]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/kvm/svm/svm.c
Merge tag 'kvm-x86-svm-6.5' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/linux.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31
32 #include <asm/apic.h>
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/debugreg.h>
37 #include <asm/kvm_para.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/spec-ctrl.h>
40 #include <asm/cpu_device_id.h>
41 #include <asm/traps.h>
42 #include <asm/fpu/api.h>
43
44 #include <asm/virtext.h>
45
46 #include <trace/events/ipi.h>
47
48 #include "trace.h"
49
50 #include "svm.h"
51 #include "svm_ops.h"
52
53 #include "kvm_onhyperv.h"
54 #include "svm_onhyperv.h"
55
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
58
59 #ifdef MODULE
60 static const struct x86_cpu_id svm_cpu_id[] = {
61 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
62 {}
63 };
64 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
65 #endif
66
67 #define SEG_TYPE_LDT 2
68 #define SEG_TYPE_BUSY_TSS16 3
69
70 static bool erratum_383_found __read_mostly;
71
72 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
73
74 /*
75 * Set osvw_len to higher value when updated Revision Guides
76 * are published and we know what the new status bits are
77 */
78 static uint64_t osvw_len = 4, osvw_status;
79
80 static DEFINE_PER_CPU(u64, current_tsc_ratio);
81
82 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4))
83
84 static const struct svm_direct_access_msrs {
85 u32 index; /* Index of the MSR */
86 bool always; /* True if intercept is initially cleared */
87 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
88 { .index = MSR_STAR, .always = true },
89 { .index = MSR_IA32_SYSENTER_CS, .always = true },
90 { .index = MSR_IA32_SYSENTER_EIP, .always = false },
91 { .index = MSR_IA32_SYSENTER_ESP, .always = false },
92 #ifdef CONFIG_X86_64
93 { .index = MSR_GS_BASE, .always = true },
94 { .index = MSR_FS_BASE, .always = true },
95 { .index = MSR_KERNEL_GS_BASE, .always = true },
96 { .index = MSR_LSTAR, .always = true },
97 { .index = MSR_CSTAR, .always = true },
98 { .index = MSR_SYSCALL_MASK, .always = true },
99 #endif
100 { .index = MSR_IA32_SPEC_CTRL, .always = false },
101 { .index = MSR_IA32_PRED_CMD, .always = false },
102 { .index = MSR_IA32_FLUSH_CMD, .always = false },
103 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
104 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
105 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
106 { .index = MSR_IA32_LASTINTTOIP, .always = false },
107 { .index = MSR_EFER, .always = false },
108 { .index = MSR_IA32_CR_PAT, .always = false },
109 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true },
110 { .index = MSR_TSC_AUX, .always = false },
111 { .index = X2APIC_MSR(APIC_ID), .always = false },
112 { .index = X2APIC_MSR(APIC_LVR), .always = false },
113 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false },
114 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false },
115 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false },
116 { .index = X2APIC_MSR(APIC_EOI), .always = false },
117 { .index = X2APIC_MSR(APIC_RRR), .always = false },
118 { .index = X2APIC_MSR(APIC_LDR), .always = false },
119 { .index = X2APIC_MSR(APIC_DFR), .always = false },
120 { .index = X2APIC_MSR(APIC_SPIV), .always = false },
121 { .index = X2APIC_MSR(APIC_ISR), .always = false },
122 { .index = X2APIC_MSR(APIC_TMR), .always = false },
123 { .index = X2APIC_MSR(APIC_IRR), .always = false },
124 { .index = X2APIC_MSR(APIC_ESR), .always = false },
125 { .index = X2APIC_MSR(APIC_ICR), .always = false },
126 { .index = X2APIC_MSR(APIC_ICR2), .always = false },
127
128 /*
129 * Note:
130 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
131 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
132 * the AVIC hardware would generate GP fault. Therefore, always
133 * intercept the MSR 0x832, and do not setup direct_access_msr.
134 */
135 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false },
136 { .index = X2APIC_MSR(APIC_LVTPC), .always = false },
137 { .index = X2APIC_MSR(APIC_LVT0), .always = false },
138 { .index = X2APIC_MSR(APIC_LVT1), .always = false },
139 { .index = X2APIC_MSR(APIC_LVTERR), .always = false },
140 { .index = X2APIC_MSR(APIC_TMICT), .always = false },
141 { .index = X2APIC_MSR(APIC_TMCCT), .always = false },
142 { .index = X2APIC_MSR(APIC_TDCR), .always = false },
143 { .index = MSR_INVALID, .always = false },
144 };
145
146 /*
147 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
148 * pause_filter_count: On processors that support Pause filtering(indicated
149 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
150 * count value. On VMRUN this value is loaded into an internal counter.
151 * Each time a pause instruction is executed, this counter is decremented
152 * until it reaches zero at which time a #VMEXIT is generated if pause
153 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
154 * Intercept Filtering for more details.
155 * This also indicate if ple logic enabled.
156 *
157 * pause_filter_thresh: In addition, some processor families support advanced
158 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
159 * the amount of time a guest is allowed to execute in a pause loop.
160 * In this mode, a 16-bit pause filter threshold field is added in the
161 * VMCB. The threshold value is a cycle count that is used to reset the
162 * pause counter. As with simple pause filtering, VMRUN loads the pause
163 * count value from VMCB into an internal counter. Then, on each pause
164 * instruction the hardware checks the elapsed number of cycles since
165 * the most recent pause instruction against the pause filter threshold.
166 * If the elapsed cycle count is greater than the pause filter threshold,
167 * then the internal pause count is reloaded from the VMCB and execution
168 * continues. If the elapsed cycle count is less than the pause filter
169 * threshold, then the internal pause count is decremented. If the count
170 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
171 * triggered. If advanced pause filtering is supported and pause filter
172 * threshold field is set to zero, the filter will operate in the simpler,
173 * count only mode.
174 */
175
176 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
177 module_param(pause_filter_thresh, ushort, 0444);
178
179 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
180 module_param(pause_filter_count, ushort, 0444);
181
182 /* Default doubles per-vcpu window every exit. */
183 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
184 module_param(pause_filter_count_grow, ushort, 0444);
185
186 /* Default resets per-vcpu window every exit to pause_filter_count. */
187 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
188 module_param(pause_filter_count_shrink, ushort, 0444);
189
190 /* Default is to compute the maximum so we can never overflow. */
191 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
192 module_param(pause_filter_count_max, ushort, 0444);
193
194 /*
195 * Use nested page tables by default. Note, NPT may get forced off by
196 * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
197 */
198 bool npt_enabled = true;
199 module_param_named(npt, npt_enabled, bool, 0444);
200
201 /* allow nested virtualization in KVM/SVM */
202 static int nested = true;
203 module_param(nested, int, S_IRUGO);
204
205 /* enable/disable Next RIP Save */
206 static int nrips = true;
207 module_param(nrips, int, 0444);
208
209 /* enable/disable Virtual VMLOAD VMSAVE */
210 static int vls = true;
211 module_param(vls, int, 0444);
212
213 /* enable/disable Virtual GIF */
214 int vgif = true;
215 module_param(vgif, int, 0444);
216
217 /* enable/disable LBR virtualization */
218 static int lbrv = true;
219 module_param(lbrv, int, 0444);
220
221 static int tsc_scaling = true;
222 module_param(tsc_scaling, int, 0444);
223
224 /*
225 * enable / disable AVIC. Because the defaults differ for APICv
226 * support between VMX and SVM we cannot use module_param_named.
227 */
228 static bool avic;
229 module_param(avic, bool, 0444);
230
231 bool __read_mostly dump_invalid_vmcb;
232 module_param(dump_invalid_vmcb, bool, 0644);
233
234
235 bool intercept_smi = true;
236 module_param(intercept_smi, bool, 0444);
237
238 bool vnmi = true;
239 module_param(vnmi, bool, 0444);
240
241 static bool svm_gp_erratum_intercept = true;
242
243 static u8 rsm_ins_bytes[] = "\x0f\xaa";
244
245 static unsigned long iopm_base;
246
247 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
248
249 /*
250 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
251 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
252 *
253 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
254 * defer the restoration of TSC_AUX until the CPU returns to userspace.
255 */
256 static int tsc_aux_uret_slot __read_mostly = -1;
257
258 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
259
260 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
261 #define MSRS_RANGE_SIZE 2048
262 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
263
264 u32 svm_msrpm_offset(u32 msr)
265 {
266 u32 offset;
267 int i;
268
269 for (i = 0; i < NUM_MSR_MAPS; i++) {
270 if (msr < msrpm_ranges[i] ||
271 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
272 continue;
273
274 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
275 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
276
277 /* Now we have the u8 offset - but need the u32 offset */
278 return offset / 4;
279 }
280
281 /* MSR not in any range */
282 return MSR_INVALID;
283 }
284
285 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
286
287 static int get_npt_level(void)
288 {
289 #ifdef CONFIG_X86_64
290 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
291 #else
292 return PT32E_ROOT_LEVEL;
293 #endif
294 }
295
296 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
297 {
298 struct vcpu_svm *svm = to_svm(vcpu);
299 u64 old_efer = vcpu->arch.efer;
300 vcpu->arch.efer = efer;
301
302 if (!npt_enabled) {
303 /* Shadow paging assumes NX to be available. */
304 efer |= EFER_NX;
305
306 if (!(efer & EFER_LMA))
307 efer &= ~EFER_LME;
308 }
309
310 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
311 if (!(efer & EFER_SVME)) {
312 svm_leave_nested(vcpu);
313 svm_set_gif(svm, true);
314 /* #GP intercept is still needed for vmware backdoor */
315 if (!enable_vmware_backdoor)
316 clr_exception_intercept(svm, GP_VECTOR);
317
318 /*
319 * Free the nested guest state, unless we are in SMM.
320 * In this case we will return to the nested guest
321 * as soon as we leave SMM.
322 */
323 if (!is_smm(vcpu))
324 svm_free_nested(svm);
325
326 } else {
327 int ret = svm_allocate_nested(svm);
328
329 if (ret) {
330 vcpu->arch.efer = old_efer;
331 return ret;
332 }
333
334 /*
335 * Never intercept #GP for SEV guests, KVM can't
336 * decrypt guest memory to workaround the erratum.
337 */
338 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
339 set_exception_intercept(svm, GP_VECTOR);
340 }
341 }
342
343 svm->vmcb->save.efer = efer | EFER_SVME;
344 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
345 return 0;
346 }
347
348 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
349 {
350 struct vcpu_svm *svm = to_svm(vcpu);
351 u32 ret = 0;
352
353 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
354 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
355 return ret;
356 }
357
358 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
359 {
360 struct vcpu_svm *svm = to_svm(vcpu);
361
362 if (mask == 0)
363 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
364 else
365 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
366
367 }
368
369 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
370 bool commit_side_effects)
371 {
372 struct vcpu_svm *svm = to_svm(vcpu);
373 unsigned long old_rflags;
374
375 /*
376 * SEV-ES does not expose the next RIP. The RIP update is controlled by
377 * the type of exit and the #VC handler in the guest.
378 */
379 if (sev_es_guest(vcpu->kvm))
380 goto done;
381
382 if (nrips && svm->vmcb->control.next_rip != 0) {
383 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
384 svm->next_rip = svm->vmcb->control.next_rip;
385 }
386
387 if (!svm->next_rip) {
388 if (unlikely(!commit_side_effects))
389 old_rflags = svm->vmcb->save.rflags;
390
391 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
392 return 0;
393
394 if (unlikely(!commit_side_effects))
395 svm->vmcb->save.rflags = old_rflags;
396 } else {
397 kvm_rip_write(vcpu, svm->next_rip);
398 }
399
400 done:
401 if (likely(commit_side_effects))
402 svm_set_interrupt_shadow(vcpu, 0);
403
404 return 1;
405 }
406
407 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
408 {
409 return __svm_skip_emulated_instruction(vcpu, true);
410 }
411
412 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
413 {
414 unsigned long rip, old_rip = kvm_rip_read(vcpu);
415 struct vcpu_svm *svm = to_svm(vcpu);
416
417 /*
418 * Due to architectural shortcomings, the CPU doesn't always provide
419 * NextRIP, e.g. if KVM intercepted an exception that occurred while
420 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip
421 * the instruction even if NextRIP is supported to acquire the next
422 * RIP so that it can be shoved into the NextRIP field, otherwise
423 * hardware will fail to advance guest RIP during event injection.
424 * Drop the exception/interrupt if emulation fails and effectively
425 * retry the instruction, it's the least awful option. If NRIPS is
426 * in use, the skip must not commit any side effects such as clearing
427 * the interrupt shadow or RFLAGS.RF.
428 */
429 if (!__svm_skip_emulated_instruction(vcpu, !nrips))
430 return -EIO;
431
432 rip = kvm_rip_read(vcpu);
433
434 /*
435 * Save the injection information, even when using next_rip, as the
436 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
437 * doesn't complete due to a VM-Exit occurring while the CPU is
438 * vectoring the event. Decoding the instruction isn't guaranteed to
439 * work as there may be no backing instruction, e.g. if the event is
440 * being injected by L1 for L2, or if the guest is patching INT3 into
441 * a different instruction.
442 */
443 svm->soft_int_injected = true;
444 svm->soft_int_csbase = svm->vmcb->save.cs.base;
445 svm->soft_int_old_rip = old_rip;
446 svm->soft_int_next_rip = rip;
447
448 if (nrips)
449 kvm_rip_write(vcpu, old_rip);
450
451 if (static_cpu_has(X86_FEATURE_NRIPS))
452 svm->vmcb->control.next_rip = rip;
453
454 return 0;
455 }
456
457 static void svm_inject_exception(struct kvm_vcpu *vcpu)
458 {
459 struct kvm_queued_exception *ex = &vcpu->arch.exception;
460 struct vcpu_svm *svm = to_svm(vcpu);
461
462 kvm_deliver_exception_payload(vcpu, ex);
463
464 if (kvm_exception_is_soft(ex->vector) &&
465 svm_update_soft_interrupt_rip(vcpu))
466 return;
467
468 svm->vmcb->control.event_inj = ex->vector
469 | SVM_EVTINJ_VALID
470 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
471 | SVM_EVTINJ_TYPE_EXEPT;
472 svm->vmcb->control.event_inj_err = ex->error_code;
473 }
474
475 static void svm_init_erratum_383(void)
476 {
477 u32 low, high;
478 int err;
479 u64 val;
480
481 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
482 return;
483
484 /* Use _safe variants to not break nested virtualization */
485 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
486 if (err)
487 return;
488
489 val |= (1ULL << 47);
490
491 low = lower_32_bits(val);
492 high = upper_32_bits(val);
493
494 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
495
496 erratum_383_found = true;
497 }
498
499 static void svm_init_osvw(struct kvm_vcpu *vcpu)
500 {
501 /*
502 * Guests should see errata 400 and 415 as fixed (assuming that
503 * HLT and IO instructions are intercepted).
504 */
505 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
506 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
507
508 /*
509 * By increasing VCPU's osvw.length to 3 we are telling the guest that
510 * all osvw.status bits inside that length, including bit 0 (which is
511 * reserved for erratum 298), are valid. However, if host processor's
512 * osvw_len is 0 then osvw_status[0] carries no information. We need to
513 * be conservative here and therefore we tell the guest that erratum 298
514 * is present (because we really don't know).
515 */
516 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
517 vcpu->arch.osvw.status |= 1;
518 }
519
520 static bool kvm_is_svm_supported(void)
521 {
522 int cpu = raw_smp_processor_id();
523 const char *msg;
524 u64 vm_cr;
525
526 if (!cpu_has_svm(&msg)) {
527 pr_err("SVM not supported by CPU %d, %s\n", cpu, msg);
528 return false;
529 }
530
531 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
532 pr_info("KVM is unsupported when running as an SEV guest\n");
533 return false;
534 }
535
536 rdmsrl(MSR_VM_CR, vm_cr);
537 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) {
538 pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu);
539 return false;
540 }
541
542 return true;
543 }
544
545 static int svm_check_processor_compat(void)
546 {
547 if (!kvm_is_svm_supported())
548 return -EIO;
549
550 return 0;
551 }
552
553 void __svm_write_tsc_multiplier(u64 multiplier)
554 {
555 preempt_disable();
556
557 if (multiplier == __this_cpu_read(current_tsc_ratio))
558 goto out;
559
560 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
561 __this_cpu_write(current_tsc_ratio, multiplier);
562 out:
563 preempt_enable();
564 }
565
566 static void svm_hardware_disable(void)
567 {
568 /* Make sure we clean up behind us */
569 if (tsc_scaling)
570 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
571
572 cpu_svm_disable();
573
574 amd_pmu_disable_virt();
575 }
576
577 static int svm_hardware_enable(void)
578 {
579
580 struct svm_cpu_data *sd;
581 uint64_t efer;
582 int me = raw_smp_processor_id();
583
584 rdmsrl(MSR_EFER, efer);
585 if (efer & EFER_SVME)
586 return -EBUSY;
587
588 sd = per_cpu_ptr(&svm_data, me);
589 sd->asid_generation = 1;
590 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
591 sd->next_asid = sd->max_asid + 1;
592 sd->min_asid = max_sev_asid + 1;
593
594 wrmsrl(MSR_EFER, efer | EFER_SVME);
595
596 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
597
598 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
599 /*
600 * Set the default value, even if we don't use TSC scaling
601 * to avoid having stale value in the msr
602 */
603 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
604 }
605
606
607 /*
608 * Get OSVW bits.
609 *
610 * Note that it is possible to have a system with mixed processor
611 * revisions and therefore different OSVW bits. If bits are not the same
612 * on different processors then choose the worst case (i.e. if erratum
613 * is present on one processor and not on another then assume that the
614 * erratum is present everywhere).
615 */
616 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
617 uint64_t len, status = 0;
618 int err;
619
620 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
621 if (!err)
622 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
623 &err);
624
625 if (err)
626 osvw_status = osvw_len = 0;
627 else {
628 if (len < osvw_len)
629 osvw_len = len;
630 osvw_status |= status;
631 osvw_status &= (1ULL << osvw_len) - 1;
632 }
633 } else
634 osvw_status = osvw_len = 0;
635
636 svm_init_erratum_383();
637
638 amd_pmu_enable_virt();
639
640 return 0;
641 }
642
643 static void svm_cpu_uninit(int cpu)
644 {
645 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
646
647 if (!sd->save_area)
648 return;
649
650 kfree(sd->sev_vmcbs);
651 __free_page(sd->save_area);
652 sd->save_area_pa = 0;
653 sd->save_area = NULL;
654 }
655
656 static int svm_cpu_init(int cpu)
657 {
658 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
659 int ret = -ENOMEM;
660
661 memset(sd, 0, sizeof(struct svm_cpu_data));
662 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
663 if (!sd->save_area)
664 return ret;
665
666 ret = sev_cpu_init(sd);
667 if (ret)
668 goto free_save_area;
669
670 sd->save_area_pa = __sme_page_pa(sd->save_area);
671 return 0;
672
673 free_save_area:
674 __free_page(sd->save_area);
675 sd->save_area = NULL;
676 return ret;
677
678 }
679
680 static int direct_access_msr_slot(u32 msr)
681 {
682 u32 i;
683
684 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
685 if (direct_access_msrs[i].index == msr)
686 return i;
687
688 return -ENOENT;
689 }
690
691 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
692 int write)
693 {
694 struct vcpu_svm *svm = to_svm(vcpu);
695 int slot = direct_access_msr_slot(msr);
696
697 if (slot == -ENOENT)
698 return;
699
700 /* Set the shadow bitmaps to the desired intercept states */
701 if (read)
702 set_bit(slot, svm->shadow_msr_intercept.read);
703 else
704 clear_bit(slot, svm->shadow_msr_intercept.read);
705
706 if (write)
707 set_bit(slot, svm->shadow_msr_intercept.write);
708 else
709 clear_bit(slot, svm->shadow_msr_intercept.write);
710 }
711
712 static bool valid_msr_intercept(u32 index)
713 {
714 return direct_access_msr_slot(index) != -ENOENT;
715 }
716
717 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
718 {
719 u8 bit_write;
720 unsigned long tmp;
721 u32 offset;
722 u32 *msrpm;
723
724 /*
725 * For non-nested case:
726 * If the L01 MSR bitmap does not intercept the MSR, then we need to
727 * save it.
728 *
729 * For nested case:
730 * If the L02 MSR bitmap does not intercept the MSR, then we need to
731 * save it.
732 */
733 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
734 to_svm(vcpu)->msrpm;
735
736 offset = svm_msrpm_offset(msr);
737 bit_write = 2 * (msr & 0x0f) + 1;
738 tmp = msrpm[offset];
739
740 BUG_ON(offset == MSR_INVALID);
741
742 return test_bit(bit_write, &tmp);
743 }
744
745 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
746 u32 msr, int read, int write)
747 {
748 struct vcpu_svm *svm = to_svm(vcpu);
749 u8 bit_read, bit_write;
750 unsigned long tmp;
751 u32 offset;
752
753 /*
754 * If this warning triggers extend the direct_access_msrs list at the
755 * beginning of the file
756 */
757 WARN_ON(!valid_msr_intercept(msr));
758
759 /* Enforce non allowed MSRs to trap */
760 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
761 read = 0;
762
763 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
764 write = 0;
765
766 offset = svm_msrpm_offset(msr);
767 bit_read = 2 * (msr & 0x0f);
768 bit_write = 2 * (msr & 0x0f) + 1;
769 tmp = msrpm[offset];
770
771 BUG_ON(offset == MSR_INVALID);
772
773 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
774 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
775
776 msrpm[offset] = tmp;
777
778 svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
779 svm->nested.force_msr_bitmap_recalc = true;
780 }
781
782 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
783 int read, int write)
784 {
785 set_shadow_msr_intercept(vcpu, msr, read, write);
786 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
787 }
788
789 u32 *svm_vcpu_alloc_msrpm(void)
790 {
791 unsigned int order = get_order(MSRPM_SIZE);
792 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
793 u32 *msrpm;
794
795 if (!pages)
796 return NULL;
797
798 msrpm = page_address(pages);
799 memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
800
801 return msrpm;
802 }
803
804 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
805 {
806 int i;
807
808 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
809 if (!direct_access_msrs[i].always)
810 continue;
811 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
812 }
813 }
814
815 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
816 {
817 int i;
818
819 if (intercept == svm->x2avic_msrs_intercepted)
820 return;
821
822 if (!x2avic_enabled ||
823 !apic_x2apic_mode(svm->vcpu.arch.apic))
824 return;
825
826 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
827 int index = direct_access_msrs[i].index;
828
829 if ((index < APIC_BASE_MSR) ||
830 (index > APIC_BASE_MSR + 0xff))
831 continue;
832 set_msr_interception(&svm->vcpu, svm->msrpm, index,
833 !intercept, !intercept);
834 }
835
836 svm->x2avic_msrs_intercepted = intercept;
837 }
838
839 void svm_vcpu_free_msrpm(u32 *msrpm)
840 {
841 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
842 }
843
844 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
845 {
846 struct vcpu_svm *svm = to_svm(vcpu);
847 u32 i;
848
849 /*
850 * Set intercept permissions for all direct access MSRs again. They
851 * will automatically get filtered through the MSR filter, so we are
852 * back in sync after this.
853 */
854 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
855 u32 msr = direct_access_msrs[i].index;
856 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
857 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
858
859 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
860 }
861 }
862
863 static void add_msr_offset(u32 offset)
864 {
865 int i;
866
867 for (i = 0; i < MSRPM_OFFSETS; ++i) {
868
869 /* Offset already in list? */
870 if (msrpm_offsets[i] == offset)
871 return;
872
873 /* Slot used by another offset? */
874 if (msrpm_offsets[i] != MSR_INVALID)
875 continue;
876
877 /* Add offset to list */
878 msrpm_offsets[i] = offset;
879
880 return;
881 }
882
883 /*
884 * If this BUG triggers the msrpm_offsets table has an overflow. Just
885 * increase MSRPM_OFFSETS in this case.
886 */
887 BUG();
888 }
889
890 static void init_msrpm_offsets(void)
891 {
892 int i;
893
894 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
895
896 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
897 u32 offset;
898
899 offset = svm_msrpm_offset(direct_access_msrs[i].index);
900 BUG_ON(offset == MSR_INVALID);
901
902 add_msr_offset(offset);
903 }
904 }
905
906 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
907 {
908 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl;
909 to_vmcb->save.br_from = from_vmcb->save.br_from;
910 to_vmcb->save.br_to = from_vmcb->save.br_to;
911 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from;
912 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to;
913
914 vmcb_mark_dirty(to_vmcb, VMCB_LBR);
915 }
916
917 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
918 {
919 struct vcpu_svm *svm = to_svm(vcpu);
920
921 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
922 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
923 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
924 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
925 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
926
927 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
928 if (is_guest_mode(vcpu))
929 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
930 }
931
932 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
933 {
934 struct vcpu_svm *svm = to_svm(vcpu);
935
936 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
937 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
938 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
939 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
940 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
941
942 /*
943 * Move the LBR msrs back to the vmcb01 to avoid copying them
944 * on nested guest entries.
945 */
946 if (is_guest_mode(vcpu))
947 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
948 }
949
950 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index)
951 {
952 /*
953 * If the LBR virtualization is disabled, the LBR msrs are always
954 * kept in the vmcb01 to avoid copying them on nested guest entries.
955 *
956 * If nested, and the LBR virtualization is enabled/disabled, the msrs
957 * are moved between the vmcb01 and vmcb02 as needed.
958 */
959 struct vmcb *vmcb =
960 (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ?
961 svm->vmcb : svm->vmcb01.ptr;
962
963 switch (index) {
964 case MSR_IA32_DEBUGCTLMSR:
965 return vmcb->save.dbgctl;
966 case MSR_IA32_LASTBRANCHFROMIP:
967 return vmcb->save.br_from;
968 case MSR_IA32_LASTBRANCHTOIP:
969 return vmcb->save.br_to;
970 case MSR_IA32_LASTINTFROMIP:
971 return vmcb->save.last_excp_from;
972 case MSR_IA32_LASTINTTOIP:
973 return vmcb->save.last_excp_to;
974 default:
975 KVM_BUG(false, svm->vcpu.kvm,
976 "%s: Unknown MSR 0x%x", __func__, index);
977 return 0;
978 }
979 }
980
981 void svm_update_lbrv(struct kvm_vcpu *vcpu)
982 {
983 struct vcpu_svm *svm = to_svm(vcpu);
984
985 bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) &
986 DEBUGCTLMSR_LBR;
987
988 bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext &
989 LBR_CTL_ENABLE_MASK);
990
991 if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled))
992 if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))
993 enable_lbrv = true;
994
995 if (enable_lbrv == current_enable_lbrv)
996 return;
997
998 if (enable_lbrv)
999 svm_enable_lbrv(vcpu);
1000 else
1001 svm_disable_lbrv(vcpu);
1002 }
1003
1004 void disable_nmi_singlestep(struct vcpu_svm *svm)
1005 {
1006 svm->nmi_singlestep = false;
1007
1008 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1009 /* Clear our flags if they were not set by the guest */
1010 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1011 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1012 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1013 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1014 }
1015 }
1016
1017 static void grow_ple_window(struct kvm_vcpu *vcpu)
1018 {
1019 struct vcpu_svm *svm = to_svm(vcpu);
1020 struct vmcb_control_area *control = &svm->vmcb->control;
1021 int old = control->pause_filter_count;
1022
1023 if (kvm_pause_in_guest(vcpu->kvm))
1024 return;
1025
1026 control->pause_filter_count = __grow_ple_window(old,
1027 pause_filter_count,
1028 pause_filter_count_grow,
1029 pause_filter_count_max);
1030
1031 if (control->pause_filter_count != old) {
1032 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1033 trace_kvm_ple_window_update(vcpu->vcpu_id,
1034 control->pause_filter_count, old);
1035 }
1036 }
1037
1038 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1039 {
1040 struct vcpu_svm *svm = to_svm(vcpu);
1041 struct vmcb_control_area *control = &svm->vmcb->control;
1042 int old = control->pause_filter_count;
1043
1044 if (kvm_pause_in_guest(vcpu->kvm))
1045 return;
1046
1047 control->pause_filter_count =
1048 __shrink_ple_window(old,
1049 pause_filter_count,
1050 pause_filter_count_shrink,
1051 pause_filter_count);
1052 if (control->pause_filter_count != old) {
1053 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1054 trace_kvm_ple_window_update(vcpu->vcpu_id,
1055 control->pause_filter_count, old);
1056 }
1057 }
1058
1059 static void svm_hardware_unsetup(void)
1060 {
1061 int cpu;
1062
1063 sev_hardware_unsetup();
1064
1065 for_each_possible_cpu(cpu)
1066 svm_cpu_uninit(cpu);
1067
1068 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1069 get_order(IOPM_SIZE));
1070 iopm_base = 0;
1071 }
1072
1073 static void init_seg(struct vmcb_seg *seg)
1074 {
1075 seg->selector = 0;
1076 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1077 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1078 seg->limit = 0xffff;
1079 seg->base = 0;
1080 }
1081
1082 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1083 {
1084 seg->selector = 0;
1085 seg->attrib = SVM_SELECTOR_P_MASK | type;
1086 seg->limit = 0xffff;
1087 seg->base = 0;
1088 }
1089
1090 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1091 {
1092 struct vcpu_svm *svm = to_svm(vcpu);
1093
1094 return svm->nested.ctl.tsc_offset;
1095 }
1096
1097 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1098 {
1099 struct vcpu_svm *svm = to_svm(vcpu);
1100
1101 return svm->tsc_ratio_msr;
1102 }
1103
1104 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1105 {
1106 struct vcpu_svm *svm = to_svm(vcpu);
1107
1108 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1109 svm->vmcb->control.tsc_offset = offset;
1110 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1111 }
1112
1113 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1114 {
1115 __svm_write_tsc_multiplier(multiplier);
1116 }
1117
1118
1119 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1120 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1121 struct vcpu_svm *svm)
1122 {
1123 /*
1124 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1125 * roots, or if INVPCID is disabled in the guest to inject #UD.
1126 */
1127 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1128 if (!npt_enabled ||
1129 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1130 svm_set_intercept(svm, INTERCEPT_INVPCID);
1131 else
1132 svm_clr_intercept(svm, INTERCEPT_INVPCID);
1133 }
1134
1135 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1136 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1137 svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1138 else
1139 svm_set_intercept(svm, INTERCEPT_RDTSCP);
1140 }
1141 }
1142
1143 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1144 {
1145 struct vcpu_svm *svm = to_svm(vcpu);
1146
1147 if (guest_cpuid_is_intel(vcpu)) {
1148 /*
1149 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1150 * accesses because the processor only stores 32 bits.
1151 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1152 */
1153 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1154 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1155 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1156
1157 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1158 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1159
1160 svm->v_vmload_vmsave_enabled = false;
1161 } else {
1162 /*
1163 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1164 * in VMCB and clear intercepts to avoid #VMEXIT.
1165 */
1166 if (vls) {
1167 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1168 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1169 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1170 }
1171 /* No need to intercept these MSRs */
1172 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1173 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1174 }
1175 }
1176
1177 static void init_vmcb(struct kvm_vcpu *vcpu)
1178 {
1179 struct vcpu_svm *svm = to_svm(vcpu);
1180 struct vmcb *vmcb = svm->vmcb01.ptr;
1181 struct vmcb_control_area *control = &vmcb->control;
1182 struct vmcb_save_area *save = &vmcb->save;
1183
1184 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1185 svm_set_intercept(svm, INTERCEPT_CR3_READ);
1186 svm_set_intercept(svm, INTERCEPT_CR4_READ);
1187 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1188 svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1189 svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1190 if (!kvm_vcpu_apicv_active(vcpu))
1191 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1192
1193 set_dr_intercepts(svm);
1194
1195 set_exception_intercept(svm, PF_VECTOR);
1196 set_exception_intercept(svm, UD_VECTOR);
1197 set_exception_intercept(svm, MC_VECTOR);
1198 set_exception_intercept(svm, AC_VECTOR);
1199 set_exception_intercept(svm, DB_VECTOR);
1200 /*
1201 * Guest access to VMware backdoor ports could legitimately
1202 * trigger #GP because of TSS I/O permission bitmap.
1203 * We intercept those #GP and allow access to them anyway
1204 * as VMware does. Don't intercept #GP for SEV guests as KVM can't
1205 * decrypt guest memory to decode the faulting instruction.
1206 */
1207 if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1208 set_exception_intercept(svm, GP_VECTOR);
1209
1210 svm_set_intercept(svm, INTERCEPT_INTR);
1211 svm_set_intercept(svm, INTERCEPT_NMI);
1212
1213 if (intercept_smi)
1214 svm_set_intercept(svm, INTERCEPT_SMI);
1215
1216 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1217 svm_set_intercept(svm, INTERCEPT_RDPMC);
1218 svm_set_intercept(svm, INTERCEPT_CPUID);
1219 svm_set_intercept(svm, INTERCEPT_INVD);
1220 svm_set_intercept(svm, INTERCEPT_INVLPG);
1221 svm_set_intercept(svm, INTERCEPT_INVLPGA);
1222 svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1223 svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1224 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1225 svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1226 svm_set_intercept(svm, INTERCEPT_VMRUN);
1227 svm_set_intercept(svm, INTERCEPT_VMMCALL);
1228 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1229 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1230 svm_set_intercept(svm, INTERCEPT_STGI);
1231 svm_set_intercept(svm, INTERCEPT_CLGI);
1232 svm_set_intercept(svm, INTERCEPT_SKINIT);
1233 svm_set_intercept(svm, INTERCEPT_WBINVD);
1234 svm_set_intercept(svm, INTERCEPT_XSETBV);
1235 svm_set_intercept(svm, INTERCEPT_RDPRU);
1236 svm_set_intercept(svm, INTERCEPT_RSM);
1237
1238 if (!kvm_mwait_in_guest(vcpu->kvm)) {
1239 svm_set_intercept(svm, INTERCEPT_MONITOR);
1240 svm_set_intercept(svm, INTERCEPT_MWAIT);
1241 }
1242
1243 if (!kvm_hlt_in_guest(vcpu->kvm))
1244 svm_set_intercept(svm, INTERCEPT_HLT);
1245
1246 control->iopm_base_pa = __sme_set(iopm_base);
1247 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1248 control->int_ctl = V_INTR_MASKING_MASK;
1249
1250 init_seg(&save->es);
1251 init_seg(&save->ss);
1252 init_seg(&save->ds);
1253 init_seg(&save->fs);
1254 init_seg(&save->gs);
1255
1256 save->cs.selector = 0xf000;
1257 save->cs.base = 0xffff0000;
1258 /* Executable/Readable Code Segment */
1259 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1260 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1261 save->cs.limit = 0xffff;
1262
1263 save->gdtr.base = 0;
1264 save->gdtr.limit = 0xffff;
1265 save->idtr.base = 0;
1266 save->idtr.limit = 0xffff;
1267
1268 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1269 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1270
1271 if (npt_enabled) {
1272 /* Setup VMCB for Nested Paging */
1273 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1274 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1275 clr_exception_intercept(svm, PF_VECTOR);
1276 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1277 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1278 save->g_pat = vcpu->arch.pat;
1279 save->cr3 = 0;
1280 }
1281 svm->current_vmcb->asid_generation = 0;
1282 svm->asid = 0;
1283
1284 svm->nested.vmcb12_gpa = INVALID_GPA;
1285 svm->nested.last_vmcb12_gpa = INVALID_GPA;
1286
1287 if (!kvm_pause_in_guest(vcpu->kvm)) {
1288 control->pause_filter_count = pause_filter_count;
1289 if (pause_filter_thresh)
1290 control->pause_filter_thresh = pause_filter_thresh;
1291 svm_set_intercept(svm, INTERCEPT_PAUSE);
1292 } else {
1293 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1294 }
1295
1296 svm_recalc_instruction_intercepts(vcpu, svm);
1297
1298 /*
1299 * If the host supports V_SPEC_CTRL then disable the interception
1300 * of MSR_IA32_SPEC_CTRL.
1301 */
1302 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1303 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1304
1305 if (kvm_vcpu_apicv_active(vcpu))
1306 avic_init_vmcb(svm, vmcb);
1307
1308 if (vnmi)
1309 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1310
1311 if (vgif) {
1312 svm_clr_intercept(svm, INTERCEPT_STGI);
1313 svm_clr_intercept(svm, INTERCEPT_CLGI);
1314 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1315 }
1316
1317 if (sev_guest(vcpu->kvm))
1318 sev_init_vmcb(svm);
1319
1320 svm_hv_init_vmcb(vmcb);
1321 init_vmcb_after_set_cpuid(vcpu);
1322
1323 vmcb_mark_all_dirty(vmcb);
1324
1325 enable_gif(svm);
1326 }
1327
1328 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1329 {
1330 struct vcpu_svm *svm = to_svm(vcpu);
1331
1332 svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1333
1334 svm_init_osvw(vcpu);
1335 vcpu->arch.microcode_version = 0x01000065;
1336 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1337
1338 svm->nmi_masked = false;
1339 svm->awaiting_iret_completion = false;
1340
1341 if (sev_es_guest(vcpu->kvm))
1342 sev_es_vcpu_reset(svm);
1343 }
1344
1345 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1346 {
1347 struct vcpu_svm *svm = to_svm(vcpu);
1348
1349 svm->spec_ctrl = 0;
1350 svm->virt_spec_ctrl = 0;
1351
1352 init_vmcb(vcpu);
1353
1354 if (!init_event)
1355 __svm_vcpu_reset(vcpu);
1356 }
1357
1358 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1359 {
1360 svm->current_vmcb = target_vmcb;
1361 svm->vmcb = target_vmcb->ptr;
1362 }
1363
1364 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1365 {
1366 struct vcpu_svm *svm;
1367 struct page *vmcb01_page;
1368 struct page *vmsa_page = NULL;
1369 int err;
1370
1371 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1372 svm = to_svm(vcpu);
1373
1374 err = -ENOMEM;
1375 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1376 if (!vmcb01_page)
1377 goto out;
1378
1379 if (sev_es_guest(vcpu->kvm)) {
1380 /*
1381 * SEV-ES guests require a separate VMSA page used to contain
1382 * the encrypted register state of the guest.
1383 */
1384 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1385 if (!vmsa_page)
1386 goto error_free_vmcb_page;
1387
1388 /*
1389 * SEV-ES guests maintain an encrypted version of their FPU
1390 * state which is restored and saved on VMRUN and VMEXIT.
1391 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1392 * do xsave/xrstor on it.
1393 */
1394 fpstate_set_confidential(&vcpu->arch.guest_fpu);
1395 }
1396
1397 err = avic_init_vcpu(svm);
1398 if (err)
1399 goto error_free_vmsa_page;
1400
1401 svm->msrpm = svm_vcpu_alloc_msrpm();
1402 if (!svm->msrpm) {
1403 err = -ENOMEM;
1404 goto error_free_vmsa_page;
1405 }
1406
1407 svm->x2avic_msrs_intercepted = true;
1408
1409 svm->vmcb01.ptr = page_address(vmcb01_page);
1410 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1411 svm_switch_vmcb(svm, &svm->vmcb01);
1412
1413 if (vmsa_page)
1414 svm->sev_es.vmsa = page_address(vmsa_page);
1415
1416 svm->guest_state_loaded = false;
1417
1418 return 0;
1419
1420 error_free_vmsa_page:
1421 if (vmsa_page)
1422 __free_page(vmsa_page);
1423 error_free_vmcb_page:
1424 __free_page(vmcb01_page);
1425 out:
1426 return err;
1427 }
1428
1429 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1430 {
1431 int i;
1432
1433 for_each_online_cpu(i)
1434 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1435 }
1436
1437 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1438 {
1439 struct vcpu_svm *svm = to_svm(vcpu);
1440
1441 /*
1442 * The vmcb page can be recycled, causing a false negative in
1443 * svm_vcpu_load(). So, ensure that no logical CPU has this
1444 * vmcb page recorded as its current vmcb.
1445 */
1446 svm_clear_current_vmcb(svm->vmcb);
1447
1448 svm_leave_nested(vcpu);
1449 svm_free_nested(svm);
1450
1451 sev_free_vcpu(vcpu);
1452
1453 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1454 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1455 }
1456
1457 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1458 {
1459 struct vcpu_svm *svm = to_svm(vcpu);
1460 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1461
1462 if (sev_es_guest(vcpu->kvm))
1463 sev_es_unmap_ghcb(svm);
1464
1465 if (svm->guest_state_loaded)
1466 return;
1467
1468 /*
1469 * Save additional host state that will be restored on VMEXIT (sev-es)
1470 * or subsequent vmload of host save area.
1471 */
1472 vmsave(sd->save_area_pa);
1473 if (sev_es_guest(vcpu->kvm)) {
1474 struct sev_es_save_area *hostsa;
1475 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1476
1477 sev_es_prepare_switch_to_guest(hostsa);
1478 }
1479
1480 if (tsc_scaling)
1481 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1482
1483 if (likely(tsc_aux_uret_slot >= 0))
1484 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1485
1486 svm->guest_state_loaded = true;
1487 }
1488
1489 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1490 {
1491 to_svm(vcpu)->guest_state_loaded = false;
1492 }
1493
1494 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1495 {
1496 struct vcpu_svm *svm = to_svm(vcpu);
1497 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1498
1499 if (sd->current_vmcb != svm->vmcb) {
1500 sd->current_vmcb = svm->vmcb;
1501 indirect_branch_prediction_barrier();
1502 }
1503 if (kvm_vcpu_apicv_active(vcpu))
1504 avic_vcpu_load(vcpu, cpu);
1505 }
1506
1507 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1508 {
1509 if (kvm_vcpu_apicv_active(vcpu))
1510 avic_vcpu_put(vcpu);
1511
1512 svm_prepare_host_switch(vcpu);
1513
1514 ++vcpu->stat.host_state_reload;
1515 }
1516
1517 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1518 {
1519 struct vcpu_svm *svm = to_svm(vcpu);
1520 unsigned long rflags = svm->vmcb->save.rflags;
1521
1522 if (svm->nmi_singlestep) {
1523 /* Hide our flags if they were not set by the guest */
1524 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1525 rflags &= ~X86_EFLAGS_TF;
1526 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1527 rflags &= ~X86_EFLAGS_RF;
1528 }
1529 return rflags;
1530 }
1531
1532 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1533 {
1534 if (to_svm(vcpu)->nmi_singlestep)
1535 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1536
1537 /*
1538 * Any change of EFLAGS.VM is accompanied by a reload of SS
1539 * (caused by either a task switch or an inter-privilege IRET),
1540 * so we do not need to update the CPL here.
1541 */
1542 to_svm(vcpu)->vmcb->save.rflags = rflags;
1543 }
1544
1545 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1546 {
1547 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1548
1549 return sev_es_guest(vcpu->kvm)
1550 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1551 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1552 }
1553
1554 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1555 {
1556 kvm_register_mark_available(vcpu, reg);
1557
1558 switch (reg) {
1559 case VCPU_EXREG_PDPTR:
1560 /*
1561 * When !npt_enabled, mmu->pdptrs[] is already available since
1562 * it is always updated per SDM when moving to CRs.
1563 */
1564 if (npt_enabled)
1565 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1566 break;
1567 default:
1568 KVM_BUG_ON(1, vcpu->kvm);
1569 }
1570 }
1571
1572 static void svm_set_vintr(struct vcpu_svm *svm)
1573 {
1574 struct vmcb_control_area *control;
1575
1576 /*
1577 * The following fields are ignored when AVIC is enabled
1578 */
1579 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1580
1581 svm_set_intercept(svm, INTERCEPT_VINTR);
1582
1583 /*
1584 * Recalculating intercepts may have cleared the VINTR intercept. If
1585 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1586 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1587 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1588 * interrupts will never be unblocked while L2 is running.
1589 */
1590 if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1591 return;
1592
1593 /*
1594 * This is just a dummy VINTR to actually cause a vmexit to happen.
1595 * Actual injection of virtual interrupts happens through EVENTINJ.
1596 */
1597 control = &svm->vmcb->control;
1598 control->int_vector = 0x0;
1599 control->int_ctl &= ~V_INTR_PRIO_MASK;
1600 control->int_ctl |= V_IRQ_MASK |
1601 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1602 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1603 }
1604
1605 static void svm_clear_vintr(struct vcpu_svm *svm)
1606 {
1607 svm_clr_intercept(svm, INTERCEPT_VINTR);
1608
1609 /* Drop int_ctl fields related to VINTR injection. */
1610 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1611 if (is_guest_mode(&svm->vcpu)) {
1612 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1613
1614 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1615 (svm->nested.ctl.int_ctl & V_TPR_MASK));
1616
1617 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1618 V_IRQ_INJECTION_BITS_MASK;
1619
1620 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1621 }
1622
1623 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1624 }
1625
1626 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1627 {
1628 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1629 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1630
1631 switch (seg) {
1632 case VCPU_SREG_CS: return &save->cs;
1633 case VCPU_SREG_DS: return &save->ds;
1634 case VCPU_SREG_ES: return &save->es;
1635 case VCPU_SREG_FS: return &save01->fs;
1636 case VCPU_SREG_GS: return &save01->gs;
1637 case VCPU_SREG_SS: return &save->ss;
1638 case VCPU_SREG_TR: return &save01->tr;
1639 case VCPU_SREG_LDTR: return &save01->ldtr;
1640 }
1641 BUG();
1642 return NULL;
1643 }
1644
1645 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1646 {
1647 struct vmcb_seg *s = svm_seg(vcpu, seg);
1648
1649 return s->base;
1650 }
1651
1652 static void svm_get_segment(struct kvm_vcpu *vcpu,
1653 struct kvm_segment *var, int seg)
1654 {
1655 struct vmcb_seg *s = svm_seg(vcpu, seg);
1656
1657 var->base = s->base;
1658 var->limit = s->limit;
1659 var->selector = s->selector;
1660 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1661 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1662 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1663 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1664 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1665 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1666 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1667
1668 /*
1669 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1670 * However, the SVM spec states that the G bit is not observed by the
1671 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1672 * So let's synthesize a legal G bit for all segments, this helps
1673 * running KVM nested. It also helps cross-vendor migration, because
1674 * Intel's vmentry has a check on the 'G' bit.
1675 */
1676 var->g = s->limit > 0xfffff;
1677
1678 /*
1679 * AMD's VMCB does not have an explicit unusable field, so emulate it
1680 * for cross vendor migration purposes by "not present"
1681 */
1682 var->unusable = !var->present;
1683
1684 switch (seg) {
1685 case VCPU_SREG_TR:
1686 /*
1687 * Work around a bug where the busy flag in the tr selector
1688 * isn't exposed
1689 */
1690 var->type |= 0x2;
1691 break;
1692 case VCPU_SREG_DS:
1693 case VCPU_SREG_ES:
1694 case VCPU_SREG_FS:
1695 case VCPU_SREG_GS:
1696 /*
1697 * The accessed bit must always be set in the segment
1698 * descriptor cache, although it can be cleared in the
1699 * descriptor, the cached bit always remains at 1. Since
1700 * Intel has a check on this, set it here to support
1701 * cross-vendor migration.
1702 */
1703 if (!var->unusable)
1704 var->type |= 0x1;
1705 break;
1706 case VCPU_SREG_SS:
1707 /*
1708 * On AMD CPUs sometimes the DB bit in the segment
1709 * descriptor is left as 1, although the whole segment has
1710 * been made unusable. Clear it here to pass an Intel VMX
1711 * entry check when cross vendor migrating.
1712 */
1713 if (var->unusable)
1714 var->db = 0;
1715 /* This is symmetric with svm_set_segment() */
1716 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1717 break;
1718 }
1719 }
1720
1721 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1722 {
1723 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1724
1725 return save->cpl;
1726 }
1727
1728 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1729 {
1730 struct kvm_segment cs;
1731
1732 svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1733 *db = cs.db;
1734 *l = cs.l;
1735 }
1736
1737 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1738 {
1739 struct vcpu_svm *svm = to_svm(vcpu);
1740
1741 dt->size = svm->vmcb->save.idtr.limit;
1742 dt->address = svm->vmcb->save.idtr.base;
1743 }
1744
1745 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1746 {
1747 struct vcpu_svm *svm = to_svm(vcpu);
1748
1749 svm->vmcb->save.idtr.limit = dt->size;
1750 svm->vmcb->save.idtr.base = dt->address ;
1751 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1752 }
1753
1754 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1755 {
1756 struct vcpu_svm *svm = to_svm(vcpu);
1757
1758 dt->size = svm->vmcb->save.gdtr.limit;
1759 dt->address = svm->vmcb->save.gdtr.base;
1760 }
1761
1762 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1763 {
1764 struct vcpu_svm *svm = to_svm(vcpu);
1765
1766 svm->vmcb->save.gdtr.limit = dt->size;
1767 svm->vmcb->save.gdtr.base = dt->address ;
1768 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1769 }
1770
1771 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1772 {
1773 struct vcpu_svm *svm = to_svm(vcpu);
1774
1775 /*
1776 * For guests that don't set guest_state_protected, the cr3 update is
1777 * handled via kvm_mmu_load() while entering the guest. For guests
1778 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1779 * VMCB save area now, since the save area will become the initial
1780 * contents of the VMSA, and future VMCB save area updates won't be
1781 * seen.
1782 */
1783 if (sev_es_guest(vcpu->kvm)) {
1784 svm->vmcb->save.cr3 = cr3;
1785 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1786 }
1787 }
1788
1789 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1790 {
1791 struct vcpu_svm *svm = to_svm(vcpu);
1792 u64 hcr0 = cr0;
1793 bool old_paging = is_paging(vcpu);
1794
1795 #ifdef CONFIG_X86_64
1796 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1797 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1798 vcpu->arch.efer |= EFER_LMA;
1799 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1800 }
1801
1802 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1803 vcpu->arch.efer &= ~EFER_LMA;
1804 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1805 }
1806 }
1807 #endif
1808 vcpu->arch.cr0 = cr0;
1809
1810 if (!npt_enabled) {
1811 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1812 if (old_paging != is_paging(vcpu))
1813 svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1814 }
1815
1816 /*
1817 * re-enable caching here because the QEMU bios
1818 * does not do it - this results in some delay at
1819 * reboot
1820 */
1821 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1822 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1823
1824 svm->vmcb->save.cr0 = hcr0;
1825 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1826
1827 /*
1828 * SEV-ES guests must always keep the CR intercepts cleared. CR
1829 * tracking is done using the CR write traps.
1830 */
1831 if (sev_es_guest(vcpu->kvm))
1832 return;
1833
1834 if (hcr0 == cr0) {
1835 /* Selective CR0 write remains on. */
1836 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1837 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1838 } else {
1839 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1840 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1841 }
1842 }
1843
1844 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1845 {
1846 return true;
1847 }
1848
1849 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1850 {
1851 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1852 unsigned long old_cr4 = vcpu->arch.cr4;
1853
1854 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1855 svm_flush_tlb_current(vcpu);
1856
1857 vcpu->arch.cr4 = cr4;
1858 if (!npt_enabled) {
1859 cr4 |= X86_CR4_PAE;
1860
1861 if (!is_paging(vcpu))
1862 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1863 }
1864 cr4 |= host_cr4_mce;
1865 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1866 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1867
1868 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1869 kvm_update_cpuid_runtime(vcpu);
1870 }
1871
1872 static void svm_set_segment(struct kvm_vcpu *vcpu,
1873 struct kvm_segment *var, int seg)
1874 {
1875 struct vcpu_svm *svm = to_svm(vcpu);
1876 struct vmcb_seg *s = svm_seg(vcpu, seg);
1877
1878 s->base = var->base;
1879 s->limit = var->limit;
1880 s->selector = var->selector;
1881 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1882 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1883 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1884 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1885 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1886 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1887 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1888 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1889
1890 /*
1891 * This is always accurate, except if SYSRET returned to a segment
1892 * with SS.DPL != 3. Intel does not have this quirk, and always
1893 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1894 * would entail passing the CPL to userspace and back.
1895 */
1896 if (seg == VCPU_SREG_SS)
1897 /* This is symmetric with svm_get_segment() */
1898 svm->vmcb->save.cpl = (var->dpl & 3);
1899
1900 vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1901 }
1902
1903 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1904 {
1905 struct vcpu_svm *svm = to_svm(vcpu);
1906
1907 clr_exception_intercept(svm, BP_VECTOR);
1908
1909 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1910 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1911 set_exception_intercept(svm, BP_VECTOR);
1912 }
1913 }
1914
1915 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1916 {
1917 if (sd->next_asid > sd->max_asid) {
1918 ++sd->asid_generation;
1919 sd->next_asid = sd->min_asid;
1920 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1921 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1922 }
1923
1924 svm->current_vmcb->asid_generation = sd->asid_generation;
1925 svm->asid = sd->next_asid++;
1926 }
1927
1928 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1929 {
1930 struct vmcb *vmcb = svm->vmcb;
1931
1932 if (svm->vcpu.arch.guest_state_protected)
1933 return;
1934
1935 if (unlikely(value != vmcb->save.dr6)) {
1936 vmcb->save.dr6 = value;
1937 vmcb_mark_dirty(vmcb, VMCB_DR);
1938 }
1939 }
1940
1941 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1942 {
1943 struct vcpu_svm *svm = to_svm(vcpu);
1944
1945 if (vcpu->arch.guest_state_protected)
1946 return;
1947
1948 get_debugreg(vcpu->arch.db[0], 0);
1949 get_debugreg(vcpu->arch.db[1], 1);
1950 get_debugreg(vcpu->arch.db[2], 2);
1951 get_debugreg(vcpu->arch.db[3], 3);
1952 /*
1953 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1954 * because db_interception might need it. We can do it before vmentry.
1955 */
1956 vcpu->arch.dr6 = svm->vmcb->save.dr6;
1957 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1958 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1959 set_dr_intercepts(svm);
1960 }
1961
1962 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1963 {
1964 struct vcpu_svm *svm = to_svm(vcpu);
1965
1966 if (vcpu->arch.guest_state_protected)
1967 return;
1968
1969 svm->vmcb->save.dr7 = value;
1970 vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1971 }
1972
1973 static int pf_interception(struct kvm_vcpu *vcpu)
1974 {
1975 struct vcpu_svm *svm = to_svm(vcpu);
1976
1977 u64 fault_address = svm->vmcb->control.exit_info_2;
1978 u64 error_code = svm->vmcb->control.exit_info_1;
1979
1980 return kvm_handle_page_fault(vcpu, error_code, fault_address,
1981 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1982 svm->vmcb->control.insn_bytes : NULL,
1983 svm->vmcb->control.insn_len);
1984 }
1985
1986 static int npf_interception(struct kvm_vcpu *vcpu)
1987 {
1988 struct vcpu_svm *svm = to_svm(vcpu);
1989
1990 u64 fault_address = svm->vmcb->control.exit_info_2;
1991 u64 error_code = svm->vmcb->control.exit_info_1;
1992
1993 trace_kvm_page_fault(vcpu, fault_address, error_code);
1994 return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1995 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1996 svm->vmcb->control.insn_bytes : NULL,
1997 svm->vmcb->control.insn_len);
1998 }
1999
2000 static int db_interception(struct kvm_vcpu *vcpu)
2001 {
2002 struct kvm_run *kvm_run = vcpu->run;
2003 struct vcpu_svm *svm = to_svm(vcpu);
2004
2005 if (!(vcpu->guest_debug &
2006 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2007 !svm->nmi_singlestep) {
2008 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2009 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2010 return 1;
2011 }
2012
2013 if (svm->nmi_singlestep) {
2014 disable_nmi_singlestep(svm);
2015 /* Make sure we check for pending NMIs upon entry */
2016 kvm_make_request(KVM_REQ_EVENT, vcpu);
2017 }
2018
2019 if (vcpu->guest_debug &
2020 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2021 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2022 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2023 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2024 kvm_run->debug.arch.pc =
2025 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2026 kvm_run->debug.arch.exception = DB_VECTOR;
2027 return 0;
2028 }
2029
2030 return 1;
2031 }
2032
2033 static int bp_interception(struct kvm_vcpu *vcpu)
2034 {
2035 struct vcpu_svm *svm = to_svm(vcpu);
2036 struct kvm_run *kvm_run = vcpu->run;
2037
2038 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2039 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2040 kvm_run->debug.arch.exception = BP_VECTOR;
2041 return 0;
2042 }
2043
2044 static int ud_interception(struct kvm_vcpu *vcpu)
2045 {
2046 return handle_ud(vcpu);
2047 }
2048
2049 static int ac_interception(struct kvm_vcpu *vcpu)
2050 {
2051 kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2052 return 1;
2053 }
2054
2055 static bool is_erratum_383(void)
2056 {
2057 int err, i;
2058 u64 value;
2059
2060 if (!erratum_383_found)
2061 return false;
2062
2063 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2064 if (err)
2065 return false;
2066
2067 /* Bit 62 may or may not be set for this mce */
2068 value &= ~(1ULL << 62);
2069
2070 if (value != 0xb600000000010015ULL)
2071 return false;
2072
2073 /* Clear MCi_STATUS registers */
2074 for (i = 0; i < 6; ++i)
2075 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2076
2077 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2078 if (!err) {
2079 u32 low, high;
2080
2081 value &= ~(1ULL << 2);
2082 low = lower_32_bits(value);
2083 high = upper_32_bits(value);
2084
2085 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2086 }
2087
2088 /* Flush tlb to evict multi-match entries */
2089 __flush_tlb_all();
2090
2091 return true;
2092 }
2093
2094 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2095 {
2096 if (is_erratum_383()) {
2097 /*
2098 * Erratum 383 triggered. Guest state is corrupt so kill the
2099 * guest.
2100 */
2101 pr_err("Guest triggered AMD Erratum 383\n");
2102
2103 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2104
2105 return;
2106 }
2107
2108 /*
2109 * On an #MC intercept the MCE handler is not called automatically in
2110 * the host. So do it by hand here.
2111 */
2112 kvm_machine_check();
2113 }
2114
2115 static int mc_interception(struct kvm_vcpu *vcpu)
2116 {
2117 return 1;
2118 }
2119
2120 static int shutdown_interception(struct kvm_vcpu *vcpu)
2121 {
2122 struct kvm_run *kvm_run = vcpu->run;
2123 struct vcpu_svm *svm = to_svm(vcpu);
2124
2125 /*
2126 * The VM save area has already been encrypted so it
2127 * cannot be reinitialized - just terminate.
2128 */
2129 if (sev_es_guest(vcpu->kvm))
2130 return -EINVAL;
2131
2132 /*
2133 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put
2134 * the VMCB in a known good state. Unfortuately, KVM doesn't have
2135 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2136 * userspace. At a platform view, INIT is acceptable behavior as
2137 * there exist bare metal platforms that automatically INIT the CPU
2138 * in response to shutdown.
2139 */
2140 clear_page(svm->vmcb);
2141 kvm_vcpu_reset(vcpu, true);
2142
2143 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2144 return 0;
2145 }
2146
2147 static int io_interception(struct kvm_vcpu *vcpu)
2148 {
2149 struct vcpu_svm *svm = to_svm(vcpu);
2150 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2151 int size, in, string;
2152 unsigned port;
2153
2154 ++vcpu->stat.io_exits;
2155 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2156 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2157 port = io_info >> 16;
2158 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2159
2160 if (string) {
2161 if (sev_es_guest(vcpu->kvm))
2162 return sev_es_string_io(svm, size, port, in);
2163 else
2164 return kvm_emulate_instruction(vcpu, 0);
2165 }
2166
2167 svm->next_rip = svm->vmcb->control.exit_info_2;
2168
2169 return kvm_fast_pio(vcpu, size, port, in);
2170 }
2171
2172 static int nmi_interception(struct kvm_vcpu *vcpu)
2173 {
2174 return 1;
2175 }
2176
2177 static int smi_interception(struct kvm_vcpu *vcpu)
2178 {
2179 return 1;
2180 }
2181
2182 static int intr_interception(struct kvm_vcpu *vcpu)
2183 {
2184 ++vcpu->stat.irq_exits;
2185 return 1;
2186 }
2187
2188 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2189 {
2190 struct vcpu_svm *svm = to_svm(vcpu);
2191 struct vmcb *vmcb12;
2192 struct kvm_host_map map;
2193 int ret;
2194
2195 if (nested_svm_check_permissions(vcpu))
2196 return 1;
2197
2198 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2199 if (ret) {
2200 if (ret == -EINVAL)
2201 kvm_inject_gp(vcpu, 0);
2202 return 1;
2203 }
2204
2205 vmcb12 = map.hva;
2206
2207 ret = kvm_skip_emulated_instruction(vcpu);
2208
2209 if (vmload) {
2210 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2211 svm->sysenter_eip_hi = 0;
2212 svm->sysenter_esp_hi = 0;
2213 } else {
2214 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2215 }
2216
2217 kvm_vcpu_unmap(vcpu, &map, true);
2218
2219 return ret;
2220 }
2221
2222 static int vmload_interception(struct kvm_vcpu *vcpu)
2223 {
2224 return vmload_vmsave_interception(vcpu, true);
2225 }
2226
2227 static int vmsave_interception(struct kvm_vcpu *vcpu)
2228 {
2229 return vmload_vmsave_interception(vcpu, false);
2230 }
2231
2232 static int vmrun_interception(struct kvm_vcpu *vcpu)
2233 {
2234 if (nested_svm_check_permissions(vcpu))
2235 return 1;
2236
2237 return nested_svm_vmrun(vcpu);
2238 }
2239
2240 enum {
2241 NONE_SVM_INSTR,
2242 SVM_INSTR_VMRUN,
2243 SVM_INSTR_VMLOAD,
2244 SVM_INSTR_VMSAVE,
2245 };
2246
2247 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2248 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2249 {
2250 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2251
2252 if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2253 return NONE_SVM_INSTR;
2254
2255 switch (ctxt->modrm) {
2256 case 0xd8: /* VMRUN */
2257 return SVM_INSTR_VMRUN;
2258 case 0xda: /* VMLOAD */
2259 return SVM_INSTR_VMLOAD;
2260 case 0xdb: /* VMSAVE */
2261 return SVM_INSTR_VMSAVE;
2262 default:
2263 break;
2264 }
2265
2266 return NONE_SVM_INSTR;
2267 }
2268
2269 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2270 {
2271 const int guest_mode_exit_codes[] = {
2272 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2273 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2274 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2275 };
2276 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2277 [SVM_INSTR_VMRUN] = vmrun_interception,
2278 [SVM_INSTR_VMLOAD] = vmload_interception,
2279 [SVM_INSTR_VMSAVE] = vmsave_interception,
2280 };
2281 struct vcpu_svm *svm = to_svm(vcpu);
2282 int ret;
2283
2284 if (is_guest_mode(vcpu)) {
2285 /* Returns '1' or -errno on failure, '0' on success. */
2286 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2287 if (ret)
2288 return ret;
2289 return 1;
2290 }
2291 return svm_instr_handlers[opcode](vcpu);
2292 }
2293
2294 /*
2295 * #GP handling code. Note that #GP can be triggered under the following two
2296 * cases:
2297 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2298 * some AMD CPUs when EAX of these instructions are in the reserved memory
2299 * regions (e.g. SMM memory on host).
2300 * 2) VMware backdoor
2301 */
2302 static int gp_interception(struct kvm_vcpu *vcpu)
2303 {
2304 struct vcpu_svm *svm = to_svm(vcpu);
2305 u32 error_code = svm->vmcb->control.exit_info_1;
2306 int opcode;
2307
2308 /* Both #GP cases have zero error_code */
2309 if (error_code)
2310 goto reinject;
2311
2312 /* Decode the instruction for usage later */
2313 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2314 goto reinject;
2315
2316 opcode = svm_instr_opcode(vcpu);
2317
2318 if (opcode == NONE_SVM_INSTR) {
2319 if (!enable_vmware_backdoor)
2320 goto reinject;
2321
2322 /*
2323 * VMware backdoor emulation on #GP interception only handles
2324 * IN{S}, OUT{S}, and RDPMC.
2325 */
2326 if (!is_guest_mode(vcpu))
2327 return kvm_emulate_instruction(vcpu,
2328 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2329 } else {
2330 /* All SVM instructions expect page aligned RAX */
2331 if (svm->vmcb->save.rax & ~PAGE_MASK)
2332 goto reinject;
2333
2334 return emulate_svm_instr(vcpu, opcode);
2335 }
2336
2337 reinject:
2338 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2339 return 1;
2340 }
2341
2342 void svm_set_gif(struct vcpu_svm *svm, bool value)
2343 {
2344 if (value) {
2345 /*
2346 * If VGIF is enabled, the STGI intercept is only added to
2347 * detect the opening of the SMI/NMI window; remove it now.
2348 * Likewise, clear the VINTR intercept, we will set it
2349 * again while processing KVM_REQ_EVENT if needed.
2350 */
2351 if (vgif)
2352 svm_clr_intercept(svm, INTERCEPT_STGI);
2353 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2354 svm_clear_vintr(svm);
2355
2356 enable_gif(svm);
2357 if (svm->vcpu.arch.smi_pending ||
2358 svm->vcpu.arch.nmi_pending ||
2359 kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2360 kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2361 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2362 } else {
2363 disable_gif(svm);
2364
2365 /*
2366 * After a CLGI no interrupts should come. But if vGIF is
2367 * in use, we still rely on the VINTR intercept (rather than
2368 * STGI) to detect an open interrupt window.
2369 */
2370 if (!vgif)
2371 svm_clear_vintr(svm);
2372 }
2373 }
2374
2375 static int stgi_interception(struct kvm_vcpu *vcpu)
2376 {
2377 int ret;
2378
2379 if (nested_svm_check_permissions(vcpu))
2380 return 1;
2381
2382 ret = kvm_skip_emulated_instruction(vcpu);
2383 svm_set_gif(to_svm(vcpu), true);
2384 return ret;
2385 }
2386
2387 static int clgi_interception(struct kvm_vcpu *vcpu)
2388 {
2389 int ret;
2390
2391 if (nested_svm_check_permissions(vcpu))
2392 return 1;
2393
2394 ret = kvm_skip_emulated_instruction(vcpu);
2395 svm_set_gif(to_svm(vcpu), false);
2396 return ret;
2397 }
2398
2399 static int invlpga_interception(struct kvm_vcpu *vcpu)
2400 {
2401 gva_t gva = kvm_rax_read(vcpu);
2402 u32 asid = kvm_rcx_read(vcpu);
2403
2404 /* FIXME: Handle an address size prefix. */
2405 if (!is_long_mode(vcpu))
2406 gva = (u32)gva;
2407
2408 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2409
2410 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2411 kvm_mmu_invlpg(vcpu, gva);
2412
2413 return kvm_skip_emulated_instruction(vcpu);
2414 }
2415
2416 static int skinit_interception(struct kvm_vcpu *vcpu)
2417 {
2418 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2419
2420 kvm_queue_exception(vcpu, UD_VECTOR);
2421 return 1;
2422 }
2423
2424 static int task_switch_interception(struct kvm_vcpu *vcpu)
2425 {
2426 struct vcpu_svm *svm = to_svm(vcpu);
2427 u16 tss_selector;
2428 int reason;
2429 int int_type = svm->vmcb->control.exit_int_info &
2430 SVM_EXITINTINFO_TYPE_MASK;
2431 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2432 uint32_t type =
2433 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2434 uint32_t idt_v =
2435 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2436 bool has_error_code = false;
2437 u32 error_code = 0;
2438
2439 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2440
2441 if (svm->vmcb->control.exit_info_2 &
2442 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2443 reason = TASK_SWITCH_IRET;
2444 else if (svm->vmcb->control.exit_info_2 &
2445 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2446 reason = TASK_SWITCH_JMP;
2447 else if (idt_v)
2448 reason = TASK_SWITCH_GATE;
2449 else
2450 reason = TASK_SWITCH_CALL;
2451
2452 if (reason == TASK_SWITCH_GATE) {
2453 switch (type) {
2454 case SVM_EXITINTINFO_TYPE_NMI:
2455 vcpu->arch.nmi_injected = false;
2456 break;
2457 case SVM_EXITINTINFO_TYPE_EXEPT:
2458 if (svm->vmcb->control.exit_info_2 &
2459 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2460 has_error_code = true;
2461 error_code =
2462 (u32)svm->vmcb->control.exit_info_2;
2463 }
2464 kvm_clear_exception_queue(vcpu);
2465 break;
2466 case SVM_EXITINTINFO_TYPE_INTR:
2467 case SVM_EXITINTINFO_TYPE_SOFT:
2468 kvm_clear_interrupt_queue(vcpu);
2469 break;
2470 default:
2471 break;
2472 }
2473 }
2474
2475 if (reason != TASK_SWITCH_GATE ||
2476 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2477 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2478 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2479 if (!svm_skip_emulated_instruction(vcpu))
2480 return 0;
2481 }
2482
2483 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2484 int_vec = -1;
2485
2486 return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2487 has_error_code, error_code);
2488 }
2489
2490 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2491 {
2492 if (!sev_es_guest(svm->vcpu.kvm))
2493 svm_clr_intercept(svm, INTERCEPT_IRET);
2494 }
2495
2496 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2497 {
2498 if (!sev_es_guest(svm->vcpu.kvm))
2499 svm_set_intercept(svm, INTERCEPT_IRET);
2500 }
2501
2502 static int iret_interception(struct kvm_vcpu *vcpu)
2503 {
2504 struct vcpu_svm *svm = to_svm(vcpu);
2505
2506 ++vcpu->stat.nmi_window_exits;
2507 svm->awaiting_iret_completion = true;
2508
2509 svm_clr_iret_intercept(svm);
2510 if (!sev_es_guest(vcpu->kvm))
2511 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2512
2513 kvm_make_request(KVM_REQ_EVENT, vcpu);
2514 return 1;
2515 }
2516
2517 static int invlpg_interception(struct kvm_vcpu *vcpu)
2518 {
2519 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2520 return kvm_emulate_instruction(vcpu, 0);
2521
2522 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2523 return kvm_skip_emulated_instruction(vcpu);
2524 }
2525
2526 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2527 {
2528 return kvm_emulate_instruction(vcpu, 0);
2529 }
2530
2531 static int rsm_interception(struct kvm_vcpu *vcpu)
2532 {
2533 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2534 }
2535
2536 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2537 unsigned long val)
2538 {
2539 struct vcpu_svm *svm = to_svm(vcpu);
2540 unsigned long cr0 = vcpu->arch.cr0;
2541 bool ret = false;
2542
2543 if (!is_guest_mode(vcpu) ||
2544 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2545 return false;
2546
2547 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2548 val &= ~SVM_CR0_SELECTIVE_MASK;
2549
2550 if (cr0 ^ val) {
2551 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2552 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2553 }
2554
2555 return ret;
2556 }
2557
2558 #define CR_VALID (1ULL << 63)
2559
2560 static int cr_interception(struct kvm_vcpu *vcpu)
2561 {
2562 struct vcpu_svm *svm = to_svm(vcpu);
2563 int reg, cr;
2564 unsigned long val;
2565 int err;
2566
2567 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2568 return emulate_on_interception(vcpu);
2569
2570 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2571 return emulate_on_interception(vcpu);
2572
2573 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2574 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2575 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2576 else
2577 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2578
2579 err = 0;
2580 if (cr >= 16) { /* mov to cr */
2581 cr -= 16;
2582 val = kvm_register_read(vcpu, reg);
2583 trace_kvm_cr_write(cr, val);
2584 switch (cr) {
2585 case 0:
2586 if (!check_selective_cr0_intercepted(vcpu, val))
2587 err = kvm_set_cr0(vcpu, val);
2588 else
2589 return 1;
2590
2591 break;
2592 case 3:
2593 err = kvm_set_cr3(vcpu, val);
2594 break;
2595 case 4:
2596 err = kvm_set_cr4(vcpu, val);
2597 break;
2598 case 8:
2599 err = kvm_set_cr8(vcpu, val);
2600 break;
2601 default:
2602 WARN(1, "unhandled write to CR%d", cr);
2603 kvm_queue_exception(vcpu, UD_VECTOR);
2604 return 1;
2605 }
2606 } else { /* mov from cr */
2607 switch (cr) {
2608 case 0:
2609 val = kvm_read_cr0(vcpu);
2610 break;
2611 case 2:
2612 val = vcpu->arch.cr2;
2613 break;
2614 case 3:
2615 val = kvm_read_cr3(vcpu);
2616 break;
2617 case 4:
2618 val = kvm_read_cr4(vcpu);
2619 break;
2620 case 8:
2621 val = kvm_get_cr8(vcpu);
2622 break;
2623 default:
2624 WARN(1, "unhandled read from CR%d", cr);
2625 kvm_queue_exception(vcpu, UD_VECTOR);
2626 return 1;
2627 }
2628 kvm_register_write(vcpu, reg, val);
2629 trace_kvm_cr_read(cr, val);
2630 }
2631 return kvm_complete_insn_gp(vcpu, err);
2632 }
2633
2634 static int cr_trap(struct kvm_vcpu *vcpu)
2635 {
2636 struct vcpu_svm *svm = to_svm(vcpu);
2637 unsigned long old_value, new_value;
2638 unsigned int cr;
2639 int ret = 0;
2640
2641 new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2642
2643 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2644 switch (cr) {
2645 case 0:
2646 old_value = kvm_read_cr0(vcpu);
2647 svm_set_cr0(vcpu, new_value);
2648
2649 kvm_post_set_cr0(vcpu, old_value, new_value);
2650 break;
2651 case 4:
2652 old_value = kvm_read_cr4(vcpu);
2653 svm_set_cr4(vcpu, new_value);
2654
2655 kvm_post_set_cr4(vcpu, old_value, new_value);
2656 break;
2657 case 8:
2658 ret = kvm_set_cr8(vcpu, new_value);
2659 break;
2660 default:
2661 WARN(1, "unhandled CR%d write trap", cr);
2662 kvm_queue_exception(vcpu, UD_VECTOR);
2663 return 1;
2664 }
2665
2666 return kvm_complete_insn_gp(vcpu, ret);
2667 }
2668
2669 static int dr_interception(struct kvm_vcpu *vcpu)
2670 {
2671 struct vcpu_svm *svm = to_svm(vcpu);
2672 int reg, dr;
2673 unsigned long val;
2674 int err = 0;
2675
2676 if (vcpu->guest_debug == 0) {
2677 /*
2678 * No more DR vmexits; force a reload of the debug registers
2679 * and reenter on this instruction. The next vmexit will
2680 * retrieve the full state of the debug registers.
2681 */
2682 clr_dr_intercepts(svm);
2683 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2684 return 1;
2685 }
2686
2687 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2688 return emulate_on_interception(vcpu);
2689
2690 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2691 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2692 if (dr >= 16) { /* mov to DRn */
2693 dr -= 16;
2694 val = kvm_register_read(vcpu, reg);
2695 err = kvm_set_dr(vcpu, dr, val);
2696 } else {
2697 kvm_get_dr(vcpu, dr, &val);
2698 kvm_register_write(vcpu, reg, val);
2699 }
2700
2701 return kvm_complete_insn_gp(vcpu, err);
2702 }
2703
2704 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2705 {
2706 int r;
2707
2708 u8 cr8_prev = kvm_get_cr8(vcpu);
2709 /* instruction emulation calls kvm_set_cr8() */
2710 r = cr_interception(vcpu);
2711 if (lapic_in_kernel(vcpu))
2712 return r;
2713 if (cr8_prev <= kvm_get_cr8(vcpu))
2714 return r;
2715 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2716 return 0;
2717 }
2718
2719 static int efer_trap(struct kvm_vcpu *vcpu)
2720 {
2721 struct msr_data msr_info;
2722 int ret;
2723
2724 /*
2725 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2726 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2727 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2728 * the guest doesn't have X86_FEATURE_SVM.
2729 */
2730 msr_info.host_initiated = false;
2731 msr_info.index = MSR_EFER;
2732 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2733 ret = kvm_set_msr_common(vcpu, &msr_info);
2734
2735 return kvm_complete_insn_gp(vcpu, ret);
2736 }
2737
2738 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2739 {
2740 msr->data = 0;
2741
2742 switch (msr->index) {
2743 case MSR_AMD64_DE_CFG:
2744 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2745 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2746 break;
2747 default:
2748 return KVM_MSR_RET_INVALID;
2749 }
2750
2751 return 0;
2752 }
2753
2754 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2755 {
2756 struct vcpu_svm *svm = to_svm(vcpu);
2757
2758 switch (msr_info->index) {
2759 case MSR_AMD64_TSC_RATIO:
2760 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2761 return 1;
2762 msr_info->data = svm->tsc_ratio_msr;
2763 break;
2764 case MSR_STAR:
2765 msr_info->data = svm->vmcb01.ptr->save.star;
2766 break;
2767 #ifdef CONFIG_X86_64
2768 case MSR_LSTAR:
2769 msr_info->data = svm->vmcb01.ptr->save.lstar;
2770 break;
2771 case MSR_CSTAR:
2772 msr_info->data = svm->vmcb01.ptr->save.cstar;
2773 break;
2774 case MSR_KERNEL_GS_BASE:
2775 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2776 break;
2777 case MSR_SYSCALL_MASK:
2778 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2779 break;
2780 #endif
2781 case MSR_IA32_SYSENTER_CS:
2782 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2783 break;
2784 case MSR_IA32_SYSENTER_EIP:
2785 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2786 if (guest_cpuid_is_intel(vcpu))
2787 msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2788 break;
2789 case MSR_IA32_SYSENTER_ESP:
2790 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2791 if (guest_cpuid_is_intel(vcpu))
2792 msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2793 break;
2794 case MSR_TSC_AUX:
2795 msr_info->data = svm->tsc_aux;
2796 break;
2797 case MSR_IA32_DEBUGCTLMSR:
2798 case MSR_IA32_LASTBRANCHFROMIP:
2799 case MSR_IA32_LASTBRANCHTOIP:
2800 case MSR_IA32_LASTINTFROMIP:
2801 case MSR_IA32_LASTINTTOIP:
2802 msr_info->data = svm_get_lbr_msr(svm, msr_info->index);
2803 break;
2804 case MSR_VM_HSAVE_PA:
2805 msr_info->data = svm->nested.hsave_msr;
2806 break;
2807 case MSR_VM_CR:
2808 msr_info->data = svm->nested.vm_cr_msr;
2809 break;
2810 case MSR_IA32_SPEC_CTRL:
2811 if (!msr_info->host_initiated &&
2812 !guest_has_spec_ctrl_msr(vcpu))
2813 return 1;
2814
2815 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2816 msr_info->data = svm->vmcb->save.spec_ctrl;
2817 else
2818 msr_info->data = svm->spec_ctrl;
2819 break;
2820 case MSR_AMD64_VIRT_SPEC_CTRL:
2821 if (!msr_info->host_initiated &&
2822 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2823 return 1;
2824
2825 msr_info->data = svm->virt_spec_ctrl;
2826 break;
2827 case MSR_F15H_IC_CFG: {
2828
2829 int family, model;
2830
2831 family = guest_cpuid_family(vcpu);
2832 model = guest_cpuid_model(vcpu);
2833
2834 if (family < 0 || model < 0)
2835 return kvm_get_msr_common(vcpu, msr_info);
2836
2837 msr_info->data = 0;
2838
2839 if (family == 0x15 &&
2840 (model >= 0x2 && model < 0x20))
2841 msr_info->data = 0x1E;
2842 }
2843 break;
2844 case MSR_AMD64_DE_CFG:
2845 msr_info->data = svm->msr_decfg;
2846 break;
2847 default:
2848 return kvm_get_msr_common(vcpu, msr_info);
2849 }
2850 return 0;
2851 }
2852
2853 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2854 {
2855 struct vcpu_svm *svm = to_svm(vcpu);
2856 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2857 return kvm_complete_insn_gp(vcpu, err);
2858
2859 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2860 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2861 X86_TRAP_GP |
2862 SVM_EVTINJ_TYPE_EXEPT |
2863 SVM_EVTINJ_VALID);
2864 return 1;
2865 }
2866
2867 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2868 {
2869 struct vcpu_svm *svm = to_svm(vcpu);
2870 int svm_dis, chg_mask;
2871
2872 if (data & ~SVM_VM_CR_VALID_MASK)
2873 return 1;
2874
2875 chg_mask = SVM_VM_CR_VALID_MASK;
2876
2877 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2878 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2879
2880 svm->nested.vm_cr_msr &= ~chg_mask;
2881 svm->nested.vm_cr_msr |= (data & chg_mask);
2882
2883 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2884
2885 /* check for svm_disable while efer.svme is set */
2886 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2887 return 1;
2888
2889 return 0;
2890 }
2891
2892 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2893 {
2894 struct vcpu_svm *svm = to_svm(vcpu);
2895 int ret = 0;
2896
2897 u32 ecx = msr->index;
2898 u64 data = msr->data;
2899 switch (ecx) {
2900 case MSR_AMD64_TSC_RATIO:
2901
2902 if (!svm->tsc_scaling_enabled) {
2903
2904 if (!msr->host_initiated)
2905 return 1;
2906 /*
2907 * In case TSC scaling is not enabled, always
2908 * leave this MSR at the default value.
2909 *
2910 * Due to bug in qemu 6.2.0, it would try to set
2911 * this msr to 0 if tsc scaling is not enabled.
2912 * Ignore this value as well.
2913 */
2914 if (data != 0 && data != svm->tsc_ratio_msr)
2915 return 1;
2916 break;
2917 }
2918
2919 if (data & SVM_TSC_RATIO_RSVD)
2920 return 1;
2921
2922 svm->tsc_ratio_msr = data;
2923
2924 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2925 nested_svm_update_tsc_ratio_msr(vcpu);
2926
2927 break;
2928 case MSR_IA32_CR_PAT:
2929 ret = kvm_set_msr_common(vcpu, msr);
2930 if (ret)
2931 break;
2932
2933 svm->vmcb01.ptr->save.g_pat = data;
2934 if (is_guest_mode(vcpu))
2935 nested_vmcb02_compute_g_pat(svm);
2936 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2937 break;
2938 case MSR_IA32_SPEC_CTRL:
2939 if (!msr->host_initiated &&
2940 !guest_has_spec_ctrl_msr(vcpu))
2941 return 1;
2942
2943 if (kvm_spec_ctrl_test_value(data))
2944 return 1;
2945
2946 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2947 svm->vmcb->save.spec_ctrl = data;
2948 else
2949 svm->spec_ctrl = data;
2950 if (!data)
2951 break;
2952
2953 /*
2954 * For non-nested:
2955 * When it's written (to non-zero) for the first time, pass
2956 * it through.
2957 *
2958 * For nested:
2959 * The handling of the MSR bitmap for L2 guests is done in
2960 * nested_svm_vmrun_msrpm.
2961 * We update the L1 MSR bit as well since it will end up
2962 * touching the MSR anyway now.
2963 */
2964 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2965 break;
2966 case MSR_AMD64_VIRT_SPEC_CTRL:
2967 if (!msr->host_initiated &&
2968 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2969 return 1;
2970
2971 if (data & ~SPEC_CTRL_SSBD)
2972 return 1;
2973
2974 svm->virt_spec_ctrl = data;
2975 break;
2976 case MSR_STAR:
2977 svm->vmcb01.ptr->save.star = data;
2978 break;
2979 #ifdef CONFIG_X86_64
2980 case MSR_LSTAR:
2981 svm->vmcb01.ptr->save.lstar = data;
2982 break;
2983 case MSR_CSTAR:
2984 svm->vmcb01.ptr->save.cstar = data;
2985 break;
2986 case MSR_KERNEL_GS_BASE:
2987 svm->vmcb01.ptr->save.kernel_gs_base = data;
2988 break;
2989 case MSR_SYSCALL_MASK:
2990 svm->vmcb01.ptr->save.sfmask = data;
2991 break;
2992 #endif
2993 case MSR_IA32_SYSENTER_CS:
2994 svm->vmcb01.ptr->save.sysenter_cs = data;
2995 break;
2996 case MSR_IA32_SYSENTER_EIP:
2997 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2998 /*
2999 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3000 * when we spoof an Intel vendor ID (for cross vendor migration).
3001 * In this case we use this intercept to track the high
3002 * 32 bit part of these msrs to support Intel's
3003 * implementation of SYSENTER/SYSEXIT.
3004 */
3005 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3006 break;
3007 case MSR_IA32_SYSENTER_ESP:
3008 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3009 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3010 break;
3011 case MSR_TSC_AUX:
3012 /*
3013 * TSC_AUX is usually changed only during boot and never read
3014 * directly. Intercept TSC_AUX instead of exposing it to the
3015 * guest via direct_access_msrs, and switch it via user return.
3016 */
3017 preempt_disable();
3018 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3019 preempt_enable();
3020 if (ret)
3021 break;
3022
3023 svm->tsc_aux = data;
3024 break;
3025 case MSR_IA32_DEBUGCTLMSR:
3026 if (!lbrv) {
3027 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3028 break;
3029 }
3030 if (data & DEBUGCTL_RESERVED_BITS)
3031 return 1;
3032
3033 if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK)
3034 svm->vmcb->save.dbgctl = data;
3035 else
3036 svm->vmcb01.ptr->save.dbgctl = data;
3037
3038 svm_update_lbrv(vcpu);
3039
3040 break;
3041 case MSR_VM_HSAVE_PA:
3042 /*
3043 * Old kernels did not validate the value written to
3044 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
3045 * value to allow live migrating buggy or malicious guests
3046 * originating from those kernels.
3047 */
3048 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3049 return 1;
3050
3051 svm->nested.hsave_msr = data & PAGE_MASK;
3052 break;
3053 case MSR_VM_CR:
3054 return svm_set_vm_cr(vcpu, data);
3055 case MSR_VM_IGNNE:
3056 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3057 break;
3058 case MSR_AMD64_DE_CFG: {
3059 struct kvm_msr_entry msr_entry;
3060
3061 msr_entry.index = msr->index;
3062 if (svm_get_msr_feature(&msr_entry))
3063 return 1;
3064
3065 /* Check the supported bits */
3066 if (data & ~msr_entry.data)
3067 return 1;
3068
3069 /* Don't allow the guest to change a bit, #GP */
3070 if (!msr->host_initiated && (data ^ msr_entry.data))
3071 return 1;
3072
3073 svm->msr_decfg = data;
3074 break;
3075 }
3076 default:
3077 return kvm_set_msr_common(vcpu, msr);
3078 }
3079 return ret;
3080 }
3081
3082 static int msr_interception(struct kvm_vcpu *vcpu)
3083 {
3084 if (to_svm(vcpu)->vmcb->control.exit_info_1)
3085 return kvm_emulate_wrmsr(vcpu);
3086 else
3087 return kvm_emulate_rdmsr(vcpu);
3088 }
3089
3090 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3091 {
3092 kvm_make_request(KVM_REQ_EVENT, vcpu);
3093 svm_clear_vintr(to_svm(vcpu));
3094
3095 /*
3096 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3097 * In this case AVIC was temporarily disabled for
3098 * requesting the IRQ window and we have to re-enable it.
3099 *
3100 * If running nested, still remove the VM wide AVIC inhibit to
3101 * support case in which the interrupt window was requested when the
3102 * vCPU was not running nested.
3103
3104 * All vCPUs which run still run nested, will remain to have their
3105 * AVIC still inhibited due to per-cpu AVIC inhibition.
3106 */
3107 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3108
3109 ++vcpu->stat.irq_window_exits;
3110 return 1;
3111 }
3112
3113 static int pause_interception(struct kvm_vcpu *vcpu)
3114 {
3115 bool in_kernel;
3116 /*
3117 * CPL is not made available for an SEV-ES guest, therefore
3118 * vcpu->arch.preempted_in_kernel can never be true. Just
3119 * set in_kernel to false as well.
3120 */
3121 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3122
3123 grow_ple_window(vcpu);
3124
3125 kvm_vcpu_on_spin(vcpu, in_kernel);
3126 return kvm_skip_emulated_instruction(vcpu);
3127 }
3128
3129 static int invpcid_interception(struct kvm_vcpu *vcpu)
3130 {
3131 struct vcpu_svm *svm = to_svm(vcpu);
3132 unsigned long type;
3133 gva_t gva;
3134
3135 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3136 kvm_queue_exception(vcpu, UD_VECTOR);
3137 return 1;
3138 }
3139
3140 /*
3141 * For an INVPCID intercept:
3142 * EXITINFO1 provides the linear address of the memory operand.
3143 * EXITINFO2 provides the contents of the register operand.
3144 */
3145 type = svm->vmcb->control.exit_info_2;
3146 gva = svm->vmcb->control.exit_info_1;
3147
3148 return kvm_handle_invpcid(vcpu, type, gva);
3149 }
3150
3151 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3152 [SVM_EXIT_READ_CR0] = cr_interception,
3153 [SVM_EXIT_READ_CR3] = cr_interception,
3154 [SVM_EXIT_READ_CR4] = cr_interception,
3155 [SVM_EXIT_READ_CR8] = cr_interception,
3156 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3157 [SVM_EXIT_WRITE_CR0] = cr_interception,
3158 [SVM_EXIT_WRITE_CR3] = cr_interception,
3159 [SVM_EXIT_WRITE_CR4] = cr_interception,
3160 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3161 [SVM_EXIT_READ_DR0] = dr_interception,
3162 [SVM_EXIT_READ_DR1] = dr_interception,
3163 [SVM_EXIT_READ_DR2] = dr_interception,
3164 [SVM_EXIT_READ_DR3] = dr_interception,
3165 [SVM_EXIT_READ_DR4] = dr_interception,
3166 [SVM_EXIT_READ_DR5] = dr_interception,
3167 [SVM_EXIT_READ_DR6] = dr_interception,
3168 [SVM_EXIT_READ_DR7] = dr_interception,
3169 [SVM_EXIT_WRITE_DR0] = dr_interception,
3170 [SVM_EXIT_WRITE_DR1] = dr_interception,
3171 [SVM_EXIT_WRITE_DR2] = dr_interception,
3172 [SVM_EXIT_WRITE_DR3] = dr_interception,
3173 [SVM_EXIT_WRITE_DR4] = dr_interception,
3174 [SVM_EXIT_WRITE_DR5] = dr_interception,
3175 [SVM_EXIT_WRITE_DR6] = dr_interception,
3176 [SVM_EXIT_WRITE_DR7] = dr_interception,
3177 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3178 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3179 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3180 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3181 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3182 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3183 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
3184 [SVM_EXIT_INTR] = intr_interception,
3185 [SVM_EXIT_NMI] = nmi_interception,
3186 [SVM_EXIT_SMI] = smi_interception,
3187 [SVM_EXIT_VINTR] = interrupt_window_interception,
3188 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
3189 [SVM_EXIT_CPUID] = kvm_emulate_cpuid,
3190 [SVM_EXIT_IRET] = iret_interception,
3191 [SVM_EXIT_INVD] = kvm_emulate_invd,
3192 [SVM_EXIT_PAUSE] = pause_interception,
3193 [SVM_EXIT_HLT] = kvm_emulate_halt,
3194 [SVM_EXIT_INVLPG] = invlpg_interception,
3195 [SVM_EXIT_INVLPGA] = invlpga_interception,
3196 [SVM_EXIT_IOIO] = io_interception,
3197 [SVM_EXIT_MSR] = msr_interception,
3198 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3199 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3200 [SVM_EXIT_VMRUN] = vmrun_interception,
3201 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
3202 [SVM_EXIT_VMLOAD] = vmload_interception,
3203 [SVM_EXIT_VMSAVE] = vmsave_interception,
3204 [SVM_EXIT_STGI] = stgi_interception,
3205 [SVM_EXIT_CLGI] = clgi_interception,
3206 [SVM_EXIT_SKINIT] = skinit_interception,
3207 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
3208 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
3209 [SVM_EXIT_MONITOR] = kvm_emulate_monitor,
3210 [SVM_EXIT_MWAIT] = kvm_emulate_mwait,
3211 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
3212 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
3213 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
3214 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
3215 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
3216 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
3217 [SVM_EXIT_INVPCID] = invpcid_interception,
3218 [SVM_EXIT_NPF] = npf_interception,
3219 [SVM_EXIT_RSM] = rsm_interception,
3220 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
3221 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
3222 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
3223 };
3224
3225 static void dump_vmcb(struct kvm_vcpu *vcpu)
3226 {
3227 struct vcpu_svm *svm = to_svm(vcpu);
3228 struct vmcb_control_area *control = &svm->vmcb->control;
3229 struct vmcb_save_area *save = &svm->vmcb->save;
3230 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3231
3232 if (!dump_invalid_vmcb) {
3233 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3234 return;
3235 }
3236
3237 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3238 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3239 pr_err("VMCB Control Area:\n");
3240 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3241 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3242 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3243 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3244 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3245 pr_err("%-20s%08x %08x\n", "intercepts:",
3246 control->intercepts[INTERCEPT_WORD3],
3247 control->intercepts[INTERCEPT_WORD4]);
3248 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3249 pr_err("%-20s%d\n", "pause filter threshold:",
3250 control->pause_filter_thresh);
3251 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3252 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3253 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3254 pr_err("%-20s%d\n", "asid:", control->asid);
3255 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3256 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3257 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3258 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3259 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3260 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3261 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3262 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3263 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3264 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3265 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3266 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3267 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3268 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3269 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3270 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3271 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3272 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3273 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3274 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3275 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3276 pr_err("VMCB State Save Area:\n");
3277 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3278 "es:",
3279 save->es.selector, save->es.attrib,
3280 save->es.limit, save->es.base);
3281 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3282 "cs:",
3283 save->cs.selector, save->cs.attrib,
3284 save->cs.limit, save->cs.base);
3285 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3286 "ss:",
3287 save->ss.selector, save->ss.attrib,
3288 save->ss.limit, save->ss.base);
3289 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3290 "ds:",
3291 save->ds.selector, save->ds.attrib,
3292 save->ds.limit, save->ds.base);
3293 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3294 "fs:",
3295 save01->fs.selector, save01->fs.attrib,
3296 save01->fs.limit, save01->fs.base);
3297 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3298 "gs:",
3299 save01->gs.selector, save01->gs.attrib,
3300 save01->gs.limit, save01->gs.base);
3301 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3302 "gdtr:",
3303 save->gdtr.selector, save->gdtr.attrib,
3304 save->gdtr.limit, save->gdtr.base);
3305 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3306 "ldtr:",
3307 save01->ldtr.selector, save01->ldtr.attrib,
3308 save01->ldtr.limit, save01->ldtr.base);
3309 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3310 "idtr:",
3311 save->idtr.selector, save->idtr.attrib,
3312 save->idtr.limit, save->idtr.base);
3313 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3314 "tr:",
3315 save01->tr.selector, save01->tr.attrib,
3316 save01->tr.limit, save01->tr.base);
3317 pr_err("vmpl: %d cpl: %d efer: %016llx\n",
3318 save->vmpl, save->cpl, save->efer);
3319 pr_err("%-15s %016llx %-13s %016llx\n",
3320 "cr0:", save->cr0, "cr2:", save->cr2);
3321 pr_err("%-15s %016llx %-13s %016llx\n",
3322 "cr3:", save->cr3, "cr4:", save->cr4);
3323 pr_err("%-15s %016llx %-13s %016llx\n",
3324 "dr6:", save->dr6, "dr7:", save->dr7);
3325 pr_err("%-15s %016llx %-13s %016llx\n",
3326 "rip:", save->rip, "rflags:", save->rflags);
3327 pr_err("%-15s %016llx %-13s %016llx\n",
3328 "rsp:", save->rsp, "rax:", save->rax);
3329 pr_err("%-15s %016llx %-13s %016llx\n",
3330 "star:", save01->star, "lstar:", save01->lstar);
3331 pr_err("%-15s %016llx %-13s %016llx\n",
3332 "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3333 pr_err("%-15s %016llx %-13s %016llx\n",
3334 "kernel_gs_base:", save01->kernel_gs_base,
3335 "sysenter_cs:", save01->sysenter_cs);
3336 pr_err("%-15s %016llx %-13s %016llx\n",
3337 "sysenter_esp:", save01->sysenter_esp,
3338 "sysenter_eip:", save01->sysenter_eip);
3339 pr_err("%-15s %016llx %-13s %016llx\n",
3340 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3341 pr_err("%-15s %016llx %-13s %016llx\n",
3342 "br_from:", save->br_from, "br_to:", save->br_to);
3343 pr_err("%-15s %016llx %-13s %016llx\n",
3344 "excp_from:", save->last_excp_from,
3345 "excp_to:", save->last_excp_to);
3346 }
3347
3348 static bool svm_check_exit_valid(u64 exit_code)
3349 {
3350 return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3351 svm_exit_handlers[exit_code]);
3352 }
3353
3354 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3355 {
3356 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3357 dump_vmcb(vcpu);
3358 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3359 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3360 vcpu->run->internal.ndata = 2;
3361 vcpu->run->internal.data[0] = exit_code;
3362 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3363 return 0;
3364 }
3365
3366 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3367 {
3368 if (!svm_check_exit_valid(exit_code))
3369 return svm_handle_invalid_exit(vcpu, exit_code);
3370
3371 #ifdef CONFIG_RETPOLINE
3372 if (exit_code == SVM_EXIT_MSR)
3373 return msr_interception(vcpu);
3374 else if (exit_code == SVM_EXIT_VINTR)
3375 return interrupt_window_interception(vcpu);
3376 else if (exit_code == SVM_EXIT_INTR)
3377 return intr_interception(vcpu);
3378 else if (exit_code == SVM_EXIT_HLT)
3379 return kvm_emulate_halt(vcpu);
3380 else if (exit_code == SVM_EXIT_NPF)
3381 return npf_interception(vcpu);
3382 #endif
3383 return svm_exit_handlers[exit_code](vcpu);
3384 }
3385
3386 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3387 u64 *info1, u64 *info2,
3388 u32 *intr_info, u32 *error_code)
3389 {
3390 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3391
3392 *reason = control->exit_code;
3393 *info1 = control->exit_info_1;
3394 *info2 = control->exit_info_2;
3395 *intr_info = control->exit_int_info;
3396 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3397 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3398 *error_code = control->exit_int_info_err;
3399 else
3400 *error_code = 0;
3401 }
3402
3403 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3404 {
3405 struct vcpu_svm *svm = to_svm(vcpu);
3406 struct kvm_run *kvm_run = vcpu->run;
3407 u32 exit_code = svm->vmcb->control.exit_code;
3408
3409 /* SEV-ES guests must use the CR write traps to track CR registers. */
3410 if (!sev_es_guest(vcpu->kvm)) {
3411 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3412 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3413 if (npt_enabled)
3414 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3415 }
3416
3417 if (is_guest_mode(vcpu)) {
3418 int vmexit;
3419
3420 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3421
3422 vmexit = nested_svm_exit_special(svm);
3423
3424 if (vmexit == NESTED_EXIT_CONTINUE)
3425 vmexit = nested_svm_exit_handled(svm);
3426
3427 if (vmexit == NESTED_EXIT_DONE)
3428 return 1;
3429 }
3430
3431 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3432 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3433 kvm_run->fail_entry.hardware_entry_failure_reason
3434 = svm->vmcb->control.exit_code;
3435 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3436 dump_vmcb(vcpu);
3437 return 0;
3438 }
3439
3440 if (exit_fastpath != EXIT_FASTPATH_NONE)
3441 return 1;
3442
3443 return svm_invoke_exit_handler(vcpu, exit_code);
3444 }
3445
3446 static void pre_svm_run(struct kvm_vcpu *vcpu)
3447 {
3448 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3449 struct vcpu_svm *svm = to_svm(vcpu);
3450
3451 /*
3452 * If the previous vmrun of the vmcb occurred on a different physical
3453 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's
3454 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3455 */
3456 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3457 svm->current_vmcb->asid_generation = 0;
3458 vmcb_mark_all_dirty(svm->vmcb);
3459 svm->current_vmcb->cpu = vcpu->cpu;
3460 }
3461
3462 if (sev_guest(vcpu->kvm))
3463 return pre_sev_run(svm, vcpu->cpu);
3464
3465 /* FIXME: handle wraparound of asid_generation */
3466 if (svm->current_vmcb->asid_generation != sd->asid_generation)
3467 new_asid(svm, sd);
3468 }
3469
3470 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3471 {
3472 struct vcpu_svm *svm = to_svm(vcpu);
3473
3474 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3475
3476 if (svm->nmi_l1_to_l2)
3477 return;
3478
3479 svm->nmi_masked = true;
3480 svm_set_iret_intercept(svm);
3481 ++vcpu->stat.nmi_injections;
3482 }
3483
3484 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3485 {
3486 struct vcpu_svm *svm = to_svm(vcpu);
3487
3488 if (!is_vnmi_enabled(svm))
3489 return false;
3490
3491 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3492 }
3493
3494 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3495 {
3496 struct vcpu_svm *svm = to_svm(vcpu);
3497
3498 if (!is_vnmi_enabled(svm))
3499 return false;
3500
3501 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3502 return false;
3503
3504 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3505 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3506
3507 /*
3508 * Because the pending NMI is serviced by hardware, KVM can't know when
3509 * the NMI is "injected", but for all intents and purposes, passing the
3510 * NMI off to hardware counts as injection.
3511 */
3512 ++vcpu->stat.nmi_injections;
3513
3514 return true;
3515 }
3516
3517 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3518 {
3519 struct vcpu_svm *svm = to_svm(vcpu);
3520 u32 type;
3521
3522 if (vcpu->arch.interrupt.soft) {
3523 if (svm_update_soft_interrupt_rip(vcpu))
3524 return;
3525
3526 type = SVM_EVTINJ_TYPE_SOFT;
3527 } else {
3528 type = SVM_EVTINJ_TYPE_INTR;
3529 }
3530
3531 trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3532 vcpu->arch.interrupt.soft, reinjected);
3533 ++vcpu->stat.irq_injections;
3534
3535 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3536 SVM_EVTINJ_VALID | type;
3537 }
3538
3539 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3540 int trig_mode, int vector)
3541 {
3542 /*
3543 * apic->apicv_active must be read after vcpu->mode.
3544 * Pairs with smp_store_release in vcpu_enter_guest.
3545 */
3546 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3547
3548 /* Note, this is called iff the local APIC is in-kernel. */
3549 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3550 /* Process the interrupt via kvm_check_and_inject_events(). */
3551 kvm_make_request(KVM_REQ_EVENT, vcpu);
3552 kvm_vcpu_kick(vcpu);
3553 return;
3554 }
3555
3556 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3557 if (in_guest_mode) {
3558 /*
3559 * Signal the doorbell to tell hardware to inject the IRQ. If
3560 * the vCPU exits the guest before the doorbell chimes, hardware
3561 * will automatically process AVIC interrupts at the next VMRUN.
3562 */
3563 avic_ring_doorbell(vcpu);
3564 } else {
3565 /*
3566 * Wake the vCPU if it was blocking. KVM will then detect the
3567 * pending IRQ when checking if the vCPU has a wake event.
3568 */
3569 kvm_vcpu_wake_up(vcpu);
3570 }
3571 }
3572
3573 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
3574 int trig_mode, int vector)
3575 {
3576 kvm_lapic_set_irr(vector, apic);
3577
3578 /*
3579 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3580 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3581 * the read of guest_mode. This guarantees that either VMRUN will see
3582 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3583 * will signal the doorbell if the CPU has already entered the guest.
3584 */
3585 smp_mb__after_atomic();
3586 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3587 }
3588
3589 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3590 {
3591 struct vcpu_svm *svm = to_svm(vcpu);
3592
3593 /*
3594 * SEV-ES guests must always keep the CR intercepts cleared. CR
3595 * tracking is done using the CR write traps.
3596 */
3597 if (sev_es_guest(vcpu->kvm))
3598 return;
3599
3600 if (nested_svm_virtualize_tpr(vcpu))
3601 return;
3602
3603 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3604
3605 if (irr == -1)
3606 return;
3607
3608 if (tpr >= irr)
3609 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3610 }
3611
3612 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3613 {
3614 struct vcpu_svm *svm = to_svm(vcpu);
3615
3616 if (is_vnmi_enabled(svm))
3617 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3618 else
3619 return svm->nmi_masked;
3620 }
3621
3622 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3623 {
3624 struct vcpu_svm *svm = to_svm(vcpu);
3625
3626 if (is_vnmi_enabled(svm)) {
3627 if (masked)
3628 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3629 else
3630 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3631
3632 } else {
3633 svm->nmi_masked = masked;
3634 if (masked)
3635 svm_set_iret_intercept(svm);
3636 else
3637 svm_clr_iret_intercept(svm);
3638 }
3639 }
3640
3641 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3642 {
3643 struct vcpu_svm *svm = to_svm(vcpu);
3644 struct vmcb *vmcb = svm->vmcb;
3645
3646 if (!gif_set(svm))
3647 return true;
3648
3649 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3650 return false;
3651
3652 if (svm_get_nmi_mask(vcpu))
3653 return true;
3654
3655 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3656 }
3657
3658 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3659 {
3660 struct vcpu_svm *svm = to_svm(vcpu);
3661 if (svm->nested.nested_run_pending)
3662 return -EBUSY;
3663
3664 if (svm_nmi_blocked(vcpu))
3665 return 0;
3666
3667 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3668 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3669 return -EBUSY;
3670 return 1;
3671 }
3672
3673 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3674 {
3675 struct vcpu_svm *svm = to_svm(vcpu);
3676 struct vmcb *vmcb = svm->vmcb;
3677
3678 if (!gif_set(svm))
3679 return true;
3680
3681 if (is_guest_mode(vcpu)) {
3682 /* As long as interrupts are being delivered... */
3683 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3684 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3685 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3686 return true;
3687
3688 /* ... vmexits aren't blocked by the interrupt shadow */
3689 if (nested_exit_on_intr(svm))
3690 return false;
3691 } else {
3692 if (!svm_get_if_flag(vcpu))
3693 return true;
3694 }
3695
3696 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3697 }
3698
3699 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3700 {
3701 struct vcpu_svm *svm = to_svm(vcpu);
3702
3703 if (svm->nested.nested_run_pending)
3704 return -EBUSY;
3705
3706 if (svm_interrupt_blocked(vcpu))
3707 return 0;
3708
3709 /*
3710 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3711 * e.g. if the IRQ arrived asynchronously after checking nested events.
3712 */
3713 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3714 return -EBUSY;
3715
3716 return 1;
3717 }
3718
3719 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3720 {
3721 struct vcpu_svm *svm = to_svm(vcpu);
3722
3723 /*
3724 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3725 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3726 * get that intercept, this function will be called again though and
3727 * we'll get the vintr intercept. However, if the vGIF feature is
3728 * enabled, the STGI interception will not occur. Enable the irq
3729 * window under the assumption that the hardware will set the GIF.
3730 */
3731 if (vgif || gif_set(svm)) {
3732 /*
3733 * IRQ window is not needed when AVIC is enabled,
3734 * unless we have pending ExtINT since it cannot be injected
3735 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3736 * and fallback to injecting IRQ via V_IRQ.
3737 *
3738 * If running nested, AVIC is already locally inhibited
3739 * on this vCPU, therefore there is no need to request
3740 * the VM wide AVIC inhibition.
3741 */
3742 if (!is_guest_mode(vcpu))
3743 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3744
3745 svm_set_vintr(svm);
3746 }
3747 }
3748
3749 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3750 {
3751 struct vcpu_svm *svm = to_svm(vcpu);
3752
3753 /*
3754 * KVM should never request an NMI window when vNMI is enabled, as KVM
3755 * allows at most one to-be-injected NMI and one pending NMI, i.e. if
3756 * two NMIs arrive simultaneously, KVM will inject one and set
3757 * V_NMI_PENDING for the other. WARN, but continue with the standard
3758 * single-step approach to try and salvage the pending NMI.
3759 */
3760 WARN_ON_ONCE(is_vnmi_enabled(svm));
3761
3762 if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion)
3763 return; /* IRET will cause a vm exit */
3764
3765 if (!gif_set(svm)) {
3766 if (vgif)
3767 svm_set_intercept(svm, INTERCEPT_STGI);
3768 return; /* STGI will cause a vm exit */
3769 }
3770
3771 /*
3772 * Something prevents NMI from been injected. Single step over possible
3773 * problem (IRET or exception injection or interrupt shadow)
3774 */
3775 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3776 svm->nmi_singlestep = true;
3777 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3778 }
3779
3780 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3781 {
3782 struct vcpu_svm *svm = to_svm(vcpu);
3783
3784 /*
3785 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3786 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3787 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3788 */
3789 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3790
3791 /*
3792 * Flush only the current ASID even if the TLB flush was invoked via
3793 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
3794 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3795 * unconditionally does a TLB flush on both nested VM-Enter and nested
3796 * VM-Exit (via kvm_mmu_reset_context()).
3797 */
3798 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3799 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3800 else
3801 svm->current_vmcb->asid_generation--;
3802 }
3803
3804 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3805 {
3806 hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3807
3808 /*
3809 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3810 * flush the NPT mappings via hypercall as flushing the ASID only
3811 * affects virtual to physical mappings, it does not invalidate guest
3812 * physical to host physical mappings.
3813 */
3814 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3815 hyperv_flush_guest_mapping(root_tdp);
3816
3817 svm_flush_tlb_asid(vcpu);
3818 }
3819
3820 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3821 {
3822 /*
3823 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3824 * flushes should be routed to hv_flush_remote_tlbs() without requesting
3825 * a "regular" remote flush. Reaching this point means either there's
3826 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3827 * which might be fatal to the guest. Yell, but try to recover.
3828 */
3829 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3830 hv_flush_remote_tlbs(vcpu->kvm);
3831
3832 svm_flush_tlb_asid(vcpu);
3833 }
3834
3835 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3836 {
3837 struct vcpu_svm *svm = to_svm(vcpu);
3838
3839 invlpga(gva, svm->vmcb->control.asid);
3840 }
3841
3842 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3843 {
3844 struct vcpu_svm *svm = to_svm(vcpu);
3845
3846 if (nested_svm_virtualize_tpr(vcpu))
3847 return;
3848
3849 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3850 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3851 kvm_set_cr8(vcpu, cr8);
3852 }
3853 }
3854
3855 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3856 {
3857 struct vcpu_svm *svm = to_svm(vcpu);
3858 u64 cr8;
3859
3860 if (nested_svm_virtualize_tpr(vcpu) ||
3861 kvm_vcpu_apicv_active(vcpu))
3862 return;
3863
3864 cr8 = kvm_get_cr8(vcpu);
3865 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3866 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3867 }
3868
3869 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3870 int type)
3871 {
3872 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3873 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3874 struct vcpu_svm *svm = to_svm(vcpu);
3875
3876 /*
3877 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3878 * associated with the original soft exception/interrupt. next_rip is
3879 * cleared on all exits that can occur while vectoring an event, so KVM
3880 * needs to manually set next_rip for re-injection. Unlike the !nrips
3881 * case below, this needs to be done if and only if KVM is re-injecting
3882 * the same event, i.e. if the event is a soft exception/interrupt,
3883 * otherwise next_rip is unused on VMRUN.
3884 */
3885 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3886 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3887 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3888 /*
3889 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3890 * injecting the soft exception/interrupt. That advancement needs to
3891 * be unwound if vectoring didn't complete. Note, the new event may
3892 * not be the injected event, e.g. if KVM injected an INTn, the INTn
3893 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3894 * be the reported vectored event, but RIP still needs to be unwound.
3895 */
3896 else if (!nrips && (is_soft || is_exception) &&
3897 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
3898 kvm_rip_write(vcpu, svm->soft_int_old_rip);
3899 }
3900
3901 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3902 {
3903 struct vcpu_svm *svm = to_svm(vcpu);
3904 u8 vector;
3905 int type;
3906 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3907 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
3908 bool soft_int_injected = svm->soft_int_injected;
3909
3910 svm->nmi_l1_to_l2 = false;
3911 svm->soft_int_injected = false;
3912
3913 /*
3914 * If we've made progress since setting HF_IRET_MASK, we've
3915 * executed an IRET and can allow NMI injection.
3916 */
3917 if (svm->awaiting_iret_completion &&
3918 (sev_es_guest(vcpu->kvm) ||
3919 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3920 svm->awaiting_iret_completion = false;
3921 svm->nmi_masked = false;
3922 kvm_make_request(KVM_REQ_EVENT, vcpu);
3923 }
3924
3925 vcpu->arch.nmi_injected = false;
3926 kvm_clear_exception_queue(vcpu);
3927 kvm_clear_interrupt_queue(vcpu);
3928
3929 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3930 return;
3931
3932 kvm_make_request(KVM_REQ_EVENT, vcpu);
3933
3934 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3935 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3936
3937 if (soft_int_injected)
3938 svm_complete_soft_interrupt(vcpu, vector, type);
3939
3940 switch (type) {
3941 case SVM_EXITINTINFO_TYPE_NMI:
3942 vcpu->arch.nmi_injected = true;
3943 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
3944 break;
3945 case SVM_EXITINTINFO_TYPE_EXEPT:
3946 /*
3947 * Never re-inject a #VC exception.
3948 */
3949 if (vector == X86_TRAP_VC)
3950 break;
3951
3952 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3953 u32 err = svm->vmcb->control.exit_int_info_err;
3954 kvm_requeue_exception_e(vcpu, vector, err);
3955
3956 } else
3957 kvm_requeue_exception(vcpu, vector);
3958 break;
3959 case SVM_EXITINTINFO_TYPE_INTR:
3960 kvm_queue_interrupt(vcpu, vector, false);
3961 break;
3962 case SVM_EXITINTINFO_TYPE_SOFT:
3963 kvm_queue_interrupt(vcpu, vector, true);
3964 break;
3965 default:
3966 break;
3967 }
3968
3969 }
3970
3971 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3972 {
3973 struct vcpu_svm *svm = to_svm(vcpu);
3974 struct vmcb_control_area *control = &svm->vmcb->control;
3975
3976 control->exit_int_info = control->event_inj;
3977 control->exit_int_info_err = control->event_inj_err;
3978 control->event_inj = 0;
3979 svm_complete_interrupts(vcpu);
3980 }
3981
3982 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
3983 {
3984 return 1;
3985 }
3986
3987 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3988 {
3989 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3990
3991 /*
3992 * Note, the next RIP must be provided as SRCU isn't held, i.e. KVM
3993 * can't read guest memory (dereference memslots) to decode the WRMSR.
3994 */
3995 if (control->exit_code == SVM_EXIT_MSR && control->exit_info_1 &&
3996 nrips && control->next_rip)
3997 return handle_fastpath_set_msr_irqoff(vcpu);
3998
3999 return EXIT_FASTPATH_NONE;
4000 }
4001
4002 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4003 {
4004 struct vcpu_svm *svm = to_svm(vcpu);
4005
4006 guest_state_enter_irqoff();
4007
4008 if (sev_es_guest(vcpu->kvm))
4009 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
4010 else
4011 __svm_vcpu_run(svm, spec_ctrl_intercepted);
4012
4013 guest_state_exit_irqoff();
4014 }
4015
4016 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
4017 {
4018 struct vcpu_svm *svm = to_svm(vcpu);
4019 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4020
4021 trace_kvm_entry(vcpu);
4022
4023 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4024 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4025 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4026
4027 /*
4028 * Disable singlestep if we're injecting an interrupt/exception.
4029 * We don't want our modified rflags to be pushed on the stack where
4030 * we might not be able to easily reset them if we disabled NMI
4031 * singlestep later.
4032 */
4033 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4034 /*
4035 * Event injection happens before external interrupts cause a
4036 * vmexit and interrupts are disabled here, so smp_send_reschedule
4037 * is enough to force an immediate vmexit.
4038 */
4039 disable_nmi_singlestep(svm);
4040 smp_send_reschedule(vcpu->cpu);
4041 }
4042
4043 pre_svm_run(vcpu);
4044
4045 sync_lapic_to_cr8(vcpu);
4046
4047 if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4048 svm->vmcb->control.asid = svm->asid;
4049 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4050 }
4051 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4052
4053 svm_hv_update_vp_id(svm->vmcb, vcpu);
4054
4055 /*
4056 * Run with all-zero DR6 unless needed, so that we can get the exact cause
4057 * of a #DB.
4058 */
4059 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4060 svm_set_dr6(svm, vcpu->arch.dr6);
4061 else
4062 svm_set_dr6(svm, DR6_ACTIVE_LOW);
4063
4064 clgi();
4065 kvm_load_guest_xsave_state(vcpu);
4066
4067 kvm_wait_lapic_expire(vcpu);
4068
4069 /*
4070 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4071 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4072 * is no need to worry about the conditional branch over the wrmsr
4073 * being speculatively taken.
4074 */
4075 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4076 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4077
4078 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4079
4080 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4081 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4082
4083 if (!sev_es_guest(vcpu->kvm)) {
4084 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4085 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4086 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4087 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4088 }
4089 vcpu->arch.regs_dirty = 0;
4090
4091 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4092 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4093
4094 kvm_load_host_xsave_state(vcpu);
4095 stgi();
4096
4097 /* Any pending NMI will happen here */
4098
4099 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4100 kvm_after_interrupt(vcpu);
4101
4102 sync_cr8_to_lapic(vcpu);
4103
4104 svm->next_rip = 0;
4105 if (is_guest_mode(vcpu)) {
4106 nested_sync_control_from_vmcb02(svm);
4107
4108 /* Track VMRUNs that have made past consistency checking */
4109 if (svm->nested.nested_run_pending &&
4110 svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4111 ++vcpu->stat.nested_run;
4112
4113 svm->nested.nested_run_pending = 0;
4114 }
4115
4116 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4117 vmcb_mark_all_clean(svm->vmcb);
4118
4119 /* if exit due to PF check for async PF */
4120 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4121 vcpu->arch.apf.host_apf_flags =
4122 kvm_read_and_reset_apf_flags();
4123
4124 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4125
4126 /*
4127 * We need to handle MC intercepts here before the vcpu has a chance to
4128 * change the physical cpu
4129 */
4130 if (unlikely(svm->vmcb->control.exit_code ==
4131 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4132 svm_handle_mce(vcpu);
4133
4134 trace_kvm_exit(vcpu, KVM_ISA_SVM);
4135
4136 svm_complete_interrupts(vcpu);
4137
4138 if (is_guest_mode(vcpu))
4139 return EXIT_FASTPATH_NONE;
4140
4141 return svm_exit_handlers_fastpath(vcpu);
4142 }
4143
4144 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4145 int root_level)
4146 {
4147 struct vcpu_svm *svm = to_svm(vcpu);
4148 unsigned long cr3;
4149
4150 if (npt_enabled) {
4151 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4152 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4153
4154 hv_track_root_tdp(vcpu, root_hpa);
4155
4156 cr3 = vcpu->arch.cr3;
4157 } else if (root_level >= PT64_ROOT_4LEVEL) {
4158 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4159 } else {
4160 /* PCID in the guest should be impossible with a 32-bit MMU. */
4161 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4162 cr3 = root_hpa;
4163 }
4164
4165 svm->vmcb->save.cr3 = cr3;
4166 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4167 }
4168
4169 static void
4170 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4171 {
4172 /*
4173 * Patch in the VMMCALL instruction:
4174 */
4175 hypercall[0] = 0x0f;
4176 hypercall[1] = 0x01;
4177 hypercall[2] = 0xd9;
4178 }
4179
4180 /*
4181 * The kvm parameter can be NULL (module initialization, or invocation before
4182 * VM creation). Be sure to check the kvm parameter before using it.
4183 */
4184 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4185 {
4186 switch (index) {
4187 case MSR_IA32_MCG_EXT_CTL:
4188 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4189 return false;
4190 case MSR_IA32_SMBASE:
4191 if (!IS_ENABLED(CONFIG_KVM_SMM))
4192 return false;
4193 /* SEV-ES guests do not support SMM, so report false */
4194 if (kvm && sev_es_guest(kvm))
4195 return false;
4196 break;
4197 default:
4198 break;
4199 }
4200
4201 return true;
4202 }
4203
4204 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4205 {
4206 struct vcpu_svm *svm = to_svm(vcpu);
4207 struct kvm_cpuid_entry2 *best;
4208
4209 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4210 boot_cpu_has(X86_FEATURE_XSAVE) &&
4211 boot_cpu_has(X86_FEATURE_XSAVES);
4212
4213 /* Update nrips enabled cache */
4214 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4215 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4216
4217 svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
4218 svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV);
4219
4220 svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4221
4222 svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) &&
4223 guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER);
4224
4225 svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) &&
4226 guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD);
4227
4228 svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF);
4229
4230 svm->vnmi_enabled = vnmi && guest_cpuid_has(vcpu, X86_FEATURE_VNMI);
4231
4232 svm_recalc_instruction_intercepts(vcpu, svm);
4233
4234 if (boot_cpu_has(X86_FEATURE_IBPB))
4235 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4236 !!guest_has_pred_cmd_msr(vcpu));
4237
4238 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4239 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4240 !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4241
4242 /* For sev guests, the memory encryption bit is not reserved in CR3. */
4243 if (sev_guest(vcpu->kvm)) {
4244 best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4245 if (best)
4246 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4247 }
4248
4249 init_vmcb_after_set_cpuid(vcpu);
4250 }
4251
4252 static bool svm_has_wbinvd_exit(void)
4253 {
4254 return true;
4255 }
4256
4257 #define PRE_EX(exit) { .exit_code = (exit), \
4258 .stage = X86_ICPT_PRE_EXCEPT, }
4259 #define POST_EX(exit) { .exit_code = (exit), \
4260 .stage = X86_ICPT_POST_EXCEPT, }
4261 #define POST_MEM(exit) { .exit_code = (exit), \
4262 .stage = X86_ICPT_POST_MEMACCESS, }
4263
4264 static const struct __x86_intercept {
4265 u32 exit_code;
4266 enum x86_intercept_stage stage;
4267 } x86_intercept_map[] = {
4268 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4269 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4270 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4271 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4272 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4273 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4274 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4275 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4276 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4277 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4278 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4279 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4280 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4281 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4282 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4283 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4284 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4285 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4286 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4287 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4288 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4289 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4290 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4291 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4292 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4293 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4294 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4295 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4296 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4297 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4298 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4299 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4300 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4301 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4302 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4303 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4304 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4305 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4306 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4307 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4308 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4309 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4310 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4311 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4312 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4313 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4314 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
4315 };
4316
4317 #undef PRE_EX
4318 #undef POST_EX
4319 #undef POST_MEM
4320
4321 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4322 struct x86_instruction_info *info,
4323 enum x86_intercept_stage stage,
4324 struct x86_exception *exception)
4325 {
4326 struct vcpu_svm *svm = to_svm(vcpu);
4327 int vmexit, ret = X86EMUL_CONTINUE;
4328 struct __x86_intercept icpt_info;
4329 struct vmcb *vmcb = svm->vmcb;
4330
4331 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4332 goto out;
4333
4334 icpt_info = x86_intercept_map[info->intercept];
4335
4336 if (stage != icpt_info.stage)
4337 goto out;
4338
4339 switch (icpt_info.exit_code) {
4340 case SVM_EXIT_READ_CR0:
4341 if (info->intercept == x86_intercept_cr_read)
4342 icpt_info.exit_code += info->modrm_reg;
4343 break;
4344 case SVM_EXIT_WRITE_CR0: {
4345 unsigned long cr0, val;
4346
4347 if (info->intercept == x86_intercept_cr_write)
4348 icpt_info.exit_code += info->modrm_reg;
4349
4350 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4351 info->intercept == x86_intercept_clts)
4352 break;
4353
4354 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4355 INTERCEPT_SELECTIVE_CR0)))
4356 break;
4357
4358 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4359 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4360
4361 if (info->intercept == x86_intercept_lmsw) {
4362 cr0 &= 0xfUL;
4363 val &= 0xfUL;
4364 /* lmsw can't clear PE - catch this here */
4365 if (cr0 & X86_CR0_PE)
4366 val |= X86_CR0_PE;
4367 }
4368
4369 if (cr0 ^ val)
4370 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4371
4372 break;
4373 }
4374 case SVM_EXIT_READ_DR0:
4375 case SVM_EXIT_WRITE_DR0:
4376 icpt_info.exit_code += info->modrm_reg;
4377 break;
4378 case SVM_EXIT_MSR:
4379 if (info->intercept == x86_intercept_wrmsr)
4380 vmcb->control.exit_info_1 = 1;
4381 else
4382 vmcb->control.exit_info_1 = 0;
4383 break;
4384 case SVM_EXIT_PAUSE:
4385 /*
4386 * We get this for NOP only, but pause
4387 * is rep not, check this here
4388 */
4389 if (info->rep_prefix != REPE_PREFIX)
4390 goto out;
4391 break;
4392 case SVM_EXIT_IOIO: {
4393 u64 exit_info;
4394 u32 bytes;
4395
4396 if (info->intercept == x86_intercept_in ||
4397 info->intercept == x86_intercept_ins) {
4398 exit_info = ((info->src_val & 0xffff) << 16) |
4399 SVM_IOIO_TYPE_MASK;
4400 bytes = info->dst_bytes;
4401 } else {
4402 exit_info = (info->dst_val & 0xffff) << 16;
4403 bytes = info->src_bytes;
4404 }
4405
4406 if (info->intercept == x86_intercept_outs ||
4407 info->intercept == x86_intercept_ins)
4408 exit_info |= SVM_IOIO_STR_MASK;
4409
4410 if (info->rep_prefix)
4411 exit_info |= SVM_IOIO_REP_MASK;
4412
4413 bytes = min(bytes, 4u);
4414
4415 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4416
4417 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4418
4419 vmcb->control.exit_info_1 = exit_info;
4420 vmcb->control.exit_info_2 = info->next_rip;
4421
4422 break;
4423 }
4424 default:
4425 break;
4426 }
4427
4428 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4429 if (static_cpu_has(X86_FEATURE_NRIPS))
4430 vmcb->control.next_rip = info->next_rip;
4431 vmcb->control.exit_code = icpt_info.exit_code;
4432 vmexit = nested_svm_exit_handled(svm);
4433
4434 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4435 : X86EMUL_CONTINUE;
4436
4437 out:
4438 return ret;
4439 }
4440
4441 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4442 {
4443 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4444 vcpu->arch.at_instruction_boundary = true;
4445 }
4446
4447 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4448 {
4449 if (!kvm_pause_in_guest(vcpu->kvm))
4450 shrink_ple_window(vcpu);
4451 }
4452
4453 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4454 {
4455 /* [63:9] are reserved. */
4456 vcpu->arch.mcg_cap &= 0x1ff;
4457 }
4458
4459 #ifdef CONFIG_KVM_SMM
4460 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4461 {
4462 struct vcpu_svm *svm = to_svm(vcpu);
4463
4464 /* Per APM Vol.2 15.22.2 "Response to SMI" */
4465 if (!gif_set(svm))
4466 return true;
4467
4468 return is_smm(vcpu);
4469 }
4470
4471 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4472 {
4473 struct vcpu_svm *svm = to_svm(vcpu);
4474 if (svm->nested.nested_run_pending)
4475 return -EBUSY;
4476
4477 if (svm_smi_blocked(vcpu))
4478 return 0;
4479
4480 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4481 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4482 return -EBUSY;
4483
4484 return 1;
4485 }
4486
4487 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4488 {
4489 struct vcpu_svm *svm = to_svm(vcpu);
4490 struct kvm_host_map map_save;
4491 int ret;
4492
4493 if (!is_guest_mode(vcpu))
4494 return 0;
4495
4496 /*
4497 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is
4498 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4499 */
4500
4501 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4502 return 1;
4503
4504 smram->smram64.svm_guest_flag = 1;
4505 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4506
4507 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4508 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4509 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4510
4511 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4512 if (ret)
4513 return ret;
4514
4515 /*
4516 * KVM uses VMCB01 to store L1 host state while L2 runs but
4517 * VMCB01 is going to be used during SMM and thus the state will
4518 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4519 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4520 * format of the area is identical to guest save area offsetted
4521 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4522 * within 'struct vmcb'). Note: HSAVE area may also be used by
4523 * L1 hypervisor to save additional host context (e.g. KVM does
4524 * that, see svm_prepare_switch_to_guest()) which must be
4525 * preserved.
4526 */
4527 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4528 return 1;
4529
4530 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4531
4532 svm_copy_vmrun_state(map_save.hva + 0x400,
4533 &svm->vmcb01.ptr->save);
4534
4535 kvm_vcpu_unmap(vcpu, &map_save, true);
4536 return 0;
4537 }
4538
4539 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4540 {
4541 struct vcpu_svm *svm = to_svm(vcpu);
4542 struct kvm_host_map map, map_save;
4543 struct vmcb *vmcb12;
4544 int ret;
4545
4546 const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4547
4548 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4549 return 0;
4550
4551 /* Non-zero if SMI arrived while vCPU was in guest mode. */
4552 if (!smram64->svm_guest_flag)
4553 return 0;
4554
4555 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4556 return 1;
4557
4558 if (!(smram64->efer & EFER_SVME))
4559 return 1;
4560
4561 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4562 return 1;
4563
4564 ret = 1;
4565 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4566 goto unmap_map;
4567
4568 if (svm_allocate_nested(svm))
4569 goto unmap_save;
4570
4571 /*
4572 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4573 * used during SMM (see svm_enter_smm())
4574 */
4575
4576 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4577
4578 /*
4579 * Enter the nested guest now
4580 */
4581
4582 vmcb_mark_all_dirty(svm->vmcb01.ptr);
4583
4584 vmcb12 = map.hva;
4585 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4586 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4587 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4588
4589 if (ret)
4590 goto unmap_save;
4591
4592 svm->nested.nested_run_pending = 1;
4593
4594 unmap_save:
4595 kvm_vcpu_unmap(vcpu, &map_save, true);
4596 unmap_map:
4597 kvm_vcpu_unmap(vcpu, &map, true);
4598 return ret;
4599 }
4600
4601 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4602 {
4603 struct vcpu_svm *svm = to_svm(vcpu);
4604
4605 if (!gif_set(svm)) {
4606 if (vgif)
4607 svm_set_intercept(svm, INTERCEPT_STGI);
4608 /* STGI will cause a vm exit */
4609 } else {
4610 /* We must be in SMM; RSM will cause a vmexit anyway. */
4611 }
4612 }
4613 #endif
4614
4615 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4616 void *insn, int insn_len)
4617 {
4618 bool smep, smap, is_user;
4619 u64 error_code;
4620
4621 /* Emulation is always possible when KVM has access to all guest state. */
4622 if (!sev_guest(vcpu->kvm))
4623 return true;
4624
4625 /* #UD and #GP should never be intercepted for SEV guests. */
4626 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4627 EMULTYPE_TRAP_UD_FORCED |
4628 EMULTYPE_VMWARE_GP));
4629
4630 /*
4631 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4632 * to guest register state.
4633 */
4634 if (sev_es_guest(vcpu->kvm))
4635 return false;
4636
4637 /*
4638 * Emulation is possible if the instruction is already decoded, e.g.
4639 * when completing I/O after returning from userspace.
4640 */
4641 if (emul_type & EMULTYPE_NO_DECODE)
4642 return true;
4643
4644 /*
4645 * Emulation is possible for SEV guests if and only if a prefilled
4646 * buffer containing the bytes of the intercepted instruction is
4647 * available. SEV guest memory is encrypted with a guest specific key
4648 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4649 * decode garbage.
4650 *
4651 * Inject #UD if KVM reached this point without an instruction buffer.
4652 * In practice, this path should never be hit by a well-behaved guest,
4653 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4654 * is still theoretically reachable, e.g. via unaccelerated fault-like
4655 * AVIC access, and needs to be handled by KVM to avoid putting the
4656 * guest into an infinite loop. Injecting #UD is somewhat arbitrary,
4657 * but its the least awful option given lack of insight into the guest.
4658 */
4659 if (unlikely(!insn)) {
4660 kvm_queue_exception(vcpu, UD_VECTOR);
4661 return false;
4662 }
4663
4664 /*
4665 * Emulate for SEV guests if the insn buffer is not empty. The buffer
4666 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4667 * the faulting instruction because the code fetch itself faulted, e.g.
4668 * the guest attempted to fetch from emulated MMIO or a guest page
4669 * table used to translate CS:RIP resides in emulated MMIO.
4670 */
4671 if (likely(insn_len))
4672 return true;
4673
4674 /*
4675 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4676 *
4677 * Errata:
4678 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4679 * possible that CPU microcode implementing DecodeAssist will fail to
4680 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4681 * be '0'. This happens because microcode reads CS:RIP using a _data_
4682 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
4683 * gives up and does not fill the instruction bytes buffer.
4684 *
4685 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4686 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4687 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4688 * GuestIntrBytes field of the VMCB.
4689 *
4690 * This does _not_ mean that the erratum has been encountered, as the
4691 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4692 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4693 * encountered a reserved/not-present #PF.
4694 *
4695 * To hit the erratum, the following conditions must be true:
4696 * 1. CR4.SMAP=1 (obviously).
4697 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
4698 * have been hit as the guest would have encountered a SMEP
4699 * violation #PF, not a #NPF.
4700 * 3. The #NPF is not due to a code fetch, in which case failure to
4701 * retrieve the instruction bytes is legitimate (see abvoe).
4702 *
4703 * In addition, don't apply the erratum workaround if the #NPF occurred
4704 * while translating guest page tables (see below).
4705 */
4706 error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4707 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4708 goto resume_guest;
4709
4710 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4711 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4712 is_user = svm_get_cpl(vcpu) == 3;
4713 if (smap && (!smep || is_user)) {
4714 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4715
4716 /*
4717 * If the fault occurred in userspace, arbitrarily inject #GP
4718 * to avoid killing the guest and to hopefully avoid confusing
4719 * the guest kernel too much, e.g. injecting #PF would not be
4720 * coherent with respect to the guest's page tables. Request
4721 * triple fault if the fault occurred in the kernel as there's
4722 * no fault that KVM can inject without confusing the guest.
4723 * In practice, the triple fault is moot as no sane SEV kernel
4724 * will execute from user memory while also running with SMAP=1.
4725 */
4726 if (is_user)
4727 kvm_inject_gp(vcpu, 0);
4728 else
4729 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4730 }
4731
4732 resume_guest:
4733 /*
4734 * If the erratum was not hit, simply resume the guest and let it fault
4735 * again. While awful, e.g. the vCPU may get stuck in an infinite loop
4736 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to
4737 * userspace will kill the guest, and letting the emulator read garbage
4738 * will yield random behavior and potentially corrupt the guest.
4739 *
4740 * Simply resuming the guest is technically not a violation of the SEV
4741 * architecture. AMD's APM states that all code fetches and page table
4742 * accesses for SEV guest are encrypted, regardless of the C-Bit. The
4743 * APM also states that encrypted accesses to MMIO are "ignored", but
4744 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4745 * the guest spin is technically "ignoring" the access.
4746 */
4747 return false;
4748 }
4749
4750 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4751 {
4752 struct vcpu_svm *svm = to_svm(vcpu);
4753
4754 return !gif_set(svm);
4755 }
4756
4757 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4758 {
4759 if (!sev_es_guest(vcpu->kvm))
4760 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4761
4762 sev_vcpu_deliver_sipi_vector(vcpu, vector);
4763 }
4764
4765 static void svm_vm_destroy(struct kvm *kvm)
4766 {
4767 avic_vm_destroy(kvm);
4768 sev_vm_destroy(kvm);
4769 }
4770
4771 static int svm_vm_init(struct kvm *kvm)
4772 {
4773 if (!pause_filter_count || !pause_filter_thresh)
4774 kvm->arch.pause_in_guest = true;
4775
4776 if (enable_apicv) {
4777 int ret = avic_vm_init(kvm);
4778 if (ret)
4779 return ret;
4780 }
4781
4782 return 0;
4783 }
4784
4785 static struct kvm_x86_ops svm_x86_ops __initdata = {
4786 .name = KBUILD_MODNAME,
4787
4788 .check_processor_compatibility = svm_check_processor_compat,
4789
4790 .hardware_unsetup = svm_hardware_unsetup,
4791 .hardware_enable = svm_hardware_enable,
4792 .hardware_disable = svm_hardware_disable,
4793 .has_emulated_msr = svm_has_emulated_msr,
4794
4795 .vcpu_create = svm_vcpu_create,
4796 .vcpu_free = svm_vcpu_free,
4797 .vcpu_reset = svm_vcpu_reset,
4798
4799 .vm_size = sizeof(struct kvm_svm),
4800 .vm_init = svm_vm_init,
4801 .vm_destroy = svm_vm_destroy,
4802
4803 .prepare_switch_to_guest = svm_prepare_switch_to_guest,
4804 .vcpu_load = svm_vcpu_load,
4805 .vcpu_put = svm_vcpu_put,
4806 .vcpu_blocking = avic_vcpu_blocking,
4807 .vcpu_unblocking = avic_vcpu_unblocking,
4808
4809 .update_exception_bitmap = svm_update_exception_bitmap,
4810 .get_msr_feature = svm_get_msr_feature,
4811 .get_msr = svm_get_msr,
4812 .set_msr = svm_set_msr,
4813 .get_segment_base = svm_get_segment_base,
4814 .get_segment = svm_get_segment,
4815 .set_segment = svm_set_segment,
4816 .get_cpl = svm_get_cpl,
4817 .get_cs_db_l_bits = svm_get_cs_db_l_bits,
4818 .set_cr0 = svm_set_cr0,
4819 .post_set_cr3 = sev_post_set_cr3,
4820 .is_valid_cr4 = svm_is_valid_cr4,
4821 .set_cr4 = svm_set_cr4,
4822 .set_efer = svm_set_efer,
4823 .get_idt = svm_get_idt,
4824 .set_idt = svm_set_idt,
4825 .get_gdt = svm_get_gdt,
4826 .set_gdt = svm_set_gdt,
4827 .set_dr7 = svm_set_dr7,
4828 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4829 .cache_reg = svm_cache_reg,
4830 .get_rflags = svm_get_rflags,
4831 .set_rflags = svm_set_rflags,
4832 .get_if_flag = svm_get_if_flag,
4833
4834 .flush_tlb_all = svm_flush_tlb_all,
4835 .flush_tlb_current = svm_flush_tlb_current,
4836 .flush_tlb_gva = svm_flush_tlb_gva,
4837 .flush_tlb_guest = svm_flush_tlb_asid,
4838
4839 .vcpu_pre_run = svm_vcpu_pre_run,
4840 .vcpu_run = svm_vcpu_run,
4841 .handle_exit = svm_handle_exit,
4842 .skip_emulated_instruction = svm_skip_emulated_instruction,
4843 .update_emulated_instruction = NULL,
4844 .set_interrupt_shadow = svm_set_interrupt_shadow,
4845 .get_interrupt_shadow = svm_get_interrupt_shadow,
4846 .patch_hypercall = svm_patch_hypercall,
4847 .inject_irq = svm_inject_irq,
4848 .inject_nmi = svm_inject_nmi,
4849 .is_vnmi_pending = svm_is_vnmi_pending,
4850 .set_vnmi_pending = svm_set_vnmi_pending,
4851 .inject_exception = svm_inject_exception,
4852 .cancel_injection = svm_cancel_injection,
4853 .interrupt_allowed = svm_interrupt_allowed,
4854 .nmi_allowed = svm_nmi_allowed,
4855 .get_nmi_mask = svm_get_nmi_mask,
4856 .set_nmi_mask = svm_set_nmi_mask,
4857 .enable_nmi_window = svm_enable_nmi_window,
4858 .enable_irq_window = svm_enable_irq_window,
4859 .update_cr8_intercept = svm_update_cr8_intercept,
4860 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
4861 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4862 .apicv_post_state_restore = avic_apicv_post_state_restore,
4863 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
4864
4865 .get_exit_info = svm_get_exit_info,
4866
4867 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4868
4869 .has_wbinvd_exit = svm_has_wbinvd_exit,
4870
4871 .get_l2_tsc_offset = svm_get_l2_tsc_offset,
4872 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4873 .write_tsc_offset = svm_write_tsc_offset,
4874 .write_tsc_multiplier = svm_write_tsc_multiplier,
4875
4876 .load_mmu_pgd = svm_load_mmu_pgd,
4877
4878 .check_intercept = svm_check_intercept,
4879 .handle_exit_irqoff = svm_handle_exit_irqoff,
4880
4881 .request_immediate_exit = __kvm_request_immediate_exit,
4882
4883 .sched_in = svm_sched_in,
4884
4885 .nested_ops = &svm_nested_ops,
4886
4887 .deliver_interrupt = svm_deliver_interrupt,
4888 .pi_update_irte = avic_pi_update_irte,
4889 .setup_mce = svm_setup_mce,
4890
4891 #ifdef CONFIG_KVM_SMM
4892 .smi_allowed = svm_smi_allowed,
4893 .enter_smm = svm_enter_smm,
4894 .leave_smm = svm_leave_smm,
4895 .enable_smi_window = svm_enable_smi_window,
4896 #endif
4897
4898 .mem_enc_ioctl = sev_mem_enc_ioctl,
4899 .mem_enc_register_region = sev_mem_enc_register_region,
4900 .mem_enc_unregister_region = sev_mem_enc_unregister_region,
4901 .guest_memory_reclaimed = sev_guest_memory_reclaimed,
4902
4903 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
4904 .vm_move_enc_context_from = sev_vm_move_enc_context_from,
4905
4906 .can_emulate_instruction = svm_can_emulate_instruction,
4907
4908 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4909
4910 .msr_filter_changed = svm_msr_filter_changed,
4911 .complete_emulated_msr = svm_complete_emulated_msr,
4912
4913 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4914 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
4915 };
4916
4917 /*
4918 * The default MMIO mask is a single bit (excluding the present bit),
4919 * which could conflict with the memory encryption bit. Check for
4920 * memory encryption support and override the default MMIO mask if
4921 * memory encryption is enabled.
4922 */
4923 static __init void svm_adjust_mmio_mask(void)
4924 {
4925 unsigned int enc_bit, mask_bit;
4926 u64 msr, mask;
4927
4928 /* If there is no memory encryption support, use existing mask */
4929 if (cpuid_eax(0x80000000) < 0x8000001f)
4930 return;
4931
4932 /* If memory encryption is not enabled, use existing mask */
4933 rdmsrl(MSR_AMD64_SYSCFG, msr);
4934 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4935 return;
4936
4937 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4938 mask_bit = boot_cpu_data.x86_phys_bits;
4939
4940 /* Increment the mask bit if it is the same as the encryption bit */
4941 if (enc_bit == mask_bit)
4942 mask_bit++;
4943
4944 /*
4945 * If the mask bit location is below 52, then some bits above the
4946 * physical addressing limit will always be reserved, so use the
4947 * rsvd_bits() function to generate the mask. This mask, along with
4948 * the present bit, will be used to generate a page fault with
4949 * PFER.RSV = 1.
4950 *
4951 * If the mask bit location is 52 (or above), then clear the mask.
4952 */
4953 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4954
4955 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4956 }
4957
4958 static __init void svm_set_cpu_caps(void)
4959 {
4960 kvm_set_cpu_caps();
4961
4962 kvm_caps.supported_perf_cap = 0;
4963 kvm_caps.supported_xss = 0;
4964
4965 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
4966 if (nested) {
4967 kvm_cpu_cap_set(X86_FEATURE_SVM);
4968 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
4969
4970 if (nrips)
4971 kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4972
4973 if (npt_enabled)
4974 kvm_cpu_cap_set(X86_FEATURE_NPT);
4975
4976 if (tsc_scaling)
4977 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
4978
4979 if (vls)
4980 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
4981 if (lbrv)
4982 kvm_cpu_cap_set(X86_FEATURE_LBRV);
4983
4984 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
4985 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
4986
4987 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
4988 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
4989
4990 if (vgif)
4991 kvm_cpu_cap_set(X86_FEATURE_VGIF);
4992
4993 if (vnmi)
4994 kvm_cpu_cap_set(X86_FEATURE_VNMI);
4995
4996 /* Nested VM can receive #VMEXIT instead of triggering #GP */
4997 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
4998 }
4999
5000 /* CPUID 0x80000008 */
5001 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5002 boot_cpu_has(X86_FEATURE_AMD_SSBD))
5003 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5004
5005 if (enable_pmu) {
5006 /*
5007 * Enumerate support for PERFCTR_CORE if and only if KVM has
5008 * access to enough counters to virtualize "core" support,
5009 * otherwise limit vPMU support to the legacy number of counters.
5010 */
5011 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5012 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5013 kvm_pmu_cap.num_counters_gp);
5014 else
5015 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5016
5017 if (kvm_pmu_cap.version != 2 ||
5018 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5019 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5020 }
5021
5022 /* CPUID 0x8000001F (SME/SEV features) */
5023 sev_set_cpu_caps();
5024 }
5025
5026 static __init int svm_hardware_setup(void)
5027 {
5028 int cpu;
5029 struct page *iopm_pages;
5030 void *iopm_va;
5031 int r;
5032 unsigned int order = get_order(IOPM_SIZE);
5033
5034 /*
5035 * NX is required for shadow paging and for NPT if the NX huge pages
5036 * mitigation is enabled.
5037 */
5038 if (!boot_cpu_has(X86_FEATURE_NX)) {
5039 pr_err_ratelimited("NX (Execute Disable) not supported\n");
5040 return -EOPNOTSUPP;
5041 }
5042 kvm_enable_efer_bits(EFER_NX);
5043
5044 iopm_pages = alloc_pages(GFP_KERNEL, order);
5045
5046 if (!iopm_pages)
5047 return -ENOMEM;
5048
5049 iopm_va = page_address(iopm_pages);
5050 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5051 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
5052
5053 init_msrpm_offsets();
5054
5055 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5056 XFEATURE_MASK_BNDCSR);
5057
5058 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5059 kvm_enable_efer_bits(EFER_FFXSR);
5060
5061 if (tsc_scaling) {
5062 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5063 tsc_scaling = false;
5064 } else {
5065 pr_info("TSC scaling supported\n");
5066 kvm_caps.has_tsc_control = true;
5067 }
5068 }
5069 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5070 kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5071
5072 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5073
5074 if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5075 kvm_enable_efer_bits(EFER_AUTOIBRS);
5076
5077 /* Check for pause filtering support */
5078 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5079 pause_filter_count = 0;
5080 pause_filter_thresh = 0;
5081 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5082 pause_filter_thresh = 0;
5083 }
5084
5085 if (nested) {
5086 pr_info("Nested Virtualization enabled\n");
5087 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5088 }
5089
5090 /*
5091 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5092 * NPT isn't supported if the host is using 2-level paging since host
5093 * CR4 is unchanged on VMRUN.
5094 */
5095 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5096 npt_enabled = false;
5097
5098 if (!boot_cpu_has(X86_FEATURE_NPT))
5099 npt_enabled = false;
5100
5101 /* Force VM NPT level equal to the host's paging level */
5102 kvm_configure_mmu(npt_enabled, get_npt_level(),
5103 get_npt_level(), PG_LEVEL_1G);
5104 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5105
5106 /* Setup shadow_me_value and shadow_me_mask */
5107 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5108
5109 svm_adjust_mmio_mask();
5110
5111 /*
5112 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5113 * may be modified by svm_adjust_mmio_mask()).
5114 */
5115 sev_hardware_setup();
5116
5117 svm_hv_hardware_setup();
5118
5119 for_each_possible_cpu(cpu) {
5120 r = svm_cpu_init(cpu);
5121 if (r)
5122 goto err;
5123 }
5124
5125 if (nrips) {
5126 if (!boot_cpu_has(X86_FEATURE_NRIPS))
5127 nrips = false;
5128 }
5129
5130 enable_apicv = avic = avic && avic_hardware_setup();
5131
5132 if (!enable_apicv) {
5133 svm_x86_ops.vcpu_blocking = NULL;
5134 svm_x86_ops.vcpu_unblocking = NULL;
5135 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5136 } else if (!x2avic_enabled) {
5137 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5138 }
5139
5140 if (vls) {
5141 if (!npt_enabled ||
5142 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5143 !IS_ENABLED(CONFIG_X86_64)) {
5144 vls = false;
5145 } else {
5146 pr_info("Virtual VMLOAD VMSAVE supported\n");
5147 }
5148 }
5149
5150 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5151 svm_gp_erratum_intercept = false;
5152
5153 if (vgif) {
5154 if (!boot_cpu_has(X86_FEATURE_VGIF))
5155 vgif = false;
5156 else
5157 pr_info("Virtual GIF supported\n");
5158 }
5159
5160 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5161 if (vnmi)
5162 pr_info("Virtual NMI enabled\n");
5163
5164 if (!vnmi) {
5165 svm_x86_ops.is_vnmi_pending = NULL;
5166 svm_x86_ops.set_vnmi_pending = NULL;
5167 }
5168
5169
5170 if (lbrv) {
5171 if (!boot_cpu_has(X86_FEATURE_LBRV))
5172 lbrv = false;
5173 else
5174 pr_info("LBR virtualization supported\n");
5175 }
5176
5177 if (!enable_pmu)
5178 pr_info("PMU virtualization is disabled\n");
5179
5180 svm_set_cpu_caps();
5181
5182 /*
5183 * It seems that on AMD processors PTE's accessed bit is
5184 * being set by the CPU hardware before the NPF vmexit.
5185 * This is not expected behaviour and our tests fail because
5186 * of it.
5187 * A workaround here is to disable support for
5188 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5189 * In this case userspace can know if there is support using
5190 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5191 * it
5192 * If future AMD CPU models change the behaviour described above,
5193 * this variable can be changed accordingly
5194 */
5195 allow_smaller_maxphyaddr = !npt_enabled;
5196
5197 return 0;
5198
5199 err:
5200 svm_hardware_unsetup();
5201 return r;
5202 }
5203
5204
5205 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5206 .hardware_setup = svm_hardware_setup,
5207
5208 .runtime_ops = &svm_x86_ops,
5209 .pmu_ops = &amd_pmu_ops,
5210 };
5211
5212 static int __init svm_init(void)
5213 {
5214 int r;
5215
5216 __unused_size_checks();
5217
5218 if (!kvm_is_svm_supported())
5219 return -EOPNOTSUPP;
5220
5221 r = kvm_x86_vendor_init(&svm_init_ops);
5222 if (r)
5223 return r;
5224
5225 /*
5226 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5227 * exposed to userspace!
5228 */
5229 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5230 THIS_MODULE);
5231 if (r)
5232 goto err_kvm_init;
5233
5234 return 0;
5235
5236 err_kvm_init:
5237 kvm_x86_vendor_exit();
5238 return r;
5239 }
5240
5241 static void __exit svm_exit(void)
5242 {
5243 kvm_exit();
5244 kvm_x86_vendor_exit();
5245 }
5246
5247 module_init(svm_init)
5248 module_exit(svm_exit)