]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/kvm/lapic.c
KVM: x86: Ignore MSR_AMD64_TW_CFG access
[thirdparty/kernel/stable.git] / arch / x86 / kvm / lapic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4 * Local APIC virtualization
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2007 Novell
8 * Copyright (C) 2007 Intel
9 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Dor Laor <dor.laor@qumranet.com>
13 * Gregory Haskins <ghaskins@novell.com>
14 * Yaozu (Eddie) Dong <eddie.dong@intel.com>
15 *
16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/processor.h>
31 #include <asm/mce.h>
32 #include <asm/msr.h>
33 #include <asm/page.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
40 #include "irq.h"
41 #include "ioapic.h"
42 #include "trace.h"
43 #include "x86.h"
44 #include "cpuid.h"
45 #include "hyperv.h"
46 #include "smm.h"
47
48 #ifndef CONFIG_X86_64
49 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
50 #else
51 #define mod_64(x, y) ((x) % (y))
52 #endif
53
54 /* 14 is the version for Xeon and Pentium 8.4.8*/
55 #define APIC_VERSION 0x14UL
56 #define LAPIC_MMIO_LENGTH (1 << 12)
57 /* followed define is not in apicdef.h */
58 #define MAX_APIC_VECTOR 256
59 #define APIC_VECTORS_PER_REG 32
60
61 static bool lapic_timer_advance_dynamic __read_mostly;
62 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */
63 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */
64 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000
65 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000
66 /* step-by-step approximation to mitigate fluctuation */
67 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
68 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
69 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
70
71 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
72 {
73 *((u32 *) (regs + reg_off)) = val;
74 }
75
76 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
77 {
78 __kvm_lapic_set_reg(apic->regs, reg_off, val);
79 }
80
81 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
82 {
83 BUILD_BUG_ON(reg != APIC_ICR);
84 return *((u64 *) (regs + reg));
85 }
86
87 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
88 {
89 return __kvm_lapic_get_reg64(apic->regs, reg);
90 }
91
92 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
93 {
94 BUILD_BUG_ON(reg != APIC_ICR);
95 *((u64 *) (regs + reg)) = val;
96 }
97
98 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
99 int reg, u64 val)
100 {
101 __kvm_lapic_set_reg64(apic->regs, reg, val);
102 }
103
104 static inline int apic_test_vector(int vec, void *bitmap)
105 {
106 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
107 }
108
109 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
110 {
111 struct kvm_lapic *apic = vcpu->arch.apic;
112
113 return apic_test_vector(vector, apic->regs + APIC_ISR) ||
114 apic_test_vector(vector, apic->regs + APIC_IRR);
115 }
116
117 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
118 {
119 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
120 }
121
122 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
123 {
124 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
125 }
126
127 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
128 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
129
130 static inline int apic_enabled(struct kvm_lapic *apic)
131 {
132 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic);
133 }
134
135 #define LVT_MASK \
136 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
137
138 #define LINT_MASK \
139 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
140 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
141
142 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
143 {
144 return apic->vcpu->vcpu_id;
145 }
146
147 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
148 {
149 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
150 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
151 }
152
153 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
154 {
155 return kvm_x86_ops.set_hv_timer
156 && !(kvm_mwait_in_guest(vcpu->kvm) ||
157 kvm_can_post_timer_interrupt(vcpu));
158 }
159
160 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
161 {
162 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
163 }
164
165 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
166 {
167 return ((id >> 4) << 16) | (1 << (id & 0xf));
168 }
169
170 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
171 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
172 switch (map->logical_mode) {
173 case KVM_APIC_MODE_SW_DISABLED:
174 /* Arbitrarily use the flat map so that @cluster isn't NULL. */
175 *cluster = map->xapic_flat_map;
176 *mask = 0;
177 return true;
178 case KVM_APIC_MODE_X2APIC: {
179 u32 offset = (dest_id >> 16) * 16;
180 u32 max_apic_id = map->max_apic_id;
181
182 if (offset <= max_apic_id) {
183 u8 cluster_size = min(max_apic_id - offset + 1, 16U);
184
185 offset = array_index_nospec(offset, map->max_apic_id + 1);
186 *cluster = &map->phys_map[offset];
187 *mask = dest_id & (0xffff >> (16 - cluster_size));
188 } else {
189 *mask = 0;
190 }
191
192 return true;
193 }
194 case KVM_APIC_MODE_XAPIC_FLAT:
195 *cluster = map->xapic_flat_map;
196 *mask = dest_id & 0xff;
197 return true;
198 case KVM_APIC_MODE_XAPIC_CLUSTER:
199 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
200 *mask = dest_id & 0xf;
201 return true;
202 case KVM_APIC_MODE_MAP_DISABLED:
203 return false;
204 default:
205 WARN_ON_ONCE(1);
206 return false;
207 }
208 }
209
210 static void kvm_apic_map_free(struct rcu_head *rcu)
211 {
212 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
213
214 kvfree(map);
215 }
216
217 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
218 struct kvm_vcpu *vcpu,
219 bool *xapic_id_mismatch)
220 {
221 struct kvm_lapic *apic = vcpu->arch.apic;
222 u32 x2apic_id = kvm_x2apic_id(apic);
223 u32 xapic_id = kvm_xapic_id(apic);
224 u32 physical_id;
225
226 /*
227 * For simplicity, KVM always allocates enough space for all possible
228 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on
229 * without the optimized map.
230 */
231 if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
232 return -EINVAL;
233
234 /*
235 * Bail if a vCPU was added and/or enabled its APIC between allocating
236 * the map and doing the actual calculations for the map. Note, KVM
237 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
238 * the compiler decides to reload x2apic_id after this check.
239 */
240 if (x2apic_id > new->max_apic_id)
241 return -E2BIG;
242
243 /*
244 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
245 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
246 * 32-bit value. Any unwanted aliasing due to truncation results will
247 * be detected below.
248 */
249 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
250 *xapic_id_mismatch = true;
251
252 /*
253 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
254 * Allow sending events to vCPUs by their x2APIC ID even if the target
255 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
256 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
257 * and collide).
258 *
259 * Honor the architectural (and KVM's non-optimized) behavior if
260 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed
261 * to process messages independently. If multiple vCPUs have the same
262 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
263 * manually modified its xAPIC IDs, events targeting that ID are
264 * supposed to be recognized by all vCPUs with said ID.
265 */
266 if (vcpu->kvm->arch.x2apic_format) {
267 /* See also kvm_apic_match_physical_addr(). */
268 if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
269 new->phys_map[x2apic_id] = apic;
270
271 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
272 new->phys_map[xapic_id] = apic;
273 } else {
274 /*
275 * Disable the optimized map if the physical APIC ID is already
276 * mapped, i.e. is aliased to multiple vCPUs. The optimized
277 * map requires a strict 1:1 mapping between IDs and vCPUs.
278 */
279 if (apic_x2apic_mode(apic))
280 physical_id = x2apic_id;
281 else
282 physical_id = xapic_id;
283
284 if (new->phys_map[physical_id])
285 return -EINVAL;
286
287 new->phys_map[physical_id] = apic;
288 }
289
290 return 0;
291 }
292
293 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
294 struct kvm_vcpu *vcpu)
295 {
296 struct kvm_lapic *apic = vcpu->arch.apic;
297 enum kvm_apic_logical_mode logical_mode;
298 struct kvm_lapic **cluster;
299 u16 mask;
300 u32 ldr;
301
302 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
303 return;
304
305 if (!kvm_apic_sw_enabled(apic))
306 return;
307
308 ldr = kvm_lapic_get_reg(apic, APIC_LDR);
309 if (!ldr)
310 return;
311
312 if (apic_x2apic_mode(apic)) {
313 logical_mode = KVM_APIC_MODE_X2APIC;
314 } else {
315 ldr = GET_APIC_LOGICAL_ID(ldr);
316 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
317 logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
318 else
319 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
320 }
321
322 /*
323 * To optimize logical mode delivery, all software-enabled APICs must
324 * be configured for the same mode.
325 */
326 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
327 new->logical_mode = logical_mode;
328 } else if (new->logical_mode != logical_mode) {
329 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
330 return;
331 }
332
333 /*
334 * In x2APIC mode, the LDR is read-only and derived directly from the
335 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses
336 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
337 * reversing the LDR calculation to get cluster of APICs, i.e. no
338 * additional work is required.
339 */
340 if (apic_x2apic_mode(apic)) {
341 WARN_ON_ONCE(ldr != kvm_apic_calc_x2apic_ldr(kvm_x2apic_id(apic)));
342 return;
343 }
344
345 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
346 &cluster, &mask))) {
347 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
348 return;
349 }
350
351 if (!mask)
352 return;
353
354 ldr = ffs(mask) - 1;
355 if (!is_power_of_2(mask) || cluster[ldr])
356 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
357 else
358 cluster[ldr] = apic;
359 }
360
361 /*
362 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
363 *
364 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
365 * apic_map_lock_held.
366 */
367 enum {
368 CLEAN,
369 UPDATE_IN_PROGRESS,
370 DIRTY
371 };
372
373 void kvm_recalculate_apic_map(struct kvm *kvm)
374 {
375 struct kvm_apic_map *new, *old = NULL;
376 struct kvm_vcpu *vcpu;
377 unsigned long i;
378 u32 max_id = 255; /* enough space for any xAPIC ID */
379 bool xapic_id_mismatch;
380 int r;
381
382 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */
383 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
384 return;
385
386 WARN_ONCE(!irqchip_in_kernel(kvm),
387 "Dirty APIC map without an in-kernel local APIC");
388
389 mutex_lock(&kvm->arch.apic_map_lock);
390
391 retry:
392 /*
393 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
394 * or the APIC registers (if dirty). Note, on retry the map may have
395 * not yet been marked dirty by whatever task changed a vCPU's x2APIC
396 * ID, i.e. the map may still show up as in-progress. In that case
397 * this task still needs to retry and complete its calculation.
398 */
399 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
400 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
401 /* Someone else has updated the map. */
402 mutex_unlock(&kvm->arch.apic_map_lock);
403 return;
404 }
405
406 /*
407 * Reset the mismatch flag between attempts so that KVM does the right
408 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
409 * keep max_id strictly increasing. Disallowing max_id from shrinking
410 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
411 * with the highest x2APIC ID is toggling its APIC on and off.
412 */
413 xapic_id_mismatch = false;
414
415 kvm_for_each_vcpu(i, vcpu, kvm)
416 if (kvm_apic_present(vcpu))
417 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
418
419 new = kvzalloc(sizeof(struct kvm_apic_map) +
420 sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
421 GFP_KERNEL_ACCOUNT);
422
423 if (!new)
424 goto out;
425
426 new->max_apic_id = max_id;
427 new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
428
429 kvm_for_each_vcpu(i, vcpu, kvm) {
430 if (!kvm_apic_present(vcpu))
431 continue;
432
433 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch);
434 if (r) {
435 kvfree(new);
436 new = NULL;
437 if (r == -E2BIG) {
438 cond_resched();
439 goto retry;
440 }
441
442 goto out;
443 }
444
445 kvm_recalculate_logical_map(new, vcpu);
446 }
447 out:
448 /*
449 * The optimized map is effectively KVM's internal version of APICv,
450 * and all unwanted aliasing that results in disabling the optimized
451 * map also applies to APICv.
452 */
453 if (!new)
454 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
455 else
456 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
457
458 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
459 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
460 else
461 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
462
463 if (xapic_id_mismatch)
464 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
465 else
466 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
467
468 old = rcu_dereference_protected(kvm->arch.apic_map,
469 lockdep_is_held(&kvm->arch.apic_map_lock));
470 rcu_assign_pointer(kvm->arch.apic_map, new);
471 /*
472 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
473 * If another update has come in, leave it DIRTY.
474 */
475 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
476 UPDATE_IN_PROGRESS, CLEAN);
477 mutex_unlock(&kvm->arch.apic_map_lock);
478
479 if (old)
480 call_rcu(&old->rcu, kvm_apic_map_free);
481
482 kvm_make_scan_ioapic_request(kvm);
483 }
484
485 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
486 {
487 bool enabled = val & APIC_SPIV_APIC_ENABLED;
488
489 kvm_lapic_set_reg(apic, APIC_SPIV, val);
490
491 if (enabled != apic->sw_enabled) {
492 apic->sw_enabled = enabled;
493 if (enabled)
494 static_branch_slow_dec_deferred(&apic_sw_disabled);
495 else
496 static_branch_inc(&apic_sw_disabled.key);
497
498 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
499 }
500
501 /* Check if there are APF page ready requests pending */
502 if (enabled)
503 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
504 }
505
506 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
507 {
508 kvm_lapic_set_reg(apic, APIC_ID, id << 24);
509 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
510 }
511
512 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
513 {
514 kvm_lapic_set_reg(apic, APIC_LDR, id);
515 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
516 }
517
518 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
519 {
520 kvm_lapic_set_reg(apic, APIC_DFR, val);
521 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
522 }
523
524 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
525 {
526 u32 ldr = kvm_apic_calc_x2apic_ldr(id);
527
528 WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
529
530 kvm_lapic_set_reg(apic, APIC_ID, id);
531 kvm_lapic_set_reg(apic, APIC_LDR, ldr);
532 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
533 }
534
535 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
536 {
537 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
538 }
539
540 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
541 {
542 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
543 }
544
545 static inline int apic_lvtt_period(struct kvm_lapic *apic)
546 {
547 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
548 }
549
550 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
551 {
552 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
553 }
554
555 static inline int apic_lvt_nmi_mode(u32 lvt_val)
556 {
557 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
558 }
559
560 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
561 {
562 return apic->nr_lvt_entries > lvt_index;
563 }
564
565 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
566 {
567 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
568 }
569
570 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
571 {
572 struct kvm_lapic *apic = vcpu->arch.apic;
573 u32 v = 0;
574
575 if (!lapic_in_kernel(vcpu))
576 return;
577
578 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
579
580 /*
581 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
582 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
583 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
584 * version first and level-triggered interrupts never get EOIed in
585 * IOAPIC.
586 */
587 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
588 !ioapic_in_kernel(vcpu->kvm))
589 v |= APIC_LVR_DIRECTED_EOI;
590 kvm_lapic_set_reg(apic, APIC_LVR, v);
591 }
592
593 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
594 {
595 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
596 struct kvm_lapic *apic = vcpu->arch.apic;
597 int i;
598
599 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
600 return;
601
602 /* Initialize/mask any "new" LVT entries. */
603 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
604 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
605
606 apic->nr_lvt_entries = nr_lvt_entries;
607
608 /* The number of LVT entries is reflected in the version register. */
609 kvm_apic_set_version(vcpu);
610 }
611
612 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
613 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */
614 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
615 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
616 [LVT_LINT0] = LINT_MASK,
617 [LVT_LINT1] = LINT_MASK,
618 [LVT_ERROR] = LVT_MASK,
619 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
620 };
621
622 static int find_highest_vector(void *bitmap)
623 {
624 int vec;
625 u32 *reg;
626
627 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
628 vec >= 0; vec -= APIC_VECTORS_PER_REG) {
629 reg = bitmap + REG_POS(vec);
630 if (*reg)
631 return __fls(*reg) + vec;
632 }
633
634 return -1;
635 }
636
637 static u8 count_vectors(void *bitmap)
638 {
639 int vec;
640 u32 *reg;
641 u8 count = 0;
642
643 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
644 reg = bitmap + REG_POS(vec);
645 count += hweight32(*reg);
646 }
647
648 return count;
649 }
650
651 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
652 {
653 u32 i, vec;
654 u32 pir_val, irr_val, prev_irr_val;
655 int max_updated_irr;
656
657 max_updated_irr = -1;
658 *max_irr = -1;
659
660 for (i = vec = 0; i <= 7; i++, vec += 32) {
661 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
662
663 irr_val = *p_irr;
664 pir_val = READ_ONCE(pir[i]);
665
666 if (pir_val) {
667 pir_val = xchg(&pir[i], 0);
668
669 prev_irr_val = irr_val;
670 do {
671 irr_val = prev_irr_val | pir_val;
672 } while (prev_irr_val != irr_val &&
673 !try_cmpxchg(p_irr, &prev_irr_val, irr_val));
674
675 if (prev_irr_val != irr_val)
676 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
677 }
678 if (irr_val)
679 *max_irr = __fls(irr_val) + vec;
680 }
681
682 return ((max_updated_irr != -1) &&
683 (max_updated_irr == *max_irr));
684 }
685 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
686
687 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
688 {
689 struct kvm_lapic *apic = vcpu->arch.apic;
690 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
691
692 if (unlikely(!apic->apicv_active && irr_updated))
693 apic->irr_pending = true;
694 return irr_updated;
695 }
696 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
697
698 static inline int apic_search_irr(struct kvm_lapic *apic)
699 {
700 return find_highest_vector(apic->regs + APIC_IRR);
701 }
702
703 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
704 {
705 int result;
706
707 /*
708 * Note that irr_pending is just a hint. It will be always
709 * true with virtual interrupt delivery enabled.
710 */
711 if (!apic->irr_pending)
712 return -1;
713
714 result = apic_search_irr(apic);
715 ASSERT(result == -1 || result >= 16);
716
717 return result;
718 }
719
720 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
721 {
722 if (unlikely(apic->apicv_active)) {
723 /* need to update RVI */
724 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
725 static_call_cond(kvm_x86_hwapic_irr_update)(apic->vcpu,
726 apic_find_highest_irr(apic));
727 } else {
728 apic->irr_pending = false;
729 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
730 if (apic_search_irr(apic) != -1)
731 apic->irr_pending = true;
732 }
733 }
734
735 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
736 {
737 apic_clear_irr(vec, vcpu->arch.apic);
738 }
739 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
740
741 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
742 {
743 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
744 return;
745
746 /*
747 * With APIC virtualization enabled, all caching is disabled
748 * because the processor can modify ISR under the hood. Instead
749 * just set SVI.
750 */
751 if (unlikely(apic->apicv_active))
752 static_call_cond(kvm_x86_hwapic_isr_update)(vec);
753 else {
754 ++apic->isr_count;
755 BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
756 /*
757 * ISR (in service register) bit is set when injecting an interrupt.
758 * The highest vector is injected. Thus the latest bit set matches
759 * the highest bit in ISR.
760 */
761 apic->highest_isr_cache = vec;
762 }
763 }
764
765 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
766 {
767 int result;
768
769 /*
770 * Note that isr_count is always 1, and highest_isr_cache
771 * is always -1, with APIC virtualization enabled.
772 */
773 if (!apic->isr_count)
774 return -1;
775 if (likely(apic->highest_isr_cache != -1))
776 return apic->highest_isr_cache;
777
778 result = find_highest_vector(apic->regs + APIC_ISR);
779 ASSERT(result == -1 || result >= 16);
780
781 return result;
782 }
783
784 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
785 {
786 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
787 return;
788
789 /*
790 * We do get here for APIC virtualization enabled if the guest
791 * uses the Hyper-V APIC enlightenment. In this case we may need
792 * to trigger a new interrupt delivery by writing the SVI field;
793 * on the other hand isr_count and highest_isr_cache are unused
794 * and must be left alone.
795 */
796 if (unlikely(apic->apicv_active))
797 static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
798 else {
799 --apic->isr_count;
800 BUG_ON(apic->isr_count < 0);
801 apic->highest_isr_cache = -1;
802 }
803 }
804
805 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
806 {
807 /* This may race with setting of irr in __apic_accept_irq() and
808 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
809 * will cause vmexit immediately and the value will be recalculated
810 * on the next vmentry.
811 */
812 return apic_find_highest_irr(vcpu->arch.apic);
813 }
814 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
815
816 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
817 int vector, int level, int trig_mode,
818 struct dest_map *dest_map);
819
820 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
821 struct dest_map *dest_map)
822 {
823 struct kvm_lapic *apic = vcpu->arch.apic;
824
825 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
826 irq->level, irq->trig_mode, dest_map);
827 }
828
829 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
830 struct kvm_lapic_irq *irq, u32 min)
831 {
832 int i, count = 0;
833 struct kvm_vcpu *vcpu;
834
835 if (min > map->max_apic_id)
836 return 0;
837
838 for_each_set_bit(i, ipi_bitmap,
839 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
840 if (map->phys_map[min + i]) {
841 vcpu = map->phys_map[min + i]->vcpu;
842 count += kvm_apic_set_irq(vcpu, irq, NULL);
843 }
844 }
845
846 return count;
847 }
848
849 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
850 unsigned long ipi_bitmap_high, u32 min,
851 unsigned long icr, int op_64_bit)
852 {
853 struct kvm_apic_map *map;
854 struct kvm_lapic_irq irq = {0};
855 int cluster_size = op_64_bit ? 64 : 32;
856 int count;
857
858 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
859 return -KVM_EINVAL;
860
861 irq.vector = icr & APIC_VECTOR_MASK;
862 irq.delivery_mode = icr & APIC_MODE_MASK;
863 irq.level = (icr & APIC_INT_ASSERT) != 0;
864 irq.trig_mode = icr & APIC_INT_LEVELTRIG;
865
866 rcu_read_lock();
867 map = rcu_dereference(kvm->arch.apic_map);
868
869 count = -EOPNOTSUPP;
870 if (likely(map)) {
871 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
872 min += cluster_size;
873 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
874 }
875
876 rcu_read_unlock();
877 return count;
878 }
879
880 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
881 {
882
883 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
884 sizeof(val));
885 }
886
887 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
888 {
889
890 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
891 sizeof(*val));
892 }
893
894 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
895 {
896 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
897 }
898
899 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
900 {
901 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
902 return;
903
904 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
905 }
906
907 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
908 {
909 u8 val;
910
911 if (pv_eoi_get_user(vcpu, &val) < 0)
912 return false;
913
914 val &= KVM_PV_EOI_ENABLED;
915
916 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
917 return false;
918
919 /*
920 * Clear pending bit in any case: it will be set again on vmentry.
921 * While this might not be ideal from performance point of view,
922 * this makes sure pv eoi is only enabled when we know it's safe.
923 */
924 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
925
926 return val;
927 }
928
929 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
930 {
931 int highest_irr;
932 if (kvm_x86_ops.sync_pir_to_irr)
933 highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu);
934 else
935 highest_irr = apic_find_highest_irr(apic);
936 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
937 return -1;
938 return highest_irr;
939 }
940
941 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
942 {
943 u32 tpr, isrv, ppr, old_ppr;
944 int isr;
945
946 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
947 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
948 isr = apic_find_highest_isr(apic);
949 isrv = (isr != -1) ? isr : 0;
950
951 if ((tpr & 0xf0) >= (isrv & 0xf0))
952 ppr = tpr & 0xff;
953 else
954 ppr = isrv & 0xf0;
955
956 *new_ppr = ppr;
957 if (old_ppr != ppr)
958 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
959
960 return ppr < old_ppr;
961 }
962
963 static void apic_update_ppr(struct kvm_lapic *apic)
964 {
965 u32 ppr;
966
967 if (__apic_update_ppr(apic, &ppr) &&
968 apic_has_interrupt_for_ppr(apic, ppr) != -1)
969 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
970 }
971
972 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
973 {
974 apic_update_ppr(vcpu->arch.apic);
975 }
976 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
977
978 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
979 {
980 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
981 apic_update_ppr(apic);
982 }
983
984 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
985 {
986 return mda == (apic_x2apic_mode(apic) ?
987 X2APIC_BROADCAST : APIC_BROADCAST);
988 }
989
990 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
991 {
992 if (kvm_apic_broadcast(apic, mda))
993 return true;
994
995 /*
996 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
997 * were in x2APIC mode if the target APIC ID can't be encoded as an
998 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which
999 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
1000 * mode. Match the x2APIC ID if and only if the target APIC ID can't
1001 * be encoded in xAPIC to avoid spurious matches against a vCPU that
1002 * changed its (addressable) xAPIC ID (which is writable).
1003 */
1004 if (apic_x2apic_mode(apic) || mda > 0xff)
1005 return mda == kvm_x2apic_id(apic);
1006
1007 return mda == kvm_xapic_id(apic);
1008 }
1009
1010 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
1011 {
1012 u32 logical_id;
1013
1014 if (kvm_apic_broadcast(apic, mda))
1015 return true;
1016
1017 logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
1018
1019 if (apic_x2apic_mode(apic))
1020 return ((logical_id >> 16) == (mda >> 16))
1021 && (logical_id & mda & 0xffff) != 0;
1022
1023 logical_id = GET_APIC_LOGICAL_ID(logical_id);
1024
1025 switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1026 case APIC_DFR_FLAT:
1027 return (logical_id & mda) != 0;
1028 case APIC_DFR_CLUSTER:
1029 return ((logical_id >> 4) == (mda >> 4))
1030 && (logical_id & mda & 0xf) != 0;
1031 default:
1032 return false;
1033 }
1034 }
1035
1036 /* The KVM local APIC implementation has two quirks:
1037 *
1038 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1039 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1040 * KVM doesn't do that aliasing.
1041 *
1042 * - in-kernel IOAPIC messages have to be delivered directly to
1043 * x2APIC, because the kernel does not support interrupt remapping.
1044 * In order to support broadcast without interrupt remapping, x2APIC
1045 * rewrites the destination of non-IPI messages from APIC_BROADCAST
1046 * to X2APIC_BROADCAST.
1047 *
1048 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is
1049 * important when userspace wants to use x2APIC-format MSIs, because
1050 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1051 */
1052 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1053 struct kvm_lapic *source, struct kvm_lapic *target)
1054 {
1055 bool ipi = source != NULL;
1056
1057 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1058 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1059 return X2APIC_BROADCAST;
1060
1061 return dest_id;
1062 }
1063
1064 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1065 int shorthand, unsigned int dest, int dest_mode)
1066 {
1067 struct kvm_lapic *target = vcpu->arch.apic;
1068 u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1069
1070 ASSERT(target);
1071 switch (shorthand) {
1072 case APIC_DEST_NOSHORT:
1073 if (dest_mode == APIC_DEST_PHYSICAL)
1074 return kvm_apic_match_physical_addr(target, mda);
1075 else
1076 return kvm_apic_match_logical_addr(target, mda);
1077 case APIC_DEST_SELF:
1078 return target == source;
1079 case APIC_DEST_ALLINC:
1080 return true;
1081 case APIC_DEST_ALLBUT:
1082 return target != source;
1083 default:
1084 return false;
1085 }
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1088
1089 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1090 const unsigned long *bitmap, u32 bitmap_size)
1091 {
1092 u32 mod;
1093 int i, idx = -1;
1094
1095 mod = vector % dest_vcpus;
1096
1097 for (i = 0; i <= mod; i++) {
1098 idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1099 BUG_ON(idx == bitmap_size);
1100 }
1101
1102 return idx;
1103 }
1104
1105 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1106 {
1107 if (!kvm->arch.disabled_lapic_found) {
1108 kvm->arch.disabled_lapic_found = true;
1109 pr_info("Disabled LAPIC found during irq injection\n");
1110 }
1111 }
1112
1113 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1114 struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1115 {
1116 if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1117 if ((irq->dest_id == APIC_BROADCAST &&
1118 map->logical_mode != KVM_APIC_MODE_X2APIC))
1119 return true;
1120 if (irq->dest_id == X2APIC_BROADCAST)
1121 return true;
1122 } else {
1123 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1124 if (irq->dest_id == (x2apic_ipi ?
1125 X2APIC_BROADCAST : APIC_BROADCAST))
1126 return true;
1127 }
1128
1129 return false;
1130 }
1131
1132 /* Return true if the interrupt can be handled by using *bitmap as index mask
1133 * for valid destinations in *dst array.
1134 * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1135 * Note: we may have zero kvm_lapic destinations when we return true, which
1136 * means that the interrupt should be dropped. In this case, *bitmap would be
1137 * zero and *dst undefined.
1138 */
1139 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1140 struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1141 struct kvm_apic_map *map, struct kvm_lapic ***dst,
1142 unsigned long *bitmap)
1143 {
1144 int i, lowest;
1145
1146 if (irq->shorthand == APIC_DEST_SELF && src) {
1147 *dst = src;
1148 *bitmap = 1;
1149 return true;
1150 } else if (irq->shorthand)
1151 return false;
1152
1153 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1154 return false;
1155
1156 if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1157 if (irq->dest_id > map->max_apic_id) {
1158 *bitmap = 0;
1159 } else {
1160 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1161 *dst = &map->phys_map[dest_id];
1162 *bitmap = 1;
1163 }
1164 return true;
1165 }
1166
1167 *bitmap = 0;
1168 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1169 (u16 *)bitmap))
1170 return false;
1171
1172 if (!kvm_lowest_prio_delivery(irq))
1173 return true;
1174
1175 if (!kvm_vector_hashing_enabled()) {
1176 lowest = -1;
1177 for_each_set_bit(i, bitmap, 16) {
1178 if (!(*dst)[i])
1179 continue;
1180 if (lowest < 0)
1181 lowest = i;
1182 else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1183 (*dst)[lowest]->vcpu) < 0)
1184 lowest = i;
1185 }
1186 } else {
1187 if (!*bitmap)
1188 return true;
1189
1190 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1191 bitmap, 16);
1192
1193 if (!(*dst)[lowest]) {
1194 kvm_apic_disabled_lapic_found(kvm);
1195 *bitmap = 0;
1196 return true;
1197 }
1198 }
1199
1200 *bitmap = (lowest >= 0) ? 1 << lowest : 0;
1201
1202 return true;
1203 }
1204
1205 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1206 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1207 {
1208 struct kvm_apic_map *map;
1209 unsigned long bitmap;
1210 struct kvm_lapic **dst = NULL;
1211 int i;
1212 bool ret;
1213
1214 *r = -1;
1215
1216 if (irq->shorthand == APIC_DEST_SELF) {
1217 if (KVM_BUG_ON(!src, kvm)) {
1218 *r = 0;
1219 return true;
1220 }
1221 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1222 return true;
1223 }
1224
1225 rcu_read_lock();
1226 map = rcu_dereference(kvm->arch.apic_map);
1227
1228 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1229 if (ret) {
1230 *r = 0;
1231 for_each_set_bit(i, &bitmap, 16) {
1232 if (!dst[i])
1233 continue;
1234 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1235 }
1236 }
1237
1238 rcu_read_unlock();
1239 return ret;
1240 }
1241
1242 /*
1243 * This routine tries to handle interrupts in posted mode, here is how
1244 * it deals with different cases:
1245 * - For single-destination interrupts, handle it in posted mode
1246 * - Else if vector hashing is enabled and it is a lowest-priority
1247 * interrupt, handle it in posted mode and use the following mechanism
1248 * to find the destination vCPU.
1249 * 1. For lowest-priority interrupts, store all the possible
1250 * destination vCPUs in an array.
1251 * 2. Use "guest vector % max number of destination vCPUs" to find
1252 * the right destination vCPU in the array for the lowest-priority
1253 * interrupt.
1254 * - Otherwise, use remapped mode to inject the interrupt.
1255 */
1256 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1257 struct kvm_vcpu **dest_vcpu)
1258 {
1259 struct kvm_apic_map *map;
1260 unsigned long bitmap;
1261 struct kvm_lapic **dst = NULL;
1262 bool ret = false;
1263
1264 if (irq->shorthand)
1265 return false;
1266
1267 rcu_read_lock();
1268 map = rcu_dereference(kvm->arch.apic_map);
1269
1270 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1271 hweight16(bitmap) == 1) {
1272 unsigned long i = find_first_bit(&bitmap, 16);
1273
1274 if (dst[i]) {
1275 *dest_vcpu = dst[i]->vcpu;
1276 ret = true;
1277 }
1278 }
1279
1280 rcu_read_unlock();
1281 return ret;
1282 }
1283
1284 /*
1285 * Add a pending IRQ into lapic.
1286 * Return 1 if successfully added and 0 if discarded.
1287 */
1288 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1289 int vector, int level, int trig_mode,
1290 struct dest_map *dest_map)
1291 {
1292 int result = 0;
1293 struct kvm_vcpu *vcpu = apic->vcpu;
1294
1295 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1296 trig_mode, vector);
1297 switch (delivery_mode) {
1298 case APIC_DM_LOWEST:
1299 vcpu->arch.apic_arb_prio++;
1300 fallthrough;
1301 case APIC_DM_FIXED:
1302 if (unlikely(trig_mode && !level))
1303 break;
1304
1305 /* FIXME add logic for vcpu on reset */
1306 if (unlikely(!apic_enabled(apic)))
1307 break;
1308
1309 result = 1;
1310
1311 if (dest_map) {
1312 __set_bit(vcpu->vcpu_id, dest_map->map);
1313 dest_map->vectors[vcpu->vcpu_id] = vector;
1314 }
1315
1316 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1317 if (trig_mode)
1318 kvm_lapic_set_vector(vector,
1319 apic->regs + APIC_TMR);
1320 else
1321 kvm_lapic_clear_vector(vector,
1322 apic->regs + APIC_TMR);
1323 }
1324
1325 static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode,
1326 trig_mode, vector);
1327 break;
1328
1329 case APIC_DM_REMRD:
1330 result = 1;
1331 vcpu->arch.pv.pv_unhalted = 1;
1332 kvm_make_request(KVM_REQ_EVENT, vcpu);
1333 kvm_vcpu_kick(vcpu);
1334 break;
1335
1336 case APIC_DM_SMI:
1337 if (!kvm_inject_smi(vcpu)) {
1338 kvm_vcpu_kick(vcpu);
1339 result = 1;
1340 }
1341 break;
1342
1343 case APIC_DM_NMI:
1344 result = 1;
1345 kvm_inject_nmi(vcpu);
1346 kvm_vcpu_kick(vcpu);
1347 break;
1348
1349 case APIC_DM_INIT:
1350 if (!trig_mode || level) {
1351 result = 1;
1352 /* assumes that there are only KVM_APIC_INIT/SIPI */
1353 apic->pending_events = (1UL << KVM_APIC_INIT);
1354 kvm_make_request(KVM_REQ_EVENT, vcpu);
1355 kvm_vcpu_kick(vcpu);
1356 }
1357 break;
1358
1359 case APIC_DM_STARTUP:
1360 result = 1;
1361 apic->sipi_vector = vector;
1362 /* make sure sipi_vector is visible for the receiver */
1363 smp_wmb();
1364 set_bit(KVM_APIC_SIPI, &apic->pending_events);
1365 kvm_make_request(KVM_REQ_EVENT, vcpu);
1366 kvm_vcpu_kick(vcpu);
1367 break;
1368
1369 case APIC_DM_EXTINT:
1370 /*
1371 * Should only be called by kvm_apic_local_deliver() with LVT0,
1372 * before NMI watchdog was enabled. Already handled by
1373 * kvm_apic_accept_pic_intr().
1374 */
1375 break;
1376
1377 default:
1378 printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1379 delivery_mode);
1380 break;
1381 }
1382 return result;
1383 }
1384
1385 /*
1386 * This routine identifies the destination vcpus mask meant to receive the
1387 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1388 * out the destination vcpus array and set the bitmap or it traverses to
1389 * each available vcpu to identify the same.
1390 */
1391 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1392 unsigned long *vcpu_bitmap)
1393 {
1394 struct kvm_lapic **dest_vcpu = NULL;
1395 struct kvm_lapic *src = NULL;
1396 struct kvm_apic_map *map;
1397 struct kvm_vcpu *vcpu;
1398 unsigned long bitmap, i;
1399 int vcpu_idx;
1400 bool ret;
1401
1402 rcu_read_lock();
1403 map = rcu_dereference(kvm->arch.apic_map);
1404
1405 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1406 &bitmap);
1407 if (ret) {
1408 for_each_set_bit(i, &bitmap, 16) {
1409 if (!dest_vcpu[i])
1410 continue;
1411 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1412 __set_bit(vcpu_idx, vcpu_bitmap);
1413 }
1414 } else {
1415 kvm_for_each_vcpu(i, vcpu, kvm) {
1416 if (!kvm_apic_present(vcpu))
1417 continue;
1418 if (!kvm_apic_match_dest(vcpu, NULL,
1419 irq->shorthand,
1420 irq->dest_id,
1421 irq->dest_mode))
1422 continue;
1423 __set_bit(i, vcpu_bitmap);
1424 }
1425 }
1426 rcu_read_unlock();
1427 }
1428
1429 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1430 {
1431 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1432 }
1433
1434 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1435 {
1436 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1437 }
1438
1439 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1440 {
1441 int trigger_mode;
1442
1443 /* Eoi the ioapic only if the ioapic doesn't own the vector. */
1444 if (!kvm_ioapic_handles_vector(apic, vector))
1445 return;
1446
1447 /* Request a KVM exit to inform the userspace IOAPIC. */
1448 if (irqchip_split(apic->vcpu->kvm)) {
1449 apic->vcpu->arch.pending_ioapic_eoi = vector;
1450 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1451 return;
1452 }
1453
1454 if (apic_test_vector(vector, apic->regs + APIC_TMR))
1455 trigger_mode = IOAPIC_LEVEL_TRIG;
1456 else
1457 trigger_mode = IOAPIC_EDGE_TRIG;
1458
1459 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1460 }
1461
1462 static int apic_set_eoi(struct kvm_lapic *apic)
1463 {
1464 int vector = apic_find_highest_isr(apic);
1465
1466 trace_kvm_eoi(apic, vector);
1467
1468 /*
1469 * Not every write EOI will has corresponding ISR,
1470 * one example is when Kernel check timer on setup_IO_APIC
1471 */
1472 if (vector == -1)
1473 return vector;
1474
1475 apic_clear_isr(vector, apic);
1476 apic_update_ppr(apic);
1477
1478 if (to_hv_vcpu(apic->vcpu) &&
1479 test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap))
1480 kvm_hv_synic_send_eoi(apic->vcpu, vector);
1481
1482 kvm_ioapic_send_eoi(apic, vector);
1483 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1484 return vector;
1485 }
1486
1487 /*
1488 * this interface assumes a trap-like exit, which has already finished
1489 * desired side effect including vISR and vPPR update.
1490 */
1491 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1492 {
1493 struct kvm_lapic *apic = vcpu->arch.apic;
1494
1495 trace_kvm_eoi(apic, vector);
1496
1497 kvm_ioapic_send_eoi(apic, vector);
1498 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1499 }
1500 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1501
1502 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1503 {
1504 struct kvm_lapic_irq irq;
1505
1506 /* KVM has no delay and should always clear the BUSY/PENDING flag. */
1507 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1508
1509 irq.vector = icr_low & APIC_VECTOR_MASK;
1510 irq.delivery_mode = icr_low & APIC_MODE_MASK;
1511 irq.dest_mode = icr_low & APIC_DEST_MASK;
1512 irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1513 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1514 irq.shorthand = icr_low & APIC_SHORT_MASK;
1515 irq.msi_redir_hint = false;
1516 if (apic_x2apic_mode(apic))
1517 irq.dest_id = icr_high;
1518 else
1519 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1520
1521 trace_kvm_apic_ipi(icr_low, irq.dest_id);
1522
1523 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1526
1527 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1528 {
1529 ktime_t remaining, now;
1530 s64 ns;
1531
1532 ASSERT(apic != NULL);
1533
1534 /* if initial count is 0, current count should also be 0 */
1535 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1536 apic->lapic_timer.period == 0)
1537 return 0;
1538
1539 now = ktime_get();
1540 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1541 if (ktime_to_ns(remaining) < 0)
1542 remaining = 0;
1543
1544 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1545 return div64_u64(ns, (APIC_BUS_CYCLE_NS * apic->divide_count));
1546 }
1547
1548 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1549 {
1550 struct kvm_vcpu *vcpu = apic->vcpu;
1551 struct kvm_run *run = vcpu->run;
1552
1553 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1554 run->tpr_access.rip = kvm_rip_read(vcpu);
1555 run->tpr_access.is_write = write;
1556 }
1557
1558 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1559 {
1560 if (apic->vcpu->arch.tpr_access_reporting)
1561 __report_tpr_access(apic, write);
1562 }
1563
1564 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1565 {
1566 u32 val = 0;
1567
1568 if (offset >= LAPIC_MMIO_LENGTH)
1569 return 0;
1570
1571 switch (offset) {
1572 case APIC_ARBPRI:
1573 break;
1574
1575 case APIC_TMCCT: /* Timer CCR */
1576 if (apic_lvtt_tscdeadline(apic))
1577 return 0;
1578
1579 val = apic_get_tmcct(apic);
1580 break;
1581 case APIC_PROCPRI:
1582 apic_update_ppr(apic);
1583 val = kvm_lapic_get_reg(apic, offset);
1584 break;
1585 case APIC_TASKPRI:
1586 report_tpr_access(apic, false);
1587 fallthrough;
1588 default:
1589 val = kvm_lapic_get_reg(apic, offset);
1590 break;
1591 }
1592
1593 return val;
1594 }
1595
1596 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1597 {
1598 return container_of(dev, struct kvm_lapic, dev);
1599 }
1600
1601 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4))
1602 #define APIC_REGS_MASK(first, count) \
1603 (APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1604
1605 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1606 {
1607 /* Leave bits '0' for reserved and write-only registers. */
1608 u64 valid_reg_mask =
1609 APIC_REG_MASK(APIC_ID) |
1610 APIC_REG_MASK(APIC_LVR) |
1611 APIC_REG_MASK(APIC_TASKPRI) |
1612 APIC_REG_MASK(APIC_PROCPRI) |
1613 APIC_REG_MASK(APIC_LDR) |
1614 APIC_REG_MASK(APIC_SPIV) |
1615 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1616 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1617 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1618 APIC_REG_MASK(APIC_ESR) |
1619 APIC_REG_MASK(APIC_ICR) |
1620 APIC_REG_MASK(APIC_LVTT) |
1621 APIC_REG_MASK(APIC_LVTTHMR) |
1622 APIC_REG_MASK(APIC_LVTPC) |
1623 APIC_REG_MASK(APIC_LVT0) |
1624 APIC_REG_MASK(APIC_LVT1) |
1625 APIC_REG_MASK(APIC_LVTERR) |
1626 APIC_REG_MASK(APIC_TMICT) |
1627 APIC_REG_MASK(APIC_TMCCT) |
1628 APIC_REG_MASK(APIC_TDCR);
1629
1630 if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1631 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1632
1633 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1634 if (!apic_x2apic_mode(apic))
1635 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1636 APIC_REG_MASK(APIC_DFR) |
1637 APIC_REG_MASK(APIC_ICR2);
1638
1639 return valid_reg_mask;
1640 }
1641 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1642
1643 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1644 void *data)
1645 {
1646 unsigned char alignment = offset & 0xf;
1647 u32 result;
1648
1649 /*
1650 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1651 * x2APIC and needs to be manually handled by the caller.
1652 */
1653 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1654
1655 if (alignment + len > 4)
1656 return 1;
1657
1658 if (offset > 0x3f0 ||
1659 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1660 return 1;
1661
1662 result = __apic_read(apic, offset & ~0xf);
1663
1664 trace_kvm_apic_read(offset, result);
1665
1666 switch (len) {
1667 case 1:
1668 case 2:
1669 case 4:
1670 memcpy(data, (char *)&result + alignment, len);
1671 break;
1672 default:
1673 printk(KERN_ERR "Local APIC read with len = %x, "
1674 "should be 1,2, or 4 instead\n", len);
1675 break;
1676 }
1677 return 0;
1678 }
1679
1680 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1681 {
1682 return addr >= apic->base_address &&
1683 addr < apic->base_address + LAPIC_MMIO_LENGTH;
1684 }
1685
1686 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1687 gpa_t address, int len, void *data)
1688 {
1689 struct kvm_lapic *apic = to_lapic(this);
1690 u32 offset = address - apic->base_address;
1691
1692 if (!apic_mmio_in_range(apic, address))
1693 return -EOPNOTSUPP;
1694
1695 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1696 if (!kvm_check_has_quirk(vcpu->kvm,
1697 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1698 return -EOPNOTSUPP;
1699
1700 memset(data, 0xff, len);
1701 return 0;
1702 }
1703
1704 kvm_lapic_reg_read(apic, offset, len, data);
1705
1706 return 0;
1707 }
1708
1709 static void update_divide_count(struct kvm_lapic *apic)
1710 {
1711 u32 tmp1, tmp2, tdcr;
1712
1713 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1714 tmp1 = tdcr & 0xf;
1715 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1716 apic->divide_count = 0x1 << (tmp2 & 0x7);
1717 }
1718
1719 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1720 {
1721 /*
1722 * Do not allow the guest to program periodic timers with small
1723 * interval, since the hrtimers are not throttled by the host
1724 * scheduler.
1725 */
1726 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1727 s64 min_period = min_timer_period_us * 1000LL;
1728
1729 if (apic->lapic_timer.period < min_period) {
1730 pr_info_ratelimited(
1731 "vcpu %i: requested %lld ns "
1732 "lapic timer period limited to %lld ns\n",
1733 apic->vcpu->vcpu_id,
1734 apic->lapic_timer.period, min_period);
1735 apic->lapic_timer.period = min_period;
1736 }
1737 }
1738 }
1739
1740 static void cancel_hv_timer(struct kvm_lapic *apic);
1741
1742 static void cancel_apic_timer(struct kvm_lapic *apic)
1743 {
1744 hrtimer_cancel(&apic->lapic_timer.timer);
1745 preempt_disable();
1746 if (apic->lapic_timer.hv_timer_in_use)
1747 cancel_hv_timer(apic);
1748 preempt_enable();
1749 atomic_set(&apic->lapic_timer.pending, 0);
1750 }
1751
1752 static void apic_update_lvtt(struct kvm_lapic *apic)
1753 {
1754 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1755 apic->lapic_timer.timer_mode_mask;
1756
1757 if (apic->lapic_timer.timer_mode != timer_mode) {
1758 if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1759 APIC_LVT_TIMER_TSCDEADLINE)) {
1760 cancel_apic_timer(apic);
1761 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1762 apic->lapic_timer.period = 0;
1763 apic->lapic_timer.tscdeadline = 0;
1764 }
1765 apic->lapic_timer.timer_mode = timer_mode;
1766 limit_periodic_timer_frequency(apic);
1767 }
1768 }
1769
1770 /*
1771 * On APICv, this test will cause a busy wait
1772 * during a higher-priority task.
1773 */
1774
1775 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1776 {
1777 struct kvm_lapic *apic = vcpu->arch.apic;
1778 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1779
1780 if (kvm_apic_hw_enabled(apic)) {
1781 int vec = reg & APIC_VECTOR_MASK;
1782 void *bitmap = apic->regs + APIC_ISR;
1783
1784 if (apic->apicv_active)
1785 bitmap = apic->regs + APIC_IRR;
1786
1787 if (apic_test_vector(vec, bitmap))
1788 return true;
1789 }
1790 return false;
1791 }
1792
1793 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1794 {
1795 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1796
1797 /*
1798 * If the guest TSC is running at a different ratio than the host, then
1799 * convert the delay to nanoseconds to achieve an accurate delay. Note
1800 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1801 * always for VMX enabled hardware.
1802 */
1803 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1804 __delay(min(guest_cycles,
1805 nsec_to_cycles(vcpu, timer_advance_ns)));
1806 } else {
1807 u64 delay_ns = guest_cycles * 1000000ULL;
1808 do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1809 ndelay(min_t(u32, delay_ns, timer_advance_ns));
1810 }
1811 }
1812
1813 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1814 s64 advance_expire_delta)
1815 {
1816 struct kvm_lapic *apic = vcpu->arch.apic;
1817 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1818 u64 ns;
1819
1820 /* Do not adjust for tiny fluctuations or large random spikes. */
1821 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1822 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1823 return;
1824
1825 /* too early */
1826 if (advance_expire_delta < 0) {
1827 ns = -advance_expire_delta * 1000000ULL;
1828 do_div(ns, vcpu->arch.virtual_tsc_khz);
1829 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1830 } else {
1831 /* too late */
1832 ns = advance_expire_delta * 1000000ULL;
1833 do_div(ns, vcpu->arch.virtual_tsc_khz);
1834 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1835 }
1836
1837 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1838 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1839 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1840 }
1841
1842 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1843 {
1844 struct kvm_lapic *apic = vcpu->arch.apic;
1845 u64 guest_tsc, tsc_deadline;
1846
1847 tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1848 apic->lapic_timer.expired_tscdeadline = 0;
1849 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1850 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1851
1852 if (lapic_timer_advance_dynamic) {
1853 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1854 /*
1855 * If the timer fired early, reread the TSC to account for the
1856 * overhead of the above adjustment to avoid waiting longer
1857 * than is necessary.
1858 */
1859 if (guest_tsc < tsc_deadline)
1860 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1861 }
1862
1863 if (guest_tsc < tsc_deadline)
1864 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1865 }
1866
1867 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1868 {
1869 if (lapic_in_kernel(vcpu) &&
1870 vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1871 vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1872 lapic_timer_int_injected(vcpu))
1873 __kvm_wait_lapic_expire(vcpu);
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1876
1877 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1878 {
1879 struct kvm_timer *ktimer = &apic->lapic_timer;
1880
1881 kvm_apic_local_deliver(apic, APIC_LVTT);
1882 if (apic_lvtt_tscdeadline(apic)) {
1883 ktimer->tscdeadline = 0;
1884 } else if (apic_lvtt_oneshot(apic)) {
1885 ktimer->tscdeadline = 0;
1886 ktimer->target_expiration = 0;
1887 }
1888 }
1889
1890 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1891 {
1892 struct kvm_vcpu *vcpu = apic->vcpu;
1893 struct kvm_timer *ktimer = &apic->lapic_timer;
1894
1895 if (atomic_read(&apic->lapic_timer.pending))
1896 return;
1897
1898 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1899 ktimer->expired_tscdeadline = ktimer->tscdeadline;
1900
1901 if (!from_timer_fn && apic->apicv_active) {
1902 WARN_ON(kvm_get_running_vcpu() != vcpu);
1903 kvm_apic_inject_pending_timer_irqs(apic);
1904 return;
1905 }
1906
1907 if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1908 /*
1909 * Ensure the guest's timer has truly expired before posting an
1910 * interrupt. Open code the relevant checks to avoid querying
1911 * lapic_timer_int_injected(), which will be false since the
1912 * interrupt isn't yet injected. Waiting until after injecting
1913 * is not an option since that won't help a posted interrupt.
1914 */
1915 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1916 vcpu->arch.apic->lapic_timer.timer_advance_ns)
1917 __kvm_wait_lapic_expire(vcpu);
1918 kvm_apic_inject_pending_timer_irqs(apic);
1919 return;
1920 }
1921
1922 atomic_inc(&apic->lapic_timer.pending);
1923 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1924 if (from_timer_fn)
1925 kvm_vcpu_kick(vcpu);
1926 }
1927
1928 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1929 {
1930 struct kvm_timer *ktimer = &apic->lapic_timer;
1931 u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1932 u64 ns = 0;
1933 ktime_t expire;
1934 struct kvm_vcpu *vcpu = apic->vcpu;
1935 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1936 unsigned long flags;
1937 ktime_t now;
1938
1939 if (unlikely(!tscdeadline || !this_tsc_khz))
1940 return;
1941
1942 local_irq_save(flags);
1943
1944 now = ktime_get();
1945 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1946
1947 ns = (tscdeadline - guest_tsc) * 1000000ULL;
1948 do_div(ns, this_tsc_khz);
1949
1950 if (likely(tscdeadline > guest_tsc) &&
1951 likely(ns > apic->lapic_timer.timer_advance_ns)) {
1952 expire = ktime_add_ns(now, ns);
1953 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1954 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1955 } else
1956 apic_timer_expired(apic, false);
1957
1958 local_irq_restore(flags);
1959 }
1960
1961 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1962 {
1963 return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
1964 }
1965
1966 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1967 {
1968 ktime_t now, remaining;
1969 u64 ns_remaining_old, ns_remaining_new;
1970
1971 apic->lapic_timer.period =
1972 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1973 limit_periodic_timer_frequency(apic);
1974
1975 now = ktime_get();
1976 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1977 if (ktime_to_ns(remaining) < 0)
1978 remaining = 0;
1979
1980 ns_remaining_old = ktime_to_ns(remaining);
1981 ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1982 apic->divide_count, old_divisor);
1983
1984 apic->lapic_timer.tscdeadline +=
1985 nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1986 nsec_to_cycles(apic->vcpu, ns_remaining_old);
1987 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1988 }
1989
1990 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1991 {
1992 ktime_t now;
1993 u64 tscl = rdtsc();
1994 s64 deadline;
1995
1996 now = ktime_get();
1997 apic->lapic_timer.period =
1998 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1999
2000 if (!apic->lapic_timer.period) {
2001 apic->lapic_timer.tscdeadline = 0;
2002 return false;
2003 }
2004
2005 limit_periodic_timer_frequency(apic);
2006 deadline = apic->lapic_timer.period;
2007
2008 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
2009 if (unlikely(count_reg != APIC_TMICT)) {
2010 deadline = tmict_to_ns(apic,
2011 kvm_lapic_get_reg(apic, count_reg));
2012 if (unlikely(deadline <= 0)) {
2013 if (apic_lvtt_period(apic))
2014 deadline = apic->lapic_timer.period;
2015 else
2016 deadline = 0;
2017 }
2018 else if (unlikely(deadline > apic->lapic_timer.period)) {
2019 pr_info_ratelimited(
2020 "vcpu %i: requested lapic timer restore with "
2021 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2022 "Using initial count to start timer.\n",
2023 apic->vcpu->vcpu_id,
2024 count_reg,
2025 kvm_lapic_get_reg(apic, count_reg),
2026 deadline, apic->lapic_timer.period);
2027 kvm_lapic_set_reg(apic, count_reg, 0);
2028 deadline = apic->lapic_timer.period;
2029 }
2030 }
2031 }
2032
2033 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2034 nsec_to_cycles(apic->vcpu, deadline);
2035 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2036
2037 return true;
2038 }
2039
2040 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2041 {
2042 ktime_t now = ktime_get();
2043 u64 tscl = rdtsc();
2044 ktime_t delta;
2045
2046 /*
2047 * Synchronize both deadlines to the same time source or
2048 * differences in the periods (caused by differences in the
2049 * underlying clocks or numerical approximation errors) will
2050 * cause the two to drift apart over time as the errors
2051 * accumulate.
2052 */
2053 apic->lapic_timer.target_expiration =
2054 ktime_add_ns(apic->lapic_timer.target_expiration,
2055 apic->lapic_timer.period);
2056 delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2057 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2058 nsec_to_cycles(apic->vcpu, delta);
2059 }
2060
2061 static void start_sw_period(struct kvm_lapic *apic)
2062 {
2063 if (!apic->lapic_timer.period)
2064 return;
2065
2066 if (ktime_after(ktime_get(),
2067 apic->lapic_timer.target_expiration)) {
2068 apic_timer_expired(apic, false);
2069
2070 if (apic_lvtt_oneshot(apic))
2071 return;
2072
2073 advance_periodic_target_expiration(apic);
2074 }
2075
2076 hrtimer_start(&apic->lapic_timer.timer,
2077 apic->lapic_timer.target_expiration,
2078 HRTIMER_MODE_ABS_HARD);
2079 }
2080
2081 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2082 {
2083 if (!lapic_in_kernel(vcpu))
2084 return false;
2085
2086 return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2087 }
2088
2089 static void cancel_hv_timer(struct kvm_lapic *apic)
2090 {
2091 WARN_ON(preemptible());
2092 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2093 static_call(kvm_x86_cancel_hv_timer)(apic->vcpu);
2094 apic->lapic_timer.hv_timer_in_use = false;
2095 }
2096
2097 static bool start_hv_timer(struct kvm_lapic *apic)
2098 {
2099 struct kvm_timer *ktimer = &apic->lapic_timer;
2100 struct kvm_vcpu *vcpu = apic->vcpu;
2101 bool expired;
2102
2103 WARN_ON(preemptible());
2104 if (!kvm_can_use_hv_timer(vcpu))
2105 return false;
2106
2107 if (!ktimer->tscdeadline)
2108 return false;
2109
2110 if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2111 return false;
2112
2113 ktimer->hv_timer_in_use = true;
2114 hrtimer_cancel(&ktimer->timer);
2115
2116 /*
2117 * To simplify handling the periodic timer, leave the hv timer running
2118 * even if the deadline timer has expired, i.e. rely on the resulting
2119 * VM-Exit to recompute the periodic timer's target expiration.
2120 */
2121 if (!apic_lvtt_period(apic)) {
2122 /*
2123 * Cancel the hv timer if the sw timer fired while the hv timer
2124 * was being programmed, or if the hv timer itself expired.
2125 */
2126 if (atomic_read(&ktimer->pending)) {
2127 cancel_hv_timer(apic);
2128 } else if (expired) {
2129 apic_timer_expired(apic, false);
2130 cancel_hv_timer(apic);
2131 }
2132 }
2133
2134 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2135
2136 return true;
2137 }
2138
2139 static void start_sw_timer(struct kvm_lapic *apic)
2140 {
2141 struct kvm_timer *ktimer = &apic->lapic_timer;
2142
2143 WARN_ON(preemptible());
2144 if (apic->lapic_timer.hv_timer_in_use)
2145 cancel_hv_timer(apic);
2146 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2147 return;
2148
2149 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2150 start_sw_period(apic);
2151 else if (apic_lvtt_tscdeadline(apic))
2152 start_sw_tscdeadline(apic);
2153 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2154 }
2155
2156 static void restart_apic_timer(struct kvm_lapic *apic)
2157 {
2158 preempt_disable();
2159
2160 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2161 goto out;
2162
2163 if (!start_hv_timer(apic))
2164 start_sw_timer(apic);
2165 out:
2166 preempt_enable();
2167 }
2168
2169 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2170 {
2171 struct kvm_lapic *apic = vcpu->arch.apic;
2172
2173 preempt_disable();
2174 /* If the preempt notifier has already run, it also called apic_timer_expired */
2175 if (!apic->lapic_timer.hv_timer_in_use)
2176 goto out;
2177 WARN_ON(kvm_vcpu_is_blocking(vcpu));
2178 apic_timer_expired(apic, false);
2179 cancel_hv_timer(apic);
2180
2181 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2182 advance_periodic_target_expiration(apic);
2183 restart_apic_timer(apic);
2184 }
2185 out:
2186 preempt_enable();
2187 }
2188 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2189
2190 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2191 {
2192 restart_apic_timer(vcpu->arch.apic);
2193 }
2194
2195 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2196 {
2197 struct kvm_lapic *apic = vcpu->arch.apic;
2198
2199 preempt_disable();
2200 /* Possibly the TSC deadline timer is not enabled yet */
2201 if (apic->lapic_timer.hv_timer_in_use)
2202 start_sw_timer(apic);
2203 preempt_enable();
2204 }
2205
2206 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2207 {
2208 struct kvm_lapic *apic = vcpu->arch.apic;
2209
2210 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2211 restart_apic_timer(apic);
2212 }
2213
2214 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2215 {
2216 atomic_set(&apic->lapic_timer.pending, 0);
2217
2218 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2219 && !set_target_expiration(apic, count_reg))
2220 return;
2221
2222 restart_apic_timer(apic);
2223 }
2224
2225 static void start_apic_timer(struct kvm_lapic *apic)
2226 {
2227 __start_apic_timer(apic, APIC_TMICT);
2228 }
2229
2230 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2231 {
2232 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2233
2234 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2235 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2236 if (lvt0_in_nmi_mode) {
2237 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2238 } else
2239 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2240 }
2241 }
2242
2243 static int get_lvt_index(u32 reg)
2244 {
2245 if (reg == APIC_LVTCMCI)
2246 return LVT_CMCI;
2247 if (reg < APIC_LVTT || reg > APIC_LVTERR)
2248 return -1;
2249 return array_index_nospec(
2250 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2251 }
2252
2253 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2254 {
2255 int ret = 0;
2256
2257 trace_kvm_apic_write(reg, val);
2258
2259 switch (reg) {
2260 case APIC_ID: /* Local APIC ID */
2261 if (!apic_x2apic_mode(apic)) {
2262 kvm_apic_set_xapic_id(apic, val >> 24);
2263 } else {
2264 ret = 1;
2265 }
2266 break;
2267
2268 case APIC_TASKPRI:
2269 report_tpr_access(apic, true);
2270 apic_set_tpr(apic, val & 0xff);
2271 break;
2272
2273 case APIC_EOI:
2274 apic_set_eoi(apic);
2275 break;
2276
2277 case APIC_LDR:
2278 if (!apic_x2apic_mode(apic))
2279 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2280 else
2281 ret = 1;
2282 break;
2283
2284 case APIC_DFR:
2285 if (!apic_x2apic_mode(apic))
2286 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2287 else
2288 ret = 1;
2289 break;
2290
2291 case APIC_SPIV: {
2292 u32 mask = 0x3ff;
2293 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2294 mask |= APIC_SPIV_DIRECTED_EOI;
2295 apic_set_spiv(apic, val & mask);
2296 if (!(val & APIC_SPIV_APIC_ENABLED)) {
2297 int i;
2298
2299 for (i = 0; i < apic->nr_lvt_entries; i++) {
2300 kvm_lapic_set_reg(apic, APIC_LVTx(i),
2301 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2302 }
2303 apic_update_lvtt(apic);
2304 atomic_set(&apic->lapic_timer.pending, 0);
2305
2306 }
2307 break;
2308 }
2309 case APIC_ICR:
2310 WARN_ON_ONCE(apic_x2apic_mode(apic));
2311
2312 /* No delay here, so we always clear the pending bit */
2313 val &= ~APIC_ICR_BUSY;
2314 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2315 kvm_lapic_set_reg(apic, APIC_ICR, val);
2316 break;
2317 case APIC_ICR2:
2318 if (apic_x2apic_mode(apic))
2319 ret = 1;
2320 else
2321 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2322 break;
2323
2324 case APIC_LVT0:
2325 apic_manage_nmi_watchdog(apic, val);
2326 fallthrough;
2327 case APIC_LVTTHMR:
2328 case APIC_LVTPC:
2329 case APIC_LVT1:
2330 case APIC_LVTERR:
2331 case APIC_LVTCMCI: {
2332 u32 index = get_lvt_index(reg);
2333 if (!kvm_lapic_lvt_supported(apic, index)) {
2334 ret = 1;
2335 break;
2336 }
2337 if (!kvm_apic_sw_enabled(apic))
2338 val |= APIC_LVT_MASKED;
2339 val &= apic_lvt_mask[index];
2340 kvm_lapic_set_reg(apic, reg, val);
2341 break;
2342 }
2343
2344 case APIC_LVTT:
2345 if (!kvm_apic_sw_enabled(apic))
2346 val |= APIC_LVT_MASKED;
2347 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2348 kvm_lapic_set_reg(apic, APIC_LVTT, val);
2349 apic_update_lvtt(apic);
2350 break;
2351
2352 case APIC_TMICT:
2353 if (apic_lvtt_tscdeadline(apic))
2354 break;
2355
2356 cancel_apic_timer(apic);
2357 kvm_lapic_set_reg(apic, APIC_TMICT, val);
2358 start_apic_timer(apic);
2359 break;
2360
2361 case APIC_TDCR: {
2362 uint32_t old_divisor = apic->divide_count;
2363
2364 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2365 update_divide_count(apic);
2366 if (apic->divide_count != old_divisor &&
2367 apic->lapic_timer.period) {
2368 hrtimer_cancel(&apic->lapic_timer.timer);
2369 update_target_expiration(apic, old_divisor);
2370 restart_apic_timer(apic);
2371 }
2372 break;
2373 }
2374 case APIC_ESR:
2375 if (apic_x2apic_mode(apic) && val != 0)
2376 ret = 1;
2377 break;
2378
2379 case APIC_SELF_IPI:
2380 /*
2381 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold
2382 * the vector, everything else is reserved.
2383 */
2384 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2385 ret = 1;
2386 else
2387 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2388 break;
2389 default:
2390 ret = 1;
2391 break;
2392 }
2393
2394 /*
2395 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2396 * was toggled, the APIC ID changed, etc... The maps are marked dirty
2397 * on relevant changes, i.e. this is a nop for most writes.
2398 */
2399 kvm_recalculate_apic_map(apic->vcpu->kvm);
2400
2401 return ret;
2402 }
2403
2404 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2405 gpa_t address, int len, const void *data)
2406 {
2407 struct kvm_lapic *apic = to_lapic(this);
2408 unsigned int offset = address - apic->base_address;
2409 u32 val;
2410
2411 if (!apic_mmio_in_range(apic, address))
2412 return -EOPNOTSUPP;
2413
2414 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2415 if (!kvm_check_has_quirk(vcpu->kvm,
2416 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2417 return -EOPNOTSUPP;
2418
2419 return 0;
2420 }
2421
2422 /*
2423 * APIC register must be aligned on 128-bits boundary.
2424 * 32/64/128 bits registers must be accessed thru 32 bits.
2425 * Refer SDM 8.4.1
2426 */
2427 if (len != 4 || (offset & 0xf))
2428 return 0;
2429
2430 val = *(u32*)data;
2431
2432 kvm_lapic_reg_write(apic, offset & 0xff0, val);
2433
2434 return 0;
2435 }
2436
2437 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2438 {
2439 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2440 }
2441 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2442
2443 /* emulate APIC access in a trap manner */
2444 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2445 {
2446 struct kvm_lapic *apic = vcpu->arch.apic;
2447 u64 val;
2448
2449 /*
2450 * ICR is a single 64-bit register when x2APIC is enabled. For legacy
2451 * xAPIC, ICR writes need to go down the common (slightly slower) path
2452 * to get the upper half from ICR2.
2453 */
2454 if (apic_x2apic_mode(apic) && offset == APIC_ICR) {
2455 val = kvm_lapic_get_reg64(apic, APIC_ICR);
2456 kvm_apic_send_ipi(apic, (u32)val, (u32)(val >> 32));
2457 trace_kvm_apic_write(APIC_ICR, val);
2458 } else {
2459 /* TODO: optimize to just emulate side effect w/o one more write */
2460 val = kvm_lapic_get_reg(apic, offset);
2461 kvm_lapic_reg_write(apic, offset, (u32)val);
2462 }
2463 }
2464 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2465
2466 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2467 {
2468 struct kvm_lapic *apic = vcpu->arch.apic;
2469
2470 if (!vcpu->arch.apic)
2471 return;
2472
2473 hrtimer_cancel(&apic->lapic_timer.timer);
2474
2475 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2476 static_branch_slow_dec_deferred(&apic_hw_disabled);
2477
2478 if (!apic->sw_enabled)
2479 static_branch_slow_dec_deferred(&apic_sw_disabled);
2480
2481 if (apic->regs)
2482 free_page((unsigned long)apic->regs);
2483
2484 kfree(apic);
2485 }
2486
2487 /*
2488 *----------------------------------------------------------------------
2489 * LAPIC interface
2490 *----------------------------------------------------------------------
2491 */
2492 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2493 {
2494 struct kvm_lapic *apic = vcpu->arch.apic;
2495
2496 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2497 return 0;
2498
2499 return apic->lapic_timer.tscdeadline;
2500 }
2501
2502 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2503 {
2504 struct kvm_lapic *apic = vcpu->arch.apic;
2505
2506 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2507 return;
2508
2509 hrtimer_cancel(&apic->lapic_timer.timer);
2510 apic->lapic_timer.tscdeadline = data;
2511 start_apic_timer(apic);
2512 }
2513
2514 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2515 {
2516 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2517 }
2518
2519 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2520 {
2521 u64 tpr;
2522
2523 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2524
2525 return (tpr & 0xf0) >> 4;
2526 }
2527
2528 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2529 {
2530 u64 old_value = vcpu->arch.apic_base;
2531 struct kvm_lapic *apic = vcpu->arch.apic;
2532
2533 vcpu->arch.apic_base = value;
2534
2535 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2536 kvm_update_cpuid_runtime(vcpu);
2537
2538 if (!apic)
2539 return;
2540
2541 /* update jump label if enable bit changes */
2542 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2543 if (value & MSR_IA32_APICBASE_ENABLE) {
2544 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2545 static_branch_slow_dec_deferred(&apic_hw_disabled);
2546 /* Check if there are APF page ready requests pending */
2547 kvm_make_request(KVM_REQ_APF_READY, vcpu);
2548 } else {
2549 static_branch_inc(&apic_hw_disabled.key);
2550 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2551 }
2552 }
2553
2554 if ((old_value ^ value) & X2APIC_ENABLE) {
2555 if (value & X2APIC_ENABLE)
2556 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2557 else if (value & MSR_IA32_APICBASE_ENABLE)
2558 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2559 }
2560
2561 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2562 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2563 static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu);
2564 }
2565
2566 apic->base_address = apic->vcpu->arch.apic_base &
2567 MSR_IA32_APICBASE_BASE;
2568
2569 if ((value & MSR_IA32_APICBASE_ENABLE) &&
2570 apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2571 kvm_set_apicv_inhibit(apic->vcpu->kvm,
2572 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2573 }
2574 }
2575
2576 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2577 {
2578 struct kvm_lapic *apic = vcpu->arch.apic;
2579
2580 if (apic->apicv_active) {
2581 /* irr_pending is always true when apicv is activated. */
2582 apic->irr_pending = true;
2583 apic->isr_count = 1;
2584 } else {
2585 /*
2586 * Don't clear irr_pending, searching the IRR can race with
2587 * updates from the CPU as APICv is still active from hardware's
2588 * perspective. The flag will be cleared as appropriate when
2589 * KVM injects the interrupt.
2590 */
2591 apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2592 }
2593 apic->highest_isr_cache = -1;
2594 }
2595
2596 int kvm_alloc_apic_access_page(struct kvm *kvm)
2597 {
2598 struct page *page;
2599 void __user *hva;
2600 int ret = 0;
2601
2602 mutex_lock(&kvm->slots_lock);
2603 if (kvm->arch.apic_access_memslot_enabled ||
2604 kvm->arch.apic_access_memslot_inhibited)
2605 goto out;
2606
2607 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2608 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2609 if (IS_ERR(hva)) {
2610 ret = PTR_ERR(hva);
2611 goto out;
2612 }
2613
2614 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
2615 if (is_error_page(page)) {
2616 ret = -EFAULT;
2617 goto out;
2618 }
2619
2620 /*
2621 * Do not pin the page in memory, so that memory hot-unplug
2622 * is able to migrate it.
2623 */
2624 put_page(page);
2625 kvm->arch.apic_access_memslot_enabled = true;
2626 out:
2627 mutex_unlock(&kvm->slots_lock);
2628 return ret;
2629 }
2630 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2631
2632 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2633 {
2634 struct kvm *kvm = vcpu->kvm;
2635
2636 if (!kvm->arch.apic_access_memslot_enabled)
2637 return;
2638
2639 kvm_vcpu_srcu_read_unlock(vcpu);
2640
2641 mutex_lock(&kvm->slots_lock);
2642
2643 if (kvm->arch.apic_access_memslot_enabled) {
2644 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2645 /*
2646 * Clear "enabled" after the memslot is deleted so that a
2647 * different vCPU doesn't get a false negative when checking
2648 * the flag out of slots_lock. No additional memory barrier is
2649 * needed as modifying memslots requires waiting other vCPUs to
2650 * drop SRCU (see above), and false positives are ok as the
2651 * flag is rechecked after acquiring slots_lock.
2652 */
2653 kvm->arch.apic_access_memslot_enabled = false;
2654
2655 /*
2656 * Mark the memslot as inhibited to prevent reallocating the
2657 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2658 */
2659 kvm->arch.apic_access_memslot_inhibited = true;
2660 }
2661
2662 mutex_unlock(&kvm->slots_lock);
2663
2664 kvm_vcpu_srcu_read_lock(vcpu);
2665 }
2666
2667 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2668 {
2669 struct kvm_lapic *apic = vcpu->arch.apic;
2670 u64 msr_val;
2671 int i;
2672
2673 if (!init_event) {
2674 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2675 if (kvm_vcpu_is_reset_bsp(vcpu))
2676 msr_val |= MSR_IA32_APICBASE_BSP;
2677 kvm_lapic_set_base(vcpu, msr_val);
2678 }
2679
2680 if (!apic)
2681 return;
2682
2683 /* Stop the timer in case it's a reset to an active apic */
2684 hrtimer_cancel(&apic->lapic_timer.timer);
2685
2686 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2687 if (!init_event)
2688 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2689 kvm_apic_set_version(apic->vcpu);
2690
2691 for (i = 0; i < apic->nr_lvt_entries; i++)
2692 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2693 apic_update_lvtt(apic);
2694 if (kvm_vcpu_is_reset_bsp(vcpu) &&
2695 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2696 kvm_lapic_set_reg(apic, APIC_LVT0,
2697 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2698 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2699
2700 kvm_apic_set_dfr(apic, 0xffffffffU);
2701 apic_set_spiv(apic, 0xff);
2702 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2703 if (!apic_x2apic_mode(apic))
2704 kvm_apic_set_ldr(apic, 0);
2705 kvm_lapic_set_reg(apic, APIC_ESR, 0);
2706 if (!apic_x2apic_mode(apic)) {
2707 kvm_lapic_set_reg(apic, APIC_ICR, 0);
2708 kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2709 } else {
2710 kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2711 }
2712 kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2713 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2714 for (i = 0; i < 8; i++) {
2715 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2716 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2717 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2718 }
2719 kvm_apic_update_apicv(vcpu);
2720 update_divide_count(apic);
2721 atomic_set(&apic->lapic_timer.pending, 0);
2722
2723 vcpu->arch.pv_eoi.msr_val = 0;
2724 apic_update_ppr(apic);
2725 if (apic->apicv_active) {
2726 static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
2727 static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, -1);
2728 static_call_cond(kvm_x86_hwapic_isr_update)(-1);
2729 }
2730
2731 vcpu->arch.apic_arb_prio = 0;
2732 vcpu->arch.apic_attention = 0;
2733
2734 kvm_recalculate_apic_map(vcpu->kvm);
2735 }
2736
2737 /*
2738 *----------------------------------------------------------------------
2739 * timer interface
2740 *----------------------------------------------------------------------
2741 */
2742
2743 static bool lapic_is_periodic(struct kvm_lapic *apic)
2744 {
2745 return apic_lvtt_period(apic);
2746 }
2747
2748 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2749 {
2750 struct kvm_lapic *apic = vcpu->arch.apic;
2751
2752 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2753 return atomic_read(&apic->lapic_timer.pending);
2754
2755 return 0;
2756 }
2757
2758 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2759 {
2760 u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2761 int vector, mode, trig_mode;
2762
2763 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2764 vector = reg & APIC_VECTOR_MASK;
2765 mode = reg & APIC_MODE_MASK;
2766 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2767 return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2768 NULL);
2769 }
2770 return 0;
2771 }
2772
2773 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2774 {
2775 struct kvm_lapic *apic = vcpu->arch.apic;
2776
2777 if (apic)
2778 kvm_apic_local_deliver(apic, APIC_LVT0);
2779 }
2780
2781 static const struct kvm_io_device_ops apic_mmio_ops = {
2782 .read = apic_mmio_read,
2783 .write = apic_mmio_write,
2784 };
2785
2786 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2787 {
2788 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2789 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2790
2791 apic_timer_expired(apic, true);
2792
2793 if (lapic_is_periodic(apic)) {
2794 advance_periodic_target_expiration(apic);
2795 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2796 return HRTIMER_RESTART;
2797 } else
2798 return HRTIMER_NORESTART;
2799 }
2800
2801 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2802 {
2803 struct kvm_lapic *apic;
2804
2805 ASSERT(vcpu != NULL);
2806
2807 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2808 if (!apic)
2809 goto nomem;
2810
2811 vcpu->arch.apic = apic;
2812
2813 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2814 if (!apic->regs) {
2815 printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2816 vcpu->vcpu_id);
2817 goto nomem_free_apic;
2818 }
2819 apic->vcpu = vcpu;
2820
2821 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2822
2823 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2824 HRTIMER_MODE_ABS_HARD);
2825 apic->lapic_timer.timer.function = apic_timer_fn;
2826 if (timer_advance_ns == -1) {
2827 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2828 lapic_timer_advance_dynamic = true;
2829 } else {
2830 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2831 lapic_timer_advance_dynamic = false;
2832 }
2833
2834 /*
2835 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2836 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2837 */
2838 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2839 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2840 kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2841
2842 return 0;
2843 nomem_free_apic:
2844 kfree(apic);
2845 vcpu->arch.apic = NULL;
2846 nomem:
2847 return -ENOMEM;
2848 }
2849
2850 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2851 {
2852 struct kvm_lapic *apic = vcpu->arch.apic;
2853 u32 ppr;
2854
2855 if (!kvm_apic_present(vcpu))
2856 return -1;
2857
2858 __apic_update_ppr(apic, &ppr);
2859 return apic_has_interrupt_for_ppr(apic, ppr);
2860 }
2861 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2862
2863 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2864 {
2865 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2866
2867 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2868 return 1;
2869 if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2870 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2871 return 1;
2872 return 0;
2873 }
2874
2875 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2876 {
2877 struct kvm_lapic *apic = vcpu->arch.apic;
2878
2879 if (atomic_read(&apic->lapic_timer.pending) > 0) {
2880 kvm_apic_inject_pending_timer_irqs(apic);
2881 atomic_set(&apic->lapic_timer.pending, 0);
2882 }
2883 }
2884
2885 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2886 {
2887 int vector = kvm_apic_has_interrupt(vcpu);
2888 struct kvm_lapic *apic = vcpu->arch.apic;
2889 u32 ppr;
2890
2891 if (vector == -1)
2892 return -1;
2893
2894 /*
2895 * We get here even with APIC virtualization enabled, if doing
2896 * nested virtualization and L1 runs with the "acknowledge interrupt
2897 * on exit" mode. Then we cannot inject the interrupt via RVI,
2898 * because the process would deliver it through the IDT.
2899 */
2900
2901 apic_clear_irr(vector, apic);
2902 if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) {
2903 /*
2904 * For auto-EOI interrupts, there might be another pending
2905 * interrupt above PPR, so check whether to raise another
2906 * KVM_REQ_EVENT.
2907 */
2908 apic_update_ppr(apic);
2909 } else {
2910 /*
2911 * For normal interrupts, PPR has been raised and there cannot
2912 * be a higher-priority pending interrupt---except if there was
2913 * a concurrent interrupt injection, but that would have
2914 * triggered KVM_REQ_EVENT already.
2915 */
2916 apic_set_isr(vector, apic);
2917 __apic_update_ppr(apic, &ppr);
2918 }
2919
2920 return vector;
2921 }
2922
2923 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2924 struct kvm_lapic_state *s, bool set)
2925 {
2926 if (apic_x2apic_mode(vcpu->arch.apic)) {
2927 u32 *id = (u32 *)(s->regs + APIC_ID);
2928 u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2929 u64 icr;
2930
2931 if (vcpu->kvm->arch.x2apic_format) {
2932 if (*id != vcpu->vcpu_id)
2933 return -EINVAL;
2934 } else {
2935 if (set)
2936 *id >>= 24;
2937 else
2938 *id <<= 24;
2939 }
2940
2941 /*
2942 * In x2APIC mode, the LDR is fixed and based on the id. And
2943 * ICR is internally a single 64-bit register, but needs to be
2944 * split to ICR+ICR2 in userspace for backwards compatibility.
2945 */
2946 if (set) {
2947 *ldr = kvm_apic_calc_x2apic_ldr(*id);
2948
2949 icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
2950 (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
2951 __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
2952 } else {
2953 icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
2954 __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
2955 }
2956 }
2957
2958 return 0;
2959 }
2960
2961 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2962 {
2963 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2964
2965 /*
2966 * Get calculated timer current count for remaining timer period (if
2967 * any) and store it in the returned register set.
2968 */
2969 __kvm_lapic_set_reg(s->regs, APIC_TMCCT,
2970 __apic_read(vcpu->arch.apic, APIC_TMCCT));
2971
2972 return kvm_apic_state_fixup(vcpu, s, false);
2973 }
2974
2975 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2976 {
2977 struct kvm_lapic *apic = vcpu->arch.apic;
2978 int r;
2979
2980 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2981 /* set SPIV separately to get count of SW disabled APICs right */
2982 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2983
2984 r = kvm_apic_state_fixup(vcpu, s, true);
2985 if (r) {
2986 kvm_recalculate_apic_map(vcpu->kvm);
2987 return r;
2988 }
2989 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2990
2991 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2992 kvm_recalculate_apic_map(vcpu->kvm);
2993 kvm_apic_set_version(vcpu);
2994
2995 apic_update_ppr(apic);
2996 cancel_apic_timer(apic);
2997 apic->lapic_timer.expired_tscdeadline = 0;
2998 apic_update_lvtt(apic);
2999 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
3000 update_divide_count(apic);
3001 __start_apic_timer(apic, APIC_TMCCT);
3002 kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
3003 kvm_apic_update_apicv(vcpu);
3004 if (apic->apicv_active) {
3005 static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
3006 static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic));
3007 static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
3008 }
3009 kvm_make_request(KVM_REQ_EVENT, vcpu);
3010 if (ioapic_in_kernel(vcpu->kvm))
3011 kvm_rtc_eoi_tracking_restore_one(vcpu);
3012
3013 vcpu->arch.apic_arb_prio = 0;
3014
3015 return 0;
3016 }
3017
3018 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
3019 {
3020 struct hrtimer *timer;
3021
3022 if (!lapic_in_kernel(vcpu) ||
3023 kvm_can_post_timer_interrupt(vcpu))
3024 return;
3025
3026 timer = &vcpu->arch.apic->lapic_timer.timer;
3027 if (hrtimer_cancel(timer))
3028 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3029 }
3030
3031 /*
3032 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3033 *
3034 * Detect whether guest triggered PV EOI since the
3035 * last entry. If yes, set EOI on guests's behalf.
3036 * Clear PV EOI in guest memory in any case.
3037 */
3038 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3039 struct kvm_lapic *apic)
3040 {
3041 int vector;
3042 /*
3043 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3044 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3045 *
3046 * KVM_APIC_PV_EOI_PENDING is unset:
3047 * -> host disabled PV EOI.
3048 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3049 * -> host enabled PV EOI, guest did not execute EOI yet.
3050 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3051 * -> host enabled PV EOI, guest executed EOI.
3052 */
3053 BUG_ON(!pv_eoi_enabled(vcpu));
3054
3055 if (pv_eoi_test_and_clr_pending(vcpu))
3056 return;
3057 vector = apic_set_eoi(apic);
3058 trace_kvm_pv_eoi(apic, vector);
3059 }
3060
3061 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3062 {
3063 u32 data;
3064
3065 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3066 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3067
3068 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3069 return;
3070
3071 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3072 sizeof(u32)))
3073 return;
3074
3075 apic_set_tpr(vcpu->arch.apic, data & 0xff);
3076 }
3077
3078 /*
3079 * apic_sync_pv_eoi_to_guest - called before vmentry
3080 *
3081 * Detect whether it's safe to enable PV EOI and
3082 * if yes do so.
3083 */
3084 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3085 struct kvm_lapic *apic)
3086 {
3087 if (!pv_eoi_enabled(vcpu) ||
3088 /* IRR set or many bits in ISR: could be nested. */
3089 apic->irr_pending ||
3090 /* Cache not set: could be safe but we don't bother. */
3091 apic->highest_isr_cache == -1 ||
3092 /* Need EOI to update ioapic. */
3093 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3094 /*
3095 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3096 * so we need not do anything here.
3097 */
3098 return;
3099 }
3100
3101 pv_eoi_set_pending(apic->vcpu);
3102 }
3103
3104 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3105 {
3106 u32 data, tpr;
3107 int max_irr, max_isr;
3108 struct kvm_lapic *apic = vcpu->arch.apic;
3109
3110 apic_sync_pv_eoi_to_guest(vcpu, apic);
3111
3112 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3113 return;
3114
3115 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3116 max_irr = apic_find_highest_irr(apic);
3117 if (max_irr < 0)
3118 max_irr = 0;
3119 max_isr = apic_find_highest_isr(apic);
3120 if (max_isr < 0)
3121 max_isr = 0;
3122 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3123
3124 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3125 sizeof(u32));
3126 }
3127
3128 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3129 {
3130 if (vapic_addr) {
3131 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3132 &vcpu->arch.apic->vapic_cache,
3133 vapic_addr, sizeof(u32)))
3134 return -EINVAL;
3135 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3136 } else {
3137 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3138 }
3139
3140 vcpu->arch.apic->vapic_addr = vapic_addr;
3141 return 0;
3142 }
3143
3144 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
3145 {
3146 data &= ~APIC_ICR_BUSY;
3147
3148 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
3149 kvm_lapic_set_reg64(apic, APIC_ICR, data);
3150 trace_kvm_apic_write(APIC_ICR, data);
3151 return 0;
3152 }
3153
3154 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3155 {
3156 u32 low;
3157
3158 if (reg == APIC_ICR) {
3159 *data = kvm_lapic_get_reg64(apic, APIC_ICR);
3160 return 0;
3161 }
3162
3163 if (kvm_lapic_reg_read(apic, reg, 4, &low))
3164 return 1;
3165
3166 *data = low;
3167
3168 return 0;
3169 }
3170
3171 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3172 {
3173 /*
3174 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3175 * can be written as such, all other registers remain accessible only
3176 * through 32-bit reads/writes.
3177 */
3178 if (reg == APIC_ICR)
3179 return kvm_x2apic_icr_write(apic, data);
3180
3181 /* Bits 63:32 are reserved in all other registers. */
3182 if (data >> 32)
3183 return 1;
3184
3185 return kvm_lapic_reg_write(apic, reg, (u32)data);
3186 }
3187
3188 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3189 {
3190 struct kvm_lapic *apic = vcpu->arch.apic;
3191 u32 reg = (msr - APIC_BASE_MSR) << 4;
3192
3193 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3194 return 1;
3195
3196 return kvm_lapic_msr_write(apic, reg, data);
3197 }
3198
3199 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3200 {
3201 struct kvm_lapic *apic = vcpu->arch.apic;
3202 u32 reg = (msr - APIC_BASE_MSR) << 4;
3203
3204 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3205 return 1;
3206
3207 return kvm_lapic_msr_read(apic, reg, data);
3208 }
3209
3210 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3211 {
3212 if (!lapic_in_kernel(vcpu))
3213 return 1;
3214
3215 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3216 }
3217
3218 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3219 {
3220 if (!lapic_in_kernel(vcpu))
3221 return 1;
3222
3223 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3224 }
3225
3226 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3227 {
3228 u64 addr = data & ~KVM_MSR_ENABLED;
3229 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3230 unsigned long new_len;
3231 int ret;
3232
3233 if (!IS_ALIGNED(addr, 4))
3234 return 1;
3235
3236 if (data & KVM_MSR_ENABLED) {
3237 if (addr == ghc->gpa && len <= ghc->len)
3238 new_len = ghc->len;
3239 else
3240 new_len = len;
3241
3242 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3243 if (ret)
3244 return ret;
3245 }
3246
3247 vcpu->arch.pv_eoi.msr_val = data;
3248
3249 return 0;
3250 }
3251
3252 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3253 {
3254 struct kvm_lapic *apic = vcpu->arch.apic;
3255 u8 sipi_vector;
3256 int r;
3257
3258 if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3259 return 0;
3260
3261 if (is_guest_mode(vcpu)) {
3262 r = kvm_check_nested_events(vcpu);
3263 if (r < 0)
3264 return r == -EBUSY ? 0 : r;
3265 /*
3266 * Continue processing INIT/SIPI even if a nested VM-Exit
3267 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3268 * are blocked as a result of transitioning to VMX root mode.
3269 */
3270 }
3271
3272 /*
3273 * INITs are blocked while CPU is in specific states (SMM, VMX root
3274 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3275 * wait-for-SIPI (WFS).
3276 */
3277 if (!kvm_apic_init_sipi_allowed(vcpu)) {
3278 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3279 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3280 return 0;
3281 }
3282
3283 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3284 kvm_vcpu_reset(vcpu, true);
3285 if (kvm_vcpu_is_bsp(apic->vcpu))
3286 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3287 else
3288 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3289 }
3290 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3291 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3292 /* evaluate pending_events before reading the vector */
3293 smp_rmb();
3294 sipi_vector = apic->sipi_vector;
3295 static_call(kvm_x86_vcpu_deliver_sipi_vector)(vcpu, sipi_vector);
3296 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3297 }
3298 }
3299 return 0;
3300 }
3301
3302 void kvm_lapic_exit(void)
3303 {
3304 static_key_deferred_flush(&apic_hw_disabled);
3305 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3306 static_key_deferred_flush(&apic_sw_disabled);
3307 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3308 }