1 #define pr_fmt(fmt) "SVM: " fmt
3 #include <linux/kvm_host.h>
7 #include "kvm_cache_regs.h"
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/frame.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
39 #include <asm/virtext.h>
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
50 static const struct x86_cpu_id svm_cpu_id
[] = {
51 X86_MATCH_FEATURE(X86_FEATURE_SVM
, NULL
),
54 MODULE_DEVICE_TABLE(x86cpu
, svm_cpu_id
);
57 #define IOPM_ALLOC_ORDER 2
58 #define MSRPM_ALLOC_ORDER 1
60 #define SEG_TYPE_LDT 2
61 #define SEG_TYPE_BUSY_TSS16 3
63 #define SVM_FEATURE_LBRV (1 << 1)
64 #define SVM_FEATURE_SVML (1 << 2)
65 #define SVM_FEATURE_TSC_RATE (1 << 4)
66 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
67 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
68 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
69 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
71 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
74 #define TSC_RATIO_MIN 0x0000000000000001ULL
75 #define TSC_RATIO_MAX 0x000000ffffffffffULL
77 static bool erratum_383_found __read_mostly
;
79 u32 msrpm_offsets
[MSRPM_OFFSETS
] __read_mostly
;
82 * Set osvw_len to higher value when updated Revision Guides
83 * are published and we know what the new status bits are
85 static uint64_t osvw_len
= 4, osvw_status
;
87 static DEFINE_PER_CPU(u64
, current_tsc_ratio
);
88 #define TSC_RATIO_DEFAULT 0x0100000000ULL
90 static const struct svm_direct_access_msrs
{
91 u32 index
; /* Index of the MSR */
92 bool always
; /* True if intercept is always on */
93 } direct_access_msrs
[] = {
94 { .index
= MSR_STAR
, .always
= true },
95 { .index
= MSR_IA32_SYSENTER_CS
, .always
= true },
97 { .index
= MSR_GS_BASE
, .always
= true },
98 { .index
= MSR_FS_BASE
, .always
= true },
99 { .index
= MSR_KERNEL_GS_BASE
, .always
= true },
100 { .index
= MSR_LSTAR
, .always
= true },
101 { .index
= MSR_CSTAR
, .always
= true },
102 { .index
= MSR_SYSCALL_MASK
, .always
= true },
104 { .index
= MSR_IA32_SPEC_CTRL
, .always
= false },
105 { .index
= MSR_IA32_PRED_CMD
, .always
= false },
106 { .index
= MSR_IA32_LASTBRANCHFROMIP
, .always
= false },
107 { .index
= MSR_IA32_LASTBRANCHTOIP
, .always
= false },
108 { .index
= MSR_IA32_LASTINTFROMIP
, .always
= false },
109 { .index
= MSR_IA32_LASTINTTOIP
, .always
= false },
110 { .index
= MSR_INVALID
, .always
= false },
113 /* enable NPT for AMD64 and X86 with PAE */
114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
115 bool npt_enabled
= true;
121 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
122 * pause_filter_count: On processors that support Pause filtering(indicated
123 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
124 * count value. On VMRUN this value is loaded into an internal counter.
125 * Each time a pause instruction is executed, this counter is decremented
126 * until it reaches zero at which time a #VMEXIT is generated if pause
127 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
128 * Intercept Filtering for more details.
129 * This also indicate if ple logic enabled.
131 * pause_filter_thresh: In addition, some processor families support advanced
132 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
133 * the amount of time a guest is allowed to execute in a pause loop.
134 * In this mode, a 16-bit pause filter threshold field is added in the
135 * VMCB. The threshold value is a cycle count that is used to reset the
136 * pause counter. As with simple pause filtering, VMRUN loads the pause
137 * count value from VMCB into an internal counter. Then, on each pause
138 * instruction the hardware checks the elapsed number of cycles since
139 * the most recent pause instruction against the pause filter threshold.
140 * If the elapsed cycle count is greater than the pause filter threshold,
141 * then the internal pause count is reloaded from the VMCB and execution
142 * continues. If the elapsed cycle count is less than the pause filter
143 * threshold, then the internal pause count is decremented. If the count
144 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
145 * triggered. If advanced pause filtering is supported and pause filter
146 * threshold field is set to zero, the filter will operate in the simpler,
150 static unsigned short pause_filter_thresh
= KVM_DEFAULT_PLE_GAP
;
151 module_param(pause_filter_thresh
, ushort
, 0444);
153 static unsigned short pause_filter_count
= KVM_SVM_DEFAULT_PLE_WINDOW
;
154 module_param(pause_filter_count
, ushort
, 0444);
156 /* Default doubles per-vcpu window every exit. */
157 static unsigned short pause_filter_count_grow
= KVM_DEFAULT_PLE_WINDOW_GROW
;
158 module_param(pause_filter_count_grow
, ushort
, 0444);
160 /* Default resets per-vcpu window every exit to pause_filter_count. */
161 static unsigned short pause_filter_count_shrink
= KVM_DEFAULT_PLE_WINDOW_SHRINK
;
162 module_param(pause_filter_count_shrink
, ushort
, 0444);
164 /* Default is to compute the maximum so we can never overflow. */
165 static unsigned short pause_filter_count_max
= KVM_SVM_DEFAULT_PLE_WINDOW_MAX
;
166 module_param(pause_filter_count_max
, ushort
, 0444);
168 /* allow nested paging (virtualized MMU) for all guests */
169 static int npt
= true;
170 module_param(npt
, int, S_IRUGO
);
172 /* allow nested virtualization in KVM/SVM */
173 static int nested
= true;
174 module_param(nested
, int, S_IRUGO
);
176 /* enable/disable Next RIP Save */
177 static int nrips
= true;
178 module_param(nrips
, int, 0444);
180 /* enable/disable Virtual VMLOAD VMSAVE */
181 static int vls
= true;
182 module_param(vls
, int, 0444);
184 /* enable/disable Virtual GIF */
185 static int vgif
= true;
186 module_param(vgif
, int, 0444);
188 /* enable/disable SEV support */
189 static int sev
= IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT
);
190 module_param(sev
, int, 0444);
192 static bool __read_mostly dump_invalid_vmcb
= 0;
193 module_param(dump_invalid_vmcb
, bool, 0644);
195 static u8 rsm_ins_bytes
[] = "\x0f\xaa";
197 static void svm_complete_interrupts(struct vcpu_svm
*svm
);
199 static unsigned long iopm_base
;
201 struct kvm_ldttss_desc
{
204 unsigned base1
:8, type
:5, dpl
:2, p
:1;
205 unsigned limit1
:4, zero0
:3, g
:1, base2
:8;
208 } __attribute__((packed
));
210 DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
212 static const u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
214 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
215 #define MSRS_RANGE_SIZE 2048
216 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
218 u32
svm_msrpm_offset(u32 msr
)
223 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
224 if (msr
< msrpm_ranges
[i
] ||
225 msr
>= msrpm_ranges
[i
] + MSRS_IN_RANGE
)
228 offset
= (msr
- msrpm_ranges
[i
]) / 4; /* 4 msrs per u8 */
229 offset
+= (i
* MSRS_RANGE_SIZE
); /* add range offset */
231 /* Now we have the u8 offset - but need the u32 offset */
235 /* MSR not in any range */
239 #define MAX_INST_SIZE 15
241 static inline void clgi(void)
243 asm volatile (__ex("clgi"));
246 static inline void stgi(void)
248 asm volatile (__ex("stgi"));
251 static inline void invlpga(unsigned long addr
, u32 asid
)
253 asm volatile (__ex("invlpga %1, %0") : : "c"(asid
), "a"(addr
));
256 static int get_npt_level(struct kvm_vcpu
*vcpu
)
259 return PT64_ROOT_4LEVEL
;
261 return PT32E_ROOT_LEVEL
;
265 void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
267 vcpu
->arch
.efer
= efer
;
270 /* Shadow paging assumes NX to be available. */
273 if (!(efer
& EFER_LMA
))
277 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
278 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
281 static int is_external_interrupt(u32 info
)
283 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
284 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
287 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
)
289 struct vcpu_svm
*svm
= to_svm(vcpu
);
292 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
293 ret
= KVM_X86_SHADOW_INT_STI
| KVM_X86_SHADOW_INT_MOV_SS
;
297 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
299 struct vcpu_svm
*svm
= to_svm(vcpu
);
302 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
304 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
308 static int skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
310 struct vcpu_svm
*svm
= to_svm(vcpu
);
312 if (nrips
&& svm
->vmcb
->control
.next_rip
!= 0) {
313 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS
));
314 svm
->next_rip
= svm
->vmcb
->control
.next_rip
;
317 if (!svm
->next_rip
) {
318 if (!kvm_emulate_instruction(vcpu
, EMULTYPE_SKIP
))
321 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
322 pr_err("%s: ip 0x%lx next 0x%llx\n",
323 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
324 kvm_rip_write(vcpu
, svm
->next_rip
);
326 svm_set_interrupt_shadow(vcpu
, 0);
331 static void svm_queue_exception(struct kvm_vcpu
*vcpu
)
333 struct vcpu_svm
*svm
= to_svm(vcpu
);
334 unsigned nr
= vcpu
->arch
.exception
.nr
;
335 bool has_error_code
= vcpu
->arch
.exception
.has_error_code
;
336 bool reinject
= vcpu
->arch
.exception
.injected
;
337 u32 error_code
= vcpu
->arch
.exception
.error_code
;
340 * If we are within a nested VM we'd better #VMEXIT and let the guest
341 * handle the exception
344 nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
347 kvm_deliver_exception_payload(&svm
->vcpu
);
349 if (nr
== BP_VECTOR
&& !nrips
) {
350 unsigned long rip
, old_rip
= kvm_rip_read(&svm
->vcpu
);
353 * For guest debugging where we have to reinject #BP if some
354 * INT3 is guest-owned:
355 * Emulate nRIP by moving RIP forward. Will fail if injection
356 * raises a fault that is not intercepted. Still better than
357 * failing in all cases.
359 (void)skip_emulated_instruction(&svm
->vcpu
);
360 rip
= kvm_rip_read(&svm
->vcpu
);
361 svm
->int3_rip
= rip
+ svm
->vmcb
->save
.cs
.base
;
362 svm
->int3_injected
= rip
- old_rip
;
365 svm
->vmcb
->control
.event_inj
= nr
367 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
368 | SVM_EVTINJ_TYPE_EXEPT
;
369 svm
->vmcb
->control
.event_inj_err
= error_code
;
372 static void svm_init_erratum_383(void)
378 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH
))
381 /* Use _safe variants to not break nested virtualization */
382 val
= native_read_msr_safe(MSR_AMD64_DC_CFG
, &err
);
388 low
= lower_32_bits(val
);
389 high
= upper_32_bits(val
);
391 native_write_msr_safe(MSR_AMD64_DC_CFG
, low
, high
);
393 erratum_383_found
= true;
396 static void svm_init_osvw(struct kvm_vcpu
*vcpu
)
399 * Guests should see errata 400 and 415 as fixed (assuming that
400 * HLT and IO instructions are intercepted).
402 vcpu
->arch
.osvw
.length
= (osvw_len
>= 3) ? (osvw_len
) : 3;
403 vcpu
->arch
.osvw
.status
= osvw_status
& ~(6ULL);
406 * By increasing VCPU's osvw.length to 3 we are telling the guest that
407 * all osvw.status bits inside that length, including bit 0 (which is
408 * reserved for erratum 298), are valid. However, if host processor's
409 * osvw_len is 0 then osvw_status[0] carries no information. We need to
410 * be conservative here and therefore we tell the guest that erratum 298
411 * is present (because we really don't know).
413 if (osvw_len
== 0 && boot_cpu_data
.x86
== 0x10)
414 vcpu
->arch
.osvw
.status
|= 1;
417 static int has_svm(void)
421 if (!cpu_has_svm(&msg
)) {
422 printk(KERN_INFO
"has_svm: %s\n", msg
);
429 static void svm_hardware_disable(void)
431 /* Make sure we clean up behind us */
432 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
))
433 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
437 amd_pmu_disable_virt();
440 static int svm_hardware_enable(void)
443 struct svm_cpu_data
*sd
;
445 struct desc_struct
*gdt
;
446 int me
= raw_smp_processor_id();
448 rdmsrl(MSR_EFER
, efer
);
449 if (efer
& EFER_SVME
)
453 pr_err("%s: err EOPNOTSUPP on %d\n", __func__
, me
);
456 sd
= per_cpu(svm_data
, me
);
458 pr_err("%s: svm_data is NULL on %d\n", __func__
, me
);
462 sd
->asid_generation
= 1;
463 sd
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
464 sd
->next_asid
= sd
->max_asid
+ 1;
465 sd
->min_asid
= max_sev_asid
+ 1;
467 gdt
= get_current_gdt_rw();
468 sd
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
470 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
472 wrmsrl(MSR_VM_HSAVE_PA
, page_to_pfn(sd
->save_area
) << PAGE_SHIFT
);
474 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
475 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
476 __this_cpu_write(current_tsc_ratio
, TSC_RATIO_DEFAULT
);
483 * Note that it is possible to have a system with mixed processor
484 * revisions and therefore different OSVW bits. If bits are not the same
485 * on different processors then choose the worst case (i.e. if erratum
486 * is present on one processor and not on another then assume that the
487 * erratum is present everywhere).
489 if (cpu_has(&boot_cpu_data
, X86_FEATURE_OSVW
)) {
490 uint64_t len
, status
= 0;
493 len
= native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH
, &err
);
495 status
= native_read_msr_safe(MSR_AMD64_OSVW_STATUS
,
499 osvw_status
= osvw_len
= 0;
503 osvw_status
|= status
;
504 osvw_status
&= (1ULL << osvw_len
) - 1;
507 osvw_status
= osvw_len
= 0;
509 svm_init_erratum_383();
511 amd_pmu_enable_virt();
516 static void svm_cpu_uninit(int cpu
)
518 struct svm_cpu_data
*sd
= per_cpu(svm_data
, raw_smp_processor_id());
523 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
524 kfree(sd
->sev_vmcbs
);
525 __free_page(sd
->save_area
);
529 static int svm_cpu_init(int cpu
)
531 struct svm_cpu_data
*sd
;
533 sd
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
537 sd
->save_area
= alloc_page(GFP_KERNEL
);
541 if (svm_sev_enabled()) {
542 sd
->sev_vmcbs
= kmalloc_array(max_sev_asid
+ 1,
549 per_cpu(svm_data
, cpu
) = sd
;
554 __free_page(sd
->save_area
);
561 static bool valid_msr_intercept(u32 index
)
565 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++)
566 if (direct_access_msrs
[i
].index
== index
)
572 static bool msr_write_intercepted(struct kvm_vcpu
*vcpu
, unsigned msr
)
579 msrpm
= is_guest_mode(vcpu
) ? to_svm(vcpu
)->nested
.msrpm
:
582 offset
= svm_msrpm_offset(msr
);
583 bit_write
= 2 * (msr
& 0x0f) + 1;
586 BUG_ON(offset
== MSR_INVALID
);
588 return !!test_bit(bit_write
, &tmp
);
591 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
594 u8 bit_read
, bit_write
;
599 * If this warning triggers extend the direct_access_msrs list at the
600 * beginning of the file
602 WARN_ON(!valid_msr_intercept(msr
));
604 offset
= svm_msrpm_offset(msr
);
605 bit_read
= 2 * (msr
& 0x0f);
606 bit_write
= 2 * (msr
& 0x0f) + 1;
609 BUG_ON(offset
== MSR_INVALID
);
611 read
? clear_bit(bit_read
, &tmp
) : set_bit(bit_read
, &tmp
);
612 write
? clear_bit(bit_write
, &tmp
) : set_bit(bit_write
, &tmp
);
617 static void svm_vcpu_init_msrpm(u32
*msrpm
)
621 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
623 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
624 if (!direct_access_msrs
[i
].always
)
627 set_msr_interception(msrpm
, direct_access_msrs
[i
].index
, 1, 1);
631 static void add_msr_offset(u32 offset
)
635 for (i
= 0; i
< MSRPM_OFFSETS
; ++i
) {
637 /* Offset already in list? */
638 if (msrpm_offsets
[i
] == offset
)
641 /* Slot used by another offset? */
642 if (msrpm_offsets
[i
] != MSR_INVALID
)
645 /* Add offset to list */
646 msrpm_offsets
[i
] = offset
;
652 * If this BUG triggers the msrpm_offsets table has an overflow. Just
653 * increase MSRPM_OFFSETS in this case.
658 static void init_msrpm_offsets(void)
662 memset(msrpm_offsets
, 0xff, sizeof(msrpm_offsets
));
664 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
667 offset
= svm_msrpm_offset(direct_access_msrs
[i
].index
);
668 BUG_ON(offset
== MSR_INVALID
);
670 add_msr_offset(offset
);
674 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
676 u32
*msrpm
= svm
->msrpm
;
678 svm
->vmcb
->control
.virt_ext
|= LBR_CTL_ENABLE_MASK
;
679 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
680 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
681 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
682 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
685 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
687 u32
*msrpm
= svm
->msrpm
;
689 svm
->vmcb
->control
.virt_ext
&= ~LBR_CTL_ENABLE_MASK
;
690 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
691 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
692 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
693 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
696 void disable_nmi_singlestep(struct vcpu_svm
*svm
)
698 svm
->nmi_singlestep
= false;
700 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
)) {
701 /* Clear our flags if they were not set by the guest */
702 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_TF
))
703 svm
->vmcb
->save
.rflags
&= ~X86_EFLAGS_TF
;
704 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_RF
))
705 svm
->vmcb
->save
.rflags
&= ~X86_EFLAGS_RF
;
709 static void grow_ple_window(struct kvm_vcpu
*vcpu
)
711 struct vcpu_svm
*svm
= to_svm(vcpu
);
712 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
713 int old
= control
->pause_filter_count
;
715 control
->pause_filter_count
= __grow_ple_window(old
,
717 pause_filter_count_grow
,
718 pause_filter_count_max
);
720 if (control
->pause_filter_count
!= old
) {
721 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
722 trace_kvm_ple_window_update(vcpu
->vcpu_id
,
723 control
->pause_filter_count
, old
);
727 static void shrink_ple_window(struct kvm_vcpu
*vcpu
)
729 struct vcpu_svm
*svm
= to_svm(vcpu
);
730 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
731 int old
= control
->pause_filter_count
;
733 control
->pause_filter_count
=
734 __shrink_ple_window(old
,
736 pause_filter_count_shrink
,
738 if (control
->pause_filter_count
!= old
) {
739 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
740 trace_kvm_ple_window_update(vcpu
->vcpu_id
,
741 control
->pause_filter_count
, old
);
746 * The default MMIO mask is a single bit (excluding the present bit),
747 * which could conflict with the memory encryption bit. Check for
748 * memory encryption support and override the default MMIO mask if
749 * memory encryption is enabled.
751 static __init
void svm_adjust_mmio_mask(void)
753 unsigned int enc_bit
, mask_bit
;
756 /* If there is no memory encryption support, use existing mask */
757 if (cpuid_eax(0x80000000) < 0x8000001f)
760 /* If memory encryption is not enabled, use existing mask */
761 rdmsrl(MSR_K8_SYSCFG
, msr
);
762 if (!(msr
& MSR_K8_SYSCFG_MEM_ENCRYPT
))
765 enc_bit
= cpuid_ebx(0x8000001f) & 0x3f;
766 mask_bit
= boot_cpu_data
.x86_phys_bits
;
768 /* Increment the mask bit if it is the same as the encryption bit */
769 if (enc_bit
== mask_bit
)
773 * If the mask bit location is below 52, then some bits above the
774 * physical addressing limit will always be reserved, so use the
775 * rsvd_bits() function to generate the mask. This mask, along with
776 * the present bit, will be used to generate a page fault with
779 * If the mask bit location is 52 (or above), then clear the mask.
781 mask
= (mask_bit
< 52) ? rsvd_bits(mask_bit
, 51) | PT_PRESENT_MASK
: 0;
783 kvm_mmu_set_mmio_spte_mask(mask
, mask
, PT_WRITABLE_MASK
| PT_USER_MASK
);
786 static void svm_hardware_teardown(void)
790 if (svm_sev_enabled())
791 sev_hardware_teardown();
793 for_each_possible_cpu(cpu
)
796 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
800 static __init
void svm_set_cpu_caps(void)
806 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
808 kvm_cpu_cap_set(X86_FEATURE_SVM
);
811 kvm_cpu_cap_set(X86_FEATURE_NRIPS
);
814 kvm_cpu_cap_set(X86_FEATURE_NPT
);
817 /* CPUID 0x80000008 */
818 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD
) ||
819 boot_cpu_has(X86_FEATURE_AMD_SSBD
))
820 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD
);
823 static __init
int svm_hardware_setup(void)
826 struct page
*iopm_pages
;
830 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
835 iopm_va
= page_address(iopm_pages
);
836 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
837 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
839 init_msrpm_offsets();
841 supported_xcr0
&= ~(XFEATURE_MASK_BNDREGS
| XFEATURE_MASK_BNDCSR
);
843 if (boot_cpu_has(X86_FEATURE_NX
))
844 kvm_enable_efer_bits(EFER_NX
);
846 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
847 kvm_enable_efer_bits(EFER_FFXSR
);
849 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
850 kvm_has_tsc_control
= true;
851 kvm_max_tsc_scaling_ratio
= TSC_RATIO_MAX
;
852 kvm_tsc_scaling_ratio_frac_bits
= 32;
855 /* Check for pause filtering support */
856 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER
)) {
857 pause_filter_count
= 0;
858 pause_filter_thresh
= 0;
859 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD
)) {
860 pause_filter_thresh
= 0;
864 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
865 kvm_enable_efer_bits(EFER_SVME
| EFER_LMSLE
);
869 if (boot_cpu_has(X86_FEATURE_SEV
) &&
870 IS_ENABLED(CONFIG_KVM_AMD_SEV
)) {
871 r
= sev_hardware_setup();
879 svm_adjust_mmio_mask();
881 for_each_possible_cpu(cpu
) {
882 r
= svm_cpu_init(cpu
);
887 if (!boot_cpu_has(X86_FEATURE_NPT
))
890 if (npt_enabled
&& !npt
)
893 kvm_configure_mmu(npt_enabled
, PT_PDPE_LEVEL
);
894 pr_info("kvm: Nested Paging %sabled\n", npt_enabled
? "en" : "dis");
897 if (!boot_cpu_has(X86_FEATURE_NRIPS
))
903 !boot_cpu_has(X86_FEATURE_AVIC
) ||
904 !IS_ENABLED(CONFIG_X86_LOCAL_APIC
)) {
907 pr_info("AVIC enabled\n");
909 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier
);
915 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD
) ||
916 !IS_ENABLED(CONFIG_X86_64
)) {
919 pr_info("Virtual VMLOAD VMSAVE supported\n");
924 if (!boot_cpu_has(X86_FEATURE_VGIF
))
927 pr_info("Virtual GIF supported\n");
935 svm_hardware_teardown();
939 static void init_seg(struct vmcb_seg
*seg
)
942 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
943 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
948 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
951 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
956 static u64
svm_read_l1_tsc_offset(struct kvm_vcpu
*vcpu
)
958 struct vcpu_svm
*svm
= to_svm(vcpu
);
960 if (is_guest_mode(vcpu
))
961 return svm
->nested
.hsave
->control
.tsc_offset
;
963 return vcpu
->arch
.tsc_offset
;
966 static u64
svm_write_l1_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
968 struct vcpu_svm
*svm
= to_svm(vcpu
);
969 u64 g_tsc_offset
= 0;
971 if (is_guest_mode(vcpu
)) {
972 /* Write L1's TSC offset. */
973 g_tsc_offset
= svm
->vmcb
->control
.tsc_offset
-
974 svm
->nested
.hsave
->control
.tsc_offset
;
975 svm
->nested
.hsave
->control
.tsc_offset
= offset
;
978 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
979 svm
->vmcb
->control
.tsc_offset
- g_tsc_offset
,
982 svm
->vmcb
->control
.tsc_offset
= offset
+ g_tsc_offset
;
984 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
985 return svm
->vmcb
->control
.tsc_offset
;
988 static void init_vmcb(struct vcpu_svm
*svm
)
990 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
991 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
993 svm
->vcpu
.arch
.hflags
= 0;
995 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
996 set_cr_intercept(svm
, INTERCEPT_CR3_READ
);
997 set_cr_intercept(svm
, INTERCEPT_CR4_READ
);
998 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
999 set_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1000 set_cr_intercept(svm
, INTERCEPT_CR4_WRITE
);
1001 if (!kvm_vcpu_apicv_active(&svm
->vcpu
))
1002 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
1004 set_dr_intercepts(svm
);
1006 set_exception_intercept(svm
, PF_VECTOR
);
1007 set_exception_intercept(svm
, UD_VECTOR
);
1008 set_exception_intercept(svm
, MC_VECTOR
);
1009 set_exception_intercept(svm
, AC_VECTOR
);
1010 set_exception_intercept(svm
, DB_VECTOR
);
1012 * Guest access to VMware backdoor ports could legitimately
1013 * trigger #GP because of TSS I/O permission bitmap.
1014 * We intercept those #GP and allow access to them anyway
1017 if (enable_vmware_backdoor
)
1018 set_exception_intercept(svm
, GP_VECTOR
);
1020 set_intercept(svm
, INTERCEPT_INTR
);
1021 set_intercept(svm
, INTERCEPT_NMI
);
1022 set_intercept(svm
, INTERCEPT_SMI
);
1023 set_intercept(svm
, INTERCEPT_SELECTIVE_CR0
);
1024 set_intercept(svm
, INTERCEPT_RDPMC
);
1025 set_intercept(svm
, INTERCEPT_CPUID
);
1026 set_intercept(svm
, INTERCEPT_INVD
);
1027 set_intercept(svm
, INTERCEPT_INVLPG
);
1028 set_intercept(svm
, INTERCEPT_INVLPGA
);
1029 set_intercept(svm
, INTERCEPT_IOIO_PROT
);
1030 set_intercept(svm
, INTERCEPT_MSR_PROT
);
1031 set_intercept(svm
, INTERCEPT_TASK_SWITCH
);
1032 set_intercept(svm
, INTERCEPT_SHUTDOWN
);
1033 set_intercept(svm
, INTERCEPT_VMRUN
);
1034 set_intercept(svm
, INTERCEPT_VMMCALL
);
1035 set_intercept(svm
, INTERCEPT_VMLOAD
);
1036 set_intercept(svm
, INTERCEPT_VMSAVE
);
1037 set_intercept(svm
, INTERCEPT_STGI
);
1038 set_intercept(svm
, INTERCEPT_CLGI
);
1039 set_intercept(svm
, INTERCEPT_SKINIT
);
1040 set_intercept(svm
, INTERCEPT_WBINVD
);
1041 set_intercept(svm
, INTERCEPT_XSETBV
);
1042 set_intercept(svm
, INTERCEPT_RDPRU
);
1043 set_intercept(svm
, INTERCEPT_RSM
);
1045 if (!kvm_mwait_in_guest(svm
->vcpu
.kvm
)) {
1046 set_intercept(svm
, INTERCEPT_MONITOR
);
1047 set_intercept(svm
, INTERCEPT_MWAIT
);
1050 if (!kvm_hlt_in_guest(svm
->vcpu
.kvm
))
1051 set_intercept(svm
, INTERCEPT_HLT
);
1053 control
->iopm_base_pa
= __sme_set(iopm_base
);
1054 control
->msrpm_base_pa
= __sme_set(__pa(svm
->msrpm
));
1055 control
->int_ctl
= V_INTR_MASKING_MASK
;
1057 init_seg(&save
->es
);
1058 init_seg(&save
->ss
);
1059 init_seg(&save
->ds
);
1060 init_seg(&save
->fs
);
1061 init_seg(&save
->gs
);
1063 save
->cs
.selector
= 0xf000;
1064 save
->cs
.base
= 0xffff0000;
1065 /* Executable/Readable Code Segment */
1066 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
1067 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
1068 save
->cs
.limit
= 0xffff;
1070 save
->gdtr
.limit
= 0xffff;
1071 save
->idtr
.limit
= 0xffff;
1073 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
1074 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
1076 svm_set_efer(&svm
->vcpu
, 0);
1077 save
->dr6
= 0xffff0ff0;
1078 kvm_set_rflags(&svm
->vcpu
, 2);
1079 save
->rip
= 0x0000fff0;
1080 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
1083 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1084 * It also updates the guest-visible cr0 value.
1086 svm_set_cr0(&svm
->vcpu
, X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
);
1087 kvm_mmu_reset_context(&svm
->vcpu
);
1089 save
->cr4
= X86_CR4_PAE
;
1093 /* Setup VMCB for Nested Paging */
1094 control
->nested_ctl
|= SVM_NESTED_CTL_NP_ENABLE
;
1095 clr_intercept(svm
, INTERCEPT_INVLPG
);
1096 clr_exception_intercept(svm
, PF_VECTOR
);
1097 clr_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1098 clr_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1099 save
->g_pat
= svm
->vcpu
.arch
.pat
;
1103 svm
->asid_generation
= 0;
1105 svm
->nested
.vmcb
= 0;
1106 svm
->vcpu
.arch
.hflags
= 0;
1108 if (pause_filter_count
) {
1109 control
->pause_filter_count
= pause_filter_count
;
1110 if (pause_filter_thresh
)
1111 control
->pause_filter_thresh
= pause_filter_thresh
;
1112 set_intercept(svm
, INTERCEPT_PAUSE
);
1114 clr_intercept(svm
, INTERCEPT_PAUSE
);
1117 if (kvm_vcpu_apicv_active(&svm
->vcpu
))
1118 avic_init_vmcb(svm
);
1121 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1122 * in VMCB and clear intercepts to avoid #VMEXIT.
1125 clr_intercept(svm
, INTERCEPT_VMLOAD
);
1126 clr_intercept(svm
, INTERCEPT_VMSAVE
);
1127 svm
->vmcb
->control
.virt_ext
|= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK
;
1131 clr_intercept(svm
, INTERCEPT_STGI
);
1132 clr_intercept(svm
, INTERCEPT_CLGI
);
1133 svm
->vmcb
->control
.int_ctl
|= V_GIF_ENABLE_MASK
;
1136 if (sev_guest(svm
->vcpu
.kvm
)) {
1137 svm
->vmcb
->control
.nested_ctl
|= SVM_NESTED_CTL_SEV_ENABLE
;
1138 clr_exception_intercept(svm
, UD_VECTOR
);
1141 mark_all_dirty(svm
->vmcb
);
1147 static void svm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
1149 struct vcpu_svm
*svm
= to_svm(vcpu
);
1154 svm
->virt_spec_ctrl
= 0;
1157 svm
->vcpu
.arch
.apic_base
= APIC_DEFAULT_PHYS_BASE
|
1158 MSR_IA32_APICBASE_ENABLE
;
1159 if (kvm_vcpu_is_reset_bsp(&svm
->vcpu
))
1160 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
1164 kvm_cpuid(vcpu
, &eax
, &dummy
, &dummy
, &dummy
, false);
1165 kvm_rdx_write(vcpu
, eax
);
1167 if (kvm_vcpu_apicv_active(vcpu
) && !init_event
)
1168 avic_update_vapic_bar(svm
, APIC_DEFAULT_PHYS_BASE
);
1171 static int svm_create_vcpu(struct kvm_vcpu
*vcpu
)
1173 struct vcpu_svm
*svm
;
1175 struct page
*msrpm_pages
;
1176 struct page
*hsave_page
;
1177 struct page
*nested_msrpm_pages
;
1180 BUILD_BUG_ON(offsetof(struct vcpu_svm
, vcpu
) != 0);
1184 page
= alloc_page(GFP_KERNEL_ACCOUNT
);
1188 msrpm_pages
= alloc_pages(GFP_KERNEL_ACCOUNT
, MSRPM_ALLOC_ORDER
);
1192 nested_msrpm_pages
= alloc_pages(GFP_KERNEL_ACCOUNT
, MSRPM_ALLOC_ORDER
);
1193 if (!nested_msrpm_pages
)
1196 hsave_page
= alloc_page(GFP_KERNEL_ACCOUNT
);
1200 err
= avic_init_vcpu(svm
);
1204 /* We initialize this flag to true to make sure that the is_running
1205 * bit would be set the first time the vcpu is loaded.
1207 if (irqchip_in_kernel(vcpu
->kvm
) && kvm_apicv_activated(vcpu
->kvm
))
1208 svm
->avic_is_running
= true;
1210 svm
->nested
.hsave
= page_address(hsave_page
);
1212 svm
->msrpm
= page_address(msrpm_pages
);
1213 svm_vcpu_init_msrpm(svm
->msrpm
);
1215 svm
->nested
.msrpm
= page_address(nested_msrpm_pages
);
1216 svm_vcpu_init_msrpm(svm
->nested
.msrpm
);
1218 svm
->vmcb
= page_address(page
);
1219 clear_page(svm
->vmcb
);
1220 svm
->vmcb_pa
= __sme_set(page_to_pfn(page
) << PAGE_SHIFT
);
1221 svm
->asid_generation
= 0;
1224 svm_init_osvw(vcpu
);
1225 vcpu
->arch
.microcode_version
= 0x01000065;
1230 __free_page(hsave_page
);
1232 __free_pages(nested_msrpm_pages
, MSRPM_ALLOC_ORDER
);
1234 __free_pages(msrpm_pages
, MSRPM_ALLOC_ORDER
);
1241 static void svm_clear_current_vmcb(struct vmcb
*vmcb
)
1245 for_each_online_cpu(i
)
1246 cmpxchg(&per_cpu(svm_data
, i
)->current_vmcb
, vmcb
, NULL
);
1249 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
1251 struct vcpu_svm
*svm
= to_svm(vcpu
);
1254 * The vmcb page can be recycled, causing a false negative in
1255 * svm_vcpu_load(). So, ensure that no logical CPU has this
1256 * vmcb page recorded as its current vmcb.
1258 svm_clear_current_vmcb(svm
->vmcb
);
1260 __free_page(pfn_to_page(__sme_clr(svm
->vmcb_pa
) >> PAGE_SHIFT
));
1261 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
1262 __free_page(virt_to_page(svm
->nested
.hsave
));
1263 __free_pages(virt_to_page(svm
->nested
.msrpm
), MSRPM_ALLOC_ORDER
);
1266 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1268 struct vcpu_svm
*svm
= to_svm(vcpu
);
1269 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
1272 if (unlikely(cpu
!= vcpu
->cpu
)) {
1273 svm
->asid_generation
= 0;
1274 mark_all_dirty(svm
->vmcb
);
1277 #ifdef CONFIG_X86_64
1278 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host
.gs_base
);
1280 savesegment(fs
, svm
->host
.fs
);
1281 savesegment(gs
, svm
->host
.gs
);
1282 svm
->host
.ldt
= kvm_read_ldt();
1284 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1285 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1287 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
1288 u64 tsc_ratio
= vcpu
->arch
.tsc_scaling_ratio
;
1289 if (tsc_ratio
!= __this_cpu_read(current_tsc_ratio
)) {
1290 __this_cpu_write(current_tsc_ratio
, tsc_ratio
);
1291 wrmsrl(MSR_AMD64_TSC_RATIO
, tsc_ratio
);
1294 /* This assumes that the kernel never uses MSR_TSC_AUX */
1295 if (static_cpu_has(X86_FEATURE_RDTSCP
))
1296 wrmsrl(MSR_TSC_AUX
, svm
->tsc_aux
);
1298 if (sd
->current_vmcb
!= svm
->vmcb
) {
1299 sd
->current_vmcb
= svm
->vmcb
;
1300 indirect_branch_prediction_barrier();
1302 avic_vcpu_load(vcpu
, cpu
);
1305 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
1307 struct vcpu_svm
*svm
= to_svm(vcpu
);
1310 avic_vcpu_put(vcpu
);
1312 ++vcpu
->stat
.host_state_reload
;
1313 kvm_load_ldt(svm
->host
.ldt
);
1314 #ifdef CONFIG_X86_64
1315 loadsegment(fs
, svm
->host
.fs
);
1316 wrmsrl(MSR_KERNEL_GS_BASE
, current
->thread
.gsbase
);
1317 load_gs_index(svm
->host
.gs
);
1319 #ifdef CONFIG_X86_32_LAZY_GS
1320 loadsegment(gs
, svm
->host
.gs
);
1323 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1324 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1327 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
1329 struct vcpu_svm
*svm
= to_svm(vcpu
);
1330 unsigned long rflags
= svm
->vmcb
->save
.rflags
;
1332 if (svm
->nmi_singlestep
) {
1333 /* Hide our flags if they were not set by the guest */
1334 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_TF
))
1335 rflags
&= ~X86_EFLAGS_TF
;
1336 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_RF
))
1337 rflags
&= ~X86_EFLAGS_RF
;
1342 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
1344 if (to_svm(vcpu
)->nmi_singlestep
)
1345 rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1348 * Any change of EFLAGS.VM is accompanied by a reload of SS
1349 * (caused by either a task switch or an inter-privilege IRET),
1350 * so we do not need to update the CPL here.
1352 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
1355 static void svm_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
1358 case VCPU_EXREG_PDPTR
:
1359 BUG_ON(!npt_enabled
);
1360 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
1367 static inline void svm_enable_vintr(struct vcpu_svm
*svm
)
1369 struct vmcb_control_area
*control
;
1371 /* The following fields are ignored when AVIC is enabled */
1372 WARN_ON(kvm_vcpu_apicv_active(&svm
->vcpu
));
1375 * This is just a dummy VINTR to actually cause a vmexit to happen.
1376 * Actual injection of virtual interrupts happens through EVENTINJ.
1378 control
= &svm
->vmcb
->control
;
1379 control
->int_vector
= 0x0;
1380 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
1381 control
->int_ctl
|= V_IRQ_MASK
|
1382 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
1383 mark_dirty(svm
->vmcb
, VMCB_INTR
);
1386 static void svm_set_vintr(struct vcpu_svm
*svm
)
1388 set_intercept(svm
, INTERCEPT_VINTR
);
1389 if (is_intercept(svm
, INTERCEPT_VINTR
))
1390 svm_enable_vintr(svm
);
1393 static void svm_clear_vintr(struct vcpu_svm
*svm
)
1395 clr_intercept(svm
, INTERCEPT_VINTR
);
1397 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
1398 mark_dirty(svm
->vmcb
, VMCB_INTR
);
1401 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
1403 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1406 case VCPU_SREG_CS
: return &save
->cs
;
1407 case VCPU_SREG_DS
: return &save
->ds
;
1408 case VCPU_SREG_ES
: return &save
->es
;
1409 case VCPU_SREG_FS
: return &save
->fs
;
1410 case VCPU_SREG_GS
: return &save
->gs
;
1411 case VCPU_SREG_SS
: return &save
->ss
;
1412 case VCPU_SREG_TR
: return &save
->tr
;
1413 case VCPU_SREG_LDTR
: return &save
->ldtr
;
1419 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1421 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1426 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
1427 struct kvm_segment
*var
, int seg
)
1429 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1431 var
->base
= s
->base
;
1432 var
->limit
= s
->limit
;
1433 var
->selector
= s
->selector
;
1434 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
1435 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
1436 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
1437 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
1438 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
1439 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
1440 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
1443 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1444 * However, the SVM spec states that the G bit is not observed by the
1445 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1446 * So let's synthesize a legal G bit for all segments, this helps
1447 * running KVM nested. It also helps cross-vendor migration, because
1448 * Intel's vmentry has a check on the 'G' bit.
1450 var
->g
= s
->limit
> 0xfffff;
1453 * AMD's VMCB does not have an explicit unusable field, so emulate it
1454 * for cross vendor migration purposes by "not present"
1456 var
->unusable
= !var
->present
;
1461 * Work around a bug where the busy flag in the tr selector
1471 * The accessed bit must always be set in the segment
1472 * descriptor cache, although it can be cleared in the
1473 * descriptor, the cached bit always remains at 1. Since
1474 * Intel has a check on this, set it here to support
1475 * cross-vendor migration.
1482 * On AMD CPUs sometimes the DB bit in the segment
1483 * descriptor is left as 1, although the whole segment has
1484 * been made unusable. Clear it here to pass an Intel VMX
1485 * entry check when cross vendor migrating.
1489 /* This is symmetric with svm_set_segment() */
1490 var
->dpl
= to_svm(vcpu
)->vmcb
->save
.cpl
;
1495 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
1497 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1502 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1504 struct vcpu_svm
*svm
= to_svm(vcpu
);
1506 dt
->size
= svm
->vmcb
->save
.idtr
.limit
;
1507 dt
->address
= svm
->vmcb
->save
.idtr
.base
;
1510 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1512 struct vcpu_svm
*svm
= to_svm(vcpu
);
1514 svm
->vmcb
->save
.idtr
.limit
= dt
->size
;
1515 svm
->vmcb
->save
.idtr
.base
= dt
->address
;
1516 mark_dirty(svm
->vmcb
, VMCB_DT
);
1519 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1521 struct vcpu_svm
*svm
= to_svm(vcpu
);
1523 dt
->size
= svm
->vmcb
->save
.gdtr
.limit
;
1524 dt
->address
= svm
->vmcb
->save
.gdtr
.base
;
1527 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1529 struct vcpu_svm
*svm
= to_svm(vcpu
);
1531 svm
->vmcb
->save
.gdtr
.limit
= dt
->size
;
1532 svm
->vmcb
->save
.gdtr
.base
= dt
->address
;
1533 mark_dirty(svm
->vmcb
, VMCB_DT
);
1536 static void svm_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
1540 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1544 static void update_cr0_intercept(struct vcpu_svm
*svm
)
1546 ulong gcr0
= svm
->vcpu
.arch
.cr0
;
1547 u64
*hcr0
= &svm
->vmcb
->save
.cr0
;
1549 *hcr0
= (*hcr0
& ~SVM_CR0_SELECTIVE_MASK
)
1550 | (gcr0
& SVM_CR0_SELECTIVE_MASK
);
1552 mark_dirty(svm
->vmcb
, VMCB_CR
);
1554 if (gcr0
== *hcr0
) {
1555 clr_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1556 clr_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1558 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1559 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1563 void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1565 struct vcpu_svm
*svm
= to_svm(vcpu
);
1567 #ifdef CONFIG_X86_64
1568 if (vcpu
->arch
.efer
& EFER_LME
) {
1569 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
1570 vcpu
->arch
.efer
|= EFER_LMA
;
1571 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
1574 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
1575 vcpu
->arch
.efer
&= ~EFER_LMA
;
1576 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
1580 vcpu
->arch
.cr0
= cr0
;
1583 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
1586 * re-enable caching here because the QEMU bios
1587 * does not do it - this results in some delay at
1590 if (kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
1591 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
1592 svm
->vmcb
->save
.cr0
= cr0
;
1593 mark_dirty(svm
->vmcb
, VMCB_CR
);
1594 update_cr0_intercept(svm
);
1597 int svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1599 unsigned long host_cr4_mce
= cr4_read_shadow() & X86_CR4_MCE
;
1600 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
1602 if (cr4
& X86_CR4_VMXE
)
1605 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
1606 svm_flush_tlb(vcpu
, true);
1608 vcpu
->arch
.cr4
= cr4
;
1611 cr4
|= host_cr4_mce
;
1612 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
1613 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
1617 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
1618 struct kvm_segment
*var
, int seg
)
1620 struct vcpu_svm
*svm
= to_svm(vcpu
);
1621 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1623 s
->base
= var
->base
;
1624 s
->limit
= var
->limit
;
1625 s
->selector
= var
->selector
;
1626 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
1627 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
1628 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
1629 s
->attrib
|= ((var
->present
& 1) && !var
->unusable
) << SVM_SELECTOR_P_SHIFT
;
1630 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
1631 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
1632 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
1633 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
1636 * This is always accurate, except if SYSRET returned to a segment
1637 * with SS.DPL != 3. Intel does not have this quirk, and always
1638 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1639 * would entail passing the CPL to userspace and back.
1641 if (seg
== VCPU_SREG_SS
)
1642 /* This is symmetric with svm_get_segment() */
1643 svm
->vmcb
->save
.cpl
= (var
->dpl
& 3);
1645 mark_dirty(svm
->vmcb
, VMCB_SEG
);
1648 static void update_bp_intercept(struct kvm_vcpu
*vcpu
)
1650 struct vcpu_svm
*svm
= to_svm(vcpu
);
1652 clr_exception_intercept(svm
, BP_VECTOR
);
1654 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
1655 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
1656 set_exception_intercept(svm
, BP_VECTOR
);
1658 vcpu
->guest_debug
= 0;
1661 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*sd
)
1663 if (sd
->next_asid
> sd
->max_asid
) {
1664 ++sd
->asid_generation
;
1665 sd
->next_asid
= sd
->min_asid
;
1666 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
1669 svm
->asid_generation
= sd
->asid_generation
;
1670 svm
->vmcb
->control
.asid
= sd
->next_asid
++;
1672 mark_dirty(svm
->vmcb
, VMCB_ASID
);
1675 static void svm_set_dr6(struct vcpu_svm
*svm
, unsigned long value
)
1677 struct vmcb
*vmcb
= svm
->vmcb
;
1679 if (unlikely(value
!= vmcb
->save
.dr6
)) {
1680 vmcb
->save
.dr6
= value
;
1681 mark_dirty(vmcb
, VMCB_DR
);
1685 static void svm_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
1687 struct vcpu_svm
*svm
= to_svm(vcpu
);
1689 get_debugreg(vcpu
->arch
.db
[0], 0);
1690 get_debugreg(vcpu
->arch
.db
[1], 1);
1691 get_debugreg(vcpu
->arch
.db
[2], 2);
1692 get_debugreg(vcpu
->arch
.db
[3], 3);
1694 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
1695 * because db_interception might need it. We can do it before vmentry.
1697 vcpu
->arch
.dr6
= svm
->vmcb
->save
.dr6
;
1698 vcpu
->arch
.dr7
= svm
->vmcb
->save
.dr7
;
1699 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
1700 set_dr_intercepts(svm
);
1703 static void svm_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long value
)
1705 struct vcpu_svm
*svm
= to_svm(vcpu
);
1707 svm
->vmcb
->save
.dr7
= value
;
1708 mark_dirty(svm
->vmcb
, VMCB_DR
);
1711 static int pf_interception(struct vcpu_svm
*svm
)
1713 u64 fault_address
= __sme_clr(svm
->vmcb
->control
.exit_info_2
);
1714 u64 error_code
= svm
->vmcb
->control
.exit_info_1
;
1716 return kvm_handle_page_fault(&svm
->vcpu
, error_code
, fault_address
,
1717 static_cpu_has(X86_FEATURE_DECODEASSISTS
) ?
1718 svm
->vmcb
->control
.insn_bytes
: NULL
,
1719 svm
->vmcb
->control
.insn_len
);
1722 static int npf_interception(struct vcpu_svm
*svm
)
1724 u64 fault_address
= __sme_clr(svm
->vmcb
->control
.exit_info_2
);
1725 u64 error_code
= svm
->vmcb
->control
.exit_info_1
;
1727 trace_kvm_page_fault(fault_address
, error_code
);
1728 return kvm_mmu_page_fault(&svm
->vcpu
, fault_address
, error_code
,
1729 static_cpu_has(X86_FEATURE_DECODEASSISTS
) ?
1730 svm
->vmcb
->control
.insn_bytes
: NULL
,
1731 svm
->vmcb
->control
.insn_len
);
1734 static int db_interception(struct vcpu_svm
*svm
)
1736 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1737 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
1739 if (!(svm
->vcpu
.guest_debug
&
1740 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
1741 !svm
->nmi_singlestep
) {
1742 u32 payload
= (svm
->vmcb
->save
.dr6
^ DR6_RTM
) & ~DR6_FIXED_1
;
1743 kvm_queue_exception_p(&svm
->vcpu
, DB_VECTOR
, payload
);
1747 if (svm
->nmi_singlestep
) {
1748 disable_nmi_singlestep(svm
);
1749 /* Make sure we check for pending NMIs upon entry */
1750 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
1753 if (svm
->vcpu
.guest_debug
&
1754 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) {
1755 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1756 kvm_run
->debug
.arch
.dr6
= svm
->vmcb
->save
.dr6
;
1757 kvm_run
->debug
.arch
.dr7
= svm
->vmcb
->save
.dr7
;
1758 kvm_run
->debug
.arch
.pc
=
1759 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1760 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
1767 static int bp_interception(struct vcpu_svm
*svm
)
1769 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1771 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1772 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1773 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
1777 static int ud_interception(struct vcpu_svm
*svm
)
1779 return handle_ud(&svm
->vcpu
);
1782 static int ac_interception(struct vcpu_svm
*svm
)
1784 kvm_queue_exception_e(&svm
->vcpu
, AC_VECTOR
, 0);
1788 static int gp_interception(struct vcpu_svm
*svm
)
1790 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
1791 u32 error_code
= svm
->vmcb
->control
.exit_info_1
;
1793 WARN_ON_ONCE(!enable_vmware_backdoor
);
1796 * VMware backdoor emulation on #GP interception only handles IN{S},
1797 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1800 kvm_queue_exception_e(vcpu
, GP_VECTOR
, error_code
);
1803 return kvm_emulate_instruction(vcpu
, EMULTYPE_VMWARE_GP
);
1806 static bool is_erratum_383(void)
1811 if (!erratum_383_found
)
1814 value
= native_read_msr_safe(MSR_IA32_MC0_STATUS
, &err
);
1818 /* Bit 62 may or may not be set for this mce */
1819 value
&= ~(1ULL << 62);
1821 if (value
!= 0xb600000000010015ULL
)
1824 /* Clear MCi_STATUS registers */
1825 for (i
= 0; i
< 6; ++i
)
1826 native_write_msr_safe(MSR_IA32_MCx_STATUS(i
), 0, 0);
1828 value
= native_read_msr_safe(MSR_IA32_MCG_STATUS
, &err
);
1832 value
&= ~(1ULL << 2);
1833 low
= lower_32_bits(value
);
1834 high
= upper_32_bits(value
);
1836 native_write_msr_safe(MSR_IA32_MCG_STATUS
, low
, high
);
1839 /* Flush tlb to evict multi-match entries */
1845 static void svm_handle_mce(struct vcpu_svm
*svm
)
1847 if (is_erratum_383()) {
1849 * Erratum 383 triggered. Guest state is corrupt so kill the
1852 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1854 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, &svm
->vcpu
);
1860 * On an #MC intercept the MCE handler is not called automatically in
1861 * the host. So do it by hand here.
1865 /* not sure if we ever come back to this point */
1870 static int mc_interception(struct vcpu_svm
*svm
)
1875 static int shutdown_interception(struct vcpu_svm
*svm
)
1877 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1880 * VMCB is undefined after a SHUTDOWN intercept
1881 * so reinitialize it.
1883 clear_page(svm
->vmcb
);
1886 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1890 static int io_interception(struct vcpu_svm
*svm
)
1892 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
1893 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
1894 int size
, in
, string
;
1897 ++svm
->vcpu
.stat
.io_exits
;
1898 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
1899 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
1901 return kvm_emulate_instruction(vcpu
, 0);
1903 port
= io_info
>> 16;
1904 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
1905 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
1907 return kvm_fast_pio(&svm
->vcpu
, size
, port
, in
);
1910 static int nmi_interception(struct vcpu_svm
*svm
)
1915 static int intr_interception(struct vcpu_svm
*svm
)
1917 ++svm
->vcpu
.stat
.irq_exits
;
1921 static int nop_on_interception(struct vcpu_svm
*svm
)
1926 static int halt_interception(struct vcpu_svm
*svm
)
1928 return kvm_emulate_halt(&svm
->vcpu
);
1931 static int vmmcall_interception(struct vcpu_svm
*svm
)
1933 return kvm_emulate_hypercall(&svm
->vcpu
);
1936 static int vmload_interception(struct vcpu_svm
*svm
)
1938 struct vmcb
*nested_vmcb
;
1939 struct kvm_host_map map
;
1942 if (nested_svm_check_permissions(svm
))
1945 ret
= kvm_vcpu_map(&svm
->vcpu
, gpa_to_gfn(svm
->vmcb
->save
.rax
), &map
);
1948 kvm_inject_gp(&svm
->vcpu
, 0);
1952 nested_vmcb
= map
.hva
;
1954 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
1956 nested_svm_vmloadsave(nested_vmcb
, svm
->vmcb
);
1957 kvm_vcpu_unmap(&svm
->vcpu
, &map
, true);
1962 static int vmsave_interception(struct vcpu_svm
*svm
)
1964 struct vmcb
*nested_vmcb
;
1965 struct kvm_host_map map
;
1968 if (nested_svm_check_permissions(svm
))
1971 ret
= kvm_vcpu_map(&svm
->vcpu
, gpa_to_gfn(svm
->vmcb
->save
.rax
), &map
);
1974 kvm_inject_gp(&svm
->vcpu
, 0);
1978 nested_vmcb
= map
.hva
;
1980 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
1982 nested_svm_vmloadsave(svm
->vmcb
, nested_vmcb
);
1983 kvm_vcpu_unmap(&svm
->vcpu
, &map
, true);
1988 static int vmrun_interception(struct vcpu_svm
*svm
)
1990 if (nested_svm_check_permissions(svm
))
1993 return nested_svm_vmrun(svm
);
1996 static int stgi_interception(struct vcpu_svm
*svm
)
2000 if (nested_svm_check_permissions(svm
))
2004 * If VGIF is enabled, the STGI intercept is only added to
2005 * detect the opening of the SMI/NMI window; remove it now.
2007 if (vgif_enabled(svm
))
2008 clr_intercept(svm
, INTERCEPT_STGI
);
2010 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
2011 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
2018 static int clgi_interception(struct vcpu_svm
*svm
)
2022 if (nested_svm_check_permissions(svm
))
2025 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
2029 /* After a CLGI no interrupts should come */
2030 if (!kvm_vcpu_apicv_active(&svm
->vcpu
))
2031 svm_clear_vintr(svm
);
2036 static int invlpga_interception(struct vcpu_svm
*svm
)
2038 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
2040 trace_kvm_invlpga(svm
->vmcb
->save
.rip
, kvm_rcx_read(&svm
->vcpu
),
2041 kvm_rax_read(&svm
->vcpu
));
2043 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2044 kvm_mmu_invlpg(vcpu
, kvm_rax_read(&svm
->vcpu
));
2046 return kvm_skip_emulated_instruction(&svm
->vcpu
);
2049 static int skinit_interception(struct vcpu_svm
*svm
)
2051 trace_kvm_skinit(svm
->vmcb
->save
.rip
, kvm_rax_read(&svm
->vcpu
));
2053 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2057 static int wbinvd_interception(struct vcpu_svm
*svm
)
2059 return kvm_emulate_wbinvd(&svm
->vcpu
);
2062 static int xsetbv_interception(struct vcpu_svm
*svm
)
2064 u64 new_bv
= kvm_read_edx_eax(&svm
->vcpu
);
2065 u32 index
= kvm_rcx_read(&svm
->vcpu
);
2067 if (kvm_set_xcr(&svm
->vcpu
, index
, new_bv
) == 0) {
2068 return kvm_skip_emulated_instruction(&svm
->vcpu
);
2074 static int rdpru_interception(struct vcpu_svm
*svm
)
2076 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2080 static int task_switch_interception(struct vcpu_svm
*svm
)
2084 int int_type
= svm
->vmcb
->control
.exit_int_info
&
2085 SVM_EXITINTINFO_TYPE_MASK
;
2086 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
2088 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
2090 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
2091 bool has_error_code
= false;
2094 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
2096 if (svm
->vmcb
->control
.exit_info_2
&
2097 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
2098 reason
= TASK_SWITCH_IRET
;
2099 else if (svm
->vmcb
->control
.exit_info_2
&
2100 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
2101 reason
= TASK_SWITCH_JMP
;
2103 reason
= TASK_SWITCH_GATE
;
2105 reason
= TASK_SWITCH_CALL
;
2107 if (reason
== TASK_SWITCH_GATE
) {
2109 case SVM_EXITINTINFO_TYPE_NMI
:
2110 svm
->vcpu
.arch
.nmi_injected
= false;
2112 case SVM_EXITINTINFO_TYPE_EXEPT
:
2113 if (svm
->vmcb
->control
.exit_info_2
&
2114 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE
)) {
2115 has_error_code
= true;
2117 (u32
)svm
->vmcb
->control
.exit_info_2
;
2119 kvm_clear_exception_queue(&svm
->vcpu
);
2121 case SVM_EXITINTINFO_TYPE_INTR
:
2122 kvm_clear_interrupt_queue(&svm
->vcpu
);
2129 if (reason
!= TASK_SWITCH_GATE
||
2130 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
2131 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
2132 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
))) {
2133 if (!skip_emulated_instruction(&svm
->vcpu
))
2137 if (int_type
!= SVM_EXITINTINFO_TYPE_SOFT
)
2140 return kvm_task_switch(&svm
->vcpu
, tss_selector
, int_vec
, reason
,
2141 has_error_code
, error_code
);
2144 static int cpuid_interception(struct vcpu_svm
*svm
)
2146 return kvm_emulate_cpuid(&svm
->vcpu
);
2149 static int iret_interception(struct vcpu_svm
*svm
)
2151 ++svm
->vcpu
.stat
.nmi_window_exits
;
2152 clr_intercept(svm
, INTERCEPT_IRET
);
2153 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
2154 svm
->nmi_iret_rip
= kvm_rip_read(&svm
->vcpu
);
2155 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
2159 static int invlpg_interception(struct vcpu_svm
*svm
)
2161 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2162 return kvm_emulate_instruction(&svm
->vcpu
, 0);
2164 kvm_mmu_invlpg(&svm
->vcpu
, svm
->vmcb
->control
.exit_info_1
);
2165 return kvm_skip_emulated_instruction(&svm
->vcpu
);
2168 static int emulate_on_interception(struct vcpu_svm
*svm
)
2170 return kvm_emulate_instruction(&svm
->vcpu
, 0);
2173 static int rsm_interception(struct vcpu_svm
*svm
)
2175 return kvm_emulate_instruction_from_buffer(&svm
->vcpu
, rsm_ins_bytes
, 2);
2178 static int rdpmc_interception(struct vcpu_svm
*svm
)
2183 return emulate_on_interception(svm
);
2185 err
= kvm_rdpmc(&svm
->vcpu
);
2186 return kvm_complete_insn_gp(&svm
->vcpu
, err
);
2189 static bool check_selective_cr0_intercepted(struct vcpu_svm
*svm
,
2192 unsigned long cr0
= svm
->vcpu
.arch
.cr0
;
2196 intercept
= svm
->nested
.intercept
;
2198 if (!is_guest_mode(&svm
->vcpu
) ||
2199 (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
))))
2202 cr0
&= ~SVM_CR0_SELECTIVE_MASK
;
2203 val
&= ~SVM_CR0_SELECTIVE_MASK
;
2206 svm
->vmcb
->control
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
2207 ret
= (nested_svm_exit_handled(svm
) == NESTED_EXIT_DONE
);
2213 #define CR_VALID (1ULL << 63)
2215 static int cr_interception(struct vcpu_svm
*svm
)
2221 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2222 return emulate_on_interception(svm
);
2224 if (unlikely((svm
->vmcb
->control
.exit_info_1
& CR_VALID
) == 0))
2225 return emulate_on_interception(svm
);
2227 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
2228 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_CR0_SEL_WRITE
)
2229 cr
= SVM_EXIT_WRITE_CR0
- SVM_EXIT_READ_CR0
;
2231 cr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_CR0
;
2234 if (cr
>= 16) { /* mov to cr */
2236 val
= kvm_register_read(&svm
->vcpu
, reg
);
2239 if (!check_selective_cr0_intercepted(svm
, val
))
2240 err
= kvm_set_cr0(&svm
->vcpu
, val
);
2246 err
= kvm_set_cr3(&svm
->vcpu
, val
);
2249 err
= kvm_set_cr4(&svm
->vcpu
, val
);
2252 err
= kvm_set_cr8(&svm
->vcpu
, val
);
2255 WARN(1, "unhandled write to CR%d", cr
);
2256 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2259 } else { /* mov from cr */
2262 val
= kvm_read_cr0(&svm
->vcpu
);
2265 val
= svm
->vcpu
.arch
.cr2
;
2268 val
= kvm_read_cr3(&svm
->vcpu
);
2271 val
= kvm_read_cr4(&svm
->vcpu
);
2274 val
= kvm_get_cr8(&svm
->vcpu
);
2277 WARN(1, "unhandled read from CR%d", cr
);
2278 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2281 kvm_register_write(&svm
->vcpu
, reg
, val
);
2283 return kvm_complete_insn_gp(&svm
->vcpu
, err
);
2286 static int dr_interception(struct vcpu_svm
*svm
)
2291 if (svm
->vcpu
.guest_debug
== 0) {
2293 * No more DR vmexits; force a reload of the debug registers
2294 * and reenter on this instruction. The next vmexit will
2295 * retrieve the full state of the debug registers.
2297 clr_dr_intercepts(svm
);
2298 svm
->vcpu
.arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
2302 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS
))
2303 return emulate_on_interception(svm
);
2305 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
2306 dr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_DR0
;
2308 if (dr
>= 16) { /* mov to DRn */
2309 if (!kvm_require_dr(&svm
->vcpu
, dr
- 16))
2311 val
= kvm_register_read(&svm
->vcpu
, reg
);
2312 kvm_set_dr(&svm
->vcpu
, dr
- 16, val
);
2314 if (!kvm_require_dr(&svm
->vcpu
, dr
))
2316 kvm_get_dr(&svm
->vcpu
, dr
, &val
);
2317 kvm_register_write(&svm
->vcpu
, reg
, val
);
2320 return kvm_skip_emulated_instruction(&svm
->vcpu
);
2323 static int cr8_write_interception(struct vcpu_svm
*svm
)
2325 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2328 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
2329 /* instruction emulation calls kvm_set_cr8() */
2330 r
= cr_interception(svm
);
2331 if (lapic_in_kernel(&svm
->vcpu
))
2333 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
2335 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
2339 static int svm_get_msr_feature(struct kvm_msr_entry
*msr
)
2343 switch (msr
->index
) {
2344 case MSR_F10H_DECFG
:
2345 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC
))
2346 msr
->data
|= MSR_F10H_DECFG_LFENCE_SERIALIZE
;
2355 static int svm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2357 struct vcpu_svm
*svm
= to_svm(vcpu
);
2359 switch (msr_info
->index
) {
2361 msr_info
->data
= svm
->vmcb
->save
.star
;
2363 #ifdef CONFIG_X86_64
2365 msr_info
->data
= svm
->vmcb
->save
.lstar
;
2368 msr_info
->data
= svm
->vmcb
->save
.cstar
;
2370 case MSR_KERNEL_GS_BASE
:
2371 msr_info
->data
= svm
->vmcb
->save
.kernel_gs_base
;
2373 case MSR_SYSCALL_MASK
:
2374 msr_info
->data
= svm
->vmcb
->save
.sfmask
;
2377 case MSR_IA32_SYSENTER_CS
:
2378 msr_info
->data
= svm
->vmcb
->save
.sysenter_cs
;
2380 case MSR_IA32_SYSENTER_EIP
:
2381 msr_info
->data
= svm
->sysenter_eip
;
2383 case MSR_IA32_SYSENTER_ESP
:
2384 msr_info
->data
= svm
->sysenter_esp
;
2387 if (!boot_cpu_has(X86_FEATURE_RDTSCP
))
2389 msr_info
->data
= svm
->tsc_aux
;
2392 * Nobody will change the following 5 values in the VMCB so we can
2393 * safely return them on rdmsr. They will always be 0 until LBRV is
2396 case MSR_IA32_DEBUGCTLMSR
:
2397 msr_info
->data
= svm
->vmcb
->save
.dbgctl
;
2399 case MSR_IA32_LASTBRANCHFROMIP
:
2400 msr_info
->data
= svm
->vmcb
->save
.br_from
;
2402 case MSR_IA32_LASTBRANCHTOIP
:
2403 msr_info
->data
= svm
->vmcb
->save
.br_to
;
2405 case MSR_IA32_LASTINTFROMIP
:
2406 msr_info
->data
= svm
->vmcb
->save
.last_excp_from
;
2408 case MSR_IA32_LASTINTTOIP
:
2409 msr_info
->data
= svm
->vmcb
->save
.last_excp_to
;
2411 case MSR_VM_HSAVE_PA
:
2412 msr_info
->data
= svm
->nested
.hsave_msr
;
2415 msr_info
->data
= svm
->nested
.vm_cr_msr
;
2417 case MSR_IA32_SPEC_CTRL
:
2418 if (!msr_info
->host_initiated
&&
2419 !guest_cpuid_has(vcpu
, X86_FEATURE_SPEC_CTRL
) &&
2420 !guest_cpuid_has(vcpu
, X86_FEATURE_AMD_STIBP
) &&
2421 !guest_cpuid_has(vcpu
, X86_FEATURE_AMD_IBRS
) &&
2422 !guest_cpuid_has(vcpu
, X86_FEATURE_AMD_SSBD
))
2425 msr_info
->data
= svm
->spec_ctrl
;
2427 case MSR_AMD64_VIRT_SPEC_CTRL
:
2428 if (!msr_info
->host_initiated
&&
2429 !guest_cpuid_has(vcpu
, X86_FEATURE_VIRT_SSBD
))
2432 msr_info
->data
= svm
->virt_spec_ctrl
;
2434 case MSR_F15H_IC_CFG
: {
2438 family
= guest_cpuid_family(vcpu
);
2439 model
= guest_cpuid_model(vcpu
);
2441 if (family
< 0 || model
< 0)
2442 return kvm_get_msr_common(vcpu
, msr_info
);
2446 if (family
== 0x15 &&
2447 (model
>= 0x2 && model
< 0x20))
2448 msr_info
->data
= 0x1E;
2451 case MSR_F10H_DECFG
:
2452 msr_info
->data
= svm
->msr_decfg
;
2455 return kvm_get_msr_common(vcpu
, msr_info
);
2460 static int rdmsr_interception(struct vcpu_svm
*svm
)
2462 return kvm_emulate_rdmsr(&svm
->vcpu
);
2465 static int svm_set_vm_cr(struct kvm_vcpu
*vcpu
, u64 data
)
2467 struct vcpu_svm
*svm
= to_svm(vcpu
);
2468 int svm_dis
, chg_mask
;
2470 if (data
& ~SVM_VM_CR_VALID_MASK
)
2473 chg_mask
= SVM_VM_CR_VALID_MASK
;
2475 if (svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
)
2476 chg_mask
&= ~(SVM_VM_CR_SVM_LOCK_MASK
| SVM_VM_CR_SVM_DIS_MASK
);
2478 svm
->nested
.vm_cr_msr
&= ~chg_mask
;
2479 svm
->nested
.vm_cr_msr
|= (data
& chg_mask
);
2481 svm_dis
= svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
;
2483 /* check for svm_disable while efer.svme is set */
2484 if (svm_dis
&& (vcpu
->arch
.efer
& EFER_SVME
))
2490 static int svm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
2492 struct vcpu_svm
*svm
= to_svm(vcpu
);
2494 u32 ecx
= msr
->index
;
2495 u64 data
= msr
->data
;
2497 case MSR_IA32_CR_PAT
:
2498 if (!kvm_mtrr_valid(vcpu
, MSR_IA32_CR_PAT
, data
))
2500 vcpu
->arch
.pat
= data
;
2501 svm
->vmcb
->save
.g_pat
= data
;
2502 mark_dirty(svm
->vmcb
, VMCB_NPT
);
2504 case MSR_IA32_SPEC_CTRL
:
2505 if (!msr
->host_initiated
&&
2506 !guest_cpuid_has(vcpu
, X86_FEATURE_SPEC_CTRL
) &&
2507 !guest_cpuid_has(vcpu
, X86_FEATURE_AMD_STIBP
) &&
2508 !guest_cpuid_has(vcpu
, X86_FEATURE_AMD_IBRS
) &&
2509 !guest_cpuid_has(vcpu
, X86_FEATURE_AMD_SSBD
))
2512 if (data
& ~kvm_spec_ctrl_valid_bits(vcpu
))
2515 svm
->spec_ctrl
= data
;
2521 * When it's written (to non-zero) for the first time, pass
2525 * The handling of the MSR bitmap for L2 guests is done in
2526 * nested_svm_vmrun_msrpm.
2527 * We update the L1 MSR bit as well since it will end up
2528 * touching the MSR anyway now.
2530 set_msr_interception(svm
->msrpm
, MSR_IA32_SPEC_CTRL
, 1, 1);
2532 case MSR_IA32_PRED_CMD
:
2533 if (!msr
->host_initiated
&&
2534 !guest_cpuid_has(vcpu
, X86_FEATURE_AMD_IBPB
))
2537 if (data
& ~PRED_CMD_IBPB
)
2539 if (!boot_cpu_has(X86_FEATURE_AMD_IBPB
))
2544 wrmsrl(MSR_IA32_PRED_CMD
, PRED_CMD_IBPB
);
2545 set_msr_interception(svm
->msrpm
, MSR_IA32_PRED_CMD
, 0, 1);
2547 case MSR_AMD64_VIRT_SPEC_CTRL
:
2548 if (!msr
->host_initiated
&&
2549 !guest_cpuid_has(vcpu
, X86_FEATURE_VIRT_SSBD
))
2552 if (data
& ~SPEC_CTRL_SSBD
)
2555 svm
->virt_spec_ctrl
= data
;
2558 svm
->vmcb
->save
.star
= data
;
2560 #ifdef CONFIG_X86_64
2562 svm
->vmcb
->save
.lstar
= data
;
2565 svm
->vmcb
->save
.cstar
= data
;
2567 case MSR_KERNEL_GS_BASE
:
2568 svm
->vmcb
->save
.kernel_gs_base
= data
;
2570 case MSR_SYSCALL_MASK
:
2571 svm
->vmcb
->save
.sfmask
= data
;
2574 case MSR_IA32_SYSENTER_CS
:
2575 svm
->vmcb
->save
.sysenter_cs
= data
;
2577 case MSR_IA32_SYSENTER_EIP
:
2578 svm
->sysenter_eip
= data
;
2579 svm
->vmcb
->save
.sysenter_eip
= data
;
2581 case MSR_IA32_SYSENTER_ESP
:
2582 svm
->sysenter_esp
= data
;
2583 svm
->vmcb
->save
.sysenter_esp
= data
;
2586 if (!boot_cpu_has(X86_FEATURE_RDTSCP
))
2590 * This is rare, so we update the MSR here instead of using
2591 * direct_access_msrs. Doing that would require a rdmsr in
2594 svm
->tsc_aux
= data
;
2595 wrmsrl(MSR_TSC_AUX
, svm
->tsc_aux
);
2597 case MSR_IA32_DEBUGCTLMSR
:
2598 if (!boot_cpu_has(X86_FEATURE_LBRV
)) {
2599 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2603 if (data
& DEBUGCTL_RESERVED_BITS
)
2606 svm
->vmcb
->save
.dbgctl
= data
;
2607 mark_dirty(svm
->vmcb
, VMCB_LBR
);
2608 if (data
& (1ULL<<0))
2609 svm_enable_lbrv(svm
);
2611 svm_disable_lbrv(svm
);
2613 case MSR_VM_HSAVE_PA
:
2614 svm
->nested
.hsave_msr
= data
;
2617 return svm_set_vm_cr(vcpu
, data
);
2619 vcpu_unimpl(vcpu
, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
2621 case MSR_F10H_DECFG
: {
2622 struct kvm_msr_entry msr_entry
;
2624 msr_entry
.index
= msr
->index
;
2625 if (svm_get_msr_feature(&msr_entry
))
2628 /* Check the supported bits */
2629 if (data
& ~msr_entry
.data
)
2632 /* Don't allow the guest to change a bit, #GP */
2633 if (!msr
->host_initiated
&& (data
^ msr_entry
.data
))
2636 svm
->msr_decfg
= data
;
2639 case MSR_IA32_APICBASE
:
2640 if (kvm_vcpu_apicv_active(vcpu
))
2641 avic_update_vapic_bar(to_svm(vcpu
), data
);
2644 return kvm_set_msr_common(vcpu
, msr
);
2649 static int wrmsr_interception(struct vcpu_svm
*svm
)
2651 return kvm_emulate_wrmsr(&svm
->vcpu
);
2654 static int msr_interception(struct vcpu_svm
*svm
)
2656 if (svm
->vmcb
->control
.exit_info_1
)
2657 return wrmsr_interception(svm
);
2659 return rdmsr_interception(svm
);
2662 static int interrupt_window_interception(struct vcpu_svm
*svm
)
2664 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
2665 svm_clear_vintr(svm
);
2668 * For AVIC, the only reason to end up here is ExtINTs.
2669 * In this case AVIC was temporarily disabled for
2670 * requesting the IRQ window and we have to re-enable it.
2672 svm_toggle_avic_for_irq_window(&svm
->vcpu
, true);
2674 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
2675 mark_dirty(svm
->vmcb
, VMCB_INTR
);
2676 ++svm
->vcpu
.stat
.irq_window_exits
;
2680 static int pause_interception(struct vcpu_svm
*svm
)
2682 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
2683 bool in_kernel
= (svm_get_cpl(vcpu
) == 0);
2685 if (pause_filter_thresh
)
2686 grow_ple_window(vcpu
);
2688 kvm_vcpu_on_spin(vcpu
, in_kernel
);
2692 static int nop_interception(struct vcpu_svm
*svm
)
2694 return kvm_skip_emulated_instruction(&(svm
->vcpu
));
2697 static int monitor_interception(struct vcpu_svm
*svm
)
2699 printk_once(KERN_WARNING
"kvm: MONITOR instruction emulated as NOP!\n");
2700 return nop_interception(svm
);
2703 static int mwait_interception(struct vcpu_svm
*svm
)
2705 printk_once(KERN_WARNING
"kvm: MWAIT instruction emulated as NOP!\n");
2706 return nop_interception(svm
);
2709 static int (*const svm_exit_handlers
[])(struct vcpu_svm
*svm
) = {
2710 [SVM_EXIT_READ_CR0
] = cr_interception
,
2711 [SVM_EXIT_READ_CR3
] = cr_interception
,
2712 [SVM_EXIT_READ_CR4
] = cr_interception
,
2713 [SVM_EXIT_READ_CR8
] = cr_interception
,
2714 [SVM_EXIT_CR0_SEL_WRITE
] = cr_interception
,
2715 [SVM_EXIT_WRITE_CR0
] = cr_interception
,
2716 [SVM_EXIT_WRITE_CR3
] = cr_interception
,
2717 [SVM_EXIT_WRITE_CR4
] = cr_interception
,
2718 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
2719 [SVM_EXIT_READ_DR0
] = dr_interception
,
2720 [SVM_EXIT_READ_DR1
] = dr_interception
,
2721 [SVM_EXIT_READ_DR2
] = dr_interception
,
2722 [SVM_EXIT_READ_DR3
] = dr_interception
,
2723 [SVM_EXIT_READ_DR4
] = dr_interception
,
2724 [SVM_EXIT_READ_DR5
] = dr_interception
,
2725 [SVM_EXIT_READ_DR6
] = dr_interception
,
2726 [SVM_EXIT_READ_DR7
] = dr_interception
,
2727 [SVM_EXIT_WRITE_DR0
] = dr_interception
,
2728 [SVM_EXIT_WRITE_DR1
] = dr_interception
,
2729 [SVM_EXIT_WRITE_DR2
] = dr_interception
,
2730 [SVM_EXIT_WRITE_DR3
] = dr_interception
,
2731 [SVM_EXIT_WRITE_DR4
] = dr_interception
,
2732 [SVM_EXIT_WRITE_DR5
] = dr_interception
,
2733 [SVM_EXIT_WRITE_DR6
] = dr_interception
,
2734 [SVM_EXIT_WRITE_DR7
] = dr_interception
,
2735 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
2736 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
2737 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
2738 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
2739 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
2740 [SVM_EXIT_EXCP_BASE
+ AC_VECTOR
] = ac_interception
,
2741 [SVM_EXIT_EXCP_BASE
+ GP_VECTOR
] = gp_interception
,
2742 [SVM_EXIT_INTR
] = intr_interception
,
2743 [SVM_EXIT_NMI
] = nmi_interception
,
2744 [SVM_EXIT_SMI
] = nop_on_interception
,
2745 [SVM_EXIT_INIT
] = nop_on_interception
,
2746 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
2747 [SVM_EXIT_RDPMC
] = rdpmc_interception
,
2748 [SVM_EXIT_CPUID
] = cpuid_interception
,
2749 [SVM_EXIT_IRET
] = iret_interception
,
2750 [SVM_EXIT_INVD
] = emulate_on_interception
,
2751 [SVM_EXIT_PAUSE
] = pause_interception
,
2752 [SVM_EXIT_HLT
] = halt_interception
,
2753 [SVM_EXIT_INVLPG
] = invlpg_interception
,
2754 [SVM_EXIT_INVLPGA
] = invlpga_interception
,
2755 [SVM_EXIT_IOIO
] = io_interception
,
2756 [SVM_EXIT_MSR
] = msr_interception
,
2757 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
2758 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
2759 [SVM_EXIT_VMRUN
] = vmrun_interception
,
2760 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
2761 [SVM_EXIT_VMLOAD
] = vmload_interception
,
2762 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
2763 [SVM_EXIT_STGI
] = stgi_interception
,
2764 [SVM_EXIT_CLGI
] = clgi_interception
,
2765 [SVM_EXIT_SKINIT
] = skinit_interception
,
2766 [SVM_EXIT_WBINVD
] = wbinvd_interception
,
2767 [SVM_EXIT_MONITOR
] = monitor_interception
,
2768 [SVM_EXIT_MWAIT
] = mwait_interception
,
2769 [SVM_EXIT_XSETBV
] = xsetbv_interception
,
2770 [SVM_EXIT_RDPRU
] = rdpru_interception
,
2771 [SVM_EXIT_NPF
] = npf_interception
,
2772 [SVM_EXIT_RSM
] = rsm_interception
,
2773 [SVM_EXIT_AVIC_INCOMPLETE_IPI
] = avic_incomplete_ipi_interception
,
2774 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS
] = avic_unaccelerated_access_interception
,
2777 static void dump_vmcb(struct kvm_vcpu
*vcpu
)
2779 struct vcpu_svm
*svm
= to_svm(vcpu
);
2780 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
2781 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
2783 if (!dump_invalid_vmcb
) {
2784 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2788 pr_err("VMCB Control Area:\n");
2789 pr_err("%-20s%04x\n", "cr_read:", control
->intercept_cr
& 0xffff);
2790 pr_err("%-20s%04x\n", "cr_write:", control
->intercept_cr
>> 16);
2791 pr_err("%-20s%04x\n", "dr_read:", control
->intercept_dr
& 0xffff);
2792 pr_err("%-20s%04x\n", "dr_write:", control
->intercept_dr
>> 16);
2793 pr_err("%-20s%08x\n", "exceptions:", control
->intercept_exceptions
);
2794 pr_err("%-20s%016llx\n", "intercepts:", control
->intercept
);
2795 pr_err("%-20s%d\n", "pause filter count:", control
->pause_filter_count
);
2796 pr_err("%-20s%d\n", "pause filter threshold:",
2797 control
->pause_filter_thresh
);
2798 pr_err("%-20s%016llx\n", "iopm_base_pa:", control
->iopm_base_pa
);
2799 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control
->msrpm_base_pa
);
2800 pr_err("%-20s%016llx\n", "tsc_offset:", control
->tsc_offset
);
2801 pr_err("%-20s%d\n", "asid:", control
->asid
);
2802 pr_err("%-20s%d\n", "tlb_ctl:", control
->tlb_ctl
);
2803 pr_err("%-20s%08x\n", "int_ctl:", control
->int_ctl
);
2804 pr_err("%-20s%08x\n", "int_vector:", control
->int_vector
);
2805 pr_err("%-20s%08x\n", "int_state:", control
->int_state
);
2806 pr_err("%-20s%08x\n", "exit_code:", control
->exit_code
);
2807 pr_err("%-20s%016llx\n", "exit_info1:", control
->exit_info_1
);
2808 pr_err("%-20s%016llx\n", "exit_info2:", control
->exit_info_2
);
2809 pr_err("%-20s%08x\n", "exit_int_info:", control
->exit_int_info
);
2810 pr_err("%-20s%08x\n", "exit_int_info_err:", control
->exit_int_info_err
);
2811 pr_err("%-20s%lld\n", "nested_ctl:", control
->nested_ctl
);
2812 pr_err("%-20s%016llx\n", "nested_cr3:", control
->nested_cr3
);
2813 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control
->avic_vapic_bar
);
2814 pr_err("%-20s%08x\n", "event_inj:", control
->event_inj
);
2815 pr_err("%-20s%08x\n", "event_inj_err:", control
->event_inj_err
);
2816 pr_err("%-20s%lld\n", "virt_ext:", control
->virt_ext
);
2817 pr_err("%-20s%016llx\n", "next_rip:", control
->next_rip
);
2818 pr_err("%-20s%016llx\n", "avic_backing_page:", control
->avic_backing_page
);
2819 pr_err("%-20s%016llx\n", "avic_logical_id:", control
->avic_logical_id
);
2820 pr_err("%-20s%016llx\n", "avic_physical_id:", control
->avic_physical_id
);
2821 pr_err("VMCB State Save Area:\n");
2822 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2824 save
->es
.selector
, save
->es
.attrib
,
2825 save
->es
.limit
, save
->es
.base
);
2826 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2828 save
->cs
.selector
, save
->cs
.attrib
,
2829 save
->cs
.limit
, save
->cs
.base
);
2830 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2832 save
->ss
.selector
, save
->ss
.attrib
,
2833 save
->ss
.limit
, save
->ss
.base
);
2834 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2836 save
->ds
.selector
, save
->ds
.attrib
,
2837 save
->ds
.limit
, save
->ds
.base
);
2838 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2840 save
->fs
.selector
, save
->fs
.attrib
,
2841 save
->fs
.limit
, save
->fs
.base
);
2842 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2844 save
->gs
.selector
, save
->gs
.attrib
,
2845 save
->gs
.limit
, save
->gs
.base
);
2846 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2848 save
->gdtr
.selector
, save
->gdtr
.attrib
,
2849 save
->gdtr
.limit
, save
->gdtr
.base
);
2850 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2852 save
->ldtr
.selector
, save
->ldtr
.attrib
,
2853 save
->ldtr
.limit
, save
->ldtr
.base
);
2854 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2856 save
->idtr
.selector
, save
->idtr
.attrib
,
2857 save
->idtr
.limit
, save
->idtr
.base
);
2858 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2860 save
->tr
.selector
, save
->tr
.attrib
,
2861 save
->tr
.limit
, save
->tr
.base
);
2862 pr_err("cpl: %d efer: %016llx\n",
2863 save
->cpl
, save
->efer
);
2864 pr_err("%-15s %016llx %-13s %016llx\n",
2865 "cr0:", save
->cr0
, "cr2:", save
->cr2
);
2866 pr_err("%-15s %016llx %-13s %016llx\n",
2867 "cr3:", save
->cr3
, "cr4:", save
->cr4
);
2868 pr_err("%-15s %016llx %-13s %016llx\n",
2869 "dr6:", save
->dr6
, "dr7:", save
->dr7
);
2870 pr_err("%-15s %016llx %-13s %016llx\n",
2871 "rip:", save
->rip
, "rflags:", save
->rflags
);
2872 pr_err("%-15s %016llx %-13s %016llx\n",
2873 "rsp:", save
->rsp
, "rax:", save
->rax
);
2874 pr_err("%-15s %016llx %-13s %016llx\n",
2875 "star:", save
->star
, "lstar:", save
->lstar
);
2876 pr_err("%-15s %016llx %-13s %016llx\n",
2877 "cstar:", save
->cstar
, "sfmask:", save
->sfmask
);
2878 pr_err("%-15s %016llx %-13s %016llx\n",
2879 "kernel_gs_base:", save
->kernel_gs_base
,
2880 "sysenter_cs:", save
->sysenter_cs
);
2881 pr_err("%-15s %016llx %-13s %016llx\n",
2882 "sysenter_esp:", save
->sysenter_esp
,
2883 "sysenter_eip:", save
->sysenter_eip
);
2884 pr_err("%-15s %016llx %-13s %016llx\n",
2885 "gpat:", save
->g_pat
, "dbgctl:", save
->dbgctl
);
2886 pr_err("%-15s %016llx %-13s %016llx\n",
2887 "br_from:", save
->br_from
, "br_to:", save
->br_to
);
2888 pr_err("%-15s %016llx %-13s %016llx\n",
2889 "excp_from:", save
->last_excp_from
,
2890 "excp_to:", save
->last_excp_to
);
2893 static void svm_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
2895 struct vmcb_control_area
*control
= &to_svm(vcpu
)->vmcb
->control
;
2897 *info1
= control
->exit_info_1
;
2898 *info2
= control
->exit_info_2
;
2901 static int handle_exit(struct kvm_vcpu
*vcpu
,
2902 enum exit_fastpath_completion exit_fastpath
)
2904 struct vcpu_svm
*svm
= to_svm(vcpu
);
2905 struct kvm_run
*kvm_run
= vcpu
->run
;
2906 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2908 trace_kvm_exit(exit_code
, vcpu
, KVM_ISA_SVM
);
2910 if (!is_cr_intercept(svm
, INTERCEPT_CR0_WRITE
))
2911 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
2913 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
2915 if (unlikely(svm
->nested
.exit_required
)) {
2916 nested_svm_vmexit(svm
);
2917 svm
->nested
.exit_required
= false;
2922 if (is_guest_mode(vcpu
)) {
2925 trace_kvm_nested_vmexit(svm
->vmcb
->save
.rip
, exit_code
,
2926 svm
->vmcb
->control
.exit_info_1
,
2927 svm
->vmcb
->control
.exit_info_2
,
2928 svm
->vmcb
->control
.exit_int_info
,
2929 svm
->vmcb
->control
.exit_int_info_err
,
2932 vmexit
= nested_svm_exit_special(svm
);
2934 if (vmexit
== NESTED_EXIT_CONTINUE
)
2935 vmexit
= nested_svm_exit_handled(svm
);
2937 if (vmexit
== NESTED_EXIT_DONE
)
2941 svm_complete_interrupts(svm
);
2943 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
2944 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
2945 kvm_run
->fail_entry
.hardware_entry_failure_reason
2946 = svm
->vmcb
->control
.exit_code
;
2951 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
2952 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
2953 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
&&
2954 exit_code
!= SVM_EXIT_INTR
&& exit_code
!= SVM_EXIT_NMI
)
2955 printk(KERN_ERR
"%s: unexpected exit_int_info 0x%x "
2957 __func__
, svm
->vmcb
->control
.exit_int_info
,
2960 if (exit_fastpath
== EXIT_FASTPATH_SKIP_EMUL_INS
) {
2961 kvm_skip_emulated_instruction(vcpu
);
2963 } else if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
2964 || !svm_exit_handlers
[exit_code
]) {
2965 vcpu_unimpl(vcpu
, "svm: unexpected exit reason 0x%x\n", exit_code
);
2967 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
2968 vcpu
->run
->internal
.suberror
=
2969 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON
;
2970 vcpu
->run
->internal
.ndata
= 1;
2971 vcpu
->run
->internal
.data
[0] = exit_code
;
2975 #ifdef CONFIG_RETPOLINE
2976 if (exit_code
== SVM_EXIT_MSR
)
2977 return msr_interception(svm
);
2978 else if (exit_code
== SVM_EXIT_VINTR
)
2979 return interrupt_window_interception(svm
);
2980 else if (exit_code
== SVM_EXIT_INTR
)
2981 return intr_interception(svm
);
2982 else if (exit_code
== SVM_EXIT_HLT
)
2983 return halt_interception(svm
);
2984 else if (exit_code
== SVM_EXIT_NPF
)
2985 return npf_interception(svm
);
2987 return svm_exit_handlers
[exit_code
](svm
);
2990 static void reload_tss(struct kvm_vcpu
*vcpu
)
2992 int cpu
= raw_smp_processor_id();
2994 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
2995 sd
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
2999 static void pre_svm_run(struct vcpu_svm
*svm
)
3001 int cpu
= raw_smp_processor_id();
3003 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
3005 if (sev_guest(svm
->vcpu
.kvm
))
3006 return pre_sev_run(svm
, cpu
);
3008 /* FIXME: handle wraparound of asid_generation */
3009 if (svm
->asid_generation
!= sd
->asid_generation
)
3013 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
3015 struct vcpu_svm
*svm
= to_svm(vcpu
);
3017 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
3018 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
3019 set_intercept(svm
, INTERCEPT_IRET
);
3020 ++vcpu
->stat
.nmi_injections
;
3023 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
3025 struct vcpu_svm
*svm
= to_svm(vcpu
);
3027 BUG_ON(!(gif_set(svm
)));
3029 trace_kvm_inj_virq(vcpu
->arch
.interrupt
.nr
);
3030 ++vcpu
->stat
.irq_injections
;
3032 svm
->vmcb
->control
.event_inj
= vcpu
->arch
.interrupt
.nr
|
3033 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
3036 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
3038 struct vcpu_svm
*svm
= to_svm(vcpu
);
3040 if (svm_nested_virtualize_tpr(vcpu
))
3043 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3049 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3052 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
3054 struct vcpu_svm
*svm
= to_svm(vcpu
);
3055 struct vmcb
*vmcb
= svm
->vmcb
;
3057 ret
= !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
3058 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3059 ret
= ret
&& gif_set(svm
) && nested_svm_nmi(svm
);
3064 static bool svm_get_nmi_mask(struct kvm_vcpu
*vcpu
)
3066 struct vcpu_svm
*svm
= to_svm(vcpu
);
3068 return !!(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3071 static void svm_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
3073 struct vcpu_svm
*svm
= to_svm(vcpu
);
3076 svm
->vcpu
.arch
.hflags
|= HF_NMI_MASK
;
3077 set_intercept(svm
, INTERCEPT_IRET
);
3079 svm
->vcpu
.arch
.hflags
&= ~HF_NMI_MASK
;
3080 clr_intercept(svm
, INTERCEPT_IRET
);
3084 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
3086 struct vcpu_svm
*svm
= to_svm(vcpu
);
3087 struct vmcb
*vmcb
= svm
->vmcb
;
3089 if (!gif_set(svm
) ||
3090 (vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
))
3093 if (is_guest_mode(vcpu
) && (svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
3094 return !!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
);
3096 return !!(kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
);
3099 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
3101 struct vcpu_svm
*svm
= to_svm(vcpu
);
3104 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3105 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3106 * get that intercept, this function will be called again though and
3107 * we'll get the vintr intercept. However, if the vGIF feature is
3108 * enabled, the STGI interception will not occur. Enable the irq
3109 * window under the assumption that the hardware will set the GIF.
3111 if (vgif_enabled(svm
) || gif_set(svm
)) {
3113 * IRQ window is not needed when AVIC is enabled,
3114 * unless we have pending ExtINT since it cannot be injected
3115 * via AVIC. In such case, we need to temporarily disable AVIC,
3116 * and fallback to injecting IRQ via V_IRQ.
3118 svm_toggle_avic_for_irq_window(vcpu
, false);
3123 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
3125 struct vcpu_svm
*svm
= to_svm(vcpu
);
3127 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
3129 return; /* IRET will cause a vm exit */
3131 if (!gif_set(svm
)) {
3132 if (vgif_enabled(svm
))
3133 set_intercept(svm
, INTERCEPT_STGI
);
3134 return; /* STGI will cause a vm exit */
3137 if (svm
->nested
.exit_required
)
3138 return; /* we're not going to run the guest yet */
3141 * Something prevents NMI from been injected. Single step over possible
3142 * problem (IRET or exception injection or interrupt shadow)
3144 svm
->nmi_singlestep_guest_rflags
= svm_get_rflags(vcpu
);
3145 svm
->nmi_singlestep
= true;
3146 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3149 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
3154 static int svm_set_identity_map_addr(struct kvm
*kvm
, u64 ident_addr
)
3159 void svm_flush_tlb(struct kvm_vcpu
*vcpu
, bool invalidate_gpa
)
3161 struct vcpu_svm
*svm
= to_svm(vcpu
);
3163 if (static_cpu_has(X86_FEATURE_FLUSHBYASID
))
3164 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ASID
;
3166 svm
->asid_generation
--;
3169 static void svm_flush_tlb_gva(struct kvm_vcpu
*vcpu
, gva_t gva
)
3171 struct vcpu_svm
*svm
= to_svm(vcpu
);
3173 invlpga(gva
, svm
->vmcb
->control
.asid
);
3176 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
3180 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
3182 struct vcpu_svm
*svm
= to_svm(vcpu
);
3184 if (svm_nested_virtualize_tpr(vcpu
))
3187 if (!is_cr_intercept(svm
, INTERCEPT_CR8_WRITE
)) {
3188 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
3189 kvm_set_cr8(vcpu
, cr8
);
3193 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
3195 struct vcpu_svm
*svm
= to_svm(vcpu
);
3198 if (svm_nested_virtualize_tpr(vcpu
) ||
3199 kvm_vcpu_apicv_active(vcpu
))
3202 cr8
= kvm_get_cr8(vcpu
);
3203 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
3204 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
3207 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
3211 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
3212 unsigned int3_injected
= svm
->int3_injected
;
3214 svm
->int3_injected
= 0;
3217 * If we've made progress since setting HF_IRET_MASK, we've
3218 * executed an IRET and can allow NMI injection.
3220 if ((svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
3221 && kvm_rip_read(&svm
->vcpu
) != svm
->nmi_iret_rip
) {
3222 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
3223 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3226 svm
->vcpu
.arch
.nmi_injected
= false;
3227 kvm_clear_exception_queue(&svm
->vcpu
);
3228 kvm_clear_interrupt_queue(&svm
->vcpu
);
3230 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
3233 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3235 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
3236 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
3239 case SVM_EXITINTINFO_TYPE_NMI
:
3240 svm
->vcpu
.arch
.nmi_injected
= true;
3242 case SVM_EXITINTINFO_TYPE_EXEPT
:
3244 * In case of software exceptions, do not reinject the vector,
3245 * but re-execute the instruction instead. Rewind RIP first
3246 * if we emulated INT3 before.
3248 if (kvm_exception_is_soft(vector
)) {
3249 if (vector
== BP_VECTOR
&& int3_injected
&&
3250 kvm_is_linear_rip(&svm
->vcpu
, svm
->int3_rip
))
3251 kvm_rip_write(&svm
->vcpu
,
3252 kvm_rip_read(&svm
->vcpu
) -
3256 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
3257 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
3258 kvm_requeue_exception_e(&svm
->vcpu
, vector
, err
);
3261 kvm_requeue_exception(&svm
->vcpu
, vector
);
3263 case SVM_EXITINTINFO_TYPE_INTR
:
3264 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
3271 static void svm_cancel_injection(struct kvm_vcpu
*vcpu
)
3273 struct vcpu_svm
*svm
= to_svm(vcpu
);
3274 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
3276 control
->exit_int_info
= control
->event_inj
;
3277 control
->exit_int_info_err
= control
->event_inj_err
;
3278 control
->event_inj
= 0;
3279 svm_complete_interrupts(svm
);
3282 void __svm_vcpu_run(unsigned long vmcb_pa
, unsigned long *regs
);
3284 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
)
3286 struct vcpu_svm
*svm
= to_svm(vcpu
);
3288 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
3289 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
3290 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
3293 * A vmexit emulation is required before the vcpu can be executed
3296 if (unlikely(svm
->nested
.exit_required
))
3300 * Disable singlestep if we're injecting an interrupt/exception.
3301 * We don't want our modified rflags to be pushed on the stack where
3302 * we might not be able to easily reset them if we disabled NMI
3305 if (svm
->nmi_singlestep
&& svm
->vmcb
->control
.event_inj
) {
3307 * Event injection happens before external interrupts cause a
3308 * vmexit and interrupts are disabled here, so smp_send_reschedule
3309 * is enough to force an immediate vmexit.
3311 disable_nmi_singlestep(svm
);
3312 smp_send_reschedule(vcpu
->cpu
);
3317 sync_lapic_to_cr8(vcpu
);
3319 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
3322 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3325 if (unlikely(svm
->vcpu
.arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
))
3326 svm_set_dr6(svm
, vcpu
->arch
.dr6
);
3328 svm_set_dr6(svm
, DR6_FIXED_1
| DR6_RTM
);
3331 kvm_load_guest_xsave_state(vcpu
);
3333 if (lapic_in_kernel(vcpu
) &&
3334 vcpu
->arch
.apic
->lapic_timer
.timer_advance_ns
)
3335 kvm_wait_lapic_expire(vcpu
);
3338 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3339 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3340 * is no need to worry about the conditional branch over the wrmsr
3341 * being speculatively taken.
3343 x86_spec_ctrl_set_guest(svm
->spec_ctrl
, svm
->virt_spec_ctrl
);
3345 __svm_vcpu_run(svm
->vmcb_pa
, (unsigned long *)&svm
->vcpu
.arch
.regs
);
3347 #ifdef CONFIG_X86_64
3348 wrmsrl(MSR_GS_BASE
, svm
->host
.gs_base
);
3350 loadsegment(fs
, svm
->host
.fs
);
3351 #ifndef CONFIG_X86_32_LAZY_GS
3352 loadsegment(gs
, svm
->host
.gs
);
3357 * We do not use IBRS in the kernel. If this vCPU has used the
3358 * SPEC_CTRL MSR it may have left it on; save the value and
3359 * turn it off. This is much more efficient than blindly adding
3360 * it to the atomic save/restore list. Especially as the former
3361 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3363 * For non-nested case:
3364 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3368 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3371 if (unlikely(!msr_write_intercepted(vcpu
, MSR_IA32_SPEC_CTRL
)))
3372 svm
->spec_ctrl
= native_read_msr(MSR_IA32_SPEC_CTRL
);
3376 x86_spec_ctrl_restore_host(svm
->spec_ctrl
, svm
->virt_spec_ctrl
);
3378 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
3379 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
3380 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
3381 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
3383 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3384 kvm_before_interrupt(&svm
->vcpu
);
3386 kvm_load_host_xsave_state(vcpu
);
3389 /* Any pending NMI will happen here */
3391 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3392 kvm_after_interrupt(&svm
->vcpu
);
3394 sync_cr8_to_lapic(vcpu
);
3398 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
3400 /* if exit due to PF check for async PF */
3401 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
)
3402 svm
->vcpu
.arch
.apf
.host_apf_reason
= kvm_read_and_reset_pf_reason();
3405 vcpu
->arch
.regs_avail
&= ~(1 << VCPU_EXREG_PDPTR
);
3406 vcpu
->arch
.regs_dirty
&= ~(1 << VCPU_EXREG_PDPTR
);
3410 * We need to handle MC intercepts here before the vcpu has a chance to
3411 * change the physical cpu
3413 if (unlikely(svm
->vmcb
->control
.exit_code
==
3414 SVM_EXIT_EXCP_BASE
+ MC_VECTOR
))
3415 svm_handle_mce(svm
);
3417 mark_all_clean(svm
->vmcb
);
3420 static void svm_load_mmu_pgd(struct kvm_vcpu
*vcpu
, unsigned long root
)
3422 struct vcpu_svm
*svm
= to_svm(vcpu
);
3423 bool update_guest_cr3
= true;
3426 cr3
= __sme_set(root
);
3428 svm
->vmcb
->control
.nested_cr3
= cr3
;
3429 mark_dirty(svm
->vmcb
, VMCB_NPT
);
3431 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */
3432 if (is_guest_mode(vcpu
))
3433 update_guest_cr3
= false;
3434 else if (test_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
))
3435 cr3
= vcpu
->arch
.cr3
;
3436 else /* CR3 is already up-to-date. */
3437 update_guest_cr3
= false;
3440 if (update_guest_cr3
) {
3441 svm
->vmcb
->save
.cr3
= cr3
;
3442 mark_dirty(svm
->vmcb
, VMCB_CR
);
3446 static int is_disabled(void)
3450 rdmsrl(MSR_VM_CR
, vm_cr
);
3451 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
3458 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
3461 * Patch in the VMMCALL instruction:
3463 hypercall
[0] = 0x0f;
3464 hypercall
[1] = 0x01;
3465 hypercall
[2] = 0xd9;
3468 static int __init
svm_check_processor_compat(void)
3473 static bool svm_cpu_has_accelerated_tpr(void)
3478 static bool svm_has_emulated_msr(int index
)
3481 case MSR_IA32_MCG_EXT_CTL
:
3482 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
3491 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
3496 static void svm_cpuid_update(struct kvm_vcpu
*vcpu
)
3498 struct vcpu_svm
*svm
= to_svm(vcpu
);
3500 vcpu
->arch
.xsaves_enabled
= guest_cpuid_has(vcpu
, X86_FEATURE_XSAVE
) &&
3501 boot_cpu_has(X86_FEATURE_XSAVE
) &&
3502 boot_cpu_has(X86_FEATURE_XSAVES
);
3504 /* Update nrips enabled cache */
3505 svm
->nrips_enabled
= kvm_cpu_cap_has(X86_FEATURE_NRIPS
) &&
3506 guest_cpuid_has(&svm
->vcpu
, X86_FEATURE_NRIPS
);
3508 if (!kvm_vcpu_apicv_active(vcpu
))
3512 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3513 * is exposed to the guest, disable AVIC.
3515 if (guest_cpuid_has(vcpu
, X86_FEATURE_X2APIC
))
3516 kvm_request_apicv_update(vcpu
->kvm
, false,
3517 APICV_INHIBIT_REASON_X2APIC
);
3520 * Currently, AVIC does not work with nested virtualization.
3521 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3523 if (nested
&& guest_cpuid_has(vcpu
, X86_FEATURE_SVM
))
3524 kvm_request_apicv_update(vcpu
->kvm
, false,
3525 APICV_INHIBIT_REASON_NESTED
);
3528 static bool svm_has_wbinvd_exit(void)
3533 #define PRE_EX(exit) { .exit_code = (exit), \
3534 .stage = X86_ICPT_PRE_EXCEPT, }
3535 #define POST_EX(exit) { .exit_code = (exit), \
3536 .stage = X86_ICPT_POST_EXCEPT, }
3537 #define POST_MEM(exit) { .exit_code = (exit), \
3538 .stage = X86_ICPT_POST_MEMACCESS, }
3540 static const struct __x86_intercept
{
3542 enum x86_intercept_stage stage
;
3543 } x86_intercept_map
[] = {
3544 [x86_intercept_cr_read
] = POST_EX(SVM_EXIT_READ_CR0
),
3545 [x86_intercept_cr_write
] = POST_EX(SVM_EXIT_WRITE_CR0
),
3546 [x86_intercept_clts
] = POST_EX(SVM_EXIT_WRITE_CR0
),
3547 [x86_intercept_lmsw
] = POST_EX(SVM_EXIT_WRITE_CR0
),
3548 [x86_intercept_smsw
] = POST_EX(SVM_EXIT_READ_CR0
),
3549 [x86_intercept_dr_read
] = POST_EX(SVM_EXIT_READ_DR0
),
3550 [x86_intercept_dr_write
] = POST_EX(SVM_EXIT_WRITE_DR0
),
3551 [x86_intercept_sldt
] = POST_EX(SVM_EXIT_LDTR_READ
),
3552 [x86_intercept_str
] = POST_EX(SVM_EXIT_TR_READ
),
3553 [x86_intercept_lldt
] = POST_EX(SVM_EXIT_LDTR_WRITE
),
3554 [x86_intercept_ltr
] = POST_EX(SVM_EXIT_TR_WRITE
),
3555 [x86_intercept_sgdt
] = POST_EX(SVM_EXIT_GDTR_READ
),
3556 [x86_intercept_sidt
] = POST_EX(SVM_EXIT_IDTR_READ
),
3557 [x86_intercept_lgdt
] = POST_EX(SVM_EXIT_GDTR_WRITE
),
3558 [x86_intercept_lidt
] = POST_EX(SVM_EXIT_IDTR_WRITE
),
3559 [x86_intercept_vmrun
] = POST_EX(SVM_EXIT_VMRUN
),
3560 [x86_intercept_vmmcall
] = POST_EX(SVM_EXIT_VMMCALL
),
3561 [x86_intercept_vmload
] = POST_EX(SVM_EXIT_VMLOAD
),
3562 [x86_intercept_vmsave
] = POST_EX(SVM_EXIT_VMSAVE
),
3563 [x86_intercept_stgi
] = POST_EX(SVM_EXIT_STGI
),
3564 [x86_intercept_clgi
] = POST_EX(SVM_EXIT_CLGI
),
3565 [x86_intercept_skinit
] = POST_EX(SVM_EXIT_SKINIT
),
3566 [x86_intercept_invlpga
] = POST_EX(SVM_EXIT_INVLPGA
),
3567 [x86_intercept_rdtscp
] = POST_EX(SVM_EXIT_RDTSCP
),
3568 [x86_intercept_monitor
] = POST_MEM(SVM_EXIT_MONITOR
),
3569 [x86_intercept_mwait
] = POST_EX(SVM_EXIT_MWAIT
),
3570 [x86_intercept_invlpg
] = POST_EX(SVM_EXIT_INVLPG
),
3571 [x86_intercept_invd
] = POST_EX(SVM_EXIT_INVD
),
3572 [x86_intercept_wbinvd
] = POST_EX(SVM_EXIT_WBINVD
),
3573 [x86_intercept_wrmsr
] = POST_EX(SVM_EXIT_MSR
),
3574 [x86_intercept_rdtsc
] = POST_EX(SVM_EXIT_RDTSC
),
3575 [x86_intercept_rdmsr
] = POST_EX(SVM_EXIT_MSR
),
3576 [x86_intercept_rdpmc
] = POST_EX(SVM_EXIT_RDPMC
),
3577 [x86_intercept_cpuid
] = PRE_EX(SVM_EXIT_CPUID
),
3578 [x86_intercept_rsm
] = PRE_EX(SVM_EXIT_RSM
),
3579 [x86_intercept_pause
] = PRE_EX(SVM_EXIT_PAUSE
),
3580 [x86_intercept_pushf
] = PRE_EX(SVM_EXIT_PUSHF
),
3581 [x86_intercept_popf
] = PRE_EX(SVM_EXIT_POPF
),
3582 [x86_intercept_intn
] = PRE_EX(SVM_EXIT_SWINT
),
3583 [x86_intercept_iret
] = PRE_EX(SVM_EXIT_IRET
),
3584 [x86_intercept_icebp
] = PRE_EX(SVM_EXIT_ICEBP
),
3585 [x86_intercept_hlt
] = POST_EX(SVM_EXIT_HLT
),
3586 [x86_intercept_in
] = POST_EX(SVM_EXIT_IOIO
),
3587 [x86_intercept_ins
] = POST_EX(SVM_EXIT_IOIO
),
3588 [x86_intercept_out
] = POST_EX(SVM_EXIT_IOIO
),
3589 [x86_intercept_outs
] = POST_EX(SVM_EXIT_IOIO
),
3590 [x86_intercept_xsetbv
] = PRE_EX(SVM_EXIT_XSETBV
),
3597 static int svm_check_intercept(struct kvm_vcpu
*vcpu
,
3598 struct x86_instruction_info
*info
,
3599 enum x86_intercept_stage stage
,
3600 struct x86_exception
*exception
)
3602 struct vcpu_svm
*svm
= to_svm(vcpu
);
3603 int vmexit
, ret
= X86EMUL_CONTINUE
;
3604 struct __x86_intercept icpt_info
;
3605 struct vmcb
*vmcb
= svm
->vmcb
;
3607 if (info
->intercept
>= ARRAY_SIZE(x86_intercept_map
))
3610 icpt_info
= x86_intercept_map
[info
->intercept
];
3612 if (stage
!= icpt_info
.stage
)
3615 switch (icpt_info
.exit_code
) {
3616 case SVM_EXIT_READ_CR0
:
3617 if (info
->intercept
== x86_intercept_cr_read
)
3618 icpt_info
.exit_code
+= info
->modrm_reg
;
3620 case SVM_EXIT_WRITE_CR0
: {
3621 unsigned long cr0
, val
;
3624 if (info
->intercept
== x86_intercept_cr_write
)
3625 icpt_info
.exit_code
+= info
->modrm_reg
;
3627 if (icpt_info
.exit_code
!= SVM_EXIT_WRITE_CR0
||
3628 info
->intercept
== x86_intercept_clts
)
3631 intercept
= svm
->nested
.intercept
;
3633 if (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
)))
3636 cr0
= vcpu
->arch
.cr0
& ~SVM_CR0_SELECTIVE_MASK
;
3637 val
= info
->src_val
& ~SVM_CR0_SELECTIVE_MASK
;
3639 if (info
->intercept
== x86_intercept_lmsw
) {
3642 /* lmsw can't clear PE - catch this here */
3643 if (cr0
& X86_CR0_PE
)
3648 icpt_info
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
3652 case SVM_EXIT_READ_DR0
:
3653 case SVM_EXIT_WRITE_DR0
:
3654 icpt_info
.exit_code
+= info
->modrm_reg
;
3657 if (info
->intercept
== x86_intercept_wrmsr
)
3658 vmcb
->control
.exit_info_1
= 1;
3660 vmcb
->control
.exit_info_1
= 0;
3662 case SVM_EXIT_PAUSE
:
3664 * We get this for NOP only, but pause
3665 * is rep not, check this here
3667 if (info
->rep_prefix
!= REPE_PREFIX
)
3670 case SVM_EXIT_IOIO
: {
3674 if (info
->intercept
== x86_intercept_in
||
3675 info
->intercept
== x86_intercept_ins
) {
3676 exit_info
= ((info
->src_val
& 0xffff) << 16) |
3678 bytes
= info
->dst_bytes
;
3680 exit_info
= (info
->dst_val
& 0xffff) << 16;
3681 bytes
= info
->src_bytes
;
3684 if (info
->intercept
== x86_intercept_outs
||
3685 info
->intercept
== x86_intercept_ins
)
3686 exit_info
|= SVM_IOIO_STR_MASK
;
3688 if (info
->rep_prefix
)
3689 exit_info
|= SVM_IOIO_REP_MASK
;
3691 bytes
= min(bytes
, 4u);
3693 exit_info
|= bytes
<< SVM_IOIO_SIZE_SHIFT
;
3695 exit_info
|= (u32
)info
->ad_bytes
<< (SVM_IOIO_ASIZE_SHIFT
- 1);
3697 vmcb
->control
.exit_info_1
= exit_info
;
3698 vmcb
->control
.exit_info_2
= info
->next_rip
;
3706 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
3707 if (static_cpu_has(X86_FEATURE_NRIPS
))
3708 vmcb
->control
.next_rip
= info
->next_rip
;
3709 vmcb
->control
.exit_code
= icpt_info
.exit_code
;
3710 vmexit
= nested_svm_exit_handled(svm
);
3712 ret
= (vmexit
== NESTED_EXIT_DONE
) ? X86EMUL_INTERCEPTED
3719 static void svm_handle_exit_irqoff(struct kvm_vcpu
*vcpu
,
3720 enum exit_fastpath_completion
*exit_fastpath
)
3722 if (!is_guest_mode(vcpu
) &&
3723 to_svm(vcpu
)->vmcb
->control
.exit_code
== SVM_EXIT_MSR
&&
3724 to_svm(vcpu
)->vmcb
->control
.exit_info_1
)
3725 *exit_fastpath
= handle_fastpath_set_msr_irqoff(vcpu
);
3728 static void svm_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
3730 if (pause_filter_thresh
)
3731 shrink_ple_window(vcpu
);
3734 static void svm_setup_mce(struct kvm_vcpu
*vcpu
)
3736 /* [63:9] are reserved. */
3737 vcpu
->arch
.mcg_cap
&= 0x1ff;
3740 static int svm_smi_allowed(struct kvm_vcpu
*vcpu
)
3742 struct vcpu_svm
*svm
= to_svm(vcpu
);
3744 /* Per APM Vol.2 15.22.2 "Response to SMI" */
3748 if (is_guest_mode(&svm
->vcpu
) &&
3749 svm
->nested
.intercept
& (1ULL << INTERCEPT_SMI
)) {
3750 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
3751 svm
->vmcb
->control
.exit_code
= SVM_EXIT_SMI
;
3752 svm
->nested
.exit_required
= true;
3759 static int svm_pre_enter_smm(struct kvm_vcpu
*vcpu
, char *smstate
)
3761 struct vcpu_svm
*svm
= to_svm(vcpu
);
3764 if (is_guest_mode(vcpu
)) {
3765 /* FED8h - SVM Guest */
3766 put_smstate(u64
, smstate
, 0x7ed8, 1);
3767 /* FEE0h - SVM Guest VMCB Physical Address */
3768 put_smstate(u64
, smstate
, 0x7ee0, svm
->nested
.vmcb
);
3770 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
3771 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
3772 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
3774 ret
= nested_svm_vmexit(svm
);
3781 static int svm_pre_leave_smm(struct kvm_vcpu
*vcpu
, const char *smstate
)
3783 struct vcpu_svm
*svm
= to_svm(vcpu
);
3784 struct vmcb
*nested_vmcb
;
3785 struct kvm_host_map map
;
3789 guest
= GET_SMSTATE(u64
, smstate
, 0x7ed8);
3790 vmcb
= GET_SMSTATE(u64
, smstate
, 0x7ee0);
3793 if (kvm_vcpu_map(&svm
->vcpu
, gpa_to_gfn(vmcb
), &map
) == -EINVAL
)
3795 nested_vmcb
= map
.hva
;
3796 enter_svm_guest_mode(svm
, vmcb
, nested_vmcb
, &map
);
3801 static int enable_smi_window(struct kvm_vcpu
*vcpu
)
3803 struct vcpu_svm
*svm
= to_svm(vcpu
);
3805 if (!gif_set(svm
)) {
3806 if (vgif_enabled(svm
))
3807 set_intercept(svm
, INTERCEPT_STGI
);
3808 /* STGI will cause a vm exit */
3814 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu
*vcpu
)
3816 unsigned long cr4
= kvm_read_cr4(vcpu
);
3817 bool smep
= cr4
& X86_CR4_SMEP
;
3818 bool smap
= cr4
& X86_CR4_SMAP
;
3819 bool is_user
= svm_get_cpl(vcpu
) == 3;
3822 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
3825 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
3826 * possible that CPU microcode implementing DecodeAssist will fail
3827 * to read bytes of instruction which caused #NPF. In this case,
3828 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
3829 * return 0 instead of the correct guest instruction bytes.
3831 * This happens because CPU microcode reading instruction bytes
3832 * uses a special opcode which attempts to read data using CPL=0
3833 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
3834 * fault, it gives up and returns no instruction bytes.
3837 * We reach here in case CPU supports DecodeAssist, raised #NPF and
3838 * returned 0 in GuestIntrBytes field of the VMCB.
3839 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
3840 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
3841 * in case vCPU CPL==3 (Because otherwise guest would have triggered
3842 * a SMEP fault instead of #NPF).
3843 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
3844 * As most guests enable SMAP if they have also enabled SMEP, use above
3845 * logic in order to attempt minimize false-positive of detecting errata
3846 * while still preserving all cases semantic correctness.
3849 * To determine what instruction the guest was executing, the hypervisor
3850 * will have to decode the instruction at the instruction pointer.
3852 * In non SEV guest, hypervisor will be able to read the guest
3853 * memory to decode the instruction pointer when insn_len is zero
3854 * so we return true to indicate that decoding is possible.
3856 * But in the SEV guest, the guest memory is encrypted with the
3857 * guest specific key and hypervisor will not be able to decode the
3858 * instruction pointer so we will not able to workaround it. Lets
3859 * print the error and request to kill the guest.
3861 if (smap
&& (!smep
|| is_user
)) {
3862 if (!sev_guest(vcpu
->kvm
))
3865 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
3866 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3872 static bool svm_apic_init_signal_blocked(struct kvm_vcpu
*vcpu
)
3874 struct vcpu_svm
*svm
= to_svm(vcpu
);
3877 * TODO: Last condition latch INIT signals on vCPU when
3878 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
3879 * To properly emulate the INIT intercept, SVM should implement
3880 * kvm_x86_ops.check_nested_events() and call nested_svm_vmexit()
3881 * there if an INIT signal is pending.
3883 return !gif_set(svm
) ||
3884 (svm
->vmcb
->control
.intercept
& (1ULL << INTERCEPT_INIT
));
3887 static void svm_vm_destroy(struct kvm
*kvm
)
3889 avic_vm_destroy(kvm
);
3890 sev_vm_destroy(kvm
);
3893 static int svm_vm_init(struct kvm
*kvm
)
3896 int ret
= avic_vm_init(kvm
);
3901 kvm_apicv_init(kvm
, avic
);
3905 static struct kvm_x86_ops svm_x86_ops __initdata
= {
3906 .hardware_unsetup
= svm_hardware_teardown
,
3907 .hardware_enable
= svm_hardware_enable
,
3908 .hardware_disable
= svm_hardware_disable
,
3909 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
3910 .has_emulated_msr
= svm_has_emulated_msr
,
3912 .vcpu_create
= svm_create_vcpu
,
3913 .vcpu_free
= svm_free_vcpu
,
3914 .vcpu_reset
= svm_vcpu_reset
,
3916 .vm_size
= sizeof(struct kvm_svm
),
3917 .vm_init
= svm_vm_init
,
3918 .vm_destroy
= svm_vm_destroy
,
3920 .prepare_guest_switch
= svm_prepare_guest_switch
,
3921 .vcpu_load
= svm_vcpu_load
,
3922 .vcpu_put
= svm_vcpu_put
,
3923 .vcpu_blocking
= svm_vcpu_blocking
,
3924 .vcpu_unblocking
= svm_vcpu_unblocking
,
3926 .update_bp_intercept
= update_bp_intercept
,
3927 .get_msr_feature
= svm_get_msr_feature
,
3928 .get_msr
= svm_get_msr
,
3929 .set_msr
= svm_set_msr
,
3930 .get_segment_base
= svm_get_segment_base
,
3931 .get_segment
= svm_get_segment
,
3932 .set_segment
= svm_set_segment
,
3933 .get_cpl
= svm_get_cpl
,
3934 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
3935 .decache_cr0_guest_bits
= svm_decache_cr0_guest_bits
,
3936 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
3937 .set_cr0
= svm_set_cr0
,
3938 .set_cr4
= svm_set_cr4
,
3939 .set_efer
= svm_set_efer
,
3940 .get_idt
= svm_get_idt
,
3941 .set_idt
= svm_set_idt
,
3942 .get_gdt
= svm_get_gdt
,
3943 .set_gdt
= svm_set_gdt
,
3944 .set_dr7
= svm_set_dr7
,
3945 .sync_dirty_debug_regs
= svm_sync_dirty_debug_regs
,
3946 .cache_reg
= svm_cache_reg
,
3947 .get_rflags
= svm_get_rflags
,
3948 .set_rflags
= svm_set_rflags
,
3950 .tlb_flush
= svm_flush_tlb
,
3951 .tlb_flush_gva
= svm_flush_tlb_gva
,
3953 .run
= svm_vcpu_run
,
3954 .handle_exit
= handle_exit
,
3955 .skip_emulated_instruction
= skip_emulated_instruction
,
3956 .update_emulated_instruction
= NULL
,
3957 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
3958 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
3959 .patch_hypercall
= svm_patch_hypercall
,
3960 .set_irq
= svm_set_irq
,
3961 .set_nmi
= svm_inject_nmi
,
3962 .queue_exception
= svm_queue_exception
,
3963 .cancel_injection
= svm_cancel_injection
,
3964 .interrupt_allowed
= svm_interrupt_allowed
,
3965 .nmi_allowed
= svm_nmi_allowed
,
3966 .get_nmi_mask
= svm_get_nmi_mask
,
3967 .set_nmi_mask
= svm_set_nmi_mask
,
3968 .enable_nmi_window
= enable_nmi_window
,
3969 .enable_irq_window
= enable_irq_window
,
3970 .update_cr8_intercept
= update_cr8_intercept
,
3971 .set_virtual_apic_mode
= svm_set_virtual_apic_mode
,
3972 .refresh_apicv_exec_ctrl
= svm_refresh_apicv_exec_ctrl
,
3973 .check_apicv_inhibit_reasons
= svm_check_apicv_inhibit_reasons
,
3974 .pre_update_apicv_exec_ctrl
= svm_pre_update_apicv_exec_ctrl
,
3975 .load_eoi_exitmap
= svm_load_eoi_exitmap
,
3976 .hwapic_irr_update
= svm_hwapic_irr_update
,
3977 .hwapic_isr_update
= svm_hwapic_isr_update
,
3978 .sync_pir_to_irr
= kvm_lapic_find_highest_irr
,
3979 .apicv_post_state_restore
= avic_post_state_restore
,
3981 .set_tss_addr
= svm_set_tss_addr
,
3982 .set_identity_map_addr
= svm_set_identity_map_addr
,
3983 .get_tdp_level
= get_npt_level
,
3984 .get_mt_mask
= svm_get_mt_mask
,
3986 .get_exit_info
= svm_get_exit_info
,
3988 .cpuid_update
= svm_cpuid_update
,
3990 .has_wbinvd_exit
= svm_has_wbinvd_exit
,
3992 .read_l1_tsc_offset
= svm_read_l1_tsc_offset
,
3993 .write_l1_tsc_offset
= svm_write_l1_tsc_offset
,
3995 .load_mmu_pgd
= svm_load_mmu_pgd
,
3997 .check_intercept
= svm_check_intercept
,
3998 .handle_exit_irqoff
= svm_handle_exit_irqoff
,
4000 .request_immediate_exit
= __kvm_request_immediate_exit
,
4002 .sched_in
= svm_sched_in
,
4004 .pmu_ops
= &amd_pmu_ops
,
4005 .deliver_posted_interrupt
= svm_deliver_avic_intr
,
4006 .dy_apicv_has_pending_interrupt
= svm_dy_apicv_has_pending_interrupt
,
4007 .update_pi_irte
= svm_update_pi_irte
,
4008 .setup_mce
= svm_setup_mce
,
4010 .smi_allowed
= svm_smi_allowed
,
4011 .pre_enter_smm
= svm_pre_enter_smm
,
4012 .pre_leave_smm
= svm_pre_leave_smm
,
4013 .enable_smi_window
= enable_smi_window
,
4015 .mem_enc_op
= svm_mem_enc_op
,
4016 .mem_enc_reg_region
= svm_register_enc_region
,
4017 .mem_enc_unreg_region
= svm_unregister_enc_region
,
4019 .nested_enable_evmcs
= NULL
,
4020 .nested_get_evmcs_version
= NULL
,
4022 .need_emulation_on_page_fault
= svm_need_emulation_on_page_fault
,
4024 .apic_init_signal_blocked
= svm_apic_init_signal_blocked
,
4026 .check_nested_events
= svm_check_nested_events
,
4029 static struct kvm_x86_init_ops svm_init_ops __initdata
= {
4030 .cpu_has_kvm_support
= has_svm
,
4031 .disabled_by_bios
= is_disabled
,
4032 .hardware_setup
= svm_hardware_setup
,
4033 .check_processor_compatibility
= svm_check_processor_compat
,
4035 .runtime_ops
= &svm_x86_ops
,
4038 static int __init
svm_init(void)
4040 return kvm_init(&svm_init_ops
, sizeof(struct vcpu_svm
),
4041 __alignof__(struct vcpu_svm
), THIS_MODULE
);
4044 static void __exit
svm_exit(void)
4049 module_init(svm_init
)
4050 module_exit(svm_exit
)