]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/kvm/hyperv.c
Merge tag 'upstream-5.2-rc1' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / arch / x86 / kvm / hyperv.c
1 /*
2 * KVM Microsoft Hyper-V emulation
3 *
4 * derived from arch/x86/kvm/x86.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 * Andrey Smetanin <asmetanin@virtuozzo.com>
18 *
19 * This work is licensed under the terms of the GNU GPL, version 2. See
20 * the COPYING file in the top-level directory.
21 *
22 */
23
24 #include "x86.h"
25 #include "lapic.h"
26 #include "ioapic.h"
27 #include "hyperv.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/highmem.h>
31 #include <linux/sched/cputime.h>
32 #include <linux/eventfd.h>
33
34 #include <asm/apicdef.h>
35 #include <trace/events/kvm.h>
36
37 #include "trace.h"
38
39 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
40
41 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
42 bool vcpu_kick);
43
44 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
45 {
46 return atomic64_read(&synic->sint[sint]);
47 }
48
49 static inline int synic_get_sint_vector(u64 sint_value)
50 {
51 if (sint_value & HV_SYNIC_SINT_MASKED)
52 return -1;
53 return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
54 }
55
56 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
57 int vector)
58 {
59 int i;
60
61 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
62 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
63 return true;
64 }
65 return false;
66 }
67
68 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
69 int vector)
70 {
71 int i;
72 u64 sint_value;
73
74 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
75 sint_value = synic_read_sint(synic, i);
76 if (synic_get_sint_vector(sint_value) == vector &&
77 sint_value & HV_SYNIC_SINT_AUTO_EOI)
78 return true;
79 }
80 return false;
81 }
82
83 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
84 int vector)
85 {
86 if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
87 return;
88
89 if (synic_has_vector_connected(synic, vector))
90 __set_bit(vector, synic->vec_bitmap);
91 else
92 __clear_bit(vector, synic->vec_bitmap);
93
94 if (synic_has_vector_auto_eoi(synic, vector))
95 __set_bit(vector, synic->auto_eoi_bitmap);
96 else
97 __clear_bit(vector, synic->auto_eoi_bitmap);
98 }
99
100 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
101 u64 data, bool host)
102 {
103 int vector, old_vector;
104 bool masked;
105
106 vector = data & HV_SYNIC_SINT_VECTOR_MASK;
107 masked = data & HV_SYNIC_SINT_MASKED;
108
109 /*
110 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
111 * default '0x10000' value on boot and this should not #GP. We need to
112 * allow zero-initing the register from host as well.
113 */
114 if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
115 return 1;
116 /*
117 * Guest may configure multiple SINTs to use the same vector, so
118 * we maintain a bitmap of vectors handled by synic, and a
119 * bitmap of vectors with auto-eoi behavior. The bitmaps are
120 * updated here, and atomically queried on fast paths.
121 */
122 old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
123
124 atomic64_set(&synic->sint[sint], data);
125
126 synic_update_vector(synic, old_vector);
127
128 synic_update_vector(synic, vector);
129
130 /* Load SynIC vectors into EOI exit bitmap */
131 kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
132 return 0;
133 }
134
135 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
136 {
137 struct kvm_vcpu *vcpu = NULL;
138 int i;
139
140 if (vpidx >= KVM_MAX_VCPUS)
141 return NULL;
142
143 vcpu = kvm_get_vcpu(kvm, vpidx);
144 if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
145 return vcpu;
146 kvm_for_each_vcpu(i, vcpu, kvm)
147 if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
148 return vcpu;
149 return NULL;
150 }
151
152 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
153 {
154 struct kvm_vcpu *vcpu;
155 struct kvm_vcpu_hv_synic *synic;
156
157 vcpu = get_vcpu_by_vpidx(kvm, vpidx);
158 if (!vcpu)
159 return NULL;
160 synic = vcpu_to_synic(vcpu);
161 return (synic->active) ? synic : NULL;
162 }
163
164 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
165 {
166 struct kvm *kvm = vcpu->kvm;
167 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
168 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
169 struct kvm_vcpu_hv_stimer *stimer;
170 int gsi, idx;
171
172 trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
173
174 /* Try to deliver pending Hyper-V SynIC timers messages */
175 for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
176 stimer = &hv_vcpu->stimer[idx];
177 if (stimer->msg_pending && stimer->config.enable &&
178 !stimer->config.direct_mode &&
179 stimer->config.sintx == sint)
180 stimer_mark_pending(stimer, false);
181 }
182
183 idx = srcu_read_lock(&kvm->irq_srcu);
184 gsi = atomic_read(&synic->sint_to_gsi[sint]);
185 if (gsi != -1)
186 kvm_notify_acked_gsi(kvm, gsi);
187 srcu_read_unlock(&kvm->irq_srcu, idx);
188 }
189
190 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
191 {
192 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
193 struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
194
195 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
196 hv_vcpu->exit.u.synic.msr = msr;
197 hv_vcpu->exit.u.synic.control = synic->control;
198 hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
199 hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
200
201 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
202 }
203
204 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
205 u32 msr, u64 data, bool host)
206 {
207 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
208 int ret;
209
210 if (!synic->active && !host)
211 return 1;
212
213 trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
214
215 ret = 0;
216 switch (msr) {
217 case HV_X64_MSR_SCONTROL:
218 synic->control = data;
219 if (!host)
220 synic_exit(synic, msr);
221 break;
222 case HV_X64_MSR_SVERSION:
223 if (!host) {
224 ret = 1;
225 break;
226 }
227 synic->version = data;
228 break;
229 case HV_X64_MSR_SIEFP:
230 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
231 !synic->dont_zero_synic_pages)
232 if (kvm_clear_guest(vcpu->kvm,
233 data & PAGE_MASK, PAGE_SIZE)) {
234 ret = 1;
235 break;
236 }
237 synic->evt_page = data;
238 if (!host)
239 synic_exit(synic, msr);
240 break;
241 case HV_X64_MSR_SIMP:
242 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
243 !synic->dont_zero_synic_pages)
244 if (kvm_clear_guest(vcpu->kvm,
245 data & PAGE_MASK, PAGE_SIZE)) {
246 ret = 1;
247 break;
248 }
249 synic->msg_page = data;
250 if (!host)
251 synic_exit(synic, msr);
252 break;
253 case HV_X64_MSR_EOM: {
254 int i;
255
256 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
257 kvm_hv_notify_acked_sint(vcpu, i);
258 break;
259 }
260 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
261 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
262 break;
263 default:
264 ret = 1;
265 break;
266 }
267 return ret;
268 }
269
270 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
271 bool host)
272 {
273 int ret;
274
275 if (!synic->active && !host)
276 return 1;
277
278 ret = 0;
279 switch (msr) {
280 case HV_X64_MSR_SCONTROL:
281 *pdata = synic->control;
282 break;
283 case HV_X64_MSR_SVERSION:
284 *pdata = synic->version;
285 break;
286 case HV_X64_MSR_SIEFP:
287 *pdata = synic->evt_page;
288 break;
289 case HV_X64_MSR_SIMP:
290 *pdata = synic->msg_page;
291 break;
292 case HV_X64_MSR_EOM:
293 *pdata = 0;
294 break;
295 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
296 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
297 break;
298 default:
299 ret = 1;
300 break;
301 }
302 return ret;
303 }
304
305 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
306 {
307 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
308 struct kvm_lapic_irq irq;
309 int ret, vector;
310
311 if (sint >= ARRAY_SIZE(synic->sint))
312 return -EINVAL;
313
314 vector = synic_get_sint_vector(synic_read_sint(synic, sint));
315 if (vector < 0)
316 return -ENOENT;
317
318 memset(&irq, 0, sizeof(irq));
319 irq.shorthand = APIC_DEST_SELF;
320 irq.dest_mode = APIC_DEST_PHYSICAL;
321 irq.delivery_mode = APIC_DM_FIXED;
322 irq.vector = vector;
323 irq.level = 1;
324
325 ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
326 trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
327 return ret;
328 }
329
330 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
331 {
332 struct kvm_vcpu_hv_synic *synic;
333
334 synic = synic_get(kvm, vpidx);
335 if (!synic)
336 return -EINVAL;
337
338 return synic_set_irq(synic, sint);
339 }
340
341 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
342 {
343 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
344 int i;
345
346 trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
347
348 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
349 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
350 kvm_hv_notify_acked_sint(vcpu, i);
351 }
352
353 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
354 {
355 struct kvm_vcpu_hv_synic *synic;
356
357 synic = synic_get(kvm, vpidx);
358 if (!synic)
359 return -EINVAL;
360
361 if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
362 return -EINVAL;
363
364 atomic_set(&synic->sint_to_gsi[sint], gsi);
365 return 0;
366 }
367
368 void kvm_hv_irq_routing_update(struct kvm *kvm)
369 {
370 struct kvm_irq_routing_table *irq_rt;
371 struct kvm_kernel_irq_routing_entry *e;
372 u32 gsi;
373
374 irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
375 lockdep_is_held(&kvm->irq_lock));
376
377 for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
378 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
379 if (e->type == KVM_IRQ_ROUTING_HV_SINT)
380 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
381 e->hv_sint.sint, gsi);
382 }
383 }
384 }
385
386 static void synic_init(struct kvm_vcpu_hv_synic *synic)
387 {
388 int i;
389
390 memset(synic, 0, sizeof(*synic));
391 synic->version = HV_SYNIC_VERSION_1;
392 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
393 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
394 atomic_set(&synic->sint_to_gsi[i], -1);
395 }
396 }
397
398 static u64 get_time_ref_counter(struct kvm *kvm)
399 {
400 struct kvm_hv *hv = &kvm->arch.hyperv;
401 struct kvm_vcpu *vcpu;
402 u64 tsc;
403
404 /*
405 * The guest has not set up the TSC page or the clock isn't
406 * stable, fall back to get_kvmclock_ns.
407 */
408 if (!hv->tsc_ref.tsc_sequence)
409 return div_u64(get_kvmclock_ns(kvm), 100);
410
411 vcpu = kvm_get_vcpu(kvm, 0);
412 tsc = kvm_read_l1_tsc(vcpu, rdtsc());
413 return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
414 + hv->tsc_ref.tsc_offset;
415 }
416
417 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
418 bool vcpu_kick)
419 {
420 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
421
422 set_bit(stimer->index,
423 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
424 kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
425 if (vcpu_kick)
426 kvm_vcpu_kick(vcpu);
427 }
428
429 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
430 {
431 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
432
433 trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
434 stimer->index);
435
436 hrtimer_cancel(&stimer->timer);
437 clear_bit(stimer->index,
438 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
439 stimer->msg_pending = false;
440 stimer->exp_time = 0;
441 }
442
443 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
444 {
445 struct kvm_vcpu_hv_stimer *stimer;
446
447 stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
448 trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
449 stimer->index);
450 stimer_mark_pending(stimer, true);
451
452 return HRTIMER_NORESTART;
453 }
454
455 /*
456 * stimer_start() assumptions:
457 * a) stimer->count is not equal to 0
458 * b) stimer->config has HV_STIMER_ENABLE flag
459 */
460 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
461 {
462 u64 time_now;
463 ktime_t ktime_now;
464
465 time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
466 ktime_now = ktime_get();
467
468 if (stimer->config.periodic) {
469 if (stimer->exp_time) {
470 if (time_now >= stimer->exp_time) {
471 u64 remainder;
472
473 div64_u64_rem(time_now - stimer->exp_time,
474 stimer->count, &remainder);
475 stimer->exp_time =
476 time_now + (stimer->count - remainder);
477 }
478 } else
479 stimer->exp_time = time_now + stimer->count;
480
481 trace_kvm_hv_stimer_start_periodic(
482 stimer_to_vcpu(stimer)->vcpu_id,
483 stimer->index,
484 time_now, stimer->exp_time);
485
486 hrtimer_start(&stimer->timer,
487 ktime_add_ns(ktime_now,
488 100 * (stimer->exp_time - time_now)),
489 HRTIMER_MODE_ABS);
490 return 0;
491 }
492 stimer->exp_time = stimer->count;
493 if (time_now >= stimer->count) {
494 /*
495 * Expire timer according to Hypervisor Top-Level Functional
496 * specification v4(15.3.1):
497 * "If a one shot is enabled and the specified count is in
498 * the past, it will expire immediately."
499 */
500 stimer_mark_pending(stimer, false);
501 return 0;
502 }
503
504 trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
505 stimer->index,
506 time_now, stimer->count);
507
508 hrtimer_start(&stimer->timer,
509 ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
510 HRTIMER_MODE_ABS);
511 return 0;
512 }
513
514 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
515 bool host)
516 {
517 union hv_stimer_config new_config = {.as_uint64 = config},
518 old_config = {.as_uint64 = stimer->config.as_uint64};
519
520 trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
521 stimer->index, config, host);
522
523 stimer_cleanup(stimer);
524 if (old_config.enable &&
525 !new_config.direct_mode && new_config.sintx == 0)
526 new_config.enable = 0;
527 stimer->config.as_uint64 = new_config.as_uint64;
528
529 if (stimer->config.enable)
530 stimer_mark_pending(stimer, false);
531
532 return 0;
533 }
534
535 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
536 bool host)
537 {
538 trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
539 stimer->index, count, host);
540
541 stimer_cleanup(stimer);
542 stimer->count = count;
543 if (stimer->count == 0)
544 stimer->config.enable = 0;
545 else if (stimer->config.auto_enable)
546 stimer->config.enable = 1;
547
548 if (stimer->config.enable)
549 stimer_mark_pending(stimer, false);
550
551 return 0;
552 }
553
554 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
555 {
556 *pconfig = stimer->config.as_uint64;
557 return 0;
558 }
559
560 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
561 {
562 *pcount = stimer->count;
563 return 0;
564 }
565
566 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
567 struct hv_message *src_msg, bool no_retry)
568 {
569 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
570 int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
571 gfn_t msg_page_gfn;
572 struct hv_message_header hv_hdr;
573 int r;
574
575 if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
576 return -ENOENT;
577
578 msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
579
580 /*
581 * Strictly following the spec-mandated ordering would assume setting
582 * .msg_pending before checking .message_type. However, this function
583 * is only called in vcpu context so the entire update is atomic from
584 * guest POV and thus the exact order here doesn't matter.
585 */
586 r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
587 msg_off + offsetof(struct hv_message,
588 header.message_type),
589 sizeof(hv_hdr.message_type));
590 if (r < 0)
591 return r;
592
593 if (hv_hdr.message_type != HVMSG_NONE) {
594 if (no_retry)
595 return 0;
596
597 hv_hdr.message_flags.msg_pending = 1;
598 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
599 &hv_hdr.message_flags,
600 msg_off +
601 offsetof(struct hv_message,
602 header.message_flags),
603 sizeof(hv_hdr.message_flags));
604 if (r < 0)
605 return r;
606 return -EAGAIN;
607 }
608
609 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
610 sizeof(src_msg->header) +
611 src_msg->header.payload_size);
612 if (r < 0)
613 return r;
614
615 r = synic_set_irq(synic, sint);
616 if (r < 0)
617 return r;
618 if (r == 0)
619 return -EFAULT;
620 return 0;
621 }
622
623 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
624 {
625 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
626 struct hv_message *msg = &stimer->msg;
627 struct hv_timer_message_payload *payload =
628 (struct hv_timer_message_payload *)&msg->u.payload;
629
630 /*
631 * To avoid piling up periodic ticks, don't retry message
632 * delivery for them (within "lazy" lost ticks policy).
633 */
634 bool no_retry = stimer->config.periodic;
635
636 payload->expiration_time = stimer->exp_time;
637 payload->delivery_time = get_time_ref_counter(vcpu->kvm);
638 return synic_deliver_msg(vcpu_to_synic(vcpu),
639 stimer->config.sintx, msg,
640 no_retry);
641 }
642
643 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
644 {
645 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
646 struct kvm_lapic_irq irq = {
647 .delivery_mode = APIC_DM_FIXED,
648 .vector = stimer->config.apic_vector
649 };
650
651 return !kvm_apic_set_irq(vcpu, &irq, NULL);
652 }
653
654 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
655 {
656 int r, direct = stimer->config.direct_mode;
657
658 stimer->msg_pending = true;
659 if (!direct)
660 r = stimer_send_msg(stimer);
661 else
662 r = stimer_notify_direct(stimer);
663 trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
664 stimer->index, direct, r);
665 if (!r) {
666 stimer->msg_pending = false;
667 if (!(stimer->config.periodic))
668 stimer->config.enable = 0;
669 }
670 }
671
672 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
673 {
674 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
675 struct kvm_vcpu_hv_stimer *stimer;
676 u64 time_now, exp_time;
677 int i;
678
679 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
680 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
681 stimer = &hv_vcpu->stimer[i];
682 if (stimer->config.enable) {
683 exp_time = stimer->exp_time;
684
685 if (exp_time) {
686 time_now =
687 get_time_ref_counter(vcpu->kvm);
688 if (time_now >= exp_time)
689 stimer_expiration(stimer);
690 }
691
692 if ((stimer->config.enable) &&
693 stimer->count) {
694 if (!stimer->msg_pending)
695 stimer_start(stimer);
696 } else
697 stimer_cleanup(stimer);
698 }
699 }
700 }
701
702 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
703 {
704 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
705 int i;
706
707 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
708 stimer_cleanup(&hv_vcpu->stimer[i]);
709 }
710
711 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
712 {
713 if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
714 return false;
715 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
716 }
717 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
718
719 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
720 struct hv_vp_assist_page *assist_page)
721 {
722 if (!kvm_hv_assist_page_enabled(vcpu))
723 return false;
724 return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
725 assist_page, sizeof(*assist_page));
726 }
727 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
728
729 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
730 {
731 struct hv_message *msg = &stimer->msg;
732 struct hv_timer_message_payload *payload =
733 (struct hv_timer_message_payload *)&msg->u.payload;
734
735 memset(&msg->header, 0, sizeof(msg->header));
736 msg->header.message_type = HVMSG_TIMER_EXPIRED;
737 msg->header.payload_size = sizeof(*payload);
738
739 payload->timer_index = stimer->index;
740 payload->expiration_time = 0;
741 payload->delivery_time = 0;
742 }
743
744 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
745 {
746 memset(stimer, 0, sizeof(*stimer));
747 stimer->index = timer_index;
748 hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
749 stimer->timer.function = stimer_timer_callback;
750 stimer_prepare_msg(stimer);
751 }
752
753 void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
754 {
755 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
756 int i;
757
758 synic_init(&hv_vcpu->synic);
759
760 bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
761 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
762 stimer_init(&hv_vcpu->stimer[i], i);
763 }
764
765 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
766 {
767 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
768
769 hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
770 }
771
772 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
773 {
774 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
775
776 /*
777 * Hyper-V SynIC auto EOI SINT's are
778 * not compatible with APICV, so deactivate APICV
779 */
780 kvm_vcpu_deactivate_apicv(vcpu);
781 synic->active = true;
782 synic->dont_zero_synic_pages = dont_zero_synic_pages;
783 return 0;
784 }
785
786 static bool kvm_hv_msr_partition_wide(u32 msr)
787 {
788 bool r = false;
789
790 switch (msr) {
791 case HV_X64_MSR_GUEST_OS_ID:
792 case HV_X64_MSR_HYPERCALL:
793 case HV_X64_MSR_REFERENCE_TSC:
794 case HV_X64_MSR_TIME_REF_COUNT:
795 case HV_X64_MSR_CRASH_CTL:
796 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
797 case HV_X64_MSR_RESET:
798 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
799 case HV_X64_MSR_TSC_EMULATION_CONTROL:
800 case HV_X64_MSR_TSC_EMULATION_STATUS:
801 r = true;
802 break;
803 }
804
805 return r;
806 }
807
808 static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
809 u32 index, u64 *pdata)
810 {
811 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
812
813 if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
814 return -EINVAL;
815
816 *pdata = hv->hv_crash_param[index];
817 return 0;
818 }
819
820 static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
821 {
822 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
823
824 *pdata = hv->hv_crash_ctl;
825 return 0;
826 }
827
828 static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
829 {
830 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
831
832 if (host)
833 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
834
835 if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) {
836
837 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
838 hv->hv_crash_param[0],
839 hv->hv_crash_param[1],
840 hv->hv_crash_param[2],
841 hv->hv_crash_param[3],
842 hv->hv_crash_param[4]);
843
844 /* Send notification about crash to user space */
845 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
846 }
847
848 return 0;
849 }
850
851 static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
852 u32 index, u64 data)
853 {
854 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
855
856 if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
857 return -EINVAL;
858
859 hv->hv_crash_param[index] = data;
860 return 0;
861 }
862
863 /*
864 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
865 * between them is possible:
866 *
867 * kvmclock formula:
868 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
869 * + system_time
870 *
871 * Hyper-V formula:
872 * nsec/100 = ticks * scale / 2^64 + offset
873 *
874 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
875 * By dividing the kvmclock formula by 100 and equating what's left we get:
876 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
877 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
878 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
879 *
880 * Now expand the kvmclock formula and divide by 100:
881 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
882 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
883 * + system_time
884 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
885 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
886 * + system_time / 100
887 *
888 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
889 * nsec/100 = ticks * scale / 2^64
890 * - tsc_timestamp * scale / 2^64
891 * + system_time / 100
892 *
893 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
894 * offset = system_time / 100 - tsc_timestamp * scale / 2^64
895 *
896 * These two equivalencies are implemented in this function.
897 */
898 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
899 HV_REFERENCE_TSC_PAGE *tsc_ref)
900 {
901 u64 max_mul;
902
903 if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
904 return false;
905
906 /*
907 * check if scale would overflow, if so we use the time ref counter
908 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
909 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
910 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
911 */
912 max_mul = 100ull << (32 - hv_clock->tsc_shift);
913 if (hv_clock->tsc_to_system_mul >= max_mul)
914 return false;
915
916 /*
917 * Otherwise compute the scale and offset according to the formulas
918 * derived above.
919 */
920 tsc_ref->tsc_scale =
921 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
922 hv_clock->tsc_to_system_mul,
923 100);
924
925 tsc_ref->tsc_offset = hv_clock->system_time;
926 do_div(tsc_ref->tsc_offset, 100);
927 tsc_ref->tsc_offset -=
928 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
929 return true;
930 }
931
932 void kvm_hv_setup_tsc_page(struct kvm *kvm,
933 struct pvclock_vcpu_time_info *hv_clock)
934 {
935 struct kvm_hv *hv = &kvm->arch.hyperv;
936 u32 tsc_seq;
937 u64 gfn;
938
939 BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
940 BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE, tsc_sequence) != 0);
941
942 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
943 return;
944
945 mutex_lock(&kvm->arch.hyperv.hv_lock);
946 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
947 goto out_unlock;
948
949 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
950 /*
951 * Because the TSC parameters only vary when there is a
952 * change in the master clock, do not bother with caching.
953 */
954 if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
955 &tsc_seq, sizeof(tsc_seq))))
956 goto out_unlock;
957
958 /*
959 * While we're computing and writing the parameters, force the
960 * guest to use the time reference count MSR.
961 */
962 hv->tsc_ref.tsc_sequence = 0;
963 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
964 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
965 goto out_unlock;
966
967 if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
968 goto out_unlock;
969
970 /* Ensure sequence is zero before writing the rest of the struct. */
971 smp_wmb();
972 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
973 goto out_unlock;
974
975 /*
976 * Now switch to the TSC page mechanism by writing the sequence.
977 */
978 tsc_seq++;
979 if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
980 tsc_seq = 1;
981
982 /* Write the struct entirely before the non-zero sequence. */
983 smp_wmb();
984
985 hv->tsc_ref.tsc_sequence = tsc_seq;
986 kvm_write_guest(kvm, gfn_to_gpa(gfn),
987 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
988 out_unlock:
989 mutex_unlock(&kvm->arch.hyperv.hv_lock);
990 }
991
992 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
993 bool host)
994 {
995 struct kvm *kvm = vcpu->kvm;
996 struct kvm_hv *hv = &kvm->arch.hyperv;
997
998 switch (msr) {
999 case HV_X64_MSR_GUEST_OS_ID:
1000 hv->hv_guest_os_id = data;
1001 /* setting guest os id to zero disables hypercall page */
1002 if (!hv->hv_guest_os_id)
1003 hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1004 break;
1005 case HV_X64_MSR_HYPERCALL: {
1006 u64 gfn;
1007 unsigned long addr;
1008 u8 instructions[4];
1009
1010 /* if guest os id is not set hypercall should remain disabled */
1011 if (!hv->hv_guest_os_id)
1012 break;
1013 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1014 hv->hv_hypercall = data;
1015 break;
1016 }
1017 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1018 addr = gfn_to_hva(kvm, gfn);
1019 if (kvm_is_error_hva(addr))
1020 return 1;
1021 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1022 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1023 if (__copy_to_user((void __user *)addr, instructions, 4))
1024 return 1;
1025 hv->hv_hypercall = data;
1026 mark_page_dirty(kvm, gfn);
1027 break;
1028 }
1029 case HV_X64_MSR_REFERENCE_TSC:
1030 hv->hv_tsc_page = data;
1031 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
1032 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1033 break;
1034 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1035 return kvm_hv_msr_set_crash_data(vcpu,
1036 msr - HV_X64_MSR_CRASH_P0,
1037 data);
1038 case HV_X64_MSR_CRASH_CTL:
1039 return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
1040 case HV_X64_MSR_RESET:
1041 if (data == 1) {
1042 vcpu_debug(vcpu, "hyper-v reset requested\n");
1043 kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1044 }
1045 break;
1046 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1047 hv->hv_reenlightenment_control = data;
1048 break;
1049 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1050 hv->hv_tsc_emulation_control = data;
1051 break;
1052 case HV_X64_MSR_TSC_EMULATION_STATUS:
1053 hv->hv_tsc_emulation_status = data;
1054 break;
1055 case HV_X64_MSR_TIME_REF_COUNT:
1056 /* read-only, but still ignore it if host-initiated */
1057 if (!host)
1058 return 1;
1059 break;
1060 default:
1061 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1062 msr, data);
1063 return 1;
1064 }
1065 return 0;
1066 }
1067
1068 /* Calculate cpu time spent by current task in 100ns units */
1069 static u64 current_task_runtime_100ns(void)
1070 {
1071 u64 utime, stime;
1072
1073 task_cputime_adjusted(current, &utime, &stime);
1074
1075 return div_u64(utime + stime, 100);
1076 }
1077
1078 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1079 {
1080 struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1081
1082 switch (msr) {
1083 case HV_X64_MSR_VP_INDEX: {
1084 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
1085 int vcpu_idx = kvm_vcpu_get_idx(vcpu);
1086 u32 new_vp_index = (u32)data;
1087
1088 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1089 return 1;
1090
1091 if (new_vp_index == hv_vcpu->vp_index)
1092 return 0;
1093
1094 /*
1095 * The VP index is initialized to vcpu_index by
1096 * kvm_hv_vcpu_postcreate so they initially match. Now the
1097 * VP index is changing, adjust num_mismatched_vp_indexes if
1098 * it now matches or no longer matches vcpu_idx.
1099 */
1100 if (hv_vcpu->vp_index == vcpu_idx)
1101 atomic_inc(&hv->num_mismatched_vp_indexes);
1102 else if (new_vp_index == vcpu_idx)
1103 atomic_dec(&hv->num_mismatched_vp_indexes);
1104
1105 hv_vcpu->vp_index = new_vp_index;
1106 break;
1107 }
1108 case HV_X64_MSR_VP_ASSIST_PAGE: {
1109 u64 gfn;
1110 unsigned long addr;
1111
1112 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1113 hv_vcpu->hv_vapic = data;
1114 if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1115 return 1;
1116 break;
1117 }
1118 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1119 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1120 if (kvm_is_error_hva(addr))
1121 return 1;
1122
1123 /*
1124 * Clear apic_assist portion of f(struct hv_vp_assist_page
1125 * only, there can be valuable data in the rest which needs
1126 * to be preserved e.g. on migration.
1127 */
1128 if (__clear_user((void __user *)addr, sizeof(u32)))
1129 return 1;
1130 hv_vcpu->hv_vapic = data;
1131 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1132 if (kvm_lapic_enable_pv_eoi(vcpu,
1133 gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1134 sizeof(struct hv_vp_assist_page)))
1135 return 1;
1136 break;
1137 }
1138 case HV_X64_MSR_EOI:
1139 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1140 case HV_X64_MSR_ICR:
1141 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1142 case HV_X64_MSR_TPR:
1143 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1144 case HV_X64_MSR_VP_RUNTIME:
1145 if (!host)
1146 return 1;
1147 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1148 break;
1149 case HV_X64_MSR_SCONTROL:
1150 case HV_X64_MSR_SVERSION:
1151 case HV_X64_MSR_SIEFP:
1152 case HV_X64_MSR_SIMP:
1153 case HV_X64_MSR_EOM:
1154 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1155 return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
1156 case HV_X64_MSR_STIMER0_CONFIG:
1157 case HV_X64_MSR_STIMER1_CONFIG:
1158 case HV_X64_MSR_STIMER2_CONFIG:
1159 case HV_X64_MSR_STIMER3_CONFIG: {
1160 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1161
1162 return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
1163 data, host);
1164 }
1165 case HV_X64_MSR_STIMER0_COUNT:
1166 case HV_X64_MSR_STIMER1_COUNT:
1167 case HV_X64_MSR_STIMER2_COUNT:
1168 case HV_X64_MSR_STIMER3_COUNT: {
1169 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1170
1171 return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
1172 data, host);
1173 }
1174 case HV_X64_MSR_TSC_FREQUENCY:
1175 case HV_X64_MSR_APIC_FREQUENCY:
1176 /* read-only, but still ignore it if host-initiated */
1177 if (!host)
1178 return 1;
1179 break;
1180 default:
1181 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1182 msr, data);
1183 return 1;
1184 }
1185
1186 return 0;
1187 }
1188
1189 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1190 {
1191 u64 data = 0;
1192 struct kvm *kvm = vcpu->kvm;
1193 struct kvm_hv *hv = &kvm->arch.hyperv;
1194
1195 switch (msr) {
1196 case HV_X64_MSR_GUEST_OS_ID:
1197 data = hv->hv_guest_os_id;
1198 break;
1199 case HV_X64_MSR_HYPERCALL:
1200 data = hv->hv_hypercall;
1201 break;
1202 case HV_X64_MSR_TIME_REF_COUNT:
1203 data = get_time_ref_counter(kvm);
1204 break;
1205 case HV_X64_MSR_REFERENCE_TSC:
1206 data = hv->hv_tsc_page;
1207 break;
1208 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1209 return kvm_hv_msr_get_crash_data(vcpu,
1210 msr - HV_X64_MSR_CRASH_P0,
1211 pdata);
1212 case HV_X64_MSR_CRASH_CTL:
1213 return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1214 case HV_X64_MSR_RESET:
1215 data = 0;
1216 break;
1217 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1218 data = hv->hv_reenlightenment_control;
1219 break;
1220 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1221 data = hv->hv_tsc_emulation_control;
1222 break;
1223 case HV_X64_MSR_TSC_EMULATION_STATUS:
1224 data = hv->hv_tsc_emulation_status;
1225 break;
1226 default:
1227 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1228 return 1;
1229 }
1230
1231 *pdata = data;
1232 return 0;
1233 }
1234
1235 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1236 bool host)
1237 {
1238 u64 data = 0;
1239 struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1240
1241 switch (msr) {
1242 case HV_X64_MSR_VP_INDEX:
1243 data = hv_vcpu->vp_index;
1244 break;
1245 case HV_X64_MSR_EOI:
1246 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1247 case HV_X64_MSR_ICR:
1248 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1249 case HV_X64_MSR_TPR:
1250 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1251 case HV_X64_MSR_VP_ASSIST_PAGE:
1252 data = hv_vcpu->hv_vapic;
1253 break;
1254 case HV_X64_MSR_VP_RUNTIME:
1255 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1256 break;
1257 case HV_X64_MSR_SCONTROL:
1258 case HV_X64_MSR_SVERSION:
1259 case HV_X64_MSR_SIEFP:
1260 case HV_X64_MSR_SIMP:
1261 case HV_X64_MSR_EOM:
1262 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1263 return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host);
1264 case HV_X64_MSR_STIMER0_CONFIG:
1265 case HV_X64_MSR_STIMER1_CONFIG:
1266 case HV_X64_MSR_STIMER2_CONFIG:
1267 case HV_X64_MSR_STIMER3_CONFIG: {
1268 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1269
1270 return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
1271 pdata);
1272 }
1273 case HV_X64_MSR_STIMER0_COUNT:
1274 case HV_X64_MSR_STIMER1_COUNT:
1275 case HV_X64_MSR_STIMER2_COUNT:
1276 case HV_X64_MSR_STIMER3_COUNT: {
1277 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1278
1279 return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
1280 pdata);
1281 }
1282 case HV_X64_MSR_TSC_FREQUENCY:
1283 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1284 break;
1285 case HV_X64_MSR_APIC_FREQUENCY:
1286 data = APIC_BUS_FREQUENCY;
1287 break;
1288 default:
1289 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1290 return 1;
1291 }
1292 *pdata = data;
1293 return 0;
1294 }
1295
1296 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1297 {
1298 if (kvm_hv_msr_partition_wide(msr)) {
1299 int r;
1300
1301 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1302 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1303 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1304 return r;
1305 } else
1306 return kvm_hv_set_msr(vcpu, msr, data, host);
1307 }
1308
1309 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1310 {
1311 if (kvm_hv_msr_partition_wide(msr)) {
1312 int r;
1313
1314 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1315 r = kvm_hv_get_msr_pw(vcpu, msr, pdata);
1316 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1317 return r;
1318 } else
1319 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1320 }
1321
1322 static __always_inline unsigned long *sparse_set_to_vcpu_mask(
1323 struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
1324 u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1325 {
1326 struct kvm_hv *hv = &kvm->arch.hyperv;
1327 struct kvm_vcpu *vcpu;
1328 int i, bank, sbank = 0;
1329
1330 memset(vp_bitmap, 0,
1331 KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
1332 for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1333 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1334 vp_bitmap[bank] = sparse_banks[sbank++];
1335
1336 if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
1337 /* for all vcpus vp_index == vcpu_idx */
1338 return (unsigned long *)vp_bitmap;
1339 }
1340
1341 bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
1342 kvm_for_each_vcpu(i, vcpu, kvm) {
1343 if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index,
1344 (unsigned long *)vp_bitmap))
1345 __set_bit(i, vcpu_bitmap);
1346 }
1347 return vcpu_bitmap;
1348 }
1349
1350 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
1351 u16 rep_cnt, bool ex)
1352 {
1353 struct kvm *kvm = current_vcpu->kvm;
1354 struct kvm_vcpu_hv *hv_vcpu = &current_vcpu->arch.hyperv;
1355 struct hv_tlb_flush_ex flush_ex;
1356 struct hv_tlb_flush flush;
1357 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1358 DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1359 unsigned long *vcpu_mask;
1360 u64 valid_bank_mask;
1361 u64 sparse_banks[64];
1362 int sparse_banks_len;
1363 bool all_cpus;
1364
1365 if (!ex) {
1366 if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
1367 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1368
1369 trace_kvm_hv_flush_tlb(flush.processor_mask,
1370 flush.address_space, flush.flags);
1371
1372 valid_bank_mask = BIT_ULL(0);
1373 sparse_banks[0] = flush.processor_mask;
1374
1375 /*
1376 * Work around possible WS2012 bug: it sends hypercalls
1377 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
1378 * while also expecting us to flush something and crashing if
1379 * we don't. Let's treat processor_mask == 0 same as
1380 * HV_FLUSH_ALL_PROCESSORS.
1381 */
1382 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
1383 flush.processor_mask == 0;
1384 } else {
1385 if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
1386 sizeof(flush_ex))))
1387 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1388
1389 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1390 flush_ex.hv_vp_set.format,
1391 flush_ex.address_space,
1392 flush_ex.flags);
1393
1394 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1395 all_cpus = flush_ex.hv_vp_set.format !=
1396 HV_GENERIC_SET_SPARSE_4K;
1397
1398 sparse_banks_len =
1399 bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
1400 sizeof(sparse_banks[0]);
1401
1402 if (!sparse_banks_len && !all_cpus)
1403 goto ret_success;
1404
1405 if (!all_cpus &&
1406 kvm_read_guest(kvm,
1407 ingpa + offsetof(struct hv_tlb_flush_ex,
1408 hv_vp_set.bank_contents),
1409 sparse_banks,
1410 sparse_banks_len))
1411 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1412 }
1413
1414 cpumask_clear(&hv_vcpu->tlb_flush);
1415
1416 vcpu_mask = all_cpus ? NULL :
1417 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1418 vp_bitmap, vcpu_bitmap);
1419
1420 /*
1421 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1422 * analyze it here, flush TLB regardless of the specified address space.
1423 */
1424 kvm_make_vcpus_request_mask(kvm,
1425 KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP,
1426 vcpu_mask, &hv_vcpu->tlb_flush);
1427
1428 ret_success:
1429 /* We always do full TLB flush, set rep_done = rep_cnt. */
1430 return (u64)HV_STATUS_SUCCESS |
1431 ((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1432 }
1433
1434 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
1435 unsigned long *vcpu_bitmap)
1436 {
1437 struct kvm_lapic_irq irq = {
1438 .delivery_mode = APIC_DM_FIXED,
1439 .vector = vector
1440 };
1441 struct kvm_vcpu *vcpu;
1442 int i;
1443
1444 kvm_for_each_vcpu(i, vcpu, kvm) {
1445 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
1446 continue;
1447
1448 /* We fail only when APIC is disabled */
1449 kvm_apic_set_irq(vcpu, &irq, NULL);
1450 }
1451 }
1452
1453 static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa,
1454 bool ex, bool fast)
1455 {
1456 struct kvm *kvm = current_vcpu->kvm;
1457 struct hv_send_ipi_ex send_ipi_ex;
1458 struct hv_send_ipi send_ipi;
1459 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1460 DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1461 unsigned long *vcpu_mask;
1462 unsigned long valid_bank_mask;
1463 u64 sparse_banks[64];
1464 int sparse_banks_len;
1465 u32 vector;
1466 bool all_cpus;
1467
1468 if (!ex) {
1469 if (!fast) {
1470 if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
1471 sizeof(send_ipi))))
1472 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1473 sparse_banks[0] = send_ipi.cpu_mask;
1474 vector = send_ipi.vector;
1475 } else {
1476 /* 'reserved' part of hv_send_ipi should be 0 */
1477 if (unlikely(ingpa >> 32 != 0))
1478 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1479 sparse_banks[0] = outgpa;
1480 vector = (u32)ingpa;
1481 }
1482 all_cpus = false;
1483 valid_bank_mask = BIT_ULL(0);
1484
1485 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1486 } else {
1487 if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
1488 sizeof(send_ipi_ex))))
1489 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1490
1491 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
1492 send_ipi_ex.vp_set.format,
1493 send_ipi_ex.vp_set.valid_bank_mask);
1494
1495 vector = send_ipi_ex.vector;
1496 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
1497 sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1498 sizeof(sparse_banks[0]);
1499
1500 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
1501
1502 if (!sparse_banks_len)
1503 goto ret_success;
1504
1505 if (!all_cpus &&
1506 kvm_read_guest(kvm,
1507 ingpa + offsetof(struct hv_send_ipi_ex,
1508 vp_set.bank_contents),
1509 sparse_banks,
1510 sparse_banks_len))
1511 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1512 }
1513
1514 if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1515 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1516
1517 vcpu_mask = all_cpus ? NULL :
1518 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1519 vp_bitmap, vcpu_bitmap);
1520
1521 kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1522
1523 ret_success:
1524 return HV_STATUS_SUCCESS;
1525 }
1526
1527 bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1528 {
1529 return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
1530 }
1531
1532 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1533 {
1534 bool longmode;
1535
1536 longmode = is_64_bit_mode(vcpu);
1537 if (longmode)
1538 kvm_register_write(vcpu, VCPU_REGS_RAX, result);
1539 else {
1540 kvm_register_write(vcpu, VCPU_REGS_RDX, result >> 32);
1541 kvm_register_write(vcpu, VCPU_REGS_RAX, result & 0xffffffff);
1542 }
1543 }
1544
1545 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1546 {
1547 kvm_hv_hypercall_set_result(vcpu, result);
1548 ++vcpu->stat.hypercalls;
1549 return kvm_skip_emulated_instruction(vcpu);
1550 }
1551
1552 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1553 {
1554 return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
1555 }
1556
1557 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
1558 {
1559 struct eventfd_ctx *eventfd;
1560
1561 if (unlikely(!fast)) {
1562 int ret;
1563 gpa_t gpa = param;
1564
1565 if ((gpa & (__alignof__(param) - 1)) ||
1566 offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
1567 return HV_STATUS_INVALID_ALIGNMENT;
1568
1569 ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
1570 if (ret < 0)
1571 return HV_STATUS_INVALID_ALIGNMENT;
1572 }
1573
1574 /*
1575 * Per spec, bits 32-47 contain the extra "flag number". However, we
1576 * have no use for it, and in all known usecases it is zero, so just
1577 * report lookup failure if it isn't.
1578 */
1579 if (param & 0xffff00000000ULL)
1580 return HV_STATUS_INVALID_PORT_ID;
1581 /* remaining bits are reserved-zero */
1582 if (param & ~KVM_HYPERV_CONN_ID_MASK)
1583 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1584
1585 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
1586 rcu_read_lock();
1587 eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1588 rcu_read_unlock();
1589 if (!eventfd)
1590 return HV_STATUS_INVALID_PORT_ID;
1591
1592 eventfd_signal(eventfd, 1);
1593 return HV_STATUS_SUCCESS;
1594 }
1595
1596 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
1597 {
1598 u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
1599 uint16_t code, rep_idx, rep_cnt;
1600 bool fast, longmode, rep;
1601
1602 /*
1603 * hypercall generates UD from non zero cpl and real mode
1604 * per HYPER-V spec
1605 */
1606 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
1607 kvm_queue_exception(vcpu, UD_VECTOR);
1608 return 1;
1609 }
1610
1611 longmode = is_64_bit_mode(vcpu);
1612
1613 if (!longmode) {
1614 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
1615 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
1616 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
1617 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
1618 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
1619 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
1620 }
1621 #ifdef CONFIG_X86_64
1622 else {
1623 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
1624 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
1625 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
1626 }
1627 #endif
1628
1629 code = param & 0xffff;
1630 fast = !!(param & HV_HYPERCALL_FAST_BIT);
1631 rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
1632 rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1633 rep = !!(rep_cnt || rep_idx);
1634
1635 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
1636
1637 switch (code) {
1638 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1639 if (unlikely(rep)) {
1640 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1641 break;
1642 }
1643 kvm_vcpu_on_spin(vcpu, true);
1644 break;
1645 case HVCALL_SIGNAL_EVENT:
1646 if (unlikely(rep)) {
1647 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1648 break;
1649 }
1650 ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
1651 if (ret != HV_STATUS_INVALID_PORT_ID)
1652 break;
1653 /* fall through - maybe userspace knows this conn_id. */
1654 case HVCALL_POST_MESSAGE:
1655 /* don't bother userspace if it has no way to handle it */
1656 if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
1657 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1658 break;
1659 }
1660 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1661 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1662 vcpu->run->hyperv.u.hcall.input = param;
1663 vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1664 vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1665 vcpu->arch.complete_userspace_io =
1666 kvm_hv_hypercall_complete_userspace;
1667 return 0;
1668 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
1669 if (unlikely(fast || !rep_cnt || rep_idx)) {
1670 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1671 break;
1672 }
1673 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1674 break;
1675 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
1676 if (unlikely(fast || rep)) {
1677 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1678 break;
1679 }
1680 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1681 break;
1682 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
1683 if (unlikely(fast || !rep_cnt || rep_idx)) {
1684 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1685 break;
1686 }
1687 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1688 break;
1689 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
1690 if (unlikely(fast || rep)) {
1691 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1692 break;
1693 }
1694 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1695 break;
1696 case HVCALL_SEND_IPI:
1697 if (unlikely(rep)) {
1698 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1699 break;
1700 }
1701 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
1702 break;
1703 case HVCALL_SEND_IPI_EX:
1704 if (unlikely(fast || rep)) {
1705 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1706 break;
1707 }
1708 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
1709 break;
1710 default:
1711 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1712 break;
1713 }
1714
1715 return kvm_hv_hypercall_complete(vcpu, ret);
1716 }
1717
1718 void kvm_hv_init_vm(struct kvm *kvm)
1719 {
1720 mutex_init(&kvm->arch.hyperv.hv_lock);
1721 idr_init(&kvm->arch.hyperv.conn_to_evt);
1722 }
1723
1724 void kvm_hv_destroy_vm(struct kvm *kvm)
1725 {
1726 struct eventfd_ctx *eventfd;
1727 int i;
1728
1729 idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
1730 eventfd_ctx_put(eventfd);
1731 idr_destroy(&kvm->arch.hyperv.conn_to_evt);
1732 }
1733
1734 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
1735 {
1736 struct kvm_hv *hv = &kvm->arch.hyperv;
1737 struct eventfd_ctx *eventfd;
1738 int ret;
1739
1740 eventfd = eventfd_ctx_fdget(fd);
1741 if (IS_ERR(eventfd))
1742 return PTR_ERR(eventfd);
1743
1744 mutex_lock(&hv->hv_lock);
1745 ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1746 GFP_KERNEL_ACCOUNT);
1747 mutex_unlock(&hv->hv_lock);
1748
1749 if (ret >= 0)
1750 return 0;
1751
1752 if (ret == -ENOSPC)
1753 ret = -EEXIST;
1754 eventfd_ctx_put(eventfd);
1755 return ret;
1756 }
1757
1758 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
1759 {
1760 struct kvm_hv *hv = &kvm->arch.hyperv;
1761 struct eventfd_ctx *eventfd;
1762
1763 mutex_lock(&hv->hv_lock);
1764 eventfd = idr_remove(&hv->conn_to_evt, conn_id);
1765 mutex_unlock(&hv->hv_lock);
1766
1767 if (!eventfd)
1768 return -ENOENT;
1769
1770 synchronize_srcu(&kvm->srcu);
1771 eventfd_ctx_put(eventfd);
1772 return 0;
1773 }
1774
1775 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
1776 {
1777 if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
1778 (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
1779 return -EINVAL;
1780
1781 if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
1782 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
1783 return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1784 }
1785
1786 int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
1787 struct kvm_cpuid_entry2 __user *entries)
1788 {
1789 uint16_t evmcs_ver = kvm_x86_ops->nested_get_evmcs_version(vcpu);
1790 struct kvm_cpuid_entry2 cpuid_entries[] = {
1791 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
1792 { .function = HYPERV_CPUID_INTERFACE },
1793 { .function = HYPERV_CPUID_VERSION },
1794 { .function = HYPERV_CPUID_FEATURES },
1795 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
1796 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
1797 { .function = HYPERV_CPUID_NESTED_FEATURES },
1798 };
1799 int i, nent = ARRAY_SIZE(cpuid_entries);
1800
1801 /* Skip NESTED_FEATURES if eVMCS is not supported */
1802 if (!evmcs_ver)
1803 --nent;
1804
1805 if (cpuid->nent < nent)
1806 return -E2BIG;
1807
1808 if (cpuid->nent > nent)
1809 cpuid->nent = nent;
1810
1811 for (i = 0; i < nent; i++) {
1812 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
1813 u32 signature[3];
1814
1815 switch (ent->function) {
1816 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
1817 memcpy(signature, "Linux KVM Hv", 12);
1818
1819 ent->eax = HYPERV_CPUID_NESTED_FEATURES;
1820 ent->ebx = signature[0];
1821 ent->ecx = signature[1];
1822 ent->edx = signature[2];
1823 break;
1824
1825 case HYPERV_CPUID_INTERFACE:
1826 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1827 ent->eax = signature[0];
1828 break;
1829
1830 case HYPERV_CPUID_VERSION:
1831 /*
1832 * We implement some Hyper-V 2016 functions so let's use
1833 * this version.
1834 */
1835 ent->eax = 0x00003839;
1836 ent->ebx = 0x000A0000;
1837 break;
1838
1839 case HYPERV_CPUID_FEATURES:
1840 ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
1841 ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
1842 ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
1843 ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
1844 ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
1845 ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
1846 ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
1847 ent->eax |= HV_X64_MSR_RESET_AVAILABLE;
1848 ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
1849 ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS;
1850 ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT;
1851
1852 ent->ebx |= HV_X64_POST_MESSAGES;
1853 ent->ebx |= HV_X64_SIGNAL_EVENTS;
1854
1855 ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
1856 ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1857 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
1858
1859 break;
1860
1861 case HYPERV_CPUID_ENLIGHTMENT_INFO:
1862 ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
1863 ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
1864 ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
1865 ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
1866 ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
1867 if (evmcs_ver)
1868 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
1869
1870 /*
1871 * Default number of spinlock retry attempts, matches
1872 * HyperV 2016.
1873 */
1874 ent->ebx = 0x00000FFF;
1875
1876 break;
1877
1878 case HYPERV_CPUID_IMPLEMENT_LIMITS:
1879 /* Maximum number of virtual processors */
1880 ent->eax = KVM_MAX_VCPUS;
1881 /*
1882 * Maximum number of logical processors, matches
1883 * HyperV 2016.
1884 */
1885 ent->ebx = 64;
1886
1887 break;
1888
1889 case HYPERV_CPUID_NESTED_FEATURES:
1890 ent->eax = evmcs_ver;
1891
1892 break;
1893
1894 default:
1895 break;
1896 }
1897 }
1898
1899 if (copy_to_user(entries, cpuid_entries,
1900 nent * sizeof(struct kvm_cpuid_entry2)))
1901 return -EFAULT;
1902
1903 return 0;
1904 }