x400000ff
1471 * - KVM: 0x40000100 - 0x400001ff
1472 */
1473 static struct kvm_cpuid_entry2 *
1474 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1475 {
1476 struct kvm_cpuid_entry2 *basic, *class;
1477 u32 function = *fn_ptr;
1478
1479 basic = kvm_find_cpuid_entry(vcpu, 0);
1480 if (!basic)
1481 return NULL;
1482
1483 if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1484 is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1485 return NULL;
1486
1487 if (function >= 0x40000000 && function <= 0x4fffffff)
1488 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1489 else if (function >= 0xc0000000)
1490 class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1491 else
1492 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1493
1494 if (class && function <= class->eax)
1495 return NULL;
1496
1497 /*
1498 * Leaf specific adjustments are also applied when redirecting to the
1499 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1500 * entry for CPUID.0xb.index (see below), then the output value for EDX
1501 * needs to be pulled from CPUID.0xb.1.
1502 */
1503 *fn_ptr = basic->eax;
1504
1505 /*
1506 * The class does not exist or the requested function is out of range;
1507 * the effective CPUID entry is the max basic leaf. Note, the index of
1508 * the original requested leaf is observed!
1509 */
1510 return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1511 }
1512
1513 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1514 u32 *ecx, u32 *edx, bool exact_only)
1515 {
1516 u32 orig_function = *eax, function = *eax, index = *ecx;
1517 struct kvm_cpuid_entry2 *entry;
1518 bool exact, used_max_basic = false;
1519
1520 entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1521 exact = !!entry;
1522
1523 if (!entry && !exact_only) {
1524 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1525 used_max_basic = !!entry;
1526 }
1527
1528 if (entry) {
1529 *eax = entry->eax;
1530 *ebx = entry->ebx;
1531 *ecx = entry->ecx;
1532 *edx = entry->edx;
1533 if (function == 7 && index == 0) {
1534 u64 data;
1535 if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1536 (data & TSX_CTRL_CPUID_CLEAR))
1537 *ebx &= ~(F(RTM) | F(HLE));
1538 } else if (function == 0x80000007) {
1539 if (kvm_hv_invtsc_suppressed(vcpu))
1540 *edx &= ~SF(CONSTANT_TSC);
1541 }
1542 } else {
1543 *eax = *ebx = *ecx = *edx = 0;
1544 /*
1545 * When leaf 0BH or 1FH is defined, CL is pass-through
1546 * and EDX is always the x2APIC ID, even for undefined
1547 * subleaves. Index 1 will exist iff the leaf is
1548 * implemented, so we pass through CL iff leaf 1
1549 * exists. EDX can be copied from any existing index.
1550 */
1551 if (function == 0xb || function == 0x1f) {
1552 entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1553 if (entry) {
1554 *ecx = index & 0xff;
1555 *edx = entry->edx;
1556 }
1557 }
1558 }
1559 trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1560 used_max_basic);
1561 return exact;
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_cpuid);
1564
1565 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1566 {
1567 u32 eax, ebx, ecx, edx;
1568
1569 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1570 return 1;
1571
1572 eax = kvm_rax_read(vcpu);
1573 ecx = kvm_rcx_read(vcpu);
1574 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1575 kvm_rax_write(vcpu, eax);
1576 kvm_rbx_write(vcpu, ebx);
1577 kvm_rcx_write(vcpu, ecx);
1578 kvm_rdx_write(vcpu, edx);
1579 return kvm_skip_emulated_instruction(vcpu);
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);