]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/kvm/mmu/mmu.c
Merge tag 'i2c-for-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[thirdparty/kernel/stable.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include "irq.h"
20 #include "ioapic.h"
21 #include "mmu.h"
22 #include "mmu_internal.h"
23 #include "tdp_mmu.h"
24 #include "x86.h"
25 #include "kvm_cache_regs.h"
26 #include "smm.h"
27 #include "kvm_emulate.h"
28 #include "page_track.h"
29 #include "cpuid.h"
30 #include "spte.h"
31
32 #include <linux/kvm_host.h>
33 #include <linux/types.h>
34 #include <linux/string.h>
35 #include <linux/mm.h>
36 #include <linux/highmem.h>
37 #include <linux/moduleparam.h>
38 #include <linux/export.h>
39 #include <linux/swap.h>
40 #include <linux/hugetlb.h>
41 #include <linux/compiler.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/sched/signal.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <linux/kern_levels.h>
48 #include <linux/kstrtox.h>
49 #include <linux/kthread.h>
50
51 #include <asm/page.h>
52 #include <asm/memtype.h>
53 #include <asm/cmpxchg.h>
54 #include <asm/io.h>
55 #include <asm/set_memory.h>
56 #include <asm/vmx.h>
57
58 #include "trace.h"
59
60 extern bool itlb_multihit_kvm_mitigation;
61
62 static bool nx_hugepage_mitigation_hard_disabled;
63
64 int __read_mostly nx_huge_pages = -1;
65 static uint __read_mostly nx_huge_pages_recovery_period_ms;
66 #ifdef CONFIG_PREEMPT_RT
67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
69 #else
70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
71 #endif
72
73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp);
74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
76
77 static const struct kernel_param_ops nx_huge_pages_ops = {
78 .set = set_nx_huge_pages,
79 .get = get_nx_huge_pages,
80 };
81
82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
83 .set = set_nx_huge_pages_recovery_param,
84 .get = param_get_uint,
85 };
86
87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
88 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
90 &nx_huge_pages_recovery_ratio, 0644);
91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
93 &nx_huge_pages_recovery_period_ms, 0644);
94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
95
96 static bool __read_mostly force_flush_and_sync_on_reuse;
97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
98
99 /*
100 * When setting this variable to true it enables Two-Dimensional-Paging
101 * where the hardware walks 2 page tables:
102 * 1. the guest-virtual to guest-physical
103 * 2. while doing 1. it walks guest-physical to host-physical
104 * If the hardware supports that we don't need to do shadow paging.
105 */
106 bool tdp_enabled = false;
107
108 static bool __ro_after_init tdp_mmu_allowed;
109
110 #ifdef CONFIG_X86_64
111 bool __read_mostly tdp_mmu_enabled = true;
112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
113 #endif
114
115 static int max_huge_page_level __read_mostly;
116 static int tdp_root_level __read_mostly;
117 static int max_tdp_level __read_mostly;
118
119 #define PTE_PREFETCH_NUM 8
120
121 #include <trace/events/kvm.h>
122
123 /* make pte_list_desc fit well in cache lines */
124 #define PTE_LIST_EXT 14
125
126 /*
127 * struct pte_list_desc is the core data structure used to implement a custom
128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a
129 * given GFN when used in the context of rmaps. Using a custom list allows KVM
130 * to optimize for the common case where many GFNs will have at most a handful
131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small
132 * memory footprint, which in turn improves runtime performance by exploiting
133 * cache locality.
134 *
135 * A list is comprised of one or more pte_list_desc objects (descriptors).
136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor
137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and
138 * becomes the head of the list. This means that by definitions, all tail
139 * descriptors are full.
140 *
141 * Note, the meta data fields are deliberately placed at the start of the
142 * structure to optimize the cacheline layout; accessing the descriptor will
143 * touch only a single cacheline so long as @spte_count<=6 (or if only the
144 * descriptors metadata is accessed).
145 */
146 struct pte_list_desc {
147 struct pte_list_desc *more;
148 /* The number of PTEs stored in _this_ descriptor. */
149 u32 spte_count;
150 /* The number of PTEs stored in all tails of this descriptor. */
151 u32 tail_count;
152 u64 *sptes[PTE_LIST_EXT];
153 };
154
155 struct kvm_shadow_walk_iterator {
156 u64 addr;
157 hpa_t shadow_addr;
158 u64 *sptep;
159 int level;
160 unsigned index;
161 };
162
163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
165 (_root), (_addr)); \
166 shadow_walk_okay(&(_walker)); \
167 shadow_walk_next(&(_walker)))
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static void mmu_spte_set(u64 *sptep, u64 spte);
185
186 struct kvm_mmu_role_regs {
187 const unsigned long cr0;
188 const unsigned long cr4;
189 const u64 efer;
190 };
191
192 #define CREATE_TRACE_POINTS
193 #include "mmutrace.h"
194
195 /*
196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be
197 * reading from the role_regs. Once the root_role is constructed, it becomes
198 * the single source of truth for the MMU's state.
199 */
200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \
201 static inline bool __maybe_unused \
202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \
203 { \
204 return !!(regs->reg & flag); \
205 }
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
216
217 /*
218 * The MMU itself (with a valid role) is the single source of truth for the
219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The
220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
221 * and the vCPU may be incorrect/irrelevant.
222 */
223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \
224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \
225 { \
226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \
227 }
228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse);
230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep);
231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap);
232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke);
233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57);
234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
235 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma);
236
237 static inline bool is_cr0_pg(struct kvm_mmu *mmu)
238 {
239 return mmu->cpu_role.base.level > 0;
240 }
241
242 static inline bool is_cr4_pae(struct kvm_mmu *mmu)
243 {
244 return !mmu->cpu_role.base.has_4_byte_gpte;
245 }
246
247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
248 {
249 struct kvm_mmu_role_regs regs = {
250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
252 .efer = vcpu->arch.efer,
253 };
254
255 return regs;
256 }
257
258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu)
259 {
260 return kvm_read_cr3(vcpu);
261 }
262
263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu,
264 struct kvm_mmu *mmu)
265 {
266 if (IS_ENABLED(CONFIG_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3)
267 return kvm_read_cr3(vcpu);
268
269 return mmu->get_guest_pgd(vcpu);
270 }
271
272 static inline bool kvm_available_flush_remote_tlbs_range(void)
273 {
274 return kvm_x86_ops.flush_remote_tlbs_range;
275 }
276
277 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
278 {
279 if (!kvm_x86_ops.flush_remote_tlbs_range)
280 return -EOPNOTSUPP;
281
282 return static_call(kvm_x86_flush_remote_tlbs_range)(kvm, gfn, nr_pages);
283 }
284
285 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index);
286
287 /* Flush the range of guest memory mapped by the given SPTE. */
288 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep)
289 {
290 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
291 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep));
292
293 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
294 }
295
296 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
297 unsigned int access)
298 {
299 u64 spte = make_mmio_spte(vcpu, gfn, access);
300
301 trace_mark_mmio_spte(sptep, gfn, spte);
302 mmu_spte_set(sptep, spte);
303 }
304
305 static gfn_t get_mmio_spte_gfn(u64 spte)
306 {
307 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
308
309 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
310 & shadow_nonpresent_or_rsvd_mask;
311
312 return gpa >> PAGE_SHIFT;
313 }
314
315 static unsigned get_mmio_spte_access(u64 spte)
316 {
317 return spte & shadow_mmio_access_mask;
318 }
319
320 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
321 {
322 u64 kvm_gen, spte_gen, gen;
323
324 gen = kvm_vcpu_memslots(vcpu)->generation;
325 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
326 return false;
327
328 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
329 spte_gen = get_mmio_spte_generation(spte);
330
331 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
332 return likely(kvm_gen == spte_gen);
333 }
334
335 static int is_cpuid_PSE36(void)
336 {
337 return 1;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343 WRITE_ONCE(*sptep, spte);
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348 WRITE_ONCE(*sptep, spte);
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353 return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358 return READ_ONCE(*sptep);
359 }
360 #else
361 union split_spte {
362 struct {
363 u32 spte_low;
364 u32 spte_high;
365 };
366 u64 spte;
367 };
368
369 static void count_spte_clear(u64 *sptep, u64 spte)
370 {
371 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
372
373 if (is_shadow_present_pte(spte))
374 return;
375
376 /* Ensure the spte is completely set before we increase the count */
377 smp_wmb();
378 sp->clear_spte_count++;
379 }
380
381 static void __set_spte(u64 *sptep, u64 spte)
382 {
383 union split_spte *ssptep, sspte;
384
385 ssptep = (union split_spte *)sptep;
386 sspte = (union split_spte)spte;
387
388 ssptep->spte_high = sspte.spte_high;
389
390 /*
391 * If we map the spte from nonpresent to present, We should store
392 * the high bits firstly, then set present bit, so cpu can not
393 * fetch this spte while we are setting the spte.
394 */
395 smp_wmb();
396
397 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
398 }
399
400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402 union split_spte *ssptep, sspte;
403
404 ssptep = (union split_spte *)sptep;
405 sspte = (union split_spte)spte;
406
407 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
408
409 /*
410 * If we map the spte from present to nonpresent, we should clear
411 * present bit firstly to avoid vcpu fetch the old high bits.
412 */
413 smp_wmb();
414
415 ssptep->spte_high = sspte.spte_high;
416 count_spte_clear(sptep, spte);
417 }
418
419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420 {
421 union split_spte *ssptep, sspte, orig;
422
423 ssptep = (union split_spte *)sptep;
424 sspte = (union split_spte)spte;
425
426 /* xchg acts as a barrier before the setting of the high bits */
427 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428 orig.spte_high = ssptep->spte_high;
429 ssptep->spte_high = sspte.spte_high;
430 count_spte_clear(sptep, spte);
431
432 return orig.spte;
433 }
434
435 /*
436 * The idea using the light way get the spte on x86_32 guest is from
437 * gup_get_pte (mm/gup.c).
438 *
439 * An spte tlb flush may be pending, because kvm_set_pte_rmap
440 * coalesces them and we are running out of the MMU lock. Therefore
441 * we need to protect against in-progress updates of the spte.
442 *
443 * Reading the spte while an update is in progress may get the old value
444 * for the high part of the spte. The race is fine for a present->non-present
445 * change (because the high part of the spte is ignored for non-present spte),
446 * but for a present->present change we must reread the spte.
447 *
448 * All such changes are done in two steps (present->non-present and
449 * non-present->present), hence it is enough to count the number of
450 * present->non-present updates: if it changed while reading the spte,
451 * we might have hit the race. This is done using clear_spte_count.
452 */
453 static u64 __get_spte_lockless(u64 *sptep)
454 {
455 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
456 union split_spte spte, *orig = (union split_spte *)sptep;
457 int count;
458
459 retry:
460 count = sp->clear_spte_count;
461 smp_rmb();
462
463 spte.spte_low = orig->spte_low;
464 smp_rmb();
465
466 spte.spte_high = orig->spte_high;
467 smp_rmb();
468
469 if (unlikely(spte.spte_low != orig->spte_low ||
470 count != sp->clear_spte_count))
471 goto retry;
472
473 return spte.spte;
474 }
475 #endif
476
477 /* Rules for using mmu_spte_set:
478 * Set the sptep from nonpresent to present.
479 * Note: the sptep being assigned *must* be either not present
480 * or in a state where the hardware will not attempt to update
481 * the spte.
482 */
483 static void mmu_spte_set(u64 *sptep, u64 new_spte)
484 {
485 WARN_ON_ONCE(is_shadow_present_pte(*sptep));
486 __set_spte(sptep, new_spte);
487 }
488
489 /*
490 * Update the SPTE (excluding the PFN), but do not track changes in its
491 * accessed/dirty status.
492 */
493 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
494 {
495 u64 old_spte = *sptep;
496
497 WARN_ON_ONCE(!is_shadow_present_pte(new_spte));
498 check_spte_writable_invariants(new_spte);
499
500 if (!is_shadow_present_pte(old_spte)) {
501 mmu_spte_set(sptep, new_spte);
502 return old_spte;
503 }
504
505 if (!spte_has_volatile_bits(old_spte))
506 __update_clear_spte_fast(sptep, new_spte);
507 else
508 old_spte = __update_clear_spte_slow(sptep, new_spte);
509
510 WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
511
512 return old_spte;
513 }
514
515 /* Rules for using mmu_spte_update:
516 * Update the state bits, it means the mapped pfn is not changed.
517 *
518 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
519 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
520 * spte, even though the writable spte might be cached on a CPU's TLB.
521 *
522 * Returns true if the TLB needs to be flushed
523 */
524 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
525 {
526 bool flush = false;
527 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
528
529 if (!is_shadow_present_pte(old_spte))
530 return false;
531
532 /*
533 * For the spte updated out of mmu-lock is safe, since
534 * we always atomically update it, see the comments in
535 * spte_has_volatile_bits().
536 */
537 if (is_mmu_writable_spte(old_spte) &&
538 !is_writable_pte(new_spte))
539 flush = true;
540
541 /*
542 * Flush TLB when accessed/dirty states are changed in the page tables,
543 * to guarantee consistency between TLB and page tables.
544 */
545
546 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
547 flush = true;
548 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
549 }
550
551 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
552 flush = true;
553 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
554 }
555
556 return flush;
557 }
558
559 /*
560 * Rules for using mmu_spte_clear_track_bits:
561 * It sets the sptep from present to nonpresent, and track the
562 * state bits, it is used to clear the last level sptep.
563 * Returns the old PTE.
564 */
565 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
566 {
567 kvm_pfn_t pfn;
568 u64 old_spte = *sptep;
569 int level = sptep_to_sp(sptep)->role.level;
570 struct page *page;
571
572 if (!is_shadow_present_pte(old_spte) ||
573 !spte_has_volatile_bits(old_spte))
574 __update_clear_spte_fast(sptep, 0ull);
575 else
576 old_spte = __update_clear_spte_slow(sptep, 0ull);
577
578 if (!is_shadow_present_pte(old_spte))
579 return old_spte;
580
581 kvm_update_page_stats(kvm, level, -1);
582
583 pfn = spte_to_pfn(old_spte);
584
585 /*
586 * KVM doesn't hold a reference to any pages mapped into the guest, and
587 * instead uses the mmu_notifier to ensure that KVM unmaps any pages
588 * before they are reclaimed. Sanity check that, if the pfn is backed
589 * by a refcounted page, the refcount is elevated.
590 */
591 page = kvm_pfn_to_refcounted_page(pfn);
592 WARN_ON_ONCE(page && !page_count(page));
593
594 if (is_accessed_spte(old_spte))
595 kvm_set_pfn_accessed(pfn);
596
597 if (is_dirty_spte(old_spte))
598 kvm_set_pfn_dirty(pfn);
599
600 return old_spte;
601 }
602
603 /*
604 * Rules for using mmu_spte_clear_no_track:
605 * Directly clear spte without caring the state bits of sptep,
606 * it is used to set the upper level spte.
607 */
608 static void mmu_spte_clear_no_track(u64 *sptep)
609 {
610 __update_clear_spte_fast(sptep, 0ull);
611 }
612
613 static u64 mmu_spte_get_lockless(u64 *sptep)
614 {
615 return __get_spte_lockless(sptep);
616 }
617
618 /* Returns the Accessed status of the PTE and resets it at the same time. */
619 static bool mmu_spte_age(u64 *sptep)
620 {
621 u64 spte = mmu_spte_get_lockless(sptep);
622
623 if (!is_accessed_spte(spte))
624 return false;
625
626 if (spte_ad_enabled(spte)) {
627 clear_bit((ffs(shadow_accessed_mask) - 1),
628 (unsigned long *)sptep);
629 } else {
630 /*
631 * Capture the dirty status of the page, so that it doesn't get
632 * lost when the SPTE is marked for access tracking.
633 */
634 if (is_writable_pte(spte))
635 kvm_set_pfn_dirty(spte_to_pfn(spte));
636
637 spte = mark_spte_for_access_track(spte);
638 mmu_spte_update_no_track(sptep, spte);
639 }
640
641 return true;
642 }
643
644 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
645 {
646 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
647 }
648
649 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
650 {
651 if (is_tdp_mmu_active(vcpu)) {
652 kvm_tdp_mmu_walk_lockless_begin();
653 } else {
654 /*
655 * Prevent page table teardown by making any free-er wait during
656 * kvm_flush_remote_tlbs() IPI to all active vcpus.
657 */
658 local_irq_disable();
659
660 /*
661 * Make sure a following spte read is not reordered ahead of the write
662 * to vcpu->mode.
663 */
664 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
665 }
666 }
667
668 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
669 {
670 if (is_tdp_mmu_active(vcpu)) {
671 kvm_tdp_mmu_walk_lockless_end();
672 } else {
673 /*
674 * Make sure the write to vcpu->mode is not reordered in front of
675 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
676 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
677 */
678 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
679 local_irq_enable();
680 }
681 }
682
683 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
684 {
685 int r;
686
687 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
688 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
689 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
690 if (r)
691 return r;
692 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
693 PT64_ROOT_MAX_LEVEL);
694 if (r)
695 return r;
696 if (maybe_indirect) {
697 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
698 PT64_ROOT_MAX_LEVEL);
699 if (r)
700 return r;
701 }
702 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
703 PT64_ROOT_MAX_LEVEL);
704 }
705
706 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
707 {
708 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
709 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
710 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
711 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
712 }
713
714 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
715 {
716 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
717 }
718
719 static bool sp_has_gptes(struct kvm_mmu_page *sp);
720
721 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
722 {
723 if (sp->role.passthrough)
724 return sp->gfn;
725
726 if (!sp->role.direct)
727 return sp->shadowed_translation[index] >> PAGE_SHIFT;
728
729 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
730 }
731
732 /*
733 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
734 * that the SPTE itself may have a more constrained access permissions that
735 * what the guest enforces. For example, a guest may create an executable
736 * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
737 */
738 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
739 {
740 if (sp_has_gptes(sp))
741 return sp->shadowed_translation[index] & ACC_ALL;
742
743 /*
744 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
745 * KVM is not shadowing any guest page tables, so the "guest access
746 * permissions" are just ACC_ALL.
747 *
748 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
749 * is shadowing a guest huge page with small pages, the guest access
750 * permissions being shadowed are the access permissions of the huge
751 * page.
752 *
753 * In both cases, sp->role.access contains the correct access bits.
754 */
755 return sp->role.access;
756 }
757
758 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
759 gfn_t gfn, unsigned int access)
760 {
761 if (sp_has_gptes(sp)) {
762 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
763 return;
764 }
765
766 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
767 "access mismatch under %s page %llx (expected %u, got %u)\n",
768 sp->role.passthrough ? "passthrough" : "direct",
769 sp->gfn, kvm_mmu_page_get_access(sp, index), access);
770
771 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
772 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
773 sp->role.passthrough ? "passthrough" : "direct",
774 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
775 }
776
777 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
778 unsigned int access)
779 {
780 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
781
782 kvm_mmu_page_set_translation(sp, index, gfn, access);
783 }
784
785 /*
786 * Return the pointer to the large page information for a given gfn,
787 * handling slots that are not large page aligned.
788 */
789 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
790 const struct kvm_memory_slot *slot, int level)
791 {
792 unsigned long idx;
793
794 idx = gfn_to_index(gfn, slot->base_gfn, level);
795 return &slot->arch.lpage_info[level - 2][idx];
796 }
797
798 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
799 gfn_t gfn, int count)
800 {
801 struct kvm_lpage_info *linfo;
802 int i;
803
804 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
805 linfo = lpage_info_slot(gfn, slot, i);
806 linfo->disallow_lpage += count;
807 WARN_ON_ONCE(linfo->disallow_lpage < 0);
808 }
809 }
810
811 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
812 {
813 update_gfn_disallow_lpage_count(slot, gfn, 1);
814 }
815
816 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
817 {
818 update_gfn_disallow_lpage_count(slot, gfn, -1);
819 }
820
821 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
822 {
823 struct kvm_memslots *slots;
824 struct kvm_memory_slot *slot;
825 gfn_t gfn;
826
827 kvm->arch.indirect_shadow_pages++;
828 gfn = sp->gfn;
829 slots = kvm_memslots_for_spte_role(kvm, sp->role);
830 slot = __gfn_to_memslot(slots, gfn);
831
832 /* the non-leaf shadow pages are keeping readonly. */
833 if (sp->role.level > PG_LEVEL_4K)
834 return __kvm_write_track_add_gfn(kvm, slot, gfn);
835
836 kvm_mmu_gfn_disallow_lpage(slot, gfn);
837
838 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
839 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K);
840 }
841
842 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
843 {
844 /*
845 * If it's possible to replace the shadow page with an NX huge page,
846 * i.e. if the shadow page is the only thing currently preventing KVM
847 * from using a huge page, add the shadow page to the list of "to be
848 * zapped for NX recovery" pages. Note, the shadow page can already be
849 * on the list if KVM is reusing an existing shadow page, i.e. if KVM
850 * links a shadow page at multiple points.
851 */
852 if (!list_empty(&sp->possible_nx_huge_page_link))
853 return;
854
855 ++kvm->stat.nx_lpage_splits;
856 list_add_tail(&sp->possible_nx_huge_page_link,
857 &kvm->arch.possible_nx_huge_pages);
858 }
859
860 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
861 bool nx_huge_page_possible)
862 {
863 sp->nx_huge_page_disallowed = true;
864
865 if (nx_huge_page_possible)
866 track_possible_nx_huge_page(kvm, sp);
867 }
868
869 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
870 {
871 struct kvm_memslots *slots;
872 struct kvm_memory_slot *slot;
873 gfn_t gfn;
874
875 kvm->arch.indirect_shadow_pages--;
876 gfn = sp->gfn;
877 slots = kvm_memslots_for_spte_role(kvm, sp->role);
878 slot = __gfn_to_memslot(slots, gfn);
879 if (sp->role.level > PG_LEVEL_4K)
880 return __kvm_write_track_remove_gfn(kvm, slot, gfn);
881
882 kvm_mmu_gfn_allow_lpage(slot, gfn);
883 }
884
885 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
886 {
887 if (list_empty(&sp->possible_nx_huge_page_link))
888 return;
889
890 --kvm->stat.nx_lpage_splits;
891 list_del_init(&sp->possible_nx_huge_page_link);
892 }
893
894 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
895 {
896 sp->nx_huge_page_disallowed = false;
897
898 untrack_possible_nx_huge_page(kvm, sp);
899 }
900
901 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu,
902 gfn_t gfn,
903 bool no_dirty_log)
904 {
905 struct kvm_memory_slot *slot;
906
907 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
908 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
909 return NULL;
910 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
911 return NULL;
912
913 return slot;
914 }
915
916 /*
917 * About rmap_head encoding:
918 *
919 * If the bit zero of rmap_head->val is clear, then it points to the only spte
920 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
921 * pte_list_desc containing more mappings.
922 */
923
924 /*
925 * Returns the number of pointers in the rmap chain, not counting the new one.
926 */
927 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
928 struct kvm_rmap_head *rmap_head)
929 {
930 struct pte_list_desc *desc;
931 int count = 0;
932
933 if (!rmap_head->val) {
934 rmap_head->val = (unsigned long)spte;
935 } else if (!(rmap_head->val & 1)) {
936 desc = kvm_mmu_memory_cache_alloc(cache);
937 desc->sptes[0] = (u64 *)rmap_head->val;
938 desc->sptes[1] = spte;
939 desc->spte_count = 2;
940 desc->tail_count = 0;
941 rmap_head->val = (unsigned long)desc | 1;
942 ++count;
943 } else {
944 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
945 count = desc->tail_count + desc->spte_count;
946
947 /*
948 * If the previous head is full, allocate a new head descriptor
949 * as tail descriptors are always kept full.
950 */
951 if (desc->spte_count == PTE_LIST_EXT) {
952 desc = kvm_mmu_memory_cache_alloc(cache);
953 desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul);
954 desc->spte_count = 0;
955 desc->tail_count = count;
956 rmap_head->val = (unsigned long)desc | 1;
957 }
958 desc->sptes[desc->spte_count++] = spte;
959 }
960 return count;
961 }
962
963 static void pte_list_desc_remove_entry(struct kvm *kvm,
964 struct kvm_rmap_head *rmap_head,
965 struct pte_list_desc *desc, int i)
966 {
967 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
968 int j = head_desc->spte_count - 1;
969
970 /*
971 * The head descriptor should never be empty. A new head is added only
972 * when adding an entry and the previous head is full, and heads are
973 * removed (this flow) when they become empty.
974 */
975 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm);
976
977 /*
978 * Replace the to-be-freed SPTE with the last valid entry from the head
979 * descriptor to ensure that tail descriptors are full at all times.
980 * Note, this also means that tail_count is stable for each descriptor.
981 */
982 desc->sptes[i] = head_desc->sptes[j];
983 head_desc->sptes[j] = NULL;
984 head_desc->spte_count--;
985 if (head_desc->spte_count)
986 return;
987
988 /*
989 * The head descriptor is empty. If there are no tail descriptors,
990 * nullify the rmap head to mark the list as emtpy, else point the rmap
991 * head at the next descriptor, i.e. the new head.
992 */
993 if (!head_desc->more)
994 rmap_head->val = 0;
995 else
996 rmap_head->val = (unsigned long)head_desc->more | 1;
997 mmu_free_pte_list_desc(head_desc);
998 }
999
1000 static void pte_list_remove(struct kvm *kvm, u64 *spte,
1001 struct kvm_rmap_head *rmap_head)
1002 {
1003 struct pte_list_desc *desc;
1004 int i;
1005
1006 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm))
1007 return;
1008
1009 if (!(rmap_head->val & 1)) {
1010 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm))
1011 return;
1012
1013 rmap_head->val = 0;
1014 } else {
1015 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1016 while (desc) {
1017 for (i = 0; i < desc->spte_count; ++i) {
1018 if (desc->sptes[i] == spte) {
1019 pte_list_desc_remove_entry(kvm, rmap_head,
1020 desc, i);
1021 return;
1022 }
1023 }
1024 desc = desc->more;
1025 }
1026
1027 KVM_BUG_ON_DATA_CORRUPTION(true, kvm);
1028 }
1029 }
1030
1031 static void kvm_zap_one_rmap_spte(struct kvm *kvm,
1032 struct kvm_rmap_head *rmap_head, u64 *sptep)
1033 {
1034 mmu_spte_clear_track_bits(kvm, sptep);
1035 pte_list_remove(kvm, sptep, rmap_head);
1036 }
1037
1038 /* Return true if at least one SPTE was zapped, false otherwise */
1039 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
1040 struct kvm_rmap_head *rmap_head)
1041 {
1042 struct pte_list_desc *desc, *next;
1043 int i;
1044
1045 if (!rmap_head->val)
1046 return false;
1047
1048 if (!(rmap_head->val & 1)) {
1049 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
1050 goto out;
1051 }
1052
1053 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1054
1055 for (; desc; desc = next) {
1056 for (i = 0; i < desc->spte_count; i++)
1057 mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1058 next = desc->more;
1059 mmu_free_pte_list_desc(desc);
1060 }
1061 out:
1062 /* rmap_head is meaningless now, remember to reset it */
1063 rmap_head->val = 0;
1064 return true;
1065 }
1066
1067 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1068 {
1069 struct pte_list_desc *desc;
1070
1071 if (!rmap_head->val)
1072 return 0;
1073 else if (!(rmap_head->val & 1))
1074 return 1;
1075
1076 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1077 return desc->tail_count + desc->spte_count;
1078 }
1079
1080 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1081 const struct kvm_memory_slot *slot)
1082 {
1083 unsigned long idx;
1084
1085 idx = gfn_to_index(gfn, slot->base_gfn, level);
1086 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1087 }
1088
1089 static void rmap_remove(struct kvm *kvm, u64 *spte)
1090 {
1091 struct kvm_memslots *slots;
1092 struct kvm_memory_slot *slot;
1093 struct kvm_mmu_page *sp;
1094 gfn_t gfn;
1095 struct kvm_rmap_head *rmap_head;
1096
1097 sp = sptep_to_sp(spte);
1098 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
1099
1100 /*
1101 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1102 * so we have to determine which memslots to use based on context
1103 * information in sp->role.
1104 */
1105 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1106
1107 slot = __gfn_to_memslot(slots, gfn);
1108 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1109
1110 pte_list_remove(kvm, spte, rmap_head);
1111 }
1112
1113 /*
1114 * Used by the following functions to iterate through the sptes linked by a
1115 * rmap. All fields are private and not assumed to be used outside.
1116 */
1117 struct rmap_iterator {
1118 /* private fields */
1119 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1120 int pos; /* index of the sptep */
1121 };
1122
1123 /*
1124 * Iteration must be started by this function. This should also be used after
1125 * removing/dropping sptes from the rmap link because in such cases the
1126 * information in the iterator may not be valid.
1127 *
1128 * Returns sptep if found, NULL otherwise.
1129 */
1130 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1131 struct rmap_iterator *iter)
1132 {
1133 u64 *sptep;
1134
1135 if (!rmap_head->val)
1136 return NULL;
1137
1138 if (!(rmap_head->val & 1)) {
1139 iter->desc = NULL;
1140 sptep = (u64 *)rmap_head->val;
1141 goto out;
1142 }
1143
1144 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1145 iter->pos = 0;
1146 sptep = iter->desc->sptes[iter->pos];
1147 out:
1148 BUG_ON(!is_shadow_present_pte(*sptep));
1149 return sptep;
1150 }
1151
1152 /*
1153 * Must be used with a valid iterator: e.g. after rmap_get_first().
1154 *
1155 * Returns sptep if found, NULL otherwise.
1156 */
1157 static u64 *rmap_get_next(struct rmap_iterator *iter)
1158 {
1159 u64 *sptep;
1160
1161 if (iter->desc) {
1162 if (iter->pos < PTE_LIST_EXT - 1) {
1163 ++iter->pos;
1164 sptep = iter->desc->sptes[iter->pos];
1165 if (sptep)
1166 goto out;
1167 }
1168
1169 iter->desc = iter->desc->more;
1170
1171 if (iter->desc) {
1172 iter->pos = 0;
1173 /* desc->sptes[0] cannot be NULL */
1174 sptep = iter->desc->sptes[iter->pos];
1175 goto out;
1176 }
1177 }
1178
1179 return NULL;
1180 out:
1181 BUG_ON(!is_shadow_present_pte(*sptep));
1182 return sptep;
1183 }
1184
1185 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1186 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1187 _spte_; _spte_ = rmap_get_next(_iter_))
1188
1189 static void drop_spte(struct kvm *kvm, u64 *sptep)
1190 {
1191 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1192
1193 if (is_shadow_present_pte(old_spte))
1194 rmap_remove(kvm, sptep);
1195 }
1196
1197 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1198 {
1199 struct kvm_mmu_page *sp;
1200
1201 sp = sptep_to_sp(sptep);
1202 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K);
1203
1204 drop_spte(kvm, sptep);
1205
1206 if (flush)
1207 kvm_flush_remote_tlbs_sptep(kvm, sptep);
1208 }
1209
1210 /*
1211 * Write-protect on the specified @sptep, @pt_protect indicates whether
1212 * spte write-protection is caused by protecting shadow page table.
1213 *
1214 * Note: write protection is difference between dirty logging and spte
1215 * protection:
1216 * - for dirty logging, the spte can be set to writable at anytime if
1217 * its dirty bitmap is properly set.
1218 * - for spte protection, the spte can be writable only after unsync-ing
1219 * shadow page.
1220 *
1221 * Return true if tlb need be flushed.
1222 */
1223 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1224 {
1225 u64 spte = *sptep;
1226
1227 if (!is_writable_pte(spte) &&
1228 !(pt_protect && is_mmu_writable_spte(spte)))
1229 return false;
1230
1231 if (pt_protect)
1232 spte &= ~shadow_mmu_writable_mask;
1233 spte = spte & ~PT_WRITABLE_MASK;
1234
1235 return mmu_spte_update(sptep, spte);
1236 }
1237
1238 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1239 bool pt_protect)
1240 {
1241 u64 *sptep;
1242 struct rmap_iterator iter;
1243 bool flush = false;
1244
1245 for_each_rmap_spte(rmap_head, &iter, sptep)
1246 flush |= spte_write_protect(sptep, pt_protect);
1247
1248 return flush;
1249 }
1250
1251 static bool spte_clear_dirty(u64 *sptep)
1252 {
1253 u64 spte = *sptep;
1254
1255 KVM_MMU_WARN_ON(!spte_ad_enabled(spte));
1256 spte &= ~shadow_dirty_mask;
1257 return mmu_spte_update(sptep, spte);
1258 }
1259
1260 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1261 {
1262 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1263 (unsigned long *)sptep);
1264 if (was_writable && !spte_ad_enabled(*sptep))
1265 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1266
1267 return was_writable;
1268 }
1269
1270 /*
1271 * Gets the GFN ready for another round of dirty logging by clearing the
1272 * - D bit on ad-enabled SPTEs, and
1273 * - W bit on ad-disabled SPTEs.
1274 * Returns true iff any D or W bits were cleared.
1275 */
1276 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1277 const struct kvm_memory_slot *slot)
1278 {
1279 u64 *sptep;
1280 struct rmap_iterator iter;
1281 bool flush = false;
1282
1283 for_each_rmap_spte(rmap_head, &iter, sptep)
1284 if (spte_ad_need_write_protect(*sptep))
1285 flush |= spte_wrprot_for_clear_dirty(sptep);
1286 else
1287 flush |= spte_clear_dirty(sptep);
1288
1289 return flush;
1290 }
1291
1292 /**
1293 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1294 * @kvm: kvm instance
1295 * @slot: slot to protect
1296 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1297 * @mask: indicates which pages we should protect
1298 *
1299 * Used when we do not need to care about huge page mappings.
1300 */
1301 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1302 struct kvm_memory_slot *slot,
1303 gfn_t gfn_offset, unsigned long mask)
1304 {
1305 struct kvm_rmap_head *rmap_head;
1306
1307 if (tdp_mmu_enabled)
1308 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1309 slot->base_gfn + gfn_offset, mask, true);
1310
1311 if (!kvm_memslots_have_rmaps(kvm))
1312 return;
1313
1314 while (mask) {
1315 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1316 PG_LEVEL_4K, slot);
1317 rmap_write_protect(rmap_head, false);
1318
1319 /* clear the first set bit */
1320 mask &= mask - 1;
1321 }
1322 }
1323
1324 /**
1325 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1326 * protect the page if the D-bit isn't supported.
1327 * @kvm: kvm instance
1328 * @slot: slot to clear D-bit
1329 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1330 * @mask: indicates which pages we should clear D-bit
1331 *
1332 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1333 */
1334 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1335 struct kvm_memory_slot *slot,
1336 gfn_t gfn_offset, unsigned long mask)
1337 {
1338 struct kvm_rmap_head *rmap_head;
1339
1340 if (tdp_mmu_enabled)
1341 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1342 slot->base_gfn + gfn_offset, mask, false);
1343
1344 if (!kvm_memslots_have_rmaps(kvm))
1345 return;
1346
1347 while (mask) {
1348 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1349 PG_LEVEL_4K, slot);
1350 __rmap_clear_dirty(kvm, rmap_head, slot);
1351
1352 /* clear the first set bit */
1353 mask &= mask - 1;
1354 }
1355 }
1356
1357 /**
1358 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1359 * PT level pages.
1360 *
1361 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1362 * enable dirty logging for them.
1363 *
1364 * We need to care about huge page mappings: e.g. during dirty logging we may
1365 * have such mappings.
1366 */
1367 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1368 struct kvm_memory_slot *slot,
1369 gfn_t gfn_offset, unsigned long mask)
1370 {
1371 /*
1372 * Huge pages are NOT write protected when we start dirty logging in
1373 * initially-all-set mode; must write protect them here so that they
1374 * are split to 4K on the first write.
1375 *
1376 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1377 * of memslot has no such restriction, so the range can cross two large
1378 * pages.
1379 */
1380 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1381 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1382 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1383
1384 if (READ_ONCE(eager_page_split))
1385 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);
1386
1387 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1388
1389 /* Cross two large pages? */
1390 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1391 ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1392 kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1393 PG_LEVEL_2M);
1394 }
1395
1396 /* Now handle 4K PTEs. */
1397 if (kvm_x86_ops.cpu_dirty_log_size)
1398 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1399 else
1400 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1401 }
1402
1403 int kvm_cpu_dirty_log_size(void)
1404 {
1405 return kvm_x86_ops.cpu_dirty_log_size;
1406 }
1407
1408 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1409 struct kvm_memory_slot *slot, u64 gfn,
1410 int min_level)
1411 {
1412 struct kvm_rmap_head *rmap_head;
1413 int i;
1414 bool write_protected = false;
1415
1416 if (kvm_memslots_have_rmaps(kvm)) {
1417 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1418 rmap_head = gfn_to_rmap(gfn, i, slot);
1419 write_protected |= rmap_write_protect(rmap_head, true);
1420 }
1421 }
1422
1423 if (tdp_mmu_enabled)
1424 write_protected |=
1425 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1426
1427 return write_protected;
1428 }
1429
1430 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1431 {
1432 struct kvm_memory_slot *slot;
1433
1434 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1435 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1436 }
1437
1438 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1439 const struct kvm_memory_slot *slot)
1440 {
1441 return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1442 }
1443
1444 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1445 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1446 pte_t unused)
1447 {
1448 return __kvm_zap_rmap(kvm, rmap_head, slot);
1449 }
1450
1451 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1452 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1453 pte_t pte)
1454 {
1455 u64 *sptep;
1456 struct rmap_iterator iter;
1457 bool need_flush = false;
1458 u64 new_spte;
1459 kvm_pfn_t new_pfn;
1460
1461 WARN_ON_ONCE(pte_huge(pte));
1462 new_pfn = pte_pfn(pte);
1463
1464 restart:
1465 for_each_rmap_spte(rmap_head, &iter, sptep) {
1466 need_flush = true;
1467
1468 if (pte_write(pte)) {
1469 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
1470 goto restart;
1471 } else {
1472 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1473 *sptep, new_pfn);
1474
1475 mmu_spte_clear_track_bits(kvm, sptep);
1476 mmu_spte_set(sptep, new_spte);
1477 }
1478 }
1479
1480 if (need_flush && kvm_available_flush_remote_tlbs_range()) {
1481 kvm_flush_remote_tlbs_gfn(kvm, gfn, level);
1482 return false;
1483 }
1484
1485 return need_flush;
1486 }
1487
1488 struct slot_rmap_walk_iterator {
1489 /* input fields. */
1490 const struct kvm_memory_slot *slot;
1491 gfn_t start_gfn;
1492 gfn_t end_gfn;
1493 int start_level;
1494 int end_level;
1495
1496 /* output fields. */
1497 gfn_t gfn;
1498 struct kvm_rmap_head *rmap;
1499 int level;
1500
1501 /* private field. */
1502 struct kvm_rmap_head *end_rmap;
1503 };
1504
1505 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator,
1506 int level)
1507 {
1508 iterator->level = level;
1509 iterator->gfn = iterator->start_gfn;
1510 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1511 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1512 }
1513
1514 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1515 const struct kvm_memory_slot *slot,
1516 int start_level, int end_level,
1517 gfn_t start_gfn, gfn_t end_gfn)
1518 {
1519 iterator->slot = slot;
1520 iterator->start_level = start_level;
1521 iterator->end_level = end_level;
1522 iterator->start_gfn = start_gfn;
1523 iterator->end_gfn = end_gfn;
1524
1525 rmap_walk_init_level(iterator, iterator->start_level);
1526 }
1527
1528 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1529 {
1530 return !!iterator->rmap;
1531 }
1532
1533 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1534 {
1535 while (++iterator->rmap <= iterator->end_rmap) {
1536 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1537
1538 if (iterator->rmap->val)
1539 return;
1540 }
1541
1542 if (++iterator->level > iterator->end_level) {
1543 iterator->rmap = NULL;
1544 return;
1545 }
1546
1547 rmap_walk_init_level(iterator, iterator->level);
1548 }
1549
1550 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1551 _start_gfn, _end_gfn, _iter_) \
1552 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1553 _end_level_, _start_gfn, _end_gfn); \
1554 slot_rmap_walk_okay(_iter_); \
1555 slot_rmap_walk_next(_iter_))
1556
1557 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1558 struct kvm_memory_slot *slot, gfn_t gfn,
1559 int level, pte_t pte);
1560
1561 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1562 struct kvm_gfn_range *range,
1563 rmap_handler_t handler)
1564 {
1565 struct slot_rmap_walk_iterator iterator;
1566 bool ret = false;
1567
1568 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1569 range->start, range->end - 1, &iterator)
1570 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1571 iterator.level, range->arg.pte);
1572
1573 return ret;
1574 }
1575
1576 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1577 {
1578 bool flush = false;
1579
1580 if (kvm_memslots_have_rmaps(kvm))
1581 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap);
1582
1583 if (tdp_mmu_enabled)
1584 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1585
1586 if (kvm_x86_ops.set_apic_access_page_addr &&
1587 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT)
1588 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
1589
1590 return flush;
1591 }
1592
1593 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1594 {
1595 bool flush = false;
1596
1597 if (kvm_memslots_have_rmaps(kvm))
1598 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap);
1599
1600 if (tdp_mmu_enabled)
1601 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1602
1603 return flush;
1604 }
1605
1606 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1607 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1608 pte_t unused)
1609 {
1610 u64 *sptep;
1611 struct rmap_iterator iter;
1612 int young = 0;
1613
1614 for_each_rmap_spte(rmap_head, &iter, sptep)
1615 young |= mmu_spte_age(sptep);
1616
1617 return young;
1618 }
1619
1620 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1621 struct kvm_memory_slot *slot, gfn_t gfn,
1622 int level, pte_t unused)
1623 {
1624 u64 *sptep;
1625 struct rmap_iterator iter;
1626
1627 for_each_rmap_spte(rmap_head, &iter, sptep)
1628 if (is_accessed_spte(*sptep))
1629 return true;
1630 return false;
1631 }
1632
1633 #define RMAP_RECYCLE_THRESHOLD 1000
1634
1635 static void __rmap_add(struct kvm *kvm,
1636 struct kvm_mmu_memory_cache *cache,
1637 const struct kvm_memory_slot *slot,
1638 u64 *spte, gfn_t gfn, unsigned int access)
1639 {
1640 struct kvm_mmu_page *sp;
1641 struct kvm_rmap_head *rmap_head;
1642 int rmap_count;
1643
1644 sp = sptep_to_sp(spte);
1645 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
1646 kvm_update_page_stats(kvm, sp->role.level, 1);
1647
1648 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1649 rmap_count = pte_list_add(cache, spte, rmap_head);
1650
1651 if (rmap_count > kvm->stat.max_mmu_rmap_size)
1652 kvm->stat.max_mmu_rmap_size = rmap_count;
1653 if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1654 kvm_zap_all_rmap_sptes(kvm, rmap_head);
1655 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
1656 }
1657 }
1658
1659 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1660 u64 *spte, gfn_t gfn, unsigned int access)
1661 {
1662 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1663
1664 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
1665 }
1666
1667 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1668 {
1669 bool young = false;
1670
1671 if (kvm_memslots_have_rmaps(kvm))
1672 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap);
1673
1674 if (tdp_mmu_enabled)
1675 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1676
1677 return young;
1678 }
1679
1680 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1681 {
1682 bool young = false;
1683
1684 if (kvm_memslots_have_rmaps(kvm))
1685 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap);
1686
1687 if (tdp_mmu_enabled)
1688 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1689
1690 return young;
1691 }
1692
1693 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp)
1694 {
1695 #ifdef CONFIG_KVM_PROVE_MMU
1696 int i;
1697
1698 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1699 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i])))
1700 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free",
1701 sp->spt[i], &sp->spt[i],
1702 kvm_mmu_page_get_gfn(sp, i));
1703 }
1704 #endif
1705 }
1706
1707 /*
1708 * This value is the sum of all of the kvm instances's
1709 * kvm->arch.n_used_mmu_pages values. We need a global,
1710 * aggregate version in order to make the slab shrinker
1711 * faster
1712 */
1713 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1714 {
1715 kvm->arch.n_used_mmu_pages += nr;
1716 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1717 }
1718
1719 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1720 {
1721 kvm_mod_used_mmu_pages(kvm, +1);
1722 kvm_account_pgtable_pages((void *)sp->spt, +1);
1723 }
1724
1725 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1726 {
1727 kvm_mod_used_mmu_pages(kvm, -1);
1728 kvm_account_pgtable_pages((void *)sp->spt, -1);
1729 }
1730
1731 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1732 {
1733 kvm_mmu_check_sptes_at_free(sp);
1734
1735 hlist_del(&sp->hash_link);
1736 list_del(&sp->link);
1737 free_page((unsigned long)sp->spt);
1738 if (!sp->role.direct)
1739 free_page((unsigned long)sp->shadowed_translation);
1740 kmem_cache_free(mmu_page_header_cache, sp);
1741 }
1742
1743 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1744 {
1745 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1746 }
1747
1748 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
1749 struct kvm_mmu_page *sp, u64 *parent_pte)
1750 {
1751 if (!parent_pte)
1752 return;
1753
1754 pte_list_add(cache, parent_pte, &sp->parent_ptes);
1755 }
1756
1757 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1758 u64 *parent_pte)
1759 {
1760 pte_list_remove(kvm, parent_pte, &sp->parent_ptes);
1761 }
1762
1763 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1764 u64 *parent_pte)
1765 {
1766 mmu_page_remove_parent_pte(kvm, sp, parent_pte);
1767 mmu_spte_clear_no_track(parent_pte);
1768 }
1769
1770 static void mark_unsync(u64 *spte);
1771 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1772 {
1773 u64 *sptep;
1774 struct rmap_iterator iter;
1775
1776 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1777 mark_unsync(sptep);
1778 }
1779 }
1780
1781 static void mark_unsync(u64 *spte)
1782 {
1783 struct kvm_mmu_page *sp;
1784
1785 sp = sptep_to_sp(spte);
1786 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1787 return;
1788 if (sp->unsync_children++)
1789 return;
1790 kvm_mmu_mark_parents_unsync(sp);
1791 }
1792
1793 #define KVM_PAGE_ARRAY_NR 16
1794
1795 struct kvm_mmu_pages {
1796 struct mmu_page_and_offset {
1797 struct kvm_mmu_page *sp;
1798 unsigned int idx;
1799 } page[KVM_PAGE_ARRAY_NR];
1800 unsigned int nr;
1801 };
1802
1803 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1804 int idx)
1805 {
1806 int i;
1807
1808 if (sp->unsync)
1809 for (i=0; i < pvec->nr; i++)
1810 if (pvec->page[i].sp == sp)
1811 return 0;
1812
1813 pvec->page[pvec->nr].sp = sp;
1814 pvec->page[pvec->nr].idx = idx;
1815 pvec->nr++;
1816 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1817 }
1818
1819 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1820 {
1821 --sp->unsync_children;
1822 WARN_ON_ONCE((int)sp->unsync_children < 0);
1823 __clear_bit(idx, sp->unsync_child_bitmap);
1824 }
1825
1826 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1827 struct kvm_mmu_pages *pvec)
1828 {
1829 int i, ret, nr_unsync_leaf = 0;
1830
1831 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1832 struct kvm_mmu_page *child;
1833 u64 ent = sp->spt[i];
1834
1835 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1836 clear_unsync_child_bit(sp, i);
1837 continue;
1838 }
1839
1840 child = spte_to_child_sp(ent);
1841
1842 if (child->unsync_children) {
1843 if (mmu_pages_add(pvec, child, i))
1844 return -ENOSPC;
1845
1846 ret = __mmu_unsync_walk(child, pvec);
1847 if (!ret) {
1848 clear_unsync_child_bit(sp, i);
1849 continue;
1850 } else if (ret > 0) {
1851 nr_unsync_leaf += ret;
1852 } else
1853 return ret;
1854 } else if (child->unsync) {
1855 nr_unsync_leaf++;
1856 if (mmu_pages_add(pvec, child, i))
1857 return -ENOSPC;
1858 } else
1859 clear_unsync_child_bit(sp, i);
1860 }
1861
1862 return nr_unsync_leaf;
1863 }
1864
1865 #define INVALID_INDEX (-1)
1866
1867 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1868 struct kvm_mmu_pages *pvec)
1869 {
1870 pvec->nr = 0;
1871 if (!sp->unsync_children)
1872 return 0;
1873
1874 mmu_pages_add(pvec, sp, INVALID_INDEX);
1875 return __mmu_unsync_walk(sp, pvec);
1876 }
1877
1878 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1879 {
1880 WARN_ON_ONCE(!sp->unsync);
1881 trace_kvm_mmu_sync_page(sp);
1882 sp->unsync = 0;
1883 --kvm->stat.mmu_unsync;
1884 }
1885
1886 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1887 struct list_head *invalid_list);
1888 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1889 struct list_head *invalid_list);
1890
1891 static bool sp_has_gptes(struct kvm_mmu_page *sp)
1892 {
1893 if (sp->role.direct)
1894 return false;
1895
1896 if (sp->role.passthrough)
1897 return false;
1898
1899 return true;
1900 }
1901
1902 #define for_each_valid_sp(_kvm, _sp, _list) \
1903 hlist_for_each_entry(_sp, _list, hash_link) \
1904 if (is_obsolete_sp((_kvm), (_sp))) { \
1905 } else
1906
1907 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \
1908 for_each_valid_sp(_kvm, _sp, \
1909 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1910 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1911
1912 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1913 {
1914 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
1915
1916 /*
1917 * Ignore various flags when verifying that it's safe to sync a shadow
1918 * page using the current MMU context.
1919 *
1920 * - level: not part of the overall MMU role and will never match as the MMU's
1921 * level tracks the root level
1922 * - access: updated based on the new guest PTE
1923 * - quadrant: not part of the overall MMU role (similar to level)
1924 */
1925 const union kvm_mmu_page_role sync_role_ign = {
1926 .level = 0xf,
1927 .access = 0x7,
1928 .quadrant = 0x3,
1929 .passthrough = 0x1,
1930 };
1931
1932 /*
1933 * Direct pages can never be unsync, and KVM should never attempt to
1934 * sync a shadow page for a different MMU context, e.g. if the role
1935 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1936 * reserved bits checks will be wrong, etc...
1937 */
1938 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte ||
1939 (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
1940 return false;
1941
1942 return true;
1943 }
1944
1945 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
1946 {
1947 if (!sp->spt[i])
1948 return 0;
1949
1950 return vcpu->arch.mmu->sync_spte(vcpu, sp, i);
1951 }
1952
1953 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1954 {
1955 int flush = 0;
1956 int i;
1957
1958 if (!kvm_sync_page_check(vcpu, sp))
1959 return -1;
1960
1961 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1962 int ret = kvm_sync_spte(vcpu, sp, i);
1963
1964 if (ret < -1)
1965 return -1;
1966 flush |= ret;
1967 }
1968
1969 /*
1970 * Note, any flush is purely for KVM's correctness, e.g. when dropping
1971 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
1972 * unmap or dirty logging event doesn't fail to flush. The guest is
1973 * responsible for flushing the TLB to ensure any changes in protection
1974 * bits are recognized, i.e. until the guest flushes or page faults on
1975 * a relevant address, KVM is architecturally allowed to let vCPUs use
1976 * cached translations with the old protection bits.
1977 */
1978 return flush;
1979 }
1980
1981 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1982 struct list_head *invalid_list)
1983 {
1984 int ret = __kvm_sync_page(vcpu, sp);
1985
1986 if (ret < 0)
1987 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1988 return ret;
1989 }
1990
1991 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1992 struct list_head *invalid_list,
1993 bool remote_flush)
1994 {
1995 if (!remote_flush && list_empty(invalid_list))
1996 return false;
1997
1998 if (!list_empty(invalid_list))
1999 kvm_mmu_commit_zap_page(kvm, invalid_list);
2000 else
2001 kvm_flush_remote_tlbs(kvm);
2002 return true;
2003 }
2004
2005 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2006 {
2007 if (sp->role.invalid)
2008 return true;
2009
2010 /* TDP MMU pages do not use the MMU generation. */
2011 return !is_tdp_mmu_page(sp) &&
2012 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2013 }
2014
2015 struct mmu_page_path {
2016 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2017 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2018 };
2019
2020 #define for_each_sp(pvec, sp, parents, i) \
2021 for (i = mmu_pages_first(&pvec, &parents); \
2022 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2023 i = mmu_pages_next(&pvec, &parents, i))
2024
2025 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2026 struct mmu_page_path *parents,
2027 int i)
2028 {
2029 int n;
2030
2031 for (n = i+1; n < pvec->nr; n++) {
2032 struct kvm_mmu_page *sp = pvec->page[n].sp;
2033 unsigned idx = pvec->page[n].idx;
2034 int level = sp->role.level;
2035
2036 parents->idx[level-1] = idx;
2037 if (level == PG_LEVEL_4K)
2038 break;
2039
2040 parents->parent[level-2] = sp;
2041 }
2042
2043 return n;
2044 }
2045
2046 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2047 struct mmu_page_path *parents)
2048 {
2049 struct kvm_mmu_page *sp;
2050 int level;
2051
2052 if (pvec->nr == 0)
2053 return 0;
2054
2055 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX);
2056
2057 sp = pvec->page[0].sp;
2058 level = sp->role.level;
2059 WARN_ON_ONCE(level == PG_LEVEL_4K);
2060
2061 parents->parent[level-2] = sp;
2062
2063 /* Also set up a sentinel. Further entries in pvec are all
2064 * children of sp, so this element is never overwritten.
2065 */
2066 parents->parent[level-1] = NULL;
2067 return mmu_pages_next(pvec, parents, 0);
2068 }
2069
2070 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2071 {
2072 struct kvm_mmu_page *sp;
2073 unsigned int level = 0;
2074
2075 do {
2076 unsigned int idx = parents->idx[level];
2077 sp = parents->parent[level];
2078 if (!sp)
2079 return;
2080
2081 WARN_ON_ONCE(idx == INVALID_INDEX);
2082 clear_unsync_child_bit(sp, idx);
2083 level++;
2084 } while (!sp->unsync_children);
2085 }
2086
2087 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2088 struct kvm_mmu_page *parent, bool can_yield)
2089 {
2090 int i;
2091 struct kvm_mmu_page *sp;
2092 struct mmu_page_path parents;
2093 struct kvm_mmu_pages pages;
2094 LIST_HEAD(invalid_list);
2095 bool flush = false;
2096
2097 while (mmu_unsync_walk(parent, &pages)) {
2098 bool protected = false;
2099
2100 for_each_sp(pages, sp, parents, i)
2101 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
2102
2103 if (protected) {
2104 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2105 flush = false;
2106 }
2107
2108 for_each_sp(pages, sp, parents, i) {
2109 kvm_unlink_unsync_page(vcpu->kvm, sp);
2110 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
2111 mmu_pages_clear_parents(&parents);
2112 }
2113 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2114 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2115 if (!can_yield) {
2116 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2117 return -EINTR;
2118 }
2119
2120 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2121 flush = false;
2122 }
2123 }
2124
2125 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2126 return 0;
2127 }
2128
2129 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2130 {
2131 atomic_set(&sp->write_flooding_count, 0);
2132 }
2133
2134 static void clear_sp_write_flooding_count(u64 *spte)
2135 {
2136 __clear_sp_write_flooding_count(sptep_to_sp(spte));
2137 }
2138
2139 /*
2140 * The vCPU is required when finding indirect shadow pages; the shadow
2141 * page may already exist and syncing it needs the vCPU pointer in
2142 * order to read guest page tables. Direct shadow pages are never
2143 * unsync, thus @vcpu can be NULL if @role.direct is true.
2144 */
2145 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2146 struct kvm_vcpu *vcpu,
2147 gfn_t gfn,
2148 struct hlist_head *sp_list,
2149 union kvm_mmu_page_role role)
2150 {
2151 struct kvm_mmu_page *sp;
2152 int ret;
2153 int collisions = 0;
2154 LIST_HEAD(invalid_list);
2155
2156 for_each_valid_sp(kvm, sp, sp_list) {
2157 if (sp->gfn != gfn) {
2158 collisions++;
2159 continue;
2160 }
2161
2162 if (sp->role.word != role.word) {
2163 /*
2164 * If the guest is creating an upper-level page, zap
2165 * unsync pages for the same gfn. While it's possible
2166 * the guest is using recursive page tables, in all
2167 * likelihood the guest has stopped using the unsync
2168 * page and is installing a completely unrelated page.
2169 * Unsync pages must not be left as is, because the new
2170 * upper-level page will be write-protected.
2171 */
2172 if (role.level > PG_LEVEL_4K && sp->unsync)
2173 kvm_mmu_prepare_zap_page(kvm, sp,
2174 &invalid_list);
2175 continue;
2176 }
2177
2178 /* unsync and write-flooding only apply to indirect SPs. */
2179 if (sp->role.direct)
2180 goto out;
2181
2182 if (sp->unsync) {
2183 if (KVM_BUG_ON(!vcpu, kvm))
2184 break;
2185
2186 /*
2187 * The page is good, but is stale. kvm_sync_page does
2188 * get the latest guest state, but (unlike mmu_unsync_children)
2189 * it doesn't write-protect the page or mark it synchronized!
2190 * This way the validity of the mapping is ensured, but the
2191 * overhead of write protection is not incurred until the
2192 * guest invalidates the TLB mapping. This allows multiple
2193 * SPs for a single gfn to be unsync.
2194 *
2195 * If the sync fails, the page is zapped. If so, break
2196 * in order to rebuild it.
2197 */
2198 ret = kvm_sync_page(vcpu, sp, &invalid_list);
2199 if (ret < 0)
2200 break;
2201
2202 WARN_ON_ONCE(!list_empty(&invalid_list));
2203 if (ret > 0)
2204 kvm_flush_remote_tlbs(kvm);
2205 }
2206
2207 __clear_sp_write_flooding_count(sp);
2208
2209 goto out;
2210 }
2211
2212 sp = NULL;
2213 ++kvm->stat.mmu_cache_miss;
2214
2215 out:
2216 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2217
2218 if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2219 kvm->stat.max_mmu_page_hash_collisions = collisions;
2220 return sp;
2221 }
2222
2223 /* Caches used when allocating a new shadow page. */
2224 struct shadow_page_caches {
2225 struct kvm_mmu_memory_cache *page_header_cache;
2226 struct kvm_mmu_memory_cache *shadow_page_cache;
2227 struct kvm_mmu_memory_cache *shadowed_info_cache;
2228 };
2229
2230 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2231 struct shadow_page_caches *caches,
2232 gfn_t gfn,
2233 struct hlist_head *sp_list,
2234 union kvm_mmu_page_role role)
2235 {
2236 struct kvm_mmu_page *sp;
2237
2238 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
2239 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2240 if (!role.direct)
2241 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
2242
2243 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2244
2245 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
2246
2247 /*
2248 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2249 * depends on valid pages being added to the head of the list. See
2250 * comments in kvm_zap_obsolete_pages().
2251 */
2252 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2253 list_add(&sp->link, &kvm->arch.active_mmu_pages);
2254 kvm_account_mmu_page(kvm, sp);
2255
2256 sp->gfn = gfn;
2257 sp->role = role;
2258 hlist_add_head(&sp->hash_link, sp_list);
2259 if (sp_has_gptes(sp))
2260 account_shadowed(kvm, sp);
2261
2262 return sp;
2263 }
2264
2265 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
2266 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2267 struct kvm_vcpu *vcpu,
2268 struct shadow_page_caches *caches,
2269 gfn_t gfn,
2270 union kvm_mmu_page_role role)
2271 {
2272 struct hlist_head *sp_list;
2273 struct kvm_mmu_page *sp;
2274 bool created = false;
2275
2276 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2277
2278 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2279 if (!sp) {
2280 created = true;
2281 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2282 }
2283
2284 trace_kvm_mmu_get_page(sp, created);
2285 return sp;
2286 }
2287
2288 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2289 gfn_t gfn,
2290 union kvm_mmu_page_role role)
2291 {
2292 struct shadow_page_caches caches = {
2293 .page_header_cache = &vcpu->arch.mmu_page_header_cache,
2294 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2295 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2296 };
2297
2298 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2299 }
2300
2301 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2302 unsigned int access)
2303 {
2304 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2305 union kvm_mmu_page_role role;
2306
2307 role = parent_sp->role;
2308 role.level--;
2309 role.access = access;
2310 role.direct = direct;
2311 role.passthrough = 0;
2312
2313 /*
2314 * If the guest has 4-byte PTEs then that means it's using 32-bit,
2315 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2316 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2317 * shadow each guest page table with multiple shadow page tables, which
2318 * requires extra bookkeeping in the role.
2319 *
2320 * Specifically, to shadow the guest's page directory (which covers a
2321 * 4GiB address space), KVM uses 4 PAE page directories, each mapping
2322 * 1GiB of the address space. @role.quadrant encodes which quarter of
2323 * the address space each maps.
2324 *
2325 * To shadow the guest's page tables (which each map a 4MiB region), KVM
2326 * uses 2 PAE page tables, each mapping a 2MiB region. For these,
2327 * @role.quadrant encodes which half of the region they map.
2328 *
2329 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2330 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow
2331 * PDPTEs; those 4 PAE page directories are pre-allocated and their
2332 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes
2333 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume
2334 * bit 21 in the PTE (the child here), KVM propagates that bit to the
2335 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE
2336 * covers bit 21 (see above), thus the quadrant is calculated from the
2337 * _least_ significant bit of the PDE index.
2338 */
2339 if (role.has_4_byte_gpte) {
2340 WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2341 role.quadrant = spte_index(sptep) & 1;
2342 }
2343
2344 return role;
2345 }
2346
2347 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2348 u64 *sptep, gfn_t gfn,
2349 bool direct, unsigned int access)
2350 {
2351 union kvm_mmu_page_role role;
2352
2353 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
2354 return ERR_PTR(-EEXIST);
2355
2356 role = kvm_mmu_child_role(sptep, direct, access);
2357 return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2358 }
2359
2360 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2361 struct kvm_vcpu *vcpu, hpa_t root,
2362 u64 addr)
2363 {
2364 iterator->addr = addr;
2365 iterator->shadow_addr = root;
2366 iterator->level = vcpu->arch.mmu->root_role.level;
2367
2368 if (iterator->level >= PT64_ROOT_4LEVEL &&
2369 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2370 !vcpu->arch.mmu->root_role.direct)
2371 iterator->level = PT32E_ROOT_LEVEL;
2372
2373 if (iterator->level == PT32E_ROOT_LEVEL) {
2374 /*
2375 * prev_root is currently only used for 64-bit hosts. So only
2376 * the active root_hpa is valid here.
2377 */
2378 BUG_ON(root != vcpu->arch.mmu->root.hpa);
2379
2380 iterator->shadow_addr
2381 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2382 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2383 --iterator->level;
2384 if (!iterator->shadow_addr)
2385 iterator->level = 0;
2386 }
2387 }
2388
2389 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2390 struct kvm_vcpu *vcpu, u64 addr)
2391 {
2392 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2393 addr);
2394 }
2395
2396 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2397 {
2398 if (iterator->level < PG_LEVEL_4K)
2399 return false;
2400
2401 iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2402 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2403 return true;
2404 }
2405
2406 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2407 u64 spte)
2408 {
2409 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2410 iterator->level = 0;
2411 return;
2412 }
2413
2414 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2415 --iterator->level;
2416 }
2417
2418 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2419 {
2420 __shadow_walk_next(iterator, *iterator->sptep);
2421 }
2422
2423 static void __link_shadow_page(struct kvm *kvm,
2424 struct kvm_mmu_memory_cache *cache, u64 *sptep,
2425 struct kvm_mmu_page *sp, bool flush)
2426 {
2427 u64 spte;
2428
2429 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2430
2431 /*
2432 * If an SPTE is present already, it must be a leaf and therefore
2433 * a large one. Drop it, and flush the TLB if needed, before
2434 * installing sp.
2435 */
2436 if (is_shadow_present_pte(*sptep))
2437 drop_large_spte(kvm, sptep, flush);
2438
2439 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2440
2441 mmu_spte_set(sptep, spte);
2442
2443 mmu_page_add_parent_pte(cache, sp, sptep);
2444
2445 /*
2446 * The non-direct sub-pagetable must be updated before linking. For
2447 * L1 sp, the pagetable is updated via kvm_sync_page() in
2448 * kvm_mmu_find_shadow_page() without write-protecting the gfn,
2449 * so sp->unsync can be true or false. For higher level non-direct
2450 * sp, the pagetable is updated/synced via mmu_sync_children() in
2451 * FNAME(fetch)(), so sp->unsync_children can only be false.
2452 * WARN_ON_ONCE() if anything happens unexpectedly.
2453 */
2454 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync)
2455 mark_unsync(sptep);
2456 }
2457
2458 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2459 struct kvm_mmu_page *sp)
2460 {
2461 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
2462 }
2463
2464 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2465 unsigned direct_access)
2466 {
2467 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2468 struct kvm_mmu_page *child;
2469
2470 /*
2471 * For the direct sp, if the guest pte's dirty bit
2472 * changed form clean to dirty, it will corrupt the
2473 * sp's access: allow writable in the read-only sp,
2474 * so we should update the spte at this point to get
2475 * a new sp with the correct access.
2476 */
2477 child = spte_to_child_sp(*sptep);
2478 if (child->role.access == direct_access)
2479 return;
2480
2481 drop_parent_pte(vcpu->kvm, child, sptep);
2482 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep);
2483 }
2484 }
2485
2486 /* Returns the number of zapped non-leaf child shadow pages. */
2487 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2488 u64 *spte, struct list_head *invalid_list)
2489 {
2490 u64 pte;
2491 struct kvm_mmu_page *child;
2492
2493 pte = *spte;
2494 if (is_shadow_present_pte(pte)) {
2495 if (is_last_spte(pte, sp->role.level)) {
2496 drop_spte(kvm, spte);
2497 } else {
2498 child = spte_to_child_sp(pte);
2499 drop_parent_pte(kvm, child, spte);
2500
2501 /*
2502 * Recursively zap nested TDP SPs, parentless SPs are
2503 * unlikely to be used again in the near future. This
2504 * avoids retaining a large number of stale nested SPs.
2505 */
2506 if (tdp_enabled && invalid_list &&
2507 child->role.guest_mode && !child->parent_ptes.val)
2508 return kvm_mmu_prepare_zap_page(kvm, child,
2509 invalid_list);
2510 }
2511 } else if (is_mmio_spte(pte)) {
2512 mmu_spte_clear_no_track(spte);
2513 }
2514 return 0;
2515 }
2516
2517 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2518 struct kvm_mmu_page *sp,
2519 struct list_head *invalid_list)
2520 {
2521 int zapped = 0;
2522 unsigned i;
2523
2524 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2525 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2526
2527 return zapped;
2528 }
2529
2530 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2531 {
2532 u64 *sptep;
2533 struct rmap_iterator iter;
2534
2535 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2536 drop_parent_pte(kvm, sp, sptep);
2537 }
2538
2539 static int mmu_zap_unsync_children(struct kvm *kvm,
2540 struct kvm_mmu_page *parent,
2541 struct list_head *invalid_list)
2542 {
2543 int i, zapped = 0;
2544 struct mmu_page_path parents;
2545 struct kvm_mmu_pages pages;
2546
2547 if (parent->role.level == PG_LEVEL_4K)
2548 return 0;
2549
2550 while (mmu_unsync_walk(parent, &pages)) {
2551 struct kvm_mmu_page *sp;
2552
2553 for_each_sp(pages, sp, parents, i) {
2554 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2555 mmu_pages_clear_parents(&parents);
2556 zapped++;
2557 }
2558 }
2559
2560 return zapped;
2561 }
2562
2563 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2564 struct kvm_mmu_page *sp,
2565 struct list_head *invalid_list,
2566 int *nr_zapped)
2567 {
2568 bool list_unstable, zapped_root = false;
2569
2570 lockdep_assert_held_write(&kvm->mmu_lock);
2571 trace_kvm_mmu_prepare_zap_page(sp);
2572 ++kvm->stat.mmu_shadow_zapped;
2573 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2574 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2575 kvm_mmu_unlink_parents(kvm, sp);
2576
2577 /* Zapping children means active_mmu_pages has become unstable. */
2578 list_unstable = *nr_zapped;
2579
2580 if (!sp->role.invalid && sp_has_gptes(sp))
2581 unaccount_shadowed(kvm, sp);
2582
2583 if (sp->unsync)
2584 kvm_unlink_unsync_page(kvm, sp);
2585 if (!sp->root_count) {
2586 /* Count self */
2587 (*nr_zapped)++;
2588
2589 /*
2590 * Already invalid pages (previously active roots) are not on
2591 * the active page list. See list_del() in the "else" case of
2592 * !sp->root_count.
2593 */
2594 if (sp->role.invalid)
2595 list_add(&sp->link, invalid_list);
2596 else
2597 list_move(&sp->link, invalid_list);
2598 kvm_unaccount_mmu_page(kvm, sp);
2599 } else {
2600 /*
2601 * Remove the active root from the active page list, the root
2602 * will be explicitly freed when the root_count hits zero.
2603 */
2604 list_del(&sp->link);
2605
2606 /*
2607 * Obsolete pages cannot be used on any vCPUs, see the comment
2608 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2609 * treats invalid shadow pages as being obsolete.
2610 */
2611 zapped_root = !is_obsolete_sp(kvm, sp);
2612 }
2613
2614 if (sp->nx_huge_page_disallowed)
2615 unaccount_nx_huge_page(kvm, sp);
2616
2617 sp->role.invalid = 1;
2618
2619 /*
2620 * Make the request to free obsolete roots after marking the root
2621 * invalid, otherwise other vCPUs may not see it as invalid.
2622 */
2623 if (zapped_root)
2624 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2625 return list_unstable;
2626 }
2627
2628 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2629 struct list_head *invalid_list)
2630 {
2631 int nr_zapped;
2632
2633 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2634 return nr_zapped;
2635 }
2636
2637 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2638 struct list_head *invalid_list)
2639 {
2640 struct kvm_mmu_page *sp, *nsp;
2641
2642 if (list_empty(invalid_list))
2643 return;
2644
2645 /*
2646 * We need to make sure everyone sees our modifications to
2647 * the page tables and see changes to vcpu->mode here. The barrier
2648 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2649 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2650 *
2651 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2652 * guest mode and/or lockless shadow page table walks.
2653 */
2654 kvm_flush_remote_tlbs(kvm);
2655
2656 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2657 WARN_ON_ONCE(!sp->role.invalid || sp->root_count);
2658 kvm_mmu_free_shadow_page(sp);
2659 }
2660 }
2661
2662 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2663 unsigned long nr_to_zap)
2664 {
2665 unsigned long total_zapped = 0;
2666 struct kvm_mmu_page *sp, *tmp;
2667 LIST_HEAD(invalid_list);
2668 bool unstable;
2669 int nr_zapped;
2670
2671 if (list_empty(&kvm->arch.active_mmu_pages))
2672 return 0;
2673
2674 restart:
2675 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2676 /*
2677 * Don't zap active root pages, the page itself can't be freed
2678 * and zapping it will just force vCPUs to realloc and reload.
2679 */
2680 if (sp->root_count)
2681 continue;
2682
2683 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2684 &nr_zapped);
2685 total_zapped += nr_zapped;
2686 if (total_zapped >= nr_to_zap)
2687 break;
2688
2689 if (unstable)
2690 goto restart;
2691 }
2692
2693 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2694
2695 kvm->stat.mmu_recycled += total_zapped;
2696 return total_zapped;
2697 }
2698
2699 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2700 {
2701 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2702 return kvm->arch.n_max_mmu_pages -
2703 kvm->arch.n_used_mmu_pages;
2704
2705 return 0;
2706 }
2707
2708 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2709 {
2710 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2711
2712 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2713 return 0;
2714
2715 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2716
2717 /*
2718 * Note, this check is intentionally soft, it only guarantees that one
2719 * page is available, while the caller may end up allocating as many as
2720 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2721 * exceeding the (arbitrary by default) limit will not harm the host,
2722 * being too aggressive may unnecessarily kill the guest, and getting an
2723 * exact count is far more trouble than it's worth, especially in the
2724 * page fault paths.
2725 */
2726 if (!kvm_mmu_available_pages(vcpu->kvm))
2727 return -ENOSPC;
2728 return 0;
2729 }
2730
2731 /*
2732 * Changing the number of mmu pages allocated to the vm
2733 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2734 */
2735 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2736 {
2737 write_lock(&kvm->mmu_lock);
2738
2739 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2740 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2741 goal_nr_mmu_pages);
2742
2743 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2744 }
2745
2746 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2747
2748 write_unlock(&kvm->mmu_lock);
2749 }
2750
2751 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2752 {
2753 struct kvm_mmu_page *sp;
2754 LIST_HEAD(invalid_list);
2755 int r;
2756
2757 r = 0;
2758 write_lock(&kvm->mmu_lock);
2759 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2760 r = 1;
2761 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2762 }
2763 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2764 write_unlock(&kvm->mmu_lock);
2765
2766 return r;
2767 }
2768
2769 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2770 {
2771 gpa_t gpa;
2772 int r;
2773
2774 if (vcpu->arch.mmu->root_role.direct)
2775 return 0;
2776
2777 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2778
2779 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2780
2781 return r;
2782 }
2783
2784 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2785 {
2786 trace_kvm_mmu_unsync_page(sp);
2787 ++kvm->stat.mmu_unsync;
2788 sp->unsync = 1;
2789
2790 kvm_mmu_mark_parents_unsync(sp);
2791 }
2792
2793 /*
2794 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2795 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages
2796 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2797 * be write-protected.
2798 */
2799 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2800 gfn_t gfn, bool can_unsync, bool prefetch)
2801 {
2802 struct kvm_mmu_page *sp;
2803 bool locked = false;
2804
2805 /*
2806 * Force write-protection if the page is being tracked. Note, the page
2807 * track machinery is used to write-protect upper-level shadow pages,
2808 * i.e. this guards the role.level == 4K assertion below!
2809 */
2810 if (kvm_gfn_is_write_tracked(kvm, slot, gfn))
2811 return -EPERM;
2812
2813 /*
2814 * The page is not write-tracked, mark existing shadow pages unsync
2815 * unless KVM is synchronizing an unsync SP (can_unsync = false). In
2816 * that case, KVM must complete emulation of the guest TLB flush before
2817 * allowing shadow pages to become unsync (writable by the guest).
2818 */
2819 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2820 if (!can_unsync)
2821 return -EPERM;
2822
2823 if (sp->unsync)
2824 continue;
2825
2826 if (prefetch)
2827 return -EEXIST;
2828
2829 /*
2830 * TDP MMU page faults require an additional spinlock as they
2831 * run with mmu_lock held for read, not write, and the unsync
2832 * logic is not thread safe. Take the spinklock regardless of
2833 * the MMU type to avoid extra conditionals/parameters, there's
2834 * no meaningful penalty if mmu_lock is held for write.
2835 */
2836 if (!locked) {
2837 locked = true;
2838 spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2839
2840 /*
2841 * Recheck after taking the spinlock, a different vCPU
2842 * may have since marked the page unsync. A false
2843 * positive on the unprotected check above is not
2844 * possible as clearing sp->unsync _must_ hold mmu_lock
2845 * for write, i.e. unsync cannot transition from 0->1
2846 * while this CPU holds mmu_lock for read (or write).
2847 */
2848 if (READ_ONCE(sp->unsync))
2849 continue;
2850 }
2851
2852 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
2853 kvm_unsync_page(kvm, sp);
2854 }
2855 if (locked)
2856 spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2857
2858 /*
2859 * We need to ensure that the marking of unsync pages is visible
2860 * before the SPTE is updated to allow writes because
2861 * kvm_mmu_sync_roots() checks the unsync flags without holding
2862 * the MMU lock and so can race with this. If the SPTE was updated
2863 * before the page had been marked as unsync-ed, something like the
2864 * following could happen:
2865 *
2866 * CPU 1 CPU 2
2867 * ---------------------------------------------------------------------
2868 * 1.2 Host updates SPTE
2869 * to be writable
2870 * 2.1 Guest writes a GPTE for GVA X.
2871 * (GPTE being in the guest page table shadowed
2872 * by the SP from CPU 1.)
2873 * This reads SPTE during the page table walk.
2874 * Since SPTE.W is read as 1, there is no
2875 * fault.
2876 *
2877 * 2.2 Guest issues TLB flush.
2878 * That causes a VM Exit.
2879 *
2880 * 2.3 Walking of unsync pages sees sp->unsync is
2881 * false and skips the page.
2882 *
2883 * 2.4 Guest accesses GVA X.
2884 * Since the mapping in the SP was not updated,
2885 * so the old mapping for GVA X incorrectly
2886 * gets used.
2887 * 1.1 Host marks SP
2888 * as unsync
2889 * (sp->unsync = true)
2890 *
2891 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2892 * the situation in 2.4 does not arise. It pairs with the read barrier
2893 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2894 */
2895 smp_wmb();
2896
2897 return 0;
2898 }
2899
2900 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2901 u64 *sptep, unsigned int pte_access, gfn_t gfn,
2902 kvm_pfn_t pfn, struct kvm_page_fault *fault)
2903 {
2904 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2905 int level = sp->role.level;
2906 int was_rmapped = 0;
2907 int ret = RET_PF_FIXED;
2908 bool flush = false;
2909 bool wrprot;
2910 u64 spte;
2911
2912 /* Prefetching always gets a writable pfn. */
2913 bool host_writable = !fault || fault->map_writable;
2914 bool prefetch = !fault || fault->prefetch;
2915 bool write_fault = fault && fault->write;
2916
2917 if (unlikely(is_noslot_pfn(pfn))) {
2918 vcpu->stat.pf_mmio_spte_created++;
2919 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2920 return RET_PF_EMULATE;
2921 }
2922
2923 if (is_shadow_present_pte(*sptep)) {
2924 /*
2925 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2926 * the parent of the now unreachable PTE.
2927 */
2928 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2929 struct kvm_mmu_page *child;
2930 u64 pte = *sptep;
2931
2932 child = spte_to_child_sp(pte);
2933 drop_parent_pte(vcpu->kvm, child, sptep);
2934 flush = true;
2935 } else if (pfn != spte_to_pfn(*sptep)) {
2936 drop_spte(vcpu->kvm, sptep);
2937 flush = true;
2938 } else
2939 was_rmapped = 1;
2940 }
2941
2942 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2943 true, host_writable, &spte);
2944
2945 if (*sptep == spte) {
2946 ret = RET_PF_SPURIOUS;
2947 } else {
2948 flush |= mmu_spte_update(sptep, spte);
2949 trace_kvm_mmu_set_spte(level, gfn, sptep);
2950 }
2951
2952 if (wrprot) {
2953 if (write_fault)
2954 ret = RET_PF_EMULATE;
2955 }
2956
2957 if (flush)
2958 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level);
2959
2960 if (!was_rmapped) {
2961 WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2962 rmap_add(vcpu, slot, sptep, gfn, pte_access);
2963 } else {
2964 /* Already rmapped but the pte_access bits may have changed. */
2965 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
2966 }
2967
2968 return ret;
2969 }
2970
2971 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2972 struct kvm_mmu_page *sp,
2973 u64 *start, u64 *end)
2974 {
2975 struct page *pages[PTE_PREFETCH_NUM];
2976 struct kvm_memory_slot *slot;
2977 unsigned int access = sp->role.access;
2978 int i, ret;
2979 gfn_t gfn;
2980
2981 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
2982 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2983 if (!slot)
2984 return -1;
2985
2986 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2987 if (ret <= 0)
2988 return -1;
2989
2990 for (i = 0; i < ret; i++, gfn++, start++) {
2991 mmu_set_spte(vcpu, slot, start, access, gfn,
2992 page_to_pfn(pages[i]), NULL);
2993 put_page(pages[i]);
2994 }
2995
2996 return 0;
2997 }
2998
2999 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3000 struct kvm_mmu_page *sp, u64 *sptep)
3001 {
3002 u64 *spte, *start = NULL;
3003 int i;
3004
3005 WARN_ON_ONCE(!sp->role.direct);
3006
3007 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
3008 spte = sp->spt + i;
3009
3010 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3011 if (is_shadow_present_pte(*spte) || spte == sptep) {
3012 if (!start)
3013 continue;
3014 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3015 return;
3016 start = NULL;
3017 } else if (!start)
3018 start = spte;
3019 }
3020 if (start)
3021 direct_pte_prefetch_many(vcpu, sp, start, spte);
3022 }
3023
3024 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3025 {
3026 struct kvm_mmu_page *sp;
3027
3028 sp = sptep_to_sp(sptep);
3029
3030 /*
3031 * Without accessed bits, there's no way to distinguish between
3032 * actually accessed translations and prefetched, so disable pte
3033 * prefetch if accessed bits aren't available.
3034 */
3035 if (sp_ad_disabled(sp))
3036 return;
3037
3038 if (sp->role.level > PG_LEVEL_4K)
3039 return;
3040
3041 /*
3042 * If addresses are being invalidated, skip prefetching to avoid
3043 * accidentally prefetching those addresses.
3044 */
3045 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
3046 return;
3047
3048 __direct_pte_prefetch(vcpu, sp, sptep);
3049 }
3050
3051 /*
3052 * Lookup the mapping level for @gfn in the current mm.
3053 *
3054 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end
3055 * consumer to be tied into KVM's handlers for MMU notifier events!
3056 *
3057 * There are several ways to safely use this helper:
3058 *
3059 * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before
3060 * consuming it. In this case, mmu_lock doesn't need to be held during the
3061 * lookup, but it does need to be held while checking the MMU notifier.
3062 *
3063 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3064 * event for the hva. This can be done by explicit checking the MMU notifier
3065 * or by ensuring that KVM already has a valid mapping that covers the hva.
3066 *
3067 * - Do not use the result to install new mappings, e.g. use the host mapping
3068 * level only to decide whether or not to zap an entry. In this case, it's
3069 * not required to hold mmu_lock (though it's highly likely the caller will
3070 * want to hold mmu_lock anyways, e.g. to modify SPTEs).
3071 *
3072 * Note! The lookup can still race with modifications to host page tables, but
3073 * the above "rules" ensure KVM will not _consume_ the result of the walk if a
3074 * race with the primary MMU occurs.
3075 */
3076 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
3077 const struct kvm_memory_slot *slot)
3078 {
3079 int level = PG_LEVEL_4K;
3080 unsigned long hva;
3081 unsigned long flags;
3082 pgd_t pgd;
3083 p4d_t p4d;
3084 pud_t pud;
3085 pmd_t pmd;
3086
3087 /*
3088 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3089 * is not solely for performance, it's also necessary to avoid the
3090 * "writable" check in __gfn_to_hva_many(), which will always fail on
3091 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
3092 * page fault steps have already verified the guest isn't writing a
3093 * read-only memslot.
3094 */
3095 hva = __gfn_to_hva_memslot(slot, gfn);
3096
3097 /*
3098 * Disable IRQs to prevent concurrent tear down of host page tables,
3099 * e.g. if the primary MMU promotes a P*D to a huge page and then frees
3100 * the original page table.
3101 */
3102 local_irq_save(flags);
3103
3104 /*
3105 * Read each entry once. As above, a non-leaf entry can be promoted to
3106 * a huge page _during_ this walk. Re-reading the entry could send the
3107 * walk into the weeks, e.g. p*d_large() returns false (sees the old
3108 * value) and then p*d_offset() walks into the target huge page instead
3109 * of the old page table (sees the new value).
3110 */
3111 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
3112 if (pgd_none(pgd))
3113 goto out;
3114
3115 p4d = READ_ONCE(*p4d_offset(&pgd, hva));
3116 if (p4d_none(p4d) || !p4d_present(p4d))
3117 goto out;
3118
3119 pud = READ_ONCE(*pud_offset(&p4d, hva));
3120 if (pud_none(pud) || !pud_present(pud))
3121 goto out;
3122
3123 if (pud_large(pud)) {
3124 level = PG_LEVEL_1G;
3125 goto out;
3126 }
3127
3128 pmd = READ_ONCE(*pmd_offset(&pud, hva));
3129 if (pmd_none(pmd) || !pmd_present(pmd))
3130 goto out;
3131
3132 if (pmd_large(pmd))
3133 level = PG_LEVEL_2M;
3134
3135 out:
3136 local_irq_restore(flags);
3137 return level;
3138 }
3139
3140 int kvm_mmu_max_mapping_level(struct kvm *kvm,
3141 const struct kvm_memory_slot *slot, gfn_t gfn,
3142 int max_level)
3143 {
3144 struct kvm_lpage_info *linfo;
3145 int host_level;
3146
3147 max_level = min(max_level, max_huge_page_level);
3148 for ( ; max_level > PG_LEVEL_4K; max_level--) {
3149 linfo = lpage_info_slot(gfn, slot, max_level);
3150 if (!linfo->disallow_lpage)
3151 break;
3152 }
3153
3154 if (max_level == PG_LEVEL_4K)
3155 return PG_LEVEL_4K;
3156
3157 host_level = host_pfn_mapping_level(kvm, gfn, slot);
3158 return min(host_level, max_level);
3159 }
3160
3161 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3162 {
3163 struct kvm_memory_slot *slot = fault->slot;
3164 kvm_pfn_t mask;
3165
3166 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3167
3168 if (unlikely(fault->max_level == PG_LEVEL_4K))
3169 return;
3170
3171 if (is_error_noslot_pfn(fault->pfn))
3172 return;
3173
3174 if (kvm_slot_dirty_track_enabled(slot))
3175 return;
3176
3177 /*
3178 * Enforce the iTLB multihit workaround after capturing the requested
3179 * level, which will be used to do precise, accurate accounting.
3180 */
3181 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
3182 fault->gfn, fault->max_level);
3183 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3184 return;
3185
3186 /*
3187 * mmu_invalidate_retry() was successful and mmu_lock is held, so
3188 * the pmd can't be split from under us.
3189 */
3190 fault->goal_level = fault->req_level;
3191 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3192 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3193 fault->pfn &= ~mask;
3194 }
3195
3196 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3197 {
3198 if (cur_level > PG_LEVEL_4K &&
3199 cur_level == fault->goal_level &&
3200 is_shadow_present_pte(spte) &&
3201 !is_large_pte(spte) &&
3202 spte_to_child_sp(spte)->nx_huge_page_disallowed) {
3203 /*
3204 * A small SPTE exists for this pfn, but FNAME(fetch),
3205 * direct_map(), or kvm_tdp_mmu_map() would like to create a
3206 * large PTE instead: just force them to go down another level,
3207 * patching back for them into pfn the next 9 bits of the
3208 * address.
3209 */
3210 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3211 KVM_PAGES_PER_HPAGE(cur_level - 1);
3212 fault->pfn |= fault->gfn & page_mask;
3213 fault->goal_level--;
3214 }
3215 }
3216
3217 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3218 {
3219 struct kvm_shadow_walk_iterator it;
3220 struct kvm_mmu_page *sp;
3221 int ret;
3222 gfn_t base_gfn = fault->gfn;
3223
3224 kvm_mmu_hugepage_adjust(vcpu, fault);
3225
3226 trace_kvm_mmu_spte_requested(fault);
3227 for_each_shadow_entry(vcpu, fault->addr, it) {
3228 /*
3229 * We cannot overwrite existing page tables with an NX
3230 * large page, as the leaf could be executable.
3231 */
3232 if (fault->nx_huge_page_workaround_enabled)
3233 disallowed_hugepage_adjust(fault, *it.sptep, it.level);
3234
3235 base_gfn = gfn_round_for_level(fault->gfn, it.level);
3236 if (it.level == fault->goal_level)
3237 break;
3238
3239 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3240 if (sp == ERR_PTR(-EEXIST))
3241 continue;
3242
3243 link_shadow_page(vcpu, it.sptep, sp);
3244 if (fault->huge_page_disallowed)
3245 account_nx_huge_page(vcpu->kvm, sp,
3246 fault->req_level >= it.level);
3247 }
3248
3249 if (WARN_ON_ONCE(it.level != fault->goal_level))
3250 return -EFAULT;
3251
3252 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3253 base_gfn, fault->pfn, fault);
3254 if (ret == RET_PF_SPURIOUS)
3255 return ret;
3256
3257 direct_pte_prefetch(vcpu, it.sptep);
3258 return ret;
3259 }
3260
3261 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn)
3262 {
3263 unsigned long hva = gfn_to_hva_memslot(slot, gfn);
3264
3265 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current);
3266 }
3267
3268 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3269 {
3270 if (is_sigpending_pfn(fault->pfn)) {
3271 kvm_handle_signal_exit(vcpu);
3272 return -EINTR;
3273 }
3274
3275 /*
3276 * Do not cache the mmio info caused by writing the readonly gfn
3277 * into the spte otherwise read access on readonly gfn also can
3278 * caused mmio page fault and treat it as mmio access.
3279 */
3280 if (fault->pfn == KVM_PFN_ERR_RO_FAULT)
3281 return RET_PF_EMULATE;
3282
3283 if (fault->pfn == KVM_PFN_ERR_HWPOISON) {
3284 kvm_send_hwpoison_signal(fault->slot, fault->gfn);
3285 return RET_PF_RETRY;
3286 }
3287
3288 return -EFAULT;
3289 }
3290
3291 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
3292 struct kvm_page_fault *fault,
3293 unsigned int access)
3294 {
3295 gva_t gva = fault->is_tdp ? 0 : fault->addr;
3296
3297 vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3298 access & shadow_mmio_access_mask);
3299
3300 /*
3301 * If MMIO caching is disabled, emulate immediately without
3302 * touching the shadow page tables as attempting to install an
3303 * MMIO SPTE will just be an expensive nop.
3304 */
3305 if (unlikely(!enable_mmio_caching))
3306 return RET_PF_EMULATE;
3307
3308 /*
3309 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR,
3310 * any guest that generates such gfns is running nested and is being
3311 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and
3312 * only if L1's MAXPHYADDR is inaccurate with respect to the
3313 * hardware's).
3314 */
3315 if (unlikely(fault->gfn > kvm_mmu_max_gfn()))
3316 return RET_PF_EMULATE;
3317
3318 return RET_PF_CONTINUE;
3319 }
3320
3321 static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3322 {
3323 /*
3324 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3325 * reach the common page fault handler if the SPTE has an invalid MMIO
3326 * generation number. Refreshing the MMIO generation needs to go down
3327 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag!
3328 */
3329 if (fault->rsvd)
3330 return false;
3331
3332 /*
3333 * #PF can be fast if:
3334 *
3335 * 1. The shadow page table entry is not present and A/D bits are
3336 * disabled _by KVM_, which could mean that the fault is potentially
3337 * caused by access tracking (if enabled). If A/D bits are enabled
3338 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3339 * bits for L2 and employ access tracking, but the fast page fault
3340 * mechanism only supports direct MMUs.
3341 * 2. The shadow page table entry is present, the access is a write,
3342 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3343 * the fault was caused by a write-protection violation. If the
3344 * SPTE is MMU-writable (determined later), the fault can be fixed
3345 * by setting the Writable bit, which can be done out of mmu_lock.
3346 */
3347 if (!fault->present)
3348 return !kvm_ad_enabled();
3349
3350 /*
3351 * Note, instruction fetches and writes are mutually exclusive, ignore
3352 * the "exec" flag.
3353 */
3354 return fault->write;
3355 }
3356
3357 /*
3358 * Returns true if the SPTE was fixed successfully. Otherwise,
3359 * someone else modified the SPTE from its original value.
3360 */
3361 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
3362 struct kvm_page_fault *fault,
3363 u64 *sptep, u64 old_spte, u64 new_spte)
3364 {
3365 /*
3366 * Theoretically we could also set dirty bit (and flush TLB) here in
3367 * order to eliminate unnecessary PML logging. See comments in
3368 * set_spte. But fast_page_fault is very unlikely to happen with PML
3369 * enabled, so we do not do this. This might result in the same GPA
3370 * to be logged in PML buffer again when the write really happens, and
3371 * eventually to be called by mark_page_dirty twice. But it's also no
3372 * harm. This also avoids the TLB flush needed after setting dirty bit
3373 * so non-PML cases won't be impacted.
3374 *
3375 * Compare with set_spte where instead shadow_dirty_mask is set.
3376 */
3377 if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3378 return false;
3379
3380 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3381 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3382
3383 return true;
3384 }
3385
3386 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3387 {
3388 if (fault->exec)
3389 return is_executable_pte(spte);
3390
3391 if (fault->write)
3392 return is_writable_pte(spte);
3393
3394 /* Fault was on Read access */
3395 return spte & PT_PRESENT_MASK;
3396 }
3397
3398 /*
3399 * Returns the last level spte pointer of the shadow page walk for the given
3400 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3401 * walk could be performed, returns NULL and *spte does not contain valid data.
3402 *
3403 * Contract:
3404 * - Must be called between walk_shadow_page_lockless_{begin,end}.
3405 * - The returned sptep must not be used after walk_shadow_page_lockless_end.
3406 */
3407 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3408 {
3409 struct kvm_shadow_walk_iterator iterator;
3410 u64 old_spte;
3411 u64 *sptep = NULL;
3412
3413 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3414 sptep = iterator.sptep;
3415 *spte = old_spte;
3416 }
3417
3418 return sptep;
3419 }
3420
3421 /*
3422 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3423 */
3424 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3425 {
3426 struct kvm_mmu_page *sp;
3427 int ret = RET_PF_INVALID;
3428 u64 spte;
3429 u64 *sptep;
3430 uint retry_count = 0;
3431
3432 if (!page_fault_can_be_fast(fault))
3433 return ret;
3434
3435 walk_shadow_page_lockless_begin(vcpu);
3436
3437 do {
3438 u64 new_spte;
3439
3440 if (tdp_mmu_enabled)
3441 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3442 else
3443 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3444
3445 /*
3446 * It's entirely possible for the mapping to have been zapped
3447 * by a different task, but the root page should always be
3448 * available as the vCPU holds a reference to its root(s).
3449 */
3450 if (WARN_ON_ONCE(!sptep))
3451 spte = REMOVED_SPTE;
3452
3453 if (!is_shadow_present_pte(spte))
3454 break;
3455
3456 sp = sptep_to_sp(sptep);
3457 if (!is_last_spte(spte, sp->role.level))
3458 break;
3459
3460 /*
3461 * Check whether the memory access that caused the fault would
3462 * still cause it if it were to be performed right now. If not,
3463 * then this is a spurious fault caused by TLB lazily flushed,
3464 * or some other CPU has already fixed the PTE after the
3465 * current CPU took the fault.
3466 *
3467 * Need not check the access of upper level table entries since
3468 * they are always ACC_ALL.
3469 */
3470 if (is_access_allowed(fault, spte)) {
3471 ret = RET_PF_SPURIOUS;
3472 break;
3473 }
3474
3475 new_spte = spte;
3476
3477 /*
3478 * KVM only supports fixing page faults outside of MMU lock for
3479 * direct MMUs, nested MMUs are always indirect, and KVM always
3480 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are
3481 * enabled, the SPTE can't be an access-tracked SPTE.
3482 */
3483 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
3484 new_spte = restore_acc_track_spte(new_spte);
3485
3486 /*
3487 * To keep things simple, only SPTEs that are MMU-writable can
3488 * be made fully writable outside of mmu_lock, e.g. only SPTEs
3489 * that were write-protected for dirty-logging or access
3490 * tracking are handled here. Don't bother checking if the
3491 * SPTE is writable to prioritize running with A/D bits enabled.
3492 * The is_access_allowed() check above handles the common case
3493 * of the fault being spurious, and the SPTE is known to be
3494 * shadow-present, i.e. except for access tracking restoration
3495 * making the new SPTE writable, the check is wasteful.
3496 */
3497 if (fault->write && is_mmu_writable_spte(spte)) {
3498 new_spte |= PT_WRITABLE_MASK;
3499
3500 /*
3501 * Do not fix write-permission on the large spte when
3502 * dirty logging is enabled. Since we only dirty the
3503 * first page into the dirty-bitmap in
3504 * fast_pf_fix_direct_spte(), other pages are missed
3505 * if its slot has dirty logging enabled.
3506 *
3507 * Instead, we let the slow page fault path create a
3508 * normal spte to fix the access.
3509 */
3510 if (sp->role.level > PG_LEVEL_4K &&
3511 kvm_slot_dirty_track_enabled(fault->slot))
3512 break;
3513 }
3514
3515 /* Verify that the fault can be handled in the fast path */
3516 if (new_spte == spte ||
3517 !is_access_allowed(fault, new_spte))
3518 break;
3519
3520 /*
3521 * Currently, fast page fault only works for direct mapping
3522 * since the gfn is not stable for indirect shadow page. See
3523 * Documentation/virt/kvm/locking.rst to get more detail.
3524 */
3525 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3526 ret = RET_PF_FIXED;
3527 break;
3528 }
3529
3530 if (++retry_count > 4) {
3531 pr_warn_once("Fast #PF retrying more than 4 times.\n");
3532 break;
3533 }
3534
3535 } while (true);
3536
3537 trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3538 walk_shadow_page_lockless_end(vcpu);
3539
3540 if (ret != RET_PF_INVALID)
3541 vcpu->stat.pf_fast++;
3542
3543 return ret;
3544 }
3545
3546 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3547 struct list_head *invalid_list)
3548 {
3549 struct kvm_mmu_page *sp;
3550
3551 if (!VALID_PAGE(*root_hpa))
3552 return;
3553
3554 sp = root_to_sp(*root_hpa);
3555 if (WARN_ON_ONCE(!sp))
3556 return;
3557
3558 if (is_tdp_mmu_page(sp))
3559 kvm_tdp_mmu_put_root(kvm, sp, false);
3560 else if (!--sp->root_count && sp->role.invalid)
3561 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3562
3563 *root_hpa = INVALID_PAGE;
3564 }
3565
3566 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3567 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3568 ulong roots_to_free)
3569 {
3570 int i;
3571 LIST_HEAD(invalid_list);
3572 bool free_active_root;
3573
3574 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL);
3575
3576 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3577
3578 /* Before acquiring the MMU lock, see if we need to do any real work. */
3579 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3580 && VALID_PAGE(mmu->root.hpa);
3581
3582 if (!free_active_root) {
3583 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3584 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3585 VALID_PAGE(mmu->prev_roots[i].hpa))
3586 break;
3587
3588 if (i == KVM_MMU_NUM_PREV_ROOTS)
3589 return;
3590 }
3591
3592 write_lock(&kvm->mmu_lock);
3593
3594 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3595 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3596 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3597 &invalid_list);
3598
3599 if (free_active_root) {
3600 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) {
3601 /* Nothing to cleanup for dummy roots. */
3602 } else if (root_to_sp(mmu->root.hpa)) {
3603 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3604 } else if (mmu->pae_root) {
3605 for (i = 0; i < 4; ++i) {
3606 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3607 continue;
3608
3609 mmu_free_root_page(kvm, &mmu->pae_root[i],
3610 &invalid_list);
3611 mmu->pae_root[i] = INVALID_PAE_ROOT;
3612 }
3613 }
3614 mmu->root.hpa = INVALID_PAGE;
3615 mmu->root.pgd = 0;
3616 }
3617
3618 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3619 write_unlock(&kvm->mmu_lock);
3620 }
3621 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3622
3623 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3624 {
3625 unsigned long roots_to_free = 0;
3626 struct kvm_mmu_page *sp;
3627 hpa_t root_hpa;
3628 int i;
3629
3630 /*
3631 * This should not be called while L2 is active, L2 can't invalidate
3632 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3633 */
3634 WARN_ON_ONCE(mmu->root_role.guest_mode);
3635
3636 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3637 root_hpa = mmu->prev_roots[i].hpa;
3638 if (!VALID_PAGE(root_hpa))
3639 continue;
3640
3641 sp = root_to_sp(root_hpa);
3642 if (!sp || sp->role.guest_mode)
3643 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3644 }
3645
3646 kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3647 }
3648 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3649
3650 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3651 u8 level)
3652 {
3653 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3654 struct kvm_mmu_page *sp;
3655
3656 role.level = level;
3657 role.quadrant = quadrant;
3658
3659 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3660 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3661
3662 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3663 ++sp->root_count;
3664
3665 return __pa(sp->spt);
3666 }
3667
3668 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3669 {
3670 struct kvm_mmu *mmu = vcpu->arch.mmu;
3671 u8 shadow_root_level = mmu->root_role.level;
3672 hpa_t root;
3673 unsigned i;
3674 int r;
3675
3676 write_lock(&vcpu->kvm->mmu_lock);
3677 r = make_mmu_pages_available(vcpu);
3678 if (r < 0)
3679 goto out_unlock;
3680
3681 if (tdp_mmu_enabled) {
3682 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3683 mmu->root.hpa = root;
3684 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3685 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3686 mmu->root.hpa = root;
3687 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3688 if (WARN_ON_ONCE(!mmu->pae_root)) {
3689 r = -EIO;
3690 goto out_unlock;
3691 }
3692
3693 for (i = 0; i < 4; ++i) {
3694 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3695
3696 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3697 PT32_ROOT_LEVEL);
3698 mmu->pae_root[i] = root | PT_PRESENT_MASK |
3699 shadow_me_value;
3700 }
3701 mmu->root.hpa = __pa(mmu->pae_root);
3702 } else {
3703 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3704 r = -EIO;
3705 goto out_unlock;
3706 }
3707
3708 /* root.pgd is ignored for direct MMUs. */
3709 mmu->root.pgd = 0;
3710 out_unlock:
3711 write_unlock(&vcpu->kvm->mmu_lock);
3712 return r;
3713 }
3714
3715 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3716 {
3717 struct kvm_memslots *slots;
3718 struct kvm_memory_slot *slot;
3719 int r = 0, i, bkt;
3720
3721 /*
3722 * Check if this is the first shadow root being allocated before
3723 * taking the lock.
3724 */
3725 if (kvm_shadow_root_allocated(kvm))
3726 return 0;
3727
3728 mutex_lock(&kvm->slots_arch_lock);
3729
3730 /* Recheck, under the lock, whether this is the first shadow root. */
3731 if (kvm_shadow_root_allocated(kvm))
3732 goto out_unlock;
3733
3734 /*
3735 * Check if anything actually needs to be allocated, e.g. all metadata
3736 * will be allocated upfront if TDP is disabled.
3737 */
3738 if (kvm_memslots_have_rmaps(kvm) &&
3739 kvm_page_track_write_tracking_enabled(kvm))
3740 goto out_success;
3741
3742 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
3743 slots = __kvm_memslots(kvm, i);
3744 kvm_for_each_memslot(slot, bkt, slots) {
3745 /*
3746 * Both of these functions are no-ops if the target is
3747 * already allocated, so unconditionally calling both
3748 * is safe. Intentionally do NOT free allocations on
3749 * failure to avoid having to track which allocations
3750 * were made now versus when the memslot was created.
3751 * The metadata is guaranteed to be freed when the slot
3752 * is freed, and will be kept/used if userspace retries
3753 * KVM_RUN instead of killing the VM.
3754 */
3755 r = memslot_rmap_alloc(slot, slot->npages);
3756 if (r)
3757 goto out_unlock;
3758 r = kvm_page_track_write_tracking_alloc(slot);
3759 if (r)
3760 goto out_unlock;
3761 }
3762 }
3763
3764 /*
3765 * Ensure that shadow_root_allocated becomes true strictly after
3766 * all the related pointers are set.
3767 */
3768 out_success:
3769 smp_store_release(&kvm->arch.shadow_root_allocated, true);
3770
3771 out_unlock:
3772 mutex_unlock(&kvm->slots_arch_lock);
3773 return r;
3774 }
3775
3776 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3777 {
3778 struct kvm_mmu *mmu = vcpu->arch.mmu;
3779 u64 pdptrs[4], pm_mask;
3780 gfn_t root_gfn, root_pgd;
3781 int quadrant, i, r;
3782 hpa_t root;
3783
3784 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu);
3785 root_gfn = root_pgd >> PAGE_SHIFT;
3786
3787 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3788 mmu->root.hpa = kvm_mmu_get_dummy_root();
3789 return 0;
3790 }
3791
3792 /*
3793 * On SVM, reading PDPTRs might access guest memory, which might fault
3794 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
3795 */
3796 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3797 for (i = 0; i < 4; ++i) {
3798 pdptrs[i] = mmu->get_pdptr(vcpu, i);
3799 if (!(pdptrs[i] & PT_PRESENT_MASK))
3800 continue;
3801
3802 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT))
3803 pdptrs[i] = 0;
3804 }
3805 }
3806
3807 r = mmu_first_shadow_root_alloc(vcpu->kvm);
3808 if (r)
3809 return r;
3810
3811 write_lock(&vcpu->kvm->mmu_lock);
3812 r = make_mmu_pages_available(vcpu);
3813 if (r < 0)
3814 goto out_unlock;
3815
3816 /*
3817 * Do we shadow a long mode page table? If so we need to
3818 * write-protect the guests page table root.
3819 */
3820 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3821 root = mmu_alloc_root(vcpu, root_gfn, 0,
3822 mmu->root_role.level);
3823 mmu->root.hpa = root;
3824 goto set_root_pgd;
3825 }
3826
3827 if (WARN_ON_ONCE(!mmu->pae_root)) {
3828 r = -EIO;
3829 goto out_unlock;
3830 }
3831
3832 /*
3833 * We shadow a 32 bit page table. This may be a legacy 2-level
3834 * or a PAE 3-level page table. In either case we need to be aware that
3835 * the shadow page table may be a PAE or a long mode page table.
3836 */
3837 pm_mask = PT_PRESENT_MASK | shadow_me_value;
3838 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3839 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3840
3841 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3842 r = -EIO;
3843 goto out_unlock;
3844 }
3845 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3846
3847 if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3848 if (WARN_ON_ONCE(!mmu->pml5_root)) {
3849 r = -EIO;
3850 goto out_unlock;
3851 }
3852 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3853 }
3854 }
3855
3856 for (i = 0; i < 4; ++i) {
3857 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3858
3859 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3860 if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3861 mmu->pae_root[i] = INVALID_PAE_ROOT;
3862 continue;
3863 }
3864 root_gfn = pdptrs[i] >> PAGE_SHIFT;
3865 }
3866
3867 /*
3868 * If shadowing 32-bit non-PAE page tables, each PAE page
3869 * directory maps one quarter of the guest's non-PAE page
3870 * directory. Othwerise each PAE page direct shadows one guest
3871 * PAE page directory so that quadrant should be 0.
3872 */
3873 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
3874
3875 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
3876 mmu->pae_root[i] = root | pm_mask;
3877 }
3878
3879 if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3880 mmu->root.hpa = __pa(mmu->pml5_root);
3881 else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3882 mmu->root.hpa = __pa(mmu->pml4_root);
3883 else
3884 mmu->root.hpa = __pa(mmu->pae_root);
3885
3886 set_root_pgd:
3887 mmu->root.pgd = root_pgd;
3888 out_unlock:
3889 write_unlock(&vcpu->kvm->mmu_lock);
3890
3891 return r;
3892 }
3893
3894 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3895 {
3896 struct kvm_mmu *mmu = vcpu->arch.mmu;
3897 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3898 u64 *pml5_root = NULL;
3899 u64 *pml4_root = NULL;
3900 u64 *pae_root;
3901
3902 /*
3903 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3904 * tables are allocated and initialized at root creation as there is no
3905 * equivalent level in the guest's NPT to shadow. Allocate the tables
3906 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3907 */
3908 if (mmu->root_role.direct ||
3909 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3910 mmu->root_role.level < PT64_ROOT_4LEVEL)
3911 return 0;
3912
3913 /*
3914 * NPT, the only paging mode that uses this horror, uses a fixed number
3915 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3916 * all MMus are 5-level. Thus, this can safely require that pml5_root
3917 * is allocated if the other roots are valid and pml5 is needed, as any
3918 * prior MMU would also have required pml5.
3919 */
3920 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3921 return 0;
3922
3923 /*
3924 * The special roots should always be allocated in concert. Yell and
3925 * bail if KVM ends up in a state where only one of the roots is valid.
3926 */
3927 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3928 (need_pml5 && mmu->pml5_root)))
3929 return -EIO;
3930
3931 /*
3932 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3933 * doesn't need to be decrypted.
3934 */
3935 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3936 if (!pae_root)
3937 return -ENOMEM;
3938
3939 #ifdef CONFIG_X86_64
3940 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3941 if (!pml4_root)
3942 goto err_pml4;
3943
3944 if (need_pml5) {
3945 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3946 if (!pml5_root)
3947 goto err_pml5;
3948 }
3949 #endif
3950
3951 mmu->pae_root = pae_root;
3952 mmu->pml4_root = pml4_root;
3953 mmu->pml5_root = pml5_root;
3954
3955 return 0;
3956
3957 #ifdef CONFIG_X86_64
3958 err_pml5:
3959 free_page((unsigned long)pml4_root);
3960 err_pml4:
3961 free_page((unsigned long)pae_root);
3962 return -ENOMEM;
3963 #endif
3964 }
3965
3966 static bool is_unsync_root(hpa_t root)
3967 {
3968 struct kvm_mmu_page *sp;
3969
3970 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root))
3971 return false;
3972
3973 /*
3974 * The read barrier orders the CPU's read of SPTE.W during the page table
3975 * walk before the reads of sp->unsync/sp->unsync_children here.
3976 *
3977 * Even if another CPU was marking the SP as unsync-ed simultaneously,
3978 * any guest page table changes are not guaranteed to be visible anyway
3979 * until this VCPU issues a TLB flush strictly after those changes are
3980 * made. We only need to ensure that the other CPU sets these flags
3981 * before any actual changes to the page tables are made. The comments
3982 * in mmu_try_to_unsync_pages() describe what could go wrong if this
3983 * requirement isn't satisfied.
3984 */
3985 smp_rmb();
3986 sp = root_to_sp(root);
3987
3988 /*
3989 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
3990 * PDPTEs for a given PAE root need to be synchronized individually.
3991 */
3992 if (WARN_ON_ONCE(!sp))
3993 return false;
3994
3995 if (sp->unsync || sp->unsync_children)
3996 return true;
3997
3998 return false;
3999 }
4000
4001 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
4002 {
4003 int i;
4004 struct kvm_mmu_page *sp;
4005
4006 if (vcpu->arch.mmu->root_role.direct)
4007 return;
4008
4009 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
4010 return;
4011
4012 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4013
4014 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
4015 hpa_t root = vcpu->arch.mmu->root.hpa;
4016
4017 if (!is_unsync_root(root))
4018 return;
4019
4020 sp = root_to_sp(root);
4021
4022 write_lock(&vcpu->kvm->mmu_lock);
4023 mmu_sync_children(vcpu, sp, true);
4024 write_unlock(&vcpu->kvm->mmu_lock);
4025 return;
4026 }
4027
4028 write_lock(&vcpu->kvm->mmu_lock);
4029
4030 for (i = 0; i < 4; ++i) {
4031 hpa_t root = vcpu->arch.mmu->pae_root[i];
4032
4033 if (IS_VALID_PAE_ROOT(root)) {
4034 sp = spte_to_child_sp(root);
4035 mmu_sync_children(vcpu, sp, true);
4036 }
4037 }
4038
4039 write_unlock(&vcpu->kvm->mmu_lock);
4040 }
4041
4042 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
4043 {
4044 unsigned long roots_to_free = 0;
4045 int i;
4046
4047 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4048 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
4049 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
4050
4051 /* sync prev_roots by simply freeing them */
4052 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
4053 }
4054
4055 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4056 gpa_t vaddr, u64 access,
4057 struct x86_exception *exception)
4058 {
4059 if (exception)
4060 exception->error_code = 0;
4061 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
4062 }
4063
4064 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4065 {
4066 /*
4067 * A nested guest cannot use the MMIO cache if it is using nested
4068 * page tables, because cr2 is a nGPA while the cache stores GPAs.
4069 */
4070 if (mmu_is_nested(vcpu))
4071 return false;
4072
4073 if (direct)
4074 return vcpu_match_mmio_gpa(vcpu, addr);
4075
4076 return vcpu_match_mmio_gva(vcpu, addr);
4077 }
4078
4079 /*
4080 * Return the level of the lowest level SPTE added to sptes.
4081 * That SPTE may be non-present.
4082 *
4083 * Must be called between walk_shadow_page_lockless_{begin,end}.
4084 */
4085 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
4086 {
4087 struct kvm_shadow_walk_iterator iterator;
4088 int leaf = -1;
4089 u64 spte;
4090
4091 for (shadow_walk_init(&iterator, vcpu, addr),
4092 *root_level = iterator.level;
4093 shadow_walk_okay(&iterator);
4094 __shadow_walk_next(&iterator, spte)) {
4095 leaf = iterator.level;
4096 spte = mmu_spte_get_lockless(iterator.sptep);
4097
4098 sptes[leaf] = spte;
4099 }
4100
4101 return leaf;
4102 }
4103
4104 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
4105 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4106 {
4107 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
4108 struct rsvd_bits_validate *rsvd_check;
4109 int root, leaf, level;
4110 bool reserved = false;
4111
4112 walk_shadow_page_lockless_begin(vcpu);
4113
4114 if (is_tdp_mmu_active(vcpu))
4115 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
4116 else
4117 leaf = get_walk(vcpu, addr, sptes, &root);
4118
4119 walk_shadow_page_lockless_end(vcpu);
4120
4121 if (unlikely(leaf < 0)) {
4122 *sptep = 0ull;
4123 return reserved;
4124 }
4125
4126 *sptep = sptes[leaf];
4127
4128 /*
4129 * Skip reserved bits checks on the terminal leaf if it's not a valid
4130 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
4131 * design, always have reserved bits set. The purpose of the checks is
4132 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
4133 */
4134 if (!is_shadow_present_pte(sptes[leaf]))
4135 leaf++;
4136
4137 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4138
4139 for (level = root; level >= leaf; level--)
4140 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
4141
4142 if (reserved) {
4143 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4144 __func__, addr);
4145 for (level = root; level >= leaf; level--)
4146 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4147 sptes[level], level,
4148 get_rsvd_bits(rsvd_check, sptes[level], level));
4149 }
4150
4151 return reserved;
4152 }
4153
4154 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4155 {
4156 u64 spte;
4157 bool reserved;
4158
4159 if (mmio_info_in_cache(vcpu, addr, direct))
4160 return RET_PF_EMULATE;
4161
4162 reserved = get_mmio_spte(vcpu, addr, &spte);
4163 if (WARN_ON_ONCE(reserved))
4164 return -EINVAL;
4165
4166 if (is_mmio_spte(spte)) {
4167 gfn_t gfn = get_mmio_spte_gfn(spte);
4168 unsigned int access = get_mmio_spte_access(spte);
4169
4170 if (!check_mmio_spte(vcpu, spte))
4171 return RET_PF_INVALID;
4172
4173 if (direct)
4174 addr = 0;
4175
4176 trace_handle_mmio_page_fault(addr, gfn, access);
4177 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4178 return RET_PF_EMULATE;
4179 }
4180
4181 /*
4182 * If the page table is zapped by other cpus, let CPU fault again on
4183 * the address.
4184 */
4185 return RET_PF_RETRY;
4186 }
4187
4188 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4189 struct kvm_page_fault *fault)
4190 {
4191 if (unlikely(fault->rsvd))
4192 return false;
4193
4194 if (!fault->present || !fault->write)
4195 return false;
4196
4197 /*
4198 * guest is writing the page which is write tracked which can
4199 * not be fixed by page fault handler.
4200 */
4201 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn))
4202 return true;
4203
4204 return false;
4205 }
4206
4207 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4208 {
4209 struct kvm_shadow_walk_iterator iterator;
4210 u64 spte;
4211
4212 walk_shadow_page_lockless_begin(vcpu);
4213 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4214 clear_sp_write_flooding_count(iterator.sptep);
4215 walk_shadow_page_lockless_end(vcpu);
4216 }
4217
4218 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4219 {
4220 /* make sure the token value is not 0 */
4221 u32 id = vcpu->arch.apf.id;
4222
4223 if (id << 12 == 0)
4224 vcpu->arch.apf.id = 1;
4225
4226 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4227 }
4228
4229 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4230 gfn_t gfn)
4231 {
4232 struct kvm_arch_async_pf arch;
4233
4234 arch.token = alloc_apf_token(vcpu);
4235 arch.gfn = gfn;
4236 arch.direct_map = vcpu->arch.mmu->root_role.direct;
4237 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu);
4238
4239 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4240 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4241 }
4242
4243 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4244 {
4245 int r;
4246
4247 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4248 work->wakeup_all)
4249 return;
4250
4251 r = kvm_mmu_reload(vcpu);
4252 if (unlikely(r))
4253 return;
4254
4255 if (!vcpu->arch.mmu->root_role.direct &&
4256 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu))
4257 return;
4258
4259 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true, NULL);
4260 }
4261
4262 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4263 {
4264 struct kvm_memory_slot *slot = fault->slot;
4265 bool async;
4266
4267 /*
4268 * Retry the page fault if the gfn hit a memslot that is being deleted
4269 * or moved. This ensures any existing SPTEs for the old memslot will
4270 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
4271 */
4272 if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
4273 return RET_PF_RETRY;
4274
4275 if (!kvm_is_visible_memslot(slot)) {
4276 /* Don't expose private memslots to L2. */
4277 if (is_guest_mode(vcpu)) {
4278 fault->slot = NULL;
4279 fault->pfn = KVM_PFN_NOSLOT;
4280 fault->map_writable = false;
4281 return RET_PF_CONTINUE;
4282 }
4283 /*
4284 * If the APIC access page exists but is disabled, go directly
4285 * to emulation without caching the MMIO access or creating a
4286 * MMIO SPTE. That way the cache doesn't need to be purged
4287 * when the AVIC is re-enabled.
4288 */
4289 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
4290 !kvm_apicv_activated(vcpu->kvm))
4291 return RET_PF_EMULATE;
4292 }
4293
4294 async = false;
4295 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async,
4296 fault->write, &fault->map_writable,
4297 &fault->hva);
4298 if (!async)
4299 return RET_PF_CONTINUE; /* *pfn has correct page already */
4300
4301 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4302 trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4303 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4304 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
4305 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4306 return RET_PF_RETRY;
4307 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) {
4308 return RET_PF_RETRY;
4309 }
4310 }
4311
4312 /*
4313 * Allow gup to bail on pending non-fatal signals when it's also allowed
4314 * to wait for IO. Note, gup always bails if it is unable to quickly
4315 * get a page and a fatal signal, i.e. SIGKILL, is pending.
4316 */
4317 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL,
4318 fault->write, &fault->map_writable,
4319 &fault->hva);
4320 return RET_PF_CONTINUE;
4321 }
4322
4323 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
4324 unsigned int access)
4325 {
4326 int ret;
4327
4328 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4329 smp_rmb();
4330
4331 ret = __kvm_faultin_pfn(vcpu, fault);
4332 if (ret != RET_PF_CONTINUE)
4333 return ret;
4334
4335 if (unlikely(is_error_pfn(fault->pfn)))
4336 return kvm_handle_error_pfn(vcpu, fault);
4337
4338 if (unlikely(!fault->slot))
4339 return kvm_handle_noslot_fault(vcpu, fault, access);
4340
4341 return RET_PF_CONTINUE;
4342 }
4343
4344 /*
4345 * Returns true if the page fault is stale and needs to be retried, i.e. if the
4346 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4347 */
4348 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4349 struct kvm_page_fault *fault)
4350 {
4351 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4352
4353 /* Special roots, e.g. pae_root, are not backed by shadow pages. */
4354 if (sp && is_obsolete_sp(vcpu->kvm, sp))
4355 return true;
4356
4357 /*
4358 * Roots without an associated shadow page are considered invalid if
4359 * there is a pending request to free obsolete roots. The request is
4360 * only a hint that the current root _may_ be obsolete and needs to be
4361 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4362 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4363 * to reload even if no vCPU is actively using the root.
4364 */
4365 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4366 return true;
4367
4368 return fault->slot &&
4369 mmu_invalidate_retry_hva(vcpu->kvm, fault->mmu_seq, fault->hva);
4370 }
4371
4372 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4373 {
4374 int r;
4375
4376 /* Dummy roots are used only for shadowing bad guest roots. */
4377 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa)))
4378 return RET_PF_RETRY;
4379
4380 if (page_fault_handle_page_track(vcpu, fault))
4381 return RET_PF_EMULATE;
4382
4383 r = fast_page_fault(vcpu, fault);
4384 if (r != RET_PF_INVALID)
4385 return r;
4386
4387 r = mmu_topup_memory_caches(vcpu, false);
4388 if (r)
4389 return r;
4390
4391 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4392 if (r != RET_PF_CONTINUE)
4393 return r;
4394
4395 r = RET_PF_RETRY;
4396 write_lock(&vcpu->kvm->mmu_lock);
4397
4398 if (is_page_fault_stale(vcpu, fault))
4399 goto out_unlock;
4400
4401 r = make_mmu_pages_available(vcpu);
4402 if (r)
4403 goto out_unlock;
4404
4405 r = direct_map(vcpu, fault);
4406
4407 out_unlock:
4408 write_unlock(&vcpu->kvm->mmu_lock);
4409 kvm_release_pfn_clean(fault->pfn);
4410 return r;
4411 }
4412
4413 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4414 struct kvm_page_fault *fault)
4415 {
4416 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4417 fault->max_level = PG_LEVEL_2M;
4418 return direct_page_fault(vcpu, fault);
4419 }
4420
4421 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4422 u64 fault_address, char *insn, int insn_len)
4423 {
4424 int r = 1;
4425 u32 flags = vcpu->arch.apf.host_apf_flags;
4426
4427 #ifndef CONFIG_X86_64
4428 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4429 if (WARN_ON_ONCE(fault_address >> 32))
4430 return -EFAULT;
4431 #endif
4432
4433 vcpu->arch.l1tf_flush_l1d = true;
4434 if (!flags) {
4435 trace_kvm_page_fault(vcpu, fault_address, error_code);
4436
4437 if (kvm_event_needs_reinjection(vcpu))
4438 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4439 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4440 insn_len);
4441 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4442 vcpu->arch.apf.host_apf_flags = 0;
4443 local_irq_disable();
4444 kvm_async_pf_task_wait_schedule(fault_address);
4445 local_irq_enable();
4446 } else {
4447 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4448 }
4449
4450 return r;
4451 }
4452 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4453
4454 #ifdef CONFIG_X86_64
4455 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
4456 struct kvm_page_fault *fault)
4457 {
4458 int r;
4459
4460 if (page_fault_handle_page_track(vcpu, fault))
4461 return RET_PF_EMULATE;
4462
4463 r = fast_page_fault(vcpu, fault);
4464 if (r != RET_PF_INVALID)
4465 return r;
4466
4467 r = mmu_topup_memory_caches(vcpu, false);
4468 if (r)
4469 return r;
4470
4471 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4472 if (r != RET_PF_CONTINUE)
4473 return r;
4474
4475 r = RET_PF_RETRY;
4476 read_lock(&vcpu->kvm->mmu_lock);
4477
4478 if (is_page_fault_stale(vcpu, fault))
4479 goto out_unlock;
4480
4481 r = kvm_tdp_mmu_map(vcpu, fault);
4482
4483 out_unlock:
4484 read_unlock(&vcpu->kvm->mmu_lock);
4485 kvm_release_pfn_clean(fault->pfn);
4486 return r;
4487 }
4488 #endif
4489
4490 bool __kvm_mmu_honors_guest_mtrrs(bool vm_has_noncoherent_dma)
4491 {
4492 /*
4493 * If host MTRRs are ignored (shadow_memtype_mask is non-zero), and the
4494 * VM has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is
4495 * to honor the memtype from the guest's MTRRs so that guest accesses
4496 * to memory that is DMA'd aren't cached against the guest's wishes.
4497 *
4498 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs,
4499 * e.g. KVM will force UC memtype for host MMIO.
4500 */
4501 return vm_has_noncoherent_dma && shadow_memtype_mask;
4502 }
4503
4504 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4505 {
4506 /*
4507 * If the guest's MTRRs may be used to compute the "real" memtype,
4508 * restrict the mapping level to ensure KVM uses a consistent memtype
4509 * across the entire mapping.
4510 */
4511 if (kvm_mmu_honors_guest_mtrrs(vcpu->kvm)) {
4512 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) {
4513 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
4514 gfn_t base = gfn_round_for_level(fault->gfn,
4515 fault->max_level);
4516
4517 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4518 break;
4519 }
4520 }
4521
4522 #ifdef CONFIG_X86_64
4523 if (tdp_mmu_enabled)
4524 return kvm_tdp_mmu_page_fault(vcpu, fault);
4525 #endif
4526
4527 return direct_page_fault(vcpu, fault);
4528 }
4529
4530 static void nonpaging_init_context(struct kvm_mmu *context)
4531 {
4532 context->page_fault = nonpaging_page_fault;
4533 context->gva_to_gpa = nonpaging_gva_to_gpa;
4534 context->sync_spte = NULL;
4535 }
4536
4537 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4538 union kvm_mmu_page_role role)
4539 {
4540 struct kvm_mmu_page *sp;
4541
4542 if (!VALID_PAGE(root->hpa))
4543 return false;
4544
4545 if (!role.direct && pgd != root->pgd)
4546 return false;
4547
4548 sp = root_to_sp(root->hpa);
4549 if (WARN_ON_ONCE(!sp))
4550 return false;
4551
4552 return role.word == sp->role.word;
4553 }
4554
4555 /*
4556 * Find out if a previously cached root matching the new pgd/role is available,
4557 * and insert the current root as the MRU in the cache.
4558 * If a matching root is found, it is assigned to kvm_mmu->root and
4559 * true is returned.
4560 * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4561 * evicted to make room for the current root, and false is returned.
4562 */
4563 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4564 gpa_t new_pgd,
4565 union kvm_mmu_page_role new_role)
4566 {
4567 uint i;
4568
4569 if (is_root_usable(&mmu->root, new_pgd, new_role))
4570 return true;
4571
4572 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4573 /*
4574 * The swaps end up rotating the cache like this:
4575 * C 0 1 2 3 (on entry to the function)
4576 * 0 C 1 2 3
4577 * 1 C 0 2 3
4578 * 2 C 0 1 3
4579 * 3 C 0 1 2 (on exit from the loop)
4580 */
4581 swap(mmu->root, mmu->prev_roots[i]);
4582 if (is_root_usable(&mmu->root, new_pgd, new_role))
4583 return true;
4584 }
4585
4586 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4587 return false;
4588 }
4589
4590 /*
4591 * Find out if a previously cached root matching the new pgd/role is available.
4592 * On entry, mmu->root is invalid.
4593 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4594 * of the cache becomes invalid, and true is returned.
4595 * If no match is found, kvm_mmu->root is left invalid and false is returned.
4596 */
4597 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
4598 gpa_t new_pgd,
4599 union kvm_mmu_page_role new_role)
4600 {
4601 uint i;
4602
4603 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4604 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
4605 goto hit;
4606
4607 return false;
4608
4609 hit:
4610 swap(mmu->root, mmu->prev_roots[i]);
4611 /* Bubble up the remaining roots. */
4612 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
4613 mmu->prev_roots[i] = mmu->prev_roots[i + 1];
4614 mmu->prev_roots[i].hpa = INVALID_PAGE;
4615 return true;
4616 }
4617
4618 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
4619 gpa_t new_pgd, union kvm_mmu_page_role new_role)
4620 {
4621 /*
4622 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to
4623 * avoid having to deal with PDPTEs and other complexities.
4624 */
4625 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa))
4626 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4627
4628 if (VALID_PAGE(mmu->root.hpa))
4629 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
4630 else
4631 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
4632 }
4633
4634 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4635 {
4636 struct kvm_mmu *mmu = vcpu->arch.mmu;
4637 union kvm_mmu_page_role new_role = mmu->root_role;
4638
4639 /*
4640 * Return immediately if no usable root was found, kvm_mmu_reload()
4641 * will establish a valid root prior to the next VM-Enter.
4642 */
4643 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role))
4644 return;
4645
4646 /*
4647 * It's possible that the cached previous root page is obsolete because
4648 * of a change in the MMU generation number. However, changing the
4649 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
4650 * which will free the root set here and allocate a new one.
4651 */
4652 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4653
4654 if (force_flush_and_sync_on_reuse) {
4655 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4656 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4657 }
4658
4659 /*
4660 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4661 * switching to a new CR3, that GVA->GPA mapping may no longer be
4662 * valid. So clear any cached MMIO info even when we don't need to sync
4663 * the shadow page tables.
4664 */
4665 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4666
4667 /*
4668 * If this is a direct root page, it doesn't have a write flooding
4669 * count. Otherwise, clear the write flooding count.
4670 */
4671 if (!new_role.direct) {
4672 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4673
4674 if (!WARN_ON_ONCE(!sp))
4675 __clear_sp_write_flooding_count(sp);
4676 }
4677 }
4678 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4679
4680 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4681 unsigned int access)
4682 {
4683 if (unlikely(is_mmio_spte(*sptep))) {
4684 if (gfn != get_mmio_spte_gfn(*sptep)) {
4685 mmu_spte_clear_no_track(sptep);
4686 return true;
4687 }
4688
4689 mark_mmio_spte(vcpu, sptep, gfn, access);
4690 return true;
4691 }
4692
4693 return false;
4694 }
4695
4696 #define PTTYPE_EPT 18 /* arbitrary */
4697 #define PTTYPE PTTYPE_EPT
4698 #include "paging_tmpl.h"
4699 #undef PTTYPE
4700
4701 #define PTTYPE 64
4702 #include "paging_tmpl.h"
4703 #undef PTTYPE
4704
4705 #define PTTYPE 32
4706 #include "paging_tmpl.h"
4707 #undef PTTYPE
4708
4709 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4710 u64 pa_bits_rsvd, int level, bool nx,
4711 bool gbpages, bool pse, bool amd)
4712 {
4713 u64 gbpages_bit_rsvd = 0;
4714 u64 nonleaf_bit8_rsvd = 0;
4715 u64 high_bits_rsvd;
4716
4717 rsvd_check->bad_mt_xwr = 0;
4718
4719 if (!gbpages)
4720 gbpages_bit_rsvd = rsvd_bits(7, 7);
4721
4722 if (level == PT32E_ROOT_LEVEL)
4723 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4724 else
4725 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4726
4727 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4728 if (!nx)
4729 high_bits_rsvd |= rsvd_bits(63, 63);
4730
4731 /*
4732 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4733 * leaf entries) on AMD CPUs only.
4734 */
4735 if (amd)
4736 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4737
4738 switch (level) {
4739 case PT32_ROOT_LEVEL:
4740 /* no rsvd bits for 2 level 4K page table entries */
4741 rsvd_check->rsvd_bits_mask[0][1] = 0;
4742 rsvd_check->rsvd_bits_mask[0][0] = 0;
4743 rsvd_check->rsvd_bits_mask[1][0] =
4744 rsvd_check->rsvd_bits_mask[0][0];
4745
4746 if (!pse) {
4747 rsvd_check->rsvd_bits_mask[1][1] = 0;
4748 break;
4749 }
4750
4751 if (is_cpuid_PSE36())
4752 /* 36bits PSE 4MB page */
4753 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4754 else
4755 /* 32 bits PSE 4MB page */
4756 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4757 break;
4758 case PT32E_ROOT_LEVEL:
4759 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4760 high_bits_rsvd |
4761 rsvd_bits(5, 8) |
4762 rsvd_bits(1, 2); /* PDPTE */
4763 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4764 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4765 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4766 rsvd_bits(13, 20); /* large page */
4767 rsvd_check->rsvd_bits_mask[1][0] =
4768 rsvd_check->rsvd_bits_mask[0][0];
4769 break;
4770 case PT64_ROOT_5LEVEL:
4771 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4772 nonleaf_bit8_rsvd |
4773 rsvd_bits(7, 7);
4774 rsvd_check->rsvd_bits_mask[1][4] =
4775 rsvd_check->rsvd_bits_mask[0][4];
4776 fallthrough;
4777 case PT64_ROOT_4LEVEL:
4778 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4779 nonleaf_bit8_rsvd |
4780 rsvd_bits(7, 7);
4781 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4782 gbpages_bit_rsvd;
4783 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4784 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4785 rsvd_check->rsvd_bits_mask[1][3] =
4786 rsvd_check->rsvd_bits_mask[0][3];
4787 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4788 gbpages_bit_rsvd |
4789 rsvd_bits(13, 29);
4790 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4791 rsvd_bits(13, 20); /* large page */
4792 rsvd_check->rsvd_bits_mask[1][0] =
4793 rsvd_check->rsvd_bits_mask[0][0];
4794 break;
4795 }
4796 }
4797
4798 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4799 struct kvm_mmu *context)
4800 {
4801 __reset_rsvds_bits_mask(&context->guest_rsvd_check,
4802 vcpu->arch.reserved_gpa_bits,
4803 context->cpu_role.base.level, is_efer_nx(context),
4804 guest_can_use(vcpu, X86_FEATURE_GBPAGES),
4805 is_cr4_pse(context),
4806 guest_cpuid_is_amd_or_hygon(vcpu));
4807 }
4808
4809 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4810 u64 pa_bits_rsvd, bool execonly,
4811 int huge_page_level)
4812 {
4813 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4814 u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4815 u64 bad_mt_xwr;
4816
4817 if (huge_page_level < PG_LEVEL_1G)
4818 large_1g_rsvd = rsvd_bits(7, 7);
4819 if (huge_page_level < PG_LEVEL_2M)
4820 large_2m_rsvd = rsvd_bits(7, 7);
4821
4822 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4823 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4824 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
4825 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4826 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4827
4828 /* large page */
4829 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4830 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4831 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
4832 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4833 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4834
4835 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4836 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4837 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4838 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4839 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4840 if (!execonly) {
4841 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4842 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4843 }
4844 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4845 }
4846
4847 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4848 struct kvm_mmu *context, bool execonly, int huge_page_level)
4849 {
4850 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4851 vcpu->arch.reserved_gpa_bits, execonly,
4852 huge_page_level);
4853 }
4854
4855 static inline u64 reserved_hpa_bits(void)
4856 {
4857 return rsvd_bits(shadow_phys_bits, 63);
4858 }
4859
4860 /*
4861 * the page table on host is the shadow page table for the page
4862 * table in guest or amd nested guest, its mmu features completely
4863 * follow the features in guest.
4864 */
4865 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4866 struct kvm_mmu *context)
4867 {
4868 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4869 bool is_amd = true;
4870 /* KVM doesn't use 2-level page tables for the shadow MMU. */
4871 bool is_pse = false;
4872 struct rsvd_bits_validate *shadow_zero_check;
4873 int i;
4874
4875 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
4876
4877 shadow_zero_check = &context->shadow_zero_check;
4878 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4879 context->root_role.level,
4880 context->root_role.efer_nx,
4881 guest_can_use(vcpu, X86_FEATURE_GBPAGES),
4882 is_pse, is_amd);
4883
4884 if (!shadow_me_mask)
4885 return;
4886
4887 for (i = context->root_role.level; --i >= 0;) {
4888 /*
4889 * So far shadow_me_value is a constant during KVM's life
4890 * time. Bits in shadow_me_value are allowed to be set.
4891 * Bits in shadow_me_mask but not in shadow_me_value are
4892 * not allowed to be set.
4893 */
4894 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
4895 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
4896 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
4897 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
4898 }
4899
4900 }
4901
4902 static inline bool boot_cpu_is_amd(void)
4903 {
4904 WARN_ON_ONCE(!tdp_enabled);
4905 return shadow_x_mask == 0;
4906 }
4907
4908 /*
4909 * the direct page table on host, use as much mmu features as
4910 * possible, however, kvm currently does not do execution-protection.
4911 */
4912 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4913 {
4914 struct rsvd_bits_validate *shadow_zero_check;
4915 int i;
4916
4917 shadow_zero_check = &context->shadow_zero_check;
4918
4919 if (boot_cpu_is_amd())
4920 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4921 context->root_role.level, true,
4922 boot_cpu_has(X86_FEATURE_GBPAGES),
4923 false, true);
4924 else
4925 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4926 reserved_hpa_bits(), false,
4927 max_huge_page_level);
4928
4929 if (!shadow_me_mask)
4930 return;
4931
4932 for (i = context->root_role.level; --i >= 0;) {
4933 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4934 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4935 }
4936 }
4937
4938 /*
4939 * as the comments in reset_shadow_zero_bits_mask() except it
4940 * is the shadow page table for intel nested guest.
4941 */
4942 static void
4943 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4944 {
4945 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4946 reserved_hpa_bits(), execonly,
4947 max_huge_page_level);
4948 }
4949
4950 #define BYTE_MASK(access) \
4951 ((1 & (access) ? 2 : 0) | \
4952 (2 & (access) ? 4 : 0) | \
4953 (3 & (access) ? 8 : 0) | \
4954 (4 & (access) ? 16 : 0) | \
4955 (5 & (access) ? 32 : 0) | \
4956 (6 & (access) ? 64 : 0) | \
4957 (7 & (access) ? 128 : 0))
4958
4959
4960 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4961 {
4962 unsigned byte;
4963
4964 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4965 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4966 const u8 u = BYTE_MASK(ACC_USER_MASK);
4967
4968 bool cr4_smep = is_cr4_smep(mmu);
4969 bool cr4_smap = is_cr4_smap(mmu);
4970 bool cr0_wp = is_cr0_wp(mmu);
4971 bool efer_nx = is_efer_nx(mmu);
4972
4973 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4974 unsigned pfec = byte << 1;
4975
4976 /*
4977 * Each "*f" variable has a 1 bit for each UWX value
4978 * that causes a fault with the given PFEC.
4979 */
4980
4981 /* Faults from writes to non-writable pages */
4982 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4983 /* Faults from user mode accesses to supervisor pages */
4984 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4985 /* Faults from fetches of non-executable pages*/
4986 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4987 /* Faults from kernel mode fetches of user pages */
4988 u8 smepf = 0;
4989 /* Faults from kernel mode accesses of user pages */
4990 u8 smapf = 0;
4991
4992 if (!ept) {
4993 /* Faults from kernel mode accesses to user pages */
4994 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4995
4996 /* Not really needed: !nx will cause pte.nx to fault */
4997 if (!efer_nx)
4998 ff = 0;
4999
5000 /* Allow supervisor writes if !cr0.wp */
5001 if (!cr0_wp)
5002 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
5003
5004 /* Disallow supervisor fetches of user code if cr4.smep */
5005 if (cr4_smep)
5006 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
5007
5008 /*
5009 * SMAP:kernel-mode data accesses from user-mode
5010 * mappings should fault. A fault is considered
5011 * as a SMAP violation if all of the following
5012 * conditions are true:
5013 * - X86_CR4_SMAP is set in CR4
5014 * - A user page is accessed
5015 * - The access is not a fetch
5016 * - The access is supervisor mode
5017 * - If implicit supervisor access or X86_EFLAGS_AC is clear
5018 *
5019 * Here, we cover the first four conditions.
5020 * The fifth is computed dynamically in permission_fault();
5021 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
5022 * *not* subject to SMAP restrictions.
5023 */
5024 if (cr4_smap)
5025 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
5026 }
5027
5028 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
5029 }
5030 }
5031
5032 /*
5033 * PKU is an additional mechanism by which the paging controls access to
5034 * user-mode addresses based on the value in the PKRU register. Protection
5035 * key violations are reported through a bit in the page fault error code.
5036 * Unlike other bits of the error code, the PK bit is not known at the
5037 * call site of e.g. gva_to_gpa; it must be computed directly in
5038 * permission_fault based on two bits of PKRU, on some machine state (CR4,
5039 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
5040 *
5041 * In particular the following conditions come from the error code, the
5042 * page tables and the machine state:
5043 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5044 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5045 * - PK is always zero if U=0 in the page tables
5046 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5047 *
5048 * The PKRU bitmask caches the result of these four conditions. The error
5049 * code (minus the P bit) and the page table's U bit form an index into the
5050 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
5051 * with the two bits of the PKRU register corresponding to the protection key.
5052 * For the first three conditions above the bits will be 00, thus masking
5053 * away both AD and WD. For all reads or if the last condition holds, WD
5054 * only will be masked away.
5055 */
5056 static void update_pkru_bitmask(struct kvm_mmu *mmu)
5057 {
5058 unsigned bit;
5059 bool wp;
5060
5061 mmu->pkru_mask = 0;
5062
5063 if (!is_cr4_pke(mmu))
5064 return;
5065
5066 wp = is_cr0_wp(mmu);
5067
5068 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
5069 unsigned pfec, pkey_bits;
5070 bool check_pkey, check_write, ff, uf, wf, pte_user;
5071
5072 pfec = bit << 1;
5073 ff = pfec & PFERR_FETCH_MASK;
5074 uf = pfec & PFERR_USER_MASK;
5075 wf = pfec & PFERR_WRITE_MASK;
5076
5077 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
5078 pte_user = pfec & PFERR_RSVD_MASK;
5079
5080 /*
5081 * Only need to check the access which is not an
5082 * instruction fetch and is to a user page.
5083 */
5084 check_pkey = (!ff && pte_user);
5085 /*
5086 * write access is controlled by PKRU if it is a
5087 * user access or CR0.WP = 1.
5088 */
5089 check_write = check_pkey && wf && (uf || wp);
5090
5091 /* PKRU.AD stops both read and write access. */
5092 pkey_bits = !!check_pkey;
5093 /* PKRU.WD stops write access. */
5094 pkey_bits |= (!!check_write) << 1;
5095
5096 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
5097 }
5098 }
5099
5100 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
5101 struct kvm_mmu *mmu)
5102 {
5103 if (!is_cr0_pg(mmu))
5104 return;
5105
5106 reset_guest_rsvds_bits_mask(vcpu, mmu);
5107 update_permission_bitmask(mmu, false);
5108 update_pkru_bitmask(mmu);
5109 }
5110
5111 static void paging64_init_context(struct kvm_mmu *context)
5112 {
5113 context->page_fault = paging64_page_fault;
5114 context->gva_to_gpa = paging64_gva_to_gpa;
5115 context->sync_spte = paging64_sync_spte;
5116 }
5117
5118 static void paging32_init_context(struct kvm_mmu *context)
5119 {
5120 context->page_fault = paging32_page_fault;
5121 context->gva_to_gpa = paging32_gva_to_gpa;
5122 context->sync_spte = paging32_sync_spte;
5123 }
5124
5125 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu,
5126 const struct kvm_mmu_role_regs *regs)
5127 {
5128 union kvm_cpu_role role = {0};
5129
5130 role.base.access = ACC_ALL;
5131 role.base.smm = is_smm(vcpu);
5132 role.base.guest_mode = is_guest_mode(vcpu);
5133 role.ext.valid = 1;
5134
5135 if (!____is_cr0_pg(regs)) {
5136 role.base.direct = 1;
5137 return role;
5138 }
5139
5140 role.base.efer_nx = ____is_efer_nx(regs);
5141 role.base.cr0_wp = ____is_cr0_wp(regs);
5142 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
5143 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
5144 role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
5145
5146 if (____is_efer_lma(regs))
5147 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
5148 : PT64_ROOT_4LEVEL;
5149 else if (____is_cr4_pae(regs))
5150 role.base.level = PT32E_ROOT_LEVEL;
5151 else
5152 role.base.level = PT32_ROOT_LEVEL;
5153
5154 role.ext.cr4_smep = ____is_cr4_smep(regs);
5155 role.ext.cr4_smap = ____is_cr4_smap(regs);
5156 role.ext.cr4_pse = ____is_cr4_pse(regs);
5157
5158 /* PKEY and LA57 are active iff long mode is active. */
5159 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
5160 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
5161 role.ext.efer_lma = ____is_efer_lma(regs);
5162 return role;
5163 }
5164
5165 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
5166 struct kvm_mmu *mmu)
5167 {
5168 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP);
5169
5170 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP);
5171 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS));
5172
5173 if (is_cr0_wp(mmu) == cr0_wp)
5174 return;
5175
5176 mmu->cpu_role.base.cr0_wp = cr0_wp;
5177 reset_guest_paging_metadata(vcpu, mmu);
5178 }
5179
5180 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
5181 {
5182 /* tdp_root_level is architecture forced level, use it if nonzero */
5183 if (tdp_root_level)
5184 return tdp_root_level;
5185
5186 /* Use 5-level TDP if and only if it's useful/necessary. */
5187 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
5188 return 4;
5189
5190 return max_tdp_level;
5191 }
5192
5193 static union kvm_mmu_page_role
5194 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5195 union kvm_cpu_role cpu_role)
5196 {
5197 union kvm_mmu_page_role role = {0};
5198
5199 role.access = ACC_ALL;
5200 role.cr0_wp = true;
5201 role.efer_nx = true;
5202 role.smm = cpu_role.base.smm;
5203 role.guest_mode = cpu_role.base.guest_mode;
5204 role.ad_disabled = !kvm_ad_enabled();
5205 role.level = kvm_mmu_get_tdp_level(vcpu);
5206 role.direct = true;
5207 role.has_4_byte_gpte = false;
5208
5209 return role;
5210 }
5211
5212 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5213 union kvm_cpu_role cpu_role)
5214 {
5215 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5216 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5217
5218 if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5219 root_role.word == context->root_role.word)
5220 return;
5221
5222 context->cpu_role.as_u64 = cpu_role.as_u64;
5223 context->root_role.word = root_role.word;
5224 context->page_fault = kvm_tdp_page_fault;
5225 context->sync_spte = NULL;
5226 context->get_guest_pgd = get_guest_cr3;
5227 context->get_pdptr = kvm_pdptr_read;
5228 context->inject_page_fault = kvm_inject_page_fault;
5229
5230 if (!is_cr0_pg(context))
5231 context->gva_to_gpa = nonpaging_gva_to_gpa;
5232 else if (is_cr4_pae(context))
5233 context->gva_to_gpa = paging64_gva_to_gpa;
5234 else
5235 context->gva_to_gpa = paging32_gva_to_gpa;
5236
5237 reset_guest_paging_metadata(vcpu, context);
5238 reset_tdp_shadow_zero_bits_mask(context);
5239 }
5240
5241 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5242 union kvm_cpu_role cpu_role,
5243 union kvm_mmu_page_role root_role)
5244 {
5245 if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5246 root_role.word == context->root_role.word)
5247 return;
5248
5249 context->cpu_role.as_u64 = cpu_role.as_u64;
5250 context->root_role.word = root_role.word;
5251
5252 if (!is_cr0_pg(context))
5253 nonpaging_init_context(context);
5254 else if (is_cr4_pae(context))
5255 paging64_init_context(context);
5256 else
5257 paging32_init_context(context);
5258
5259 reset_guest_paging_metadata(vcpu, context);
5260 reset_shadow_zero_bits_mask(vcpu, context);
5261 }
5262
5263 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5264 union kvm_cpu_role cpu_role)
5265 {
5266 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5267 union kvm_mmu_page_role root_role;
5268
5269 root_role = cpu_role.base;
5270
5271 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5272 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5273
5274 /*
5275 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5276 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
5277 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5278 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5279 * The iTLB multi-hit workaround can be toggled at any time, so assume
5280 * NX can be used by any non-nested shadow MMU to avoid having to reset
5281 * MMU contexts.
5282 */
5283 root_role.efer_nx = true;
5284
5285 shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5286 }
5287
5288 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5289 unsigned long cr4, u64 efer, gpa_t nested_cr3)
5290 {
5291 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5292 struct kvm_mmu_role_regs regs = {
5293 .cr0 = cr0,
5294 .cr4 = cr4 & ~X86_CR4_PKE,
5295 .efer = efer,
5296 };
5297 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5298 union kvm_mmu_page_role root_role;
5299
5300 /* NPT requires CR0.PG=1. */
5301 WARN_ON_ONCE(cpu_role.base.direct);
5302
5303 root_role = cpu_role.base;
5304 root_role.level = kvm_mmu_get_tdp_level(vcpu);
5305 if (root_role.level == PT64_ROOT_5LEVEL &&
5306 cpu_role.base.level == PT64_ROOT_4LEVEL)
5307 root_role.passthrough = 1;
5308
5309 shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5310 kvm_mmu_new_pgd(vcpu, nested_cr3);
5311 }
5312 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5313
5314 static union kvm_cpu_role
5315 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5316 bool execonly, u8 level)
5317 {
5318 union kvm_cpu_role role = {0};
5319
5320 /*
5321 * KVM does not support SMM transfer monitors, and consequently does not
5322 * support the "entry to SMM" control either. role.base.smm is always 0.
5323 */
5324 WARN_ON_ONCE(is_smm(vcpu));
5325 role.base.level = level;
5326 role.base.has_4_byte_gpte = false;
5327 role.base.direct = false;
5328 role.base.ad_disabled = !accessed_dirty;
5329 role.base.guest_mode = true;
5330 role.base.access = ACC_ALL;
5331
5332 role.ext.word = 0;
5333 role.ext.execonly = execonly;
5334 role.ext.valid = 1;
5335
5336 return role;
5337 }
5338
5339 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5340 int huge_page_level, bool accessed_dirty,
5341 gpa_t new_eptp)
5342 {
5343 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5344 u8 level = vmx_eptp_page_walk_level(new_eptp);
5345 union kvm_cpu_role new_mode =
5346 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5347 execonly, level);
5348
5349 if (new_mode.as_u64 != context->cpu_role.as_u64) {
5350 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5351 context->cpu_role.as_u64 = new_mode.as_u64;
5352 context->root_role.word = new_mode.base.word;
5353
5354 context->page_fault = ept_page_fault;
5355 context->gva_to_gpa = ept_gva_to_gpa;
5356 context->sync_spte = ept_sync_spte;
5357
5358 update_permission_bitmask(context, true);
5359 context->pkru_mask = 0;
5360 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5361 reset_ept_shadow_zero_bits_mask(context, execonly);
5362 }
5363
5364 kvm_mmu_new_pgd(vcpu, new_eptp);
5365 }
5366 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5367
5368 static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5369 union kvm_cpu_role cpu_role)
5370 {
5371 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5372
5373 kvm_init_shadow_mmu(vcpu, cpu_role);
5374
5375 context->get_guest_pgd = get_guest_cr3;
5376 context->get_pdptr = kvm_pdptr_read;
5377 context->inject_page_fault = kvm_inject_page_fault;
5378 }
5379
5380 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5381 union kvm_cpu_role new_mode)
5382 {
5383 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5384
5385 if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5386 return;
5387
5388 g_context->cpu_role.as_u64 = new_mode.as_u64;
5389 g_context->get_guest_pgd = get_guest_cr3;
5390 g_context->get_pdptr = kvm_pdptr_read;
5391 g_context->inject_page_fault = kvm_inject_page_fault;
5392
5393 /*
5394 * L2 page tables are never shadowed, so there is no need to sync
5395 * SPTEs.
5396 */
5397 g_context->sync_spte = NULL;
5398
5399 /*
5400 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5401 * L1's nested page tables (e.g. EPT12). The nested translation
5402 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5403 * L2's page tables as the first level of translation and L1's
5404 * nested page tables as the second level of translation. Basically
5405 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5406 */
5407 if (!is_paging(vcpu))
5408 g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5409 else if (is_long_mode(vcpu))
5410 g_context->gva_to_gpa = paging64_gva_to_gpa;
5411 else if (is_pae(vcpu))
5412 g_context->gva_to_gpa = paging64_gva_to_gpa;
5413 else
5414 g_context->gva_to_gpa = paging32_gva_to_gpa;
5415
5416 reset_guest_paging_metadata(vcpu, g_context);
5417 }
5418
5419 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5420 {
5421 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5422 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5423
5424 if (mmu_is_nested(vcpu))
5425 init_kvm_nested_mmu(vcpu, cpu_role);
5426 else if (tdp_enabled)
5427 init_kvm_tdp_mmu(vcpu, cpu_role);
5428 else
5429 init_kvm_softmmu(vcpu, cpu_role);
5430 }
5431 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5432
5433 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5434 {
5435 /*
5436 * Invalidate all MMU roles to force them to reinitialize as CPUID
5437 * information is factored into reserved bit calculations.
5438 *
5439 * Correctly handling multiple vCPU models with respect to paging and
5440 * physical address properties) in a single VM would require tracking
5441 * all relevant CPUID information in kvm_mmu_page_role. That is very
5442 * undesirable as it would increase the memory requirements for
5443 * gfn_write_track (see struct kvm_mmu_page_role comments). For now
5444 * that problem is swept under the rug; KVM's CPUID API is horrific and
5445 * it's all but impossible to solve it without introducing a new API.
5446 */
5447 vcpu->arch.root_mmu.root_role.word = 0;
5448 vcpu->arch.guest_mmu.root_role.word = 0;
5449 vcpu->arch.nested_mmu.root_role.word = 0;
5450 vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5451 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5452 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5453 kvm_mmu_reset_context(vcpu);
5454
5455 /*
5456 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5457 * kvm_arch_vcpu_ioctl().
5458 */
5459 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm);
5460 }
5461
5462 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5463 {
5464 kvm_mmu_unload(vcpu);
5465 kvm_init_mmu(vcpu);
5466 }
5467 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5468
5469 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5470 {
5471 int r;
5472
5473 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
5474 if (r)
5475 goto out;
5476 r = mmu_alloc_special_roots(vcpu);
5477 if (r)
5478 goto out;
5479 if (vcpu->arch.mmu->root_role.direct)
5480 r = mmu_alloc_direct_roots(vcpu);
5481 else
5482 r = mmu_alloc_shadow_roots(vcpu);
5483 if (r)
5484 goto out;
5485
5486 kvm_mmu_sync_roots(vcpu);
5487
5488 kvm_mmu_load_pgd(vcpu);
5489
5490 /*
5491 * Flush any TLB entries for the new root, the provenance of the root
5492 * is unknown. Even if KVM ensures there are no stale TLB entries
5493 * for a freed root, in theory another hypervisor could have left
5494 * stale entries. Flushing on alloc also allows KVM to skip the TLB
5495 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5496 */
5497 static_call(kvm_x86_flush_tlb_current)(vcpu);
5498 out:
5499 return r;
5500 }
5501
5502 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5503 {
5504 struct kvm *kvm = vcpu->kvm;
5505
5506 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5507 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5508 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5509 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5510 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5511 }
5512
5513 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5514 {
5515 struct kvm_mmu_page *sp;
5516
5517 if (!VALID_PAGE(root_hpa))
5518 return false;
5519
5520 /*
5521 * When freeing obsolete roots, treat roots as obsolete if they don't
5522 * have an associated shadow page, as it's impossible to determine if
5523 * such roots are fresh or stale. This does mean KVM will get false
5524 * positives and free roots that don't strictly need to be freed, but
5525 * such false positives are relatively rare:
5526 *
5527 * (a) only PAE paging and nested NPT have roots without shadow pages
5528 * (or any shadow paging flavor with a dummy root, see note below)
5529 * (b) remote reloads due to a memslot update obsoletes _all_ roots
5530 * (c) KVM doesn't track previous roots for PAE paging, and the guest
5531 * is unlikely to zap an in-use PGD.
5532 *
5533 * Note! Dummy roots are unique in that they are obsoleted by memslot
5534 * _creation_! See also FNAME(fetch).
5535 */
5536 sp = root_to_sp(root_hpa);
5537 return !sp || is_obsolete_sp(kvm, sp);
5538 }
5539
5540 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5541 {
5542 unsigned long roots_to_free = 0;
5543 int i;
5544
5545 if (is_obsolete_root(kvm, mmu->root.hpa))
5546 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5547
5548 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5549 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
5550 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5551 }
5552
5553 if (roots_to_free)
5554 kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5555 }
5556
5557 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5558 {
5559 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5560 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
5561 }
5562
5563 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5564 int *bytes)
5565 {
5566 u64 gentry = 0;
5567 int r;
5568
5569 /*
5570 * Assume that the pte write on a page table of the same type
5571 * as the current vcpu paging mode since we update the sptes only
5572 * when they have the same mode.
5573 */
5574 if (is_pae(vcpu) && *bytes == 4) {
5575 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5576 *gpa &= ~(gpa_t)7;
5577 *bytes = 8;
5578 }
5579
5580 if (*bytes == 4 || *bytes == 8) {
5581 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5582 if (r)
5583 gentry = 0;
5584 }
5585
5586 return gentry;
5587 }
5588
5589 /*
5590 * If we're seeing too many writes to a page, it may no longer be a page table,
5591 * or we may be forking, in which case it is better to unmap the page.
5592 */
5593 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5594 {
5595 /*
5596 * Skip write-flooding detected for the sp whose level is 1, because
5597 * it can become unsync, then the guest page is not write-protected.
5598 */
5599 if (sp->role.level == PG_LEVEL_4K)
5600 return false;
5601
5602 atomic_inc(&sp->write_flooding_count);
5603 return atomic_read(&sp->write_flooding_count) >= 3;
5604 }
5605
5606 /*
5607 * Misaligned accesses are too much trouble to fix up; also, they usually
5608 * indicate a page is not used as a page table.
5609 */
5610 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5611 int bytes)
5612 {
5613 unsigned offset, pte_size, misaligned;
5614
5615 offset = offset_in_page(gpa);
5616 pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5617
5618 /*
5619 * Sometimes, the OS only writes the last one bytes to update status
5620 * bits, for example, in linux, andb instruction is used in clear_bit().
5621 */
5622 if (!(offset & (pte_size - 1)) && bytes == 1)
5623 return false;
5624
5625 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5626 misaligned |= bytes < 4;
5627
5628 return misaligned;
5629 }
5630
5631 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5632 {
5633 unsigned page_offset, quadrant;
5634 u64 *spte;
5635 int level;
5636
5637 page_offset = offset_in_page(gpa);
5638 level = sp->role.level;
5639 *nspte = 1;
5640 if (sp->role.has_4_byte_gpte) {
5641 page_offset <<= 1; /* 32->64 */
5642 /*
5643 * A 32-bit pde maps 4MB while the shadow pdes map
5644 * only 2MB. So we need to double the offset again
5645 * and zap two pdes instead of one.
5646 */
5647 if (level == PT32_ROOT_LEVEL) {
5648 page_offset &= ~7; /* kill rounding error */
5649 page_offset <<= 1;
5650 *nspte = 2;
5651 }
5652 quadrant = page_offset >> PAGE_SHIFT;
5653 page_offset &= ~PAGE_MASK;
5654 if (quadrant != sp->role.quadrant)
5655 return NULL;
5656 }
5657
5658 spte = &sp->spt[page_offset / sizeof(*spte)];
5659 return spte;
5660 }
5661
5662 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
5663 int bytes)
5664 {
5665 gfn_t gfn = gpa >> PAGE_SHIFT;
5666 struct kvm_mmu_page *sp;
5667 LIST_HEAD(invalid_list);
5668 u64 entry, gentry, *spte;
5669 int npte;
5670 bool flush = false;
5671
5672 /*
5673 * If we don't have indirect shadow pages, it means no page is
5674 * write-protected, so we can exit simply.
5675 */
5676 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5677 return;
5678
5679 write_lock(&vcpu->kvm->mmu_lock);
5680
5681 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5682
5683 ++vcpu->kvm->stat.mmu_pte_write;
5684
5685 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5686 if (detect_write_misaligned(sp, gpa, bytes) ||
5687 detect_write_flooding(sp)) {
5688 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5689 ++vcpu->kvm->stat.mmu_flooded;
5690 continue;
5691 }
5692
5693 spte = get_written_sptes(sp, gpa, &npte);
5694 if (!spte)
5695 continue;
5696
5697 while (npte--) {
5698 entry = *spte;
5699 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5700 if (gentry && sp->role.level != PG_LEVEL_4K)
5701 ++vcpu->kvm->stat.mmu_pde_zapped;
5702 if (is_shadow_present_pte(entry))
5703 flush = true;
5704 ++spte;
5705 }
5706 }
5707 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5708 write_unlock(&vcpu->kvm->mmu_lock);
5709 }
5710
5711 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5712 void *insn, int insn_len)
5713 {
5714 int r, emulation_type = EMULTYPE_PF;
5715 bool direct = vcpu->arch.mmu->root_role.direct;
5716
5717 /*
5718 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP
5719 * checks when emulating instructions that triggers implicit access.
5720 * WARN if hardware generates a fault with an error code that collides
5721 * with the KVM-defined value. Clear the flag and continue on, i.e.
5722 * don't terminate the VM, as KVM can't possibly be relying on a flag
5723 * that KVM doesn't know about.
5724 */
5725 if (WARN_ON_ONCE(error_code & PFERR_IMPLICIT_ACCESS))
5726 error_code &= ~PFERR_IMPLICIT_ACCESS;
5727
5728 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5729 return RET_PF_RETRY;
5730
5731 r = RET_PF_INVALID;
5732 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5733 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5734 if (r == RET_PF_EMULATE)
5735 goto emulate;
5736 }
5737
5738 if (r == RET_PF_INVALID) {
5739 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5740 lower_32_bits(error_code), false,
5741 &emulation_type);
5742 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5743 return -EIO;
5744 }
5745
5746 if (r < 0)
5747 return r;
5748 if (r != RET_PF_EMULATE)
5749 return 1;
5750
5751 /*
5752 * Before emulating the instruction, check if the error code
5753 * was due to a RO violation while translating the guest page.
5754 * This can occur when using nested virtualization with nested
5755 * paging in both guests. If true, we simply unprotect the page
5756 * and resume the guest.
5757 */
5758 if (vcpu->arch.mmu->root_role.direct &&
5759 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5760 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5761 return 1;
5762 }
5763
5764 /*
5765 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5766 * optimistically try to just unprotect the page and let the processor
5767 * re-execute the instruction that caused the page fault. Do not allow
5768 * retrying MMIO emulation, as it's not only pointless but could also
5769 * cause us to enter an infinite loop because the processor will keep
5770 * faulting on the non-existent MMIO address. Retrying an instruction
5771 * from a nested guest is also pointless and dangerous as we are only
5772 * explicitly shadowing L1's page tables, i.e. unprotecting something
5773 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5774 */
5775 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5776 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5777 emulate:
5778 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5779 insn_len);
5780 }
5781 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5782
5783 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5784 u64 addr, hpa_t root_hpa)
5785 {
5786 struct kvm_shadow_walk_iterator iterator;
5787
5788 vcpu_clear_mmio_info(vcpu, addr);
5789
5790 /*
5791 * Walking and synchronizing SPTEs both assume they are operating in
5792 * the context of the current MMU, and would need to be reworked if
5793 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT.
5794 */
5795 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu))
5796 return;
5797
5798 if (!VALID_PAGE(root_hpa))
5799 return;
5800
5801 write_lock(&vcpu->kvm->mmu_lock);
5802 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
5803 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep);
5804
5805 if (sp->unsync) {
5806 int ret = kvm_sync_spte(vcpu, sp, iterator.index);
5807
5808 if (ret < 0)
5809 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL);
5810 if (ret)
5811 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep);
5812 }
5813
5814 if (!sp->unsync_children)
5815 break;
5816 }
5817 write_unlock(&vcpu->kvm->mmu_lock);
5818 }
5819
5820 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5821 u64 addr, unsigned long roots)
5822 {
5823 int i;
5824
5825 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL);
5826
5827 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5828 if (mmu != &vcpu->arch.guest_mmu) {
5829 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5830 if (is_noncanonical_address(addr, vcpu))
5831 return;
5832
5833 static_call(kvm_x86_flush_tlb_gva)(vcpu, addr);
5834 }
5835
5836 if (!mmu->sync_spte)
5837 return;
5838
5839 if (roots & KVM_MMU_ROOT_CURRENT)
5840 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa);
5841
5842 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5843 if (roots & KVM_MMU_ROOT_PREVIOUS(i))
5844 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa);
5845 }
5846 }
5847 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr);
5848
5849 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5850 {
5851 /*
5852 * INVLPG is required to invalidate any global mappings for the VA,
5853 * irrespective of PCID. Blindly sync all roots as it would take
5854 * roughly the same amount of work/time to determine whether any of the
5855 * previous roots have a global mapping.
5856 *
5857 * Mappings not reachable via the current or previous cached roots will
5858 * be synced when switching to that new cr3, so nothing needs to be
5859 * done here for them.
5860 */
5861 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL);
5862 ++vcpu->stat.invlpg;
5863 }
5864 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5865
5866
5867 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5868 {
5869 struct kvm_mmu *mmu = vcpu->arch.mmu;
5870 unsigned long roots = 0;
5871 uint i;
5872
5873 if (pcid == kvm_get_active_pcid(vcpu))
5874 roots |= KVM_MMU_ROOT_CURRENT;
5875
5876 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5877 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5878 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd))
5879 roots |= KVM_MMU_ROOT_PREVIOUS(i);
5880 }
5881
5882 if (roots)
5883 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots);
5884 ++vcpu->stat.invlpg;
5885
5886 /*
5887 * Mappings not reachable via the current cr3 or the prev_roots will be
5888 * synced when switching to that cr3, so nothing needs to be done here
5889 * for them.
5890 */
5891 }
5892
5893 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5894 int tdp_max_root_level, int tdp_huge_page_level)
5895 {
5896 tdp_enabled = enable_tdp;
5897 tdp_root_level = tdp_forced_root_level;
5898 max_tdp_level = tdp_max_root_level;
5899
5900 #ifdef CONFIG_X86_64
5901 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled;
5902 #endif
5903 /*
5904 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5905 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5906 * the kernel is not. But, KVM never creates a page size greater than
5907 * what is used by the kernel for any given HVA, i.e. the kernel's
5908 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5909 */
5910 if (tdp_enabled)
5911 max_huge_page_level = tdp_huge_page_level;
5912 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5913 max_huge_page_level = PG_LEVEL_1G;
5914 else
5915 max_huge_page_level = PG_LEVEL_2M;
5916 }
5917 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5918
5919 /* The return value indicates if tlb flush on all vcpus is needed. */
5920 typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
5921 struct kvm_rmap_head *rmap_head,
5922 const struct kvm_memory_slot *slot);
5923
5924 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
5925 const struct kvm_memory_slot *slot,
5926 slot_rmaps_handler fn,
5927 int start_level, int end_level,
5928 gfn_t start_gfn, gfn_t end_gfn,
5929 bool flush_on_yield, bool flush)
5930 {
5931 struct slot_rmap_walk_iterator iterator;
5932
5933 lockdep_assert_held_write(&kvm->mmu_lock);
5934
5935 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
5936 end_gfn, &iterator) {
5937 if (iterator.rmap)
5938 flush |= fn(kvm, iterator.rmap, slot);
5939
5940 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5941 if (flush && flush_on_yield) {
5942 kvm_flush_remote_tlbs_range(kvm, start_gfn,
5943 iterator.gfn - start_gfn + 1);
5944 flush = false;
5945 }
5946 cond_resched_rwlock_write(&kvm->mmu_lock);
5947 }
5948 }
5949
5950 return flush;
5951 }
5952
5953 static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
5954 const struct kvm_memory_slot *slot,
5955 slot_rmaps_handler fn,
5956 int start_level, int end_level,
5957 bool flush_on_yield)
5958 {
5959 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
5960 slot->base_gfn, slot->base_gfn + slot->npages - 1,
5961 flush_on_yield, false);
5962 }
5963
5964 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
5965 const struct kvm_memory_slot *slot,
5966 slot_rmaps_handler fn,
5967 bool flush_on_yield)
5968 {
5969 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield);
5970 }
5971
5972 static void free_mmu_pages(struct kvm_mmu *mmu)
5973 {
5974 if (!tdp_enabled && mmu->pae_root)
5975 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5976 free_page((unsigned long)mmu->pae_root);
5977 free_page((unsigned long)mmu->pml4_root);
5978 free_page((unsigned long)mmu->pml5_root);
5979 }
5980
5981 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5982 {
5983 struct page *page;
5984 int i;
5985
5986 mmu->root.hpa = INVALID_PAGE;
5987 mmu->root.pgd = 0;
5988 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5989 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5990
5991 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
5992 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
5993 return 0;
5994
5995 /*
5996 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5997 * while the PDP table is a per-vCPU construct that's allocated at MMU
5998 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5999 * x86_64. Therefore we need to allocate the PDP table in the first
6000 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
6001 * generally doesn't use PAE paging and can skip allocating the PDP
6002 * table. The main exception, handled here, is SVM's 32-bit NPT. The
6003 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
6004 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
6005 */
6006 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
6007 return 0;
6008
6009 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
6010 if (!page)
6011 return -ENOMEM;
6012
6013 mmu->pae_root = page_address(page);
6014
6015 /*
6016 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
6017 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
6018 * that KVM's writes and the CPU's reads get along. Note, this is
6019 * only necessary when using shadow paging, as 64-bit NPT can get at
6020 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
6021 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
6022 */
6023 if (!tdp_enabled)
6024 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
6025 else
6026 WARN_ON_ONCE(shadow_me_value);
6027
6028 for (i = 0; i < 4; ++i)
6029 mmu->pae_root[i] = INVALID_PAE_ROOT;
6030
6031 return 0;
6032 }
6033
6034 int kvm_mmu_create(struct kvm_vcpu *vcpu)
6035 {
6036 int ret;
6037
6038 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
6039 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
6040
6041 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
6042 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
6043
6044 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
6045
6046 vcpu->arch.mmu = &vcpu->arch.root_mmu;
6047 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6048
6049 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
6050 if (ret)
6051 return ret;
6052
6053 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
6054 if (ret)
6055 goto fail_allocate_root;
6056
6057 return ret;
6058 fail_allocate_root:
6059 free_mmu_pages(&vcpu->arch.guest_mmu);
6060 return ret;
6061 }
6062
6063 #define BATCH_ZAP_PAGES 10
6064 static void kvm_zap_obsolete_pages(struct kvm *kvm)
6065 {
6066 struct kvm_mmu_page *sp, *node;
6067 int nr_zapped, batch = 0;
6068 bool unstable;
6069
6070 restart:
6071 list_for_each_entry_safe_reverse(sp, node,
6072 &kvm->arch.active_mmu_pages, link) {
6073 /*
6074 * No obsolete valid page exists before a newly created page
6075 * since active_mmu_pages is a FIFO list.
6076 */
6077 if (!is_obsolete_sp(kvm, sp))
6078 break;
6079
6080 /*
6081 * Invalid pages should never land back on the list of active
6082 * pages. Skip the bogus page, otherwise we'll get stuck in an
6083 * infinite loop if the page gets put back on the list (again).
6084 */
6085 if (WARN_ON_ONCE(sp->role.invalid))
6086 continue;
6087
6088 /*
6089 * No need to flush the TLB since we're only zapping shadow
6090 * pages with an obsolete generation number and all vCPUS have
6091 * loaded a new root, i.e. the shadow pages being zapped cannot
6092 * be in active use by the guest.
6093 */
6094 if (batch >= BATCH_ZAP_PAGES &&
6095 cond_resched_rwlock_write(&kvm->mmu_lock)) {
6096 batch = 0;
6097 goto restart;
6098 }
6099
6100 unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
6101 &kvm->arch.zapped_obsolete_pages, &nr_zapped);
6102 batch += nr_zapped;
6103
6104 if (unstable)
6105 goto restart;
6106 }
6107
6108 /*
6109 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
6110 * to ensure KVM is not in the middle of a lockless shadow page table
6111 * walk, which may reference the pages. The remote TLB flush itself is
6112 * not required and is simply a convenient way to kick vCPUs as needed.
6113 * KVM performs a local TLB flush when allocating a new root (see
6114 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
6115 * running with an obsolete MMU.
6116 */
6117 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
6118 }
6119
6120 /*
6121 * Fast invalidate all shadow pages and use lock-break technique
6122 * to zap obsolete pages.
6123 *
6124 * It's required when memslot is being deleted or VM is being
6125 * destroyed, in these cases, we should ensure that KVM MMU does
6126 * not use any resource of the being-deleted slot or all slots
6127 * after calling the function.
6128 */
6129 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
6130 {
6131 lockdep_assert_held(&kvm->slots_lock);
6132
6133 write_lock(&kvm->mmu_lock);
6134 trace_kvm_mmu_zap_all_fast(kvm);
6135
6136 /*
6137 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
6138 * held for the entire duration of zapping obsolete pages, it's
6139 * impossible for there to be multiple invalid generations associated
6140 * with *valid* shadow pages at any given time, i.e. there is exactly
6141 * one valid generation and (at most) one invalid generation.
6142 */
6143 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
6144
6145 /*
6146 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
6147 * invalidating TDP MMU roots must be done while holding mmu_lock for
6148 * write and in the same critical section as making the reload request,
6149 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
6150 */
6151 if (tdp_mmu_enabled)
6152 kvm_tdp_mmu_invalidate_all_roots(kvm);
6153
6154 /*
6155 * Notify all vcpus to reload its shadow page table and flush TLB.
6156 * Then all vcpus will switch to new shadow page table with the new
6157 * mmu_valid_gen.
6158 *
6159 * Note: we need to do this under the protection of mmu_lock,
6160 * otherwise, vcpu would purge shadow page but miss tlb flush.
6161 */
6162 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
6163
6164 kvm_zap_obsolete_pages(kvm);
6165
6166 write_unlock(&kvm->mmu_lock);
6167
6168 /*
6169 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
6170 * returning to the caller, e.g. if the zap is in response to a memslot
6171 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
6172 * associated with the deleted memslot once the update completes, and
6173 * Deferring the zap until the final reference to the root is put would
6174 * lead to use-after-free.
6175 */
6176 if (tdp_mmu_enabled)
6177 kvm_tdp_mmu_zap_invalidated_roots(kvm);
6178 }
6179
6180 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
6181 {
6182 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
6183 }
6184
6185 void kvm_mmu_init_vm(struct kvm *kvm)
6186 {
6187 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6188 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6189 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages);
6190 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
6191
6192 if (tdp_mmu_enabled)
6193 kvm_mmu_init_tdp_mmu(kvm);
6194
6195 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
6196 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
6197
6198 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
6199
6200 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
6201 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
6202 }
6203
6204 static void mmu_free_vm_memory_caches(struct kvm *kvm)
6205 {
6206 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
6207 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
6208 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
6209 }
6210
6211 void kvm_mmu_uninit_vm(struct kvm *kvm)
6212 {
6213 if (tdp_mmu_enabled)
6214 kvm_mmu_uninit_tdp_mmu(kvm);
6215
6216 mmu_free_vm_memory_caches(kvm);
6217 }
6218
6219 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6220 {
6221 const struct kvm_memory_slot *memslot;
6222 struct kvm_memslots *slots;
6223 struct kvm_memslot_iter iter;
6224 bool flush = false;
6225 gfn_t start, end;
6226 int i;
6227
6228 if (!kvm_memslots_have_rmaps(kvm))
6229 return flush;
6230
6231 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6232 slots = __kvm_memslots(kvm, i);
6233
6234 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6235 memslot = iter.slot;
6236 start = max(gfn_start, memslot->base_gfn);
6237 end = min(gfn_end, memslot->base_gfn + memslot->npages);
6238 if (WARN_ON_ONCE(start >= end))
6239 continue;
6240
6241 flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap,
6242 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
6243 start, end - 1, true, flush);
6244 }
6245 }
6246
6247 return flush;
6248 }
6249
6250 /*
6251 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6252 * (not including it)
6253 */
6254 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6255 {
6256 bool flush;
6257
6258 if (WARN_ON_ONCE(gfn_end <= gfn_start))
6259 return;
6260
6261 write_lock(&kvm->mmu_lock);
6262
6263 kvm_mmu_invalidate_begin(kvm, 0, -1ul);
6264
6265 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6266
6267 if (tdp_mmu_enabled)
6268 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush);
6269
6270 if (flush)
6271 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start);
6272
6273 kvm_mmu_invalidate_end(kvm, 0, -1ul);
6274
6275 write_unlock(&kvm->mmu_lock);
6276 }
6277
6278 static bool slot_rmap_write_protect(struct kvm *kvm,
6279 struct kvm_rmap_head *rmap_head,
6280 const struct kvm_memory_slot *slot)
6281 {
6282 return rmap_write_protect(rmap_head, false);
6283 }
6284
6285 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6286 const struct kvm_memory_slot *memslot,
6287 int start_level)
6288 {
6289 if (kvm_memslots_have_rmaps(kvm)) {
6290 write_lock(&kvm->mmu_lock);
6291 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect,
6292 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
6293 write_unlock(&kvm->mmu_lock);
6294 }
6295
6296 if (tdp_mmu_enabled) {
6297 read_lock(&kvm->mmu_lock);
6298 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
6299 read_unlock(&kvm->mmu_lock);
6300 }
6301 }
6302
6303 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6304 {
6305 return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
6306 }
6307
6308 static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6309 {
6310 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
6311 return true;
6312
6313 /*
6314 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6315 * to split a single huge page. Calculating how many are actually needed
6316 * is possible but not worth the complexity.
6317 */
6318 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6319 need_topup(&kvm->arch.split_page_header_cache, 1) ||
6320 need_topup(&kvm->arch.split_shadow_page_cache, 1);
6321 }
6322
6323 static int topup_split_caches(struct kvm *kvm)
6324 {
6325 /*
6326 * Allocating rmap list entries when splitting huge pages for nested
6327 * MMUs is uncommon as KVM needs to use a list if and only if there is
6328 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6329 * aliased by multiple L2 gfns and/or from multiple nested roots with
6330 * different roles. Aliasing gfns when using TDP is atypical for VMMs;
6331 * a few gfns are often aliased during boot, e.g. when remapping BIOS,
6332 * but aliasing rarely occurs post-boot or for many gfns. If there is
6333 * only one rmap entry, rmap->val points directly at that one entry and
6334 * doesn't need to allocate a list. Buffer the cache by the default
6335 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
6336 * encounters an aliased gfn or two.
6337 */
6338 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
6339 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
6340 int r;
6341
6342 lockdep_assert_held(&kvm->slots_lock);
6343
6344 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
6345 SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
6346 if (r)
6347 return r;
6348
6349 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
6350 if (r)
6351 return r;
6352
6353 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
6354 }
6355
6356 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
6357 {
6358 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6359 struct shadow_page_caches caches = {};
6360 union kvm_mmu_page_role role;
6361 unsigned int access;
6362 gfn_t gfn;
6363
6364 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6365 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
6366
6367 /*
6368 * Note, huge page splitting always uses direct shadow pages, regardless
6369 * of whether the huge page itself is mapped by a direct or indirect
6370 * shadow page, since the huge page region itself is being directly
6371 * mapped with smaller pages.
6372 */
6373 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
6374
6375 /* Direct SPs do not require a shadowed_info_cache. */
6376 caches.page_header_cache = &kvm->arch.split_page_header_cache;
6377 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
6378
6379 /* Safe to pass NULL for vCPU since requesting a direct SP. */
6380 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
6381 }
6382
6383 static void shadow_mmu_split_huge_page(struct kvm *kvm,
6384 const struct kvm_memory_slot *slot,
6385 u64 *huge_sptep)
6386
6387 {
6388 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
6389 u64 huge_spte = READ_ONCE(*huge_sptep);
6390 struct kvm_mmu_page *sp;
6391 bool flush = false;
6392 u64 *sptep, spte;
6393 gfn_t gfn;
6394 int index;
6395
6396 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
6397
6398 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
6399 sptep = &sp->spt[index];
6400 gfn = kvm_mmu_page_get_gfn(sp, index);
6401
6402 /*
6403 * The SP may already have populated SPTEs, e.g. if this huge
6404 * page is aliased by multiple sptes with the same access
6405 * permissions. These entries are guaranteed to map the same
6406 * gfn-to-pfn translation since the SP is direct, so no need to
6407 * modify them.
6408 *
6409 * However, if a given SPTE points to a lower level page table,
6410 * that lower level page table may only be partially populated.
6411 * Installing such SPTEs would effectively unmap a potion of the
6412 * huge page. Unmapping guest memory always requires a TLB flush
6413 * since a subsequent operation on the unmapped regions would
6414 * fail to detect the need to flush.
6415 */
6416 if (is_shadow_present_pte(*sptep)) {
6417 flush |= !is_last_spte(*sptep, sp->role.level);
6418 continue;
6419 }
6420
6421 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index);
6422 mmu_spte_set(sptep, spte);
6423 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
6424 }
6425
6426 __link_shadow_page(kvm, cache, huge_sptep, sp, flush);
6427 }
6428
6429 static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
6430 const struct kvm_memory_slot *slot,
6431 u64 *huge_sptep)
6432 {
6433 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6434 int level, r = 0;
6435 gfn_t gfn;
6436 u64 spte;
6437
6438 /* Grab information for the tracepoint before dropping the MMU lock. */
6439 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6440 level = huge_sp->role.level;
6441 spte = *huge_sptep;
6442
6443 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
6444 r = -ENOSPC;
6445 goto out;
6446 }
6447
6448 if (need_topup_split_caches_or_resched(kvm)) {
6449 write_unlock(&kvm->mmu_lock);
6450 cond_resched();
6451 /*
6452 * If the topup succeeds, return -EAGAIN to indicate that the
6453 * rmap iterator should be restarted because the MMU lock was
6454 * dropped.
6455 */
6456 r = topup_split_caches(kvm) ?: -EAGAIN;
6457 write_lock(&kvm->mmu_lock);
6458 goto out;
6459 }
6460
6461 shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
6462
6463 out:
6464 trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
6465 return r;
6466 }
6467
6468 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6469 struct kvm_rmap_head *rmap_head,
6470 const struct kvm_memory_slot *slot)
6471 {
6472 struct rmap_iterator iter;
6473 struct kvm_mmu_page *sp;
6474 u64 *huge_sptep;
6475 int r;
6476
6477 restart:
6478 for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
6479 sp = sptep_to_sp(huge_sptep);
6480
6481 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
6482 if (WARN_ON_ONCE(!sp->role.guest_mode))
6483 continue;
6484
6485 /* The rmaps should never contain non-leaf SPTEs. */
6486 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
6487 continue;
6488
6489 /* SPs with level >PG_LEVEL_4K should never by unsync. */
6490 if (WARN_ON_ONCE(sp->unsync))
6491 continue;
6492
6493 /* Don't bother splitting huge pages on invalid SPs. */
6494 if (sp->role.invalid)
6495 continue;
6496
6497 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
6498
6499 /*
6500 * The split succeeded or needs to be retried because the MMU
6501 * lock was dropped. Either way, restart the iterator to get it
6502 * back into a consistent state.
6503 */
6504 if (!r || r == -EAGAIN)
6505 goto restart;
6506
6507 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */
6508 break;
6509 }
6510
6511 return false;
6512 }
6513
6514 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6515 const struct kvm_memory_slot *slot,
6516 gfn_t start, gfn_t end,
6517 int target_level)
6518 {
6519 int level;
6520
6521 /*
6522 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
6523 * down to the target level. This ensures pages are recursively split
6524 * all the way to the target level. There's no need to split pages
6525 * already at the target level.
6526 */
6527 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--)
6528 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages,
6529 level, level, start, end - 1, true, false);
6530 }
6531
6532 /* Must be called with the mmu_lock held in write-mode. */
6533 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
6534 const struct kvm_memory_slot *memslot,
6535 u64 start, u64 end,
6536 int target_level)
6537 {
6538 if (!tdp_mmu_enabled)
6539 return;
6540
6541 if (kvm_memslots_have_rmaps(kvm))
6542 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6543
6544 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
6545
6546 /*
6547 * A TLB flush is unnecessary at this point for the same resons as in
6548 * kvm_mmu_slot_try_split_huge_pages().
6549 */
6550 }
6551
6552 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
6553 const struct kvm_memory_slot *memslot,
6554 int target_level)
6555 {
6556 u64 start = memslot->base_gfn;
6557 u64 end = start + memslot->npages;
6558
6559 if (!tdp_mmu_enabled)
6560 return;
6561
6562 if (kvm_memslots_have_rmaps(kvm)) {
6563 write_lock(&kvm->mmu_lock);
6564 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6565 write_unlock(&kvm->mmu_lock);
6566 }
6567
6568 read_lock(&kvm->mmu_lock);
6569 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
6570 read_unlock(&kvm->mmu_lock);
6571
6572 /*
6573 * No TLB flush is necessary here. KVM will flush TLBs after
6574 * write-protecting and/or clearing dirty on the newly split SPTEs to
6575 * ensure that guest writes are reflected in the dirty log before the
6576 * ioctl to enable dirty logging on this memslot completes. Since the
6577 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
6578 * safe for KVM to decide if a TLB flush is necessary based on the split
6579 * SPTEs.
6580 */
6581 }
6582
6583 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6584 struct kvm_rmap_head *rmap_head,
6585 const struct kvm_memory_slot *slot)
6586 {
6587 u64 *sptep;
6588 struct rmap_iterator iter;
6589 int need_tlb_flush = 0;
6590 struct kvm_mmu_page *sp;
6591
6592 restart:
6593 for_each_rmap_spte(rmap_head, &iter, sptep) {
6594 sp = sptep_to_sp(sptep);
6595
6596 /*
6597 * We cannot do huge page mapping for indirect shadow pages,
6598 * which are found on the last rmap (level = 1) when not using
6599 * tdp; such shadow pages are synced with the page table in
6600 * the guest, and the guest page table is using 4K page size
6601 * mapping if the indirect sp has level = 1.
6602 */
6603 if (sp->role.direct &&
6604 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
6605 PG_LEVEL_NUM)) {
6606 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
6607
6608 if (kvm_available_flush_remote_tlbs_range())
6609 kvm_flush_remote_tlbs_sptep(kvm, sptep);
6610 else
6611 need_tlb_flush = 1;
6612
6613 goto restart;
6614 }
6615 }
6616
6617 return need_tlb_flush;
6618 }
6619
6620 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
6621 const struct kvm_memory_slot *slot)
6622 {
6623 /*
6624 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
6625 * pages that are already mapped at the maximum hugepage level.
6626 */
6627 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte,
6628 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
6629 kvm_flush_remote_tlbs_memslot(kvm, slot);
6630 }
6631
6632 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6633 const struct kvm_memory_slot *slot)
6634 {
6635 if (kvm_memslots_have_rmaps(kvm)) {
6636 write_lock(&kvm->mmu_lock);
6637 kvm_rmap_zap_collapsible_sptes(kvm, slot);
6638 write_unlock(&kvm->mmu_lock);
6639 }
6640
6641 if (tdp_mmu_enabled) {
6642 read_lock(&kvm->mmu_lock);
6643 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6644 read_unlock(&kvm->mmu_lock);
6645 }
6646 }
6647
6648 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6649 const struct kvm_memory_slot *memslot)
6650 {
6651 if (kvm_memslots_have_rmaps(kvm)) {
6652 write_lock(&kvm->mmu_lock);
6653 /*
6654 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
6655 * support dirty logging at a 4k granularity.
6656 */
6657 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false);
6658 write_unlock(&kvm->mmu_lock);
6659 }
6660
6661 if (tdp_mmu_enabled) {
6662 read_lock(&kvm->mmu_lock);
6663 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
6664 read_unlock(&kvm->mmu_lock);
6665 }
6666
6667 /*
6668 * The caller will flush the TLBs after this function returns.
6669 *
6670 * It's also safe to flush TLBs out of mmu lock here as currently this
6671 * function is only used for dirty logging, in which case flushing TLB
6672 * out of mmu lock also guarantees no dirty pages will be lost in
6673 * dirty_bitmap.
6674 */
6675 }
6676
6677 static void kvm_mmu_zap_all(struct kvm *kvm)
6678 {
6679 struct kvm_mmu_page *sp, *node;
6680 LIST_HEAD(invalid_list);
6681 int ign;
6682
6683 write_lock(&kvm->mmu_lock);
6684 restart:
6685 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6686 if (WARN_ON_ONCE(sp->role.invalid))
6687 continue;
6688 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6689 goto restart;
6690 if (cond_resched_rwlock_write(&kvm->mmu_lock))
6691 goto restart;
6692 }
6693
6694 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6695
6696 if (tdp_mmu_enabled)
6697 kvm_tdp_mmu_zap_all(kvm);
6698
6699 write_unlock(&kvm->mmu_lock);
6700 }
6701
6702 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6703 {
6704 kvm_mmu_zap_all(kvm);
6705 }
6706
6707 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6708 struct kvm_memory_slot *slot)
6709 {
6710 kvm_mmu_zap_all_fast(kvm);
6711 }
6712
6713 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6714 {
6715 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6716
6717 gen &= MMIO_SPTE_GEN_MASK;
6718
6719 /*
6720 * Generation numbers are incremented in multiples of the number of
6721 * address spaces in order to provide unique generations across all
6722 * address spaces. Strip what is effectively the address space
6723 * modifier prior to checking for a wrap of the MMIO generation so
6724 * that a wrap in any address space is detected.
6725 */
6726 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6727
6728 /*
6729 * The very rare case: if the MMIO generation number has wrapped,
6730 * zap all shadow pages.
6731 */
6732 if (unlikely(gen == 0)) {
6733 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n");
6734 kvm_mmu_zap_all_fast(kvm);
6735 }
6736 }
6737
6738 static unsigned long mmu_shrink_scan(struct shrinker *shrink,
6739 struct shrink_control *sc)
6740 {
6741 struct kvm *kvm;
6742 int nr_to_scan = sc->nr_to_scan;
6743 unsigned long freed = 0;
6744
6745 mutex_lock(&kvm_lock);
6746
6747 list_for_each_entry(kvm, &vm_list, vm_list) {
6748 int idx;
6749 LIST_HEAD(invalid_list);
6750
6751 /*
6752 * Never scan more than sc->nr_to_scan VM instances.
6753 * Will not hit this condition practically since we do not try
6754 * to shrink more than one VM and it is very unlikely to see
6755 * !n_used_mmu_pages so many times.
6756 */
6757 if (!nr_to_scan--)
6758 break;
6759 /*
6760 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6761 * here. We may skip a VM instance errorneosly, but we do not
6762 * want to shrink a VM that only started to populate its MMU
6763 * anyway.
6764 */
6765 if (!kvm->arch.n_used_mmu_pages &&
6766 !kvm_has_zapped_obsolete_pages(kvm))
6767 continue;
6768
6769 idx = srcu_read_lock(&kvm->srcu);
6770 write_lock(&kvm->mmu_lock);
6771
6772 if (kvm_has_zapped_obsolete_pages(kvm)) {
6773 kvm_mmu_commit_zap_page(kvm,
6774 &kvm->arch.zapped_obsolete_pages);
6775 goto unlock;
6776 }
6777
6778 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6779
6780 unlock:
6781 write_unlock(&kvm->mmu_lock);
6782 srcu_read_unlock(&kvm->srcu, idx);
6783
6784 /*
6785 * unfair on small ones
6786 * per-vm shrinkers cry out
6787 * sadness comes quickly
6788 */
6789 list_move_tail(&kvm->vm_list, &vm_list);
6790 break;
6791 }
6792
6793 mutex_unlock(&kvm_lock);
6794 return freed;
6795 }
6796
6797 static unsigned long mmu_shrink_count(struct shrinker *shrink,
6798 struct shrink_control *sc)
6799 {
6800 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6801 }
6802
6803 static struct shrinker *mmu_shrinker;
6804
6805 static void mmu_destroy_caches(void)
6806 {
6807 kmem_cache_destroy(pte_list_desc_cache);
6808 kmem_cache_destroy(mmu_page_header_cache);
6809 }
6810
6811 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp)
6812 {
6813 if (nx_hugepage_mitigation_hard_disabled)
6814 return sysfs_emit(buffer, "never\n");
6815
6816 return param_get_bool(buffer, kp);
6817 }
6818
6819 static bool get_nx_auto_mode(void)
6820 {
6821 /* Return true when CPU has the bug, and mitigations are ON */
6822 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6823 }
6824
6825 static void __set_nx_huge_pages(bool val)
6826 {
6827 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6828 }
6829
6830 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6831 {
6832 bool old_val = nx_huge_pages;
6833 bool new_val;
6834
6835 if (nx_hugepage_mitigation_hard_disabled)
6836 return -EPERM;
6837
6838 /* In "auto" mode deploy workaround only if CPU has the bug. */
6839 if (sysfs_streq(val, "off")) {
6840 new_val = 0;
6841 } else if (sysfs_streq(val, "force")) {
6842 new_val = 1;
6843 } else if (sysfs_streq(val, "auto")) {
6844 new_val = get_nx_auto_mode();
6845 } else if (sysfs_streq(val, "never")) {
6846 new_val = 0;
6847
6848 mutex_lock(&kvm_lock);
6849 if (!list_empty(&vm_list)) {
6850 mutex_unlock(&kvm_lock);
6851 return -EBUSY;
6852 }
6853 nx_hugepage_mitigation_hard_disabled = true;
6854 mutex_unlock(&kvm_lock);
6855 } else if (kstrtobool(val, &new_val) < 0) {
6856 return -EINVAL;
6857 }
6858
6859 __set_nx_huge_pages(new_val);
6860
6861 if (new_val != old_val) {
6862 struct kvm *kvm;
6863
6864 mutex_lock(&kvm_lock);
6865
6866 list_for_each_entry(kvm, &vm_list, vm_list) {
6867 mutex_lock(&kvm->slots_lock);
6868 kvm_mmu_zap_all_fast(kvm);
6869 mutex_unlock(&kvm->slots_lock);
6870
6871 wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
6872 }
6873 mutex_unlock(&kvm_lock);
6874 }
6875
6876 return 0;
6877 }
6878
6879 /*
6880 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
6881 * its default value of -1 is technically undefined behavior for a boolean.
6882 * Forward the module init call to SPTE code so that it too can handle module
6883 * params that need to be resolved/snapshot.
6884 */
6885 void __init kvm_mmu_x86_module_init(void)
6886 {
6887 if (nx_huge_pages == -1)
6888 __set_nx_huge_pages(get_nx_auto_mode());
6889
6890 /*
6891 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the
6892 * TDP MMU is actually enabled is determined in kvm_configure_mmu()
6893 * when the vendor module is loaded.
6894 */
6895 tdp_mmu_allowed = tdp_mmu_enabled;
6896
6897 kvm_mmu_spte_module_init();
6898 }
6899
6900 /*
6901 * The bulk of the MMU initialization is deferred until the vendor module is
6902 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
6903 * to be reset when a potentially different vendor module is loaded.
6904 */
6905 int kvm_mmu_vendor_module_init(void)
6906 {
6907 int ret = -ENOMEM;
6908
6909 /*
6910 * MMU roles use union aliasing which is, generally speaking, an
6911 * undefined behavior. However, we supposedly know how compilers behave
6912 * and the current status quo is unlikely to change. Guardians below are
6913 * supposed to let us know if the assumption becomes false.
6914 */
6915 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6916 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6917 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
6918
6919 kvm_mmu_reset_all_pte_masks();
6920
6921 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6922 sizeof(struct pte_list_desc),
6923 0, SLAB_ACCOUNT, NULL);
6924 if (!pte_list_desc_cache)
6925 goto out;
6926
6927 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6928 sizeof(struct kvm_mmu_page),
6929 0, SLAB_ACCOUNT, NULL);
6930 if (!mmu_page_header_cache)
6931 goto out;
6932
6933 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6934 goto out;
6935
6936 mmu_shrinker = shrinker_alloc(0, "x86-mmu");
6937 if (!mmu_shrinker)
6938 goto out_shrinker;
6939
6940 mmu_shrinker->count_objects = mmu_shrink_count;
6941 mmu_shrinker->scan_objects = mmu_shrink_scan;
6942 mmu_shrinker->seeks = DEFAULT_SEEKS * 10;
6943
6944 shrinker_register(mmu_shrinker);
6945
6946 return 0;
6947
6948 out_shrinker:
6949 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6950 out:
6951 mmu_destroy_caches();
6952 return ret;
6953 }
6954
6955 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6956 {
6957 kvm_mmu_unload(vcpu);
6958 free_mmu_pages(&vcpu->arch.root_mmu);
6959 free_mmu_pages(&vcpu->arch.guest_mmu);
6960 mmu_free_memory_caches(vcpu);
6961 }
6962
6963 void kvm_mmu_vendor_module_exit(void)
6964 {
6965 mmu_destroy_caches();
6966 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6967 shrinker_free(mmu_shrinker);
6968 }
6969
6970 /*
6971 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
6972 * select a halving time of 1 hour". Returns true if recovery is enabled.
6973 */
6974 static bool calc_nx_huge_pages_recovery_period(uint *period)
6975 {
6976 /*
6977 * Use READ_ONCE to get the params, this may be called outside of the
6978 * param setters, e.g. by the kthread to compute its next timeout.
6979 */
6980 bool enabled = READ_ONCE(nx_huge_pages);
6981 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6982
6983 if (!enabled || !ratio)
6984 return false;
6985
6986 *period = READ_ONCE(nx_huge_pages_recovery_period_ms);
6987 if (!*period) {
6988 /* Make sure the period is not less than one second. */
6989 ratio = min(ratio, 3600u);
6990 *period = 60 * 60 * 1000 / ratio;
6991 }
6992 return true;
6993 }
6994
6995 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6996 {
6997 bool was_recovery_enabled, is_recovery_enabled;
6998 uint old_period, new_period;
6999 int err;
7000
7001 if (nx_hugepage_mitigation_hard_disabled)
7002 return -EPERM;
7003
7004 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
7005
7006 err = param_set_uint(val, kp);
7007 if (err)
7008 return err;
7009
7010 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
7011
7012 if (is_recovery_enabled &&
7013 (!was_recovery_enabled || old_period > new_period)) {
7014 struct kvm *kvm;
7015
7016 mutex_lock(&kvm_lock);
7017
7018 list_for_each_entry(kvm, &vm_list, vm_list)
7019 wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
7020
7021 mutex_unlock(&kvm_lock);
7022 }
7023
7024 return err;
7025 }
7026
7027 static void kvm_recover_nx_huge_pages(struct kvm *kvm)
7028 {
7029 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
7030 struct kvm_memory_slot *slot;
7031 int rcu_idx;
7032 struct kvm_mmu_page *sp;
7033 unsigned int ratio;
7034 LIST_HEAD(invalid_list);
7035 bool flush = false;
7036 ulong to_zap;
7037
7038 rcu_idx = srcu_read_lock(&kvm->srcu);
7039 write_lock(&kvm->mmu_lock);
7040
7041 /*
7042 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
7043 * be done under RCU protection, because the pages are freed via RCU
7044 * callback.
7045 */
7046 rcu_read_lock();
7047
7048 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7049 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
7050 for ( ; to_zap; --to_zap) {
7051 if (list_empty(&kvm->arch.possible_nx_huge_pages))
7052 break;
7053
7054 /*
7055 * We use a separate list instead of just using active_mmu_pages
7056 * because the number of shadow pages that be replaced with an
7057 * NX huge page is expected to be relatively small compared to
7058 * the total number of shadow pages. And because the TDP MMU
7059 * doesn't use active_mmu_pages.
7060 */
7061 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages,
7062 struct kvm_mmu_page,
7063 possible_nx_huge_page_link);
7064 WARN_ON_ONCE(!sp->nx_huge_page_disallowed);
7065 WARN_ON_ONCE(!sp->role.direct);
7066
7067 /*
7068 * Unaccount and do not attempt to recover any NX Huge Pages
7069 * that are being dirty tracked, as they would just be faulted
7070 * back in as 4KiB pages. The NX Huge Pages in this slot will be
7071 * recovered, along with all the other huge pages in the slot,
7072 * when dirty logging is disabled.
7073 *
7074 * Since gfn_to_memslot() is relatively expensive, it helps to
7075 * skip it if it the test cannot possibly return true. On the
7076 * other hand, if any memslot has logging enabled, chances are
7077 * good that all of them do, in which case unaccount_nx_huge_page()
7078 * is much cheaper than zapping the page.
7079 *
7080 * If a memslot update is in progress, reading an incorrect value
7081 * of kvm->nr_memslots_dirty_logging is not a problem: if it is
7082 * becoming zero, gfn_to_memslot() will be done unnecessarily; if
7083 * it is becoming nonzero, the page will be zapped unnecessarily.
7084 * Either way, this only affects efficiency in racy situations,
7085 * and not correctness.
7086 */
7087 slot = NULL;
7088 if (atomic_read(&kvm->nr_memslots_dirty_logging)) {
7089 struct kvm_memslots *slots;
7090
7091 slots = kvm_memslots_for_spte_role(kvm, sp->role);
7092 slot = __gfn_to_memslot(slots, sp->gfn);
7093 WARN_ON_ONCE(!slot);
7094 }
7095
7096 if (slot && kvm_slot_dirty_track_enabled(slot))
7097 unaccount_nx_huge_page(kvm, sp);
7098 else if (is_tdp_mmu_page(sp))
7099 flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
7100 else
7101 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7102 WARN_ON_ONCE(sp->nx_huge_page_disallowed);
7103
7104 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7105 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7106 rcu_read_unlock();
7107
7108 cond_resched_rwlock_write(&kvm->mmu_lock);
7109 flush = false;
7110
7111 rcu_read_lock();
7112 }
7113 }
7114 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7115
7116 rcu_read_unlock();
7117
7118 write_unlock(&kvm->mmu_lock);
7119 srcu_read_unlock(&kvm->srcu, rcu_idx);
7120 }
7121
7122 static long get_nx_huge_page_recovery_timeout(u64 start_time)
7123 {
7124 bool enabled;
7125 uint period;
7126
7127 enabled = calc_nx_huge_pages_recovery_period(&period);
7128
7129 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
7130 : MAX_SCHEDULE_TIMEOUT;
7131 }
7132
7133 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data)
7134 {
7135 u64 start_time;
7136 long remaining_time;
7137
7138 while (true) {
7139 start_time = get_jiffies_64();
7140 remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7141
7142 set_current_state(TASK_INTERRUPTIBLE);
7143 while (!kthread_should_stop() && remaining_time > 0) {
7144 schedule_timeout(remaining_time);
7145 remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7146 set_current_state(TASK_INTERRUPTIBLE);
7147 }
7148
7149 set_current_state(TASK_RUNNING);
7150
7151 if (kthread_should_stop())
7152 return 0;
7153
7154 kvm_recover_nx_huge_pages(kvm);
7155 }
7156 }
7157
7158 int kvm_mmu_post_init_vm(struct kvm *kvm)
7159 {
7160 int err;
7161
7162 if (nx_hugepage_mitigation_hard_disabled)
7163 return 0;
7164
7165 err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0,
7166 "kvm-nx-lpage-recovery",
7167 &kvm->arch.nx_huge_page_recovery_thread);
7168 if (!err)
7169 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread);
7170
7171 return err;
7172 }
7173
7174 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
7175 {
7176 if (kvm->arch.nx_huge_page_recovery_thread)
7177 kthread_stop(kvm->arch.nx_huge_page_recovery_thread);
7178 }