]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/kvm/vmx/vmx.c
gpu: host1x: Use SMMU on Tegra124 and Tegra210
[thirdparty/linux.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/debugreg.h>
36 #include <asm/desc.h>
37 #include <asm/fpu/internal.h>
38 #include <asm/io.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/kexec.h>
41 #include <asm/perf_event.h>
42 #include <asm/mce.h>
43 #include <asm/mmu_context.h>
44 #include <asm/mshyperv.h>
45 #include <asm/mwait.h>
46 #include <asm/spec-ctrl.h>
47 #include <asm/virtext.h>
48 #include <asm/vmx.h>
49
50 #include "capabilities.h"
51 #include "cpuid.h"
52 #include "evmcs.h"
53 #include "irq.h"
54 #include "kvm_cache_regs.h"
55 #include "lapic.h"
56 #include "mmu.h"
57 #include "nested.h"
58 #include "ops.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
72 {}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
76
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
79
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
82
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
85
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
88
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91 enable_unrestricted_guest, bool, S_IRUGO);
92
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
95
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
98
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
101
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
104
105 /*
106 * If nested=1, nested virtualization is supported, i.e., guests may use
107 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108 * use VMX instructions.
109 */
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
112
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
115
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
118
119 #define MSR_BITMAP_MODE_X2APIC 1
120 #define MSR_BITMAP_MODE_X2APIC_APICV 2
121
122 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
123
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130
131 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
132 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
133 #define KVM_VM_CR0_ALWAYS_ON \
134 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
135 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
136 #define KVM_CR4_GUEST_OWNED_BITS \
137 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
138 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
139
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149 RTIT_STATUS_BYTECNT))
150
151 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
152 (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
153
154 /*
155 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
156 * ple_gap: upper bound on the amount of time between two successive
157 * executions of PAUSE in a loop. Also indicate if ple enabled.
158 * According to test, this time is usually smaller than 128 cycles.
159 * ple_window: upper bound on the amount of time a guest is allowed to execute
160 * in a PAUSE loop. Tests indicate that most spinlocks are held for
161 * less than 2^12 cycles
162 * Time is measured based on a counter that runs at the same rate as the TSC,
163 * refer SDM volume 3b section 21.6.13 & 22.1.3.
164 */
165 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
166 module_param(ple_gap, uint, 0444);
167
168 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
169 module_param(ple_window, uint, 0444);
170
171 /* Default doubles per-vcpu window every exit. */
172 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
173 module_param(ple_window_grow, uint, 0444);
174
175 /* Default resets per-vcpu window every exit to ple_window. */
176 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
177 module_param(ple_window_shrink, uint, 0444);
178
179 /* Default is to compute the maximum so we can never overflow. */
180 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
181 module_param(ple_window_max, uint, 0444);
182
183 /* Default is SYSTEM mode, 1 for host-guest mode */
184 int __read_mostly pt_mode = PT_MODE_SYSTEM;
185 module_param(pt_mode, int, S_IRUGO);
186
187 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
188 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
189 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
190
191 /* Storage for pre module init parameter parsing */
192 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
193
194 static const struct {
195 const char *option;
196 bool for_parse;
197 } vmentry_l1d_param[] = {
198 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
199 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
200 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
201 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
202 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
203 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
204 };
205
206 #define L1D_CACHE_ORDER 4
207 static void *vmx_l1d_flush_pages;
208
209 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
210 {
211 struct page *page;
212 unsigned int i;
213
214 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
215 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
216 return 0;
217 }
218
219 if (!enable_ept) {
220 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
221 return 0;
222 }
223
224 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
225 u64 msr;
226
227 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
228 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
229 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
230 return 0;
231 }
232 }
233
234 /* If set to auto use the default l1tf mitigation method */
235 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
236 switch (l1tf_mitigation) {
237 case L1TF_MITIGATION_OFF:
238 l1tf = VMENTER_L1D_FLUSH_NEVER;
239 break;
240 case L1TF_MITIGATION_FLUSH_NOWARN:
241 case L1TF_MITIGATION_FLUSH:
242 case L1TF_MITIGATION_FLUSH_NOSMT:
243 l1tf = VMENTER_L1D_FLUSH_COND;
244 break;
245 case L1TF_MITIGATION_FULL:
246 case L1TF_MITIGATION_FULL_FORCE:
247 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
248 break;
249 }
250 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
251 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
252 }
253
254 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
255 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
256 /*
257 * This allocation for vmx_l1d_flush_pages is not tied to a VM
258 * lifetime and so should not be charged to a memcg.
259 */
260 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
261 if (!page)
262 return -ENOMEM;
263 vmx_l1d_flush_pages = page_address(page);
264
265 /*
266 * Initialize each page with a different pattern in
267 * order to protect against KSM in the nested
268 * virtualization case.
269 */
270 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
271 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
272 PAGE_SIZE);
273 }
274 }
275
276 l1tf_vmx_mitigation = l1tf;
277
278 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
279 static_branch_enable(&vmx_l1d_should_flush);
280 else
281 static_branch_disable(&vmx_l1d_should_flush);
282
283 if (l1tf == VMENTER_L1D_FLUSH_COND)
284 static_branch_enable(&vmx_l1d_flush_cond);
285 else
286 static_branch_disable(&vmx_l1d_flush_cond);
287 return 0;
288 }
289
290 static int vmentry_l1d_flush_parse(const char *s)
291 {
292 unsigned int i;
293
294 if (s) {
295 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
296 if (vmentry_l1d_param[i].for_parse &&
297 sysfs_streq(s, vmentry_l1d_param[i].option))
298 return i;
299 }
300 }
301 return -EINVAL;
302 }
303
304 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
305 {
306 int l1tf, ret;
307
308 l1tf = vmentry_l1d_flush_parse(s);
309 if (l1tf < 0)
310 return l1tf;
311
312 if (!boot_cpu_has(X86_BUG_L1TF))
313 return 0;
314
315 /*
316 * Has vmx_init() run already? If not then this is the pre init
317 * parameter parsing. In that case just store the value and let
318 * vmx_init() do the proper setup after enable_ept has been
319 * established.
320 */
321 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
322 vmentry_l1d_flush_param = l1tf;
323 return 0;
324 }
325
326 mutex_lock(&vmx_l1d_flush_mutex);
327 ret = vmx_setup_l1d_flush(l1tf);
328 mutex_unlock(&vmx_l1d_flush_mutex);
329 return ret;
330 }
331
332 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
333 {
334 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
335 return sprintf(s, "???\n");
336
337 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
338 }
339
340 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
341 .set = vmentry_l1d_flush_set,
342 .get = vmentry_l1d_flush_get,
343 };
344 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
345
346 static bool guest_state_valid(struct kvm_vcpu *vcpu);
347 static u32 vmx_segment_access_rights(struct kvm_segment *var);
348 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
349 u32 msr, int type);
350
351 void vmx_vmexit(void);
352
353 #define vmx_insn_failed(fmt...) \
354 do { \
355 WARN_ONCE(1, fmt); \
356 pr_warn_ratelimited(fmt); \
357 } while (0)
358
359 asmlinkage void vmread_error(unsigned long field, bool fault)
360 {
361 if (fault)
362 kvm_spurious_fault();
363 else
364 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
365 }
366
367 noinline void vmwrite_error(unsigned long field, unsigned long value)
368 {
369 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
370 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
371 }
372
373 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
374 {
375 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
376 }
377
378 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
379 {
380 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
381 }
382
383 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
384 {
385 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
386 ext, vpid, gva);
387 }
388
389 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
390 {
391 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
392 ext, eptp, gpa);
393 }
394
395 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
396 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
397 /*
398 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
399 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
400 */
401 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
402
403 /*
404 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
405 * can find which vCPU should be waken up.
406 */
407 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
408 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
409
410 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
411 static DEFINE_SPINLOCK(vmx_vpid_lock);
412
413 struct vmcs_config vmcs_config;
414 struct vmx_capability vmx_capability;
415
416 #define VMX_SEGMENT_FIELD(seg) \
417 [VCPU_SREG_##seg] = { \
418 .selector = GUEST_##seg##_SELECTOR, \
419 .base = GUEST_##seg##_BASE, \
420 .limit = GUEST_##seg##_LIMIT, \
421 .ar_bytes = GUEST_##seg##_AR_BYTES, \
422 }
423
424 static const struct kvm_vmx_segment_field {
425 unsigned selector;
426 unsigned base;
427 unsigned limit;
428 unsigned ar_bytes;
429 } kvm_vmx_segment_fields[] = {
430 VMX_SEGMENT_FIELD(CS),
431 VMX_SEGMENT_FIELD(DS),
432 VMX_SEGMENT_FIELD(ES),
433 VMX_SEGMENT_FIELD(FS),
434 VMX_SEGMENT_FIELD(GS),
435 VMX_SEGMENT_FIELD(SS),
436 VMX_SEGMENT_FIELD(TR),
437 VMX_SEGMENT_FIELD(LDTR),
438 };
439
440 static unsigned long host_idt_base;
441
442 /*
443 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
444 * will emulate SYSCALL in legacy mode if the vendor string in guest
445 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
446 * support this emulation, IA32_STAR must always be included in
447 * vmx_msr_index[], even in i386 builds.
448 */
449 const u32 vmx_msr_index[] = {
450 #ifdef CONFIG_X86_64
451 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
452 #endif
453 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
454 MSR_IA32_TSX_CTRL,
455 };
456
457 #if IS_ENABLED(CONFIG_HYPERV)
458 static bool __read_mostly enlightened_vmcs = true;
459 module_param(enlightened_vmcs, bool, 0444);
460
461 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
462 static void check_ept_pointer_match(struct kvm *kvm)
463 {
464 struct kvm_vcpu *vcpu;
465 u64 tmp_eptp = INVALID_PAGE;
466 int i;
467
468 kvm_for_each_vcpu(i, vcpu, kvm) {
469 if (!VALID_PAGE(tmp_eptp)) {
470 tmp_eptp = to_vmx(vcpu)->ept_pointer;
471 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
472 to_kvm_vmx(kvm)->ept_pointers_match
473 = EPT_POINTERS_MISMATCH;
474 return;
475 }
476 }
477
478 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
479 }
480
481 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
482 void *data)
483 {
484 struct kvm_tlb_range *range = data;
485
486 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
487 range->pages);
488 }
489
490 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
491 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
492 {
493 u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
494
495 /*
496 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
497 * of the base of EPT PML4 table, strip off EPT configuration
498 * information.
499 */
500 if (range)
501 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
502 kvm_fill_hv_flush_list_func, (void *)range);
503 else
504 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
505 }
506
507 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
508 struct kvm_tlb_range *range)
509 {
510 struct kvm_vcpu *vcpu;
511 int ret = 0, i;
512
513 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
514
515 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
516 check_ept_pointer_match(kvm);
517
518 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
519 kvm_for_each_vcpu(i, vcpu, kvm) {
520 /* If ept_pointer is invalid pointer, bypass flush request. */
521 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
522 ret |= __hv_remote_flush_tlb_with_range(
523 kvm, vcpu, range);
524 }
525 } else {
526 ret = __hv_remote_flush_tlb_with_range(kvm,
527 kvm_get_vcpu(kvm, 0), range);
528 }
529
530 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
531 return ret;
532 }
533 static int hv_remote_flush_tlb(struct kvm *kvm)
534 {
535 return hv_remote_flush_tlb_with_range(kvm, NULL);
536 }
537
538 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
539 {
540 struct hv_enlightened_vmcs *evmcs;
541 struct hv_partition_assist_pg **p_hv_pa_pg =
542 &vcpu->kvm->arch.hyperv.hv_pa_pg;
543 /*
544 * Synthetic VM-Exit is not enabled in current code and so All
545 * evmcs in singe VM shares same assist page.
546 */
547 if (!*p_hv_pa_pg)
548 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
549
550 if (!*p_hv_pa_pg)
551 return -ENOMEM;
552
553 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
554
555 evmcs->partition_assist_page =
556 __pa(*p_hv_pa_pg);
557 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
558 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
559
560 return 0;
561 }
562
563 #endif /* IS_ENABLED(CONFIG_HYPERV) */
564
565 /*
566 * Comment's format: document - errata name - stepping - processor name.
567 * Refer from
568 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
569 */
570 static u32 vmx_preemption_cpu_tfms[] = {
571 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
572 0x000206E6,
573 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
574 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
575 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
576 0x00020652,
577 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
578 0x00020655,
579 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
580 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
581 /*
582 * 320767.pdf - AAP86 - B1 -
583 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
584 */
585 0x000106E5,
586 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
587 0x000106A0,
588 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
589 0x000106A1,
590 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
591 0x000106A4,
592 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
593 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
594 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
595 0x000106A5,
596 /* Xeon E3-1220 V2 */
597 0x000306A8,
598 };
599
600 static inline bool cpu_has_broken_vmx_preemption_timer(void)
601 {
602 u32 eax = cpuid_eax(0x00000001), i;
603
604 /* Clear the reserved bits */
605 eax &= ~(0x3U << 14 | 0xfU << 28);
606 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
607 if (eax == vmx_preemption_cpu_tfms[i])
608 return true;
609
610 return false;
611 }
612
613 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
614 {
615 return flexpriority_enabled && lapic_in_kernel(vcpu);
616 }
617
618 static inline bool report_flexpriority(void)
619 {
620 return flexpriority_enabled;
621 }
622
623 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
624 {
625 int i;
626
627 for (i = 0; i < vmx->nmsrs; ++i)
628 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
629 return i;
630 return -1;
631 }
632
633 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
634 {
635 int i;
636
637 i = __find_msr_index(vmx, msr);
638 if (i >= 0)
639 return &vmx->guest_msrs[i];
640 return NULL;
641 }
642
643 static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
644 {
645 int ret = 0;
646
647 u64 old_msr_data = msr->data;
648 msr->data = data;
649 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
650 preempt_disable();
651 ret = kvm_set_shared_msr(msr->index, msr->data,
652 msr->mask);
653 preempt_enable();
654 if (ret)
655 msr->data = old_msr_data;
656 }
657 return ret;
658 }
659
660 #ifdef CONFIG_KEXEC_CORE
661 static void crash_vmclear_local_loaded_vmcss(void)
662 {
663 int cpu = raw_smp_processor_id();
664 struct loaded_vmcs *v;
665
666 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
667 loaded_vmcss_on_cpu_link)
668 vmcs_clear(v->vmcs);
669 }
670 #endif /* CONFIG_KEXEC_CORE */
671
672 static void __loaded_vmcs_clear(void *arg)
673 {
674 struct loaded_vmcs *loaded_vmcs = arg;
675 int cpu = raw_smp_processor_id();
676
677 if (loaded_vmcs->cpu != cpu)
678 return; /* vcpu migration can race with cpu offline */
679 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
680 per_cpu(current_vmcs, cpu) = NULL;
681
682 vmcs_clear(loaded_vmcs->vmcs);
683 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
684 vmcs_clear(loaded_vmcs->shadow_vmcs);
685
686 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
687
688 /*
689 * Ensure all writes to loaded_vmcs, including deleting it from its
690 * current percpu list, complete before setting loaded_vmcs->vcpu to
691 * -1, otherwise a different cpu can see vcpu == -1 first and add
692 * loaded_vmcs to its percpu list before it's deleted from this cpu's
693 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
694 */
695 smp_wmb();
696
697 loaded_vmcs->cpu = -1;
698 loaded_vmcs->launched = 0;
699 }
700
701 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
702 {
703 int cpu = loaded_vmcs->cpu;
704
705 if (cpu != -1)
706 smp_call_function_single(cpu,
707 __loaded_vmcs_clear, loaded_vmcs, 1);
708 }
709
710 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
711 unsigned field)
712 {
713 bool ret;
714 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
715
716 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
717 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
718 vmx->segment_cache.bitmask = 0;
719 }
720 ret = vmx->segment_cache.bitmask & mask;
721 vmx->segment_cache.bitmask |= mask;
722 return ret;
723 }
724
725 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
726 {
727 u16 *p = &vmx->segment_cache.seg[seg].selector;
728
729 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
730 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
731 return *p;
732 }
733
734 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
735 {
736 ulong *p = &vmx->segment_cache.seg[seg].base;
737
738 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
739 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
740 return *p;
741 }
742
743 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
744 {
745 u32 *p = &vmx->segment_cache.seg[seg].limit;
746
747 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
748 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
749 return *p;
750 }
751
752 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
753 {
754 u32 *p = &vmx->segment_cache.seg[seg].ar;
755
756 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
757 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
758 return *p;
759 }
760
761 void update_exception_bitmap(struct kvm_vcpu *vcpu)
762 {
763 u32 eb;
764
765 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
766 (1u << DB_VECTOR) | (1u << AC_VECTOR);
767 /*
768 * Guest access to VMware backdoor ports could legitimately
769 * trigger #GP because of TSS I/O permission bitmap.
770 * We intercept those #GP and allow access to them anyway
771 * as VMware does.
772 */
773 if (enable_vmware_backdoor)
774 eb |= (1u << GP_VECTOR);
775 if ((vcpu->guest_debug &
776 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
777 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
778 eb |= 1u << BP_VECTOR;
779 if (to_vmx(vcpu)->rmode.vm86_active)
780 eb = ~0;
781 if (enable_ept)
782 eb &= ~(1u << PF_VECTOR);
783
784 /* When we are running a nested L2 guest and L1 specified for it a
785 * certain exception bitmap, we must trap the same exceptions and pass
786 * them to L1. When running L2, we will only handle the exceptions
787 * specified above if L1 did not want them.
788 */
789 if (is_guest_mode(vcpu))
790 eb |= get_vmcs12(vcpu)->exception_bitmap;
791
792 vmcs_write32(EXCEPTION_BITMAP, eb);
793 }
794
795 /*
796 * Check if MSR is intercepted for currently loaded MSR bitmap.
797 */
798 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
799 {
800 unsigned long *msr_bitmap;
801 int f = sizeof(unsigned long);
802
803 if (!cpu_has_vmx_msr_bitmap())
804 return true;
805
806 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
807
808 if (msr <= 0x1fff) {
809 return !!test_bit(msr, msr_bitmap + 0x800 / f);
810 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
811 msr &= 0x1fff;
812 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
813 }
814
815 return true;
816 }
817
818 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
819 unsigned long entry, unsigned long exit)
820 {
821 vm_entry_controls_clearbit(vmx, entry);
822 vm_exit_controls_clearbit(vmx, exit);
823 }
824
825 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
826 {
827 unsigned int i;
828
829 for (i = 0; i < m->nr; ++i) {
830 if (m->val[i].index == msr)
831 return i;
832 }
833 return -ENOENT;
834 }
835
836 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
837 {
838 int i;
839 struct msr_autoload *m = &vmx->msr_autoload;
840
841 switch (msr) {
842 case MSR_EFER:
843 if (cpu_has_load_ia32_efer()) {
844 clear_atomic_switch_msr_special(vmx,
845 VM_ENTRY_LOAD_IA32_EFER,
846 VM_EXIT_LOAD_IA32_EFER);
847 return;
848 }
849 break;
850 case MSR_CORE_PERF_GLOBAL_CTRL:
851 if (cpu_has_load_perf_global_ctrl()) {
852 clear_atomic_switch_msr_special(vmx,
853 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
854 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
855 return;
856 }
857 break;
858 }
859 i = vmx_find_msr_index(&m->guest, msr);
860 if (i < 0)
861 goto skip_guest;
862 --m->guest.nr;
863 m->guest.val[i] = m->guest.val[m->guest.nr];
864 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
865
866 skip_guest:
867 i = vmx_find_msr_index(&m->host, msr);
868 if (i < 0)
869 return;
870
871 --m->host.nr;
872 m->host.val[i] = m->host.val[m->host.nr];
873 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
874 }
875
876 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
877 unsigned long entry, unsigned long exit,
878 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
879 u64 guest_val, u64 host_val)
880 {
881 vmcs_write64(guest_val_vmcs, guest_val);
882 if (host_val_vmcs != HOST_IA32_EFER)
883 vmcs_write64(host_val_vmcs, host_val);
884 vm_entry_controls_setbit(vmx, entry);
885 vm_exit_controls_setbit(vmx, exit);
886 }
887
888 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
889 u64 guest_val, u64 host_val, bool entry_only)
890 {
891 int i, j = 0;
892 struct msr_autoload *m = &vmx->msr_autoload;
893
894 switch (msr) {
895 case MSR_EFER:
896 if (cpu_has_load_ia32_efer()) {
897 add_atomic_switch_msr_special(vmx,
898 VM_ENTRY_LOAD_IA32_EFER,
899 VM_EXIT_LOAD_IA32_EFER,
900 GUEST_IA32_EFER,
901 HOST_IA32_EFER,
902 guest_val, host_val);
903 return;
904 }
905 break;
906 case MSR_CORE_PERF_GLOBAL_CTRL:
907 if (cpu_has_load_perf_global_ctrl()) {
908 add_atomic_switch_msr_special(vmx,
909 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
910 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
911 GUEST_IA32_PERF_GLOBAL_CTRL,
912 HOST_IA32_PERF_GLOBAL_CTRL,
913 guest_val, host_val);
914 return;
915 }
916 break;
917 case MSR_IA32_PEBS_ENABLE:
918 /* PEBS needs a quiescent period after being disabled (to write
919 * a record). Disabling PEBS through VMX MSR swapping doesn't
920 * provide that period, so a CPU could write host's record into
921 * guest's memory.
922 */
923 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
924 }
925
926 i = vmx_find_msr_index(&m->guest, msr);
927 if (!entry_only)
928 j = vmx_find_msr_index(&m->host, msr);
929
930 if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
931 (j < 0 && m->host.nr == NR_LOADSTORE_MSRS)) {
932 printk_once(KERN_WARNING "Not enough msr switch entries. "
933 "Can't add msr %x\n", msr);
934 return;
935 }
936 if (i < 0) {
937 i = m->guest.nr++;
938 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
939 }
940 m->guest.val[i].index = msr;
941 m->guest.val[i].value = guest_val;
942
943 if (entry_only)
944 return;
945
946 if (j < 0) {
947 j = m->host.nr++;
948 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
949 }
950 m->host.val[j].index = msr;
951 m->host.val[j].value = host_val;
952 }
953
954 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
955 {
956 u64 guest_efer = vmx->vcpu.arch.efer;
957 u64 ignore_bits = 0;
958
959 /* Shadow paging assumes NX to be available. */
960 if (!enable_ept)
961 guest_efer |= EFER_NX;
962
963 /*
964 * LMA and LME handled by hardware; SCE meaningless outside long mode.
965 */
966 ignore_bits |= EFER_SCE;
967 #ifdef CONFIG_X86_64
968 ignore_bits |= EFER_LMA | EFER_LME;
969 /* SCE is meaningful only in long mode on Intel */
970 if (guest_efer & EFER_LMA)
971 ignore_bits &= ~(u64)EFER_SCE;
972 #endif
973
974 /*
975 * On EPT, we can't emulate NX, so we must switch EFER atomically.
976 * On CPUs that support "load IA32_EFER", always switch EFER
977 * atomically, since it's faster than switching it manually.
978 */
979 if (cpu_has_load_ia32_efer() ||
980 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
981 if (!(guest_efer & EFER_LMA))
982 guest_efer &= ~EFER_LME;
983 if (guest_efer != host_efer)
984 add_atomic_switch_msr(vmx, MSR_EFER,
985 guest_efer, host_efer, false);
986 else
987 clear_atomic_switch_msr(vmx, MSR_EFER);
988 return false;
989 } else {
990 clear_atomic_switch_msr(vmx, MSR_EFER);
991
992 guest_efer &= ~ignore_bits;
993 guest_efer |= host_efer & ignore_bits;
994
995 vmx->guest_msrs[efer_offset].data = guest_efer;
996 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
997
998 return true;
999 }
1000 }
1001
1002 #ifdef CONFIG_X86_32
1003 /*
1004 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1005 * VMCS rather than the segment table. KVM uses this helper to figure
1006 * out the current bases to poke them into the VMCS before entry.
1007 */
1008 static unsigned long segment_base(u16 selector)
1009 {
1010 struct desc_struct *table;
1011 unsigned long v;
1012
1013 if (!(selector & ~SEGMENT_RPL_MASK))
1014 return 0;
1015
1016 table = get_current_gdt_ro();
1017
1018 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1019 u16 ldt_selector = kvm_read_ldt();
1020
1021 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1022 return 0;
1023
1024 table = (struct desc_struct *)segment_base(ldt_selector);
1025 }
1026 v = get_desc_base(&table[selector >> 3]);
1027 return v;
1028 }
1029 #endif
1030
1031 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1032 {
1033 return vmx_pt_mode_is_host_guest() &&
1034 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1035 }
1036
1037 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1038 {
1039 u32 i;
1040
1041 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1042 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1043 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1044 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1045 for (i = 0; i < addr_range; i++) {
1046 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1047 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1048 }
1049 }
1050
1051 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1052 {
1053 u32 i;
1054
1055 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1056 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1057 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1058 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1059 for (i = 0; i < addr_range; i++) {
1060 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1061 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1062 }
1063 }
1064
1065 static void pt_guest_enter(struct vcpu_vmx *vmx)
1066 {
1067 if (vmx_pt_mode_is_system())
1068 return;
1069
1070 /*
1071 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1072 * Save host state before VM entry.
1073 */
1074 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1075 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1076 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1077 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1078 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1079 }
1080 }
1081
1082 static void pt_guest_exit(struct vcpu_vmx *vmx)
1083 {
1084 if (vmx_pt_mode_is_system())
1085 return;
1086
1087 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1088 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1089 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1090 }
1091
1092 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1093 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1094 }
1095
1096 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1097 unsigned long fs_base, unsigned long gs_base)
1098 {
1099 if (unlikely(fs_sel != host->fs_sel)) {
1100 if (!(fs_sel & 7))
1101 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1102 else
1103 vmcs_write16(HOST_FS_SELECTOR, 0);
1104 host->fs_sel = fs_sel;
1105 }
1106 if (unlikely(gs_sel != host->gs_sel)) {
1107 if (!(gs_sel & 7))
1108 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1109 else
1110 vmcs_write16(HOST_GS_SELECTOR, 0);
1111 host->gs_sel = gs_sel;
1112 }
1113 if (unlikely(fs_base != host->fs_base)) {
1114 vmcs_writel(HOST_FS_BASE, fs_base);
1115 host->fs_base = fs_base;
1116 }
1117 if (unlikely(gs_base != host->gs_base)) {
1118 vmcs_writel(HOST_GS_BASE, gs_base);
1119 host->gs_base = gs_base;
1120 }
1121 }
1122
1123 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1124 {
1125 struct vcpu_vmx *vmx = to_vmx(vcpu);
1126 struct vmcs_host_state *host_state;
1127 #ifdef CONFIG_X86_64
1128 int cpu = raw_smp_processor_id();
1129 #endif
1130 unsigned long fs_base, gs_base;
1131 u16 fs_sel, gs_sel;
1132 int i;
1133
1134 vmx->req_immediate_exit = false;
1135
1136 /*
1137 * Note that guest MSRs to be saved/restored can also be changed
1138 * when guest state is loaded. This happens when guest transitions
1139 * to/from long-mode by setting MSR_EFER.LMA.
1140 */
1141 if (!vmx->guest_msrs_ready) {
1142 vmx->guest_msrs_ready = true;
1143 for (i = 0; i < vmx->save_nmsrs; ++i)
1144 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1145 vmx->guest_msrs[i].data,
1146 vmx->guest_msrs[i].mask);
1147
1148 }
1149
1150 if (vmx->nested.need_vmcs12_to_shadow_sync)
1151 nested_sync_vmcs12_to_shadow(vcpu);
1152
1153 if (vmx->guest_state_loaded)
1154 return;
1155
1156 host_state = &vmx->loaded_vmcs->host_state;
1157
1158 /*
1159 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1160 * allow segment selectors with cpl > 0 or ti == 1.
1161 */
1162 host_state->ldt_sel = kvm_read_ldt();
1163
1164 #ifdef CONFIG_X86_64
1165 savesegment(ds, host_state->ds_sel);
1166 savesegment(es, host_state->es_sel);
1167
1168 gs_base = cpu_kernelmode_gs_base(cpu);
1169 if (likely(is_64bit_mm(current->mm))) {
1170 save_fsgs_for_kvm();
1171 fs_sel = current->thread.fsindex;
1172 gs_sel = current->thread.gsindex;
1173 fs_base = current->thread.fsbase;
1174 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1175 } else {
1176 savesegment(fs, fs_sel);
1177 savesegment(gs, gs_sel);
1178 fs_base = read_msr(MSR_FS_BASE);
1179 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1180 }
1181
1182 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1183 #else
1184 savesegment(fs, fs_sel);
1185 savesegment(gs, gs_sel);
1186 fs_base = segment_base(fs_sel);
1187 gs_base = segment_base(gs_sel);
1188 #endif
1189
1190 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1191 vmx->guest_state_loaded = true;
1192 }
1193
1194 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1195 {
1196 struct vmcs_host_state *host_state;
1197
1198 if (!vmx->guest_state_loaded)
1199 return;
1200
1201 host_state = &vmx->loaded_vmcs->host_state;
1202
1203 ++vmx->vcpu.stat.host_state_reload;
1204
1205 #ifdef CONFIG_X86_64
1206 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1207 #endif
1208 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1209 kvm_load_ldt(host_state->ldt_sel);
1210 #ifdef CONFIG_X86_64
1211 load_gs_index(host_state->gs_sel);
1212 #else
1213 loadsegment(gs, host_state->gs_sel);
1214 #endif
1215 }
1216 if (host_state->fs_sel & 7)
1217 loadsegment(fs, host_state->fs_sel);
1218 #ifdef CONFIG_X86_64
1219 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1220 loadsegment(ds, host_state->ds_sel);
1221 loadsegment(es, host_state->es_sel);
1222 }
1223 #endif
1224 invalidate_tss_limit();
1225 #ifdef CONFIG_X86_64
1226 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1227 #endif
1228 load_fixmap_gdt(raw_smp_processor_id());
1229 vmx->guest_state_loaded = false;
1230 vmx->guest_msrs_ready = false;
1231 }
1232
1233 #ifdef CONFIG_X86_64
1234 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1235 {
1236 preempt_disable();
1237 if (vmx->guest_state_loaded)
1238 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1239 preempt_enable();
1240 return vmx->msr_guest_kernel_gs_base;
1241 }
1242
1243 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1244 {
1245 preempt_disable();
1246 if (vmx->guest_state_loaded)
1247 wrmsrl(MSR_KERNEL_GS_BASE, data);
1248 preempt_enable();
1249 vmx->msr_guest_kernel_gs_base = data;
1250 }
1251 #endif
1252
1253 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1254 {
1255 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1256 struct pi_desc old, new;
1257 unsigned int dest;
1258
1259 /*
1260 * In case of hot-plug or hot-unplug, we may have to undo
1261 * vmx_vcpu_pi_put even if there is no assigned device. And we
1262 * always keep PI.NDST up to date for simplicity: it makes the
1263 * code easier, and CPU migration is not a fast path.
1264 */
1265 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1266 return;
1267
1268 /*
1269 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1270 * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1271 * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1272 * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1273 * correctly.
1274 */
1275 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1276 pi_clear_sn(pi_desc);
1277 goto after_clear_sn;
1278 }
1279
1280 /* The full case. */
1281 do {
1282 old.control = new.control = pi_desc->control;
1283
1284 dest = cpu_physical_id(cpu);
1285
1286 if (x2apic_enabled())
1287 new.ndst = dest;
1288 else
1289 new.ndst = (dest << 8) & 0xFF00;
1290
1291 new.sn = 0;
1292 } while (cmpxchg64(&pi_desc->control, old.control,
1293 new.control) != old.control);
1294
1295 after_clear_sn:
1296
1297 /*
1298 * Clear SN before reading the bitmap. The VT-d firmware
1299 * writes the bitmap and reads SN atomically (5.2.3 in the
1300 * spec), so it doesn't really have a memory barrier that
1301 * pairs with this, but we cannot do that and we need one.
1302 */
1303 smp_mb__after_atomic();
1304
1305 if (!pi_is_pir_empty(pi_desc))
1306 pi_set_on(pi_desc);
1307 }
1308
1309 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1310 {
1311 struct vcpu_vmx *vmx = to_vmx(vcpu);
1312 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1313
1314 if (!already_loaded) {
1315 loaded_vmcs_clear(vmx->loaded_vmcs);
1316 local_irq_disable();
1317
1318 /*
1319 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1320 * this cpu's percpu list, otherwise it may not yet be deleted
1321 * from its previous cpu's percpu list. Pairs with the
1322 * smb_wmb() in __loaded_vmcs_clear().
1323 */
1324 smp_rmb();
1325
1326 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1327 &per_cpu(loaded_vmcss_on_cpu, cpu));
1328 local_irq_enable();
1329 }
1330
1331 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1332 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1333 vmcs_load(vmx->loaded_vmcs->vmcs);
1334 indirect_branch_prediction_barrier();
1335 }
1336
1337 if (!already_loaded) {
1338 void *gdt = get_current_gdt_ro();
1339 unsigned long sysenter_esp;
1340
1341 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1342
1343 /*
1344 * Linux uses per-cpu TSS and GDT, so set these when switching
1345 * processors. See 22.2.4.
1346 */
1347 vmcs_writel(HOST_TR_BASE,
1348 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1349 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1350
1351 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1352 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1353
1354 vmx->loaded_vmcs->cpu = cpu;
1355 }
1356
1357 /* Setup TSC multiplier */
1358 if (kvm_has_tsc_control &&
1359 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1360 decache_tsc_multiplier(vmx);
1361 }
1362
1363 /*
1364 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1365 * vcpu mutex is already taken.
1366 */
1367 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1368 {
1369 struct vcpu_vmx *vmx = to_vmx(vcpu);
1370
1371 vmx_vcpu_load_vmcs(vcpu, cpu);
1372
1373 vmx_vcpu_pi_load(vcpu, cpu);
1374
1375 vmx->host_pkru = read_pkru();
1376 vmx->host_debugctlmsr = get_debugctlmsr();
1377 }
1378
1379 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1380 {
1381 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1382
1383 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1384 !irq_remapping_cap(IRQ_POSTING_CAP) ||
1385 !kvm_vcpu_apicv_active(vcpu))
1386 return;
1387
1388 /* Set SN when the vCPU is preempted */
1389 if (vcpu->preempted)
1390 pi_set_sn(pi_desc);
1391 }
1392
1393 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1394 {
1395 vmx_vcpu_pi_put(vcpu);
1396
1397 vmx_prepare_switch_to_host(to_vmx(vcpu));
1398 }
1399
1400 static bool emulation_required(struct kvm_vcpu *vcpu)
1401 {
1402 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1403 }
1404
1405 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1406 {
1407 struct vcpu_vmx *vmx = to_vmx(vcpu);
1408 unsigned long rflags, save_rflags;
1409
1410 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1411 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1412 rflags = vmcs_readl(GUEST_RFLAGS);
1413 if (vmx->rmode.vm86_active) {
1414 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1415 save_rflags = vmx->rmode.save_rflags;
1416 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1417 }
1418 vmx->rflags = rflags;
1419 }
1420 return vmx->rflags;
1421 }
1422
1423 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1424 {
1425 struct vcpu_vmx *vmx = to_vmx(vcpu);
1426 unsigned long old_rflags;
1427
1428 if (enable_unrestricted_guest) {
1429 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1430 vmx->rflags = rflags;
1431 vmcs_writel(GUEST_RFLAGS, rflags);
1432 return;
1433 }
1434
1435 old_rflags = vmx_get_rflags(vcpu);
1436 vmx->rflags = rflags;
1437 if (vmx->rmode.vm86_active) {
1438 vmx->rmode.save_rflags = rflags;
1439 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1440 }
1441 vmcs_writel(GUEST_RFLAGS, rflags);
1442
1443 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1444 vmx->emulation_required = emulation_required(vcpu);
1445 }
1446
1447 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1448 {
1449 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1450 int ret = 0;
1451
1452 if (interruptibility & GUEST_INTR_STATE_STI)
1453 ret |= KVM_X86_SHADOW_INT_STI;
1454 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1455 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1456
1457 return ret;
1458 }
1459
1460 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1461 {
1462 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1463 u32 interruptibility = interruptibility_old;
1464
1465 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1466
1467 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1468 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1469 else if (mask & KVM_X86_SHADOW_INT_STI)
1470 interruptibility |= GUEST_INTR_STATE_STI;
1471
1472 if ((interruptibility != interruptibility_old))
1473 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1474 }
1475
1476 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1477 {
1478 struct vcpu_vmx *vmx = to_vmx(vcpu);
1479 unsigned long value;
1480
1481 /*
1482 * Any MSR write that attempts to change bits marked reserved will
1483 * case a #GP fault.
1484 */
1485 if (data & vmx->pt_desc.ctl_bitmask)
1486 return 1;
1487
1488 /*
1489 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1490 * result in a #GP unless the same write also clears TraceEn.
1491 */
1492 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1493 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1494 return 1;
1495
1496 /*
1497 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1498 * and FabricEn would cause #GP, if
1499 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1500 */
1501 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1502 !(data & RTIT_CTL_FABRIC_EN) &&
1503 !intel_pt_validate_cap(vmx->pt_desc.caps,
1504 PT_CAP_single_range_output))
1505 return 1;
1506
1507 /*
1508 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1509 * utilize encodings marked reserved will casue a #GP fault.
1510 */
1511 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1512 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1513 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1514 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1515 return 1;
1516 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1517 PT_CAP_cycle_thresholds);
1518 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1519 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1520 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1521 return 1;
1522 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1523 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1524 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1525 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1526 return 1;
1527
1528 /*
1529 * If ADDRx_CFG is reserved or the encodings is >2 will
1530 * cause a #GP fault.
1531 */
1532 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1533 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1534 return 1;
1535 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1536 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1537 return 1;
1538 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1539 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1540 return 1;
1541 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1542 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1543 return 1;
1544
1545 return 0;
1546 }
1547
1548 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1549 {
1550 unsigned long rip;
1551
1552 /*
1553 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1554 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1555 * set when EPT misconfig occurs. In practice, real hardware updates
1556 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1557 * (namely Hyper-V) don't set it due to it being undefined behavior,
1558 * i.e. we end up advancing IP with some random value.
1559 */
1560 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1561 to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1562 rip = kvm_rip_read(vcpu);
1563 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1564 kvm_rip_write(vcpu, rip);
1565 } else {
1566 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1567 return 0;
1568 }
1569
1570 /* skipping an emulated instruction also counts */
1571 vmx_set_interrupt_shadow(vcpu, 0);
1572
1573 return 1;
1574 }
1575
1576
1577 /*
1578 * Recognizes a pending MTF VM-exit and records the nested state for later
1579 * delivery.
1580 */
1581 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1582 {
1583 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1584 struct vcpu_vmx *vmx = to_vmx(vcpu);
1585
1586 if (!is_guest_mode(vcpu))
1587 return;
1588
1589 /*
1590 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1591 * T-bit traps. As instruction emulation is completed (i.e. at the
1592 * instruction boundary), any #DB exception pending delivery must be a
1593 * debug-trap. Record the pending MTF state to be delivered in
1594 * vmx_check_nested_events().
1595 */
1596 if (nested_cpu_has_mtf(vmcs12) &&
1597 (!vcpu->arch.exception.pending ||
1598 vcpu->arch.exception.nr == DB_VECTOR))
1599 vmx->nested.mtf_pending = true;
1600 else
1601 vmx->nested.mtf_pending = false;
1602 }
1603
1604 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1605 {
1606 vmx_update_emulated_instruction(vcpu);
1607 return skip_emulated_instruction(vcpu);
1608 }
1609
1610 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1611 {
1612 /*
1613 * Ensure that we clear the HLT state in the VMCS. We don't need to
1614 * explicitly skip the instruction because if the HLT state is set,
1615 * then the instruction is already executing and RIP has already been
1616 * advanced.
1617 */
1618 if (kvm_hlt_in_guest(vcpu->kvm) &&
1619 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1620 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1621 }
1622
1623 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1624 {
1625 struct vcpu_vmx *vmx = to_vmx(vcpu);
1626 unsigned nr = vcpu->arch.exception.nr;
1627 bool has_error_code = vcpu->arch.exception.has_error_code;
1628 u32 error_code = vcpu->arch.exception.error_code;
1629 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1630
1631 kvm_deliver_exception_payload(vcpu);
1632
1633 if (has_error_code) {
1634 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1635 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1636 }
1637
1638 if (vmx->rmode.vm86_active) {
1639 int inc_eip = 0;
1640 if (kvm_exception_is_soft(nr))
1641 inc_eip = vcpu->arch.event_exit_inst_len;
1642 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1643 return;
1644 }
1645
1646 WARN_ON_ONCE(vmx->emulation_required);
1647
1648 if (kvm_exception_is_soft(nr)) {
1649 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1650 vmx->vcpu.arch.event_exit_inst_len);
1651 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1652 } else
1653 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1654
1655 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1656
1657 vmx_clear_hlt(vcpu);
1658 }
1659
1660 /*
1661 * Swap MSR entry in host/guest MSR entry array.
1662 */
1663 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1664 {
1665 struct shared_msr_entry tmp;
1666
1667 tmp = vmx->guest_msrs[to];
1668 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1669 vmx->guest_msrs[from] = tmp;
1670 }
1671
1672 /*
1673 * Set up the vmcs to automatically save and restore system
1674 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1675 * mode, as fiddling with msrs is very expensive.
1676 */
1677 static void setup_msrs(struct vcpu_vmx *vmx)
1678 {
1679 int save_nmsrs, index;
1680
1681 save_nmsrs = 0;
1682 #ifdef CONFIG_X86_64
1683 /*
1684 * The SYSCALL MSRs are only needed on long mode guests, and only
1685 * when EFER.SCE is set.
1686 */
1687 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1688 index = __find_msr_index(vmx, MSR_STAR);
1689 if (index >= 0)
1690 move_msr_up(vmx, index, save_nmsrs++);
1691 index = __find_msr_index(vmx, MSR_LSTAR);
1692 if (index >= 0)
1693 move_msr_up(vmx, index, save_nmsrs++);
1694 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1695 if (index >= 0)
1696 move_msr_up(vmx, index, save_nmsrs++);
1697 }
1698 #endif
1699 index = __find_msr_index(vmx, MSR_EFER);
1700 if (index >= 0 && update_transition_efer(vmx, index))
1701 move_msr_up(vmx, index, save_nmsrs++);
1702 index = __find_msr_index(vmx, MSR_TSC_AUX);
1703 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1704 move_msr_up(vmx, index, save_nmsrs++);
1705 index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1706 if (index >= 0)
1707 move_msr_up(vmx, index, save_nmsrs++);
1708
1709 vmx->save_nmsrs = save_nmsrs;
1710 vmx->guest_msrs_ready = false;
1711
1712 if (cpu_has_vmx_msr_bitmap())
1713 vmx_update_msr_bitmap(&vmx->vcpu);
1714 }
1715
1716 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1717 {
1718 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1719
1720 if (is_guest_mode(vcpu) &&
1721 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1722 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1723
1724 return vcpu->arch.tsc_offset;
1725 }
1726
1727 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1728 {
1729 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1730 u64 g_tsc_offset = 0;
1731
1732 /*
1733 * We're here if L1 chose not to trap WRMSR to TSC. According
1734 * to the spec, this should set L1's TSC; The offset that L1
1735 * set for L2 remains unchanged, and still needs to be added
1736 * to the newly set TSC to get L2's TSC.
1737 */
1738 if (is_guest_mode(vcpu) &&
1739 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1740 g_tsc_offset = vmcs12->tsc_offset;
1741
1742 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1743 vcpu->arch.tsc_offset - g_tsc_offset,
1744 offset);
1745 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1746 return offset + g_tsc_offset;
1747 }
1748
1749 /*
1750 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1751 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1752 * all guests if the "nested" module option is off, and can also be disabled
1753 * for a single guest by disabling its VMX cpuid bit.
1754 */
1755 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1756 {
1757 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1758 }
1759
1760 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1761 uint64_t val)
1762 {
1763 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1764
1765 return !(val & ~valid_bits);
1766 }
1767
1768 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1769 {
1770 switch (msr->index) {
1771 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1772 if (!nested)
1773 return 1;
1774 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1775 default:
1776 return 1;
1777 }
1778 }
1779
1780 /*
1781 * Reads an msr value (of 'msr_index') into 'pdata'.
1782 * Returns 0 on success, non-0 otherwise.
1783 * Assumes vcpu_load() was already called.
1784 */
1785 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1786 {
1787 struct vcpu_vmx *vmx = to_vmx(vcpu);
1788 struct shared_msr_entry *msr;
1789 u32 index;
1790
1791 switch (msr_info->index) {
1792 #ifdef CONFIG_X86_64
1793 case MSR_FS_BASE:
1794 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1795 break;
1796 case MSR_GS_BASE:
1797 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1798 break;
1799 case MSR_KERNEL_GS_BASE:
1800 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1801 break;
1802 #endif
1803 case MSR_EFER:
1804 return kvm_get_msr_common(vcpu, msr_info);
1805 case MSR_IA32_TSX_CTRL:
1806 if (!msr_info->host_initiated &&
1807 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1808 return 1;
1809 goto find_shared_msr;
1810 case MSR_IA32_UMWAIT_CONTROL:
1811 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1812 return 1;
1813
1814 msr_info->data = vmx->msr_ia32_umwait_control;
1815 break;
1816 case MSR_IA32_SPEC_CTRL:
1817 if (!msr_info->host_initiated &&
1818 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1819 return 1;
1820
1821 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1822 break;
1823 case MSR_IA32_SYSENTER_CS:
1824 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1825 break;
1826 case MSR_IA32_SYSENTER_EIP:
1827 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1828 break;
1829 case MSR_IA32_SYSENTER_ESP:
1830 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1831 break;
1832 case MSR_IA32_BNDCFGS:
1833 if (!kvm_mpx_supported() ||
1834 (!msr_info->host_initiated &&
1835 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1836 return 1;
1837 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1838 break;
1839 case MSR_IA32_MCG_EXT_CTL:
1840 if (!msr_info->host_initiated &&
1841 !(vmx->msr_ia32_feature_control &
1842 FEAT_CTL_LMCE_ENABLED))
1843 return 1;
1844 msr_info->data = vcpu->arch.mcg_ext_ctl;
1845 break;
1846 case MSR_IA32_FEAT_CTL:
1847 msr_info->data = vmx->msr_ia32_feature_control;
1848 break;
1849 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1850 if (!nested_vmx_allowed(vcpu))
1851 return 1;
1852 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1853 &msr_info->data))
1854 return 1;
1855 /*
1856 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1857 * Hyper-V versions are still trying to use corresponding
1858 * features when they are exposed. Filter out the essential
1859 * minimum.
1860 */
1861 if (!msr_info->host_initiated &&
1862 vmx->nested.enlightened_vmcs_enabled)
1863 nested_evmcs_filter_control_msr(msr_info->index,
1864 &msr_info->data);
1865 break;
1866 case MSR_IA32_RTIT_CTL:
1867 if (!vmx_pt_mode_is_host_guest())
1868 return 1;
1869 msr_info->data = vmx->pt_desc.guest.ctl;
1870 break;
1871 case MSR_IA32_RTIT_STATUS:
1872 if (!vmx_pt_mode_is_host_guest())
1873 return 1;
1874 msr_info->data = vmx->pt_desc.guest.status;
1875 break;
1876 case MSR_IA32_RTIT_CR3_MATCH:
1877 if (!vmx_pt_mode_is_host_guest() ||
1878 !intel_pt_validate_cap(vmx->pt_desc.caps,
1879 PT_CAP_cr3_filtering))
1880 return 1;
1881 msr_info->data = vmx->pt_desc.guest.cr3_match;
1882 break;
1883 case MSR_IA32_RTIT_OUTPUT_BASE:
1884 if (!vmx_pt_mode_is_host_guest() ||
1885 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1886 PT_CAP_topa_output) &&
1887 !intel_pt_validate_cap(vmx->pt_desc.caps,
1888 PT_CAP_single_range_output)))
1889 return 1;
1890 msr_info->data = vmx->pt_desc.guest.output_base;
1891 break;
1892 case MSR_IA32_RTIT_OUTPUT_MASK:
1893 if (!vmx_pt_mode_is_host_guest() ||
1894 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1895 PT_CAP_topa_output) &&
1896 !intel_pt_validate_cap(vmx->pt_desc.caps,
1897 PT_CAP_single_range_output)))
1898 return 1;
1899 msr_info->data = vmx->pt_desc.guest.output_mask;
1900 break;
1901 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1902 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1903 if (!vmx_pt_mode_is_host_guest() ||
1904 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1905 PT_CAP_num_address_ranges)))
1906 return 1;
1907 if (index % 2)
1908 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1909 else
1910 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1911 break;
1912 case MSR_TSC_AUX:
1913 if (!msr_info->host_initiated &&
1914 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1915 return 1;
1916 goto find_shared_msr;
1917 default:
1918 find_shared_msr:
1919 msr = find_msr_entry(vmx, msr_info->index);
1920 if (msr) {
1921 msr_info->data = msr->data;
1922 break;
1923 }
1924 return kvm_get_msr_common(vcpu, msr_info);
1925 }
1926
1927 return 0;
1928 }
1929
1930 /*
1931 * Writes msr value into the appropriate "register".
1932 * Returns 0 on success, non-0 otherwise.
1933 * Assumes vcpu_load() was already called.
1934 */
1935 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1936 {
1937 struct vcpu_vmx *vmx = to_vmx(vcpu);
1938 struct shared_msr_entry *msr;
1939 int ret = 0;
1940 u32 msr_index = msr_info->index;
1941 u64 data = msr_info->data;
1942 u32 index;
1943
1944 switch (msr_index) {
1945 case MSR_EFER:
1946 ret = kvm_set_msr_common(vcpu, msr_info);
1947 break;
1948 #ifdef CONFIG_X86_64
1949 case MSR_FS_BASE:
1950 vmx_segment_cache_clear(vmx);
1951 vmcs_writel(GUEST_FS_BASE, data);
1952 break;
1953 case MSR_GS_BASE:
1954 vmx_segment_cache_clear(vmx);
1955 vmcs_writel(GUEST_GS_BASE, data);
1956 break;
1957 case MSR_KERNEL_GS_BASE:
1958 vmx_write_guest_kernel_gs_base(vmx, data);
1959 break;
1960 #endif
1961 case MSR_IA32_SYSENTER_CS:
1962 if (is_guest_mode(vcpu))
1963 get_vmcs12(vcpu)->guest_sysenter_cs = data;
1964 vmcs_write32(GUEST_SYSENTER_CS, data);
1965 break;
1966 case MSR_IA32_SYSENTER_EIP:
1967 if (is_guest_mode(vcpu))
1968 get_vmcs12(vcpu)->guest_sysenter_eip = data;
1969 vmcs_writel(GUEST_SYSENTER_EIP, data);
1970 break;
1971 case MSR_IA32_SYSENTER_ESP:
1972 if (is_guest_mode(vcpu))
1973 get_vmcs12(vcpu)->guest_sysenter_esp = data;
1974 vmcs_writel(GUEST_SYSENTER_ESP, data);
1975 break;
1976 case MSR_IA32_DEBUGCTLMSR:
1977 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1978 VM_EXIT_SAVE_DEBUG_CONTROLS)
1979 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1980
1981 ret = kvm_set_msr_common(vcpu, msr_info);
1982 break;
1983
1984 case MSR_IA32_BNDCFGS:
1985 if (!kvm_mpx_supported() ||
1986 (!msr_info->host_initiated &&
1987 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1988 return 1;
1989 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1990 (data & MSR_IA32_BNDCFGS_RSVD))
1991 return 1;
1992 vmcs_write64(GUEST_BNDCFGS, data);
1993 break;
1994 case MSR_IA32_UMWAIT_CONTROL:
1995 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1996 return 1;
1997
1998 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
1999 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2000 return 1;
2001
2002 vmx->msr_ia32_umwait_control = data;
2003 break;
2004 case MSR_IA32_SPEC_CTRL:
2005 if (!msr_info->host_initiated &&
2006 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2007 return 1;
2008
2009 if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2010 return 1;
2011
2012 vmx->spec_ctrl = data;
2013 if (!data)
2014 break;
2015
2016 /*
2017 * For non-nested:
2018 * When it's written (to non-zero) for the first time, pass
2019 * it through.
2020 *
2021 * For nested:
2022 * The handling of the MSR bitmap for L2 guests is done in
2023 * nested_vmx_prepare_msr_bitmap. We should not touch the
2024 * vmcs02.msr_bitmap here since it gets completely overwritten
2025 * in the merging. We update the vmcs01 here for L1 as well
2026 * since it will end up touching the MSR anyway now.
2027 */
2028 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2029 MSR_IA32_SPEC_CTRL,
2030 MSR_TYPE_RW);
2031 break;
2032 case MSR_IA32_TSX_CTRL:
2033 if (!msr_info->host_initiated &&
2034 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2035 return 1;
2036 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2037 return 1;
2038 goto find_shared_msr;
2039 case MSR_IA32_PRED_CMD:
2040 if (!msr_info->host_initiated &&
2041 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2042 return 1;
2043
2044 if (data & ~PRED_CMD_IBPB)
2045 return 1;
2046 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2047 return 1;
2048 if (!data)
2049 break;
2050
2051 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2052
2053 /*
2054 * For non-nested:
2055 * When it's written (to non-zero) for the first time, pass
2056 * it through.
2057 *
2058 * For nested:
2059 * The handling of the MSR bitmap for L2 guests is done in
2060 * nested_vmx_prepare_msr_bitmap. We should not touch the
2061 * vmcs02.msr_bitmap here since it gets completely overwritten
2062 * in the merging.
2063 */
2064 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2065 MSR_TYPE_W);
2066 break;
2067 case MSR_IA32_CR_PAT:
2068 if (!kvm_pat_valid(data))
2069 return 1;
2070
2071 if (is_guest_mode(vcpu) &&
2072 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2073 get_vmcs12(vcpu)->guest_ia32_pat = data;
2074
2075 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2076 vmcs_write64(GUEST_IA32_PAT, data);
2077 vcpu->arch.pat = data;
2078 break;
2079 }
2080 ret = kvm_set_msr_common(vcpu, msr_info);
2081 break;
2082 case MSR_IA32_TSC_ADJUST:
2083 ret = kvm_set_msr_common(vcpu, msr_info);
2084 break;
2085 case MSR_IA32_MCG_EXT_CTL:
2086 if ((!msr_info->host_initiated &&
2087 !(to_vmx(vcpu)->msr_ia32_feature_control &
2088 FEAT_CTL_LMCE_ENABLED)) ||
2089 (data & ~MCG_EXT_CTL_LMCE_EN))
2090 return 1;
2091 vcpu->arch.mcg_ext_ctl = data;
2092 break;
2093 case MSR_IA32_FEAT_CTL:
2094 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2095 (to_vmx(vcpu)->msr_ia32_feature_control &
2096 FEAT_CTL_LOCKED && !msr_info->host_initiated))
2097 return 1;
2098 vmx->msr_ia32_feature_control = data;
2099 if (msr_info->host_initiated && data == 0)
2100 vmx_leave_nested(vcpu);
2101 break;
2102 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2103 if (!msr_info->host_initiated)
2104 return 1; /* they are read-only */
2105 if (!nested_vmx_allowed(vcpu))
2106 return 1;
2107 return vmx_set_vmx_msr(vcpu, msr_index, data);
2108 case MSR_IA32_RTIT_CTL:
2109 if (!vmx_pt_mode_is_host_guest() ||
2110 vmx_rtit_ctl_check(vcpu, data) ||
2111 vmx->nested.vmxon)
2112 return 1;
2113 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2114 vmx->pt_desc.guest.ctl = data;
2115 pt_update_intercept_for_msr(vmx);
2116 break;
2117 case MSR_IA32_RTIT_STATUS:
2118 if (!pt_can_write_msr(vmx))
2119 return 1;
2120 if (data & MSR_IA32_RTIT_STATUS_MASK)
2121 return 1;
2122 vmx->pt_desc.guest.status = data;
2123 break;
2124 case MSR_IA32_RTIT_CR3_MATCH:
2125 if (!pt_can_write_msr(vmx))
2126 return 1;
2127 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2128 PT_CAP_cr3_filtering))
2129 return 1;
2130 vmx->pt_desc.guest.cr3_match = data;
2131 break;
2132 case MSR_IA32_RTIT_OUTPUT_BASE:
2133 if (!pt_can_write_msr(vmx))
2134 return 1;
2135 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2136 PT_CAP_topa_output) &&
2137 !intel_pt_validate_cap(vmx->pt_desc.caps,
2138 PT_CAP_single_range_output))
2139 return 1;
2140 if (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)
2141 return 1;
2142 vmx->pt_desc.guest.output_base = data;
2143 break;
2144 case MSR_IA32_RTIT_OUTPUT_MASK:
2145 if (!pt_can_write_msr(vmx))
2146 return 1;
2147 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2148 PT_CAP_topa_output) &&
2149 !intel_pt_validate_cap(vmx->pt_desc.caps,
2150 PT_CAP_single_range_output))
2151 return 1;
2152 vmx->pt_desc.guest.output_mask = data;
2153 break;
2154 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2155 if (!pt_can_write_msr(vmx))
2156 return 1;
2157 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2158 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2159 PT_CAP_num_address_ranges))
2160 return 1;
2161 if (is_noncanonical_address(data, vcpu))
2162 return 1;
2163 if (index % 2)
2164 vmx->pt_desc.guest.addr_b[index / 2] = data;
2165 else
2166 vmx->pt_desc.guest.addr_a[index / 2] = data;
2167 break;
2168 case MSR_TSC_AUX:
2169 if (!msr_info->host_initiated &&
2170 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2171 return 1;
2172 /* Check reserved bit, higher 32 bits should be zero */
2173 if ((data >> 32) != 0)
2174 return 1;
2175 goto find_shared_msr;
2176
2177 default:
2178 find_shared_msr:
2179 msr = find_msr_entry(vmx, msr_index);
2180 if (msr)
2181 ret = vmx_set_guest_msr(vmx, msr, data);
2182 else
2183 ret = kvm_set_msr_common(vcpu, msr_info);
2184 }
2185
2186 return ret;
2187 }
2188
2189 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2190 {
2191 kvm_register_mark_available(vcpu, reg);
2192
2193 switch (reg) {
2194 case VCPU_REGS_RSP:
2195 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2196 break;
2197 case VCPU_REGS_RIP:
2198 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2199 break;
2200 case VCPU_EXREG_PDPTR:
2201 if (enable_ept)
2202 ept_save_pdptrs(vcpu);
2203 break;
2204 case VCPU_EXREG_CR3:
2205 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2206 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2207 break;
2208 default:
2209 WARN_ON_ONCE(1);
2210 break;
2211 }
2212 }
2213
2214 static __init int cpu_has_kvm_support(void)
2215 {
2216 return cpu_has_vmx();
2217 }
2218
2219 static __init int vmx_disabled_by_bios(void)
2220 {
2221 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2222 !boot_cpu_has(X86_FEATURE_VMX);
2223 }
2224
2225 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2226 {
2227 u64 msr;
2228
2229 cr4_set_bits(X86_CR4_VMXE);
2230 intel_pt_handle_vmx(1);
2231
2232 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2233 _ASM_EXTABLE(1b, %l[fault])
2234 : : [vmxon_pointer] "m"(vmxon_pointer)
2235 : : fault);
2236 return 0;
2237
2238 fault:
2239 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2240 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2241 intel_pt_handle_vmx(0);
2242 cr4_clear_bits(X86_CR4_VMXE);
2243
2244 return -EFAULT;
2245 }
2246
2247 static int hardware_enable(void)
2248 {
2249 int cpu = raw_smp_processor_id();
2250 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2251 int r;
2252
2253 if (cr4_read_shadow() & X86_CR4_VMXE)
2254 return -EBUSY;
2255
2256 /*
2257 * This can happen if we hot-added a CPU but failed to allocate
2258 * VP assist page for it.
2259 */
2260 if (static_branch_unlikely(&enable_evmcs) &&
2261 !hv_get_vp_assist_page(cpu))
2262 return -EFAULT;
2263
2264 r = kvm_cpu_vmxon(phys_addr);
2265 if (r)
2266 return r;
2267
2268 if (enable_ept)
2269 ept_sync_global();
2270
2271 return 0;
2272 }
2273
2274 static void vmclear_local_loaded_vmcss(void)
2275 {
2276 int cpu = raw_smp_processor_id();
2277 struct loaded_vmcs *v, *n;
2278
2279 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2280 loaded_vmcss_on_cpu_link)
2281 __loaded_vmcs_clear(v);
2282 }
2283
2284
2285 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2286 * tricks.
2287 */
2288 static void kvm_cpu_vmxoff(void)
2289 {
2290 asm volatile (__ex("vmxoff"));
2291
2292 intel_pt_handle_vmx(0);
2293 cr4_clear_bits(X86_CR4_VMXE);
2294 }
2295
2296 static void hardware_disable(void)
2297 {
2298 vmclear_local_loaded_vmcss();
2299 kvm_cpu_vmxoff();
2300 }
2301
2302 /*
2303 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2304 * directly instead of going through cpu_has(), to ensure KVM is trapping
2305 * ENCLS whenever it's supported in hardware. It does not matter whether
2306 * the host OS supports or has enabled SGX.
2307 */
2308 static bool cpu_has_sgx(void)
2309 {
2310 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2311 }
2312
2313 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2314 u32 msr, u32 *result)
2315 {
2316 u32 vmx_msr_low, vmx_msr_high;
2317 u32 ctl = ctl_min | ctl_opt;
2318
2319 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2320
2321 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2322 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2323
2324 /* Ensure minimum (required) set of control bits are supported. */
2325 if (ctl_min & ~ctl)
2326 return -EIO;
2327
2328 *result = ctl;
2329 return 0;
2330 }
2331
2332 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2333 struct vmx_capability *vmx_cap)
2334 {
2335 u32 vmx_msr_low, vmx_msr_high;
2336 u32 min, opt, min2, opt2;
2337 u32 _pin_based_exec_control = 0;
2338 u32 _cpu_based_exec_control = 0;
2339 u32 _cpu_based_2nd_exec_control = 0;
2340 u32 _vmexit_control = 0;
2341 u32 _vmentry_control = 0;
2342
2343 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2344 min = CPU_BASED_HLT_EXITING |
2345 #ifdef CONFIG_X86_64
2346 CPU_BASED_CR8_LOAD_EXITING |
2347 CPU_BASED_CR8_STORE_EXITING |
2348 #endif
2349 CPU_BASED_CR3_LOAD_EXITING |
2350 CPU_BASED_CR3_STORE_EXITING |
2351 CPU_BASED_UNCOND_IO_EXITING |
2352 CPU_BASED_MOV_DR_EXITING |
2353 CPU_BASED_USE_TSC_OFFSETTING |
2354 CPU_BASED_MWAIT_EXITING |
2355 CPU_BASED_MONITOR_EXITING |
2356 CPU_BASED_INVLPG_EXITING |
2357 CPU_BASED_RDPMC_EXITING;
2358
2359 opt = CPU_BASED_TPR_SHADOW |
2360 CPU_BASED_USE_MSR_BITMAPS |
2361 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2362 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2363 &_cpu_based_exec_control) < 0)
2364 return -EIO;
2365 #ifdef CONFIG_X86_64
2366 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2367 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2368 ~CPU_BASED_CR8_STORE_EXITING;
2369 #endif
2370 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2371 min2 = 0;
2372 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2373 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2374 SECONDARY_EXEC_WBINVD_EXITING |
2375 SECONDARY_EXEC_ENABLE_VPID |
2376 SECONDARY_EXEC_ENABLE_EPT |
2377 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2378 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2379 SECONDARY_EXEC_DESC |
2380 SECONDARY_EXEC_RDTSCP |
2381 SECONDARY_EXEC_ENABLE_INVPCID |
2382 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2383 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2384 SECONDARY_EXEC_SHADOW_VMCS |
2385 SECONDARY_EXEC_XSAVES |
2386 SECONDARY_EXEC_RDSEED_EXITING |
2387 SECONDARY_EXEC_RDRAND_EXITING |
2388 SECONDARY_EXEC_ENABLE_PML |
2389 SECONDARY_EXEC_TSC_SCALING |
2390 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2391 SECONDARY_EXEC_PT_USE_GPA |
2392 SECONDARY_EXEC_PT_CONCEAL_VMX |
2393 SECONDARY_EXEC_ENABLE_VMFUNC;
2394 if (cpu_has_sgx())
2395 opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2396 if (adjust_vmx_controls(min2, opt2,
2397 MSR_IA32_VMX_PROCBASED_CTLS2,
2398 &_cpu_based_2nd_exec_control) < 0)
2399 return -EIO;
2400 }
2401 #ifndef CONFIG_X86_64
2402 if (!(_cpu_based_2nd_exec_control &
2403 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2404 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2405 #endif
2406
2407 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2408 _cpu_based_2nd_exec_control &= ~(
2409 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2410 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2411 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2412
2413 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2414 &vmx_cap->ept, &vmx_cap->vpid);
2415
2416 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2417 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2418 enabled */
2419 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2420 CPU_BASED_CR3_STORE_EXITING |
2421 CPU_BASED_INVLPG_EXITING);
2422 } else if (vmx_cap->ept) {
2423 vmx_cap->ept = 0;
2424 pr_warn_once("EPT CAP should not exist if not support "
2425 "1-setting enable EPT VM-execution control\n");
2426 }
2427 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2428 vmx_cap->vpid) {
2429 vmx_cap->vpid = 0;
2430 pr_warn_once("VPID CAP should not exist if not support "
2431 "1-setting enable VPID VM-execution control\n");
2432 }
2433
2434 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2435 #ifdef CONFIG_X86_64
2436 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2437 #endif
2438 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2439 VM_EXIT_LOAD_IA32_PAT |
2440 VM_EXIT_LOAD_IA32_EFER |
2441 VM_EXIT_CLEAR_BNDCFGS |
2442 VM_EXIT_PT_CONCEAL_PIP |
2443 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2444 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2445 &_vmexit_control) < 0)
2446 return -EIO;
2447
2448 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2449 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2450 PIN_BASED_VMX_PREEMPTION_TIMER;
2451 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2452 &_pin_based_exec_control) < 0)
2453 return -EIO;
2454
2455 if (cpu_has_broken_vmx_preemption_timer())
2456 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2457 if (!(_cpu_based_2nd_exec_control &
2458 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2459 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2460
2461 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2462 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2463 VM_ENTRY_LOAD_IA32_PAT |
2464 VM_ENTRY_LOAD_IA32_EFER |
2465 VM_ENTRY_LOAD_BNDCFGS |
2466 VM_ENTRY_PT_CONCEAL_PIP |
2467 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2468 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2469 &_vmentry_control) < 0)
2470 return -EIO;
2471
2472 /*
2473 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2474 * can't be used due to an errata where VM Exit may incorrectly clear
2475 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2476 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2477 */
2478 if (boot_cpu_data.x86 == 0x6) {
2479 switch (boot_cpu_data.x86_model) {
2480 case 26: /* AAK155 */
2481 case 30: /* AAP115 */
2482 case 37: /* AAT100 */
2483 case 44: /* BC86,AAY89,BD102 */
2484 case 46: /* BA97 */
2485 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2486 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2487 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2488 "does not work properly. Using workaround\n");
2489 break;
2490 default:
2491 break;
2492 }
2493 }
2494
2495
2496 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2497
2498 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2499 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2500 return -EIO;
2501
2502 #ifdef CONFIG_X86_64
2503 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2504 if (vmx_msr_high & (1u<<16))
2505 return -EIO;
2506 #endif
2507
2508 /* Require Write-Back (WB) memory type for VMCS accesses. */
2509 if (((vmx_msr_high >> 18) & 15) != 6)
2510 return -EIO;
2511
2512 vmcs_conf->size = vmx_msr_high & 0x1fff;
2513 vmcs_conf->order = get_order(vmcs_conf->size);
2514 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2515
2516 vmcs_conf->revision_id = vmx_msr_low;
2517
2518 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2519 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2520 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2521 vmcs_conf->vmexit_ctrl = _vmexit_control;
2522 vmcs_conf->vmentry_ctrl = _vmentry_control;
2523
2524 if (static_branch_unlikely(&enable_evmcs))
2525 evmcs_sanitize_exec_ctrls(vmcs_conf);
2526
2527 return 0;
2528 }
2529
2530 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2531 {
2532 int node = cpu_to_node(cpu);
2533 struct page *pages;
2534 struct vmcs *vmcs;
2535
2536 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2537 if (!pages)
2538 return NULL;
2539 vmcs = page_address(pages);
2540 memset(vmcs, 0, vmcs_config.size);
2541
2542 /* KVM supports Enlightened VMCS v1 only */
2543 if (static_branch_unlikely(&enable_evmcs))
2544 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2545 else
2546 vmcs->hdr.revision_id = vmcs_config.revision_id;
2547
2548 if (shadow)
2549 vmcs->hdr.shadow_vmcs = 1;
2550 return vmcs;
2551 }
2552
2553 void free_vmcs(struct vmcs *vmcs)
2554 {
2555 free_pages((unsigned long)vmcs, vmcs_config.order);
2556 }
2557
2558 /*
2559 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2560 */
2561 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2562 {
2563 if (!loaded_vmcs->vmcs)
2564 return;
2565 loaded_vmcs_clear(loaded_vmcs);
2566 free_vmcs(loaded_vmcs->vmcs);
2567 loaded_vmcs->vmcs = NULL;
2568 if (loaded_vmcs->msr_bitmap)
2569 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2570 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2571 }
2572
2573 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2574 {
2575 loaded_vmcs->vmcs = alloc_vmcs(false);
2576 if (!loaded_vmcs->vmcs)
2577 return -ENOMEM;
2578
2579 vmcs_clear(loaded_vmcs->vmcs);
2580
2581 loaded_vmcs->shadow_vmcs = NULL;
2582 loaded_vmcs->hv_timer_soft_disabled = false;
2583 loaded_vmcs->cpu = -1;
2584 loaded_vmcs->launched = 0;
2585
2586 if (cpu_has_vmx_msr_bitmap()) {
2587 loaded_vmcs->msr_bitmap = (unsigned long *)
2588 __get_free_page(GFP_KERNEL_ACCOUNT);
2589 if (!loaded_vmcs->msr_bitmap)
2590 goto out_vmcs;
2591 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2592
2593 if (IS_ENABLED(CONFIG_HYPERV) &&
2594 static_branch_unlikely(&enable_evmcs) &&
2595 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2596 struct hv_enlightened_vmcs *evmcs =
2597 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2598
2599 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2600 }
2601 }
2602
2603 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2604 memset(&loaded_vmcs->controls_shadow, 0,
2605 sizeof(struct vmcs_controls_shadow));
2606
2607 return 0;
2608
2609 out_vmcs:
2610 free_loaded_vmcs(loaded_vmcs);
2611 return -ENOMEM;
2612 }
2613
2614 static void free_kvm_area(void)
2615 {
2616 int cpu;
2617
2618 for_each_possible_cpu(cpu) {
2619 free_vmcs(per_cpu(vmxarea, cpu));
2620 per_cpu(vmxarea, cpu) = NULL;
2621 }
2622 }
2623
2624 static __init int alloc_kvm_area(void)
2625 {
2626 int cpu;
2627
2628 for_each_possible_cpu(cpu) {
2629 struct vmcs *vmcs;
2630
2631 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2632 if (!vmcs) {
2633 free_kvm_area();
2634 return -ENOMEM;
2635 }
2636
2637 /*
2638 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2639 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2640 * revision_id reported by MSR_IA32_VMX_BASIC.
2641 *
2642 * However, even though not explicitly documented by
2643 * TLFS, VMXArea passed as VMXON argument should
2644 * still be marked with revision_id reported by
2645 * physical CPU.
2646 */
2647 if (static_branch_unlikely(&enable_evmcs))
2648 vmcs->hdr.revision_id = vmcs_config.revision_id;
2649
2650 per_cpu(vmxarea, cpu) = vmcs;
2651 }
2652 return 0;
2653 }
2654
2655 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2656 struct kvm_segment *save)
2657 {
2658 if (!emulate_invalid_guest_state) {
2659 /*
2660 * CS and SS RPL should be equal during guest entry according
2661 * to VMX spec, but in reality it is not always so. Since vcpu
2662 * is in the middle of the transition from real mode to
2663 * protected mode it is safe to assume that RPL 0 is a good
2664 * default value.
2665 */
2666 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2667 save->selector &= ~SEGMENT_RPL_MASK;
2668 save->dpl = save->selector & SEGMENT_RPL_MASK;
2669 save->s = 1;
2670 }
2671 vmx_set_segment(vcpu, save, seg);
2672 }
2673
2674 static void enter_pmode(struct kvm_vcpu *vcpu)
2675 {
2676 unsigned long flags;
2677 struct vcpu_vmx *vmx = to_vmx(vcpu);
2678
2679 /*
2680 * Update real mode segment cache. It may be not up-to-date if sement
2681 * register was written while vcpu was in a guest mode.
2682 */
2683 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2684 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2685 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2686 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2687 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2688 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2689
2690 vmx->rmode.vm86_active = 0;
2691
2692 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2693
2694 flags = vmcs_readl(GUEST_RFLAGS);
2695 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2696 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2697 vmcs_writel(GUEST_RFLAGS, flags);
2698
2699 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2700 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2701
2702 update_exception_bitmap(vcpu);
2703
2704 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2705 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2706 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2707 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2708 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2709 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2710 }
2711
2712 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2713 {
2714 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2715 struct kvm_segment var = *save;
2716
2717 var.dpl = 0x3;
2718 if (seg == VCPU_SREG_CS)
2719 var.type = 0x3;
2720
2721 if (!emulate_invalid_guest_state) {
2722 var.selector = var.base >> 4;
2723 var.base = var.base & 0xffff0;
2724 var.limit = 0xffff;
2725 var.g = 0;
2726 var.db = 0;
2727 var.present = 1;
2728 var.s = 1;
2729 var.l = 0;
2730 var.unusable = 0;
2731 var.type = 0x3;
2732 var.avl = 0;
2733 if (save->base & 0xf)
2734 printk_once(KERN_WARNING "kvm: segment base is not "
2735 "paragraph aligned when entering "
2736 "protected mode (seg=%d)", seg);
2737 }
2738
2739 vmcs_write16(sf->selector, var.selector);
2740 vmcs_writel(sf->base, var.base);
2741 vmcs_write32(sf->limit, var.limit);
2742 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2743 }
2744
2745 static void enter_rmode(struct kvm_vcpu *vcpu)
2746 {
2747 unsigned long flags;
2748 struct vcpu_vmx *vmx = to_vmx(vcpu);
2749 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2750
2751 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2752 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2753 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2754 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2755 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2756 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2757 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2758
2759 vmx->rmode.vm86_active = 1;
2760
2761 /*
2762 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2763 * vcpu. Warn the user that an update is overdue.
2764 */
2765 if (!kvm_vmx->tss_addr)
2766 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2767 "called before entering vcpu\n");
2768
2769 vmx_segment_cache_clear(vmx);
2770
2771 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2772 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2773 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2774
2775 flags = vmcs_readl(GUEST_RFLAGS);
2776 vmx->rmode.save_rflags = flags;
2777
2778 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2779
2780 vmcs_writel(GUEST_RFLAGS, flags);
2781 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2782 update_exception_bitmap(vcpu);
2783
2784 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2785 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2786 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2787 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2788 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2789 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2790
2791 kvm_mmu_reset_context(vcpu);
2792 }
2793
2794 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2795 {
2796 struct vcpu_vmx *vmx = to_vmx(vcpu);
2797 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2798
2799 if (!msr)
2800 return;
2801
2802 vcpu->arch.efer = efer;
2803 if (efer & EFER_LMA) {
2804 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2805 msr->data = efer;
2806 } else {
2807 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2808
2809 msr->data = efer & ~EFER_LME;
2810 }
2811 setup_msrs(vmx);
2812 }
2813
2814 #ifdef CONFIG_X86_64
2815
2816 static void enter_lmode(struct kvm_vcpu *vcpu)
2817 {
2818 u32 guest_tr_ar;
2819
2820 vmx_segment_cache_clear(to_vmx(vcpu));
2821
2822 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2823 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2824 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2825 __func__);
2826 vmcs_write32(GUEST_TR_AR_BYTES,
2827 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2828 | VMX_AR_TYPE_BUSY_64_TSS);
2829 }
2830 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2831 }
2832
2833 static void exit_lmode(struct kvm_vcpu *vcpu)
2834 {
2835 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2836 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2837 }
2838
2839 #endif
2840
2841 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2842 {
2843 int vpid = to_vmx(vcpu)->vpid;
2844
2845 if (!vpid_sync_vcpu_addr(vpid, addr))
2846 vpid_sync_context(vpid);
2847
2848 /*
2849 * If VPIDs are not supported or enabled, then the above is a no-op.
2850 * But we don't really need a TLB flush in that case anyway, because
2851 * each VM entry/exit includes an implicit flush when VPID is 0.
2852 */
2853 }
2854
2855 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2856 {
2857 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2858
2859 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2860 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2861 }
2862
2863 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2864 {
2865 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2866
2867 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2868 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2869 }
2870
2871 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2872 {
2873 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2874
2875 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2876 return;
2877
2878 if (is_pae_paging(vcpu)) {
2879 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2880 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2881 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2882 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2883 }
2884 }
2885
2886 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2887 {
2888 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2889
2890 if (is_pae_paging(vcpu)) {
2891 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2892 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2893 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2894 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2895 }
2896
2897 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2898 }
2899
2900 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2901 unsigned long cr0,
2902 struct kvm_vcpu *vcpu)
2903 {
2904 struct vcpu_vmx *vmx = to_vmx(vcpu);
2905
2906 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2907 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2908 if (!(cr0 & X86_CR0_PG)) {
2909 /* From paging/starting to nonpaging */
2910 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2911 CPU_BASED_CR3_STORE_EXITING);
2912 vcpu->arch.cr0 = cr0;
2913 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2914 } else if (!is_paging(vcpu)) {
2915 /* From nonpaging to paging */
2916 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2917 CPU_BASED_CR3_STORE_EXITING);
2918 vcpu->arch.cr0 = cr0;
2919 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2920 }
2921
2922 if (!(cr0 & X86_CR0_WP))
2923 *hw_cr0 &= ~X86_CR0_WP;
2924 }
2925
2926 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2927 {
2928 struct vcpu_vmx *vmx = to_vmx(vcpu);
2929 unsigned long hw_cr0;
2930
2931 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2932 if (enable_unrestricted_guest)
2933 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2934 else {
2935 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2936
2937 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2938 enter_pmode(vcpu);
2939
2940 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2941 enter_rmode(vcpu);
2942 }
2943
2944 #ifdef CONFIG_X86_64
2945 if (vcpu->arch.efer & EFER_LME) {
2946 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2947 enter_lmode(vcpu);
2948 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2949 exit_lmode(vcpu);
2950 }
2951 #endif
2952
2953 if (enable_ept && !enable_unrestricted_guest)
2954 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2955
2956 vmcs_writel(CR0_READ_SHADOW, cr0);
2957 vmcs_writel(GUEST_CR0, hw_cr0);
2958 vcpu->arch.cr0 = cr0;
2959
2960 /* depends on vcpu->arch.cr0 to be set to a new value */
2961 vmx->emulation_required = emulation_required(vcpu);
2962 }
2963
2964 static int get_ept_level(struct kvm_vcpu *vcpu)
2965 {
2966 if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
2967 return vmx_eptp_page_walk_level(nested_ept_get_eptp(vcpu));
2968 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2969 return 5;
2970 return 4;
2971 }
2972
2973 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2974 {
2975 u64 eptp = VMX_EPTP_MT_WB;
2976
2977 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2978
2979 if (enable_ept_ad_bits &&
2980 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2981 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2982 eptp |= (root_hpa & PAGE_MASK);
2983
2984 return eptp;
2985 }
2986
2987 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long cr3)
2988 {
2989 struct kvm *kvm = vcpu->kvm;
2990 bool update_guest_cr3 = true;
2991 unsigned long guest_cr3;
2992 u64 eptp;
2993
2994 guest_cr3 = cr3;
2995 if (enable_ept) {
2996 eptp = construct_eptp(vcpu, cr3);
2997 vmcs_write64(EPT_POINTER, eptp);
2998
2999 if (kvm_x86_ops.tlb_remote_flush) {
3000 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3001 to_vmx(vcpu)->ept_pointer = eptp;
3002 to_kvm_vmx(kvm)->ept_pointers_match
3003 = EPT_POINTERS_CHECK;
3004 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3005 }
3006
3007 /* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
3008 if (is_guest_mode(vcpu))
3009 update_guest_cr3 = false;
3010 else if (!enable_unrestricted_guest && !is_paging(vcpu))
3011 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3012 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3013 guest_cr3 = vcpu->arch.cr3;
3014 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3015 update_guest_cr3 = false;
3016 ept_load_pdptrs(vcpu);
3017 }
3018
3019 if (update_guest_cr3)
3020 vmcs_writel(GUEST_CR3, guest_cr3);
3021 }
3022
3023 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3024 {
3025 struct vcpu_vmx *vmx = to_vmx(vcpu);
3026 /*
3027 * Pass through host's Machine Check Enable value to hw_cr4, which
3028 * is in force while we are in guest mode. Do not let guests control
3029 * this bit, even if host CR4.MCE == 0.
3030 */
3031 unsigned long hw_cr4;
3032
3033 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3034 if (enable_unrestricted_guest)
3035 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3036 else if (vmx->rmode.vm86_active)
3037 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3038 else
3039 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3040
3041 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3042 if (cr4 & X86_CR4_UMIP) {
3043 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3044 hw_cr4 &= ~X86_CR4_UMIP;
3045 } else if (!is_guest_mode(vcpu) ||
3046 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3047 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3048 }
3049 }
3050
3051 if (cr4 & X86_CR4_VMXE) {
3052 /*
3053 * To use VMXON (and later other VMX instructions), a guest
3054 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3055 * So basically the check on whether to allow nested VMX
3056 * is here. We operate under the default treatment of SMM,
3057 * so VMX cannot be enabled under SMM.
3058 */
3059 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3060 return 1;
3061 }
3062
3063 if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3064 return 1;
3065
3066 vcpu->arch.cr4 = cr4;
3067
3068 if (!enable_unrestricted_guest) {
3069 if (enable_ept) {
3070 if (!is_paging(vcpu)) {
3071 hw_cr4 &= ~X86_CR4_PAE;
3072 hw_cr4 |= X86_CR4_PSE;
3073 } else if (!(cr4 & X86_CR4_PAE)) {
3074 hw_cr4 &= ~X86_CR4_PAE;
3075 }
3076 }
3077
3078 /*
3079 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3080 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3081 * to be manually disabled when guest switches to non-paging
3082 * mode.
3083 *
3084 * If !enable_unrestricted_guest, the CPU is always running
3085 * with CR0.PG=1 and CR4 needs to be modified.
3086 * If enable_unrestricted_guest, the CPU automatically
3087 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3088 */
3089 if (!is_paging(vcpu))
3090 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3091 }
3092
3093 vmcs_writel(CR4_READ_SHADOW, cr4);
3094 vmcs_writel(GUEST_CR4, hw_cr4);
3095 return 0;
3096 }
3097
3098 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3099 {
3100 struct vcpu_vmx *vmx = to_vmx(vcpu);
3101 u32 ar;
3102
3103 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3104 *var = vmx->rmode.segs[seg];
3105 if (seg == VCPU_SREG_TR
3106 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3107 return;
3108 var->base = vmx_read_guest_seg_base(vmx, seg);
3109 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3110 return;
3111 }
3112 var->base = vmx_read_guest_seg_base(vmx, seg);
3113 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3114 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3115 ar = vmx_read_guest_seg_ar(vmx, seg);
3116 var->unusable = (ar >> 16) & 1;
3117 var->type = ar & 15;
3118 var->s = (ar >> 4) & 1;
3119 var->dpl = (ar >> 5) & 3;
3120 /*
3121 * Some userspaces do not preserve unusable property. Since usable
3122 * segment has to be present according to VMX spec we can use present
3123 * property to amend userspace bug by making unusable segment always
3124 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3125 * segment as unusable.
3126 */
3127 var->present = !var->unusable;
3128 var->avl = (ar >> 12) & 1;
3129 var->l = (ar >> 13) & 1;
3130 var->db = (ar >> 14) & 1;
3131 var->g = (ar >> 15) & 1;
3132 }
3133
3134 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3135 {
3136 struct kvm_segment s;
3137
3138 if (to_vmx(vcpu)->rmode.vm86_active) {
3139 vmx_get_segment(vcpu, &s, seg);
3140 return s.base;
3141 }
3142 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3143 }
3144
3145 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3146 {
3147 struct vcpu_vmx *vmx = to_vmx(vcpu);
3148
3149 if (unlikely(vmx->rmode.vm86_active))
3150 return 0;
3151 else {
3152 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3153 return VMX_AR_DPL(ar);
3154 }
3155 }
3156
3157 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3158 {
3159 u32 ar;
3160
3161 if (var->unusable || !var->present)
3162 ar = 1 << 16;
3163 else {
3164 ar = var->type & 15;
3165 ar |= (var->s & 1) << 4;
3166 ar |= (var->dpl & 3) << 5;
3167 ar |= (var->present & 1) << 7;
3168 ar |= (var->avl & 1) << 12;
3169 ar |= (var->l & 1) << 13;
3170 ar |= (var->db & 1) << 14;
3171 ar |= (var->g & 1) << 15;
3172 }
3173
3174 return ar;
3175 }
3176
3177 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3178 {
3179 struct vcpu_vmx *vmx = to_vmx(vcpu);
3180 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3181
3182 vmx_segment_cache_clear(vmx);
3183
3184 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3185 vmx->rmode.segs[seg] = *var;
3186 if (seg == VCPU_SREG_TR)
3187 vmcs_write16(sf->selector, var->selector);
3188 else if (var->s)
3189 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3190 goto out;
3191 }
3192
3193 vmcs_writel(sf->base, var->base);
3194 vmcs_write32(sf->limit, var->limit);
3195 vmcs_write16(sf->selector, var->selector);
3196
3197 /*
3198 * Fix the "Accessed" bit in AR field of segment registers for older
3199 * qemu binaries.
3200 * IA32 arch specifies that at the time of processor reset the
3201 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3202 * is setting it to 0 in the userland code. This causes invalid guest
3203 * state vmexit when "unrestricted guest" mode is turned on.
3204 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3205 * tree. Newer qemu binaries with that qemu fix would not need this
3206 * kvm hack.
3207 */
3208 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3209 var->type |= 0x1; /* Accessed */
3210
3211 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3212
3213 out:
3214 vmx->emulation_required = emulation_required(vcpu);
3215 }
3216
3217 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3218 {
3219 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3220
3221 *db = (ar >> 14) & 1;
3222 *l = (ar >> 13) & 1;
3223 }
3224
3225 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3226 {
3227 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3228 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3229 }
3230
3231 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3232 {
3233 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3234 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3235 }
3236
3237 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3238 {
3239 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3240 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3241 }
3242
3243 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3244 {
3245 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3246 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3247 }
3248
3249 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3250 {
3251 struct kvm_segment var;
3252 u32 ar;
3253
3254 vmx_get_segment(vcpu, &var, seg);
3255 var.dpl = 0x3;
3256 if (seg == VCPU_SREG_CS)
3257 var.type = 0x3;
3258 ar = vmx_segment_access_rights(&var);
3259
3260 if (var.base != (var.selector << 4))
3261 return false;
3262 if (var.limit != 0xffff)
3263 return false;
3264 if (ar != 0xf3)
3265 return false;
3266
3267 return true;
3268 }
3269
3270 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3271 {
3272 struct kvm_segment cs;
3273 unsigned int cs_rpl;
3274
3275 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3276 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3277
3278 if (cs.unusable)
3279 return false;
3280 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3281 return false;
3282 if (!cs.s)
3283 return false;
3284 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3285 if (cs.dpl > cs_rpl)
3286 return false;
3287 } else {
3288 if (cs.dpl != cs_rpl)
3289 return false;
3290 }
3291 if (!cs.present)
3292 return false;
3293
3294 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3295 return true;
3296 }
3297
3298 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3299 {
3300 struct kvm_segment ss;
3301 unsigned int ss_rpl;
3302
3303 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3304 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3305
3306 if (ss.unusable)
3307 return true;
3308 if (ss.type != 3 && ss.type != 7)
3309 return false;
3310 if (!ss.s)
3311 return false;
3312 if (ss.dpl != ss_rpl) /* DPL != RPL */
3313 return false;
3314 if (!ss.present)
3315 return false;
3316
3317 return true;
3318 }
3319
3320 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3321 {
3322 struct kvm_segment var;
3323 unsigned int rpl;
3324
3325 vmx_get_segment(vcpu, &var, seg);
3326 rpl = var.selector & SEGMENT_RPL_MASK;
3327
3328 if (var.unusable)
3329 return true;
3330 if (!var.s)
3331 return false;
3332 if (!var.present)
3333 return false;
3334 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3335 if (var.dpl < rpl) /* DPL < RPL */
3336 return false;
3337 }
3338
3339 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3340 * rights flags
3341 */
3342 return true;
3343 }
3344
3345 static bool tr_valid(struct kvm_vcpu *vcpu)
3346 {
3347 struct kvm_segment tr;
3348
3349 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3350
3351 if (tr.unusable)
3352 return false;
3353 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3354 return false;
3355 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3356 return false;
3357 if (!tr.present)
3358 return false;
3359
3360 return true;
3361 }
3362
3363 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3364 {
3365 struct kvm_segment ldtr;
3366
3367 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3368
3369 if (ldtr.unusable)
3370 return true;
3371 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3372 return false;
3373 if (ldtr.type != 2)
3374 return false;
3375 if (!ldtr.present)
3376 return false;
3377
3378 return true;
3379 }
3380
3381 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3382 {
3383 struct kvm_segment cs, ss;
3384
3385 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3386 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3387
3388 return ((cs.selector & SEGMENT_RPL_MASK) ==
3389 (ss.selector & SEGMENT_RPL_MASK));
3390 }
3391
3392 /*
3393 * Check if guest state is valid. Returns true if valid, false if
3394 * not.
3395 * We assume that registers are always usable
3396 */
3397 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3398 {
3399 if (enable_unrestricted_guest)
3400 return true;
3401
3402 /* real mode guest state checks */
3403 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3404 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3405 return false;
3406 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3407 return false;
3408 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3409 return false;
3410 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3411 return false;
3412 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3413 return false;
3414 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3415 return false;
3416 } else {
3417 /* protected mode guest state checks */
3418 if (!cs_ss_rpl_check(vcpu))
3419 return false;
3420 if (!code_segment_valid(vcpu))
3421 return false;
3422 if (!stack_segment_valid(vcpu))
3423 return false;
3424 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3425 return false;
3426 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3427 return false;
3428 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3429 return false;
3430 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3431 return false;
3432 if (!tr_valid(vcpu))
3433 return false;
3434 if (!ldtr_valid(vcpu))
3435 return false;
3436 }
3437 /* TODO:
3438 * - Add checks on RIP
3439 * - Add checks on RFLAGS
3440 */
3441
3442 return true;
3443 }
3444
3445 static int init_rmode_tss(struct kvm *kvm)
3446 {
3447 gfn_t fn;
3448 u16 data = 0;
3449 int idx, r;
3450
3451 idx = srcu_read_lock(&kvm->srcu);
3452 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3453 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3454 if (r < 0)
3455 goto out;
3456 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3457 r = kvm_write_guest_page(kvm, fn++, &data,
3458 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3459 if (r < 0)
3460 goto out;
3461 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3462 if (r < 0)
3463 goto out;
3464 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3465 if (r < 0)
3466 goto out;
3467 data = ~0;
3468 r = kvm_write_guest_page(kvm, fn, &data,
3469 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3470 sizeof(u8));
3471 out:
3472 srcu_read_unlock(&kvm->srcu, idx);
3473 return r;
3474 }
3475
3476 static int init_rmode_identity_map(struct kvm *kvm)
3477 {
3478 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3479 int i, r = 0;
3480 kvm_pfn_t identity_map_pfn;
3481 u32 tmp;
3482
3483 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3484 mutex_lock(&kvm->slots_lock);
3485
3486 if (likely(kvm_vmx->ept_identity_pagetable_done))
3487 goto out;
3488
3489 if (!kvm_vmx->ept_identity_map_addr)
3490 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3491 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3492
3493 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3494 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3495 if (r < 0)
3496 goto out;
3497
3498 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3499 if (r < 0)
3500 goto out;
3501 /* Set up identity-mapping pagetable for EPT in real mode */
3502 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3503 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3504 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3505 r = kvm_write_guest_page(kvm, identity_map_pfn,
3506 &tmp, i * sizeof(tmp), sizeof(tmp));
3507 if (r < 0)
3508 goto out;
3509 }
3510 kvm_vmx->ept_identity_pagetable_done = true;
3511
3512 out:
3513 mutex_unlock(&kvm->slots_lock);
3514 return r;
3515 }
3516
3517 static void seg_setup(int seg)
3518 {
3519 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3520 unsigned int ar;
3521
3522 vmcs_write16(sf->selector, 0);
3523 vmcs_writel(sf->base, 0);
3524 vmcs_write32(sf->limit, 0xffff);
3525 ar = 0x93;
3526 if (seg == VCPU_SREG_CS)
3527 ar |= 0x08; /* code segment */
3528
3529 vmcs_write32(sf->ar_bytes, ar);
3530 }
3531
3532 static int alloc_apic_access_page(struct kvm *kvm)
3533 {
3534 struct page *page;
3535 int r = 0;
3536
3537 mutex_lock(&kvm->slots_lock);
3538 if (kvm->arch.apic_access_page_done)
3539 goto out;
3540 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3541 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3542 if (r)
3543 goto out;
3544
3545 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3546 if (is_error_page(page)) {
3547 r = -EFAULT;
3548 goto out;
3549 }
3550
3551 /*
3552 * Do not pin the page in memory, so that memory hot-unplug
3553 * is able to migrate it.
3554 */
3555 put_page(page);
3556 kvm->arch.apic_access_page_done = true;
3557 out:
3558 mutex_unlock(&kvm->slots_lock);
3559 return r;
3560 }
3561
3562 int allocate_vpid(void)
3563 {
3564 int vpid;
3565
3566 if (!enable_vpid)
3567 return 0;
3568 spin_lock(&vmx_vpid_lock);
3569 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3570 if (vpid < VMX_NR_VPIDS)
3571 __set_bit(vpid, vmx_vpid_bitmap);
3572 else
3573 vpid = 0;
3574 spin_unlock(&vmx_vpid_lock);
3575 return vpid;
3576 }
3577
3578 void free_vpid(int vpid)
3579 {
3580 if (!enable_vpid || vpid == 0)
3581 return;
3582 spin_lock(&vmx_vpid_lock);
3583 __clear_bit(vpid, vmx_vpid_bitmap);
3584 spin_unlock(&vmx_vpid_lock);
3585 }
3586
3587 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3588 u32 msr, int type)
3589 {
3590 int f = sizeof(unsigned long);
3591
3592 if (!cpu_has_vmx_msr_bitmap())
3593 return;
3594
3595 if (static_branch_unlikely(&enable_evmcs))
3596 evmcs_touch_msr_bitmap();
3597
3598 /*
3599 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3600 * have the write-low and read-high bitmap offsets the wrong way round.
3601 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3602 */
3603 if (msr <= 0x1fff) {
3604 if (type & MSR_TYPE_R)
3605 /* read-low */
3606 __clear_bit(msr, msr_bitmap + 0x000 / f);
3607
3608 if (type & MSR_TYPE_W)
3609 /* write-low */
3610 __clear_bit(msr, msr_bitmap + 0x800 / f);
3611
3612 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3613 msr &= 0x1fff;
3614 if (type & MSR_TYPE_R)
3615 /* read-high */
3616 __clear_bit(msr, msr_bitmap + 0x400 / f);
3617
3618 if (type & MSR_TYPE_W)
3619 /* write-high */
3620 __clear_bit(msr, msr_bitmap + 0xc00 / f);
3621
3622 }
3623 }
3624
3625 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3626 u32 msr, int type)
3627 {
3628 int f = sizeof(unsigned long);
3629
3630 if (!cpu_has_vmx_msr_bitmap())
3631 return;
3632
3633 if (static_branch_unlikely(&enable_evmcs))
3634 evmcs_touch_msr_bitmap();
3635
3636 /*
3637 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3638 * have the write-low and read-high bitmap offsets the wrong way round.
3639 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3640 */
3641 if (msr <= 0x1fff) {
3642 if (type & MSR_TYPE_R)
3643 /* read-low */
3644 __set_bit(msr, msr_bitmap + 0x000 / f);
3645
3646 if (type & MSR_TYPE_W)
3647 /* write-low */
3648 __set_bit(msr, msr_bitmap + 0x800 / f);
3649
3650 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3651 msr &= 0x1fff;
3652 if (type & MSR_TYPE_R)
3653 /* read-high */
3654 __set_bit(msr, msr_bitmap + 0x400 / f);
3655
3656 if (type & MSR_TYPE_W)
3657 /* write-high */
3658 __set_bit(msr, msr_bitmap + 0xc00 / f);
3659
3660 }
3661 }
3662
3663 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3664 u32 msr, int type, bool value)
3665 {
3666 if (value)
3667 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3668 else
3669 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3670 }
3671
3672 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3673 {
3674 u8 mode = 0;
3675
3676 if (cpu_has_secondary_exec_ctrls() &&
3677 (secondary_exec_controls_get(to_vmx(vcpu)) &
3678 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3679 mode |= MSR_BITMAP_MODE_X2APIC;
3680 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3681 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3682 }
3683
3684 return mode;
3685 }
3686
3687 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3688 u8 mode)
3689 {
3690 int msr;
3691
3692 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3693 unsigned word = msr / BITS_PER_LONG;
3694 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3695 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3696 }
3697
3698 if (mode & MSR_BITMAP_MODE_X2APIC) {
3699 /*
3700 * TPR reads and writes can be virtualized even if virtual interrupt
3701 * delivery is not in use.
3702 */
3703 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3704 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3705 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3706 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3707 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3708 }
3709 }
3710 }
3711
3712 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3713 {
3714 struct vcpu_vmx *vmx = to_vmx(vcpu);
3715 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3716 u8 mode = vmx_msr_bitmap_mode(vcpu);
3717 u8 changed = mode ^ vmx->msr_bitmap_mode;
3718
3719 if (!changed)
3720 return;
3721
3722 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3723 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3724
3725 vmx->msr_bitmap_mode = mode;
3726 }
3727
3728 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3729 {
3730 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3731 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3732 u32 i;
3733
3734 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3735 MSR_TYPE_RW, flag);
3736 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3737 MSR_TYPE_RW, flag);
3738 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3739 MSR_TYPE_RW, flag);
3740 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3741 MSR_TYPE_RW, flag);
3742 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3743 vmx_set_intercept_for_msr(msr_bitmap,
3744 MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3745 vmx_set_intercept_for_msr(msr_bitmap,
3746 MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3747 }
3748 }
3749
3750 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3751 {
3752 struct vcpu_vmx *vmx = to_vmx(vcpu);
3753 void *vapic_page;
3754 u32 vppr;
3755 int rvi;
3756
3757 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3758 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3759 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3760 return false;
3761
3762 rvi = vmx_get_rvi();
3763
3764 vapic_page = vmx->nested.virtual_apic_map.hva;
3765 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3766
3767 return ((rvi & 0xf0) > (vppr & 0xf0));
3768 }
3769
3770 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3771 bool nested)
3772 {
3773 #ifdef CONFIG_SMP
3774 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3775
3776 if (vcpu->mode == IN_GUEST_MODE) {
3777 /*
3778 * The vector of interrupt to be delivered to vcpu had
3779 * been set in PIR before this function.
3780 *
3781 * Following cases will be reached in this block, and
3782 * we always send a notification event in all cases as
3783 * explained below.
3784 *
3785 * Case 1: vcpu keeps in non-root mode. Sending a
3786 * notification event posts the interrupt to vcpu.
3787 *
3788 * Case 2: vcpu exits to root mode and is still
3789 * runnable. PIR will be synced to vIRR before the
3790 * next vcpu entry. Sending a notification event in
3791 * this case has no effect, as vcpu is not in root
3792 * mode.
3793 *
3794 * Case 3: vcpu exits to root mode and is blocked.
3795 * vcpu_block() has already synced PIR to vIRR and
3796 * never blocks vcpu if vIRR is not cleared. Therefore,
3797 * a blocked vcpu here does not wait for any requested
3798 * interrupts in PIR, and sending a notification event
3799 * which has no effect is safe here.
3800 */
3801
3802 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3803 return true;
3804 }
3805 #endif
3806 return false;
3807 }
3808
3809 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3810 int vector)
3811 {
3812 struct vcpu_vmx *vmx = to_vmx(vcpu);
3813
3814 if (is_guest_mode(vcpu) &&
3815 vector == vmx->nested.posted_intr_nv) {
3816 /*
3817 * If a posted intr is not recognized by hardware,
3818 * we will accomplish it in the next vmentry.
3819 */
3820 vmx->nested.pi_pending = true;
3821 kvm_make_request(KVM_REQ_EVENT, vcpu);
3822 /* the PIR and ON have been set by L1. */
3823 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3824 kvm_vcpu_kick(vcpu);
3825 return 0;
3826 }
3827 return -1;
3828 }
3829 /*
3830 * Send interrupt to vcpu via posted interrupt way.
3831 * 1. If target vcpu is running(non-root mode), send posted interrupt
3832 * notification to vcpu and hardware will sync PIR to vIRR atomically.
3833 * 2. If target vcpu isn't running(root mode), kick it to pick up the
3834 * interrupt from PIR in next vmentry.
3835 */
3836 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3837 {
3838 struct vcpu_vmx *vmx = to_vmx(vcpu);
3839 int r;
3840
3841 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3842 if (!r)
3843 return 0;
3844
3845 if (!vcpu->arch.apicv_active)
3846 return -1;
3847
3848 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3849 return 0;
3850
3851 /* If a previous notification has sent the IPI, nothing to do. */
3852 if (pi_test_and_set_on(&vmx->pi_desc))
3853 return 0;
3854
3855 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3856 kvm_vcpu_kick(vcpu);
3857
3858 return 0;
3859 }
3860
3861 /*
3862 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3863 * will not change in the lifetime of the guest.
3864 * Note that host-state that does change is set elsewhere. E.g., host-state
3865 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3866 */
3867 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3868 {
3869 u32 low32, high32;
3870 unsigned long tmpl;
3871 unsigned long cr0, cr3, cr4;
3872
3873 cr0 = read_cr0();
3874 WARN_ON(cr0 & X86_CR0_TS);
3875 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
3876
3877 /*
3878 * Save the most likely value for this task's CR3 in the VMCS.
3879 * We can't use __get_current_cr3_fast() because we're not atomic.
3880 */
3881 cr3 = __read_cr3();
3882 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
3883 vmx->loaded_vmcs->host_state.cr3 = cr3;
3884
3885 /* Save the most likely value for this task's CR4 in the VMCS. */
3886 cr4 = cr4_read_shadow();
3887 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
3888 vmx->loaded_vmcs->host_state.cr4 = cr4;
3889
3890 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3891 #ifdef CONFIG_X86_64
3892 /*
3893 * Load null selectors, so we can avoid reloading them in
3894 * vmx_prepare_switch_to_host(), in case userspace uses
3895 * the null selectors too (the expected case).
3896 */
3897 vmcs_write16(HOST_DS_SELECTOR, 0);
3898 vmcs_write16(HOST_ES_SELECTOR, 0);
3899 #else
3900 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3901 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3902 #endif
3903 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3904 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3905
3906 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
3907
3908 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3909
3910 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3911 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3912 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3913 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3914
3915 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3916 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3917 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3918 }
3919
3920 if (cpu_has_load_ia32_efer())
3921 vmcs_write64(HOST_IA32_EFER, host_efer);
3922 }
3923
3924 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3925 {
3926 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3927 if (enable_ept)
3928 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3929 if (is_guest_mode(&vmx->vcpu))
3930 vmx->vcpu.arch.cr4_guest_owned_bits &=
3931 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3932 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3933 }
3934
3935 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3936 {
3937 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3938
3939 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3940 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3941
3942 if (!enable_vnmi)
3943 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3944
3945 if (!enable_preemption_timer)
3946 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3947
3948 return pin_based_exec_ctrl;
3949 }
3950
3951 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3952 {
3953 struct vcpu_vmx *vmx = to_vmx(vcpu);
3954
3955 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3956 if (cpu_has_secondary_exec_ctrls()) {
3957 if (kvm_vcpu_apicv_active(vcpu))
3958 secondary_exec_controls_setbit(vmx,
3959 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3960 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3961 else
3962 secondary_exec_controls_clearbit(vmx,
3963 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3964 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3965 }
3966
3967 if (cpu_has_vmx_msr_bitmap())
3968 vmx_update_msr_bitmap(vcpu);
3969 }
3970
3971 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3972 {
3973 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3974
3975 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3976 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3977
3978 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3979 exec_control &= ~CPU_BASED_TPR_SHADOW;
3980 #ifdef CONFIG_X86_64
3981 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3982 CPU_BASED_CR8_LOAD_EXITING;
3983 #endif
3984 }
3985 if (!enable_ept)
3986 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3987 CPU_BASED_CR3_LOAD_EXITING |
3988 CPU_BASED_INVLPG_EXITING;
3989 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3990 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3991 CPU_BASED_MONITOR_EXITING);
3992 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3993 exec_control &= ~CPU_BASED_HLT_EXITING;
3994 return exec_control;
3995 }
3996
3997
3998 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3999 {
4000 struct kvm_vcpu *vcpu = &vmx->vcpu;
4001
4002 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4003
4004 if (vmx_pt_mode_is_system())
4005 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4006 if (!cpu_need_virtualize_apic_accesses(vcpu))
4007 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4008 if (vmx->vpid == 0)
4009 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4010 if (!enable_ept) {
4011 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4012 enable_unrestricted_guest = 0;
4013 }
4014 if (!enable_unrestricted_guest)
4015 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4016 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4017 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4018 if (!kvm_vcpu_apicv_active(vcpu))
4019 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4020 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4021 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4022
4023 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4024 * in vmx_set_cr4. */
4025 exec_control &= ~SECONDARY_EXEC_DESC;
4026
4027 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4028 (handle_vmptrld).
4029 We can NOT enable shadow_vmcs here because we don't have yet
4030 a current VMCS12
4031 */
4032 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4033
4034 if (!enable_pml)
4035 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4036
4037 if (vmx_xsaves_supported()) {
4038 /* Exposing XSAVES only when XSAVE is exposed */
4039 bool xsaves_enabled =
4040 boot_cpu_has(X86_FEATURE_XSAVE) &&
4041 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4042 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4043
4044 vcpu->arch.xsaves_enabled = xsaves_enabled;
4045
4046 if (!xsaves_enabled)
4047 exec_control &= ~SECONDARY_EXEC_XSAVES;
4048
4049 if (nested) {
4050 if (xsaves_enabled)
4051 vmx->nested.msrs.secondary_ctls_high |=
4052 SECONDARY_EXEC_XSAVES;
4053 else
4054 vmx->nested.msrs.secondary_ctls_high &=
4055 ~SECONDARY_EXEC_XSAVES;
4056 }
4057 }
4058
4059 if (cpu_has_vmx_rdtscp()) {
4060 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4061 if (!rdtscp_enabled)
4062 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4063
4064 if (nested) {
4065 if (rdtscp_enabled)
4066 vmx->nested.msrs.secondary_ctls_high |=
4067 SECONDARY_EXEC_RDTSCP;
4068 else
4069 vmx->nested.msrs.secondary_ctls_high &=
4070 ~SECONDARY_EXEC_RDTSCP;
4071 }
4072 }
4073
4074 if (cpu_has_vmx_invpcid()) {
4075 /* Exposing INVPCID only when PCID is exposed */
4076 bool invpcid_enabled =
4077 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4078 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4079
4080 if (!invpcid_enabled) {
4081 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4082 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4083 }
4084
4085 if (nested) {
4086 if (invpcid_enabled)
4087 vmx->nested.msrs.secondary_ctls_high |=
4088 SECONDARY_EXEC_ENABLE_INVPCID;
4089 else
4090 vmx->nested.msrs.secondary_ctls_high &=
4091 ~SECONDARY_EXEC_ENABLE_INVPCID;
4092 }
4093 }
4094
4095 if (vmx_rdrand_supported()) {
4096 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4097 if (rdrand_enabled)
4098 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4099
4100 if (nested) {
4101 if (rdrand_enabled)
4102 vmx->nested.msrs.secondary_ctls_high |=
4103 SECONDARY_EXEC_RDRAND_EXITING;
4104 else
4105 vmx->nested.msrs.secondary_ctls_high &=
4106 ~SECONDARY_EXEC_RDRAND_EXITING;
4107 }
4108 }
4109
4110 if (vmx_rdseed_supported()) {
4111 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4112 if (rdseed_enabled)
4113 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4114
4115 if (nested) {
4116 if (rdseed_enabled)
4117 vmx->nested.msrs.secondary_ctls_high |=
4118 SECONDARY_EXEC_RDSEED_EXITING;
4119 else
4120 vmx->nested.msrs.secondary_ctls_high &=
4121 ~SECONDARY_EXEC_RDSEED_EXITING;
4122 }
4123 }
4124
4125 if (vmx_waitpkg_supported()) {
4126 bool waitpkg_enabled =
4127 guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4128
4129 if (!waitpkg_enabled)
4130 exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4131
4132 if (nested) {
4133 if (waitpkg_enabled)
4134 vmx->nested.msrs.secondary_ctls_high |=
4135 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4136 else
4137 vmx->nested.msrs.secondary_ctls_high &=
4138 ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4139 }
4140 }
4141
4142 vmx->secondary_exec_control = exec_control;
4143 }
4144
4145 static void ept_set_mmio_spte_mask(void)
4146 {
4147 /*
4148 * EPT Misconfigurations can be generated if the value of bits 2:0
4149 * of an EPT paging-structure entry is 110b (write/execute).
4150 */
4151 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4152 VMX_EPT_MISCONFIG_WX_VALUE, 0);
4153 }
4154
4155 #define VMX_XSS_EXIT_BITMAP 0
4156
4157 /*
4158 * Noting that the initialization of Guest-state Area of VMCS is in
4159 * vmx_vcpu_reset().
4160 */
4161 static void init_vmcs(struct vcpu_vmx *vmx)
4162 {
4163 if (nested)
4164 nested_vmx_set_vmcs_shadowing_bitmap();
4165
4166 if (cpu_has_vmx_msr_bitmap())
4167 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4168
4169 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4170
4171 /* Control */
4172 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4173
4174 exec_controls_set(vmx, vmx_exec_control(vmx));
4175
4176 if (cpu_has_secondary_exec_ctrls()) {
4177 vmx_compute_secondary_exec_control(vmx);
4178 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4179 }
4180
4181 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4182 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4183 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4184 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4185 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4186
4187 vmcs_write16(GUEST_INTR_STATUS, 0);
4188
4189 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4190 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4191 }
4192
4193 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4194 vmcs_write32(PLE_GAP, ple_gap);
4195 vmx->ple_window = ple_window;
4196 vmx->ple_window_dirty = true;
4197 }
4198
4199 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4200 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4201 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4202
4203 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4204 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4205 vmx_set_constant_host_state(vmx);
4206 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4207 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4208
4209 if (cpu_has_vmx_vmfunc())
4210 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4211
4212 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4213 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4214 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4215 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4216 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4217
4218 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4219 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4220
4221 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4222
4223 /* 22.2.1, 20.8.1 */
4224 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4225
4226 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4227 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4228
4229 set_cr4_guest_host_mask(vmx);
4230
4231 if (vmx->vpid != 0)
4232 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4233
4234 if (vmx_xsaves_supported())
4235 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4236
4237 if (enable_pml) {
4238 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4239 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4240 }
4241
4242 if (cpu_has_vmx_encls_vmexit())
4243 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4244
4245 if (vmx_pt_mode_is_host_guest()) {
4246 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4247 /* Bit[6~0] are forced to 1, writes are ignored. */
4248 vmx->pt_desc.guest.output_mask = 0x7F;
4249 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4250 }
4251 }
4252
4253 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4254 {
4255 struct vcpu_vmx *vmx = to_vmx(vcpu);
4256 struct msr_data apic_base_msr;
4257 u64 cr0;
4258
4259 vmx->rmode.vm86_active = 0;
4260 vmx->spec_ctrl = 0;
4261
4262 vmx->msr_ia32_umwait_control = 0;
4263
4264 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4265 vmx->hv_deadline_tsc = -1;
4266 kvm_set_cr8(vcpu, 0);
4267
4268 if (!init_event) {
4269 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4270 MSR_IA32_APICBASE_ENABLE;
4271 if (kvm_vcpu_is_reset_bsp(vcpu))
4272 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4273 apic_base_msr.host_initiated = true;
4274 kvm_set_apic_base(vcpu, &apic_base_msr);
4275 }
4276
4277 vmx_segment_cache_clear(vmx);
4278
4279 seg_setup(VCPU_SREG_CS);
4280 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4281 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4282
4283 seg_setup(VCPU_SREG_DS);
4284 seg_setup(VCPU_SREG_ES);
4285 seg_setup(VCPU_SREG_FS);
4286 seg_setup(VCPU_SREG_GS);
4287 seg_setup(VCPU_SREG_SS);
4288
4289 vmcs_write16(GUEST_TR_SELECTOR, 0);
4290 vmcs_writel(GUEST_TR_BASE, 0);
4291 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4292 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4293
4294 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4295 vmcs_writel(GUEST_LDTR_BASE, 0);
4296 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4297 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4298
4299 if (!init_event) {
4300 vmcs_write32(GUEST_SYSENTER_CS, 0);
4301 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4302 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4303 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4304 }
4305
4306 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4307 kvm_rip_write(vcpu, 0xfff0);
4308
4309 vmcs_writel(GUEST_GDTR_BASE, 0);
4310 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4311
4312 vmcs_writel(GUEST_IDTR_BASE, 0);
4313 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4314
4315 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4316 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4317 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4318 if (kvm_mpx_supported())
4319 vmcs_write64(GUEST_BNDCFGS, 0);
4320
4321 setup_msrs(vmx);
4322
4323 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4324
4325 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4326 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4327 if (cpu_need_tpr_shadow(vcpu))
4328 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4329 __pa(vcpu->arch.apic->regs));
4330 vmcs_write32(TPR_THRESHOLD, 0);
4331 }
4332
4333 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4334
4335 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4336 vmx->vcpu.arch.cr0 = cr0;
4337 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4338 vmx_set_cr4(vcpu, 0);
4339 vmx_set_efer(vcpu, 0);
4340
4341 update_exception_bitmap(vcpu);
4342
4343 vpid_sync_context(vmx->vpid);
4344 if (init_event)
4345 vmx_clear_hlt(vcpu);
4346 }
4347
4348 static void enable_irq_window(struct kvm_vcpu *vcpu)
4349 {
4350 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4351 }
4352
4353 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4354 {
4355 if (!enable_vnmi ||
4356 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4357 enable_irq_window(vcpu);
4358 return;
4359 }
4360
4361 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4362 }
4363
4364 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4365 {
4366 struct vcpu_vmx *vmx = to_vmx(vcpu);
4367 uint32_t intr;
4368 int irq = vcpu->arch.interrupt.nr;
4369
4370 trace_kvm_inj_virq(irq);
4371
4372 ++vcpu->stat.irq_injections;
4373 if (vmx->rmode.vm86_active) {
4374 int inc_eip = 0;
4375 if (vcpu->arch.interrupt.soft)
4376 inc_eip = vcpu->arch.event_exit_inst_len;
4377 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4378 return;
4379 }
4380 intr = irq | INTR_INFO_VALID_MASK;
4381 if (vcpu->arch.interrupt.soft) {
4382 intr |= INTR_TYPE_SOFT_INTR;
4383 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4384 vmx->vcpu.arch.event_exit_inst_len);
4385 } else
4386 intr |= INTR_TYPE_EXT_INTR;
4387 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4388
4389 vmx_clear_hlt(vcpu);
4390 }
4391
4392 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4393 {
4394 struct vcpu_vmx *vmx = to_vmx(vcpu);
4395
4396 if (!enable_vnmi) {
4397 /*
4398 * Tracking the NMI-blocked state in software is built upon
4399 * finding the next open IRQ window. This, in turn, depends on
4400 * well-behaving guests: They have to keep IRQs disabled at
4401 * least as long as the NMI handler runs. Otherwise we may
4402 * cause NMI nesting, maybe breaking the guest. But as this is
4403 * highly unlikely, we can live with the residual risk.
4404 */
4405 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4406 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4407 }
4408
4409 ++vcpu->stat.nmi_injections;
4410 vmx->loaded_vmcs->nmi_known_unmasked = false;
4411
4412 if (vmx->rmode.vm86_active) {
4413 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4414 return;
4415 }
4416
4417 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4418 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4419
4420 vmx_clear_hlt(vcpu);
4421 }
4422
4423 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4424 {
4425 struct vcpu_vmx *vmx = to_vmx(vcpu);
4426 bool masked;
4427
4428 if (!enable_vnmi)
4429 return vmx->loaded_vmcs->soft_vnmi_blocked;
4430 if (vmx->loaded_vmcs->nmi_known_unmasked)
4431 return false;
4432 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4433 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4434 return masked;
4435 }
4436
4437 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4438 {
4439 struct vcpu_vmx *vmx = to_vmx(vcpu);
4440
4441 if (!enable_vnmi) {
4442 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4443 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4444 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4445 }
4446 } else {
4447 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4448 if (masked)
4449 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4450 GUEST_INTR_STATE_NMI);
4451 else
4452 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4453 GUEST_INTR_STATE_NMI);
4454 }
4455 }
4456
4457 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4458 {
4459 if (to_vmx(vcpu)->nested.nested_run_pending)
4460 return 0;
4461
4462 if (!enable_vnmi &&
4463 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4464 return 0;
4465
4466 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4467 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4468 | GUEST_INTR_STATE_NMI));
4469 }
4470
4471 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4472 {
4473 if (to_vmx(vcpu)->nested.nested_run_pending)
4474 return false;
4475
4476 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4477 return true;
4478
4479 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4480 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4481 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4482 }
4483
4484 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4485 {
4486 int ret;
4487
4488 if (enable_unrestricted_guest)
4489 return 0;
4490
4491 mutex_lock(&kvm->slots_lock);
4492 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4493 PAGE_SIZE * 3);
4494 mutex_unlock(&kvm->slots_lock);
4495
4496 if (ret)
4497 return ret;
4498 to_kvm_vmx(kvm)->tss_addr = addr;
4499 return init_rmode_tss(kvm);
4500 }
4501
4502 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4503 {
4504 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4505 return 0;
4506 }
4507
4508 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4509 {
4510 switch (vec) {
4511 case BP_VECTOR:
4512 /*
4513 * Update instruction length as we may reinject the exception
4514 * from user space while in guest debugging mode.
4515 */
4516 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4517 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4518 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4519 return false;
4520 /* fall through */
4521 case DB_VECTOR:
4522 if (vcpu->guest_debug &
4523 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4524 return false;
4525 /* fall through */
4526 case DE_VECTOR:
4527 case OF_VECTOR:
4528 case BR_VECTOR:
4529 case UD_VECTOR:
4530 case DF_VECTOR:
4531 case SS_VECTOR:
4532 case GP_VECTOR:
4533 case MF_VECTOR:
4534 return true;
4535 }
4536 return false;
4537 }
4538
4539 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4540 int vec, u32 err_code)
4541 {
4542 /*
4543 * Instruction with address size override prefix opcode 0x67
4544 * Cause the #SS fault with 0 error code in VM86 mode.
4545 */
4546 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4547 if (kvm_emulate_instruction(vcpu, 0)) {
4548 if (vcpu->arch.halt_request) {
4549 vcpu->arch.halt_request = 0;
4550 return kvm_vcpu_halt(vcpu);
4551 }
4552 return 1;
4553 }
4554 return 0;
4555 }
4556
4557 /*
4558 * Forward all other exceptions that are valid in real mode.
4559 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4560 * the required debugging infrastructure rework.
4561 */
4562 kvm_queue_exception(vcpu, vec);
4563 return 1;
4564 }
4565
4566 /*
4567 * Trigger machine check on the host. We assume all the MSRs are already set up
4568 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4569 * We pass a fake environment to the machine check handler because we want
4570 * the guest to be always treated like user space, no matter what context
4571 * it used internally.
4572 */
4573 static void kvm_machine_check(void)
4574 {
4575 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4576 struct pt_regs regs = {
4577 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4578 .flags = X86_EFLAGS_IF,
4579 };
4580
4581 do_machine_check(&regs, 0);
4582 #endif
4583 }
4584
4585 static int handle_machine_check(struct kvm_vcpu *vcpu)
4586 {
4587 /* handled by vmx_vcpu_run() */
4588 return 1;
4589 }
4590
4591 /*
4592 * If the host has split lock detection disabled, then #AC is
4593 * unconditionally injected into the guest, which is the pre split lock
4594 * detection behaviour.
4595 *
4596 * If the host has split lock detection enabled then #AC is
4597 * only injected into the guest when:
4598 * - Guest CPL == 3 (user mode)
4599 * - Guest has #AC detection enabled in CR0
4600 * - Guest EFLAGS has AC bit set
4601 */
4602 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4603 {
4604 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4605 return true;
4606
4607 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4608 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4609 }
4610
4611 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4612 {
4613 struct vcpu_vmx *vmx = to_vmx(vcpu);
4614 struct kvm_run *kvm_run = vcpu->run;
4615 u32 intr_info, ex_no, error_code;
4616 unsigned long cr2, rip, dr6;
4617 u32 vect_info;
4618
4619 vect_info = vmx->idt_vectoring_info;
4620 intr_info = vmx->exit_intr_info;
4621
4622 if (is_machine_check(intr_info) || is_nmi(intr_info))
4623 return 1; /* handled by handle_exception_nmi_irqoff() */
4624
4625 if (is_invalid_opcode(intr_info))
4626 return handle_ud(vcpu);
4627
4628 error_code = 0;
4629 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4630 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4631
4632 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4633 WARN_ON_ONCE(!enable_vmware_backdoor);
4634
4635 /*
4636 * VMware backdoor emulation on #GP interception only handles
4637 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4638 * error code on #GP.
4639 */
4640 if (error_code) {
4641 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4642 return 1;
4643 }
4644 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4645 }
4646
4647 /*
4648 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4649 * MMIO, it is better to report an internal error.
4650 * See the comments in vmx_handle_exit.
4651 */
4652 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4653 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4654 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4655 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4656 vcpu->run->internal.ndata = 3;
4657 vcpu->run->internal.data[0] = vect_info;
4658 vcpu->run->internal.data[1] = intr_info;
4659 vcpu->run->internal.data[2] = error_code;
4660 return 0;
4661 }
4662
4663 if (is_page_fault(intr_info)) {
4664 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4665 /* EPT won't cause page fault directly */
4666 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4667 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4668 }
4669
4670 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4671
4672 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4673 return handle_rmode_exception(vcpu, ex_no, error_code);
4674
4675 switch (ex_no) {
4676 case DB_VECTOR:
4677 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4678 if (!(vcpu->guest_debug &
4679 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4680 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4681 vcpu->arch.dr6 |= dr6 | DR6_RTM;
4682 if (is_icebp(intr_info))
4683 WARN_ON(!skip_emulated_instruction(vcpu));
4684
4685 kvm_queue_exception(vcpu, DB_VECTOR);
4686 return 1;
4687 }
4688 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4689 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4690 /* fall through */
4691 case BP_VECTOR:
4692 /*
4693 * Update instruction length as we may reinject #BP from
4694 * user space while in guest debugging mode. Reading it for
4695 * #DB as well causes no harm, it is not used in that case.
4696 */
4697 vmx->vcpu.arch.event_exit_inst_len =
4698 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4699 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4700 rip = kvm_rip_read(vcpu);
4701 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4702 kvm_run->debug.arch.exception = ex_no;
4703 break;
4704 case AC_VECTOR:
4705 if (guest_inject_ac(vcpu)) {
4706 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4707 return 1;
4708 }
4709
4710 /*
4711 * Handle split lock. Depending on detection mode this will
4712 * either warn and disable split lock detection for this
4713 * task or force SIGBUS on it.
4714 */
4715 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4716 return 1;
4717 fallthrough;
4718 default:
4719 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4720 kvm_run->ex.exception = ex_no;
4721 kvm_run->ex.error_code = error_code;
4722 break;
4723 }
4724 return 0;
4725 }
4726
4727 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4728 {
4729 ++vcpu->stat.irq_exits;
4730 return 1;
4731 }
4732
4733 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4734 {
4735 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4736 vcpu->mmio_needed = 0;
4737 return 0;
4738 }
4739
4740 static int handle_io(struct kvm_vcpu *vcpu)
4741 {
4742 unsigned long exit_qualification;
4743 int size, in, string;
4744 unsigned port;
4745
4746 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4747 string = (exit_qualification & 16) != 0;
4748
4749 ++vcpu->stat.io_exits;
4750
4751 if (string)
4752 return kvm_emulate_instruction(vcpu, 0);
4753
4754 port = exit_qualification >> 16;
4755 size = (exit_qualification & 7) + 1;
4756 in = (exit_qualification & 8) != 0;
4757
4758 return kvm_fast_pio(vcpu, size, port, in);
4759 }
4760
4761 static void
4762 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4763 {
4764 /*
4765 * Patch in the VMCALL instruction:
4766 */
4767 hypercall[0] = 0x0f;
4768 hypercall[1] = 0x01;
4769 hypercall[2] = 0xc1;
4770 }
4771
4772 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4773 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4774 {
4775 if (is_guest_mode(vcpu)) {
4776 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4777 unsigned long orig_val = val;
4778
4779 /*
4780 * We get here when L2 changed cr0 in a way that did not change
4781 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4782 * but did change L0 shadowed bits. So we first calculate the
4783 * effective cr0 value that L1 would like to write into the
4784 * hardware. It consists of the L2-owned bits from the new
4785 * value combined with the L1-owned bits from L1's guest_cr0.
4786 */
4787 val = (val & ~vmcs12->cr0_guest_host_mask) |
4788 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4789
4790 if (!nested_guest_cr0_valid(vcpu, val))
4791 return 1;
4792
4793 if (kvm_set_cr0(vcpu, val))
4794 return 1;
4795 vmcs_writel(CR0_READ_SHADOW, orig_val);
4796 return 0;
4797 } else {
4798 if (to_vmx(vcpu)->nested.vmxon &&
4799 !nested_host_cr0_valid(vcpu, val))
4800 return 1;
4801
4802 return kvm_set_cr0(vcpu, val);
4803 }
4804 }
4805
4806 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4807 {
4808 if (is_guest_mode(vcpu)) {
4809 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4810 unsigned long orig_val = val;
4811
4812 /* analogously to handle_set_cr0 */
4813 val = (val & ~vmcs12->cr4_guest_host_mask) |
4814 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4815 if (kvm_set_cr4(vcpu, val))
4816 return 1;
4817 vmcs_writel(CR4_READ_SHADOW, orig_val);
4818 return 0;
4819 } else
4820 return kvm_set_cr4(vcpu, val);
4821 }
4822
4823 static int handle_desc(struct kvm_vcpu *vcpu)
4824 {
4825 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4826 return kvm_emulate_instruction(vcpu, 0);
4827 }
4828
4829 static int handle_cr(struct kvm_vcpu *vcpu)
4830 {
4831 unsigned long exit_qualification, val;
4832 int cr;
4833 int reg;
4834 int err;
4835 int ret;
4836
4837 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4838 cr = exit_qualification & 15;
4839 reg = (exit_qualification >> 8) & 15;
4840 switch ((exit_qualification >> 4) & 3) {
4841 case 0: /* mov to cr */
4842 val = kvm_register_readl(vcpu, reg);
4843 trace_kvm_cr_write(cr, val);
4844 switch (cr) {
4845 case 0:
4846 err = handle_set_cr0(vcpu, val);
4847 return kvm_complete_insn_gp(vcpu, err);
4848 case 3:
4849 WARN_ON_ONCE(enable_unrestricted_guest);
4850 err = kvm_set_cr3(vcpu, val);
4851 return kvm_complete_insn_gp(vcpu, err);
4852 case 4:
4853 err = handle_set_cr4(vcpu, val);
4854 return kvm_complete_insn_gp(vcpu, err);
4855 case 8: {
4856 u8 cr8_prev = kvm_get_cr8(vcpu);
4857 u8 cr8 = (u8)val;
4858 err = kvm_set_cr8(vcpu, cr8);
4859 ret = kvm_complete_insn_gp(vcpu, err);
4860 if (lapic_in_kernel(vcpu))
4861 return ret;
4862 if (cr8_prev <= cr8)
4863 return ret;
4864 /*
4865 * TODO: we might be squashing a
4866 * KVM_GUESTDBG_SINGLESTEP-triggered
4867 * KVM_EXIT_DEBUG here.
4868 */
4869 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4870 return 0;
4871 }
4872 }
4873 break;
4874 case 2: /* clts */
4875 WARN_ONCE(1, "Guest should always own CR0.TS");
4876 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4877 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4878 return kvm_skip_emulated_instruction(vcpu);
4879 case 1: /*mov from cr*/
4880 switch (cr) {
4881 case 3:
4882 WARN_ON_ONCE(enable_unrestricted_guest);
4883 val = kvm_read_cr3(vcpu);
4884 kvm_register_write(vcpu, reg, val);
4885 trace_kvm_cr_read(cr, val);
4886 return kvm_skip_emulated_instruction(vcpu);
4887 case 8:
4888 val = kvm_get_cr8(vcpu);
4889 kvm_register_write(vcpu, reg, val);
4890 trace_kvm_cr_read(cr, val);
4891 return kvm_skip_emulated_instruction(vcpu);
4892 }
4893 break;
4894 case 3: /* lmsw */
4895 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4896 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4897 kvm_lmsw(vcpu, val);
4898
4899 return kvm_skip_emulated_instruction(vcpu);
4900 default:
4901 break;
4902 }
4903 vcpu->run->exit_reason = 0;
4904 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4905 (int)(exit_qualification >> 4) & 3, cr);
4906 return 0;
4907 }
4908
4909 static int handle_dr(struct kvm_vcpu *vcpu)
4910 {
4911 unsigned long exit_qualification;
4912 int dr, dr7, reg;
4913
4914 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4915 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4916
4917 /* First, if DR does not exist, trigger UD */
4918 if (!kvm_require_dr(vcpu, dr))
4919 return 1;
4920
4921 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4922 if (!kvm_require_cpl(vcpu, 0))
4923 return 1;
4924 dr7 = vmcs_readl(GUEST_DR7);
4925 if (dr7 & DR7_GD) {
4926 /*
4927 * As the vm-exit takes precedence over the debug trap, we
4928 * need to emulate the latter, either for the host or the
4929 * guest debugging itself.
4930 */
4931 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4932 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4933 vcpu->run->debug.arch.dr7 = dr7;
4934 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4935 vcpu->run->debug.arch.exception = DB_VECTOR;
4936 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4937 return 0;
4938 } else {
4939 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4940 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4941 kvm_queue_exception(vcpu, DB_VECTOR);
4942 return 1;
4943 }
4944 }
4945
4946 if (vcpu->guest_debug == 0) {
4947 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4948
4949 /*
4950 * No more DR vmexits; force a reload of the debug registers
4951 * and reenter on this instruction. The next vmexit will
4952 * retrieve the full state of the debug registers.
4953 */
4954 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4955 return 1;
4956 }
4957
4958 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4959 if (exit_qualification & TYPE_MOV_FROM_DR) {
4960 unsigned long val;
4961
4962 if (kvm_get_dr(vcpu, dr, &val))
4963 return 1;
4964 kvm_register_write(vcpu, reg, val);
4965 } else
4966 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4967 return 1;
4968
4969 return kvm_skip_emulated_instruction(vcpu);
4970 }
4971
4972 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4973 {
4974 return vcpu->arch.dr6;
4975 }
4976
4977 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4978 {
4979 }
4980
4981 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4982 {
4983 get_debugreg(vcpu->arch.db[0], 0);
4984 get_debugreg(vcpu->arch.db[1], 1);
4985 get_debugreg(vcpu->arch.db[2], 2);
4986 get_debugreg(vcpu->arch.db[3], 3);
4987 get_debugreg(vcpu->arch.dr6, 6);
4988 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4989
4990 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4991 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4992 }
4993
4994 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4995 {
4996 vmcs_writel(GUEST_DR7, val);
4997 }
4998
4999 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5000 {
5001 kvm_apic_update_ppr(vcpu);
5002 return 1;
5003 }
5004
5005 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5006 {
5007 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5008
5009 kvm_make_request(KVM_REQ_EVENT, vcpu);
5010
5011 ++vcpu->stat.irq_window_exits;
5012 return 1;
5013 }
5014
5015 static int handle_vmcall(struct kvm_vcpu *vcpu)
5016 {
5017 return kvm_emulate_hypercall(vcpu);
5018 }
5019
5020 static int handle_invd(struct kvm_vcpu *vcpu)
5021 {
5022 return kvm_emulate_instruction(vcpu, 0);
5023 }
5024
5025 static int handle_invlpg(struct kvm_vcpu *vcpu)
5026 {
5027 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5028
5029 kvm_mmu_invlpg(vcpu, exit_qualification);
5030 return kvm_skip_emulated_instruction(vcpu);
5031 }
5032
5033 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5034 {
5035 int err;
5036
5037 err = kvm_rdpmc(vcpu);
5038 return kvm_complete_insn_gp(vcpu, err);
5039 }
5040
5041 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5042 {
5043 return kvm_emulate_wbinvd(vcpu);
5044 }
5045
5046 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5047 {
5048 u64 new_bv = kvm_read_edx_eax(vcpu);
5049 u32 index = kvm_rcx_read(vcpu);
5050
5051 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5052 return kvm_skip_emulated_instruction(vcpu);
5053 return 1;
5054 }
5055
5056 static int handle_apic_access(struct kvm_vcpu *vcpu)
5057 {
5058 if (likely(fasteoi)) {
5059 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5060 int access_type, offset;
5061
5062 access_type = exit_qualification & APIC_ACCESS_TYPE;
5063 offset = exit_qualification & APIC_ACCESS_OFFSET;
5064 /*
5065 * Sane guest uses MOV to write EOI, with written value
5066 * not cared. So make a short-circuit here by avoiding
5067 * heavy instruction emulation.
5068 */
5069 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5070 (offset == APIC_EOI)) {
5071 kvm_lapic_set_eoi(vcpu);
5072 return kvm_skip_emulated_instruction(vcpu);
5073 }
5074 }
5075 return kvm_emulate_instruction(vcpu, 0);
5076 }
5077
5078 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5079 {
5080 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5081 int vector = exit_qualification & 0xff;
5082
5083 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5084 kvm_apic_set_eoi_accelerated(vcpu, vector);
5085 return 1;
5086 }
5087
5088 static int handle_apic_write(struct kvm_vcpu *vcpu)
5089 {
5090 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5091 u32 offset = exit_qualification & 0xfff;
5092
5093 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5094 kvm_apic_write_nodecode(vcpu, offset);
5095 return 1;
5096 }
5097
5098 static int handle_task_switch(struct kvm_vcpu *vcpu)
5099 {
5100 struct vcpu_vmx *vmx = to_vmx(vcpu);
5101 unsigned long exit_qualification;
5102 bool has_error_code = false;
5103 u32 error_code = 0;
5104 u16 tss_selector;
5105 int reason, type, idt_v, idt_index;
5106
5107 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5108 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5109 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5110
5111 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5112
5113 reason = (u32)exit_qualification >> 30;
5114 if (reason == TASK_SWITCH_GATE && idt_v) {
5115 switch (type) {
5116 case INTR_TYPE_NMI_INTR:
5117 vcpu->arch.nmi_injected = false;
5118 vmx_set_nmi_mask(vcpu, true);
5119 break;
5120 case INTR_TYPE_EXT_INTR:
5121 case INTR_TYPE_SOFT_INTR:
5122 kvm_clear_interrupt_queue(vcpu);
5123 break;
5124 case INTR_TYPE_HARD_EXCEPTION:
5125 if (vmx->idt_vectoring_info &
5126 VECTORING_INFO_DELIVER_CODE_MASK) {
5127 has_error_code = true;
5128 error_code =
5129 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5130 }
5131 /* fall through */
5132 case INTR_TYPE_SOFT_EXCEPTION:
5133 kvm_clear_exception_queue(vcpu);
5134 break;
5135 default:
5136 break;
5137 }
5138 }
5139 tss_selector = exit_qualification;
5140
5141 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5142 type != INTR_TYPE_EXT_INTR &&
5143 type != INTR_TYPE_NMI_INTR))
5144 WARN_ON(!skip_emulated_instruction(vcpu));
5145
5146 /*
5147 * TODO: What about debug traps on tss switch?
5148 * Are we supposed to inject them and update dr6?
5149 */
5150 return kvm_task_switch(vcpu, tss_selector,
5151 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5152 reason, has_error_code, error_code);
5153 }
5154
5155 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5156 {
5157 unsigned long exit_qualification;
5158 gpa_t gpa;
5159 u64 error_code;
5160
5161 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5162
5163 /*
5164 * EPT violation happened while executing iret from NMI,
5165 * "blocked by NMI" bit has to be set before next VM entry.
5166 * There are errata that may cause this bit to not be set:
5167 * AAK134, BY25.
5168 */
5169 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5170 enable_vnmi &&
5171 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5172 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5173
5174 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5175 trace_kvm_page_fault(gpa, exit_qualification);
5176
5177 /* Is it a read fault? */
5178 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5179 ? PFERR_USER_MASK : 0;
5180 /* Is it a write fault? */
5181 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5182 ? PFERR_WRITE_MASK : 0;
5183 /* Is it a fetch fault? */
5184 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5185 ? PFERR_FETCH_MASK : 0;
5186 /* ept page table entry is present? */
5187 error_code |= (exit_qualification &
5188 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5189 EPT_VIOLATION_EXECUTABLE))
5190 ? PFERR_PRESENT_MASK : 0;
5191
5192 error_code |= (exit_qualification & 0x100) != 0 ?
5193 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5194
5195 vcpu->arch.exit_qualification = exit_qualification;
5196 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5197 }
5198
5199 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5200 {
5201 gpa_t gpa;
5202
5203 /*
5204 * A nested guest cannot optimize MMIO vmexits, because we have an
5205 * nGPA here instead of the required GPA.
5206 */
5207 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5208 if (!is_guest_mode(vcpu) &&
5209 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5210 trace_kvm_fast_mmio(gpa);
5211 return kvm_skip_emulated_instruction(vcpu);
5212 }
5213
5214 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5215 }
5216
5217 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5218 {
5219 WARN_ON_ONCE(!enable_vnmi);
5220 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5221 ++vcpu->stat.nmi_window_exits;
5222 kvm_make_request(KVM_REQ_EVENT, vcpu);
5223
5224 return 1;
5225 }
5226
5227 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5228 {
5229 struct vcpu_vmx *vmx = to_vmx(vcpu);
5230 bool intr_window_requested;
5231 unsigned count = 130;
5232
5233 /*
5234 * We should never reach the point where we are emulating L2
5235 * due to invalid guest state as that means we incorrectly
5236 * allowed a nested VMEntry with an invalid vmcs12.
5237 */
5238 WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5239
5240 intr_window_requested = exec_controls_get(vmx) &
5241 CPU_BASED_INTR_WINDOW_EXITING;
5242
5243 while (vmx->emulation_required && count-- != 0) {
5244 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5245 return handle_interrupt_window(&vmx->vcpu);
5246
5247 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5248 return 1;
5249
5250 if (!kvm_emulate_instruction(vcpu, 0))
5251 return 0;
5252
5253 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5254 vcpu->arch.exception.pending) {
5255 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5256 vcpu->run->internal.suberror =
5257 KVM_INTERNAL_ERROR_EMULATION;
5258 vcpu->run->internal.ndata = 0;
5259 return 0;
5260 }
5261
5262 if (vcpu->arch.halt_request) {
5263 vcpu->arch.halt_request = 0;
5264 return kvm_vcpu_halt(vcpu);
5265 }
5266
5267 /*
5268 * Note, return 1 and not 0, vcpu_run() is responsible for
5269 * morphing the pending signal into the proper return code.
5270 */
5271 if (signal_pending(current))
5272 return 1;
5273
5274 if (need_resched())
5275 schedule();
5276 }
5277
5278 return 1;
5279 }
5280
5281 static void grow_ple_window(struct kvm_vcpu *vcpu)
5282 {
5283 struct vcpu_vmx *vmx = to_vmx(vcpu);
5284 unsigned int old = vmx->ple_window;
5285
5286 vmx->ple_window = __grow_ple_window(old, ple_window,
5287 ple_window_grow,
5288 ple_window_max);
5289
5290 if (vmx->ple_window != old) {
5291 vmx->ple_window_dirty = true;
5292 trace_kvm_ple_window_update(vcpu->vcpu_id,
5293 vmx->ple_window, old);
5294 }
5295 }
5296
5297 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5298 {
5299 struct vcpu_vmx *vmx = to_vmx(vcpu);
5300 unsigned int old = vmx->ple_window;
5301
5302 vmx->ple_window = __shrink_ple_window(old, ple_window,
5303 ple_window_shrink,
5304 ple_window);
5305
5306 if (vmx->ple_window != old) {
5307 vmx->ple_window_dirty = true;
5308 trace_kvm_ple_window_update(vcpu->vcpu_id,
5309 vmx->ple_window, old);
5310 }
5311 }
5312
5313 /*
5314 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5315 */
5316 static void wakeup_handler(void)
5317 {
5318 struct kvm_vcpu *vcpu;
5319 int cpu = smp_processor_id();
5320
5321 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5322 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5323 blocked_vcpu_list) {
5324 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5325
5326 if (pi_test_on(pi_desc) == 1)
5327 kvm_vcpu_kick(vcpu);
5328 }
5329 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5330 }
5331
5332 static void vmx_enable_tdp(void)
5333 {
5334 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5335 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5336 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5337 0ull, VMX_EPT_EXECUTABLE_MASK,
5338 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5339 VMX_EPT_RWX_MASK, 0ull);
5340
5341 ept_set_mmio_spte_mask();
5342 }
5343
5344 /*
5345 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5346 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5347 */
5348 static int handle_pause(struct kvm_vcpu *vcpu)
5349 {
5350 if (!kvm_pause_in_guest(vcpu->kvm))
5351 grow_ple_window(vcpu);
5352
5353 /*
5354 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5355 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5356 * never set PAUSE_EXITING and just set PLE if supported,
5357 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5358 */
5359 kvm_vcpu_on_spin(vcpu, true);
5360 return kvm_skip_emulated_instruction(vcpu);
5361 }
5362
5363 static int handle_nop(struct kvm_vcpu *vcpu)
5364 {
5365 return kvm_skip_emulated_instruction(vcpu);
5366 }
5367
5368 static int handle_mwait(struct kvm_vcpu *vcpu)
5369 {
5370 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5371 return handle_nop(vcpu);
5372 }
5373
5374 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5375 {
5376 kvm_queue_exception(vcpu, UD_VECTOR);
5377 return 1;
5378 }
5379
5380 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5381 {
5382 return 1;
5383 }
5384
5385 static int handle_monitor(struct kvm_vcpu *vcpu)
5386 {
5387 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5388 return handle_nop(vcpu);
5389 }
5390
5391 static int handle_invpcid(struct kvm_vcpu *vcpu)
5392 {
5393 u32 vmx_instruction_info;
5394 unsigned long type;
5395 bool pcid_enabled;
5396 gva_t gva;
5397 struct x86_exception e;
5398 unsigned i;
5399 unsigned long roots_to_free = 0;
5400 struct {
5401 u64 pcid;
5402 u64 gla;
5403 } operand;
5404
5405 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5406 kvm_queue_exception(vcpu, UD_VECTOR);
5407 return 1;
5408 }
5409
5410 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5411 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5412
5413 if (type > 3) {
5414 kvm_inject_gp(vcpu, 0);
5415 return 1;
5416 }
5417
5418 /* According to the Intel instruction reference, the memory operand
5419 * is read even if it isn't needed (e.g., for type==all)
5420 */
5421 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5422 vmx_instruction_info, false,
5423 sizeof(operand), &gva))
5424 return 1;
5425
5426 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5427 kvm_inject_page_fault(vcpu, &e);
5428 return 1;
5429 }
5430
5431 if (operand.pcid >> 12 != 0) {
5432 kvm_inject_gp(vcpu, 0);
5433 return 1;
5434 }
5435
5436 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5437
5438 switch (type) {
5439 case INVPCID_TYPE_INDIV_ADDR:
5440 if ((!pcid_enabled && (operand.pcid != 0)) ||
5441 is_noncanonical_address(operand.gla, vcpu)) {
5442 kvm_inject_gp(vcpu, 0);
5443 return 1;
5444 }
5445 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5446 return kvm_skip_emulated_instruction(vcpu);
5447
5448 case INVPCID_TYPE_SINGLE_CTXT:
5449 if (!pcid_enabled && (operand.pcid != 0)) {
5450 kvm_inject_gp(vcpu, 0);
5451 return 1;
5452 }
5453
5454 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5455 kvm_mmu_sync_roots(vcpu);
5456 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5457 }
5458
5459 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5460 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5461 == operand.pcid)
5462 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5463
5464 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5465 /*
5466 * If neither the current cr3 nor any of the prev_roots use the
5467 * given PCID, then nothing needs to be done here because a
5468 * resync will happen anyway before switching to any other CR3.
5469 */
5470
5471 return kvm_skip_emulated_instruction(vcpu);
5472
5473 case INVPCID_TYPE_ALL_NON_GLOBAL:
5474 /*
5475 * Currently, KVM doesn't mark global entries in the shadow
5476 * page tables, so a non-global flush just degenerates to a
5477 * global flush. If needed, we could optimize this later by
5478 * keeping track of global entries in shadow page tables.
5479 */
5480
5481 /* fall-through */
5482 case INVPCID_TYPE_ALL_INCL_GLOBAL:
5483 kvm_mmu_unload(vcpu);
5484 return kvm_skip_emulated_instruction(vcpu);
5485
5486 default:
5487 BUG(); /* We have already checked above that type <= 3 */
5488 }
5489 }
5490
5491 static int handle_pml_full(struct kvm_vcpu *vcpu)
5492 {
5493 unsigned long exit_qualification;
5494
5495 trace_kvm_pml_full(vcpu->vcpu_id);
5496
5497 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5498
5499 /*
5500 * PML buffer FULL happened while executing iret from NMI,
5501 * "blocked by NMI" bit has to be set before next VM entry.
5502 */
5503 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5504 enable_vnmi &&
5505 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5506 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5507 GUEST_INTR_STATE_NMI);
5508
5509 /*
5510 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5511 * here.., and there's no userspace involvement needed for PML.
5512 */
5513 return 1;
5514 }
5515
5516 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5517 {
5518 struct vcpu_vmx *vmx = to_vmx(vcpu);
5519
5520 if (!vmx->req_immediate_exit &&
5521 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5522 kvm_lapic_expired_hv_timer(vcpu);
5523
5524 return 1;
5525 }
5526
5527 /*
5528 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5529 * are overwritten by nested_vmx_setup() when nested=1.
5530 */
5531 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5532 {
5533 kvm_queue_exception(vcpu, UD_VECTOR);
5534 return 1;
5535 }
5536
5537 static int handle_encls(struct kvm_vcpu *vcpu)
5538 {
5539 /*
5540 * SGX virtualization is not yet supported. There is no software
5541 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5542 * to prevent the guest from executing ENCLS.
5543 */
5544 kvm_queue_exception(vcpu, UD_VECTOR);
5545 return 1;
5546 }
5547
5548 /*
5549 * The exit handlers return 1 if the exit was handled fully and guest execution
5550 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5551 * to be done to userspace and return 0.
5552 */
5553 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5554 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5555 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5556 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5557 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5558 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5559 [EXIT_REASON_CR_ACCESS] = handle_cr,
5560 [EXIT_REASON_DR_ACCESS] = handle_dr,
5561 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
5562 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
5563 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
5564 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
5565 [EXIT_REASON_HLT] = kvm_emulate_halt,
5566 [EXIT_REASON_INVD] = handle_invd,
5567 [EXIT_REASON_INVLPG] = handle_invlpg,
5568 [EXIT_REASON_RDPMC] = handle_rdpmc,
5569 [EXIT_REASON_VMCALL] = handle_vmcall,
5570 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5571 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5572 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5573 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5574 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5575 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5576 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5577 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5578 [EXIT_REASON_VMON] = handle_vmx_instruction,
5579 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5580 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5581 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5582 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5583 [EXIT_REASON_WBINVD] = handle_wbinvd,
5584 [EXIT_REASON_XSETBV] = handle_xsetbv,
5585 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5586 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5587 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5588 [EXIT_REASON_LDTR_TR] = handle_desc,
5589 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5590 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5591 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5592 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5593 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5594 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
5595 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5596 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5597 [EXIT_REASON_RDRAND] = handle_invalid_op,
5598 [EXIT_REASON_RDSEED] = handle_invalid_op,
5599 [EXIT_REASON_PML_FULL] = handle_pml_full,
5600 [EXIT_REASON_INVPCID] = handle_invpcid,
5601 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5602 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5603 [EXIT_REASON_ENCLS] = handle_encls,
5604 };
5605
5606 static const int kvm_vmx_max_exit_handlers =
5607 ARRAY_SIZE(kvm_vmx_exit_handlers);
5608
5609 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5610 {
5611 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5612 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5613 }
5614
5615 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5616 {
5617 if (vmx->pml_pg) {
5618 __free_page(vmx->pml_pg);
5619 vmx->pml_pg = NULL;
5620 }
5621 }
5622
5623 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5624 {
5625 struct vcpu_vmx *vmx = to_vmx(vcpu);
5626 u64 *pml_buf;
5627 u16 pml_idx;
5628
5629 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5630
5631 /* Do nothing if PML buffer is empty */
5632 if (pml_idx == (PML_ENTITY_NUM - 1))
5633 return;
5634
5635 /* PML index always points to next available PML buffer entity */
5636 if (pml_idx >= PML_ENTITY_NUM)
5637 pml_idx = 0;
5638 else
5639 pml_idx++;
5640
5641 pml_buf = page_address(vmx->pml_pg);
5642 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5643 u64 gpa;
5644
5645 gpa = pml_buf[pml_idx];
5646 WARN_ON(gpa & (PAGE_SIZE - 1));
5647 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5648 }
5649
5650 /* reset PML index */
5651 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5652 }
5653
5654 /*
5655 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5656 * Called before reporting dirty_bitmap to userspace.
5657 */
5658 static void kvm_flush_pml_buffers(struct kvm *kvm)
5659 {
5660 int i;
5661 struct kvm_vcpu *vcpu;
5662 /*
5663 * We only need to kick vcpu out of guest mode here, as PML buffer
5664 * is flushed at beginning of all VMEXITs, and it's obvious that only
5665 * vcpus running in guest are possible to have unflushed GPAs in PML
5666 * buffer.
5667 */
5668 kvm_for_each_vcpu(i, vcpu, kvm)
5669 kvm_vcpu_kick(vcpu);
5670 }
5671
5672 static void vmx_dump_sel(char *name, uint32_t sel)
5673 {
5674 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5675 name, vmcs_read16(sel),
5676 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5677 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5678 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5679 }
5680
5681 static void vmx_dump_dtsel(char *name, uint32_t limit)
5682 {
5683 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5684 name, vmcs_read32(limit),
5685 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5686 }
5687
5688 void dump_vmcs(void)
5689 {
5690 u32 vmentry_ctl, vmexit_ctl;
5691 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5692 unsigned long cr4;
5693 u64 efer;
5694 int i, n;
5695
5696 if (!dump_invalid_vmcs) {
5697 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5698 return;
5699 }
5700
5701 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5702 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5703 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5704 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5705 cr4 = vmcs_readl(GUEST_CR4);
5706 efer = vmcs_read64(GUEST_IA32_EFER);
5707 secondary_exec_control = 0;
5708 if (cpu_has_secondary_exec_ctrls())
5709 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5710
5711 pr_err("*** Guest State ***\n");
5712 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5713 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5714 vmcs_readl(CR0_GUEST_HOST_MASK));
5715 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5716 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5717 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5718 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5719 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5720 {
5721 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5722 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5723 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5724 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5725 }
5726 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5727 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5728 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5729 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5730 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5731 vmcs_readl(GUEST_SYSENTER_ESP),
5732 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5733 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5734 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5735 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5736 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5737 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5738 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5739 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5740 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5741 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5742 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5743 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5744 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5745 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5746 efer, vmcs_read64(GUEST_IA32_PAT));
5747 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5748 vmcs_read64(GUEST_IA32_DEBUGCTL),
5749 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5750 if (cpu_has_load_perf_global_ctrl() &&
5751 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5752 pr_err("PerfGlobCtl = 0x%016llx\n",
5753 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5754 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5755 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5756 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5757 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5758 vmcs_read32(GUEST_ACTIVITY_STATE));
5759 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5760 pr_err("InterruptStatus = %04x\n",
5761 vmcs_read16(GUEST_INTR_STATUS));
5762
5763 pr_err("*** Host State ***\n");
5764 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5765 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5766 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5767 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5768 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5769 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5770 vmcs_read16(HOST_TR_SELECTOR));
5771 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5772 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5773 vmcs_readl(HOST_TR_BASE));
5774 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5775 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5776 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5777 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5778 vmcs_readl(HOST_CR4));
5779 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5780 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5781 vmcs_read32(HOST_IA32_SYSENTER_CS),
5782 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5783 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5784 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5785 vmcs_read64(HOST_IA32_EFER),
5786 vmcs_read64(HOST_IA32_PAT));
5787 if (cpu_has_load_perf_global_ctrl() &&
5788 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5789 pr_err("PerfGlobCtl = 0x%016llx\n",
5790 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5791
5792 pr_err("*** Control State ***\n");
5793 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5794 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5795 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5796 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5797 vmcs_read32(EXCEPTION_BITMAP),
5798 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5799 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5800 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5801 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5802 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5803 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5804 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5805 vmcs_read32(VM_EXIT_INTR_INFO),
5806 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5807 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5808 pr_err(" reason=%08x qualification=%016lx\n",
5809 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5810 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5811 vmcs_read32(IDT_VECTORING_INFO_FIELD),
5812 vmcs_read32(IDT_VECTORING_ERROR_CODE));
5813 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5814 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5815 pr_err("TSC Multiplier = 0x%016llx\n",
5816 vmcs_read64(TSC_MULTIPLIER));
5817 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5818 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5819 u16 status = vmcs_read16(GUEST_INTR_STATUS);
5820 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5821 }
5822 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5823 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5824 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5825 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5826 }
5827 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5828 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5829 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5830 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5831 n = vmcs_read32(CR3_TARGET_COUNT);
5832 for (i = 0; i + 1 < n; i += 4)
5833 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5834 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5835 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5836 if (i < n)
5837 pr_err("CR3 target%u=%016lx\n",
5838 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5839 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5840 pr_err("PLE Gap=%08x Window=%08x\n",
5841 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5842 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5843 pr_err("Virtual processor ID = 0x%04x\n",
5844 vmcs_read16(VIRTUAL_PROCESSOR_ID));
5845 }
5846
5847 /*
5848 * The guest has exited. See if we can fix it or if we need userspace
5849 * assistance.
5850 */
5851 static int vmx_handle_exit(struct kvm_vcpu *vcpu,
5852 enum exit_fastpath_completion exit_fastpath)
5853 {
5854 struct vcpu_vmx *vmx = to_vmx(vcpu);
5855 u32 exit_reason = vmx->exit_reason;
5856 u32 vectoring_info = vmx->idt_vectoring_info;
5857
5858 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5859
5860 /*
5861 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5862 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5863 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5864 * mode as if vcpus is in root mode, the PML buffer must has been
5865 * flushed already.
5866 */
5867 if (enable_pml)
5868 vmx_flush_pml_buffer(vcpu);
5869
5870 /* If guest state is invalid, start emulating */
5871 if (vmx->emulation_required)
5872 return handle_invalid_guest_state(vcpu);
5873
5874 if (is_guest_mode(vcpu)) {
5875 /*
5876 * The host physical addresses of some pages of guest memory
5877 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5878 * Page). The CPU may write to these pages via their host
5879 * physical address while L2 is running, bypassing any
5880 * address-translation-based dirty tracking (e.g. EPT write
5881 * protection).
5882 *
5883 * Mark them dirty on every exit from L2 to prevent them from
5884 * getting out of sync with dirty tracking.
5885 */
5886 nested_mark_vmcs12_pages_dirty(vcpu);
5887
5888 if (nested_vmx_exit_reflected(vcpu, exit_reason))
5889 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5890 }
5891
5892 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5893 dump_vmcs();
5894 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5895 vcpu->run->fail_entry.hardware_entry_failure_reason
5896 = exit_reason;
5897 return 0;
5898 }
5899
5900 if (unlikely(vmx->fail)) {
5901 dump_vmcs();
5902 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5903 vcpu->run->fail_entry.hardware_entry_failure_reason
5904 = vmcs_read32(VM_INSTRUCTION_ERROR);
5905 return 0;
5906 }
5907
5908 /*
5909 * Note:
5910 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5911 * delivery event since it indicates guest is accessing MMIO.
5912 * The vm-exit can be triggered again after return to guest that
5913 * will cause infinite loop.
5914 */
5915 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5916 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5917 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5918 exit_reason != EXIT_REASON_PML_FULL &&
5919 exit_reason != EXIT_REASON_TASK_SWITCH)) {
5920 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5921 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5922 vcpu->run->internal.ndata = 3;
5923 vcpu->run->internal.data[0] = vectoring_info;
5924 vcpu->run->internal.data[1] = exit_reason;
5925 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5926 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5927 vcpu->run->internal.ndata++;
5928 vcpu->run->internal.data[3] =
5929 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5930 }
5931 return 0;
5932 }
5933
5934 if (unlikely(!enable_vnmi &&
5935 vmx->loaded_vmcs->soft_vnmi_blocked)) {
5936 if (vmx_interrupt_allowed(vcpu)) {
5937 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5938 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5939 vcpu->arch.nmi_pending) {
5940 /*
5941 * This CPU don't support us in finding the end of an
5942 * NMI-blocked window if the guest runs with IRQs
5943 * disabled. So we pull the trigger after 1 s of
5944 * futile waiting, but inform the user about this.
5945 */
5946 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5947 "state on VCPU %d after 1 s timeout\n",
5948 __func__, vcpu->vcpu_id);
5949 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5950 }
5951 }
5952
5953 if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
5954 kvm_skip_emulated_instruction(vcpu);
5955 return 1;
5956 }
5957
5958 if (exit_reason >= kvm_vmx_max_exit_handlers)
5959 goto unexpected_vmexit;
5960 #ifdef CONFIG_RETPOLINE
5961 if (exit_reason == EXIT_REASON_MSR_WRITE)
5962 return kvm_emulate_wrmsr(vcpu);
5963 else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
5964 return handle_preemption_timer(vcpu);
5965 else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
5966 return handle_interrupt_window(vcpu);
5967 else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
5968 return handle_external_interrupt(vcpu);
5969 else if (exit_reason == EXIT_REASON_HLT)
5970 return kvm_emulate_halt(vcpu);
5971 else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
5972 return handle_ept_misconfig(vcpu);
5973 #endif
5974
5975 exit_reason = array_index_nospec(exit_reason,
5976 kvm_vmx_max_exit_handlers);
5977 if (!kvm_vmx_exit_handlers[exit_reason])
5978 goto unexpected_vmexit;
5979
5980 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5981
5982 unexpected_vmexit:
5983 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
5984 dump_vmcs();
5985 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5986 vcpu->run->internal.suberror =
5987 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5988 vcpu->run->internal.ndata = 1;
5989 vcpu->run->internal.data[0] = exit_reason;
5990 return 0;
5991 }
5992
5993 /*
5994 * Software based L1D cache flush which is used when microcode providing
5995 * the cache control MSR is not loaded.
5996 *
5997 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5998 * flush it is required to read in 64 KiB because the replacement algorithm
5999 * is not exactly LRU. This could be sized at runtime via topology
6000 * information but as all relevant affected CPUs have 32KiB L1D cache size
6001 * there is no point in doing so.
6002 */
6003 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6004 {
6005 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6006
6007 /*
6008 * This code is only executed when the the flush mode is 'cond' or
6009 * 'always'
6010 */
6011 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6012 bool flush_l1d;
6013
6014 /*
6015 * Clear the per-vcpu flush bit, it gets set again
6016 * either from vcpu_run() or from one of the unsafe
6017 * VMEXIT handlers.
6018 */
6019 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6020 vcpu->arch.l1tf_flush_l1d = false;
6021
6022 /*
6023 * Clear the per-cpu flush bit, it gets set again from
6024 * the interrupt handlers.
6025 */
6026 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6027 kvm_clear_cpu_l1tf_flush_l1d();
6028
6029 if (!flush_l1d)
6030 return;
6031 }
6032
6033 vcpu->stat.l1d_flush++;
6034
6035 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6036 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6037 return;
6038 }
6039
6040 asm volatile(
6041 /* First ensure the pages are in the TLB */
6042 "xorl %%eax, %%eax\n"
6043 ".Lpopulate_tlb:\n\t"
6044 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6045 "addl $4096, %%eax\n\t"
6046 "cmpl %%eax, %[size]\n\t"
6047 "jne .Lpopulate_tlb\n\t"
6048 "xorl %%eax, %%eax\n\t"
6049 "cpuid\n\t"
6050 /* Now fill the cache */
6051 "xorl %%eax, %%eax\n"
6052 ".Lfill_cache:\n"
6053 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6054 "addl $64, %%eax\n\t"
6055 "cmpl %%eax, %[size]\n\t"
6056 "jne .Lfill_cache\n\t"
6057 "lfence\n"
6058 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6059 [size] "r" (size)
6060 : "eax", "ebx", "ecx", "edx");
6061 }
6062
6063 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6064 {
6065 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6066 int tpr_threshold;
6067
6068 if (is_guest_mode(vcpu) &&
6069 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6070 return;
6071
6072 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6073 if (is_guest_mode(vcpu))
6074 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6075 else
6076 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6077 }
6078
6079 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6080 {
6081 struct vcpu_vmx *vmx = to_vmx(vcpu);
6082 u32 sec_exec_control;
6083
6084 if (!lapic_in_kernel(vcpu))
6085 return;
6086
6087 if (!flexpriority_enabled &&
6088 !cpu_has_vmx_virtualize_x2apic_mode())
6089 return;
6090
6091 /* Postpone execution until vmcs01 is the current VMCS. */
6092 if (is_guest_mode(vcpu)) {
6093 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6094 return;
6095 }
6096
6097 sec_exec_control = secondary_exec_controls_get(vmx);
6098 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6099 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6100
6101 switch (kvm_get_apic_mode(vcpu)) {
6102 case LAPIC_MODE_INVALID:
6103 WARN_ONCE(true, "Invalid local APIC state");
6104 case LAPIC_MODE_DISABLED:
6105 break;
6106 case LAPIC_MODE_XAPIC:
6107 if (flexpriority_enabled) {
6108 sec_exec_control |=
6109 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6110 vmx_flush_tlb(vcpu, true);
6111 }
6112 break;
6113 case LAPIC_MODE_X2APIC:
6114 if (cpu_has_vmx_virtualize_x2apic_mode())
6115 sec_exec_control |=
6116 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6117 break;
6118 }
6119 secondary_exec_controls_set(vmx, sec_exec_control);
6120
6121 vmx_update_msr_bitmap(vcpu);
6122 }
6123
6124 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6125 {
6126 if (!is_guest_mode(vcpu)) {
6127 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6128 vmx_flush_tlb(vcpu, true);
6129 }
6130 }
6131
6132 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6133 {
6134 u16 status;
6135 u8 old;
6136
6137 if (max_isr == -1)
6138 max_isr = 0;
6139
6140 status = vmcs_read16(GUEST_INTR_STATUS);
6141 old = status >> 8;
6142 if (max_isr != old) {
6143 status &= 0xff;
6144 status |= max_isr << 8;
6145 vmcs_write16(GUEST_INTR_STATUS, status);
6146 }
6147 }
6148
6149 static void vmx_set_rvi(int vector)
6150 {
6151 u16 status;
6152 u8 old;
6153
6154 if (vector == -1)
6155 vector = 0;
6156
6157 status = vmcs_read16(GUEST_INTR_STATUS);
6158 old = (u8)status & 0xff;
6159 if ((u8)vector != old) {
6160 status &= ~0xff;
6161 status |= (u8)vector;
6162 vmcs_write16(GUEST_INTR_STATUS, status);
6163 }
6164 }
6165
6166 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6167 {
6168 /*
6169 * When running L2, updating RVI is only relevant when
6170 * vmcs12 virtual-interrupt-delivery enabled.
6171 * However, it can be enabled only when L1 also
6172 * intercepts external-interrupts and in that case
6173 * we should not update vmcs02 RVI but instead intercept
6174 * interrupt. Therefore, do nothing when running L2.
6175 */
6176 if (!is_guest_mode(vcpu))
6177 vmx_set_rvi(max_irr);
6178 }
6179
6180 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6181 {
6182 struct vcpu_vmx *vmx = to_vmx(vcpu);
6183 int max_irr;
6184 bool max_irr_updated;
6185
6186 WARN_ON(!vcpu->arch.apicv_active);
6187 if (pi_test_on(&vmx->pi_desc)) {
6188 pi_clear_on(&vmx->pi_desc);
6189 /*
6190 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6191 * But on x86 this is just a compiler barrier anyway.
6192 */
6193 smp_mb__after_atomic();
6194 max_irr_updated =
6195 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6196
6197 /*
6198 * If we are running L2 and L1 has a new pending interrupt
6199 * which can be injected, we should re-evaluate
6200 * what should be done with this new L1 interrupt.
6201 * If L1 intercepts external-interrupts, we should
6202 * exit from L2 to L1. Otherwise, interrupt should be
6203 * delivered directly to L2.
6204 */
6205 if (is_guest_mode(vcpu) && max_irr_updated) {
6206 if (nested_exit_on_intr(vcpu))
6207 kvm_vcpu_exiting_guest_mode(vcpu);
6208 else
6209 kvm_make_request(KVM_REQ_EVENT, vcpu);
6210 }
6211 } else {
6212 max_irr = kvm_lapic_find_highest_irr(vcpu);
6213 }
6214 vmx_hwapic_irr_update(vcpu, max_irr);
6215 return max_irr;
6216 }
6217
6218 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6219 {
6220 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6221
6222 return pi_test_on(pi_desc) ||
6223 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6224 }
6225
6226 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6227 {
6228 if (!kvm_vcpu_apicv_active(vcpu))
6229 return;
6230
6231 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6232 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6233 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6234 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6235 }
6236
6237 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6238 {
6239 struct vcpu_vmx *vmx = to_vmx(vcpu);
6240
6241 pi_clear_on(&vmx->pi_desc);
6242 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6243 }
6244
6245 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6246 {
6247 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6248
6249 /* if exit due to PF check for async PF */
6250 if (is_page_fault(vmx->exit_intr_info)) {
6251 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6252 /* Handle machine checks before interrupts are enabled */
6253 } else if (is_machine_check(vmx->exit_intr_info)) {
6254 kvm_machine_check();
6255 /* We need to handle NMIs before interrupts are enabled */
6256 } else if (is_nmi(vmx->exit_intr_info)) {
6257 kvm_before_interrupt(&vmx->vcpu);
6258 asm("int $2");
6259 kvm_after_interrupt(&vmx->vcpu);
6260 }
6261 }
6262
6263 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6264 {
6265 unsigned int vector;
6266 unsigned long entry;
6267 #ifdef CONFIG_X86_64
6268 unsigned long tmp;
6269 #endif
6270 gate_desc *desc;
6271 u32 intr_info;
6272
6273 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6274 if (WARN_ONCE(!is_external_intr(intr_info),
6275 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6276 return;
6277
6278 vector = intr_info & INTR_INFO_VECTOR_MASK;
6279 desc = (gate_desc *)host_idt_base + vector;
6280 entry = gate_offset(desc);
6281
6282 kvm_before_interrupt(vcpu);
6283
6284 asm volatile(
6285 #ifdef CONFIG_X86_64
6286 "mov %%" _ASM_SP ", %[sp]\n\t"
6287 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6288 "push $%c[ss]\n\t"
6289 "push %[sp]\n\t"
6290 #endif
6291 "pushf\n\t"
6292 __ASM_SIZE(push) " $%c[cs]\n\t"
6293 CALL_NOSPEC
6294 :
6295 #ifdef CONFIG_X86_64
6296 [sp]"=&r"(tmp),
6297 #endif
6298 ASM_CALL_CONSTRAINT
6299 :
6300 [thunk_target]"r"(entry),
6301 [ss]"i"(__KERNEL_DS),
6302 [cs]"i"(__KERNEL_CS)
6303 );
6304
6305 kvm_after_interrupt(vcpu);
6306 }
6307 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6308
6309 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu,
6310 enum exit_fastpath_completion *exit_fastpath)
6311 {
6312 struct vcpu_vmx *vmx = to_vmx(vcpu);
6313
6314 if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6315 handle_external_interrupt_irqoff(vcpu);
6316 else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6317 handle_exception_nmi_irqoff(vmx);
6318 else if (!is_guest_mode(vcpu) &&
6319 vmx->exit_reason == EXIT_REASON_MSR_WRITE)
6320 *exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu);
6321 }
6322
6323 static bool vmx_has_emulated_msr(int index)
6324 {
6325 switch (index) {
6326 case MSR_IA32_SMBASE:
6327 /*
6328 * We cannot do SMM unless we can run the guest in big
6329 * real mode.
6330 */
6331 return enable_unrestricted_guest || emulate_invalid_guest_state;
6332 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6333 return nested;
6334 case MSR_AMD64_VIRT_SPEC_CTRL:
6335 /* This is AMD only. */
6336 return false;
6337 default:
6338 return true;
6339 }
6340 }
6341
6342 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6343 {
6344 u32 exit_intr_info;
6345 bool unblock_nmi;
6346 u8 vector;
6347 bool idtv_info_valid;
6348
6349 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6350
6351 if (enable_vnmi) {
6352 if (vmx->loaded_vmcs->nmi_known_unmasked)
6353 return;
6354 /*
6355 * Can't use vmx->exit_intr_info since we're not sure what
6356 * the exit reason is.
6357 */
6358 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6359 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6360 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6361 /*
6362 * SDM 3: 27.7.1.2 (September 2008)
6363 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6364 * a guest IRET fault.
6365 * SDM 3: 23.2.2 (September 2008)
6366 * Bit 12 is undefined in any of the following cases:
6367 * If the VM exit sets the valid bit in the IDT-vectoring
6368 * information field.
6369 * If the VM exit is due to a double fault.
6370 */
6371 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6372 vector != DF_VECTOR && !idtv_info_valid)
6373 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6374 GUEST_INTR_STATE_NMI);
6375 else
6376 vmx->loaded_vmcs->nmi_known_unmasked =
6377 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6378 & GUEST_INTR_STATE_NMI);
6379 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6380 vmx->loaded_vmcs->vnmi_blocked_time +=
6381 ktime_to_ns(ktime_sub(ktime_get(),
6382 vmx->loaded_vmcs->entry_time));
6383 }
6384
6385 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6386 u32 idt_vectoring_info,
6387 int instr_len_field,
6388 int error_code_field)
6389 {
6390 u8 vector;
6391 int type;
6392 bool idtv_info_valid;
6393
6394 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6395
6396 vcpu->arch.nmi_injected = false;
6397 kvm_clear_exception_queue(vcpu);
6398 kvm_clear_interrupt_queue(vcpu);
6399
6400 if (!idtv_info_valid)
6401 return;
6402
6403 kvm_make_request(KVM_REQ_EVENT, vcpu);
6404
6405 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6406 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6407
6408 switch (type) {
6409 case INTR_TYPE_NMI_INTR:
6410 vcpu->arch.nmi_injected = true;
6411 /*
6412 * SDM 3: 27.7.1.2 (September 2008)
6413 * Clear bit "block by NMI" before VM entry if a NMI
6414 * delivery faulted.
6415 */
6416 vmx_set_nmi_mask(vcpu, false);
6417 break;
6418 case INTR_TYPE_SOFT_EXCEPTION:
6419 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6420 /* fall through */
6421 case INTR_TYPE_HARD_EXCEPTION:
6422 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6423 u32 err = vmcs_read32(error_code_field);
6424 kvm_requeue_exception_e(vcpu, vector, err);
6425 } else
6426 kvm_requeue_exception(vcpu, vector);
6427 break;
6428 case INTR_TYPE_SOFT_INTR:
6429 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6430 /* fall through */
6431 case INTR_TYPE_EXT_INTR:
6432 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6433 break;
6434 default:
6435 break;
6436 }
6437 }
6438
6439 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6440 {
6441 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6442 VM_EXIT_INSTRUCTION_LEN,
6443 IDT_VECTORING_ERROR_CODE);
6444 }
6445
6446 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6447 {
6448 __vmx_complete_interrupts(vcpu,
6449 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6450 VM_ENTRY_INSTRUCTION_LEN,
6451 VM_ENTRY_EXCEPTION_ERROR_CODE);
6452
6453 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6454 }
6455
6456 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6457 {
6458 int i, nr_msrs;
6459 struct perf_guest_switch_msr *msrs;
6460
6461 msrs = perf_guest_get_msrs(&nr_msrs);
6462
6463 if (!msrs)
6464 return;
6465
6466 for (i = 0; i < nr_msrs; i++)
6467 if (msrs[i].host == msrs[i].guest)
6468 clear_atomic_switch_msr(vmx, msrs[i].msr);
6469 else
6470 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6471 msrs[i].host, false);
6472 }
6473
6474 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6475 {
6476 u32 host_umwait_control;
6477
6478 if (!vmx_has_waitpkg(vmx))
6479 return;
6480
6481 host_umwait_control = get_umwait_control_msr();
6482
6483 if (vmx->msr_ia32_umwait_control != host_umwait_control)
6484 add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6485 vmx->msr_ia32_umwait_control,
6486 host_umwait_control, false);
6487 else
6488 clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6489 }
6490
6491 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6492 {
6493 struct vcpu_vmx *vmx = to_vmx(vcpu);
6494 u64 tscl;
6495 u32 delta_tsc;
6496
6497 if (vmx->req_immediate_exit) {
6498 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6499 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6500 } else if (vmx->hv_deadline_tsc != -1) {
6501 tscl = rdtsc();
6502 if (vmx->hv_deadline_tsc > tscl)
6503 /* set_hv_timer ensures the delta fits in 32-bits */
6504 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6505 cpu_preemption_timer_multi);
6506 else
6507 delta_tsc = 0;
6508
6509 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6510 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6511 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6512 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6513 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6514 }
6515 }
6516
6517 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6518 {
6519 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6520 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6521 vmcs_writel(HOST_RSP, host_rsp);
6522 }
6523 }
6524
6525 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6526
6527 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6528 {
6529 struct vcpu_vmx *vmx = to_vmx(vcpu);
6530 unsigned long cr3, cr4;
6531
6532 /* Record the guest's net vcpu time for enforced NMI injections. */
6533 if (unlikely(!enable_vnmi &&
6534 vmx->loaded_vmcs->soft_vnmi_blocked))
6535 vmx->loaded_vmcs->entry_time = ktime_get();
6536
6537 /* Don't enter VMX if guest state is invalid, let the exit handler
6538 start emulation until we arrive back to a valid state */
6539 if (vmx->emulation_required)
6540 return;
6541
6542 if (vmx->ple_window_dirty) {
6543 vmx->ple_window_dirty = false;
6544 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6545 }
6546
6547 /*
6548 * We did this in prepare_switch_to_guest, because it needs to
6549 * be within srcu_read_lock.
6550 */
6551 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6552
6553 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6554 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6555 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6556 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6557
6558 cr3 = __get_current_cr3_fast();
6559 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6560 vmcs_writel(HOST_CR3, cr3);
6561 vmx->loaded_vmcs->host_state.cr3 = cr3;
6562 }
6563
6564 cr4 = cr4_read_shadow();
6565 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6566 vmcs_writel(HOST_CR4, cr4);
6567 vmx->loaded_vmcs->host_state.cr4 = cr4;
6568 }
6569
6570 /* When single-stepping over STI and MOV SS, we must clear the
6571 * corresponding interruptibility bits in the guest state. Otherwise
6572 * vmentry fails as it then expects bit 14 (BS) in pending debug
6573 * exceptions being set, but that's not correct for the guest debugging
6574 * case. */
6575 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6576 vmx_set_interrupt_shadow(vcpu, 0);
6577
6578 kvm_load_guest_xsave_state(vcpu);
6579
6580 if (static_cpu_has(X86_FEATURE_PKU) &&
6581 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6582 vcpu->arch.pkru != vmx->host_pkru)
6583 __write_pkru(vcpu->arch.pkru);
6584
6585 pt_guest_enter(vmx);
6586
6587 if (vcpu_to_pmu(vcpu)->version)
6588 atomic_switch_perf_msrs(vmx);
6589 atomic_switch_umwait_control_msr(vmx);
6590
6591 if (enable_preemption_timer)
6592 vmx_update_hv_timer(vcpu);
6593
6594 if (lapic_in_kernel(vcpu) &&
6595 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6596 kvm_wait_lapic_expire(vcpu);
6597
6598 /*
6599 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6600 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6601 * is no need to worry about the conditional branch over the wrmsr
6602 * being speculatively taken.
6603 */
6604 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6605
6606 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6607 if (static_branch_unlikely(&vmx_l1d_should_flush))
6608 vmx_l1d_flush(vcpu);
6609 else if (static_branch_unlikely(&mds_user_clear))
6610 mds_clear_cpu_buffers();
6611
6612 if (vcpu->arch.cr2 != read_cr2())
6613 write_cr2(vcpu->arch.cr2);
6614
6615 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6616 vmx->loaded_vmcs->launched);
6617
6618 vcpu->arch.cr2 = read_cr2();
6619
6620 /*
6621 * We do not use IBRS in the kernel. If this vCPU has used the
6622 * SPEC_CTRL MSR it may have left it on; save the value and
6623 * turn it off. This is much more efficient than blindly adding
6624 * it to the atomic save/restore list. Especially as the former
6625 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6626 *
6627 * For non-nested case:
6628 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6629 * save it.
6630 *
6631 * For nested case:
6632 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6633 * save it.
6634 */
6635 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6636 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6637
6638 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6639
6640 /* All fields are clean at this point */
6641 if (static_branch_unlikely(&enable_evmcs))
6642 current_evmcs->hv_clean_fields |=
6643 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6644
6645 if (static_branch_unlikely(&enable_evmcs))
6646 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6647
6648 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6649 if (vmx->host_debugctlmsr)
6650 update_debugctlmsr(vmx->host_debugctlmsr);
6651
6652 #ifndef CONFIG_X86_64
6653 /*
6654 * The sysexit path does not restore ds/es, so we must set them to
6655 * a reasonable value ourselves.
6656 *
6657 * We can't defer this to vmx_prepare_switch_to_host() since that
6658 * function may be executed in interrupt context, which saves and
6659 * restore segments around it, nullifying its effect.
6660 */
6661 loadsegment(ds, __USER_DS);
6662 loadsegment(es, __USER_DS);
6663 #endif
6664
6665 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6666 | (1 << VCPU_EXREG_RFLAGS)
6667 | (1 << VCPU_EXREG_PDPTR)
6668 | (1 << VCPU_EXREG_SEGMENTS)
6669 | (1 << VCPU_EXREG_CR3));
6670 vcpu->arch.regs_dirty = 0;
6671
6672 pt_guest_exit(vmx);
6673
6674 /*
6675 * eager fpu is enabled if PKEY is supported and CR4 is switched
6676 * back on host, so it is safe to read guest PKRU from current
6677 * XSAVE.
6678 */
6679 if (static_cpu_has(X86_FEATURE_PKU) &&
6680 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6681 vcpu->arch.pkru = rdpkru();
6682 if (vcpu->arch.pkru != vmx->host_pkru)
6683 __write_pkru(vmx->host_pkru);
6684 }
6685
6686 kvm_load_host_xsave_state(vcpu);
6687
6688 vmx->nested.nested_run_pending = 0;
6689 vmx->idt_vectoring_info = 0;
6690
6691 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6692 if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6693 kvm_machine_check();
6694
6695 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6696 return;
6697
6698 vmx->loaded_vmcs->launched = 1;
6699 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6700
6701 vmx_recover_nmi_blocking(vmx);
6702 vmx_complete_interrupts(vmx);
6703 }
6704
6705 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6706 {
6707 struct vcpu_vmx *vmx = to_vmx(vcpu);
6708
6709 if (enable_pml)
6710 vmx_destroy_pml_buffer(vmx);
6711 free_vpid(vmx->vpid);
6712 nested_vmx_free_vcpu(vcpu);
6713 free_loaded_vmcs(vmx->loaded_vmcs);
6714 }
6715
6716 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6717 {
6718 struct vcpu_vmx *vmx;
6719 unsigned long *msr_bitmap;
6720 int i, cpu, err;
6721
6722 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6723 vmx = to_vmx(vcpu);
6724
6725 err = -ENOMEM;
6726
6727 vmx->vpid = allocate_vpid();
6728
6729 /*
6730 * If PML is turned on, failure on enabling PML just results in failure
6731 * of creating the vcpu, therefore we can simplify PML logic (by
6732 * avoiding dealing with cases, such as enabling PML partially on vcpus
6733 * for the guest), etc.
6734 */
6735 if (enable_pml) {
6736 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6737 if (!vmx->pml_pg)
6738 goto free_vpid;
6739 }
6740
6741 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
6742
6743 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6744 u32 index = vmx_msr_index[i];
6745 u32 data_low, data_high;
6746 int j = vmx->nmsrs;
6747
6748 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6749 continue;
6750 if (wrmsr_safe(index, data_low, data_high) < 0)
6751 continue;
6752
6753 vmx->guest_msrs[j].index = i;
6754 vmx->guest_msrs[j].data = 0;
6755 switch (index) {
6756 case MSR_IA32_TSX_CTRL:
6757 /*
6758 * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6759 * let's avoid changing CPUID bits under the host
6760 * kernel's feet.
6761 */
6762 vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6763 break;
6764 default:
6765 vmx->guest_msrs[j].mask = -1ull;
6766 break;
6767 }
6768 ++vmx->nmsrs;
6769 }
6770
6771 err = alloc_loaded_vmcs(&vmx->vmcs01);
6772 if (err < 0)
6773 goto free_pml;
6774
6775 msr_bitmap = vmx->vmcs01.msr_bitmap;
6776 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6777 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6778 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6779 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6780 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6781 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6782 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6783 if (kvm_cstate_in_guest(vcpu->kvm)) {
6784 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6785 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6786 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6787 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6788 }
6789 vmx->msr_bitmap_mode = 0;
6790
6791 vmx->loaded_vmcs = &vmx->vmcs01;
6792 cpu = get_cpu();
6793 vmx_vcpu_load(vcpu, cpu);
6794 vcpu->cpu = cpu;
6795 init_vmcs(vmx);
6796 vmx_vcpu_put(vcpu);
6797 put_cpu();
6798 if (cpu_need_virtualize_apic_accesses(vcpu)) {
6799 err = alloc_apic_access_page(vcpu->kvm);
6800 if (err)
6801 goto free_vmcs;
6802 }
6803
6804 if (enable_ept && !enable_unrestricted_guest) {
6805 err = init_rmode_identity_map(vcpu->kvm);
6806 if (err)
6807 goto free_vmcs;
6808 }
6809
6810 if (nested)
6811 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6812 vmx_capability.ept);
6813 else
6814 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6815
6816 vmx->nested.posted_intr_nv = -1;
6817 vmx->nested.current_vmptr = -1ull;
6818
6819 vcpu->arch.microcode_version = 0x100000000ULL;
6820 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6821
6822 /*
6823 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6824 * or POSTED_INTR_WAKEUP_VECTOR.
6825 */
6826 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6827 vmx->pi_desc.sn = 1;
6828
6829 vmx->ept_pointer = INVALID_PAGE;
6830
6831 return 0;
6832
6833 free_vmcs:
6834 free_loaded_vmcs(vmx->loaded_vmcs);
6835 free_pml:
6836 vmx_destroy_pml_buffer(vmx);
6837 free_vpid:
6838 free_vpid(vmx->vpid);
6839 return err;
6840 }
6841
6842 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6843 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6844
6845 static int vmx_vm_init(struct kvm *kvm)
6846 {
6847 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6848
6849 if (!ple_gap)
6850 kvm->arch.pause_in_guest = true;
6851
6852 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6853 switch (l1tf_mitigation) {
6854 case L1TF_MITIGATION_OFF:
6855 case L1TF_MITIGATION_FLUSH_NOWARN:
6856 /* 'I explicitly don't care' is set */
6857 break;
6858 case L1TF_MITIGATION_FLUSH:
6859 case L1TF_MITIGATION_FLUSH_NOSMT:
6860 case L1TF_MITIGATION_FULL:
6861 /*
6862 * Warn upon starting the first VM in a potentially
6863 * insecure environment.
6864 */
6865 if (sched_smt_active())
6866 pr_warn_once(L1TF_MSG_SMT);
6867 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6868 pr_warn_once(L1TF_MSG_L1D);
6869 break;
6870 case L1TF_MITIGATION_FULL_FORCE:
6871 /* Flush is enforced */
6872 break;
6873 }
6874 }
6875 kvm_apicv_init(kvm, enable_apicv);
6876 return 0;
6877 }
6878
6879 static int __init vmx_check_processor_compat(void)
6880 {
6881 struct vmcs_config vmcs_conf;
6882 struct vmx_capability vmx_cap;
6883
6884 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6885 !this_cpu_has(X86_FEATURE_VMX)) {
6886 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6887 return -EIO;
6888 }
6889
6890 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6891 return -EIO;
6892 if (nested)
6893 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6894 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6895 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6896 smp_processor_id());
6897 return -EIO;
6898 }
6899 return 0;
6900 }
6901
6902 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6903 {
6904 u8 cache;
6905 u64 ipat = 0;
6906
6907 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6908 * memory aliases with conflicting memory types and sometimes MCEs.
6909 * We have to be careful as to what are honored and when.
6910 *
6911 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
6912 * UC. The effective memory type is UC or WC depending on guest PAT.
6913 * This was historically the source of MCEs and we want to be
6914 * conservative.
6915 *
6916 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6917 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
6918 * EPT memory type is set to WB. The effective memory type is forced
6919 * WB.
6920 *
6921 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
6922 * EPT memory type is used to emulate guest CD/MTRR.
6923 */
6924
6925 if (is_mmio) {
6926 cache = MTRR_TYPE_UNCACHABLE;
6927 goto exit;
6928 }
6929
6930 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6931 ipat = VMX_EPT_IPAT_BIT;
6932 cache = MTRR_TYPE_WRBACK;
6933 goto exit;
6934 }
6935
6936 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6937 ipat = VMX_EPT_IPAT_BIT;
6938 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6939 cache = MTRR_TYPE_WRBACK;
6940 else
6941 cache = MTRR_TYPE_UNCACHABLE;
6942 goto exit;
6943 }
6944
6945 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6946
6947 exit:
6948 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6949 }
6950
6951 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6952 {
6953 /*
6954 * These bits in the secondary execution controls field
6955 * are dynamic, the others are mostly based on the hypervisor
6956 * architecture and the guest's CPUID. Do not touch the
6957 * dynamic bits.
6958 */
6959 u32 mask =
6960 SECONDARY_EXEC_SHADOW_VMCS |
6961 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6962 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6963 SECONDARY_EXEC_DESC;
6964
6965 u32 new_ctl = vmx->secondary_exec_control;
6966 u32 cur_ctl = secondary_exec_controls_get(vmx);
6967
6968 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6969 }
6970
6971 /*
6972 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6973 * (indicating "allowed-1") if they are supported in the guest's CPUID.
6974 */
6975 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6976 {
6977 struct vcpu_vmx *vmx = to_vmx(vcpu);
6978 struct kvm_cpuid_entry2 *entry;
6979
6980 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6981 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6982
6983 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
6984 if (entry && (entry->_reg & (_cpuid_mask))) \
6985 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
6986 } while (0)
6987
6988 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6989 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
6990 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
6991 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
6992 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
6993 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
6994 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
6995 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
6996 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
6997 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
6998 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
6999 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7000 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7001 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7002 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7003
7004 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7005 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7006 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7007 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7008 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7009 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7010 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7011
7012 #undef cr4_fixed1_update
7013 }
7014
7015 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7016 {
7017 struct vcpu_vmx *vmx = to_vmx(vcpu);
7018
7019 if (kvm_mpx_supported()) {
7020 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7021
7022 if (mpx_enabled) {
7023 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7024 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7025 } else {
7026 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7027 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7028 }
7029 }
7030 }
7031
7032 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7033 {
7034 struct vcpu_vmx *vmx = to_vmx(vcpu);
7035 struct kvm_cpuid_entry2 *best = NULL;
7036 int i;
7037
7038 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7039 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7040 if (!best)
7041 return;
7042 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7043 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7044 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7045 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7046 }
7047
7048 /* Get the number of configurable Address Ranges for filtering */
7049 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7050 PT_CAP_num_address_ranges);
7051
7052 /* Initialize and clear the no dependency bits */
7053 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7054 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7055
7056 /*
7057 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7058 * will inject an #GP
7059 */
7060 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7061 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7062
7063 /*
7064 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7065 * PSBFreq can be set
7066 */
7067 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7068 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7069 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7070
7071 /*
7072 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7073 * MTCFreq can be set
7074 */
7075 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7076 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7077 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7078
7079 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7080 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7081 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7082 RTIT_CTL_PTW_EN);
7083
7084 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7085 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7086 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7087
7088 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7089 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7090 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7091
7092 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7093 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7094 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7095
7096 /* unmask address range configure area */
7097 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7098 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7099 }
7100
7101 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7102 {
7103 struct vcpu_vmx *vmx = to_vmx(vcpu);
7104
7105 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7106 vcpu->arch.xsaves_enabled = false;
7107
7108 if (cpu_has_secondary_exec_ctrls()) {
7109 vmx_compute_secondary_exec_control(vmx);
7110 vmcs_set_secondary_exec_control(vmx);
7111 }
7112
7113 if (nested_vmx_allowed(vcpu))
7114 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7115 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7116 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7117 else
7118 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7119 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7120 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7121
7122 if (nested_vmx_allowed(vcpu)) {
7123 nested_vmx_cr_fixed1_bits_update(vcpu);
7124 nested_vmx_entry_exit_ctls_update(vcpu);
7125 }
7126
7127 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7128 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7129 update_intel_pt_cfg(vcpu);
7130
7131 if (boot_cpu_has(X86_FEATURE_RTM)) {
7132 struct shared_msr_entry *msr;
7133 msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
7134 if (msr) {
7135 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7136 vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7137 }
7138 }
7139 }
7140
7141 static __init void vmx_set_cpu_caps(void)
7142 {
7143 kvm_set_cpu_caps();
7144
7145 /* CPUID 0x1 */
7146 if (nested)
7147 kvm_cpu_cap_set(X86_FEATURE_VMX);
7148
7149 /* CPUID 0x7 */
7150 if (kvm_mpx_supported())
7151 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7152 if (cpu_has_vmx_invpcid())
7153 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7154 if (vmx_pt_mode_is_host_guest())
7155 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7156
7157 /* PKU is not yet implemented for shadow paging. */
7158 if (enable_ept && boot_cpu_has(X86_FEATURE_OSPKE))
7159 kvm_cpu_cap_check_and_set(X86_FEATURE_PKU);
7160
7161 if (vmx_umip_emulated())
7162 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7163
7164 /* CPUID 0xD.1 */
7165 supported_xss = 0;
7166 if (!vmx_xsaves_supported())
7167 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7168
7169 /* CPUID 0x80000001 */
7170 if (!cpu_has_vmx_rdtscp())
7171 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7172 }
7173
7174 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7175 {
7176 to_vmx(vcpu)->req_immediate_exit = true;
7177 }
7178
7179 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7180 struct x86_instruction_info *info)
7181 {
7182 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7183 unsigned short port;
7184 bool intercept;
7185 int size;
7186
7187 if (info->intercept == x86_intercept_in ||
7188 info->intercept == x86_intercept_ins) {
7189 port = info->src_val;
7190 size = info->dst_bytes;
7191 } else {
7192 port = info->dst_val;
7193 size = info->src_bytes;
7194 }
7195
7196 /*
7197 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7198 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7199 * control.
7200 *
7201 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7202 */
7203 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7204 intercept = nested_cpu_has(vmcs12,
7205 CPU_BASED_UNCOND_IO_EXITING);
7206 else
7207 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7208
7209 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7210 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7211 }
7212
7213 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7214 struct x86_instruction_info *info,
7215 enum x86_intercept_stage stage,
7216 struct x86_exception *exception)
7217 {
7218 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7219
7220 switch (info->intercept) {
7221 /*
7222 * RDPID causes #UD if disabled through secondary execution controls.
7223 * Because it is marked as EmulateOnUD, we need to intercept it here.
7224 */
7225 case x86_intercept_rdtscp:
7226 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7227 exception->vector = UD_VECTOR;
7228 exception->error_code_valid = false;
7229 return X86EMUL_PROPAGATE_FAULT;
7230 }
7231 break;
7232
7233 case x86_intercept_in:
7234 case x86_intercept_ins:
7235 case x86_intercept_out:
7236 case x86_intercept_outs:
7237 return vmx_check_intercept_io(vcpu, info);
7238
7239 case x86_intercept_lgdt:
7240 case x86_intercept_lidt:
7241 case x86_intercept_lldt:
7242 case x86_intercept_ltr:
7243 case x86_intercept_sgdt:
7244 case x86_intercept_sidt:
7245 case x86_intercept_sldt:
7246 case x86_intercept_str:
7247 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7248 return X86EMUL_CONTINUE;
7249
7250 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7251 break;
7252
7253 /* TODO: check more intercepts... */
7254 default:
7255 break;
7256 }
7257
7258 return X86EMUL_UNHANDLEABLE;
7259 }
7260
7261 #ifdef CONFIG_X86_64
7262 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7263 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7264 u64 divisor, u64 *result)
7265 {
7266 u64 low = a << shift, high = a >> (64 - shift);
7267
7268 /* To avoid the overflow on divq */
7269 if (high >= divisor)
7270 return 1;
7271
7272 /* Low hold the result, high hold rem which is discarded */
7273 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7274 "rm" (divisor), "0" (low), "1" (high));
7275 *result = low;
7276
7277 return 0;
7278 }
7279
7280 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7281 bool *expired)
7282 {
7283 struct vcpu_vmx *vmx;
7284 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7285 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7286
7287 if (kvm_mwait_in_guest(vcpu->kvm) ||
7288 kvm_can_post_timer_interrupt(vcpu))
7289 return -EOPNOTSUPP;
7290
7291 vmx = to_vmx(vcpu);
7292 tscl = rdtsc();
7293 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7294 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7295 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7296 ktimer->timer_advance_ns);
7297
7298 if (delta_tsc > lapic_timer_advance_cycles)
7299 delta_tsc -= lapic_timer_advance_cycles;
7300 else
7301 delta_tsc = 0;
7302
7303 /* Convert to host delta tsc if tsc scaling is enabled */
7304 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7305 delta_tsc && u64_shl_div_u64(delta_tsc,
7306 kvm_tsc_scaling_ratio_frac_bits,
7307 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7308 return -ERANGE;
7309
7310 /*
7311 * If the delta tsc can't fit in the 32 bit after the multi shift,
7312 * we can't use the preemption timer.
7313 * It's possible that it fits on later vmentries, but checking
7314 * on every vmentry is costly so we just use an hrtimer.
7315 */
7316 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7317 return -ERANGE;
7318
7319 vmx->hv_deadline_tsc = tscl + delta_tsc;
7320 *expired = !delta_tsc;
7321 return 0;
7322 }
7323
7324 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7325 {
7326 to_vmx(vcpu)->hv_deadline_tsc = -1;
7327 }
7328 #endif
7329
7330 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7331 {
7332 if (!kvm_pause_in_guest(vcpu->kvm))
7333 shrink_ple_window(vcpu);
7334 }
7335
7336 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7337 struct kvm_memory_slot *slot)
7338 {
7339 if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7340 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7341 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7342 }
7343
7344 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7345 struct kvm_memory_slot *slot)
7346 {
7347 kvm_mmu_slot_set_dirty(kvm, slot);
7348 }
7349
7350 static void vmx_flush_log_dirty(struct kvm *kvm)
7351 {
7352 kvm_flush_pml_buffers(kvm);
7353 }
7354
7355 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7356 {
7357 struct vmcs12 *vmcs12;
7358 struct vcpu_vmx *vmx = to_vmx(vcpu);
7359 gpa_t gpa, dst;
7360
7361 if (is_guest_mode(vcpu)) {
7362 WARN_ON_ONCE(vmx->nested.pml_full);
7363
7364 /*
7365 * Check if PML is enabled for the nested guest.
7366 * Whether eptp bit 6 is set is already checked
7367 * as part of A/D emulation.
7368 */
7369 vmcs12 = get_vmcs12(vcpu);
7370 if (!nested_cpu_has_pml(vmcs12))
7371 return 0;
7372
7373 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7374 vmx->nested.pml_full = true;
7375 return 1;
7376 }
7377
7378 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7379 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7380
7381 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7382 offset_in_page(dst), sizeof(gpa)))
7383 return 0;
7384
7385 vmcs12->guest_pml_index--;
7386 }
7387
7388 return 0;
7389 }
7390
7391 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7392 struct kvm_memory_slot *memslot,
7393 gfn_t offset, unsigned long mask)
7394 {
7395 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7396 }
7397
7398 static void __pi_post_block(struct kvm_vcpu *vcpu)
7399 {
7400 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7401 struct pi_desc old, new;
7402 unsigned int dest;
7403
7404 do {
7405 old.control = new.control = pi_desc->control;
7406 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7407 "Wakeup handler not enabled while the VCPU is blocked\n");
7408
7409 dest = cpu_physical_id(vcpu->cpu);
7410
7411 if (x2apic_enabled())
7412 new.ndst = dest;
7413 else
7414 new.ndst = (dest << 8) & 0xFF00;
7415
7416 /* set 'NV' to 'notification vector' */
7417 new.nv = POSTED_INTR_VECTOR;
7418 } while (cmpxchg64(&pi_desc->control, old.control,
7419 new.control) != old.control);
7420
7421 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7422 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7423 list_del(&vcpu->blocked_vcpu_list);
7424 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7425 vcpu->pre_pcpu = -1;
7426 }
7427 }
7428
7429 /*
7430 * This routine does the following things for vCPU which is going
7431 * to be blocked if VT-d PI is enabled.
7432 * - Store the vCPU to the wakeup list, so when interrupts happen
7433 * we can find the right vCPU to wake up.
7434 * - Change the Posted-interrupt descriptor as below:
7435 * 'NDST' <-- vcpu->pre_pcpu
7436 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7437 * - If 'ON' is set during this process, which means at least one
7438 * interrupt is posted for this vCPU, we cannot block it, in
7439 * this case, return 1, otherwise, return 0.
7440 *
7441 */
7442 static int pi_pre_block(struct kvm_vcpu *vcpu)
7443 {
7444 unsigned int dest;
7445 struct pi_desc old, new;
7446 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7447
7448 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7449 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7450 !kvm_vcpu_apicv_active(vcpu))
7451 return 0;
7452
7453 WARN_ON(irqs_disabled());
7454 local_irq_disable();
7455 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7456 vcpu->pre_pcpu = vcpu->cpu;
7457 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7458 list_add_tail(&vcpu->blocked_vcpu_list,
7459 &per_cpu(blocked_vcpu_on_cpu,
7460 vcpu->pre_pcpu));
7461 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7462 }
7463
7464 do {
7465 old.control = new.control = pi_desc->control;
7466
7467 WARN((pi_desc->sn == 1),
7468 "Warning: SN field of posted-interrupts "
7469 "is set before blocking\n");
7470
7471 /*
7472 * Since vCPU can be preempted during this process,
7473 * vcpu->cpu could be different with pre_pcpu, we
7474 * need to set pre_pcpu as the destination of wakeup
7475 * notification event, then we can find the right vCPU
7476 * to wakeup in wakeup handler if interrupts happen
7477 * when the vCPU is in blocked state.
7478 */
7479 dest = cpu_physical_id(vcpu->pre_pcpu);
7480
7481 if (x2apic_enabled())
7482 new.ndst = dest;
7483 else
7484 new.ndst = (dest << 8) & 0xFF00;
7485
7486 /* set 'NV' to 'wakeup vector' */
7487 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7488 } while (cmpxchg64(&pi_desc->control, old.control,
7489 new.control) != old.control);
7490
7491 /* We should not block the vCPU if an interrupt is posted for it. */
7492 if (pi_test_on(pi_desc) == 1)
7493 __pi_post_block(vcpu);
7494
7495 local_irq_enable();
7496 return (vcpu->pre_pcpu == -1);
7497 }
7498
7499 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7500 {
7501 if (pi_pre_block(vcpu))
7502 return 1;
7503
7504 if (kvm_lapic_hv_timer_in_use(vcpu))
7505 kvm_lapic_switch_to_sw_timer(vcpu);
7506
7507 return 0;
7508 }
7509
7510 static void pi_post_block(struct kvm_vcpu *vcpu)
7511 {
7512 if (vcpu->pre_pcpu == -1)
7513 return;
7514
7515 WARN_ON(irqs_disabled());
7516 local_irq_disable();
7517 __pi_post_block(vcpu);
7518 local_irq_enable();
7519 }
7520
7521 static void vmx_post_block(struct kvm_vcpu *vcpu)
7522 {
7523 if (kvm_x86_ops.set_hv_timer)
7524 kvm_lapic_switch_to_hv_timer(vcpu);
7525
7526 pi_post_block(vcpu);
7527 }
7528
7529 /*
7530 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7531 *
7532 * @kvm: kvm
7533 * @host_irq: host irq of the interrupt
7534 * @guest_irq: gsi of the interrupt
7535 * @set: set or unset PI
7536 * returns 0 on success, < 0 on failure
7537 */
7538 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7539 uint32_t guest_irq, bool set)
7540 {
7541 struct kvm_kernel_irq_routing_entry *e;
7542 struct kvm_irq_routing_table *irq_rt;
7543 struct kvm_lapic_irq irq;
7544 struct kvm_vcpu *vcpu;
7545 struct vcpu_data vcpu_info;
7546 int idx, ret = 0;
7547
7548 if (!kvm_arch_has_assigned_device(kvm) ||
7549 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7550 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7551 return 0;
7552
7553 idx = srcu_read_lock(&kvm->irq_srcu);
7554 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7555 if (guest_irq >= irq_rt->nr_rt_entries ||
7556 hlist_empty(&irq_rt->map[guest_irq])) {
7557 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7558 guest_irq, irq_rt->nr_rt_entries);
7559 goto out;
7560 }
7561
7562 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7563 if (e->type != KVM_IRQ_ROUTING_MSI)
7564 continue;
7565 /*
7566 * VT-d PI cannot support posting multicast/broadcast
7567 * interrupts to a vCPU, we still use interrupt remapping
7568 * for these kind of interrupts.
7569 *
7570 * For lowest-priority interrupts, we only support
7571 * those with single CPU as the destination, e.g. user
7572 * configures the interrupts via /proc/irq or uses
7573 * irqbalance to make the interrupts single-CPU.
7574 *
7575 * We will support full lowest-priority interrupt later.
7576 *
7577 * In addition, we can only inject generic interrupts using
7578 * the PI mechanism, refuse to route others through it.
7579 */
7580
7581 kvm_set_msi_irq(kvm, e, &irq);
7582 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7583 !kvm_irq_is_postable(&irq)) {
7584 /*
7585 * Make sure the IRTE is in remapped mode if
7586 * we don't handle it in posted mode.
7587 */
7588 ret = irq_set_vcpu_affinity(host_irq, NULL);
7589 if (ret < 0) {
7590 printk(KERN_INFO
7591 "failed to back to remapped mode, irq: %u\n",
7592 host_irq);
7593 goto out;
7594 }
7595
7596 continue;
7597 }
7598
7599 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7600 vcpu_info.vector = irq.vector;
7601
7602 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7603 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7604
7605 if (set)
7606 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7607 else
7608 ret = irq_set_vcpu_affinity(host_irq, NULL);
7609
7610 if (ret < 0) {
7611 printk(KERN_INFO "%s: failed to update PI IRTE\n",
7612 __func__);
7613 goto out;
7614 }
7615 }
7616
7617 ret = 0;
7618 out:
7619 srcu_read_unlock(&kvm->irq_srcu, idx);
7620 return ret;
7621 }
7622
7623 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7624 {
7625 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7626 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7627 FEAT_CTL_LMCE_ENABLED;
7628 else
7629 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7630 ~FEAT_CTL_LMCE_ENABLED;
7631 }
7632
7633 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7634 {
7635 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7636 if (to_vmx(vcpu)->nested.nested_run_pending)
7637 return 0;
7638 return 1;
7639 }
7640
7641 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7642 {
7643 struct vcpu_vmx *vmx = to_vmx(vcpu);
7644
7645 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7646 if (vmx->nested.smm.guest_mode)
7647 nested_vmx_vmexit(vcpu, -1, 0, 0);
7648
7649 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7650 vmx->nested.vmxon = false;
7651 vmx_clear_hlt(vcpu);
7652 return 0;
7653 }
7654
7655 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7656 {
7657 struct vcpu_vmx *vmx = to_vmx(vcpu);
7658 int ret;
7659
7660 if (vmx->nested.smm.vmxon) {
7661 vmx->nested.vmxon = true;
7662 vmx->nested.smm.vmxon = false;
7663 }
7664
7665 if (vmx->nested.smm.guest_mode) {
7666 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7667 if (ret)
7668 return ret;
7669
7670 vmx->nested.smm.guest_mode = false;
7671 }
7672 return 0;
7673 }
7674
7675 static int enable_smi_window(struct kvm_vcpu *vcpu)
7676 {
7677 return 0;
7678 }
7679
7680 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7681 {
7682 return false;
7683 }
7684
7685 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7686 {
7687 return to_vmx(vcpu)->nested.vmxon;
7688 }
7689
7690 static void hardware_unsetup(void)
7691 {
7692 if (nested)
7693 nested_vmx_hardware_unsetup();
7694
7695 free_kvm_area();
7696 }
7697
7698 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7699 {
7700 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7701 BIT(APICV_INHIBIT_REASON_HYPERV);
7702
7703 return supported & BIT(bit);
7704 }
7705
7706 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7707 .hardware_unsetup = hardware_unsetup,
7708
7709 .hardware_enable = hardware_enable,
7710 .hardware_disable = hardware_disable,
7711 .cpu_has_accelerated_tpr = report_flexpriority,
7712 .has_emulated_msr = vmx_has_emulated_msr,
7713
7714 .vm_size = sizeof(struct kvm_vmx),
7715 .vm_init = vmx_vm_init,
7716
7717 .vcpu_create = vmx_create_vcpu,
7718 .vcpu_free = vmx_free_vcpu,
7719 .vcpu_reset = vmx_vcpu_reset,
7720
7721 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7722 .vcpu_load = vmx_vcpu_load,
7723 .vcpu_put = vmx_vcpu_put,
7724
7725 .update_bp_intercept = update_exception_bitmap,
7726 .get_msr_feature = vmx_get_msr_feature,
7727 .get_msr = vmx_get_msr,
7728 .set_msr = vmx_set_msr,
7729 .get_segment_base = vmx_get_segment_base,
7730 .get_segment = vmx_get_segment,
7731 .set_segment = vmx_set_segment,
7732 .get_cpl = vmx_get_cpl,
7733 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7734 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7735 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7736 .set_cr0 = vmx_set_cr0,
7737 .set_cr4 = vmx_set_cr4,
7738 .set_efer = vmx_set_efer,
7739 .get_idt = vmx_get_idt,
7740 .set_idt = vmx_set_idt,
7741 .get_gdt = vmx_get_gdt,
7742 .set_gdt = vmx_set_gdt,
7743 .get_dr6 = vmx_get_dr6,
7744 .set_dr6 = vmx_set_dr6,
7745 .set_dr7 = vmx_set_dr7,
7746 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7747 .cache_reg = vmx_cache_reg,
7748 .get_rflags = vmx_get_rflags,
7749 .set_rflags = vmx_set_rflags,
7750
7751 .tlb_flush = vmx_flush_tlb,
7752 .tlb_flush_gva = vmx_flush_tlb_gva,
7753
7754 .run = vmx_vcpu_run,
7755 .handle_exit = vmx_handle_exit,
7756 .skip_emulated_instruction = vmx_skip_emulated_instruction,
7757 .update_emulated_instruction = vmx_update_emulated_instruction,
7758 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7759 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7760 .patch_hypercall = vmx_patch_hypercall,
7761 .set_irq = vmx_inject_irq,
7762 .set_nmi = vmx_inject_nmi,
7763 .queue_exception = vmx_queue_exception,
7764 .cancel_injection = vmx_cancel_injection,
7765 .interrupt_allowed = vmx_interrupt_allowed,
7766 .nmi_allowed = vmx_nmi_allowed,
7767 .get_nmi_mask = vmx_get_nmi_mask,
7768 .set_nmi_mask = vmx_set_nmi_mask,
7769 .enable_nmi_window = enable_nmi_window,
7770 .enable_irq_window = enable_irq_window,
7771 .update_cr8_intercept = update_cr8_intercept,
7772 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7773 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7774 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7775 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7776 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7777 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7778 .hwapic_irr_update = vmx_hwapic_irr_update,
7779 .hwapic_isr_update = vmx_hwapic_isr_update,
7780 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7781 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7782 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7783 .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7784
7785 .set_tss_addr = vmx_set_tss_addr,
7786 .set_identity_map_addr = vmx_set_identity_map_addr,
7787 .get_tdp_level = get_ept_level,
7788 .get_mt_mask = vmx_get_mt_mask,
7789
7790 .get_exit_info = vmx_get_exit_info,
7791
7792 .cpuid_update = vmx_cpuid_update,
7793
7794 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7795
7796 .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7797 .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7798
7799 .load_mmu_pgd = vmx_load_mmu_pgd,
7800
7801 .check_intercept = vmx_check_intercept,
7802 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7803
7804 .request_immediate_exit = vmx_request_immediate_exit,
7805
7806 .sched_in = vmx_sched_in,
7807
7808 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7809 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7810 .flush_log_dirty = vmx_flush_log_dirty,
7811 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7812 .write_log_dirty = vmx_write_pml_buffer,
7813
7814 .pre_block = vmx_pre_block,
7815 .post_block = vmx_post_block,
7816
7817 .pmu_ops = &intel_pmu_ops,
7818
7819 .update_pi_irte = vmx_update_pi_irte,
7820
7821 #ifdef CONFIG_X86_64
7822 .set_hv_timer = vmx_set_hv_timer,
7823 .cancel_hv_timer = vmx_cancel_hv_timer,
7824 #endif
7825
7826 .setup_mce = vmx_setup_mce,
7827
7828 .smi_allowed = vmx_smi_allowed,
7829 .pre_enter_smm = vmx_pre_enter_smm,
7830 .pre_leave_smm = vmx_pre_leave_smm,
7831 .enable_smi_window = enable_smi_window,
7832
7833 .check_nested_events = NULL,
7834 .get_nested_state = NULL,
7835 .set_nested_state = NULL,
7836 .get_vmcs12_pages = NULL,
7837 .nested_enable_evmcs = NULL,
7838 .nested_get_evmcs_version = NULL,
7839 .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7840 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7841 };
7842
7843 static __init int hardware_setup(void)
7844 {
7845 unsigned long host_bndcfgs;
7846 struct desc_ptr dt;
7847 int r, i, ept_lpage_level;
7848
7849 store_idt(&dt);
7850 host_idt_base = dt.address;
7851
7852 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7853 kvm_define_shared_msr(i, vmx_msr_index[i]);
7854
7855 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7856 return -EIO;
7857
7858 if (boot_cpu_has(X86_FEATURE_NX))
7859 kvm_enable_efer_bits(EFER_NX);
7860
7861 if (boot_cpu_has(X86_FEATURE_MPX)) {
7862 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7863 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7864 }
7865
7866 if (!cpu_has_vmx_mpx())
7867 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7868 XFEATURE_MASK_BNDCSR);
7869
7870 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7871 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7872 enable_vpid = 0;
7873
7874 if (!cpu_has_vmx_ept() ||
7875 !cpu_has_vmx_ept_4levels() ||
7876 !cpu_has_vmx_ept_mt_wb() ||
7877 !cpu_has_vmx_invept_global())
7878 enable_ept = 0;
7879
7880 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7881 enable_ept_ad_bits = 0;
7882
7883 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7884 enable_unrestricted_guest = 0;
7885
7886 if (!cpu_has_vmx_flexpriority())
7887 flexpriority_enabled = 0;
7888
7889 if (!cpu_has_virtual_nmis())
7890 enable_vnmi = 0;
7891
7892 /*
7893 * set_apic_access_page_addr() is used to reload apic access
7894 * page upon invalidation. No need to do anything if not
7895 * using the APIC_ACCESS_ADDR VMCS field.
7896 */
7897 if (!flexpriority_enabled)
7898 vmx_x86_ops.set_apic_access_page_addr = NULL;
7899
7900 if (!cpu_has_vmx_tpr_shadow())
7901 vmx_x86_ops.update_cr8_intercept = NULL;
7902
7903 #if IS_ENABLED(CONFIG_HYPERV)
7904 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7905 && enable_ept) {
7906 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7907 vmx_x86_ops.tlb_remote_flush_with_range =
7908 hv_remote_flush_tlb_with_range;
7909 }
7910 #endif
7911
7912 if (!cpu_has_vmx_ple()) {
7913 ple_gap = 0;
7914 ple_window = 0;
7915 ple_window_grow = 0;
7916 ple_window_max = 0;
7917 ple_window_shrink = 0;
7918 }
7919
7920 if (!cpu_has_vmx_apicv()) {
7921 enable_apicv = 0;
7922 vmx_x86_ops.sync_pir_to_irr = NULL;
7923 }
7924
7925 if (cpu_has_vmx_tsc_scaling()) {
7926 kvm_has_tsc_control = true;
7927 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7928 kvm_tsc_scaling_ratio_frac_bits = 48;
7929 }
7930
7931 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7932
7933 if (enable_ept)
7934 vmx_enable_tdp();
7935
7936 if (!enable_ept)
7937 ept_lpage_level = 0;
7938 else if (cpu_has_vmx_ept_1g_page())
7939 ept_lpage_level = PT_PDPE_LEVEL;
7940 else if (cpu_has_vmx_ept_2m_page())
7941 ept_lpage_level = PT_DIRECTORY_LEVEL;
7942 else
7943 ept_lpage_level = PT_PAGE_TABLE_LEVEL;
7944 kvm_configure_mmu(enable_ept, ept_lpage_level);
7945
7946 /*
7947 * Only enable PML when hardware supports PML feature, and both EPT
7948 * and EPT A/D bit features are enabled -- PML depends on them to work.
7949 */
7950 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7951 enable_pml = 0;
7952
7953 if (!enable_pml) {
7954 vmx_x86_ops.slot_enable_log_dirty = NULL;
7955 vmx_x86_ops.slot_disable_log_dirty = NULL;
7956 vmx_x86_ops.flush_log_dirty = NULL;
7957 vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
7958 }
7959
7960 if (!cpu_has_vmx_preemption_timer())
7961 enable_preemption_timer = false;
7962
7963 if (enable_preemption_timer) {
7964 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7965 u64 vmx_msr;
7966
7967 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7968 cpu_preemption_timer_multi =
7969 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7970
7971 if (tsc_khz)
7972 use_timer_freq = (u64)tsc_khz * 1000;
7973 use_timer_freq >>= cpu_preemption_timer_multi;
7974
7975 /*
7976 * KVM "disables" the preemption timer by setting it to its max
7977 * value. Don't use the timer if it might cause spurious exits
7978 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7979 */
7980 if (use_timer_freq > 0xffffffffu / 10)
7981 enable_preemption_timer = false;
7982 }
7983
7984 if (!enable_preemption_timer) {
7985 vmx_x86_ops.set_hv_timer = NULL;
7986 vmx_x86_ops.cancel_hv_timer = NULL;
7987 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7988 }
7989
7990 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7991
7992 kvm_mce_cap_supported |= MCG_LMCE_P;
7993
7994 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7995 return -EINVAL;
7996 if (!enable_ept || !cpu_has_vmx_intel_pt())
7997 pt_mode = PT_MODE_SYSTEM;
7998
7999 if (nested) {
8000 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8001 vmx_capability.ept);
8002
8003 r = nested_vmx_hardware_setup(&vmx_x86_ops,
8004 kvm_vmx_exit_handlers);
8005 if (r)
8006 return r;
8007 }
8008
8009 vmx_set_cpu_caps();
8010
8011 r = alloc_kvm_area();
8012 if (r)
8013 nested_vmx_hardware_unsetup();
8014 return r;
8015 }
8016
8017 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8018 .cpu_has_kvm_support = cpu_has_kvm_support,
8019 .disabled_by_bios = vmx_disabled_by_bios,
8020 .check_processor_compatibility = vmx_check_processor_compat,
8021 .hardware_setup = hardware_setup,
8022
8023 .runtime_ops = &vmx_x86_ops,
8024 };
8025
8026 static void vmx_cleanup_l1d_flush(void)
8027 {
8028 if (vmx_l1d_flush_pages) {
8029 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8030 vmx_l1d_flush_pages = NULL;
8031 }
8032 /* Restore state so sysfs ignores VMX */
8033 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8034 }
8035
8036 static void vmx_exit(void)
8037 {
8038 #ifdef CONFIG_KEXEC_CORE
8039 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8040 synchronize_rcu();
8041 #endif
8042
8043 kvm_exit();
8044
8045 #if IS_ENABLED(CONFIG_HYPERV)
8046 if (static_branch_unlikely(&enable_evmcs)) {
8047 int cpu;
8048 struct hv_vp_assist_page *vp_ap;
8049 /*
8050 * Reset everything to support using non-enlightened VMCS
8051 * access later (e.g. when we reload the module with
8052 * enlightened_vmcs=0)
8053 */
8054 for_each_online_cpu(cpu) {
8055 vp_ap = hv_get_vp_assist_page(cpu);
8056
8057 if (!vp_ap)
8058 continue;
8059
8060 vp_ap->nested_control.features.directhypercall = 0;
8061 vp_ap->current_nested_vmcs = 0;
8062 vp_ap->enlighten_vmentry = 0;
8063 }
8064
8065 static_branch_disable(&enable_evmcs);
8066 }
8067 #endif
8068 vmx_cleanup_l1d_flush();
8069 }
8070 module_exit(vmx_exit);
8071
8072 static int __init vmx_init(void)
8073 {
8074 int r, cpu;
8075
8076 #if IS_ENABLED(CONFIG_HYPERV)
8077 /*
8078 * Enlightened VMCS usage should be recommended and the host needs
8079 * to support eVMCS v1 or above. We can also disable eVMCS support
8080 * with module parameter.
8081 */
8082 if (enlightened_vmcs &&
8083 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8084 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8085 KVM_EVMCS_VERSION) {
8086 int cpu;
8087
8088 /* Check that we have assist pages on all online CPUs */
8089 for_each_online_cpu(cpu) {
8090 if (!hv_get_vp_assist_page(cpu)) {
8091 enlightened_vmcs = false;
8092 break;
8093 }
8094 }
8095
8096 if (enlightened_vmcs) {
8097 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8098 static_branch_enable(&enable_evmcs);
8099 }
8100
8101 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8102 vmx_x86_ops.enable_direct_tlbflush
8103 = hv_enable_direct_tlbflush;
8104
8105 } else {
8106 enlightened_vmcs = false;
8107 }
8108 #endif
8109
8110 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8111 __alignof__(struct vcpu_vmx), THIS_MODULE);
8112 if (r)
8113 return r;
8114
8115 /*
8116 * Must be called after kvm_init() so enable_ept is properly set
8117 * up. Hand the parameter mitigation value in which was stored in
8118 * the pre module init parser. If no parameter was given, it will
8119 * contain 'auto' which will be turned into the default 'cond'
8120 * mitigation mode.
8121 */
8122 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8123 if (r) {
8124 vmx_exit();
8125 return r;
8126 }
8127
8128 for_each_possible_cpu(cpu) {
8129 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8130 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
8131 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8132 }
8133
8134 #ifdef CONFIG_KEXEC_CORE
8135 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8136 crash_vmclear_local_loaded_vmcss);
8137 #endif
8138 vmx_check_vmcs12_offsets();
8139
8140 return 0;
8141 }
8142 module_init(vmx_init);