]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/kvm/pmu.c
KVM: x86: Ignore MSR_AMD64_TW_CFG access
[thirdparty/kernel/stable.git] / arch / x86 / kvm / pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4 *
5 * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6 *
7 * Authors:
8 * Avi Kivity <avi@redhat.com>
9 * Gleb Natapov <gleb@redhat.com>
10 * Wei Huang <wei@redhat.com>
11 */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31
32 /* Precise Distribution of Instructions Retired (PDIR) */
33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
34 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
35 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
36 /* Instruction-Accurate PDIR (PDIR++) */
37 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
38 {}
39 };
40
41 /* Precise Distribution (PDist) */
42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
43 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
44 {}
45 };
46
47 /* NOTE:
48 * - Each perf counter is defined as "struct kvm_pmc";
49 * - There are two types of perf counters: general purpose (gp) and fixed.
50 * gp counters are stored in gp_counters[] and fixed counters are stored
51 * in fixed_counters[] respectively. Both of them are part of "struct
52 * kvm_pmu";
53 * - pmu.c understands the difference between gp counters and fixed counters.
54 * However AMD doesn't support fixed-counters;
55 * - There are three types of index to access perf counters (PMC):
56 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
57 * has MSR_K7_PERFCTRn and, for families 15H and later,
58 * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
59 * aliased to MSR_K7_PERFCTRn.
60 * 2. MSR Index (named idx): This normally is used by RDPMC instruction.
61 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
62 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
63 * that it also supports fixed counters. idx can be used to as index to
64 * gp and fixed counters.
65 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU
66 * code. Each pmc, stored in kvm_pmc.idx field, is unique across
67 * all perf counters (both gp and fixed). The mapping relationship
68 * between pmc and perf counters is as the following:
69 * * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
70 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
71 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
72 * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
73 */
74
75 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
76
77 #define KVM_X86_PMU_OP(func) \
78 DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \
79 *(((struct kvm_pmu_ops *)0)->func));
80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
81 #include <asm/kvm-x86-pmu-ops.h>
82
83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
84 {
85 memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
86
87 #define __KVM_X86_PMU_OP(func) \
88 static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
89 #define KVM_X86_PMU_OP(func) \
90 WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
92 #include <asm/kvm-x86-pmu-ops.h>
93 #undef __KVM_X86_PMU_OP
94 }
95
96 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
97 {
98 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
99 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
100
101 kvm_pmu_deliver_pmi(vcpu);
102 }
103
104 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
105 {
106 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
107 bool skip_pmi = false;
108
109 if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
110 if (!in_pmi) {
111 /*
112 * TODO: KVM is currently _choosing_ to not generate records
113 * for emulated instructions, avoiding BUFFER_OVF PMI when
114 * there are no records. Strictly speaking, it should be done
115 * as well in the right context to improve sampling accuracy.
116 */
117 skip_pmi = true;
118 } else {
119 /* Indicate PEBS overflow PMI to guest. */
120 skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
121 (unsigned long *)&pmu->global_status);
122 }
123 } else {
124 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
125 }
126
127 if (!pmc->intr || skip_pmi)
128 return;
129
130 /*
131 * Inject PMI. If vcpu was in a guest mode during NMI PMI
132 * can be ejected on a guest mode re-entry. Otherwise we can't
133 * be sure that vcpu wasn't executing hlt instruction at the
134 * time of vmexit and is not going to re-enter guest mode until
135 * woken up. So we should wake it, but this is impossible from
136 * NMI context. Do it from irq work instead.
137 */
138 if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
139 irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
140 else
141 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
142 }
143
144 static void kvm_perf_overflow(struct perf_event *perf_event,
145 struct perf_sample_data *data,
146 struct pt_regs *regs)
147 {
148 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
149
150 /*
151 * Ignore overflow events for counters that are scheduled to be
152 * reprogrammed, e.g. if a PMI for the previous event races with KVM's
153 * handling of a related guest WRMSR.
154 */
155 if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
156 return;
157
158 __kvm_perf_overflow(pmc, true);
159
160 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
161 }
162
163 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
164 {
165 /*
166 * For some model specific pebs counters with special capabilities
167 * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
168 * level to the maximum value (currently 3, backwards compatible)
169 * so that the perf subsystem would assign specific hardware counter
170 * with that capability for vPMC.
171 */
172 if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
173 (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
174 return 3;
175
176 /*
177 * The non-zero precision level of guest event makes the ordinary
178 * guest event becomes a guest PEBS event and triggers the host
179 * PEBS PMI handler to determine whether the PEBS overflow PMI
180 * comes from the host counters or the guest.
181 */
182 return 1;
183 }
184
185 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
186 bool exclude_user, bool exclude_kernel,
187 bool intr)
188 {
189 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
190 struct perf_event *event;
191 struct perf_event_attr attr = {
192 .type = type,
193 .size = sizeof(attr),
194 .pinned = true,
195 .exclude_idle = true,
196 .exclude_host = 1,
197 .exclude_user = exclude_user,
198 .exclude_kernel = exclude_kernel,
199 .config = config,
200 };
201 bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
202
203 attr.sample_period = get_sample_period(pmc, pmc->counter);
204
205 if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
206 guest_cpuid_is_intel(pmc->vcpu)) {
207 /*
208 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
209 * period. Just clear the sample period so at least
210 * allocating the counter doesn't fail.
211 */
212 attr.sample_period = 0;
213 }
214 if (pebs) {
215 /*
216 * For most PEBS hardware events, the difference in the software
217 * precision levels of guest and host PEBS events will not affect
218 * the accuracy of the PEBS profiling result, because the "event IP"
219 * in the PEBS record is calibrated on the guest side.
220 */
221 attr.precise_ip = pmc_get_pebs_precise_level(pmc);
222 }
223
224 event = perf_event_create_kernel_counter(&attr, -1, current,
225 kvm_perf_overflow, pmc);
226 if (IS_ERR(event)) {
227 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
228 PTR_ERR(event), pmc->idx);
229 return PTR_ERR(event);
230 }
231
232 pmc->perf_event = event;
233 pmc_to_pmu(pmc)->event_count++;
234 pmc->is_paused = false;
235 pmc->intr = intr || pebs;
236 return 0;
237 }
238
239 static void pmc_pause_counter(struct kvm_pmc *pmc)
240 {
241 u64 counter = pmc->counter;
242
243 if (!pmc->perf_event || pmc->is_paused)
244 return;
245
246 /* update counter, reset event value to avoid redundant accumulation */
247 counter += perf_event_pause(pmc->perf_event, true);
248 pmc->counter = counter & pmc_bitmask(pmc);
249 pmc->is_paused = true;
250 }
251
252 static bool pmc_resume_counter(struct kvm_pmc *pmc)
253 {
254 if (!pmc->perf_event)
255 return false;
256
257 /* recalibrate sample period and check if it's accepted by perf core */
258 if (is_sampling_event(pmc->perf_event) &&
259 perf_event_period(pmc->perf_event,
260 get_sample_period(pmc, pmc->counter)))
261 return false;
262
263 if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
264 (!!pmc->perf_event->attr.precise_ip))
265 return false;
266
267 /* reuse perf_event to serve as pmc_reprogram_counter() does*/
268 perf_event_enable(pmc->perf_event);
269 pmc->is_paused = false;
270
271 return true;
272 }
273
274 static int filter_cmp(const void *pa, const void *pb, u64 mask)
275 {
276 u64 a = *(u64 *)pa & mask;
277 u64 b = *(u64 *)pb & mask;
278
279 return (a > b) - (a < b);
280 }
281
282
283 static int filter_sort_cmp(const void *pa, const void *pb)
284 {
285 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
286 KVM_PMU_MASKED_ENTRY_EXCLUDE));
287 }
288
289 /*
290 * For the event filter, searching is done on the 'includes' list and
291 * 'excludes' list separately rather than on the 'events' list (which
292 * has both). As a result the exclude bit can be ignored.
293 */
294 static int filter_event_cmp(const void *pa, const void *pb)
295 {
296 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
297 }
298
299 static int find_filter_index(u64 *events, u64 nevents, u64 key)
300 {
301 u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
302 filter_event_cmp);
303
304 if (!fe)
305 return -1;
306
307 return fe - events;
308 }
309
310 static bool is_filter_entry_match(u64 filter_event, u64 umask)
311 {
312 u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
313 u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
314
315 BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
316 (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
317 ARCH_PERFMON_EVENTSEL_UMASK);
318
319 return (umask & mask) == match;
320 }
321
322 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
323 {
324 u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
325 u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
326 int i, index;
327
328 index = find_filter_index(events, nevents, event_select);
329 if (index < 0)
330 return false;
331
332 /*
333 * Entries are sorted by the event select. Walk the list in both
334 * directions to process all entries with the targeted event select.
335 */
336 for (i = index; i < nevents; i++) {
337 if (filter_event_cmp(&events[i], &event_select))
338 break;
339
340 if (is_filter_entry_match(events[i], umask))
341 return true;
342 }
343
344 for (i = index - 1; i >= 0; i--) {
345 if (filter_event_cmp(&events[i], &event_select))
346 break;
347
348 if (is_filter_entry_match(events[i], umask))
349 return true;
350 }
351
352 return false;
353 }
354
355 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
356 u64 eventsel)
357 {
358 if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
359 !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
360 return f->action == KVM_PMU_EVENT_ALLOW;
361
362 return f->action == KVM_PMU_EVENT_DENY;
363 }
364
365 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
366 int idx)
367 {
368 int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
369
370 if (filter->action == KVM_PMU_EVENT_DENY &&
371 test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
372 return false;
373 if (filter->action == KVM_PMU_EVENT_ALLOW &&
374 !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
375 return false;
376
377 return true;
378 }
379
380 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
381 {
382 struct kvm_x86_pmu_event_filter *filter;
383 struct kvm *kvm = pmc->vcpu->kvm;
384
385 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
386 if (!filter)
387 return true;
388
389 if (pmc_is_gp(pmc))
390 return is_gp_event_allowed(filter, pmc->eventsel);
391
392 return is_fixed_event_allowed(filter, pmc->idx);
393 }
394
395 static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
396 {
397 return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
398 static_call(kvm_x86_pmu_hw_event_available)(pmc) &&
399 check_pmu_event_filter(pmc);
400 }
401
402 static void reprogram_counter(struct kvm_pmc *pmc)
403 {
404 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
405 u64 eventsel = pmc->eventsel;
406 u64 new_config = eventsel;
407 u8 fixed_ctr_ctrl;
408
409 pmc_pause_counter(pmc);
410
411 if (!pmc_event_is_allowed(pmc))
412 goto reprogram_complete;
413
414 if (pmc->counter < pmc->prev_counter)
415 __kvm_perf_overflow(pmc, false);
416
417 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
418 printk_once("kvm pmu: pin control bit is ignored\n");
419
420 if (pmc_is_fixed(pmc)) {
421 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
422 pmc->idx - INTEL_PMC_IDX_FIXED);
423 if (fixed_ctr_ctrl & 0x1)
424 eventsel |= ARCH_PERFMON_EVENTSEL_OS;
425 if (fixed_ctr_ctrl & 0x2)
426 eventsel |= ARCH_PERFMON_EVENTSEL_USR;
427 if (fixed_ctr_ctrl & 0x8)
428 eventsel |= ARCH_PERFMON_EVENTSEL_INT;
429 new_config = (u64)fixed_ctr_ctrl;
430 }
431
432 if (pmc->current_config == new_config && pmc_resume_counter(pmc))
433 goto reprogram_complete;
434
435 pmc_release_perf_event(pmc);
436
437 pmc->current_config = new_config;
438
439 /*
440 * If reprogramming fails, e.g. due to contention, leave the counter's
441 * regprogram bit set, i.e. opportunistically try again on the next PMU
442 * refresh. Don't make a new request as doing so can stall the guest
443 * if reprogramming repeatedly fails.
444 */
445 if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
446 (eventsel & pmu->raw_event_mask),
447 !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
448 !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
449 eventsel & ARCH_PERFMON_EVENTSEL_INT))
450 return;
451
452 reprogram_complete:
453 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
454 pmc->prev_counter = 0;
455 }
456
457 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
458 {
459 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
460 int bit;
461
462 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
463 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
464
465 if (unlikely(!pmc)) {
466 clear_bit(bit, pmu->reprogram_pmi);
467 continue;
468 }
469
470 reprogram_counter(pmc);
471 }
472
473 /*
474 * Unused perf_events are only released if the corresponding MSRs
475 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
476 * triggers KVM_REQ_PMU if cleanup is needed.
477 */
478 if (unlikely(pmu->need_cleanup))
479 kvm_pmu_cleanup(vcpu);
480 }
481
482 /* check if idx is a valid index to access PMU */
483 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
484 {
485 return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
486 }
487
488 bool is_vmware_backdoor_pmc(u32 pmc_idx)
489 {
490 switch (pmc_idx) {
491 case VMWARE_BACKDOOR_PMC_HOST_TSC:
492 case VMWARE_BACKDOOR_PMC_REAL_TIME:
493 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
494 return true;
495 }
496 return false;
497 }
498
499 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
500 {
501 u64 ctr_val;
502
503 switch (idx) {
504 case VMWARE_BACKDOOR_PMC_HOST_TSC:
505 ctr_val = rdtsc();
506 break;
507 case VMWARE_BACKDOOR_PMC_REAL_TIME:
508 ctr_val = ktime_get_boottime_ns();
509 break;
510 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
511 ctr_val = ktime_get_boottime_ns() +
512 vcpu->kvm->arch.kvmclock_offset;
513 break;
514 default:
515 return 1;
516 }
517
518 *data = ctr_val;
519 return 0;
520 }
521
522 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
523 {
524 bool fast_mode = idx & (1u << 31);
525 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
526 struct kvm_pmc *pmc;
527 u64 mask = fast_mode ? ~0u : ~0ull;
528
529 if (!pmu->version)
530 return 1;
531
532 if (is_vmware_backdoor_pmc(idx))
533 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
534
535 pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
536 if (!pmc)
537 return 1;
538
539 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
540 (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
541 kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
542 return 1;
543
544 *data = pmc_read_counter(pmc) & mask;
545 return 0;
546 }
547
548 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
549 {
550 if (lapic_in_kernel(vcpu)) {
551 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
552 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
553 }
554 }
555
556 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
557 {
558 switch (msr) {
559 case MSR_CORE_PERF_GLOBAL_STATUS:
560 case MSR_CORE_PERF_GLOBAL_CTRL:
561 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
562 return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
563 default:
564 break;
565 }
566 return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
567 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
568 }
569
570 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
571 {
572 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
573 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
574
575 if (pmc)
576 __set_bit(pmc->idx, pmu->pmc_in_use);
577 }
578
579 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
580 {
581 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
582 u32 msr = msr_info->index;
583
584 switch (msr) {
585 case MSR_CORE_PERF_GLOBAL_STATUS:
586 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
587 msr_info->data = pmu->global_status;
588 break;
589 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
590 case MSR_CORE_PERF_GLOBAL_CTRL:
591 msr_info->data = pmu->global_ctrl;
592 break;
593 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
594 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
595 msr_info->data = 0;
596 break;
597 default:
598 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
599 }
600
601 return 0;
602 }
603
604 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
605 {
606 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
607 u32 msr = msr_info->index;
608 u64 data = msr_info->data;
609 u64 diff;
610
611 /*
612 * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
613 * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
614 */
615 switch (msr) {
616 case MSR_CORE_PERF_GLOBAL_STATUS:
617 if (!msr_info->host_initiated)
618 return 1; /* RO MSR */
619 fallthrough;
620 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
621 /* Per PPR, Read-only MSR. Writes are ignored. */
622 if (!msr_info->host_initiated)
623 break;
624
625 if (data & pmu->global_status_mask)
626 return 1;
627
628 pmu->global_status = data;
629 break;
630 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
631 data &= ~pmu->global_ctrl_mask;
632 fallthrough;
633 case MSR_CORE_PERF_GLOBAL_CTRL:
634 if (!kvm_valid_perf_global_ctrl(pmu, data))
635 return 1;
636
637 if (pmu->global_ctrl != data) {
638 diff = pmu->global_ctrl ^ data;
639 pmu->global_ctrl = data;
640 reprogram_counters(pmu, diff);
641 }
642 break;
643 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
644 /*
645 * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
646 * GLOBAL_STATUS, and so the set of reserved bits is the same.
647 */
648 if (data & pmu->global_status_mask)
649 return 1;
650 fallthrough;
651 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
652 if (!msr_info->host_initiated)
653 pmu->global_status &= ~data;
654 break;
655 default:
656 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
657 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
658 }
659
660 return 0;
661 }
662
663 /* refresh PMU settings. This function generally is called when underlying
664 * settings are changed (such as changes of PMU CPUID by guest VMs), which
665 * should rarely happen.
666 */
667 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
668 {
669 if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
670 return;
671
672 bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX);
673 static_call(kvm_x86_pmu_refresh)(vcpu);
674 }
675
676 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
677 {
678 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
679
680 irq_work_sync(&pmu->irq_work);
681 static_call(kvm_x86_pmu_reset)(vcpu);
682 }
683
684 void kvm_pmu_init(struct kvm_vcpu *vcpu)
685 {
686 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
687
688 memset(pmu, 0, sizeof(*pmu));
689 static_call(kvm_x86_pmu_init)(vcpu);
690 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
691 pmu->event_count = 0;
692 pmu->need_cleanup = false;
693 kvm_pmu_refresh(vcpu);
694 }
695
696 /* Release perf_events for vPMCs that have been unused for a full time slice. */
697 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
698 {
699 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
700 struct kvm_pmc *pmc = NULL;
701 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
702 int i;
703
704 pmu->need_cleanup = false;
705
706 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
707 pmu->pmc_in_use, X86_PMC_IDX_MAX);
708
709 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
710 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
711
712 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
713 pmc_stop_counter(pmc);
714 }
715
716 static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
717
718 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
719 }
720
721 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
722 {
723 kvm_pmu_reset(vcpu);
724 }
725
726 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
727 {
728 pmc->prev_counter = pmc->counter;
729 pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
730 kvm_pmu_request_counter_reprogram(pmc);
731 }
732
733 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
734 unsigned int perf_hw_id)
735 {
736 return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
737 AMD64_RAW_EVENT_MASK_NB);
738 }
739
740 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
741 {
742 bool select_os, select_user;
743 u64 config;
744
745 if (pmc_is_gp(pmc)) {
746 config = pmc->eventsel;
747 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
748 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
749 } else {
750 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
751 pmc->idx - INTEL_PMC_IDX_FIXED);
752 select_os = config & 0x1;
753 select_user = config & 0x2;
754 }
755
756 return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
757 }
758
759 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
760 {
761 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
762 struct kvm_pmc *pmc;
763 int i;
764
765 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
766 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
767
768 if (!pmc || !pmc_event_is_allowed(pmc))
769 continue;
770
771 /* Ignore checks for edge detect, pin control, invert and CMASK bits */
772 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
773 kvm_pmu_incr_counter(pmc);
774 }
775 }
776 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
777
778 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
779 {
780 u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
781 KVM_PMU_MASKED_ENTRY_UMASK_MASK |
782 KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
783 KVM_PMU_MASKED_ENTRY_EXCLUDE;
784 int i;
785
786 for (i = 0; i < filter->nevents; i++) {
787 if (filter->events[i] & ~mask)
788 return false;
789 }
790
791 return true;
792 }
793
794 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
795 {
796 int i, j;
797
798 for (i = 0, j = 0; i < filter->nevents; i++) {
799 /*
800 * Skip events that are impossible to match against a guest
801 * event. When filtering, only the event select + unit mask
802 * of the guest event is used. To maintain backwards
803 * compatibility, impossible filters can't be rejected :-(
804 */
805 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
806 ARCH_PERFMON_EVENTSEL_UMASK))
807 continue;
808 /*
809 * Convert userspace events to a common in-kernel event so
810 * only one code path is needed to support both events. For
811 * the in-kernel events use masked events because they are
812 * flexible enough to handle both cases. To convert to masked
813 * events all that's needed is to add an "all ones" umask_mask,
814 * (unmasked filter events don't support EXCLUDE).
815 */
816 filter->events[j++] = filter->events[i] |
817 (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
818 }
819
820 filter->nevents = j;
821 }
822
823 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
824 {
825 int i;
826
827 if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
828 convert_to_masked_filter(filter);
829 else if (!is_masked_filter_valid(filter))
830 return -EINVAL;
831
832 /*
833 * Sort entries by event select and includes vs. excludes so that all
834 * entries for a given event select can be processed efficiently during
835 * filtering. The EXCLUDE flag uses a more significant bit than the
836 * event select, and so the sorted list is also effectively split into
837 * includes and excludes sub-lists.
838 */
839 sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
840 filter_sort_cmp, NULL);
841
842 i = filter->nevents;
843 /* Find the first EXCLUDE event (only supported for masked events). */
844 if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
845 for (i = 0; i < filter->nevents; i++) {
846 if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
847 break;
848 }
849 }
850
851 filter->nr_includes = i;
852 filter->nr_excludes = filter->nevents - filter->nr_includes;
853 filter->includes = filter->events;
854 filter->excludes = filter->events + filter->nr_includes;
855
856 return 0;
857 }
858
859 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
860 {
861 struct kvm_pmu_event_filter __user *user_filter = argp;
862 struct kvm_x86_pmu_event_filter *filter;
863 struct kvm_pmu_event_filter tmp;
864 struct kvm_vcpu *vcpu;
865 unsigned long i;
866 size_t size;
867 int r;
868
869 if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
870 return -EFAULT;
871
872 if (tmp.action != KVM_PMU_EVENT_ALLOW &&
873 tmp.action != KVM_PMU_EVENT_DENY)
874 return -EINVAL;
875
876 if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
877 return -EINVAL;
878
879 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
880 return -E2BIG;
881
882 size = struct_size(filter, events, tmp.nevents);
883 filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
884 if (!filter)
885 return -ENOMEM;
886
887 filter->action = tmp.action;
888 filter->nevents = tmp.nevents;
889 filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
890 filter->flags = tmp.flags;
891
892 r = -EFAULT;
893 if (copy_from_user(filter->events, user_filter->events,
894 sizeof(filter->events[0]) * filter->nevents))
895 goto cleanup;
896
897 r = prepare_filter_lists(filter);
898 if (r)
899 goto cleanup;
900
901 mutex_lock(&kvm->lock);
902 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
903 mutex_is_locked(&kvm->lock));
904 mutex_unlock(&kvm->lock);
905 synchronize_srcu_expedited(&kvm->srcu);
906
907 BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
908 sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
909
910 kvm_for_each_vcpu(i, vcpu, kvm)
911 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
912
913 kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
914
915 r = 0;
916 cleanup:
917 kfree(filter);
918 return r;
919 }