]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - arch/x86/kvm/vmx/vmx.c
Merge branch 'x86/bugs' into x86/core, to pick up pending changes before dependent...
[thirdparty/kernel/linux.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/reboot.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/mwait.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/vmx.h>
51
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 #include "smm.h"
69 #include "vmx_onhyperv.h"
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 #ifdef MODULE
75 static const struct x86_cpu_id vmx_cpu_id[] = {
76 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
77 {}
78 };
79 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
80 #endif
81
82 bool __read_mostly enable_vpid = 1;
83 module_param_named(vpid, enable_vpid, bool, 0444);
84
85 static bool __read_mostly enable_vnmi = 1;
86 module_param_named(vnmi, enable_vnmi, bool, 0444);
87
88 bool __read_mostly flexpriority_enabled = 1;
89 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
90
91 bool __read_mostly enable_ept = 1;
92 module_param_named(ept, enable_ept, bool, 0444);
93
94 bool __read_mostly enable_unrestricted_guest = 1;
95 module_param_named(unrestricted_guest,
96 enable_unrestricted_guest, bool, 0444);
97
98 bool __read_mostly enable_ept_ad_bits = 1;
99 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
100
101 static bool __read_mostly emulate_invalid_guest_state = true;
102 module_param(emulate_invalid_guest_state, bool, 0444);
103
104 static bool __read_mostly fasteoi = 1;
105 module_param(fasteoi, bool, 0444);
106
107 module_param(enable_apicv, bool, 0444);
108
109 bool __read_mostly enable_ipiv = true;
110 module_param(enable_ipiv, bool, 0444);
111
112 /*
113 * If nested=1, nested virtualization is supported, i.e., guests may use
114 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
115 * use VMX instructions.
116 */
117 static bool __read_mostly nested = 1;
118 module_param(nested, bool, 0444);
119
120 bool __read_mostly enable_pml = 1;
121 module_param_named(pml, enable_pml, bool, 0444);
122
123 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
124 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
125
126 static bool __read_mostly dump_invalid_vmcs = 0;
127 module_param(dump_invalid_vmcs, bool, 0644);
128
129 #define MSR_BITMAP_MODE_X2APIC 1
130 #define MSR_BITMAP_MODE_X2APIC_APICV 2
131
132 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
133
134 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
135 static int __read_mostly cpu_preemption_timer_multi;
136 static bool __read_mostly enable_preemption_timer = 1;
137 #ifdef CONFIG_X86_64
138 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
139 #endif
140
141 extern bool __read_mostly allow_smaller_maxphyaddr;
142 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
143
144 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
145 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
146 #define KVM_VM_CR0_ALWAYS_ON \
147 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
148
149 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
150 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
151 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
152
153 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
154
155 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
156 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
157 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
158 RTIT_STATUS_BYTECNT))
159
160 /*
161 * List of MSRs that can be directly passed to the guest.
162 * In addition to these x2apic and PT MSRs are handled specially.
163 */
164 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
165 MSR_IA32_SPEC_CTRL,
166 MSR_IA32_PRED_CMD,
167 MSR_IA32_FLUSH_CMD,
168 MSR_IA32_TSC,
169 #ifdef CONFIG_X86_64
170 MSR_FS_BASE,
171 MSR_GS_BASE,
172 MSR_KERNEL_GS_BASE,
173 MSR_IA32_XFD,
174 MSR_IA32_XFD_ERR,
175 #endif
176 MSR_IA32_SYSENTER_CS,
177 MSR_IA32_SYSENTER_ESP,
178 MSR_IA32_SYSENTER_EIP,
179 MSR_CORE_C1_RES,
180 MSR_CORE_C3_RESIDENCY,
181 MSR_CORE_C6_RESIDENCY,
182 MSR_CORE_C7_RESIDENCY,
183 };
184
185 /*
186 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
187 * ple_gap: upper bound on the amount of time between two successive
188 * executions of PAUSE in a loop. Also indicate if ple enabled.
189 * According to test, this time is usually smaller than 128 cycles.
190 * ple_window: upper bound on the amount of time a guest is allowed to execute
191 * in a PAUSE loop. Tests indicate that most spinlocks are held for
192 * less than 2^12 cycles
193 * Time is measured based on a counter that runs at the same rate as the TSC,
194 * refer SDM volume 3b section 21.6.13 & 22.1.3.
195 */
196 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
197 module_param(ple_gap, uint, 0444);
198
199 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
200 module_param(ple_window, uint, 0444);
201
202 /* Default doubles per-vcpu window every exit. */
203 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
204 module_param(ple_window_grow, uint, 0444);
205
206 /* Default resets per-vcpu window every exit to ple_window. */
207 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
208 module_param(ple_window_shrink, uint, 0444);
209
210 /* Default is to compute the maximum so we can never overflow. */
211 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
212 module_param(ple_window_max, uint, 0444);
213
214 /* Default is SYSTEM mode, 1 for host-guest mode */
215 int __read_mostly pt_mode = PT_MODE_SYSTEM;
216 module_param(pt_mode, int, S_IRUGO);
217
218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
220 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
221
222 /* Storage for pre module init parameter parsing */
223 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
224
225 static const struct {
226 const char *option;
227 bool for_parse;
228 } vmentry_l1d_param[] = {
229 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
230 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
231 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
232 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
233 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
234 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
235 };
236
237 #define L1D_CACHE_ORDER 4
238 static void *vmx_l1d_flush_pages;
239
240 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
241 {
242 struct page *page;
243 unsigned int i;
244
245 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
246 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
247 return 0;
248 }
249
250 if (!enable_ept) {
251 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
252 return 0;
253 }
254
255 if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
256 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
257 return 0;
258 }
259
260 /* If set to auto use the default l1tf mitigation method */
261 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
262 switch (l1tf_mitigation) {
263 case L1TF_MITIGATION_OFF:
264 l1tf = VMENTER_L1D_FLUSH_NEVER;
265 break;
266 case L1TF_MITIGATION_FLUSH_NOWARN:
267 case L1TF_MITIGATION_FLUSH:
268 case L1TF_MITIGATION_FLUSH_NOSMT:
269 l1tf = VMENTER_L1D_FLUSH_COND;
270 break;
271 case L1TF_MITIGATION_FULL:
272 case L1TF_MITIGATION_FULL_FORCE:
273 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
274 break;
275 }
276 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
277 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
278 }
279
280 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
281 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
282 /*
283 * This allocation for vmx_l1d_flush_pages is not tied to a VM
284 * lifetime and so should not be charged to a memcg.
285 */
286 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
287 if (!page)
288 return -ENOMEM;
289 vmx_l1d_flush_pages = page_address(page);
290
291 /*
292 * Initialize each page with a different pattern in
293 * order to protect against KSM in the nested
294 * virtualization case.
295 */
296 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
297 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
298 PAGE_SIZE);
299 }
300 }
301
302 l1tf_vmx_mitigation = l1tf;
303
304 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
305 static_branch_enable(&vmx_l1d_should_flush);
306 else
307 static_branch_disable(&vmx_l1d_should_flush);
308
309 if (l1tf == VMENTER_L1D_FLUSH_COND)
310 static_branch_enable(&vmx_l1d_flush_cond);
311 else
312 static_branch_disable(&vmx_l1d_flush_cond);
313 return 0;
314 }
315
316 static int vmentry_l1d_flush_parse(const char *s)
317 {
318 unsigned int i;
319
320 if (s) {
321 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
322 if (vmentry_l1d_param[i].for_parse &&
323 sysfs_streq(s, vmentry_l1d_param[i].option))
324 return i;
325 }
326 }
327 return -EINVAL;
328 }
329
330 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
331 {
332 int l1tf, ret;
333
334 l1tf = vmentry_l1d_flush_parse(s);
335 if (l1tf < 0)
336 return l1tf;
337
338 if (!boot_cpu_has(X86_BUG_L1TF))
339 return 0;
340
341 /*
342 * Has vmx_init() run already? If not then this is the pre init
343 * parameter parsing. In that case just store the value and let
344 * vmx_init() do the proper setup after enable_ept has been
345 * established.
346 */
347 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
348 vmentry_l1d_flush_param = l1tf;
349 return 0;
350 }
351
352 mutex_lock(&vmx_l1d_flush_mutex);
353 ret = vmx_setup_l1d_flush(l1tf);
354 mutex_unlock(&vmx_l1d_flush_mutex);
355 return ret;
356 }
357
358 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
359 {
360 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
361 return sysfs_emit(s, "???\n");
362
363 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
364 }
365
366 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
367 {
368 u64 msr;
369
370 if (!vmx->disable_fb_clear)
371 return;
372
373 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
374 msr |= FB_CLEAR_DIS;
375 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
376 /* Cache the MSR value to avoid reading it later */
377 vmx->msr_ia32_mcu_opt_ctrl = msr;
378 }
379
380 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
381 {
382 if (!vmx->disable_fb_clear)
383 return;
384
385 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
386 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
387 }
388
389 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
390 {
391 vmx->disable_fb_clear = (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
392 !boot_cpu_has_bug(X86_BUG_MDS) &&
393 !boot_cpu_has_bug(X86_BUG_TAA);
394
395 /*
396 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
397 * at VMEntry. Skip the MSR read/write when a guest has no use case to
398 * execute VERW.
399 */
400 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
401 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
402 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
403 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
404 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
405 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
406 vmx->disable_fb_clear = false;
407 }
408
409 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
410 .set = vmentry_l1d_flush_set,
411 .get = vmentry_l1d_flush_get,
412 };
413 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
414
415 static u32 vmx_segment_access_rights(struct kvm_segment *var);
416
417 void vmx_vmexit(void);
418
419 #define vmx_insn_failed(fmt...) \
420 do { \
421 WARN_ONCE(1, fmt); \
422 pr_warn_ratelimited(fmt); \
423 } while (0)
424
425 noinline void vmread_error(unsigned long field)
426 {
427 vmx_insn_failed("vmread failed: field=%lx\n", field);
428 }
429
430 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
431 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
432 {
433 if (fault) {
434 kvm_spurious_fault();
435 } else {
436 instrumentation_begin();
437 vmread_error(field);
438 instrumentation_end();
439 }
440 }
441 #endif
442
443 noinline void vmwrite_error(unsigned long field, unsigned long value)
444 {
445 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
446 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
447 }
448
449 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
450 {
451 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
452 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
453 }
454
455 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
456 {
457 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
458 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
459 }
460
461 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
462 {
463 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
464 ext, vpid, gva);
465 }
466
467 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
468 {
469 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
470 ext, eptp, gpa);
471 }
472
473 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
474 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
475 /*
476 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
477 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
478 */
479 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
480
481 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
482 static DEFINE_SPINLOCK(vmx_vpid_lock);
483
484 struct vmcs_config vmcs_config __ro_after_init;
485 struct vmx_capability vmx_capability __ro_after_init;
486
487 #define VMX_SEGMENT_FIELD(seg) \
488 [VCPU_SREG_##seg] = { \
489 .selector = GUEST_##seg##_SELECTOR, \
490 .base = GUEST_##seg##_BASE, \
491 .limit = GUEST_##seg##_LIMIT, \
492 .ar_bytes = GUEST_##seg##_AR_BYTES, \
493 }
494
495 static const struct kvm_vmx_segment_field {
496 unsigned selector;
497 unsigned base;
498 unsigned limit;
499 unsigned ar_bytes;
500 } kvm_vmx_segment_fields[] = {
501 VMX_SEGMENT_FIELD(CS),
502 VMX_SEGMENT_FIELD(DS),
503 VMX_SEGMENT_FIELD(ES),
504 VMX_SEGMENT_FIELD(FS),
505 VMX_SEGMENT_FIELD(GS),
506 VMX_SEGMENT_FIELD(SS),
507 VMX_SEGMENT_FIELD(TR),
508 VMX_SEGMENT_FIELD(LDTR),
509 };
510
511 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
512 {
513 vmx->segment_cache.bitmask = 0;
514 }
515
516 static unsigned long host_idt_base;
517
518 #if IS_ENABLED(CONFIG_HYPERV)
519 static struct kvm_x86_ops vmx_x86_ops __initdata;
520
521 static bool __read_mostly enlightened_vmcs = true;
522 module_param(enlightened_vmcs, bool, 0444);
523
524 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
525 {
526 struct hv_enlightened_vmcs *evmcs;
527 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
528
529 if (partition_assist_page == INVALID_PAGE)
530 return -ENOMEM;
531
532 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
533
534 evmcs->partition_assist_page = partition_assist_page;
535 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
536 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
537
538 return 0;
539 }
540
541 static __init void hv_init_evmcs(void)
542 {
543 int cpu;
544
545 if (!enlightened_vmcs)
546 return;
547
548 /*
549 * Enlightened VMCS usage should be recommended and the host needs
550 * to support eVMCS v1 or above.
551 */
552 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
553 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
554 KVM_EVMCS_VERSION) {
555
556 /* Check that we have assist pages on all online CPUs */
557 for_each_online_cpu(cpu) {
558 if (!hv_get_vp_assist_page(cpu)) {
559 enlightened_vmcs = false;
560 break;
561 }
562 }
563
564 if (enlightened_vmcs) {
565 pr_info("Using Hyper-V Enlightened VMCS\n");
566 static_branch_enable(&__kvm_is_using_evmcs);
567 }
568
569 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
570 vmx_x86_ops.enable_l2_tlb_flush
571 = hv_enable_l2_tlb_flush;
572
573 } else {
574 enlightened_vmcs = false;
575 }
576 }
577
578 static void hv_reset_evmcs(void)
579 {
580 struct hv_vp_assist_page *vp_ap;
581
582 if (!kvm_is_using_evmcs())
583 return;
584
585 /*
586 * KVM should enable eVMCS if and only if all CPUs have a VP assist
587 * page, and should reject CPU onlining if eVMCS is enabled the CPU
588 * doesn't have a VP assist page allocated.
589 */
590 vp_ap = hv_get_vp_assist_page(smp_processor_id());
591 if (WARN_ON_ONCE(!vp_ap))
592 return;
593
594 /*
595 * Reset everything to support using non-enlightened VMCS access later
596 * (e.g. when we reload the module with enlightened_vmcs=0)
597 */
598 vp_ap->nested_control.features.directhypercall = 0;
599 vp_ap->current_nested_vmcs = 0;
600 vp_ap->enlighten_vmentry = 0;
601 }
602
603 #else /* IS_ENABLED(CONFIG_HYPERV) */
604 static void hv_init_evmcs(void) {}
605 static void hv_reset_evmcs(void) {}
606 #endif /* IS_ENABLED(CONFIG_HYPERV) */
607
608 /*
609 * Comment's format: document - errata name - stepping - processor name.
610 * Refer from
611 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
612 */
613 static u32 vmx_preemption_cpu_tfms[] = {
614 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
615 0x000206E6,
616 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
617 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
618 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
619 0x00020652,
620 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
621 0x00020655,
622 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
623 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
624 /*
625 * 320767.pdf - AAP86 - B1 -
626 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
627 */
628 0x000106E5,
629 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
630 0x000106A0,
631 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
632 0x000106A1,
633 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
634 0x000106A4,
635 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
636 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
637 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
638 0x000106A5,
639 /* Xeon E3-1220 V2 */
640 0x000306A8,
641 };
642
643 static inline bool cpu_has_broken_vmx_preemption_timer(void)
644 {
645 u32 eax = cpuid_eax(0x00000001), i;
646
647 /* Clear the reserved bits */
648 eax &= ~(0x3U << 14 | 0xfU << 28);
649 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
650 if (eax == vmx_preemption_cpu_tfms[i])
651 return true;
652
653 return false;
654 }
655
656 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
657 {
658 return flexpriority_enabled && lapic_in_kernel(vcpu);
659 }
660
661 static int possible_passthrough_msr_slot(u32 msr)
662 {
663 u32 i;
664
665 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
666 if (vmx_possible_passthrough_msrs[i] == msr)
667 return i;
668
669 return -ENOENT;
670 }
671
672 static bool is_valid_passthrough_msr(u32 msr)
673 {
674 bool r;
675
676 switch (msr) {
677 case 0x800 ... 0x8ff:
678 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
679 return true;
680 case MSR_IA32_RTIT_STATUS:
681 case MSR_IA32_RTIT_OUTPUT_BASE:
682 case MSR_IA32_RTIT_OUTPUT_MASK:
683 case MSR_IA32_RTIT_CR3_MATCH:
684 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
685 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
686 case MSR_LBR_SELECT:
687 case MSR_LBR_TOS:
688 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
689 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
690 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
691 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
692 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
693 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
694 return true;
695 }
696
697 r = possible_passthrough_msr_slot(msr) != -ENOENT;
698
699 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
700
701 return r;
702 }
703
704 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
705 {
706 int i;
707
708 i = kvm_find_user_return_msr(msr);
709 if (i >= 0)
710 return &vmx->guest_uret_msrs[i];
711 return NULL;
712 }
713
714 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
715 struct vmx_uret_msr *msr, u64 data)
716 {
717 unsigned int slot = msr - vmx->guest_uret_msrs;
718 int ret = 0;
719
720 if (msr->load_into_hardware) {
721 preempt_disable();
722 ret = kvm_set_user_return_msr(slot, data, msr->mask);
723 preempt_enable();
724 }
725 if (!ret)
726 msr->data = data;
727 return ret;
728 }
729
730 /*
731 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
732 *
733 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
734 * atomically track post-VMXON state, e.g. this may be called in NMI context.
735 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
736 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
737 * magically in RM, VM86, compat mode, or at CPL>0.
738 */
739 static int kvm_cpu_vmxoff(void)
740 {
741 asm goto("1: vmxoff\n\t"
742 _ASM_EXTABLE(1b, %l[fault])
743 ::: "cc", "memory" : fault);
744
745 cr4_clear_bits(X86_CR4_VMXE);
746 return 0;
747
748 fault:
749 cr4_clear_bits(X86_CR4_VMXE);
750 return -EIO;
751 }
752
753 static void vmx_emergency_disable(void)
754 {
755 int cpu = raw_smp_processor_id();
756 struct loaded_vmcs *v;
757
758 kvm_rebooting = true;
759
760 /*
761 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
762 * set in task context. If this races with VMX is disabled by an NMI,
763 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
764 * kvm_rebooting set.
765 */
766 if (!(__read_cr4() & X86_CR4_VMXE))
767 return;
768
769 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
770 loaded_vmcss_on_cpu_link)
771 vmcs_clear(v->vmcs);
772
773 kvm_cpu_vmxoff();
774 }
775
776 static void __loaded_vmcs_clear(void *arg)
777 {
778 struct loaded_vmcs *loaded_vmcs = arg;
779 int cpu = raw_smp_processor_id();
780
781 if (loaded_vmcs->cpu != cpu)
782 return; /* vcpu migration can race with cpu offline */
783 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
784 per_cpu(current_vmcs, cpu) = NULL;
785
786 vmcs_clear(loaded_vmcs->vmcs);
787 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
788 vmcs_clear(loaded_vmcs->shadow_vmcs);
789
790 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
791
792 /*
793 * Ensure all writes to loaded_vmcs, including deleting it from its
794 * current percpu list, complete before setting loaded_vmcs->cpu to
795 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
796 * and add loaded_vmcs to its percpu list before it's deleted from this
797 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
798 */
799 smp_wmb();
800
801 loaded_vmcs->cpu = -1;
802 loaded_vmcs->launched = 0;
803 }
804
805 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
806 {
807 int cpu = loaded_vmcs->cpu;
808
809 if (cpu != -1)
810 smp_call_function_single(cpu,
811 __loaded_vmcs_clear, loaded_vmcs, 1);
812 }
813
814 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
815 unsigned field)
816 {
817 bool ret;
818 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
819
820 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
821 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
822 vmx->segment_cache.bitmask = 0;
823 }
824 ret = vmx->segment_cache.bitmask & mask;
825 vmx->segment_cache.bitmask |= mask;
826 return ret;
827 }
828
829 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
830 {
831 u16 *p = &vmx->segment_cache.seg[seg].selector;
832
833 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
834 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
835 return *p;
836 }
837
838 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
839 {
840 ulong *p = &vmx->segment_cache.seg[seg].base;
841
842 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
843 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
844 return *p;
845 }
846
847 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
848 {
849 u32 *p = &vmx->segment_cache.seg[seg].limit;
850
851 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
852 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
853 return *p;
854 }
855
856 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
857 {
858 u32 *p = &vmx->segment_cache.seg[seg].ar;
859
860 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
861 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
862 return *p;
863 }
864
865 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
866 {
867 u32 eb;
868
869 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
870 (1u << DB_VECTOR) | (1u << AC_VECTOR);
871 /*
872 * Guest access to VMware backdoor ports could legitimately
873 * trigger #GP because of TSS I/O permission bitmap.
874 * We intercept those #GP and allow access to them anyway
875 * as VMware does.
876 */
877 if (enable_vmware_backdoor)
878 eb |= (1u << GP_VECTOR);
879 if ((vcpu->guest_debug &
880 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
881 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
882 eb |= 1u << BP_VECTOR;
883 if (to_vmx(vcpu)->rmode.vm86_active)
884 eb = ~0;
885 if (!vmx_need_pf_intercept(vcpu))
886 eb &= ~(1u << PF_VECTOR);
887
888 /* When we are running a nested L2 guest and L1 specified for it a
889 * certain exception bitmap, we must trap the same exceptions and pass
890 * them to L1. When running L2, we will only handle the exceptions
891 * specified above if L1 did not want them.
892 */
893 if (is_guest_mode(vcpu))
894 eb |= get_vmcs12(vcpu)->exception_bitmap;
895 else {
896 int mask = 0, match = 0;
897
898 if (enable_ept && (eb & (1u << PF_VECTOR))) {
899 /*
900 * If EPT is enabled, #PF is currently only intercepted
901 * if MAXPHYADDR is smaller on the guest than on the
902 * host. In that case we only care about present,
903 * non-reserved faults. For vmcs02, however, PFEC_MASK
904 * and PFEC_MATCH are set in prepare_vmcs02_rare.
905 */
906 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
907 match = PFERR_PRESENT_MASK;
908 }
909 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
910 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
911 }
912
913 /*
914 * Disabling xfd interception indicates that dynamic xfeatures
915 * might be used in the guest. Always trap #NM in this case
916 * to save guest xfd_err timely.
917 */
918 if (vcpu->arch.xfd_no_write_intercept)
919 eb |= (1u << NM_VECTOR);
920
921 vmcs_write32(EXCEPTION_BITMAP, eb);
922 }
923
924 /*
925 * Check if MSR is intercepted for currently loaded MSR bitmap.
926 */
927 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
928 {
929 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
930 return true;
931
932 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
933 }
934
935 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
936 {
937 unsigned int flags = 0;
938
939 if (vmx->loaded_vmcs->launched)
940 flags |= VMX_RUN_VMRESUME;
941
942 /*
943 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
944 * to change it directly without causing a vmexit. In that case read
945 * it after vmexit and store it in vmx->spec_ctrl.
946 */
947 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
948 flags |= VMX_RUN_SAVE_SPEC_CTRL;
949
950 return flags;
951 }
952
953 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
954 unsigned long entry, unsigned long exit)
955 {
956 vm_entry_controls_clearbit(vmx, entry);
957 vm_exit_controls_clearbit(vmx, exit);
958 }
959
960 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
961 {
962 unsigned int i;
963
964 for (i = 0; i < m->nr; ++i) {
965 if (m->val[i].index == msr)
966 return i;
967 }
968 return -ENOENT;
969 }
970
971 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
972 {
973 int i;
974 struct msr_autoload *m = &vmx->msr_autoload;
975
976 switch (msr) {
977 case MSR_EFER:
978 if (cpu_has_load_ia32_efer()) {
979 clear_atomic_switch_msr_special(vmx,
980 VM_ENTRY_LOAD_IA32_EFER,
981 VM_EXIT_LOAD_IA32_EFER);
982 return;
983 }
984 break;
985 case MSR_CORE_PERF_GLOBAL_CTRL:
986 if (cpu_has_load_perf_global_ctrl()) {
987 clear_atomic_switch_msr_special(vmx,
988 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
989 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
990 return;
991 }
992 break;
993 }
994 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
995 if (i < 0)
996 goto skip_guest;
997 --m->guest.nr;
998 m->guest.val[i] = m->guest.val[m->guest.nr];
999 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1000
1001 skip_guest:
1002 i = vmx_find_loadstore_msr_slot(&m->host, msr);
1003 if (i < 0)
1004 return;
1005
1006 --m->host.nr;
1007 m->host.val[i] = m->host.val[m->host.nr];
1008 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1009 }
1010
1011 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1012 unsigned long entry, unsigned long exit,
1013 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1014 u64 guest_val, u64 host_val)
1015 {
1016 vmcs_write64(guest_val_vmcs, guest_val);
1017 if (host_val_vmcs != HOST_IA32_EFER)
1018 vmcs_write64(host_val_vmcs, host_val);
1019 vm_entry_controls_setbit(vmx, entry);
1020 vm_exit_controls_setbit(vmx, exit);
1021 }
1022
1023 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1024 u64 guest_val, u64 host_val, bool entry_only)
1025 {
1026 int i, j = 0;
1027 struct msr_autoload *m = &vmx->msr_autoload;
1028
1029 switch (msr) {
1030 case MSR_EFER:
1031 if (cpu_has_load_ia32_efer()) {
1032 add_atomic_switch_msr_special(vmx,
1033 VM_ENTRY_LOAD_IA32_EFER,
1034 VM_EXIT_LOAD_IA32_EFER,
1035 GUEST_IA32_EFER,
1036 HOST_IA32_EFER,
1037 guest_val, host_val);
1038 return;
1039 }
1040 break;
1041 case MSR_CORE_PERF_GLOBAL_CTRL:
1042 if (cpu_has_load_perf_global_ctrl()) {
1043 add_atomic_switch_msr_special(vmx,
1044 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1045 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1046 GUEST_IA32_PERF_GLOBAL_CTRL,
1047 HOST_IA32_PERF_GLOBAL_CTRL,
1048 guest_val, host_val);
1049 return;
1050 }
1051 break;
1052 case MSR_IA32_PEBS_ENABLE:
1053 /* PEBS needs a quiescent period after being disabled (to write
1054 * a record). Disabling PEBS through VMX MSR swapping doesn't
1055 * provide that period, so a CPU could write host's record into
1056 * guest's memory.
1057 */
1058 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1059 }
1060
1061 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1062 if (!entry_only)
1063 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1064
1065 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1066 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1067 printk_once(KERN_WARNING "Not enough msr switch entries. "
1068 "Can't add msr %x\n", msr);
1069 return;
1070 }
1071 if (i < 0) {
1072 i = m->guest.nr++;
1073 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1074 }
1075 m->guest.val[i].index = msr;
1076 m->guest.val[i].value = guest_val;
1077
1078 if (entry_only)
1079 return;
1080
1081 if (j < 0) {
1082 j = m->host.nr++;
1083 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1084 }
1085 m->host.val[j].index = msr;
1086 m->host.val[j].value = host_val;
1087 }
1088
1089 static bool update_transition_efer(struct vcpu_vmx *vmx)
1090 {
1091 u64 guest_efer = vmx->vcpu.arch.efer;
1092 u64 ignore_bits = 0;
1093 int i;
1094
1095 /* Shadow paging assumes NX to be available. */
1096 if (!enable_ept)
1097 guest_efer |= EFER_NX;
1098
1099 /*
1100 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1101 */
1102 ignore_bits |= EFER_SCE;
1103 #ifdef CONFIG_X86_64
1104 ignore_bits |= EFER_LMA | EFER_LME;
1105 /* SCE is meaningful only in long mode on Intel */
1106 if (guest_efer & EFER_LMA)
1107 ignore_bits &= ~(u64)EFER_SCE;
1108 #endif
1109
1110 /*
1111 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1112 * On CPUs that support "load IA32_EFER", always switch EFER
1113 * atomically, since it's faster than switching it manually.
1114 */
1115 if (cpu_has_load_ia32_efer() ||
1116 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1117 if (!(guest_efer & EFER_LMA))
1118 guest_efer &= ~EFER_LME;
1119 if (guest_efer != host_efer)
1120 add_atomic_switch_msr(vmx, MSR_EFER,
1121 guest_efer, host_efer, false);
1122 else
1123 clear_atomic_switch_msr(vmx, MSR_EFER);
1124 return false;
1125 }
1126
1127 i = kvm_find_user_return_msr(MSR_EFER);
1128 if (i < 0)
1129 return false;
1130
1131 clear_atomic_switch_msr(vmx, MSR_EFER);
1132
1133 guest_efer &= ~ignore_bits;
1134 guest_efer |= host_efer & ignore_bits;
1135
1136 vmx->guest_uret_msrs[i].data = guest_efer;
1137 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1138
1139 return true;
1140 }
1141
1142 #ifdef CONFIG_X86_32
1143 /*
1144 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1145 * VMCS rather than the segment table. KVM uses this helper to figure
1146 * out the current bases to poke them into the VMCS before entry.
1147 */
1148 static unsigned long segment_base(u16 selector)
1149 {
1150 struct desc_struct *table;
1151 unsigned long v;
1152
1153 if (!(selector & ~SEGMENT_RPL_MASK))
1154 return 0;
1155
1156 table = get_current_gdt_ro();
1157
1158 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1159 u16 ldt_selector = kvm_read_ldt();
1160
1161 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1162 return 0;
1163
1164 table = (struct desc_struct *)segment_base(ldt_selector);
1165 }
1166 v = get_desc_base(&table[selector >> 3]);
1167 return v;
1168 }
1169 #endif
1170
1171 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1172 {
1173 return vmx_pt_mode_is_host_guest() &&
1174 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1175 }
1176
1177 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1178 {
1179 /* The base must be 128-byte aligned and a legal physical address. */
1180 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1181 }
1182
1183 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1184 {
1185 u32 i;
1186
1187 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1188 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1189 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1190 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1191 for (i = 0; i < addr_range; i++) {
1192 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1193 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1194 }
1195 }
1196
1197 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1198 {
1199 u32 i;
1200
1201 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1202 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1203 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1204 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1205 for (i = 0; i < addr_range; i++) {
1206 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1207 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1208 }
1209 }
1210
1211 static void pt_guest_enter(struct vcpu_vmx *vmx)
1212 {
1213 if (vmx_pt_mode_is_system())
1214 return;
1215
1216 /*
1217 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1218 * Save host state before VM entry.
1219 */
1220 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1221 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1222 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1223 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1224 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1225 }
1226 }
1227
1228 static void pt_guest_exit(struct vcpu_vmx *vmx)
1229 {
1230 if (vmx_pt_mode_is_system())
1231 return;
1232
1233 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1234 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1235 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1236 }
1237
1238 /*
1239 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1240 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1241 */
1242 if (vmx->pt_desc.host.ctl)
1243 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1244 }
1245
1246 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1247 unsigned long fs_base, unsigned long gs_base)
1248 {
1249 if (unlikely(fs_sel != host->fs_sel)) {
1250 if (!(fs_sel & 7))
1251 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1252 else
1253 vmcs_write16(HOST_FS_SELECTOR, 0);
1254 host->fs_sel = fs_sel;
1255 }
1256 if (unlikely(gs_sel != host->gs_sel)) {
1257 if (!(gs_sel & 7))
1258 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1259 else
1260 vmcs_write16(HOST_GS_SELECTOR, 0);
1261 host->gs_sel = gs_sel;
1262 }
1263 if (unlikely(fs_base != host->fs_base)) {
1264 vmcs_writel(HOST_FS_BASE, fs_base);
1265 host->fs_base = fs_base;
1266 }
1267 if (unlikely(gs_base != host->gs_base)) {
1268 vmcs_writel(HOST_GS_BASE, gs_base);
1269 host->gs_base = gs_base;
1270 }
1271 }
1272
1273 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1274 {
1275 struct vcpu_vmx *vmx = to_vmx(vcpu);
1276 struct vmcs_host_state *host_state;
1277 #ifdef CONFIG_X86_64
1278 int cpu = raw_smp_processor_id();
1279 #endif
1280 unsigned long fs_base, gs_base;
1281 u16 fs_sel, gs_sel;
1282 int i;
1283
1284 vmx->req_immediate_exit = false;
1285
1286 /*
1287 * Note that guest MSRs to be saved/restored can also be changed
1288 * when guest state is loaded. This happens when guest transitions
1289 * to/from long-mode by setting MSR_EFER.LMA.
1290 */
1291 if (!vmx->guest_uret_msrs_loaded) {
1292 vmx->guest_uret_msrs_loaded = true;
1293 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1294 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1295 continue;
1296
1297 kvm_set_user_return_msr(i,
1298 vmx->guest_uret_msrs[i].data,
1299 vmx->guest_uret_msrs[i].mask);
1300 }
1301 }
1302
1303 if (vmx->nested.need_vmcs12_to_shadow_sync)
1304 nested_sync_vmcs12_to_shadow(vcpu);
1305
1306 if (vmx->guest_state_loaded)
1307 return;
1308
1309 host_state = &vmx->loaded_vmcs->host_state;
1310
1311 /*
1312 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1313 * allow segment selectors with cpl > 0 or ti == 1.
1314 */
1315 host_state->ldt_sel = kvm_read_ldt();
1316
1317 #ifdef CONFIG_X86_64
1318 savesegment(ds, host_state->ds_sel);
1319 savesegment(es, host_state->es_sel);
1320
1321 gs_base = cpu_kernelmode_gs_base(cpu);
1322 if (likely(is_64bit_mm(current->mm))) {
1323 current_save_fsgs();
1324 fs_sel = current->thread.fsindex;
1325 gs_sel = current->thread.gsindex;
1326 fs_base = current->thread.fsbase;
1327 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1328 } else {
1329 savesegment(fs, fs_sel);
1330 savesegment(gs, gs_sel);
1331 fs_base = read_msr(MSR_FS_BASE);
1332 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1333 }
1334
1335 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1336 #else
1337 savesegment(fs, fs_sel);
1338 savesegment(gs, gs_sel);
1339 fs_base = segment_base(fs_sel);
1340 gs_base = segment_base(gs_sel);
1341 #endif
1342
1343 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1344 vmx->guest_state_loaded = true;
1345 }
1346
1347 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1348 {
1349 struct vmcs_host_state *host_state;
1350
1351 if (!vmx->guest_state_loaded)
1352 return;
1353
1354 host_state = &vmx->loaded_vmcs->host_state;
1355
1356 ++vmx->vcpu.stat.host_state_reload;
1357
1358 #ifdef CONFIG_X86_64
1359 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1360 #endif
1361 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1362 kvm_load_ldt(host_state->ldt_sel);
1363 #ifdef CONFIG_X86_64
1364 load_gs_index(host_state->gs_sel);
1365 #else
1366 loadsegment(gs, host_state->gs_sel);
1367 #endif
1368 }
1369 if (host_state->fs_sel & 7)
1370 loadsegment(fs, host_state->fs_sel);
1371 #ifdef CONFIG_X86_64
1372 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1373 loadsegment(ds, host_state->ds_sel);
1374 loadsegment(es, host_state->es_sel);
1375 }
1376 #endif
1377 invalidate_tss_limit();
1378 #ifdef CONFIG_X86_64
1379 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1380 #endif
1381 load_fixmap_gdt(raw_smp_processor_id());
1382 vmx->guest_state_loaded = false;
1383 vmx->guest_uret_msrs_loaded = false;
1384 }
1385
1386 #ifdef CONFIG_X86_64
1387 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1388 {
1389 preempt_disable();
1390 if (vmx->guest_state_loaded)
1391 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1392 preempt_enable();
1393 return vmx->msr_guest_kernel_gs_base;
1394 }
1395
1396 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1397 {
1398 preempt_disable();
1399 if (vmx->guest_state_loaded)
1400 wrmsrl(MSR_KERNEL_GS_BASE, data);
1401 preempt_enable();
1402 vmx->msr_guest_kernel_gs_base = data;
1403 }
1404 #endif
1405
1406 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1407 struct loaded_vmcs *buddy)
1408 {
1409 struct vcpu_vmx *vmx = to_vmx(vcpu);
1410 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1411 struct vmcs *prev;
1412
1413 if (!already_loaded) {
1414 loaded_vmcs_clear(vmx->loaded_vmcs);
1415 local_irq_disable();
1416
1417 /*
1418 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1419 * this cpu's percpu list, otherwise it may not yet be deleted
1420 * from its previous cpu's percpu list. Pairs with the
1421 * smb_wmb() in __loaded_vmcs_clear().
1422 */
1423 smp_rmb();
1424
1425 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1426 &per_cpu(loaded_vmcss_on_cpu, cpu));
1427 local_irq_enable();
1428 }
1429
1430 prev = per_cpu(current_vmcs, cpu);
1431 if (prev != vmx->loaded_vmcs->vmcs) {
1432 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1433 vmcs_load(vmx->loaded_vmcs->vmcs);
1434
1435 /*
1436 * No indirect branch prediction barrier needed when switching
1437 * the active VMCS within a vCPU, unless IBRS is advertised to
1438 * the vCPU. To minimize the number of IBPBs executed, KVM
1439 * performs IBPB on nested VM-Exit (a single nested transition
1440 * may switch the active VMCS multiple times).
1441 */
1442 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1443 indirect_branch_prediction_barrier();
1444 }
1445
1446 if (!already_loaded) {
1447 void *gdt = get_current_gdt_ro();
1448
1449 /*
1450 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1451 * TLB entries from its previous association with the vCPU.
1452 */
1453 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1454
1455 /*
1456 * Linux uses per-cpu TSS and GDT, so set these when switching
1457 * processors. See 22.2.4.
1458 */
1459 vmcs_writel(HOST_TR_BASE,
1460 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1461 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1462
1463 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1464 /* 22.2.3 */
1465 vmcs_writel(HOST_IA32_SYSENTER_ESP,
1466 (unsigned long)(cpu_entry_stack(cpu) + 1));
1467 }
1468
1469 vmx->loaded_vmcs->cpu = cpu;
1470 }
1471 }
1472
1473 /*
1474 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1475 * vcpu mutex is already taken.
1476 */
1477 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1478 {
1479 struct vcpu_vmx *vmx = to_vmx(vcpu);
1480
1481 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1482
1483 vmx_vcpu_pi_load(vcpu, cpu);
1484
1485 vmx->host_debugctlmsr = get_debugctlmsr();
1486 }
1487
1488 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1489 {
1490 vmx_vcpu_pi_put(vcpu);
1491
1492 vmx_prepare_switch_to_host(to_vmx(vcpu));
1493 }
1494
1495 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1496 {
1497 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1498 }
1499
1500 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1501 {
1502 struct vcpu_vmx *vmx = to_vmx(vcpu);
1503 unsigned long rflags, save_rflags;
1504
1505 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1506 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1507 rflags = vmcs_readl(GUEST_RFLAGS);
1508 if (vmx->rmode.vm86_active) {
1509 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1510 save_rflags = vmx->rmode.save_rflags;
1511 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1512 }
1513 vmx->rflags = rflags;
1514 }
1515 return vmx->rflags;
1516 }
1517
1518 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1519 {
1520 struct vcpu_vmx *vmx = to_vmx(vcpu);
1521 unsigned long old_rflags;
1522
1523 /*
1524 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1525 * is an unrestricted guest in order to mark L2 as needing emulation
1526 * if L1 runs L2 as a restricted guest.
1527 */
1528 if (is_unrestricted_guest(vcpu)) {
1529 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1530 vmx->rflags = rflags;
1531 vmcs_writel(GUEST_RFLAGS, rflags);
1532 return;
1533 }
1534
1535 old_rflags = vmx_get_rflags(vcpu);
1536 vmx->rflags = rflags;
1537 if (vmx->rmode.vm86_active) {
1538 vmx->rmode.save_rflags = rflags;
1539 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1540 }
1541 vmcs_writel(GUEST_RFLAGS, rflags);
1542
1543 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1544 vmx->emulation_required = vmx_emulation_required(vcpu);
1545 }
1546
1547 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1548 {
1549 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1550 }
1551
1552 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1553 {
1554 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1555 int ret = 0;
1556
1557 if (interruptibility & GUEST_INTR_STATE_STI)
1558 ret |= KVM_X86_SHADOW_INT_STI;
1559 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1560 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1561
1562 return ret;
1563 }
1564
1565 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1566 {
1567 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1568 u32 interruptibility = interruptibility_old;
1569
1570 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1571
1572 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1573 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1574 else if (mask & KVM_X86_SHADOW_INT_STI)
1575 interruptibility |= GUEST_INTR_STATE_STI;
1576
1577 if ((interruptibility != interruptibility_old))
1578 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1579 }
1580
1581 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1582 {
1583 struct vcpu_vmx *vmx = to_vmx(vcpu);
1584 unsigned long value;
1585
1586 /*
1587 * Any MSR write that attempts to change bits marked reserved will
1588 * case a #GP fault.
1589 */
1590 if (data & vmx->pt_desc.ctl_bitmask)
1591 return 1;
1592
1593 /*
1594 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1595 * result in a #GP unless the same write also clears TraceEn.
1596 */
1597 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1598 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1599 return 1;
1600
1601 /*
1602 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1603 * and FabricEn would cause #GP, if
1604 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1605 */
1606 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1607 !(data & RTIT_CTL_FABRIC_EN) &&
1608 !intel_pt_validate_cap(vmx->pt_desc.caps,
1609 PT_CAP_single_range_output))
1610 return 1;
1611
1612 /*
1613 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1614 * utilize encodings marked reserved will cause a #GP fault.
1615 */
1616 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1617 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1618 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1619 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1620 return 1;
1621 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1622 PT_CAP_cycle_thresholds);
1623 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1624 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1625 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1626 return 1;
1627 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1628 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1629 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1630 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1631 return 1;
1632
1633 /*
1634 * If ADDRx_CFG is reserved or the encodings is >2 will
1635 * cause a #GP fault.
1636 */
1637 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1638 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1639 return 1;
1640 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1641 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1642 return 1;
1643 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1644 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1645 return 1;
1646 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1647 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1648 return 1;
1649
1650 return 0;
1651 }
1652
1653 static int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1654 void *insn, int insn_len)
1655 {
1656 /*
1657 * Emulation of instructions in SGX enclaves is impossible as RIP does
1658 * not point at the failing instruction, and even if it did, the code
1659 * stream is inaccessible. Inject #UD instead of exiting to userspace
1660 * so that guest userspace can't DoS the guest simply by triggering
1661 * emulation (enclaves are CPL3 only).
1662 */
1663 if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1664 kvm_queue_exception(vcpu, UD_VECTOR);
1665 return X86EMUL_PROPAGATE_FAULT;
1666 }
1667 return X86EMUL_CONTINUE;
1668 }
1669
1670 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1671 {
1672 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1673 unsigned long rip, orig_rip;
1674 u32 instr_len;
1675
1676 /*
1677 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1678 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1679 * set when EPT misconfig occurs. In practice, real hardware updates
1680 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1681 * (namely Hyper-V) don't set it due to it being undefined behavior,
1682 * i.e. we end up advancing IP with some random value.
1683 */
1684 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1685 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1686 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1687
1688 /*
1689 * Emulating an enclave's instructions isn't supported as KVM
1690 * cannot access the enclave's memory or its true RIP, e.g. the
1691 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1692 * the RIP that actually triggered the VM-Exit. But, because
1693 * most instructions that cause VM-Exit will #UD in an enclave,
1694 * most instruction-based VM-Exits simply do not occur.
1695 *
1696 * There are a few exceptions, notably the debug instructions
1697 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1698 * and generate #DB/#BP as expected, which KVM might intercept.
1699 * But again, the CPU does the dirty work and saves an instr
1700 * length of zero so VMMs don't shoot themselves in the foot.
1701 * WARN if KVM tries to skip a non-zero length instruction on
1702 * a VM-Exit from an enclave.
1703 */
1704 if (!instr_len)
1705 goto rip_updated;
1706
1707 WARN_ONCE(exit_reason.enclave_mode,
1708 "skipping instruction after SGX enclave VM-Exit");
1709
1710 orig_rip = kvm_rip_read(vcpu);
1711 rip = orig_rip + instr_len;
1712 #ifdef CONFIG_X86_64
1713 /*
1714 * We need to mask out the high 32 bits of RIP if not in 64-bit
1715 * mode, but just finding out that we are in 64-bit mode is
1716 * quite expensive. Only do it if there was a carry.
1717 */
1718 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1719 rip = (u32)rip;
1720 #endif
1721 kvm_rip_write(vcpu, rip);
1722 } else {
1723 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1724 return 0;
1725 }
1726
1727 rip_updated:
1728 /* skipping an emulated instruction also counts */
1729 vmx_set_interrupt_shadow(vcpu, 0);
1730
1731 return 1;
1732 }
1733
1734 /*
1735 * Recognizes a pending MTF VM-exit and records the nested state for later
1736 * delivery.
1737 */
1738 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1739 {
1740 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1741 struct vcpu_vmx *vmx = to_vmx(vcpu);
1742
1743 if (!is_guest_mode(vcpu))
1744 return;
1745
1746 /*
1747 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1748 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1749 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1750 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1751 * as ICEBP is higher priority than both. As instruction emulation is
1752 * completed at this point (i.e. KVM is at the instruction boundary),
1753 * any #DB exception pending delivery must be a debug-trap of lower
1754 * priority than MTF. Record the pending MTF state to be delivered in
1755 * vmx_check_nested_events().
1756 */
1757 if (nested_cpu_has_mtf(vmcs12) &&
1758 (!vcpu->arch.exception.pending ||
1759 vcpu->arch.exception.vector == DB_VECTOR) &&
1760 (!vcpu->arch.exception_vmexit.pending ||
1761 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1762 vmx->nested.mtf_pending = true;
1763 kvm_make_request(KVM_REQ_EVENT, vcpu);
1764 } else {
1765 vmx->nested.mtf_pending = false;
1766 }
1767 }
1768
1769 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1770 {
1771 vmx_update_emulated_instruction(vcpu);
1772 return skip_emulated_instruction(vcpu);
1773 }
1774
1775 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1776 {
1777 /*
1778 * Ensure that we clear the HLT state in the VMCS. We don't need to
1779 * explicitly skip the instruction because if the HLT state is set,
1780 * then the instruction is already executing and RIP has already been
1781 * advanced.
1782 */
1783 if (kvm_hlt_in_guest(vcpu->kvm) &&
1784 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1785 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1786 }
1787
1788 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1789 {
1790 struct kvm_queued_exception *ex = &vcpu->arch.exception;
1791 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1792 struct vcpu_vmx *vmx = to_vmx(vcpu);
1793
1794 kvm_deliver_exception_payload(vcpu, ex);
1795
1796 if (ex->has_error_code) {
1797 /*
1798 * Despite the error code being architecturally defined as 32
1799 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1800 * VMX don't actually supporting setting bits 31:16. Hardware
1801 * will (should) never provide a bogus error code, but AMD CPUs
1802 * do generate error codes with bits 31:16 set, and so KVM's
1803 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1804 * the upper bits to avoid VM-Fail, losing information that
1805 * doesn't really exist is preferable to killing the VM.
1806 */
1807 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1808 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1809 }
1810
1811 if (vmx->rmode.vm86_active) {
1812 int inc_eip = 0;
1813 if (kvm_exception_is_soft(ex->vector))
1814 inc_eip = vcpu->arch.event_exit_inst_len;
1815 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1816 return;
1817 }
1818
1819 WARN_ON_ONCE(vmx->emulation_required);
1820
1821 if (kvm_exception_is_soft(ex->vector)) {
1822 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1823 vmx->vcpu.arch.event_exit_inst_len);
1824 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1825 } else
1826 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1827
1828 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1829
1830 vmx_clear_hlt(vcpu);
1831 }
1832
1833 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1834 bool load_into_hardware)
1835 {
1836 struct vmx_uret_msr *uret_msr;
1837
1838 uret_msr = vmx_find_uret_msr(vmx, msr);
1839 if (!uret_msr)
1840 return;
1841
1842 uret_msr->load_into_hardware = load_into_hardware;
1843 }
1844
1845 /*
1846 * Configuring user return MSRs to automatically save, load, and restore MSRs
1847 * that need to be shoved into hardware when running the guest. Note, omitting
1848 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1849 * loaded into hardware when running the guest.
1850 */
1851 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1852 {
1853 #ifdef CONFIG_X86_64
1854 bool load_syscall_msrs;
1855
1856 /*
1857 * The SYSCALL MSRs are only needed on long mode guests, and only
1858 * when EFER.SCE is set.
1859 */
1860 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1861 (vmx->vcpu.arch.efer & EFER_SCE);
1862
1863 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1864 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1865 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1866 #endif
1867 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1868
1869 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1870 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1871 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1872
1873 /*
1874 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1875 * kernel and old userspace. If those guests run on a tsx=off host, do
1876 * allow guests to use TSX_CTRL, but don't change the value in hardware
1877 * so that TSX remains always disabled.
1878 */
1879 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1880
1881 /*
1882 * The set of MSRs to load may have changed, reload MSRs before the
1883 * next VM-Enter.
1884 */
1885 vmx->guest_uret_msrs_loaded = false;
1886 }
1887
1888 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1889 {
1890 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1891
1892 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1893 return vmcs12->tsc_offset;
1894
1895 return 0;
1896 }
1897
1898 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1899 {
1900 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1901
1902 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1903 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1904 return vmcs12->tsc_multiplier;
1905
1906 return kvm_caps.default_tsc_scaling_ratio;
1907 }
1908
1909 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1910 {
1911 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1912 }
1913
1914 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1915 {
1916 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1917 }
1918
1919 /*
1920 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1921 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
1922 * backwards compatibility even though KVM doesn't support emulating SMX. And
1923 * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1924 * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1925 */
1926 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
1927 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
1928 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1929 FEAT_CTL_SGX_LC_ENABLED | \
1930 FEAT_CTL_SGX_ENABLED | \
1931 FEAT_CTL_LMCE_ENABLED)
1932
1933 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1934 struct msr_data *msr)
1935 {
1936 uint64_t valid_bits;
1937
1938 /*
1939 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1940 * exposed to the guest.
1941 */
1942 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1943 ~KVM_SUPPORTED_FEATURE_CONTROL);
1944
1945 if (!msr->host_initiated &&
1946 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1947 return false;
1948
1949 if (msr->host_initiated)
1950 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1951 else
1952 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1953
1954 return !(msr->data & ~valid_bits);
1955 }
1956
1957 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1958 {
1959 switch (msr->index) {
1960 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1961 if (!nested)
1962 return 1;
1963 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1964 default:
1965 return KVM_MSR_RET_INVALID;
1966 }
1967 }
1968
1969 /*
1970 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1971 * Returns 0 on success, non-0 otherwise.
1972 * Assumes vcpu_load() was already called.
1973 */
1974 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1975 {
1976 struct vcpu_vmx *vmx = to_vmx(vcpu);
1977 struct vmx_uret_msr *msr;
1978 u32 index;
1979
1980 switch (msr_info->index) {
1981 #ifdef CONFIG_X86_64
1982 case MSR_FS_BASE:
1983 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1984 break;
1985 case MSR_GS_BASE:
1986 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1987 break;
1988 case MSR_KERNEL_GS_BASE:
1989 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1990 break;
1991 #endif
1992 case MSR_EFER:
1993 return kvm_get_msr_common(vcpu, msr_info);
1994 case MSR_IA32_TSX_CTRL:
1995 if (!msr_info->host_initiated &&
1996 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1997 return 1;
1998 goto find_uret_msr;
1999 case MSR_IA32_UMWAIT_CONTROL:
2000 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2001 return 1;
2002
2003 msr_info->data = vmx->msr_ia32_umwait_control;
2004 break;
2005 case MSR_IA32_SPEC_CTRL:
2006 if (!msr_info->host_initiated &&
2007 !guest_has_spec_ctrl_msr(vcpu))
2008 return 1;
2009
2010 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2011 break;
2012 case MSR_IA32_SYSENTER_CS:
2013 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2014 break;
2015 case MSR_IA32_SYSENTER_EIP:
2016 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2017 break;
2018 case MSR_IA32_SYSENTER_ESP:
2019 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2020 break;
2021 case MSR_IA32_BNDCFGS:
2022 if (!kvm_mpx_supported() ||
2023 (!msr_info->host_initiated &&
2024 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2025 return 1;
2026 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2027 break;
2028 case MSR_IA32_MCG_EXT_CTL:
2029 if (!msr_info->host_initiated &&
2030 !(vmx->msr_ia32_feature_control &
2031 FEAT_CTL_LMCE_ENABLED))
2032 return 1;
2033 msr_info->data = vcpu->arch.mcg_ext_ctl;
2034 break;
2035 case MSR_IA32_FEAT_CTL:
2036 msr_info->data = vmx->msr_ia32_feature_control;
2037 break;
2038 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2039 if (!msr_info->host_initiated &&
2040 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2041 return 1;
2042 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2043 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2044 break;
2045 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2046 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2047 return 1;
2048 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2049 &msr_info->data))
2050 return 1;
2051 #ifdef CONFIG_KVM_HYPERV
2052 /*
2053 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2054 * instead of just ignoring the features, different Hyper-V
2055 * versions are either trying to use them and fail or do some
2056 * sanity checking and refuse to boot. Filter all unsupported
2057 * features out.
2058 */
2059 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2060 nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2061 &msr_info->data);
2062 #endif
2063 break;
2064 case MSR_IA32_RTIT_CTL:
2065 if (!vmx_pt_mode_is_host_guest())
2066 return 1;
2067 msr_info->data = vmx->pt_desc.guest.ctl;
2068 break;
2069 case MSR_IA32_RTIT_STATUS:
2070 if (!vmx_pt_mode_is_host_guest())
2071 return 1;
2072 msr_info->data = vmx->pt_desc.guest.status;
2073 break;
2074 case MSR_IA32_RTIT_CR3_MATCH:
2075 if (!vmx_pt_mode_is_host_guest() ||
2076 !intel_pt_validate_cap(vmx->pt_desc.caps,
2077 PT_CAP_cr3_filtering))
2078 return 1;
2079 msr_info->data = vmx->pt_desc.guest.cr3_match;
2080 break;
2081 case MSR_IA32_RTIT_OUTPUT_BASE:
2082 if (!vmx_pt_mode_is_host_guest() ||
2083 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2084 PT_CAP_topa_output) &&
2085 !intel_pt_validate_cap(vmx->pt_desc.caps,
2086 PT_CAP_single_range_output)))
2087 return 1;
2088 msr_info->data = vmx->pt_desc.guest.output_base;
2089 break;
2090 case MSR_IA32_RTIT_OUTPUT_MASK:
2091 if (!vmx_pt_mode_is_host_guest() ||
2092 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2093 PT_CAP_topa_output) &&
2094 !intel_pt_validate_cap(vmx->pt_desc.caps,
2095 PT_CAP_single_range_output)))
2096 return 1;
2097 msr_info->data = vmx->pt_desc.guest.output_mask;
2098 break;
2099 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2100 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2101 if (!vmx_pt_mode_is_host_guest() ||
2102 (index >= 2 * vmx->pt_desc.num_address_ranges))
2103 return 1;
2104 if (index % 2)
2105 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2106 else
2107 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2108 break;
2109 case MSR_IA32_DEBUGCTLMSR:
2110 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2111 break;
2112 default:
2113 find_uret_msr:
2114 msr = vmx_find_uret_msr(vmx, msr_info->index);
2115 if (msr) {
2116 msr_info->data = msr->data;
2117 break;
2118 }
2119 return kvm_get_msr_common(vcpu, msr_info);
2120 }
2121
2122 return 0;
2123 }
2124
2125 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2126 u64 data)
2127 {
2128 #ifdef CONFIG_X86_64
2129 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2130 return (u32)data;
2131 #endif
2132 return (unsigned long)data;
2133 }
2134
2135 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2136 {
2137 u64 debugctl = 0;
2138
2139 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2140 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2141 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2142
2143 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2144 (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2145 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2146
2147 return debugctl;
2148 }
2149
2150 /*
2151 * Writes msr value into the appropriate "register".
2152 * Returns 0 on success, non-0 otherwise.
2153 * Assumes vcpu_load() was already called.
2154 */
2155 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2156 {
2157 struct vcpu_vmx *vmx = to_vmx(vcpu);
2158 struct vmx_uret_msr *msr;
2159 int ret = 0;
2160 u32 msr_index = msr_info->index;
2161 u64 data = msr_info->data;
2162 u32 index;
2163
2164 switch (msr_index) {
2165 case MSR_EFER:
2166 ret = kvm_set_msr_common(vcpu, msr_info);
2167 break;
2168 #ifdef CONFIG_X86_64
2169 case MSR_FS_BASE:
2170 vmx_segment_cache_clear(vmx);
2171 vmcs_writel(GUEST_FS_BASE, data);
2172 break;
2173 case MSR_GS_BASE:
2174 vmx_segment_cache_clear(vmx);
2175 vmcs_writel(GUEST_GS_BASE, data);
2176 break;
2177 case MSR_KERNEL_GS_BASE:
2178 vmx_write_guest_kernel_gs_base(vmx, data);
2179 break;
2180 case MSR_IA32_XFD:
2181 ret = kvm_set_msr_common(vcpu, msr_info);
2182 /*
2183 * Always intercepting WRMSR could incur non-negligible
2184 * overhead given xfd might be changed frequently in
2185 * guest context switch. Disable write interception
2186 * upon the first write with a non-zero value (indicating
2187 * potential usage on dynamic xfeatures). Also update
2188 * exception bitmap to trap #NM for proper virtualization
2189 * of guest xfd_err.
2190 */
2191 if (!ret && data) {
2192 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2193 MSR_TYPE_RW);
2194 vcpu->arch.xfd_no_write_intercept = true;
2195 vmx_update_exception_bitmap(vcpu);
2196 }
2197 break;
2198 #endif
2199 case MSR_IA32_SYSENTER_CS:
2200 if (is_guest_mode(vcpu))
2201 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2202 vmcs_write32(GUEST_SYSENTER_CS, data);
2203 break;
2204 case MSR_IA32_SYSENTER_EIP:
2205 if (is_guest_mode(vcpu)) {
2206 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2207 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2208 }
2209 vmcs_writel(GUEST_SYSENTER_EIP, data);
2210 break;
2211 case MSR_IA32_SYSENTER_ESP:
2212 if (is_guest_mode(vcpu)) {
2213 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2214 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2215 }
2216 vmcs_writel(GUEST_SYSENTER_ESP, data);
2217 break;
2218 case MSR_IA32_DEBUGCTLMSR: {
2219 u64 invalid;
2220
2221 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2222 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2223 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2224 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2225 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2226 }
2227
2228 if (invalid)
2229 return 1;
2230
2231 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2232 VM_EXIT_SAVE_DEBUG_CONTROLS)
2233 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2234
2235 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2236 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2237 (data & DEBUGCTLMSR_LBR))
2238 intel_pmu_create_guest_lbr_event(vcpu);
2239 return 0;
2240 }
2241 case MSR_IA32_BNDCFGS:
2242 if (!kvm_mpx_supported() ||
2243 (!msr_info->host_initiated &&
2244 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2245 return 1;
2246 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2247 (data & MSR_IA32_BNDCFGS_RSVD))
2248 return 1;
2249
2250 if (is_guest_mode(vcpu) &&
2251 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2252 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2253 get_vmcs12(vcpu)->guest_bndcfgs = data;
2254
2255 vmcs_write64(GUEST_BNDCFGS, data);
2256 break;
2257 case MSR_IA32_UMWAIT_CONTROL:
2258 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2259 return 1;
2260
2261 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2262 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2263 return 1;
2264
2265 vmx->msr_ia32_umwait_control = data;
2266 break;
2267 case MSR_IA32_SPEC_CTRL:
2268 if (!msr_info->host_initiated &&
2269 !guest_has_spec_ctrl_msr(vcpu))
2270 return 1;
2271
2272 if (kvm_spec_ctrl_test_value(data))
2273 return 1;
2274
2275 vmx->spec_ctrl = data;
2276 if (!data)
2277 break;
2278
2279 /*
2280 * For non-nested:
2281 * When it's written (to non-zero) for the first time, pass
2282 * it through.
2283 *
2284 * For nested:
2285 * The handling of the MSR bitmap for L2 guests is done in
2286 * nested_vmx_prepare_msr_bitmap. We should not touch the
2287 * vmcs02.msr_bitmap here since it gets completely overwritten
2288 * in the merging. We update the vmcs01 here for L1 as well
2289 * since it will end up touching the MSR anyway now.
2290 */
2291 vmx_disable_intercept_for_msr(vcpu,
2292 MSR_IA32_SPEC_CTRL,
2293 MSR_TYPE_RW);
2294 break;
2295 case MSR_IA32_TSX_CTRL:
2296 if (!msr_info->host_initiated &&
2297 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2298 return 1;
2299 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2300 return 1;
2301 goto find_uret_msr;
2302 case MSR_IA32_CR_PAT:
2303 ret = kvm_set_msr_common(vcpu, msr_info);
2304 if (ret)
2305 break;
2306
2307 if (is_guest_mode(vcpu) &&
2308 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2309 get_vmcs12(vcpu)->guest_ia32_pat = data;
2310
2311 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2312 vmcs_write64(GUEST_IA32_PAT, data);
2313 break;
2314 case MSR_IA32_MCG_EXT_CTL:
2315 if ((!msr_info->host_initiated &&
2316 !(to_vmx(vcpu)->msr_ia32_feature_control &
2317 FEAT_CTL_LMCE_ENABLED)) ||
2318 (data & ~MCG_EXT_CTL_LMCE_EN))
2319 return 1;
2320 vcpu->arch.mcg_ext_ctl = data;
2321 break;
2322 case MSR_IA32_FEAT_CTL:
2323 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2324 return 1;
2325
2326 vmx->msr_ia32_feature_control = data;
2327 if (msr_info->host_initiated && data == 0)
2328 vmx_leave_nested(vcpu);
2329
2330 /* SGX may be enabled/disabled by guest's firmware */
2331 vmx_write_encls_bitmap(vcpu, NULL);
2332 break;
2333 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2334 /*
2335 * On real hardware, the LE hash MSRs are writable before
2336 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2337 * at which point SGX related bits in IA32_FEATURE_CONTROL
2338 * become writable.
2339 *
2340 * KVM does not emulate SGX activation for simplicity, so
2341 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2342 * is unlocked. This is technically not architectural
2343 * behavior, but it's close enough.
2344 */
2345 if (!msr_info->host_initiated &&
2346 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2347 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2348 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2349 return 1;
2350 vmx->msr_ia32_sgxlepubkeyhash
2351 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2352 break;
2353 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2354 if (!msr_info->host_initiated)
2355 return 1; /* they are read-only */
2356 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2357 return 1;
2358 return vmx_set_vmx_msr(vcpu, msr_index, data);
2359 case MSR_IA32_RTIT_CTL:
2360 if (!vmx_pt_mode_is_host_guest() ||
2361 vmx_rtit_ctl_check(vcpu, data) ||
2362 vmx->nested.vmxon)
2363 return 1;
2364 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2365 vmx->pt_desc.guest.ctl = data;
2366 pt_update_intercept_for_msr(vcpu);
2367 break;
2368 case MSR_IA32_RTIT_STATUS:
2369 if (!pt_can_write_msr(vmx))
2370 return 1;
2371 if (data & MSR_IA32_RTIT_STATUS_MASK)
2372 return 1;
2373 vmx->pt_desc.guest.status = data;
2374 break;
2375 case MSR_IA32_RTIT_CR3_MATCH:
2376 if (!pt_can_write_msr(vmx))
2377 return 1;
2378 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2379 PT_CAP_cr3_filtering))
2380 return 1;
2381 vmx->pt_desc.guest.cr3_match = data;
2382 break;
2383 case MSR_IA32_RTIT_OUTPUT_BASE:
2384 if (!pt_can_write_msr(vmx))
2385 return 1;
2386 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2387 PT_CAP_topa_output) &&
2388 !intel_pt_validate_cap(vmx->pt_desc.caps,
2389 PT_CAP_single_range_output))
2390 return 1;
2391 if (!pt_output_base_valid(vcpu, data))
2392 return 1;
2393 vmx->pt_desc.guest.output_base = data;
2394 break;
2395 case MSR_IA32_RTIT_OUTPUT_MASK:
2396 if (!pt_can_write_msr(vmx))
2397 return 1;
2398 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2399 PT_CAP_topa_output) &&
2400 !intel_pt_validate_cap(vmx->pt_desc.caps,
2401 PT_CAP_single_range_output))
2402 return 1;
2403 vmx->pt_desc.guest.output_mask = data;
2404 break;
2405 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2406 if (!pt_can_write_msr(vmx))
2407 return 1;
2408 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2409 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2410 return 1;
2411 if (is_noncanonical_address(data, vcpu))
2412 return 1;
2413 if (index % 2)
2414 vmx->pt_desc.guest.addr_b[index / 2] = data;
2415 else
2416 vmx->pt_desc.guest.addr_a[index / 2] = data;
2417 break;
2418 case MSR_IA32_PERF_CAPABILITIES:
2419 if (data && !vcpu_to_pmu(vcpu)->version)
2420 return 1;
2421 if (data & PMU_CAP_LBR_FMT) {
2422 if ((data & PMU_CAP_LBR_FMT) !=
2423 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2424 return 1;
2425 if (!cpuid_model_is_consistent(vcpu))
2426 return 1;
2427 }
2428 if (data & PERF_CAP_PEBS_FORMAT) {
2429 if ((data & PERF_CAP_PEBS_MASK) !=
2430 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2431 return 1;
2432 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2433 return 1;
2434 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2435 return 1;
2436 if (!cpuid_model_is_consistent(vcpu))
2437 return 1;
2438 }
2439 ret = kvm_set_msr_common(vcpu, msr_info);
2440 break;
2441
2442 default:
2443 find_uret_msr:
2444 msr = vmx_find_uret_msr(vmx, msr_index);
2445 if (msr)
2446 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2447 else
2448 ret = kvm_set_msr_common(vcpu, msr_info);
2449 }
2450
2451 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2452 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2453 vmx_update_fb_clear_dis(vcpu, vmx);
2454
2455 return ret;
2456 }
2457
2458 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2459 {
2460 unsigned long guest_owned_bits;
2461
2462 kvm_register_mark_available(vcpu, reg);
2463
2464 switch (reg) {
2465 case VCPU_REGS_RSP:
2466 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2467 break;
2468 case VCPU_REGS_RIP:
2469 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2470 break;
2471 case VCPU_EXREG_PDPTR:
2472 if (enable_ept)
2473 ept_save_pdptrs(vcpu);
2474 break;
2475 case VCPU_EXREG_CR0:
2476 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2477
2478 vcpu->arch.cr0 &= ~guest_owned_bits;
2479 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2480 break;
2481 case VCPU_EXREG_CR3:
2482 /*
2483 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2484 * CR3 is loaded into hardware, not the guest's CR3.
2485 */
2486 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2487 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2488 break;
2489 case VCPU_EXREG_CR4:
2490 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2491
2492 vcpu->arch.cr4 &= ~guest_owned_bits;
2493 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2494 break;
2495 default:
2496 KVM_BUG_ON(1, vcpu->kvm);
2497 break;
2498 }
2499 }
2500
2501 /*
2502 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2503 * directly instead of going through cpu_has(), to ensure KVM is trapping
2504 * ENCLS whenever it's supported in hardware. It does not matter whether
2505 * the host OS supports or has enabled SGX.
2506 */
2507 static bool cpu_has_sgx(void)
2508 {
2509 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2510 }
2511
2512 /*
2513 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2514 * can't be used due to errata where VM Exit may incorrectly clear
2515 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2516 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2517 */
2518 static bool cpu_has_perf_global_ctrl_bug(void)
2519 {
2520 if (boot_cpu_data.x86 == 0x6) {
2521 switch (boot_cpu_data.x86_model) {
2522 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */
2523 case INTEL_FAM6_NEHALEM: /* AAP115 */
2524 case INTEL_FAM6_WESTMERE: /* AAT100 */
2525 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */
2526 case INTEL_FAM6_NEHALEM_EX: /* BA97 */
2527 return true;
2528 default:
2529 break;
2530 }
2531 }
2532
2533 return false;
2534 }
2535
2536 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2537 {
2538 u32 vmx_msr_low, vmx_msr_high;
2539 u32 ctl = ctl_min | ctl_opt;
2540
2541 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2542
2543 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2544 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2545
2546 /* Ensure minimum (required) set of control bits are supported. */
2547 if (ctl_min & ~ctl)
2548 return -EIO;
2549
2550 *result = ctl;
2551 return 0;
2552 }
2553
2554 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2555 {
2556 u64 allowed;
2557
2558 rdmsrl(msr, allowed);
2559
2560 return ctl_opt & allowed;
2561 }
2562
2563 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2564 struct vmx_capability *vmx_cap)
2565 {
2566 u32 vmx_msr_low, vmx_msr_high;
2567 u32 _pin_based_exec_control = 0;
2568 u32 _cpu_based_exec_control = 0;
2569 u32 _cpu_based_2nd_exec_control = 0;
2570 u64 _cpu_based_3rd_exec_control = 0;
2571 u32 _vmexit_control = 0;
2572 u32 _vmentry_control = 0;
2573 u64 misc_msr;
2574 int i;
2575
2576 /*
2577 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2578 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2579 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2580 */
2581 struct {
2582 u32 entry_control;
2583 u32 exit_control;
2584 } const vmcs_entry_exit_pairs[] = {
2585 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2586 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2587 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2588 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2589 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2590 };
2591
2592 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2593
2594 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2595 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2596 MSR_IA32_VMX_PROCBASED_CTLS,
2597 &_cpu_based_exec_control))
2598 return -EIO;
2599 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2600 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2601 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2602 MSR_IA32_VMX_PROCBASED_CTLS2,
2603 &_cpu_based_2nd_exec_control))
2604 return -EIO;
2605 }
2606 #ifndef CONFIG_X86_64
2607 if (!(_cpu_based_2nd_exec_control &
2608 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2609 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2610 #endif
2611
2612 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2613 _cpu_based_2nd_exec_control &= ~(
2614 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2615 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2616 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2617
2618 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2619 &vmx_cap->ept, &vmx_cap->vpid);
2620
2621 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2622 vmx_cap->ept) {
2623 pr_warn_once("EPT CAP should not exist if not support "
2624 "1-setting enable EPT VM-execution control\n");
2625
2626 if (error_on_inconsistent_vmcs_config)
2627 return -EIO;
2628
2629 vmx_cap->ept = 0;
2630 }
2631 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2632 vmx_cap->vpid) {
2633 pr_warn_once("VPID CAP should not exist if not support "
2634 "1-setting enable VPID VM-execution control\n");
2635
2636 if (error_on_inconsistent_vmcs_config)
2637 return -EIO;
2638
2639 vmx_cap->vpid = 0;
2640 }
2641
2642 if (!cpu_has_sgx())
2643 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2644
2645 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2646 _cpu_based_3rd_exec_control =
2647 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2648 MSR_IA32_VMX_PROCBASED_CTLS3);
2649
2650 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2651 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2652 MSR_IA32_VMX_EXIT_CTLS,
2653 &_vmexit_control))
2654 return -EIO;
2655
2656 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2657 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2658 MSR_IA32_VMX_PINBASED_CTLS,
2659 &_pin_based_exec_control))
2660 return -EIO;
2661
2662 if (cpu_has_broken_vmx_preemption_timer())
2663 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2664 if (!(_cpu_based_2nd_exec_control &
2665 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2666 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2667
2668 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2669 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2670 MSR_IA32_VMX_ENTRY_CTLS,
2671 &_vmentry_control))
2672 return -EIO;
2673
2674 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2675 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2676 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2677
2678 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2679 continue;
2680
2681 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2682 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2683
2684 if (error_on_inconsistent_vmcs_config)
2685 return -EIO;
2686
2687 _vmentry_control &= ~n_ctrl;
2688 _vmexit_control &= ~x_ctrl;
2689 }
2690
2691 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2692
2693 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2694 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2695 return -EIO;
2696
2697 #ifdef CONFIG_X86_64
2698 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2699 if (vmx_msr_high & (1u<<16))
2700 return -EIO;
2701 #endif
2702
2703 /* Require Write-Back (WB) memory type for VMCS accesses. */
2704 if (((vmx_msr_high >> 18) & 15) != 6)
2705 return -EIO;
2706
2707 rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2708
2709 vmcs_conf->size = vmx_msr_high & 0x1fff;
2710 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2711
2712 vmcs_conf->revision_id = vmx_msr_low;
2713
2714 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2715 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2716 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2717 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2718 vmcs_conf->vmexit_ctrl = _vmexit_control;
2719 vmcs_conf->vmentry_ctrl = _vmentry_control;
2720 vmcs_conf->misc = misc_msr;
2721
2722 #if IS_ENABLED(CONFIG_HYPERV)
2723 if (enlightened_vmcs)
2724 evmcs_sanitize_exec_ctrls(vmcs_conf);
2725 #endif
2726
2727 return 0;
2728 }
2729
2730 static bool __kvm_is_vmx_supported(void)
2731 {
2732 int cpu = smp_processor_id();
2733
2734 if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2735 pr_err("VMX not supported by CPU %d\n", cpu);
2736 return false;
2737 }
2738
2739 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2740 !this_cpu_has(X86_FEATURE_VMX)) {
2741 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2742 return false;
2743 }
2744
2745 return true;
2746 }
2747
2748 static bool kvm_is_vmx_supported(void)
2749 {
2750 bool supported;
2751
2752 migrate_disable();
2753 supported = __kvm_is_vmx_supported();
2754 migrate_enable();
2755
2756 return supported;
2757 }
2758
2759 static int vmx_check_processor_compat(void)
2760 {
2761 int cpu = raw_smp_processor_id();
2762 struct vmcs_config vmcs_conf;
2763 struct vmx_capability vmx_cap;
2764
2765 if (!__kvm_is_vmx_supported())
2766 return -EIO;
2767
2768 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2769 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2770 return -EIO;
2771 }
2772 if (nested)
2773 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2774 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2775 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2776 return -EIO;
2777 }
2778 return 0;
2779 }
2780
2781 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2782 {
2783 u64 msr;
2784
2785 cr4_set_bits(X86_CR4_VMXE);
2786
2787 asm goto("1: vmxon %[vmxon_pointer]\n\t"
2788 _ASM_EXTABLE(1b, %l[fault])
2789 : : [vmxon_pointer] "m"(vmxon_pointer)
2790 : : fault);
2791 return 0;
2792
2793 fault:
2794 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2795 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2796 cr4_clear_bits(X86_CR4_VMXE);
2797
2798 return -EFAULT;
2799 }
2800
2801 static int vmx_hardware_enable(void)
2802 {
2803 int cpu = raw_smp_processor_id();
2804 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2805 int r;
2806
2807 if (cr4_read_shadow() & X86_CR4_VMXE)
2808 return -EBUSY;
2809
2810 /*
2811 * This can happen if we hot-added a CPU but failed to allocate
2812 * VP assist page for it.
2813 */
2814 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2815 return -EFAULT;
2816
2817 intel_pt_handle_vmx(1);
2818
2819 r = kvm_cpu_vmxon(phys_addr);
2820 if (r) {
2821 intel_pt_handle_vmx(0);
2822 return r;
2823 }
2824
2825 if (enable_ept)
2826 ept_sync_global();
2827
2828 return 0;
2829 }
2830
2831 static void vmclear_local_loaded_vmcss(void)
2832 {
2833 int cpu = raw_smp_processor_id();
2834 struct loaded_vmcs *v, *n;
2835
2836 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2837 loaded_vmcss_on_cpu_link)
2838 __loaded_vmcs_clear(v);
2839 }
2840
2841 static void vmx_hardware_disable(void)
2842 {
2843 vmclear_local_loaded_vmcss();
2844
2845 if (kvm_cpu_vmxoff())
2846 kvm_spurious_fault();
2847
2848 hv_reset_evmcs();
2849
2850 intel_pt_handle_vmx(0);
2851 }
2852
2853 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2854 {
2855 int node = cpu_to_node(cpu);
2856 struct page *pages;
2857 struct vmcs *vmcs;
2858
2859 pages = __alloc_pages_node(node, flags, 0);
2860 if (!pages)
2861 return NULL;
2862 vmcs = page_address(pages);
2863 memset(vmcs, 0, vmcs_config.size);
2864
2865 /* KVM supports Enlightened VMCS v1 only */
2866 if (kvm_is_using_evmcs())
2867 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2868 else
2869 vmcs->hdr.revision_id = vmcs_config.revision_id;
2870
2871 if (shadow)
2872 vmcs->hdr.shadow_vmcs = 1;
2873 return vmcs;
2874 }
2875
2876 void free_vmcs(struct vmcs *vmcs)
2877 {
2878 free_page((unsigned long)vmcs);
2879 }
2880
2881 /*
2882 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2883 */
2884 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2885 {
2886 if (!loaded_vmcs->vmcs)
2887 return;
2888 loaded_vmcs_clear(loaded_vmcs);
2889 free_vmcs(loaded_vmcs->vmcs);
2890 loaded_vmcs->vmcs = NULL;
2891 if (loaded_vmcs->msr_bitmap)
2892 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2893 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2894 }
2895
2896 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2897 {
2898 loaded_vmcs->vmcs = alloc_vmcs(false);
2899 if (!loaded_vmcs->vmcs)
2900 return -ENOMEM;
2901
2902 vmcs_clear(loaded_vmcs->vmcs);
2903
2904 loaded_vmcs->shadow_vmcs = NULL;
2905 loaded_vmcs->hv_timer_soft_disabled = false;
2906 loaded_vmcs->cpu = -1;
2907 loaded_vmcs->launched = 0;
2908
2909 if (cpu_has_vmx_msr_bitmap()) {
2910 loaded_vmcs->msr_bitmap = (unsigned long *)
2911 __get_free_page(GFP_KERNEL_ACCOUNT);
2912 if (!loaded_vmcs->msr_bitmap)
2913 goto out_vmcs;
2914 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2915 }
2916
2917 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2918 memset(&loaded_vmcs->controls_shadow, 0,
2919 sizeof(struct vmcs_controls_shadow));
2920
2921 return 0;
2922
2923 out_vmcs:
2924 free_loaded_vmcs(loaded_vmcs);
2925 return -ENOMEM;
2926 }
2927
2928 static void free_kvm_area(void)
2929 {
2930 int cpu;
2931
2932 for_each_possible_cpu(cpu) {
2933 free_vmcs(per_cpu(vmxarea, cpu));
2934 per_cpu(vmxarea, cpu) = NULL;
2935 }
2936 }
2937
2938 static __init int alloc_kvm_area(void)
2939 {
2940 int cpu;
2941
2942 for_each_possible_cpu(cpu) {
2943 struct vmcs *vmcs;
2944
2945 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2946 if (!vmcs) {
2947 free_kvm_area();
2948 return -ENOMEM;
2949 }
2950
2951 /*
2952 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2953 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2954 * revision_id reported by MSR_IA32_VMX_BASIC.
2955 *
2956 * However, even though not explicitly documented by
2957 * TLFS, VMXArea passed as VMXON argument should
2958 * still be marked with revision_id reported by
2959 * physical CPU.
2960 */
2961 if (kvm_is_using_evmcs())
2962 vmcs->hdr.revision_id = vmcs_config.revision_id;
2963
2964 per_cpu(vmxarea, cpu) = vmcs;
2965 }
2966 return 0;
2967 }
2968
2969 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2970 struct kvm_segment *save)
2971 {
2972 if (!emulate_invalid_guest_state) {
2973 /*
2974 * CS and SS RPL should be equal during guest entry according
2975 * to VMX spec, but in reality it is not always so. Since vcpu
2976 * is in the middle of the transition from real mode to
2977 * protected mode it is safe to assume that RPL 0 is a good
2978 * default value.
2979 */
2980 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2981 save->selector &= ~SEGMENT_RPL_MASK;
2982 save->dpl = save->selector & SEGMENT_RPL_MASK;
2983 save->s = 1;
2984 }
2985 __vmx_set_segment(vcpu, save, seg);
2986 }
2987
2988 static void enter_pmode(struct kvm_vcpu *vcpu)
2989 {
2990 unsigned long flags;
2991 struct vcpu_vmx *vmx = to_vmx(vcpu);
2992
2993 /*
2994 * Update real mode segment cache. It may be not up-to-date if segment
2995 * register was written while vcpu was in a guest mode.
2996 */
2997 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2998 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2999 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3000 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3001 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3002 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3003
3004 vmx->rmode.vm86_active = 0;
3005
3006 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3007
3008 flags = vmcs_readl(GUEST_RFLAGS);
3009 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3010 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3011 vmcs_writel(GUEST_RFLAGS, flags);
3012
3013 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3014 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3015
3016 vmx_update_exception_bitmap(vcpu);
3017
3018 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3019 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3020 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3021 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3022 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3023 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3024 }
3025
3026 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3027 {
3028 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3029 struct kvm_segment var = *save;
3030
3031 var.dpl = 0x3;
3032 if (seg == VCPU_SREG_CS)
3033 var.type = 0x3;
3034
3035 if (!emulate_invalid_guest_state) {
3036 var.selector = var.base >> 4;
3037 var.base = var.base & 0xffff0;
3038 var.limit = 0xffff;
3039 var.g = 0;
3040 var.db = 0;
3041 var.present = 1;
3042 var.s = 1;
3043 var.l = 0;
3044 var.unusable = 0;
3045 var.type = 0x3;
3046 var.avl = 0;
3047 if (save->base & 0xf)
3048 pr_warn_once("segment base is not paragraph aligned "
3049 "when entering protected mode (seg=%d)", seg);
3050 }
3051
3052 vmcs_write16(sf->selector, var.selector);
3053 vmcs_writel(sf->base, var.base);
3054 vmcs_write32(sf->limit, var.limit);
3055 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3056 }
3057
3058 static void enter_rmode(struct kvm_vcpu *vcpu)
3059 {
3060 unsigned long flags;
3061 struct vcpu_vmx *vmx = to_vmx(vcpu);
3062 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3063
3064 /*
3065 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3066 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3067 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3068 * should VM-Fail and KVM should reject userspace attempts to stuff
3069 * CR0.PG=0 when L2 is active.
3070 */
3071 WARN_ON_ONCE(is_guest_mode(vcpu));
3072
3073 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3074 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3075 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3076 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3077 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3078 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3079 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3080
3081 vmx->rmode.vm86_active = 1;
3082
3083 vmx_segment_cache_clear(vmx);
3084
3085 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3086 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3087 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3088
3089 flags = vmcs_readl(GUEST_RFLAGS);
3090 vmx->rmode.save_rflags = flags;
3091
3092 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3093
3094 vmcs_writel(GUEST_RFLAGS, flags);
3095 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3096 vmx_update_exception_bitmap(vcpu);
3097
3098 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3099 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3100 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3101 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3102 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3103 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3104 }
3105
3106 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3107 {
3108 struct vcpu_vmx *vmx = to_vmx(vcpu);
3109
3110 /* Nothing to do if hardware doesn't support EFER. */
3111 if (!vmx_find_uret_msr(vmx, MSR_EFER))
3112 return 0;
3113
3114 vcpu->arch.efer = efer;
3115 #ifdef CONFIG_X86_64
3116 if (efer & EFER_LMA)
3117 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3118 else
3119 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3120 #else
3121 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3122 return 1;
3123 #endif
3124
3125 vmx_setup_uret_msrs(vmx);
3126 return 0;
3127 }
3128
3129 #ifdef CONFIG_X86_64
3130
3131 static void enter_lmode(struct kvm_vcpu *vcpu)
3132 {
3133 u32 guest_tr_ar;
3134
3135 vmx_segment_cache_clear(to_vmx(vcpu));
3136
3137 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3138 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3139 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3140 __func__);
3141 vmcs_write32(GUEST_TR_AR_BYTES,
3142 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3143 | VMX_AR_TYPE_BUSY_64_TSS);
3144 }
3145 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3146 }
3147
3148 static void exit_lmode(struct kvm_vcpu *vcpu)
3149 {
3150 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3151 }
3152
3153 #endif
3154
3155 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3156 {
3157 struct vcpu_vmx *vmx = to_vmx(vcpu);
3158
3159 /*
3160 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3161 * the CPU is not required to invalidate guest-physical mappings on
3162 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
3163 * associated with the root EPT structure and not any particular VPID
3164 * (INVVPID also isn't required to invalidate guest-physical mappings).
3165 */
3166 if (enable_ept) {
3167 ept_sync_global();
3168 } else if (enable_vpid) {
3169 if (cpu_has_vmx_invvpid_global()) {
3170 vpid_sync_vcpu_global();
3171 } else {
3172 vpid_sync_vcpu_single(vmx->vpid);
3173 vpid_sync_vcpu_single(vmx->nested.vpid02);
3174 }
3175 }
3176 }
3177
3178 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3179 {
3180 if (is_guest_mode(vcpu))
3181 return nested_get_vpid02(vcpu);
3182 return to_vmx(vcpu)->vpid;
3183 }
3184
3185 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3186 {
3187 struct kvm_mmu *mmu = vcpu->arch.mmu;
3188 u64 root_hpa = mmu->root.hpa;
3189
3190 /* No flush required if the current context is invalid. */
3191 if (!VALID_PAGE(root_hpa))
3192 return;
3193
3194 if (enable_ept)
3195 ept_sync_context(construct_eptp(vcpu, root_hpa,
3196 mmu->root_role.level));
3197 else
3198 vpid_sync_context(vmx_get_current_vpid(vcpu));
3199 }
3200
3201 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3202 {
3203 /*
3204 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3205 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3206 */
3207 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3208 }
3209
3210 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3211 {
3212 /*
3213 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3214 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3215 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3216 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3217 * i.e. no explicit INVVPID is necessary.
3218 */
3219 vpid_sync_context(vmx_get_current_vpid(vcpu));
3220 }
3221
3222 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3223 {
3224 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3225
3226 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3227 return;
3228
3229 if (is_pae_paging(vcpu)) {
3230 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3231 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3232 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3233 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3234 }
3235 }
3236
3237 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3238 {
3239 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3240
3241 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3242 return;
3243
3244 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3245 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3246 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3247 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3248
3249 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3250 }
3251
3252 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3253 CPU_BASED_CR3_STORE_EXITING)
3254
3255 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3256 {
3257 if (is_guest_mode(vcpu))
3258 return nested_guest_cr0_valid(vcpu, cr0);
3259
3260 if (to_vmx(vcpu)->nested.vmxon)
3261 return nested_host_cr0_valid(vcpu, cr0);
3262
3263 return true;
3264 }
3265
3266 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3267 {
3268 struct vcpu_vmx *vmx = to_vmx(vcpu);
3269 unsigned long hw_cr0, old_cr0_pg;
3270 u32 tmp;
3271
3272 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3273
3274 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3275 if (enable_unrestricted_guest)
3276 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3277 else {
3278 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3279 if (!enable_ept)
3280 hw_cr0 |= X86_CR0_WP;
3281
3282 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3283 enter_pmode(vcpu);
3284
3285 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3286 enter_rmode(vcpu);
3287 }
3288
3289 vmcs_writel(CR0_READ_SHADOW, cr0);
3290 vmcs_writel(GUEST_CR0, hw_cr0);
3291 vcpu->arch.cr0 = cr0;
3292 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3293
3294 #ifdef CONFIG_X86_64
3295 if (vcpu->arch.efer & EFER_LME) {
3296 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3297 enter_lmode(vcpu);
3298 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3299 exit_lmode(vcpu);
3300 }
3301 #endif
3302
3303 if (enable_ept && !enable_unrestricted_guest) {
3304 /*
3305 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3306 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3307 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3308 * KVM's CR3 is installed.
3309 */
3310 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3311 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3312
3313 /*
3314 * When running with EPT but not unrestricted guest, KVM must
3315 * intercept CR3 accesses when paging is _disabled_. This is
3316 * necessary because restricted guests can't actually run with
3317 * paging disabled, and so KVM stuffs its own CR3 in order to
3318 * run the guest when identity mapped page tables.
3319 *
3320 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3321 * update, it may be stale with respect to CR3 interception,
3322 * e.g. after nested VM-Enter.
3323 *
3324 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3325 * stores to forward them to L1, even if KVM does not need to
3326 * intercept them to preserve its identity mapped page tables.
3327 */
3328 if (!(cr0 & X86_CR0_PG)) {
3329 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3330 } else if (!is_guest_mode(vcpu)) {
3331 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3332 } else {
3333 tmp = exec_controls_get(vmx);
3334 tmp &= ~CR3_EXITING_BITS;
3335 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3336 exec_controls_set(vmx, tmp);
3337 }
3338
3339 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3340 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3341 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3342
3343 /*
3344 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3345 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3346 */
3347 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3348 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3349 }
3350
3351 /* depends on vcpu->arch.cr0 to be set to a new value */
3352 vmx->emulation_required = vmx_emulation_required(vcpu);
3353 }
3354
3355 static int vmx_get_max_ept_level(void)
3356 {
3357 if (cpu_has_vmx_ept_5levels())
3358 return 5;
3359 return 4;
3360 }
3361
3362 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3363 {
3364 u64 eptp = VMX_EPTP_MT_WB;
3365
3366 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3367
3368 if (enable_ept_ad_bits &&
3369 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3370 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3371 eptp |= root_hpa;
3372
3373 return eptp;
3374 }
3375
3376 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3377 int root_level)
3378 {
3379 struct kvm *kvm = vcpu->kvm;
3380 bool update_guest_cr3 = true;
3381 unsigned long guest_cr3;
3382 u64 eptp;
3383
3384 if (enable_ept) {
3385 eptp = construct_eptp(vcpu, root_hpa, root_level);
3386 vmcs_write64(EPT_POINTER, eptp);
3387
3388 hv_track_root_tdp(vcpu, root_hpa);
3389
3390 if (!enable_unrestricted_guest && !is_paging(vcpu))
3391 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3392 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3393 guest_cr3 = vcpu->arch.cr3;
3394 else /* vmcs.GUEST_CR3 is already up-to-date. */
3395 update_guest_cr3 = false;
3396 vmx_ept_load_pdptrs(vcpu);
3397 } else {
3398 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3399 kvm_get_active_cr3_lam_bits(vcpu);
3400 }
3401
3402 if (update_guest_cr3)
3403 vmcs_writel(GUEST_CR3, guest_cr3);
3404 }
3405
3406
3407 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3408 {
3409 /*
3410 * We operate under the default treatment of SMM, so VMX cannot be
3411 * enabled under SMM. Note, whether or not VMXE is allowed at all,
3412 * i.e. is a reserved bit, is handled by common x86 code.
3413 */
3414 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3415 return false;
3416
3417 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3418 return false;
3419
3420 return true;
3421 }
3422
3423 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3424 {
3425 unsigned long old_cr4 = kvm_read_cr4(vcpu);
3426 struct vcpu_vmx *vmx = to_vmx(vcpu);
3427 unsigned long hw_cr4;
3428
3429 /*
3430 * Pass through host's Machine Check Enable value to hw_cr4, which
3431 * is in force while we are in guest mode. Do not let guests control
3432 * this bit, even if host CR4.MCE == 0.
3433 */
3434 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3435 if (enable_unrestricted_guest)
3436 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3437 else if (vmx->rmode.vm86_active)
3438 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3439 else
3440 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3441
3442 if (vmx_umip_emulated()) {
3443 if (cr4 & X86_CR4_UMIP) {
3444 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3445 hw_cr4 &= ~X86_CR4_UMIP;
3446 } else if (!is_guest_mode(vcpu) ||
3447 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3448 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3449 }
3450 }
3451
3452 vcpu->arch.cr4 = cr4;
3453 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3454
3455 if (!enable_unrestricted_guest) {
3456 if (enable_ept) {
3457 if (!is_paging(vcpu)) {
3458 hw_cr4 &= ~X86_CR4_PAE;
3459 hw_cr4 |= X86_CR4_PSE;
3460 } else if (!(cr4 & X86_CR4_PAE)) {
3461 hw_cr4 &= ~X86_CR4_PAE;
3462 }
3463 }
3464
3465 /*
3466 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3467 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3468 * to be manually disabled when guest switches to non-paging
3469 * mode.
3470 *
3471 * If !enable_unrestricted_guest, the CPU is always running
3472 * with CR0.PG=1 and CR4 needs to be modified.
3473 * If enable_unrestricted_guest, the CPU automatically
3474 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3475 */
3476 if (!is_paging(vcpu))
3477 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3478 }
3479
3480 vmcs_writel(CR4_READ_SHADOW, cr4);
3481 vmcs_writel(GUEST_CR4, hw_cr4);
3482
3483 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3484 kvm_update_cpuid_runtime(vcpu);
3485 }
3486
3487 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3488 {
3489 struct vcpu_vmx *vmx = to_vmx(vcpu);
3490 u32 ar;
3491
3492 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3493 *var = vmx->rmode.segs[seg];
3494 if (seg == VCPU_SREG_TR
3495 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3496 return;
3497 var->base = vmx_read_guest_seg_base(vmx, seg);
3498 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3499 return;
3500 }
3501 var->base = vmx_read_guest_seg_base(vmx, seg);
3502 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3503 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3504 ar = vmx_read_guest_seg_ar(vmx, seg);
3505 var->unusable = (ar >> 16) & 1;
3506 var->type = ar & 15;
3507 var->s = (ar >> 4) & 1;
3508 var->dpl = (ar >> 5) & 3;
3509 /*
3510 * Some userspaces do not preserve unusable property. Since usable
3511 * segment has to be present according to VMX spec we can use present
3512 * property to amend userspace bug by making unusable segment always
3513 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3514 * segment as unusable.
3515 */
3516 var->present = !var->unusable;
3517 var->avl = (ar >> 12) & 1;
3518 var->l = (ar >> 13) & 1;
3519 var->db = (ar >> 14) & 1;
3520 var->g = (ar >> 15) & 1;
3521 }
3522
3523 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3524 {
3525 struct kvm_segment s;
3526
3527 if (to_vmx(vcpu)->rmode.vm86_active) {
3528 vmx_get_segment(vcpu, &s, seg);
3529 return s.base;
3530 }
3531 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3532 }
3533
3534 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3535 {
3536 struct vcpu_vmx *vmx = to_vmx(vcpu);
3537
3538 if (unlikely(vmx->rmode.vm86_active))
3539 return 0;
3540 else {
3541 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3542 return VMX_AR_DPL(ar);
3543 }
3544 }
3545
3546 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3547 {
3548 u32 ar;
3549
3550 ar = var->type & 15;
3551 ar |= (var->s & 1) << 4;
3552 ar |= (var->dpl & 3) << 5;
3553 ar |= (var->present & 1) << 7;
3554 ar |= (var->avl & 1) << 12;
3555 ar |= (var->l & 1) << 13;
3556 ar |= (var->db & 1) << 14;
3557 ar |= (var->g & 1) << 15;
3558 ar |= (var->unusable || !var->present) << 16;
3559
3560 return ar;
3561 }
3562
3563 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3564 {
3565 struct vcpu_vmx *vmx = to_vmx(vcpu);
3566 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3567
3568 vmx_segment_cache_clear(vmx);
3569
3570 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3571 vmx->rmode.segs[seg] = *var;
3572 if (seg == VCPU_SREG_TR)
3573 vmcs_write16(sf->selector, var->selector);
3574 else if (var->s)
3575 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3576 return;
3577 }
3578
3579 vmcs_writel(sf->base, var->base);
3580 vmcs_write32(sf->limit, var->limit);
3581 vmcs_write16(sf->selector, var->selector);
3582
3583 /*
3584 * Fix the "Accessed" bit in AR field of segment registers for older
3585 * qemu binaries.
3586 * IA32 arch specifies that at the time of processor reset the
3587 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3588 * is setting it to 0 in the userland code. This causes invalid guest
3589 * state vmexit when "unrestricted guest" mode is turned on.
3590 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3591 * tree. Newer qemu binaries with that qemu fix would not need this
3592 * kvm hack.
3593 */
3594 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3595 var->type |= 0x1; /* Accessed */
3596
3597 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3598 }
3599
3600 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3601 {
3602 __vmx_set_segment(vcpu, var, seg);
3603
3604 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3605 }
3606
3607 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3608 {
3609 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3610
3611 *db = (ar >> 14) & 1;
3612 *l = (ar >> 13) & 1;
3613 }
3614
3615 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3616 {
3617 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3618 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3619 }
3620
3621 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3622 {
3623 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3624 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3625 }
3626
3627 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3628 {
3629 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3630 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3631 }
3632
3633 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3634 {
3635 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3636 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3637 }
3638
3639 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3640 {
3641 struct kvm_segment var;
3642 u32 ar;
3643
3644 vmx_get_segment(vcpu, &var, seg);
3645 var.dpl = 0x3;
3646 if (seg == VCPU_SREG_CS)
3647 var.type = 0x3;
3648 ar = vmx_segment_access_rights(&var);
3649
3650 if (var.base != (var.selector << 4))
3651 return false;
3652 if (var.limit != 0xffff)
3653 return false;
3654 if (ar != 0xf3)
3655 return false;
3656
3657 return true;
3658 }
3659
3660 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3661 {
3662 struct kvm_segment cs;
3663 unsigned int cs_rpl;
3664
3665 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3666 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3667
3668 if (cs.unusable)
3669 return false;
3670 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3671 return false;
3672 if (!cs.s)
3673 return false;
3674 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3675 if (cs.dpl > cs_rpl)
3676 return false;
3677 } else {
3678 if (cs.dpl != cs_rpl)
3679 return false;
3680 }
3681 if (!cs.present)
3682 return false;
3683
3684 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3685 return true;
3686 }
3687
3688 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3689 {
3690 struct kvm_segment ss;
3691 unsigned int ss_rpl;
3692
3693 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3694 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3695
3696 if (ss.unusable)
3697 return true;
3698 if (ss.type != 3 && ss.type != 7)
3699 return false;
3700 if (!ss.s)
3701 return false;
3702 if (ss.dpl != ss_rpl) /* DPL != RPL */
3703 return false;
3704 if (!ss.present)
3705 return false;
3706
3707 return true;
3708 }
3709
3710 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3711 {
3712 struct kvm_segment var;
3713 unsigned int rpl;
3714
3715 vmx_get_segment(vcpu, &var, seg);
3716 rpl = var.selector & SEGMENT_RPL_MASK;
3717
3718 if (var.unusable)
3719 return true;
3720 if (!var.s)
3721 return false;
3722 if (!var.present)
3723 return false;
3724 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3725 if (var.dpl < rpl) /* DPL < RPL */
3726 return false;
3727 }
3728
3729 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3730 * rights flags
3731 */
3732 return true;
3733 }
3734
3735 static bool tr_valid(struct kvm_vcpu *vcpu)
3736 {
3737 struct kvm_segment tr;
3738
3739 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3740
3741 if (tr.unusable)
3742 return false;
3743 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3744 return false;
3745 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3746 return false;
3747 if (!tr.present)
3748 return false;
3749
3750 return true;
3751 }
3752
3753 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3754 {
3755 struct kvm_segment ldtr;
3756
3757 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3758
3759 if (ldtr.unusable)
3760 return true;
3761 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3762 return false;
3763 if (ldtr.type != 2)
3764 return false;
3765 if (!ldtr.present)
3766 return false;
3767
3768 return true;
3769 }
3770
3771 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3772 {
3773 struct kvm_segment cs, ss;
3774
3775 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3776 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3777
3778 return ((cs.selector & SEGMENT_RPL_MASK) ==
3779 (ss.selector & SEGMENT_RPL_MASK));
3780 }
3781
3782 /*
3783 * Check if guest state is valid. Returns true if valid, false if
3784 * not.
3785 * We assume that registers are always usable
3786 */
3787 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3788 {
3789 /* real mode guest state checks */
3790 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3791 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3792 return false;
3793 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3794 return false;
3795 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3796 return false;
3797 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3798 return false;
3799 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3800 return false;
3801 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3802 return false;
3803 } else {
3804 /* protected mode guest state checks */
3805 if (!cs_ss_rpl_check(vcpu))
3806 return false;
3807 if (!code_segment_valid(vcpu))
3808 return false;
3809 if (!stack_segment_valid(vcpu))
3810 return false;
3811 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3812 return false;
3813 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3814 return false;
3815 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3816 return false;
3817 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3818 return false;
3819 if (!tr_valid(vcpu))
3820 return false;
3821 if (!ldtr_valid(vcpu))
3822 return false;
3823 }
3824 /* TODO:
3825 * - Add checks on RIP
3826 * - Add checks on RFLAGS
3827 */
3828
3829 return true;
3830 }
3831
3832 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3833 {
3834 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3835 u16 data;
3836 int i;
3837
3838 for (i = 0; i < 3; i++) {
3839 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3840 return -EFAULT;
3841 }
3842
3843 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3844 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3845 return -EFAULT;
3846
3847 data = ~0;
3848 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3849 return -EFAULT;
3850
3851 return 0;
3852 }
3853
3854 static int init_rmode_identity_map(struct kvm *kvm)
3855 {
3856 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3857 int i, r = 0;
3858 void __user *uaddr;
3859 u32 tmp;
3860
3861 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3862 mutex_lock(&kvm->slots_lock);
3863
3864 if (likely(kvm_vmx->ept_identity_pagetable_done))
3865 goto out;
3866
3867 if (!kvm_vmx->ept_identity_map_addr)
3868 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3869
3870 uaddr = __x86_set_memory_region(kvm,
3871 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3872 kvm_vmx->ept_identity_map_addr,
3873 PAGE_SIZE);
3874 if (IS_ERR(uaddr)) {
3875 r = PTR_ERR(uaddr);
3876 goto out;
3877 }
3878
3879 /* Set up identity-mapping pagetable for EPT in real mode */
3880 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3881 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3882 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3883 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3884 r = -EFAULT;
3885 goto out;
3886 }
3887 }
3888 kvm_vmx->ept_identity_pagetable_done = true;
3889
3890 out:
3891 mutex_unlock(&kvm->slots_lock);
3892 return r;
3893 }
3894
3895 static void seg_setup(int seg)
3896 {
3897 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3898 unsigned int ar;
3899
3900 vmcs_write16(sf->selector, 0);
3901 vmcs_writel(sf->base, 0);
3902 vmcs_write32(sf->limit, 0xffff);
3903 ar = 0x93;
3904 if (seg == VCPU_SREG_CS)
3905 ar |= 0x08; /* code segment */
3906
3907 vmcs_write32(sf->ar_bytes, ar);
3908 }
3909
3910 int allocate_vpid(void)
3911 {
3912 int vpid;
3913
3914 if (!enable_vpid)
3915 return 0;
3916 spin_lock(&vmx_vpid_lock);
3917 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3918 if (vpid < VMX_NR_VPIDS)
3919 __set_bit(vpid, vmx_vpid_bitmap);
3920 else
3921 vpid = 0;
3922 spin_unlock(&vmx_vpid_lock);
3923 return vpid;
3924 }
3925
3926 void free_vpid(int vpid)
3927 {
3928 if (!enable_vpid || vpid == 0)
3929 return;
3930 spin_lock(&vmx_vpid_lock);
3931 __clear_bit(vpid, vmx_vpid_bitmap);
3932 spin_unlock(&vmx_vpid_lock);
3933 }
3934
3935 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3936 {
3937 /*
3938 * When KVM is a nested hypervisor on top of Hyper-V and uses
3939 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3940 * bitmap has changed.
3941 */
3942 if (kvm_is_using_evmcs()) {
3943 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3944
3945 if (evmcs->hv_enlightenments_control.msr_bitmap)
3946 evmcs->hv_clean_fields &=
3947 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3948 }
3949
3950 vmx->nested.force_msr_bitmap_recalc = true;
3951 }
3952
3953 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3954 {
3955 struct vcpu_vmx *vmx = to_vmx(vcpu);
3956 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3957
3958 if (!cpu_has_vmx_msr_bitmap())
3959 return;
3960
3961 vmx_msr_bitmap_l01_changed(vmx);
3962
3963 /*
3964 * Mark the desired intercept state in shadow bitmap, this is needed
3965 * for resync when the MSR filters change.
3966 */
3967 if (is_valid_passthrough_msr(msr)) {
3968 int idx = possible_passthrough_msr_slot(msr);
3969
3970 if (idx != -ENOENT) {
3971 if (type & MSR_TYPE_R)
3972 clear_bit(idx, vmx->shadow_msr_intercept.read);
3973 if (type & MSR_TYPE_W)
3974 clear_bit(idx, vmx->shadow_msr_intercept.write);
3975 }
3976 }
3977
3978 if ((type & MSR_TYPE_R) &&
3979 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3980 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3981 type &= ~MSR_TYPE_R;
3982 }
3983
3984 if ((type & MSR_TYPE_W) &&
3985 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3986 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3987 type &= ~MSR_TYPE_W;
3988 }
3989
3990 if (type & MSR_TYPE_R)
3991 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3992
3993 if (type & MSR_TYPE_W)
3994 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3995 }
3996
3997 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3998 {
3999 struct vcpu_vmx *vmx = to_vmx(vcpu);
4000 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4001
4002 if (!cpu_has_vmx_msr_bitmap())
4003 return;
4004
4005 vmx_msr_bitmap_l01_changed(vmx);
4006
4007 /*
4008 * Mark the desired intercept state in shadow bitmap, this is needed
4009 * for resync when the MSR filter changes.
4010 */
4011 if (is_valid_passthrough_msr(msr)) {
4012 int idx = possible_passthrough_msr_slot(msr);
4013
4014 if (idx != -ENOENT) {
4015 if (type & MSR_TYPE_R)
4016 set_bit(idx, vmx->shadow_msr_intercept.read);
4017 if (type & MSR_TYPE_W)
4018 set_bit(idx, vmx->shadow_msr_intercept.write);
4019 }
4020 }
4021
4022 if (type & MSR_TYPE_R)
4023 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4024
4025 if (type & MSR_TYPE_W)
4026 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4027 }
4028
4029 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4030 {
4031 /*
4032 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4033 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
4034 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4035 */
4036 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4037 const int write_idx = read_idx + (0x800 / sizeof(u64));
4038 struct vcpu_vmx *vmx = to_vmx(vcpu);
4039 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4040 u8 mode;
4041
4042 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4043 return;
4044
4045 if (cpu_has_secondary_exec_ctrls() &&
4046 (secondary_exec_controls_get(vmx) &
4047 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4048 mode = MSR_BITMAP_MODE_X2APIC;
4049 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4050 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4051 } else {
4052 mode = 0;
4053 }
4054
4055 if (mode == vmx->x2apic_msr_bitmap_mode)
4056 return;
4057
4058 vmx->x2apic_msr_bitmap_mode = mode;
4059
4060 /*
4061 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
4062 * registers (0x840 and above) intercepted, KVM doesn't support them.
4063 * Intercept all writes by default and poke holes as needed. Pass
4064 * through reads for all valid registers by default in x2APIC+APICv
4065 * mode, only the current timer count needs on-demand emulation by KVM.
4066 */
4067 if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4068 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4069 else
4070 msr_bitmap[read_idx] = ~0ull;
4071 msr_bitmap[write_idx] = ~0ull;
4072
4073 /*
4074 * TPR reads and writes can be virtualized even if virtual interrupt
4075 * delivery is not in use.
4076 */
4077 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4078 !(mode & MSR_BITMAP_MODE_X2APIC));
4079
4080 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4081 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4082 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4083 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4084 if (enable_ipiv)
4085 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4086 }
4087 }
4088
4089 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4090 {
4091 struct vcpu_vmx *vmx = to_vmx(vcpu);
4092 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4093 u32 i;
4094
4095 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4096 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4097 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4098 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4099 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4100 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4101 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4102 }
4103 }
4104
4105 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4106 {
4107 struct vcpu_vmx *vmx = to_vmx(vcpu);
4108 void *vapic_page;
4109 u32 vppr;
4110 int rvi;
4111
4112 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4113 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4114 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4115 return false;
4116
4117 rvi = vmx_get_rvi();
4118
4119 vapic_page = vmx->nested.virtual_apic_map.hva;
4120 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4121
4122 return ((rvi & 0xf0) > (vppr & 0xf0));
4123 }
4124
4125 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4126 {
4127 struct vcpu_vmx *vmx = to_vmx(vcpu);
4128 u32 i;
4129
4130 /*
4131 * Redo intercept permissions for MSRs that KVM is passing through to
4132 * the guest. Disabling interception will check the new MSR filter and
4133 * ensure that KVM enables interception if usersepace wants to filter
4134 * the MSR. MSRs that KVM is already intercepting don't need to be
4135 * refreshed since KVM is going to intercept them regardless of what
4136 * userspace wants.
4137 */
4138 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4139 u32 msr = vmx_possible_passthrough_msrs[i];
4140
4141 if (!test_bit(i, vmx->shadow_msr_intercept.read))
4142 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4143
4144 if (!test_bit(i, vmx->shadow_msr_intercept.write))
4145 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4146 }
4147
4148 /* PT MSRs can be passed through iff PT is exposed to the guest. */
4149 if (vmx_pt_mode_is_host_guest())
4150 pt_update_intercept_for_msr(vcpu);
4151 }
4152
4153 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4154 int pi_vec)
4155 {
4156 #ifdef CONFIG_SMP
4157 if (vcpu->mode == IN_GUEST_MODE) {
4158 /*
4159 * The vector of the virtual has already been set in the PIR.
4160 * Send a notification event to deliver the virtual interrupt
4161 * unless the vCPU is the currently running vCPU, i.e. the
4162 * event is being sent from a fastpath VM-Exit handler, in
4163 * which case the PIR will be synced to the vIRR before
4164 * re-entering the guest.
4165 *
4166 * When the target is not the running vCPU, the following
4167 * possibilities emerge:
4168 *
4169 * Case 1: vCPU stays in non-root mode. Sending a notification
4170 * event posts the interrupt to the vCPU.
4171 *
4172 * Case 2: vCPU exits to root mode and is still runnable. The
4173 * PIR will be synced to the vIRR before re-entering the guest.
4174 * Sending a notification event is ok as the host IRQ handler
4175 * will ignore the spurious event.
4176 *
4177 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4178 * has already synced PIR to vIRR and never blocks the vCPU if
4179 * the vIRR is not empty. Therefore, a blocked vCPU here does
4180 * not wait for any requested interrupts in PIR, and sending a
4181 * notification event also results in a benign, spurious event.
4182 */
4183
4184 if (vcpu != kvm_get_running_vcpu())
4185 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4186 return;
4187 }
4188 #endif
4189 /*
4190 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4191 * otherwise do nothing as KVM will grab the highest priority pending
4192 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4193 */
4194 kvm_vcpu_wake_up(vcpu);
4195 }
4196
4197 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4198 int vector)
4199 {
4200 struct vcpu_vmx *vmx = to_vmx(vcpu);
4201
4202 if (is_guest_mode(vcpu) &&
4203 vector == vmx->nested.posted_intr_nv) {
4204 /*
4205 * If a posted intr is not recognized by hardware,
4206 * we will accomplish it in the next vmentry.
4207 */
4208 vmx->nested.pi_pending = true;
4209 kvm_make_request(KVM_REQ_EVENT, vcpu);
4210
4211 /*
4212 * This pairs with the smp_mb_*() after setting vcpu->mode in
4213 * vcpu_enter_guest() to guarantee the vCPU sees the event
4214 * request if triggering a posted interrupt "fails" because
4215 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4216 * the smb_wmb() in kvm_make_request() only ensures everything
4217 * done before making the request is visible when the request
4218 * is visible, it doesn't ensure ordering between the store to
4219 * vcpu->requests and the load from vcpu->mode.
4220 */
4221 smp_mb__after_atomic();
4222
4223 /* the PIR and ON have been set by L1. */
4224 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4225 return 0;
4226 }
4227 return -1;
4228 }
4229 /*
4230 * Send interrupt to vcpu via posted interrupt way.
4231 * 1. If target vcpu is running(non-root mode), send posted interrupt
4232 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4233 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4234 * interrupt from PIR in next vmentry.
4235 */
4236 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4237 {
4238 struct vcpu_vmx *vmx = to_vmx(vcpu);
4239 int r;
4240
4241 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4242 if (!r)
4243 return 0;
4244
4245 /* Note, this is called iff the local APIC is in-kernel. */
4246 if (!vcpu->arch.apic->apicv_active)
4247 return -1;
4248
4249 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4250 return 0;
4251
4252 /* If a previous notification has sent the IPI, nothing to do. */
4253 if (pi_test_and_set_on(&vmx->pi_desc))
4254 return 0;
4255
4256 /*
4257 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4258 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4259 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4260 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4261 */
4262 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4263 return 0;
4264 }
4265
4266 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4267 int trig_mode, int vector)
4268 {
4269 struct kvm_vcpu *vcpu = apic->vcpu;
4270
4271 if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4272 kvm_lapic_set_irr(vector, apic);
4273 kvm_make_request(KVM_REQ_EVENT, vcpu);
4274 kvm_vcpu_kick(vcpu);
4275 } else {
4276 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4277 trig_mode, vector);
4278 }
4279 }
4280
4281 /*
4282 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4283 * will not change in the lifetime of the guest.
4284 * Note that host-state that does change is set elsewhere. E.g., host-state
4285 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4286 */
4287 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4288 {
4289 u32 low32, high32;
4290 unsigned long tmpl;
4291 unsigned long cr0, cr3, cr4;
4292
4293 cr0 = read_cr0();
4294 WARN_ON(cr0 & X86_CR0_TS);
4295 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4296
4297 /*
4298 * Save the most likely value for this task's CR3 in the VMCS.
4299 * We can't use __get_current_cr3_fast() because we're not atomic.
4300 */
4301 cr3 = __read_cr3();
4302 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4303 vmx->loaded_vmcs->host_state.cr3 = cr3;
4304
4305 /* Save the most likely value for this task's CR4 in the VMCS. */
4306 cr4 = cr4_read_shadow();
4307 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4308 vmx->loaded_vmcs->host_state.cr4 = cr4;
4309
4310 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4311 #ifdef CONFIG_X86_64
4312 /*
4313 * Load null selectors, so we can avoid reloading them in
4314 * vmx_prepare_switch_to_host(), in case userspace uses
4315 * the null selectors too (the expected case).
4316 */
4317 vmcs_write16(HOST_DS_SELECTOR, 0);
4318 vmcs_write16(HOST_ES_SELECTOR, 0);
4319 #else
4320 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4321 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4322 #endif
4323 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4324 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4325
4326 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4327
4328 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4329
4330 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4331 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4332
4333 /*
4334 * SYSENTER is used for 32-bit system calls on either 32-bit or
4335 * 64-bit kernels. It is always zero If neither is allowed, otherwise
4336 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4337 * have already done so!).
4338 */
4339 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4340 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4341
4342 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4343 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4344
4345 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4346 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4347 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4348 }
4349
4350 if (cpu_has_load_ia32_efer())
4351 vmcs_write64(HOST_IA32_EFER, host_efer);
4352 }
4353
4354 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4355 {
4356 struct kvm_vcpu *vcpu = &vmx->vcpu;
4357
4358 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4359 ~vcpu->arch.cr4_guest_rsvd_bits;
4360 if (!enable_ept) {
4361 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4362 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4363 }
4364 if (is_guest_mode(&vmx->vcpu))
4365 vcpu->arch.cr4_guest_owned_bits &=
4366 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4367 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4368 }
4369
4370 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4371 {
4372 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4373
4374 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4375 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4376
4377 if (!enable_vnmi)
4378 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4379
4380 if (!enable_preemption_timer)
4381 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4382
4383 return pin_based_exec_ctrl;
4384 }
4385
4386 static u32 vmx_vmentry_ctrl(void)
4387 {
4388 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4389
4390 if (vmx_pt_mode_is_system())
4391 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4392 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4393 /*
4394 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4395 */
4396 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4397 VM_ENTRY_LOAD_IA32_EFER |
4398 VM_ENTRY_IA32E_MODE);
4399
4400 if (cpu_has_perf_global_ctrl_bug())
4401 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4402
4403 return vmentry_ctrl;
4404 }
4405
4406 static u32 vmx_vmexit_ctrl(void)
4407 {
4408 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4409
4410 /*
4411 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4412 * nested virtualization and thus allowed to be set in vmcs12.
4413 */
4414 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4415 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4416
4417 if (vmx_pt_mode_is_system())
4418 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4419 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4420
4421 if (cpu_has_perf_global_ctrl_bug())
4422 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4423
4424 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4425 return vmexit_ctrl &
4426 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4427 }
4428
4429 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4430 {
4431 struct vcpu_vmx *vmx = to_vmx(vcpu);
4432
4433 if (is_guest_mode(vcpu)) {
4434 vmx->nested.update_vmcs01_apicv_status = true;
4435 return;
4436 }
4437
4438 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4439
4440 if (kvm_vcpu_apicv_active(vcpu)) {
4441 secondary_exec_controls_setbit(vmx,
4442 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4443 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4444 if (enable_ipiv)
4445 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4446 } else {
4447 secondary_exec_controls_clearbit(vmx,
4448 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4449 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4450 if (enable_ipiv)
4451 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4452 }
4453
4454 vmx_update_msr_bitmap_x2apic(vcpu);
4455 }
4456
4457 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4458 {
4459 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4460
4461 /*
4462 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4463 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4464 */
4465 exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4466 CPU_BASED_USE_IO_BITMAPS |
4467 CPU_BASED_MONITOR_TRAP_FLAG |
4468 CPU_BASED_PAUSE_EXITING);
4469
4470 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4471 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4472 CPU_BASED_NMI_WINDOW_EXITING);
4473
4474 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4475 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4476
4477 if (!cpu_need_tpr_shadow(&vmx->vcpu))
4478 exec_control &= ~CPU_BASED_TPR_SHADOW;
4479
4480 #ifdef CONFIG_X86_64
4481 if (exec_control & CPU_BASED_TPR_SHADOW)
4482 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4483 CPU_BASED_CR8_STORE_EXITING);
4484 else
4485 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4486 CPU_BASED_CR8_LOAD_EXITING;
4487 #endif
4488 /* No need to intercept CR3 access or INVPLG when using EPT. */
4489 if (enable_ept)
4490 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4491 CPU_BASED_CR3_STORE_EXITING |
4492 CPU_BASED_INVLPG_EXITING);
4493 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4494 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4495 CPU_BASED_MONITOR_EXITING);
4496 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4497 exec_control &= ~CPU_BASED_HLT_EXITING;
4498 return exec_control;
4499 }
4500
4501 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4502 {
4503 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4504
4505 /*
4506 * IPI virtualization relies on APICv. Disable IPI virtualization if
4507 * APICv is inhibited.
4508 */
4509 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4510 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4511
4512 return exec_control;
4513 }
4514
4515 /*
4516 * Adjust a single secondary execution control bit to intercept/allow an
4517 * instruction in the guest. This is usually done based on whether or not a
4518 * feature has been exposed to the guest in order to correctly emulate faults.
4519 */
4520 static inline void
4521 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4522 u32 control, bool enabled, bool exiting)
4523 {
4524 /*
4525 * If the control is for an opt-in feature, clear the control if the
4526 * feature is not exposed to the guest, i.e. not enabled. If the
4527 * control is opt-out, i.e. an exiting control, clear the control if
4528 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4529 * disabled for the associated instruction. Note, the caller is
4530 * responsible presetting exec_control to set all supported bits.
4531 */
4532 if (enabled == exiting)
4533 *exec_control &= ~control;
4534
4535 /*
4536 * Update the nested MSR settings so that a nested VMM can/can't set
4537 * controls for features that are/aren't exposed to the guest.
4538 */
4539 if (nested) {
4540 /*
4541 * All features that can be added or removed to VMX MSRs must
4542 * be supported in the first place for nested virtualization.
4543 */
4544 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4545 enabled = false;
4546
4547 if (enabled)
4548 vmx->nested.msrs.secondary_ctls_high |= control;
4549 else
4550 vmx->nested.msrs.secondary_ctls_high &= ~control;
4551 }
4552 }
4553
4554 /*
4555 * Wrapper macro for the common case of adjusting a secondary execution control
4556 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4557 * verifies that the control is actually supported by KVM and hardware.
4558 */
4559 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4560 ({ \
4561 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
4562 bool __enabled; \
4563 \
4564 if (cpu_has_vmx_##name()) { \
4565 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \
4566 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \
4567 else \
4568 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \
4569 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4570 __enabled, exiting); \
4571 } \
4572 })
4573
4574 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4575 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4576 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4577
4578 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4579 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4580
4581 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4582 {
4583 struct kvm_vcpu *vcpu = &vmx->vcpu;
4584
4585 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4586
4587 if (vmx_pt_mode_is_system())
4588 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4589 if (!cpu_need_virtualize_apic_accesses(vcpu))
4590 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4591 if (vmx->vpid == 0)
4592 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4593 if (!enable_ept) {
4594 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4595 enable_unrestricted_guest = 0;
4596 }
4597 if (!enable_unrestricted_guest)
4598 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4599 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4600 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4601 if (!kvm_vcpu_apicv_active(vcpu))
4602 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4603 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4604 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4605
4606 /*
4607 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4608 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4609 */
4610 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4611
4612 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4613 * in vmx_set_cr4. */
4614 exec_control &= ~SECONDARY_EXEC_DESC;
4615
4616 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4617 (handle_vmptrld).
4618 We can NOT enable shadow_vmcs here because we don't have yet
4619 a current VMCS12
4620 */
4621 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4622
4623 /*
4624 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4625 * it needs to be set here when dirty logging is already active, e.g.
4626 * if this vCPU was created after dirty logging was enabled.
4627 */
4628 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4629 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4630
4631 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4632
4633 /*
4634 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4635 * feature is exposed to the guest. This creates a virtualization hole
4636 * if both are supported in hardware but only one is exposed to the
4637 * guest, but letting the guest execute RDTSCP or RDPID when either one
4638 * is advertised is preferable to emulating the advertised instruction
4639 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4640 */
4641 if (cpu_has_vmx_rdtscp()) {
4642 bool rdpid_or_rdtscp_enabled =
4643 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4644 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4645
4646 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4647 SECONDARY_EXEC_ENABLE_RDTSCP,
4648 rdpid_or_rdtscp_enabled, false);
4649 }
4650
4651 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4652
4653 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4654 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4655
4656 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4657 ENABLE_USR_WAIT_PAUSE, false);
4658
4659 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4660 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4661
4662 if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4663 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4664
4665 return exec_control;
4666 }
4667
4668 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4669 {
4670 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4671 }
4672
4673 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4674 {
4675 struct page *pages;
4676 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4677
4678 if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4679 return 0;
4680
4681 if (kvm_vmx->pid_table)
4682 return 0;
4683
4684 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4685 vmx_get_pid_table_order(kvm));
4686 if (!pages)
4687 return -ENOMEM;
4688
4689 kvm_vmx->pid_table = (void *)page_address(pages);
4690 return 0;
4691 }
4692
4693 static int vmx_vcpu_precreate(struct kvm *kvm)
4694 {
4695 return vmx_alloc_ipiv_pid_table(kvm);
4696 }
4697
4698 #define VMX_XSS_EXIT_BITMAP 0
4699
4700 static void init_vmcs(struct vcpu_vmx *vmx)
4701 {
4702 struct kvm *kvm = vmx->vcpu.kvm;
4703 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4704
4705 if (nested)
4706 nested_vmx_set_vmcs_shadowing_bitmap();
4707
4708 if (cpu_has_vmx_msr_bitmap())
4709 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4710
4711 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4712
4713 /* Control */
4714 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4715
4716 exec_controls_set(vmx, vmx_exec_control(vmx));
4717
4718 if (cpu_has_secondary_exec_ctrls())
4719 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4720
4721 if (cpu_has_tertiary_exec_ctrls())
4722 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4723
4724 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4725 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4726 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4727 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4728 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4729
4730 vmcs_write16(GUEST_INTR_STATUS, 0);
4731
4732 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4733 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4734 }
4735
4736 if (vmx_can_use_ipiv(&vmx->vcpu)) {
4737 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4738 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4739 }
4740
4741 if (!kvm_pause_in_guest(kvm)) {
4742 vmcs_write32(PLE_GAP, ple_gap);
4743 vmx->ple_window = ple_window;
4744 vmx->ple_window_dirty = true;
4745 }
4746
4747 if (kvm_notify_vmexit_enabled(kvm))
4748 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4749
4750 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4751 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4752 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4753
4754 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4755 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4756 vmx_set_constant_host_state(vmx);
4757 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4758 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4759
4760 if (cpu_has_vmx_vmfunc())
4761 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4762
4763 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4764 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4765 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4766 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4767 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4768
4769 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4770 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4771
4772 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4773
4774 /* 22.2.1, 20.8.1 */
4775 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4776
4777 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4778 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4779
4780 set_cr4_guest_host_mask(vmx);
4781
4782 if (vmx->vpid != 0)
4783 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4784
4785 if (cpu_has_vmx_xsaves())
4786 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4787
4788 if (enable_pml) {
4789 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4790 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4791 }
4792
4793 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4794
4795 if (vmx_pt_mode_is_host_guest()) {
4796 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4797 /* Bit[6~0] are forced to 1, writes are ignored. */
4798 vmx->pt_desc.guest.output_mask = 0x7F;
4799 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4800 }
4801
4802 vmcs_write32(GUEST_SYSENTER_CS, 0);
4803 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4804 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4805 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4806
4807 if (cpu_has_vmx_tpr_shadow()) {
4808 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4809 if (cpu_need_tpr_shadow(&vmx->vcpu))
4810 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4811 __pa(vmx->vcpu.arch.apic->regs));
4812 vmcs_write32(TPR_THRESHOLD, 0);
4813 }
4814
4815 vmx_setup_uret_msrs(vmx);
4816 }
4817
4818 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4819 {
4820 struct vcpu_vmx *vmx = to_vmx(vcpu);
4821
4822 init_vmcs(vmx);
4823
4824 if (nested)
4825 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4826
4827 vcpu_setup_sgx_lepubkeyhash(vcpu);
4828
4829 vmx->nested.posted_intr_nv = -1;
4830 vmx->nested.vmxon_ptr = INVALID_GPA;
4831 vmx->nested.current_vmptr = INVALID_GPA;
4832
4833 #ifdef CONFIG_KVM_HYPERV
4834 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4835 #endif
4836
4837 vcpu->arch.microcode_version = 0x100000000ULL;
4838 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4839
4840 /*
4841 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4842 * or POSTED_INTR_WAKEUP_VECTOR.
4843 */
4844 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4845 vmx->pi_desc.sn = 1;
4846 }
4847
4848 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4849 {
4850 struct vcpu_vmx *vmx = to_vmx(vcpu);
4851
4852 if (!init_event)
4853 __vmx_vcpu_reset(vcpu);
4854
4855 vmx->rmode.vm86_active = 0;
4856 vmx->spec_ctrl = 0;
4857
4858 vmx->msr_ia32_umwait_control = 0;
4859
4860 vmx->hv_deadline_tsc = -1;
4861 kvm_set_cr8(vcpu, 0);
4862
4863 vmx_segment_cache_clear(vmx);
4864 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4865
4866 seg_setup(VCPU_SREG_CS);
4867 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4868 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4869
4870 seg_setup(VCPU_SREG_DS);
4871 seg_setup(VCPU_SREG_ES);
4872 seg_setup(VCPU_SREG_FS);
4873 seg_setup(VCPU_SREG_GS);
4874 seg_setup(VCPU_SREG_SS);
4875
4876 vmcs_write16(GUEST_TR_SELECTOR, 0);
4877 vmcs_writel(GUEST_TR_BASE, 0);
4878 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4879 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4880
4881 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4882 vmcs_writel(GUEST_LDTR_BASE, 0);
4883 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4884 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4885
4886 vmcs_writel(GUEST_GDTR_BASE, 0);
4887 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4888
4889 vmcs_writel(GUEST_IDTR_BASE, 0);
4890 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4891
4892 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4893 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4894 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4895 if (kvm_mpx_supported())
4896 vmcs_write64(GUEST_BNDCFGS, 0);
4897
4898 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4899
4900 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4901
4902 vpid_sync_context(vmx->vpid);
4903
4904 vmx_update_fb_clear_dis(vcpu, vmx);
4905 }
4906
4907 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4908 {
4909 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4910 }
4911
4912 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4913 {
4914 if (!enable_vnmi ||
4915 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4916 vmx_enable_irq_window(vcpu);
4917 return;
4918 }
4919
4920 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4921 }
4922
4923 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4924 {
4925 struct vcpu_vmx *vmx = to_vmx(vcpu);
4926 uint32_t intr;
4927 int irq = vcpu->arch.interrupt.nr;
4928
4929 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4930
4931 ++vcpu->stat.irq_injections;
4932 if (vmx->rmode.vm86_active) {
4933 int inc_eip = 0;
4934 if (vcpu->arch.interrupt.soft)
4935 inc_eip = vcpu->arch.event_exit_inst_len;
4936 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4937 return;
4938 }
4939 intr = irq | INTR_INFO_VALID_MASK;
4940 if (vcpu->arch.interrupt.soft) {
4941 intr |= INTR_TYPE_SOFT_INTR;
4942 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4943 vmx->vcpu.arch.event_exit_inst_len);
4944 } else
4945 intr |= INTR_TYPE_EXT_INTR;
4946 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4947
4948 vmx_clear_hlt(vcpu);
4949 }
4950
4951 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4952 {
4953 struct vcpu_vmx *vmx = to_vmx(vcpu);
4954
4955 if (!enable_vnmi) {
4956 /*
4957 * Tracking the NMI-blocked state in software is built upon
4958 * finding the next open IRQ window. This, in turn, depends on
4959 * well-behaving guests: They have to keep IRQs disabled at
4960 * least as long as the NMI handler runs. Otherwise we may
4961 * cause NMI nesting, maybe breaking the guest. But as this is
4962 * highly unlikely, we can live with the residual risk.
4963 */
4964 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4965 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4966 }
4967
4968 ++vcpu->stat.nmi_injections;
4969 vmx->loaded_vmcs->nmi_known_unmasked = false;
4970
4971 if (vmx->rmode.vm86_active) {
4972 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4973 return;
4974 }
4975
4976 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4977 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4978
4979 vmx_clear_hlt(vcpu);
4980 }
4981
4982 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4983 {
4984 struct vcpu_vmx *vmx = to_vmx(vcpu);
4985 bool masked;
4986
4987 if (!enable_vnmi)
4988 return vmx->loaded_vmcs->soft_vnmi_blocked;
4989 if (vmx->loaded_vmcs->nmi_known_unmasked)
4990 return false;
4991 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4992 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4993 return masked;
4994 }
4995
4996 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4997 {
4998 struct vcpu_vmx *vmx = to_vmx(vcpu);
4999
5000 if (!enable_vnmi) {
5001 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5002 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5003 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5004 }
5005 } else {
5006 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5007 if (masked)
5008 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5009 GUEST_INTR_STATE_NMI);
5010 else
5011 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5012 GUEST_INTR_STATE_NMI);
5013 }
5014 }
5015
5016 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5017 {
5018 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5019 return false;
5020
5021 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5022 return true;
5023
5024 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5025 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5026 GUEST_INTR_STATE_NMI));
5027 }
5028
5029 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5030 {
5031 if (to_vmx(vcpu)->nested.nested_run_pending)
5032 return -EBUSY;
5033
5034 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
5035 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5036 return -EBUSY;
5037
5038 return !vmx_nmi_blocked(vcpu);
5039 }
5040
5041 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5042 {
5043 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5044 return false;
5045
5046 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5047 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5048 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5049 }
5050
5051 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5052 {
5053 if (to_vmx(vcpu)->nested.nested_run_pending)
5054 return -EBUSY;
5055
5056 /*
5057 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5058 * e.g. if the IRQ arrived asynchronously after checking nested events.
5059 */
5060 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5061 return -EBUSY;
5062
5063 return !vmx_interrupt_blocked(vcpu);
5064 }
5065
5066 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5067 {
5068 void __user *ret;
5069
5070 if (enable_unrestricted_guest)
5071 return 0;
5072
5073 mutex_lock(&kvm->slots_lock);
5074 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5075 PAGE_SIZE * 3);
5076 mutex_unlock(&kvm->slots_lock);
5077
5078 if (IS_ERR(ret))
5079 return PTR_ERR(ret);
5080
5081 to_kvm_vmx(kvm)->tss_addr = addr;
5082
5083 return init_rmode_tss(kvm, ret);
5084 }
5085
5086 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5087 {
5088 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5089 return 0;
5090 }
5091
5092 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5093 {
5094 switch (vec) {
5095 case BP_VECTOR:
5096 /*
5097 * Update instruction length as we may reinject the exception
5098 * from user space while in guest debugging mode.
5099 */
5100 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5101 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5102 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5103 return false;
5104 fallthrough;
5105 case DB_VECTOR:
5106 return !(vcpu->guest_debug &
5107 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5108 case DE_VECTOR:
5109 case OF_VECTOR:
5110 case BR_VECTOR:
5111 case UD_VECTOR:
5112 case DF_VECTOR:
5113 case SS_VECTOR:
5114 case GP_VECTOR:
5115 case MF_VECTOR:
5116 return true;
5117 }
5118 return false;
5119 }
5120
5121 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5122 int vec, u32 err_code)
5123 {
5124 /*
5125 * Instruction with address size override prefix opcode 0x67
5126 * Cause the #SS fault with 0 error code in VM86 mode.
5127 */
5128 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5129 if (kvm_emulate_instruction(vcpu, 0)) {
5130 if (vcpu->arch.halt_request) {
5131 vcpu->arch.halt_request = 0;
5132 return kvm_emulate_halt_noskip(vcpu);
5133 }
5134 return 1;
5135 }
5136 return 0;
5137 }
5138
5139 /*
5140 * Forward all other exceptions that are valid in real mode.
5141 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5142 * the required debugging infrastructure rework.
5143 */
5144 kvm_queue_exception(vcpu, vec);
5145 return 1;
5146 }
5147
5148 static int handle_machine_check(struct kvm_vcpu *vcpu)
5149 {
5150 /* handled by vmx_vcpu_run() */
5151 return 1;
5152 }
5153
5154 /*
5155 * If the host has split lock detection disabled, then #AC is
5156 * unconditionally injected into the guest, which is the pre split lock
5157 * detection behaviour.
5158 *
5159 * If the host has split lock detection enabled then #AC is
5160 * only injected into the guest when:
5161 * - Guest CPL == 3 (user mode)
5162 * - Guest has #AC detection enabled in CR0
5163 * - Guest EFLAGS has AC bit set
5164 */
5165 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5166 {
5167 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5168 return true;
5169
5170 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5171 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5172 }
5173
5174 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5175 {
5176 struct vcpu_vmx *vmx = to_vmx(vcpu);
5177 struct kvm_run *kvm_run = vcpu->run;
5178 u32 intr_info, ex_no, error_code;
5179 unsigned long cr2, dr6;
5180 u32 vect_info;
5181
5182 vect_info = vmx->idt_vectoring_info;
5183 intr_info = vmx_get_intr_info(vcpu);
5184
5185 /*
5186 * Machine checks are handled by handle_exception_irqoff(), or by
5187 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
5188 * vmx_vcpu_enter_exit().
5189 */
5190 if (is_machine_check(intr_info) || is_nmi(intr_info))
5191 return 1;
5192
5193 /*
5194 * Queue the exception here instead of in handle_nm_fault_irqoff().
5195 * This ensures the nested_vmx check is not skipped so vmexit can
5196 * be reflected to L1 (when it intercepts #NM) before reaching this
5197 * point.
5198 */
5199 if (is_nm_fault(intr_info)) {
5200 kvm_queue_exception(vcpu, NM_VECTOR);
5201 return 1;
5202 }
5203
5204 if (is_invalid_opcode(intr_info))
5205 return handle_ud(vcpu);
5206
5207 error_code = 0;
5208 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5209 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5210
5211 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5212 WARN_ON_ONCE(!enable_vmware_backdoor);
5213
5214 /*
5215 * VMware backdoor emulation on #GP interception only handles
5216 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5217 * error code on #GP.
5218 */
5219 if (error_code) {
5220 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5221 return 1;
5222 }
5223 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5224 }
5225
5226 /*
5227 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5228 * MMIO, it is better to report an internal error.
5229 * See the comments in vmx_handle_exit.
5230 */
5231 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5232 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5233 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5234 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5235 vcpu->run->internal.ndata = 4;
5236 vcpu->run->internal.data[0] = vect_info;
5237 vcpu->run->internal.data[1] = intr_info;
5238 vcpu->run->internal.data[2] = error_code;
5239 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5240 return 0;
5241 }
5242
5243 if (is_page_fault(intr_info)) {
5244 cr2 = vmx_get_exit_qual(vcpu);
5245 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5246 /*
5247 * EPT will cause page fault only if we need to
5248 * detect illegal GPAs.
5249 */
5250 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5251 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5252 return 1;
5253 } else
5254 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5255 }
5256
5257 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5258
5259 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5260 return handle_rmode_exception(vcpu, ex_no, error_code);
5261
5262 switch (ex_no) {
5263 case DB_VECTOR:
5264 dr6 = vmx_get_exit_qual(vcpu);
5265 if (!(vcpu->guest_debug &
5266 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5267 /*
5268 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5269 * instruction. ICEBP generates a trap-like #DB, but
5270 * despite its interception control being tied to #DB,
5271 * is an instruction intercept, i.e. the VM-Exit occurs
5272 * on the ICEBP itself. Use the inner "skip" helper to
5273 * avoid single-step #DB and MTF updates, as ICEBP is
5274 * higher priority. Note, skipping ICEBP still clears
5275 * STI and MOVSS blocking.
5276 *
5277 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5278 * if single-step is enabled in RFLAGS and STI or MOVSS
5279 * blocking is active, as the CPU doesn't set the bit
5280 * on VM-Exit due to #DB interception. VM-Entry has a
5281 * consistency check that a single-step #DB is pending
5282 * in this scenario as the previous instruction cannot
5283 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5284 * don't modify RFLAGS), therefore the one instruction
5285 * delay when activating single-step breakpoints must
5286 * have already expired. Note, the CPU sets/clears BS
5287 * as appropriate for all other VM-Exits types.
5288 */
5289 if (is_icebp(intr_info))
5290 WARN_ON(!skip_emulated_instruction(vcpu));
5291 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5292 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5293 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5294 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5295 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5296
5297 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5298 return 1;
5299 }
5300 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5301 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5302 fallthrough;
5303 case BP_VECTOR:
5304 /*
5305 * Update instruction length as we may reinject #BP from
5306 * user space while in guest debugging mode. Reading it for
5307 * #DB as well causes no harm, it is not used in that case.
5308 */
5309 vmx->vcpu.arch.event_exit_inst_len =
5310 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5311 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5312 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5313 kvm_run->debug.arch.exception = ex_no;
5314 break;
5315 case AC_VECTOR:
5316 if (vmx_guest_inject_ac(vcpu)) {
5317 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5318 return 1;
5319 }
5320
5321 /*
5322 * Handle split lock. Depending on detection mode this will
5323 * either warn and disable split lock detection for this
5324 * task or force SIGBUS on it.
5325 */
5326 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5327 return 1;
5328 fallthrough;
5329 default:
5330 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5331 kvm_run->ex.exception = ex_no;
5332 kvm_run->ex.error_code = error_code;
5333 break;
5334 }
5335 return 0;
5336 }
5337
5338 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5339 {
5340 ++vcpu->stat.irq_exits;
5341 return 1;
5342 }
5343
5344 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5345 {
5346 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5347 vcpu->mmio_needed = 0;
5348 return 0;
5349 }
5350
5351 static int handle_io(struct kvm_vcpu *vcpu)
5352 {
5353 unsigned long exit_qualification;
5354 int size, in, string;
5355 unsigned port;
5356
5357 exit_qualification = vmx_get_exit_qual(vcpu);
5358 string = (exit_qualification & 16) != 0;
5359
5360 ++vcpu->stat.io_exits;
5361
5362 if (string)
5363 return kvm_emulate_instruction(vcpu, 0);
5364
5365 port = exit_qualification >> 16;
5366 size = (exit_qualification & 7) + 1;
5367 in = (exit_qualification & 8) != 0;
5368
5369 return kvm_fast_pio(vcpu, size, port, in);
5370 }
5371
5372 static void
5373 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5374 {
5375 /*
5376 * Patch in the VMCALL instruction:
5377 */
5378 hypercall[0] = 0x0f;
5379 hypercall[1] = 0x01;
5380 hypercall[2] = 0xc1;
5381 }
5382
5383 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5384 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5385 {
5386 if (is_guest_mode(vcpu)) {
5387 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5388 unsigned long orig_val = val;
5389
5390 /*
5391 * We get here when L2 changed cr0 in a way that did not change
5392 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5393 * but did change L0 shadowed bits. So we first calculate the
5394 * effective cr0 value that L1 would like to write into the
5395 * hardware. It consists of the L2-owned bits from the new
5396 * value combined with the L1-owned bits from L1's guest_cr0.
5397 */
5398 val = (val & ~vmcs12->cr0_guest_host_mask) |
5399 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5400
5401 if (kvm_set_cr0(vcpu, val))
5402 return 1;
5403 vmcs_writel(CR0_READ_SHADOW, orig_val);
5404 return 0;
5405 } else {
5406 return kvm_set_cr0(vcpu, val);
5407 }
5408 }
5409
5410 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5411 {
5412 if (is_guest_mode(vcpu)) {
5413 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5414 unsigned long orig_val = val;
5415
5416 /* analogously to handle_set_cr0 */
5417 val = (val & ~vmcs12->cr4_guest_host_mask) |
5418 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5419 if (kvm_set_cr4(vcpu, val))
5420 return 1;
5421 vmcs_writel(CR4_READ_SHADOW, orig_val);
5422 return 0;
5423 } else
5424 return kvm_set_cr4(vcpu, val);
5425 }
5426
5427 static int handle_desc(struct kvm_vcpu *vcpu)
5428 {
5429 /*
5430 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5431 * and other code needs to be updated if UMIP can be guest owned.
5432 */
5433 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5434
5435 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5436 return kvm_emulate_instruction(vcpu, 0);
5437 }
5438
5439 static int handle_cr(struct kvm_vcpu *vcpu)
5440 {
5441 unsigned long exit_qualification, val;
5442 int cr;
5443 int reg;
5444 int err;
5445 int ret;
5446
5447 exit_qualification = vmx_get_exit_qual(vcpu);
5448 cr = exit_qualification & 15;
5449 reg = (exit_qualification >> 8) & 15;
5450 switch ((exit_qualification >> 4) & 3) {
5451 case 0: /* mov to cr */
5452 val = kvm_register_read(vcpu, reg);
5453 trace_kvm_cr_write(cr, val);
5454 switch (cr) {
5455 case 0:
5456 err = handle_set_cr0(vcpu, val);
5457 return kvm_complete_insn_gp(vcpu, err);
5458 case 3:
5459 WARN_ON_ONCE(enable_unrestricted_guest);
5460
5461 err = kvm_set_cr3(vcpu, val);
5462 return kvm_complete_insn_gp(vcpu, err);
5463 case 4:
5464 err = handle_set_cr4(vcpu, val);
5465 return kvm_complete_insn_gp(vcpu, err);
5466 case 8: {
5467 u8 cr8_prev = kvm_get_cr8(vcpu);
5468 u8 cr8 = (u8)val;
5469 err = kvm_set_cr8(vcpu, cr8);
5470 ret = kvm_complete_insn_gp(vcpu, err);
5471 if (lapic_in_kernel(vcpu))
5472 return ret;
5473 if (cr8_prev <= cr8)
5474 return ret;
5475 /*
5476 * TODO: we might be squashing a
5477 * KVM_GUESTDBG_SINGLESTEP-triggered
5478 * KVM_EXIT_DEBUG here.
5479 */
5480 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5481 return 0;
5482 }
5483 }
5484 break;
5485 case 2: /* clts */
5486 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5487 return -EIO;
5488 case 1: /*mov from cr*/
5489 switch (cr) {
5490 case 3:
5491 WARN_ON_ONCE(enable_unrestricted_guest);
5492
5493 val = kvm_read_cr3(vcpu);
5494 kvm_register_write(vcpu, reg, val);
5495 trace_kvm_cr_read(cr, val);
5496 return kvm_skip_emulated_instruction(vcpu);
5497 case 8:
5498 val = kvm_get_cr8(vcpu);
5499 kvm_register_write(vcpu, reg, val);
5500 trace_kvm_cr_read(cr, val);
5501 return kvm_skip_emulated_instruction(vcpu);
5502 }
5503 break;
5504 case 3: /* lmsw */
5505 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5506 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5507 kvm_lmsw(vcpu, val);
5508
5509 return kvm_skip_emulated_instruction(vcpu);
5510 default:
5511 break;
5512 }
5513 vcpu->run->exit_reason = 0;
5514 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5515 (int)(exit_qualification >> 4) & 3, cr);
5516 return 0;
5517 }
5518
5519 static int handle_dr(struct kvm_vcpu *vcpu)
5520 {
5521 unsigned long exit_qualification;
5522 int dr, dr7, reg;
5523 int err = 1;
5524
5525 exit_qualification = vmx_get_exit_qual(vcpu);
5526 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5527
5528 /* First, if DR does not exist, trigger UD */
5529 if (!kvm_require_dr(vcpu, dr))
5530 return 1;
5531
5532 if (vmx_get_cpl(vcpu) > 0)
5533 goto out;
5534
5535 dr7 = vmcs_readl(GUEST_DR7);
5536 if (dr7 & DR7_GD) {
5537 /*
5538 * As the vm-exit takes precedence over the debug trap, we
5539 * need to emulate the latter, either for the host or the
5540 * guest debugging itself.
5541 */
5542 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5543 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5544 vcpu->run->debug.arch.dr7 = dr7;
5545 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5546 vcpu->run->debug.arch.exception = DB_VECTOR;
5547 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5548 return 0;
5549 } else {
5550 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5551 return 1;
5552 }
5553 }
5554
5555 if (vcpu->guest_debug == 0) {
5556 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5557
5558 /*
5559 * No more DR vmexits; force a reload of the debug registers
5560 * and reenter on this instruction. The next vmexit will
5561 * retrieve the full state of the debug registers.
5562 */
5563 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5564 return 1;
5565 }
5566
5567 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5568 if (exit_qualification & TYPE_MOV_FROM_DR) {
5569 unsigned long val;
5570
5571 kvm_get_dr(vcpu, dr, &val);
5572 kvm_register_write(vcpu, reg, val);
5573 err = 0;
5574 } else {
5575 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5576 }
5577
5578 out:
5579 return kvm_complete_insn_gp(vcpu, err);
5580 }
5581
5582 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5583 {
5584 get_debugreg(vcpu->arch.db[0], 0);
5585 get_debugreg(vcpu->arch.db[1], 1);
5586 get_debugreg(vcpu->arch.db[2], 2);
5587 get_debugreg(vcpu->arch.db[3], 3);
5588 get_debugreg(vcpu->arch.dr6, 6);
5589 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5590
5591 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5592 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5593
5594 /*
5595 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5596 * a stale dr6 from the guest.
5597 */
5598 set_debugreg(DR6_RESERVED, 6);
5599 }
5600
5601 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5602 {
5603 vmcs_writel(GUEST_DR7, val);
5604 }
5605
5606 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5607 {
5608 kvm_apic_update_ppr(vcpu);
5609 return 1;
5610 }
5611
5612 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5613 {
5614 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5615
5616 kvm_make_request(KVM_REQ_EVENT, vcpu);
5617
5618 ++vcpu->stat.irq_window_exits;
5619 return 1;
5620 }
5621
5622 static int handle_invlpg(struct kvm_vcpu *vcpu)
5623 {
5624 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5625
5626 kvm_mmu_invlpg(vcpu, exit_qualification);
5627 return kvm_skip_emulated_instruction(vcpu);
5628 }
5629
5630 static int handle_apic_access(struct kvm_vcpu *vcpu)
5631 {
5632 if (likely(fasteoi)) {
5633 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5634 int access_type, offset;
5635
5636 access_type = exit_qualification & APIC_ACCESS_TYPE;
5637 offset = exit_qualification & APIC_ACCESS_OFFSET;
5638 /*
5639 * Sane guest uses MOV to write EOI, with written value
5640 * not cared. So make a short-circuit here by avoiding
5641 * heavy instruction emulation.
5642 */
5643 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5644 (offset == APIC_EOI)) {
5645 kvm_lapic_set_eoi(vcpu);
5646 return kvm_skip_emulated_instruction(vcpu);
5647 }
5648 }
5649 return kvm_emulate_instruction(vcpu, 0);
5650 }
5651
5652 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5653 {
5654 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5655 int vector = exit_qualification & 0xff;
5656
5657 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5658 kvm_apic_set_eoi_accelerated(vcpu, vector);
5659 return 1;
5660 }
5661
5662 static int handle_apic_write(struct kvm_vcpu *vcpu)
5663 {
5664 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5665
5666 /*
5667 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5668 * hardware has done any necessary aliasing, offset adjustments, etc...
5669 * for the access. I.e. the correct value has already been written to
5670 * the vAPIC page for the correct 16-byte chunk. KVM needs only to
5671 * retrieve the register value and emulate the access.
5672 */
5673 u32 offset = exit_qualification & 0xff0;
5674
5675 kvm_apic_write_nodecode(vcpu, offset);
5676 return 1;
5677 }
5678
5679 static int handle_task_switch(struct kvm_vcpu *vcpu)
5680 {
5681 struct vcpu_vmx *vmx = to_vmx(vcpu);
5682 unsigned long exit_qualification;
5683 bool has_error_code = false;
5684 u32 error_code = 0;
5685 u16 tss_selector;
5686 int reason, type, idt_v, idt_index;
5687
5688 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5689 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5690 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5691
5692 exit_qualification = vmx_get_exit_qual(vcpu);
5693
5694 reason = (u32)exit_qualification >> 30;
5695 if (reason == TASK_SWITCH_GATE && idt_v) {
5696 switch (type) {
5697 case INTR_TYPE_NMI_INTR:
5698 vcpu->arch.nmi_injected = false;
5699 vmx_set_nmi_mask(vcpu, true);
5700 break;
5701 case INTR_TYPE_EXT_INTR:
5702 case INTR_TYPE_SOFT_INTR:
5703 kvm_clear_interrupt_queue(vcpu);
5704 break;
5705 case INTR_TYPE_HARD_EXCEPTION:
5706 if (vmx->idt_vectoring_info &
5707 VECTORING_INFO_DELIVER_CODE_MASK) {
5708 has_error_code = true;
5709 error_code =
5710 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5711 }
5712 fallthrough;
5713 case INTR_TYPE_SOFT_EXCEPTION:
5714 kvm_clear_exception_queue(vcpu);
5715 break;
5716 default:
5717 break;
5718 }
5719 }
5720 tss_selector = exit_qualification;
5721
5722 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5723 type != INTR_TYPE_EXT_INTR &&
5724 type != INTR_TYPE_NMI_INTR))
5725 WARN_ON(!skip_emulated_instruction(vcpu));
5726
5727 /*
5728 * TODO: What about debug traps on tss switch?
5729 * Are we supposed to inject them and update dr6?
5730 */
5731 return kvm_task_switch(vcpu, tss_selector,
5732 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5733 reason, has_error_code, error_code);
5734 }
5735
5736 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5737 {
5738 unsigned long exit_qualification;
5739 gpa_t gpa;
5740 u64 error_code;
5741
5742 exit_qualification = vmx_get_exit_qual(vcpu);
5743
5744 /*
5745 * EPT violation happened while executing iret from NMI,
5746 * "blocked by NMI" bit has to be set before next VM entry.
5747 * There are errata that may cause this bit to not be set:
5748 * AAK134, BY25.
5749 */
5750 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5751 enable_vnmi &&
5752 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5753 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5754
5755 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5756 trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5757
5758 /* Is it a read fault? */
5759 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5760 ? PFERR_USER_MASK : 0;
5761 /* Is it a write fault? */
5762 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5763 ? PFERR_WRITE_MASK : 0;
5764 /* Is it a fetch fault? */
5765 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5766 ? PFERR_FETCH_MASK : 0;
5767 /* ept page table entry is present? */
5768 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5769 ? PFERR_PRESENT_MASK : 0;
5770
5771 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5772 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5773
5774 vcpu->arch.exit_qualification = exit_qualification;
5775
5776 /*
5777 * Check that the GPA doesn't exceed physical memory limits, as that is
5778 * a guest page fault. We have to emulate the instruction here, because
5779 * if the illegal address is that of a paging structure, then
5780 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5781 * would also use advanced VM-exit information for EPT violations to
5782 * reconstruct the page fault error code.
5783 */
5784 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5785 return kvm_emulate_instruction(vcpu, 0);
5786
5787 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5788 }
5789
5790 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5791 {
5792 gpa_t gpa;
5793
5794 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5795 return 1;
5796
5797 /*
5798 * A nested guest cannot optimize MMIO vmexits, because we have an
5799 * nGPA here instead of the required GPA.
5800 */
5801 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5802 if (!is_guest_mode(vcpu) &&
5803 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5804 trace_kvm_fast_mmio(gpa);
5805 return kvm_skip_emulated_instruction(vcpu);
5806 }
5807
5808 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5809 }
5810
5811 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5812 {
5813 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5814 return -EIO;
5815
5816 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5817 ++vcpu->stat.nmi_window_exits;
5818 kvm_make_request(KVM_REQ_EVENT, vcpu);
5819
5820 return 1;
5821 }
5822
5823 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5824 {
5825 struct vcpu_vmx *vmx = to_vmx(vcpu);
5826
5827 return vmx->emulation_required && !vmx->rmode.vm86_active &&
5828 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5829 }
5830
5831 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5832 {
5833 struct vcpu_vmx *vmx = to_vmx(vcpu);
5834 bool intr_window_requested;
5835 unsigned count = 130;
5836
5837 intr_window_requested = exec_controls_get(vmx) &
5838 CPU_BASED_INTR_WINDOW_EXITING;
5839
5840 while (vmx->emulation_required && count-- != 0) {
5841 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5842 return handle_interrupt_window(&vmx->vcpu);
5843
5844 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5845 return 1;
5846
5847 if (!kvm_emulate_instruction(vcpu, 0))
5848 return 0;
5849
5850 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5851 kvm_prepare_emulation_failure_exit(vcpu);
5852 return 0;
5853 }
5854
5855 if (vcpu->arch.halt_request) {
5856 vcpu->arch.halt_request = 0;
5857 return kvm_emulate_halt_noskip(vcpu);
5858 }
5859
5860 /*
5861 * Note, return 1 and not 0, vcpu_run() will invoke
5862 * xfer_to_guest_mode() which will create a proper return
5863 * code.
5864 */
5865 if (__xfer_to_guest_mode_work_pending())
5866 return 1;
5867 }
5868
5869 return 1;
5870 }
5871
5872 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5873 {
5874 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5875 kvm_prepare_emulation_failure_exit(vcpu);
5876 return 0;
5877 }
5878
5879 return 1;
5880 }
5881
5882 static void grow_ple_window(struct kvm_vcpu *vcpu)
5883 {
5884 struct vcpu_vmx *vmx = to_vmx(vcpu);
5885 unsigned int old = vmx->ple_window;
5886
5887 vmx->ple_window = __grow_ple_window(old, ple_window,
5888 ple_window_grow,
5889 ple_window_max);
5890
5891 if (vmx->ple_window != old) {
5892 vmx->ple_window_dirty = true;
5893 trace_kvm_ple_window_update(vcpu->vcpu_id,
5894 vmx->ple_window, old);
5895 }
5896 }
5897
5898 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5899 {
5900 struct vcpu_vmx *vmx = to_vmx(vcpu);
5901 unsigned int old = vmx->ple_window;
5902
5903 vmx->ple_window = __shrink_ple_window(old, ple_window,
5904 ple_window_shrink,
5905 ple_window);
5906
5907 if (vmx->ple_window != old) {
5908 vmx->ple_window_dirty = true;
5909 trace_kvm_ple_window_update(vcpu->vcpu_id,
5910 vmx->ple_window, old);
5911 }
5912 }
5913
5914 /*
5915 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5916 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5917 */
5918 static int handle_pause(struct kvm_vcpu *vcpu)
5919 {
5920 if (!kvm_pause_in_guest(vcpu->kvm))
5921 grow_ple_window(vcpu);
5922
5923 /*
5924 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5925 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5926 * never set PAUSE_EXITING and just set PLE if supported,
5927 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5928 */
5929 kvm_vcpu_on_spin(vcpu, true);
5930 return kvm_skip_emulated_instruction(vcpu);
5931 }
5932
5933 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5934 {
5935 return 1;
5936 }
5937
5938 static int handle_invpcid(struct kvm_vcpu *vcpu)
5939 {
5940 u32 vmx_instruction_info;
5941 unsigned long type;
5942 gva_t gva;
5943 struct {
5944 u64 pcid;
5945 u64 gla;
5946 } operand;
5947 int gpr_index;
5948
5949 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5950 kvm_queue_exception(vcpu, UD_VECTOR);
5951 return 1;
5952 }
5953
5954 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5955 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5956 type = kvm_register_read(vcpu, gpr_index);
5957
5958 /* According to the Intel instruction reference, the memory operand
5959 * is read even if it isn't needed (e.g., for type==all)
5960 */
5961 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5962 vmx_instruction_info, false,
5963 sizeof(operand), &gva))
5964 return 1;
5965
5966 return kvm_handle_invpcid(vcpu, type, gva);
5967 }
5968
5969 static int handle_pml_full(struct kvm_vcpu *vcpu)
5970 {
5971 unsigned long exit_qualification;
5972
5973 trace_kvm_pml_full(vcpu->vcpu_id);
5974
5975 exit_qualification = vmx_get_exit_qual(vcpu);
5976
5977 /*
5978 * PML buffer FULL happened while executing iret from NMI,
5979 * "blocked by NMI" bit has to be set before next VM entry.
5980 */
5981 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5982 enable_vnmi &&
5983 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5984 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5985 GUEST_INTR_STATE_NMI);
5986
5987 /*
5988 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5989 * here.., and there's no userspace involvement needed for PML.
5990 */
5991 return 1;
5992 }
5993
5994 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5995 {
5996 struct vcpu_vmx *vmx = to_vmx(vcpu);
5997
5998 if (!vmx->req_immediate_exit &&
5999 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
6000 kvm_lapic_expired_hv_timer(vcpu);
6001 return EXIT_FASTPATH_REENTER_GUEST;
6002 }
6003
6004 return EXIT_FASTPATH_NONE;
6005 }
6006
6007 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6008 {
6009 handle_fastpath_preemption_timer(vcpu);
6010 return 1;
6011 }
6012
6013 /*
6014 * When nested=0, all VMX instruction VM Exits filter here. The handlers
6015 * are overwritten by nested_vmx_setup() when nested=1.
6016 */
6017 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6018 {
6019 kvm_queue_exception(vcpu, UD_VECTOR);
6020 return 1;
6021 }
6022
6023 #ifndef CONFIG_X86_SGX_KVM
6024 static int handle_encls(struct kvm_vcpu *vcpu)
6025 {
6026 /*
6027 * SGX virtualization is disabled. There is no software enable bit for
6028 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6029 * the guest from executing ENCLS (when SGX is supported by hardware).
6030 */
6031 kvm_queue_exception(vcpu, UD_VECTOR);
6032 return 1;
6033 }
6034 #endif /* CONFIG_X86_SGX_KVM */
6035
6036 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6037 {
6038 /*
6039 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6040 * VM-Exits. Unconditionally set the flag here and leave the handling to
6041 * vmx_handle_exit().
6042 */
6043 to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6044 return 1;
6045 }
6046
6047 static int handle_notify(struct kvm_vcpu *vcpu)
6048 {
6049 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6050 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6051
6052 ++vcpu->stat.notify_window_exits;
6053
6054 /*
6055 * Notify VM exit happened while executing iret from NMI,
6056 * "blocked by NMI" bit has to be set before next VM entry.
6057 */
6058 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6059 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6060 GUEST_INTR_STATE_NMI);
6061
6062 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6063 context_invalid) {
6064 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6065 vcpu->run->notify.flags = context_invalid ?
6066 KVM_NOTIFY_CONTEXT_INVALID : 0;
6067 return 0;
6068 }
6069
6070 return 1;
6071 }
6072
6073 /*
6074 * The exit handlers return 1 if the exit was handled fully and guest execution
6075 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6076 * to be done to userspace and return 0.
6077 */
6078 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6079 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
6080 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6081 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6082 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6083 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6084 [EXIT_REASON_CR_ACCESS] = handle_cr,
6085 [EXIT_REASON_DR_ACCESS] = handle_dr,
6086 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
6087 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
6088 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
6089 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
6090 [EXIT_REASON_HLT] = kvm_emulate_halt,
6091 [EXIT_REASON_INVD] = kvm_emulate_invd,
6092 [EXIT_REASON_INVLPG] = handle_invlpg,
6093 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
6094 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
6095 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
6096 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
6097 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
6098 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
6099 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
6100 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
6101 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
6102 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
6103 [EXIT_REASON_VMON] = handle_vmx_instruction,
6104 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6105 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6106 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6107 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6108 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
6109 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
6110 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6111 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6112 [EXIT_REASON_GDTR_IDTR] = handle_desc,
6113 [EXIT_REASON_LDTR_TR] = handle_desc,
6114 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6115 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6116 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6117 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
6118 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
6119 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
6120 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
6121 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
6122 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6123 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6124 [EXIT_REASON_PML_FULL] = handle_pml_full,
6125 [EXIT_REASON_INVPCID] = handle_invpcid,
6126 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6127 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6128 [EXIT_REASON_ENCLS] = handle_encls,
6129 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6130 [EXIT_REASON_NOTIFY] = handle_notify,
6131 };
6132
6133 static const int kvm_vmx_max_exit_handlers =
6134 ARRAY_SIZE(kvm_vmx_exit_handlers);
6135
6136 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6137 u64 *info1, u64 *info2,
6138 u32 *intr_info, u32 *error_code)
6139 {
6140 struct vcpu_vmx *vmx = to_vmx(vcpu);
6141
6142 *reason = vmx->exit_reason.full;
6143 *info1 = vmx_get_exit_qual(vcpu);
6144 if (!(vmx->exit_reason.failed_vmentry)) {
6145 *info2 = vmx->idt_vectoring_info;
6146 *intr_info = vmx_get_intr_info(vcpu);
6147 if (is_exception_with_error_code(*intr_info))
6148 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6149 else
6150 *error_code = 0;
6151 } else {
6152 *info2 = 0;
6153 *intr_info = 0;
6154 *error_code = 0;
6155 }
6156 }
6157
6158 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6159 {
6160 if (vmx->pml_pg) {
6161 __free_page(vmx->pml_pg);
6162 vmx->pml_pg = NULL;
6163 }
6164 }
6165
6166 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6167 {
6168 struct vcpu_vmx *vmx = to_vmx(vcpu);
6169 u64 *pml_buf;
6170 u16 pml_idx;
6171
6172 pml_idx = vmcs_read16(GUEST_PML_INDEX);
6173
6174 /* Do nothing if PML buffer is empty */
6175 if (pml_idx == (PML_ENTITY_NUM - 1))
6176 return;
6177
6178 /* PML index always points to next available PML buffer entity */
6179 if (pml_idx >= PML_ENTITY_NUM)
6180 pml_idx = 0;
6181 else
6182 pml_idx++;
6183
6184 pml_buf = page_address(vmx->pml_pg);
6185 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6186 u64 gpa;
6187
6188 gpa = pml_buf[pml_idx];
6189 WARN_ON(gpa & (PAGE_SIZE - 1));
6190 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6191 }
6192
6193 /* reset PML index */
6194 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6195 }
6196
6197 static void vmx_dump_sel(char *name, uint32_t sel)
6198 {
6199 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6200 name, vmcs_read16(sel),
6201 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6202 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6203 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6204 }
6205
6206 static void vmx_dump_dtsel(char *name, uint32_t limit)
6207 {
6208 pr_err("%s limit=0x%08x, base=0x%016lx\n",
6209 name, vmcs_read32(limit),
6210 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6211 }
6212
6213 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6214 {
6215 unsigned int i;
6216 struct vmx_msr_entry *e;
6217
6218 pr_err("MSR %s:\n", name);
6219 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6220 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6221 }
6222
6223 void dump_vmcs(struct kvm_vcpu *vcpu)
6224 {
6225 struct vcpu_vmx *vmx = to_vmx(vcpu);
6226 u32 vmentry_ctl, vmexit_ctl;
6227 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6228 u64 tertiary_exec_control;
6229 unsigned long cr4;
6230 int efer_slot;
6231
6232 if (!dump_invalid_vmcs) {
6233 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6234 return;
6235 }
6236
6237 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6238 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6239 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6240 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6241 cr4 = vmcs_readl(GUEST_CR4);
6242
6243 if (cpu_has_secondary_exec_ctrls())
6244 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6245 else
6246 secondary_exec_control = 0;
6247
6248 if (cpu_has_tertiary_exec_ctrls())
6249 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6250 else
6251 tertiary_exec_control = 0;
6252
6253 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6254 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6255 pr_err("*** Guest State ***\n");
6256 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6257 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6258 vmcs_readl(CR0_GUEST_HOST_MASK));
6259 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6260 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6261 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6262 if (cpu_has_vmx_ept()) {
6263 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6264 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6265 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6266 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6267 }
6268 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6269 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6270 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6271 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6272 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6273 vmcs_readl(GUEST_SYSENTER_ESP),
6274 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6275 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6276 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6277 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6278 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6279 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6280 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6281 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6282 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6283 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6284 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6285 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6286 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6287 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6288 else if (efer_slot >= 0)
6289 pr_err("EFER= 0x%016llx (autoload)\n",
6290 vmx->msr_autoload.guest.val[efer_slot].value);
6291 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6292 pr_err("EFER= 0x%016llx (effective)\n",
6293 vcpu->arch.efer | (EFER_LMA | EFER_LME));
6294 else
6295 pr_err("EFER= 0x%016llx (effective)\n",
6296 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6297 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6298 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6299 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6300 vmcs_read64(GUEST_IA32_DEBUGCTL),
6301 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6302 if (cpu_has_load_perf_global_ctrl() &&
6303 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6304 pr_err("PerfGlobCtl = 0x%016llx\n",
6305 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6306 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6307 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6308 pr_err("Interruptibility = %08x ActivityState = %08x\n",
6309 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6310 vmcs_read32(GUEST_ACTIVITY_STATE));
6311 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6312 pr_err("InterruptStatus = %04x\n",
6313 vmcs_read16(GUEST_INTR_STATUS));
6314 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6315 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6316 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6317 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6318
6319 pr_err("*** Host State ***\n");
6320 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6321 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6322 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6323 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6324 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6325 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6326 vmcs_read16(HOST_TR_SELECTOR));
6327 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6328 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6329 vmcs_readl(HOST_TR_BASE));
6330 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6331 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6332 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6333 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6334 vmcs_readl(HOST_CR4));
6335 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6336 vmcs_readl(HOST_IA32_SYSENTER_ESP),
6337 vmcs_read32(HOST_IA32_SYSENTER_CS),
6338 vmcs_readl(HOST_IA32_SYSENTER_EIP));
6339 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6340 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6341 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6342 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6343 if (cpu_has_load_perf_global_ctrl() &&
6344 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6345 pr_err("PerfGlobCtl = 0x%016llx\n",
6346 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6347 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6348 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6349
6350 pr_err("*** Control State ***\n");
6351 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6352 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6353 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6354 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6355 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6356 vmcs_read32(EXCEPTION_BITMAP),
6357 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6358 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6359 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6360 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6361 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6362 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6363 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6364 vmcs_read32(VM_EXIT_INTR_INFO),
6365 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6366 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6367 pr_err(" reason=%08x qualification=%016lx\n",
6368 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6369 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6370 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6371 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6372 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6373 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6374 pr_err("TSC Multiplier = 0x%016llx\n",
6375 vmcs_read64(TSC_MULTIPLIER));
6376 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6377 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6378 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6379 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6380 }
6381 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6382 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6383 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6384 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6385 }
6386 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6387 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6388 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6389 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6390 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6391 pr_err("PLE Gap=%08x Window=%08x\n",
6392 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6393 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6394 pr_err("Virtual processor ID = 0x%04x\n",
6395 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6396 }
6397
6398 /*
6399 * The guest has exited. See if we can fix it or if we need userspace
6400 * assistance.
6401 */
6402 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6403 {
6404 struct vcpu_vmx *vmx = to_vmx(vcpu);
6405 union vmx_exit_reason exit_reason = vmx->exit_reason;
6406 u32 vectoring_info = vmx->idt_vectoring_info;
6407 u16 exit_handler_index;
6408
6409 /*
6410 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6411 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6412 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6413 * mode as if vcpus is in root mode, the PML buffer must has been
6414 * flushed already. Note, PML is never enabled in hardware while
6415 * running L2.
6416 */
6417 if (enable_pml && !is_guest_mode(vcpu))
6418 vmx_flush_pml_buffer(vcpu);
6419
6420 /*
6421 * KVM should never reach this point with a pending nested VM-Enter.
6422 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6423 * invalid guest state should never happen as that means KVM knowingly
6424 * allowed a nested VM-Enter with an invalid vmcs12. More below.
6425 */
6426 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6427 return -EIO;
6428
6429 if (is_guest_mode(vcpu)) {
6430 /*
6431 * PML is never enabled when running L2, bail immediately if a
6432 * PML full exit occurs as something is horribly wrong.
6433 */
6434 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6435 goto unexpected_vmexit;
6436
6437 /*
6438 * The host physical addresses of some pages of guest memory
6439 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6440 * Page). The CPU may write to these pages via their host
6441 * physical address while L2 is running, bypassing any
6442 * address-translation-based dirty tracking (e.g. EPT write
6443 * protection).
6444 *
6445 * Mark them dirty on every exit from L2 to prevent them from
6446 * getting out of sync with dirty tracking.
6447 */
6448 nested_mark_vmcs12_pages_dirty(vcpu);
6449
6450 /*
6451 * Synthesize a triple fault if L2 state is invalid. In normal
6452 * operation, nested VM-Enter rejects any attempt to enter L2
6453 * with invalid state. However, those checks are skipped if
6454 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6455 * L2 state is invalid, it means either L1 modified SMRAM state
6456 * or userspace provided bad state. Synthesize TRIPLE_FAULT as
6457 * doing so is architecturally allowed in the RSM case, and is
6458 * the least awful solution for the userspace case without
6459 * risking false positives.
6460 */
6461 if (vmx->emulation_required) {
6462 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6463 return 1;
6464 }
6465
6466 if (nested_vmx_reflect_vmexit(vcpu))
6467 return 1;
6468 }
6469
6470 /* If guest state is invalid, start emulating. L2 is handled above. */
6471 if (vmx->emulation_required)
6472 return handle_invalid_guest_state(vcpu);
6473
6474 if (exit_reason.failed_vmentry) {
6475 dump_vmcs(vcpu);
6476 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6477 vcpu->run->fail_entry.hardware_entry_failure_reason
6478 = exit_reason.full;
6479 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6480 return 0;
6481 }
6482
6483 if (unlikely(vmx->fail)) {
6484 dump_vmcs(vcpu);
6485 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6486 vcpu->run->fail_entry.hardware_entry_failure_reason
6487 = vmcs_read32(VM_INSTRUCTION_ERROR);
6488 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6489 return 0;
6490 }
6491
6492 /*
6493 * Note:
6494 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6495 * delivery event since it indicates guest is accessing MMIO.
6496 * The vm-exit can be triggered again after return to guest that
6497 * will cause infinite loop.
6498 */
6499 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6500 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6501 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6502 exit_reason.basic != EXIT_REASON_PML_FULL &&
6503 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6504 exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6505 exit_reason.basic != EXIT_REASON_NOTIFY)) {
6506 int ndata = 3;
6507
6508 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6509 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6510 vcpu->run->internal.data[0] = vectoring_info;
6511 vcpu->run->internal.data[1] = exit_reason.full;
6512 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6513 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6514 vcpu->run->internal.data[ndata++] =
6515 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6516 }
6517 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6518 vcpu->run->internal.ndata = ndata;
6519 return 0;
6520 }
6521
6522 if (unlikely(!enable_vnmi &&
6523 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6524 if (!vmx_interrupt_blocked(vcpu)) {
6525 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6526 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6527 vcpu->arch.nmi_pending) {
6528 /*
6529 * This CPU don't support us in finding the end of an
6530 * NMI-blocked window if the guest runs with IRQs
6531 * disabled. So we pull the trigger after 1 s of
6532 * futile waiting, but inform the user about this.
6533 */
6534 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6535 "state on VCPU %d after 1 s timeout\n",
6536 __func__, vcpu->vcpu_id);
6537 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6538 }
6539 }
6540
6541 if (exit_fastpath != EXIT_FASTPATH_NONE)
6542 return 1;
6543
6544 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6545 goto unexpected_vmexit;
6546 #ifdef CONFIG_MITIGATION_RETPOLINE
6547 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6548 return kvm_emulate_wrmsr(vcpu);
6549 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6550 return handle_preemption_timer(vcpu);
6551 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6552 return handle_interrupt_window(vcpu);
6553 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6554 return handle_external_interrupt(vcpu);
6555 else if (exit_reason.basic == EXIT_REASON_HLT)
6556 return kvm_emulate_halt(vcpu);
6557 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6558 return handle_ept_misconfig(vcpu);
6559 #endif
6560
6561 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6562 kvm_vmx_max_exit_handlers);
6563 if (!kvm_vmx_exit_handlers[exit_handler_index])
6564 goto unexpected_vmexit;
6565
6566 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6567
6568 unexpected_vmexit:
6569 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6570 exit_reason.full);
6571 dump_vmcs(vcpu);
6572 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6573 vcpu->run->internal.suberror =
6574 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6575 vcpu->run->internal.ndata = 2;
6576 vcpu->run->internal.data[0] = exit_reason.full;
6577 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6578 return 0;
6579 }
6580
6581 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6582 {
6583 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6584
6585 /*
6586 * Exit to user space when bus lock detected to inform that there is
6587 * a bus lock in guest.
6588 */
6589 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6590 if (ret > 0)
6591 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6592
6593 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6594 return 0;
6595 }
6596 return ret;
6597 }
6598
6599 /*
6600 * Software based L1D cache flush which is used when microcode providing
6601 * the cache control MSR is not loaded.
6602 *
6603 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6604 * flush it is required to read in 64 KiB because the replacement algorithm
6605 * is not exactly LRU. This could be sized at runtime via topology
6606 * information but as all relevant affected CPUs have 32KiB L1D cache size
6607 * there is no point in doing so.
6608 */
6609 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6610 {
6611 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6612
6613 /*
6614 * This code is only executed when the flush mode is 'cond' or
6615 * 'always'
6616 */
6617 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6618 bool flush_l1d;
6619
6620 /*
6621 * Clear the per-vcpu flush bit, it gets set again
6622 * either from vcpu_run() or from one of the unsafe
6623 * VMEXIT handlers.
6624 */
6625 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6626 vcpu->arch.l1tf_flush_l1d = false;
6627
6628 /*
6629 * Clear the per-cpu flush bit, it gets set again from
6630 * the interrupt handlers.
6631 */
6632 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6633 kvm_clear_cpu_l1tf_flush_l1d();
6634
6635 if (!flush_l1d)
6636 return;
6637 }
6638
6639 vcpu->stat.l1d_flush++;
6640
6641 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6642 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6643 return;
6644 }
6645
6646 asm volatile(
6647 /* First ensure the pages are in the TLB */
6648 "xorl %%eax, %%eax\n"
6649 ".Lpopulate_tlb:\n\t"
6650 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6651 "addl $4096, %%eax\n\t"
6652 "cmpl %%eax, %[size]\n\t"
6653 "jne .Lpopulate_tlb\n\t"
6654 "xorl %%eax, %%eax\n\t"
6655 "cpuid\n\t"
6656 /* Now fill the cache */
6657 "xorl %%eax, %%eax\n"
6658 ".Lfill_cache:\n"
6659 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6660 "addl $64, %%eax\n\t"
6661 "cmpl %%eax, %[size]\n\t"
6662 "jne .Lfill_cache\n\t"
6663 "lfence\n"
6664 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6665 [size] "r" (size)
6666 : "eax", "ebx", "ecx", "edx");
6667 }
6668
6669 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6670 {
6671 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6672 int tpr_threshold;
6673
6674 if (is_guest_mode(vcpu) &&
6675 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6676 return;
6677
6678 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6679 if (is_guest_mode(vcpu))
6680 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6681 else
6682 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6683 }
6684
6685 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6686 {
6687 struct vcpu_vmx *vmx = to_vmx(vcpu);
6688 u32 sec_exec_control;
6689
6690 if (!lapic_in_kernel(vcpu))
6691 return;
6692
6693 if (!flexpriority_enabled &&
6694 !cpu_has_vmx_virtualize_x2apic_mode())
6695 return;
6696
6697 /* Postpone execution until vmcs01 is the current VMCS. */
6698 if (is_guest_mode(vcpu)) {
6699 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6700 return;
6701 }
6702
6703 sec_exec_control = secondary_exec_controls_get(vmx);
6704 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6705 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6706
6707 switch (kvm_get_apic_mode(vcpu)) {
6708 case LAPIC_MODE_INVALID:
6709 WARN_ONCE(true, "Invalid local APIC state");
6710 break;
6711 case LAPIC_MODE_DISABLED:
6712 break;
6713 case LAPIC_MODE_XAPIC:
6714 if (flexpriority_enabled) {
6715 sec_exec_control |=
6716 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6717 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6718
6719 /*
6720 * Flush the TLB, reloading the APIC access page will
6721 * only do so if its physical address has changed, but
6722 * the guest may have inserted a non-APIC mapping into
6723 * the TLB while the APIC access page was disabled.
6724 */
6725 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6726 }
6727 break;
6728 case LAPIC_MODE_X2APIC:
6729 if (cpu_has_vmx_virtualize_x2apic_mode())
6730 sec_exec_control |=
6731 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6732 break;
6733 }
6734 secondary_exec_controls_set(vmx, sec_exec_control);
6735
6736 vmx_update_msr_bitmap_x2apic(vcpu);
6737 }
6738
6739 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6740 {
6741 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6742 struct kvm *kvm = vcpu->kvm;
6743 struct kvm_memslots *slots = kvm_memslots(kvm);
6744 struct kvm_memory_slot *slot;
6745 unsigned long mmu_seq;
6746 kvm_pfn_t pfn;
6747
6748 /* Defer reload until vmcs01 is the current VMCS. */
6749 if (is_guest_mode(vcpu)) {
6750 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6751 return;
6752 }
6753
6754 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6755 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6756 return;
6757
6758 /*
6759 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6760 * KVM doesn't unintentionally grab a userspace memslot. It _should_
6761 * be impossible for userspace to create a memslot for the APIC when
6762 * APICv is enabled, but paranoia won't hurt in this case.
6763 */
6764 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6765 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6766 return;
6767
6768 /*
6769 * Ensure that the mmu_notifier sequence count is read before KVM
6770 * retrieves the pfn from the primary MMU. Note, the memslot is
6771 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
6772 * in kvm_mmu_invalidate_end().
6773 */
6774 mmu_seq = kvm->mmu_invalidate_seq;
6775 smp_rmb();
6776
6777 /*
6778 * No need to retry if the memslot does not exist or is invalid. KVM
6779 * controls the APIC-access page memslot, and only deletes the memslot
6780 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6781 */
6782 pfn = gfn_to_pfn_memslot(slot, gfn);
6783 if (is_error_noslot_pfn(pfn))
6784 return;
6785
6786 read_lock(&vcpu->kvm->mmu_lock);
6787 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
6788 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6789 read_unlock(&vcpu->kvm->mmu_lock);
6790 goto out;
6791 }
6792
6793 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6794 read_unlock(&vcpu->kvm->mmu_lock);
6795
6796 /*
6797 * No need for a manual TLB flush at this point, KVM has already done a
6798 * flush if there were SPTEs pointing at the previous page.
6799 */
6800 out:
6801 /*
6802 * Do not pin apic access page in memory, the MMU notifier
6803 * will call us again if it is migrated or swapped out.
6804 */
6805 kvm_release_pfn_clean(pfn);
6806 }
6807
6808 static void vmx_hwapic_isr_update(int max_isr)
6809 {
6810 u16 status;
6811 u8 old;
6812
6813 if (max_isr == -1)
6814 max_isr = 0;
6815
6816 status = vmcs_read16(GUEST_INTR_STATUS);
6817 old = status >> 8;
6818 if (max_isr != old) {
6819 status &= 0xff;
6820 status |= max_isr << 8;
6821 vmcs_write16(GUEST_INTR_STATUS, status);
6822 }
6823 }
6824
6825 static void vmx_set_rvi(int vector)
6826 {
6827 u16 status;
6828 u8 old;
6829
6830 if (vector == -1)
6831 vector = 0;
6832
6833 status = vmcs_read16(GUEST_INTR_STATUS);
6834 old = (u8)status & 0xff;
6835 if ((u8)vector != old) {
6836 status &= ~0xff;
6837 status |= (u8)vector;
6838 vmcs_write16(GUEST_INTR_STATUS, status);
6839 }
6840 }
6841
6842 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6843 {
6844 /*
6845 * When running L2, updating RVI is only relevant when
6846 * vmcs12 virtual-interrupt-delivery enabled.
6847 * However, it can be enabled only when L1 also
6848 * intercepts external-interrupts and in that case
6849 * we should not update vmcs02 RVI but instead intercept
6850 * interrupt. Therefore, do nothing when running L2.
6851 */
6852 if (!is_guest_mode(vcpu))
6853 vmx_set_rvi(max_irr);
6854 }
6855
6856 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6857 {
6858 struct vcpu_vmx *vmx = to_vmx(vcpu);
6859 int max_irr;
6860 bool got_posted_interrupt;
6861
6862 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6863 return -EIO;
6864
6865 if (pi_test_on(&vmx->pi_desc)) {
6866 pi_clear_on(&vmx->pi_desc);
6867 /*
6868 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6869 * But on x86 this is just a compiler barrier anyway.
6870 */
6871 smp_mb__after_atomic();
6872 got_posted_interrupt =
6873 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6874 } else {
6875 max_irr = kvm_lapic_find_highest_irr(vcpu);
6876 got_posted_interrupt = false;
6877 }
6878
6879 /*
6880 * Newly recognized interrupts are injected via either virtual interrupt
6881 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6882 * disabled in two cases:
6883 *
6884 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6885 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6886 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6887 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6888 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6889 *
6890 * 2) If APICv is disabled for this vCPU, assigned devices may still
6891 * attempt to post interrupts. The posted interrupt vector will cause
6892 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6893 */
6894 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6895 vmx_set_rvi(max_irr);
6896 else if (got_posted_interrupt)
6897 kvm_make_request(KVM_REQ_EVENT, vcpu);
6898
6899 return max_irr;
6900 }
6901
6902 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6903 {
6904 if (!kvm_vcpu_apicv_active(vcpu))
6905 return;
6906
6907 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6908 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6909 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6910 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6911 }
6912
6913 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6914 {
6915 struct vcpu_vmx *vmx = to_vmx(vcpu);
6916
6917 pi_clear_on(&vmx->pi_desc);
6918 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6919 }
6920
6921 void vmx_do_interrupt_irqoff(unsigned long entry);
6922 void vmx_do_nmi_irqoff(void);
6923
6924 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6925 {
6926 /*
6927 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6928 * MSR value is not clobbered by the host activity before the guest
6929 * has chance to consume it.
6930 *
6931 * Do not blindly read xfd_err here, since this exception might
6932 * be caused by L1 interception on a platform which doesn't
6933 * support xfd at all.
6934 *
6935 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6936 * only when xfd contains a non-zero value.
6937 *
6938 * Queuing exception is done in vmx_handle_exit. See comment there.
6939 */
6940 if (vcpu->arch.guest_fpu.fpstate->xfd)
6941 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6942 }
6943
6944 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6945 {
6946 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6947
6948 /* if exit due to PF check for async PF */
6949 if (is_page_fault(intr_info))
6950 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6951 /* if exit due to NM, handle before interrupts are enabled */
6952 else if (is_nm_fault(intr_info))
6953 handle_nm_fault_irqoff(&vmx->vcpu);
6954 /* Handle machine checks before interrupts are enabled */
6955 else if (is_machine_check(intr_info))
6956 kvm_machine_check();
6957 }
6958
6959 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6960 {
6961 u32 intr_info = vmx_get_intr_info(vcpu);
6962 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6963 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6964
6965 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6966 "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6967 return;
6968
6969 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6970 vmx_do_interrupt_irqoff(gate_offset(desc));
6971 kvm_after_interrupt(vcpu);
6972
6973 vcpu->arch.at_instruction_boundary = true;
6974 }
6975
6976 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6977 {
6978 struct vcpu_vmx *vmx = to_vmx(vcpu);
6979
6980 if (vmx->emulation_required)
6981 return;
6982
6983 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6984 handle_external_interrupt_irqoff(vcpu);
6985 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6986 handle_exception_irqoff(vmx);
6987 }
6988
6989 /*
6990 * The kvm parameter can be NULL (module initialization, or invocation before
6991 * VM creation). Be sure to check the kvm parameter before using it.
6992 */
6993 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6994 {
6995 switch (index) {
6996 case MSR_IA32_SMBASE:
6997 if (!IS_ENABLED(CONFIG_KVM_SMM))
6998 return false;
6999 /*
7000 * We cannot do SMM unless we can run the guest in big
7001 * real mode.
7002 */
7003 return enable_unrestricted_guest || emulate_invalid_guest_state;
7004 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7005 return nested;
7006 case MSR_AMD64_VIRT_SPEC_CTRL:
7007 case MSR_AMD64_TSC_RATIO:
7008 /* This is AMD only. */
7009 return false;
7010 default:
7011 return true;
7012 }
7013 }
7014
7015 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7016 {
7017 u32 exit_intr_info;
7018 bool unblock_nmi;
7019 u8 vector;
7020 bool idtv_info_valid;
7021
7022 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7023
7024 if (enable_vnmi) {
7025 if (vmx->loaded_vmcs->nmi_known_unmasked)
7026 return;
7027
7028 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7029 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7030 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7031 /*
7032 * SDM 3: 27.7.1.2 (September 2008)
7033 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7034 * a guest IRET fault.
7035 * SDM 3: 23.2.2 (September 2008)
7036 * Bit 12 is undefined in any of the following cases:
7037 * If the VM exit sets the valid bit in the IDT-vectoring
7038 * information field.
7039 * If the VM exit is due to a double fault.
7040 */
7041 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7042 vector != DF_VECTOR && !idtv_info_valid)
7043 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7044 GUEST_INTR_STATE_NMI);
7045 else
7046 vmx->loaded_vmcs->nmi_known_unmasked =
7047 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7048 & GUEST_INTR_STATE_NMI);
7049 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7050 vmx->loaded_vmcs->vnmi_blocked_time +=
7051 ktime_to_ns(ktime_sub(ktime_get(),
7052 vmx->loaded_vmcs->entry_time));
7053 }
7054
7055 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7056 u32 idt_vectoring_info,
7057 int instr_len_field,
7058 int error_code_field)
7059 {
7060 u8 vector;
7061 int type;
7062 bool idtv_info_valid;
7063
7064 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7065
7066 vcpu->arch.nmi_injected = false;
7067 kvm_clear_exception_queue(vcpu);
7068 kvm_clear_interrupt_queue(vcpu);
7069
7070 if (!idtv_info_valid)
7071 return;
7072
7073 kvm_make_request(KVM_REQ_EVENT, vcpu);
7074
7075 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7076 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7077
7078 switch (type) {
7079 case INTR_TYPE_NMI_INTR:
7080 vcpu->arch.nmi_injected = true;
7081 /*
7082 * SDM 3: 27.7.1.2 (September 2008)
7083 * Clear bit "block by NMI" before VM entry if a NMI
7084 * delivery faulted.
7085 */
7086 vmx_set_nmi_mask(vcpu, false);
7087 break;
7088 case INTR_TYPE_SOFT_EXCEPTION:
7089 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7090 fallthrough;
7091 case INTR_TYPE_HARD_EXCEPTION:
7092 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7093 u32 err = vmcs_read32(error_code_field);
7094 kvm_requeue_exception_e(vcpu, vector, err);
7095 } else
7096 kvm_requeue_exception(vcpu, vector);
7097 break;
7098 case INTR_TYPE_SOFT_INTR:
7099 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7100 fallthrough;
7101 case INTR_TYPE_EXT_INTR:
7102 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7103 break;
7104 default:
7105 break;
7106 }
7107 }
7108
7109 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7110 {
7111 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7112 VM_EXIT_INSTRUCTION_LEN,
7113 IDT_VECTORING_ERROR_CODE);
7114 }
7115
7116 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7117 {
7118 __vmx_complete_interrupts(vcpu,
7119 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7120 VM_ENTRY_INSTRUCTION_LEN,
7121 VM_ENTRY_EXCEPTION_ERROR_CODE);
7122
7123 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7124 }
7125
7126 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7127 {
7128 int i, nr_msrs;
7129 struct perf_guest_switch_msr *msrs;
7130 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7131
7132 pmu->host_cross_mapped_mask = 0;
7133 if (pmu->pebs_enable & pmu->global_ctrl)
7134 intel_pmu_cross_mapped_check(pmu);
7135
7136 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7137 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7138 if (!msrs)
7139 return;
7140
7141 for (i = 0; i < nr_msrs; i++)
7142 if (msrs[i].host == msrs[i].guest)
7143 clear_atomic_switch_msr(vmx, msrs[i].msr);
7144 else
7145 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7146 msrs[i].host, false);
7147 }
7148
7149 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7150 {
7151 struct vcpu_vmx *vmx = to_vmx(vcpu);
7152 u64 tscl;
7153 u32 delta_tsc;
7154
7155 if (vmx->req_immediate_exit) {
7156 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7157 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7158 } else if (vmx->hv_deadline_tsc != -1) {
7159 tscl = rdtsc();
7160 if (vmx->hv_deadline_tsc > tscl)
7161 /* set_hv_timer ensures the delta fits in 32-bits */
7162 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7163 cpu_preemption_timer_multi);
7164 else
7165 delta_tsc = 0;
7166
7167 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7168 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7169 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7170 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7171 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7172 }
7173 }
7174
7175 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7176 {
7177 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7178 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7179 vmcs_writel(HOST_RSP, host_rsp);
7180 }
7181 }
7182
7183 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7184 unsigned int flags)
7185 {
7186 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7187
7188 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7189 return;
7190
7191 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7192 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7193
7194 /*
7195 * If the guest/host SPEC_CTRL values differ, restore the host value.
7196 *
7197 * For legacy IBRS, the IBRS bit always needs to be written after
7198 * transitioning from a less privileged predictor mode, regardless of
7199 * whether the guest/host values differ.
7200 */
7201 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7202 vmx->spec_ctrl != hostval)
7203 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7204
7205 barrier_nospec();
7206 }
7207
7208 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7209 {
7210 switch (to_vmx(vcpu)->exit_reason.basic) {
7211 case EXIT_REASON_MSR_WRITE:
7212 return handle_fastpath_set_msr_irqoff(vcpu);
7213 case EXIT_REASON_PREEMPTION_TIMER:
7214 return handle_fastpath_preemption_timer(vcpu);
7215 default:
7216 return EXIT_FASTPATH_NONE;
7217 }
7218 }
7219
7220 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7221 unsigned int flags)
7222 {
7223 struct vcpu_vmx *vmx = to_vmx(vcpu);
7224
7225 guest_state_enter_irqoff();
7226
7227 /* L1D Flush includes CPU buffer clear to mitigate MDS */
7228 if (static_branch_unlikely(&vmx_l1d_should_flush))
7229 vmx_l1d_flush(vcpu);
7230 else if (static_branch_unlikely(&mds_user_clear))
7231 mds_clear_cpu_buffers();
7232 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7233 kvm_arch_has_assigned_device(vcpu->kvm))
7234 mds_clear_cpu_buffers();
7235
7236 vmx_disable_fb_clear(vmx);
7237
7238 if (vcpu->arch.cr2 != native_read_cr2())
7239 native_write_cr2(vcpu->arch.cr2);
7240
7241 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7242 flags);
7243
7244 vcpu->arch.cr2 = native_read_cr2();
7245 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7246
7247 vmx->idt_vectoring_info = 0;
7248
7249 vmx_enable_fb_clear(vmx);
7250
7251 if (unlikely(vmx->fail)) {
7252 vmx->exit_reason.full = 0xdead;
7253 goto out;
7254 }
7255
7256 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7257 if (likely(!vmx->exit_reason.failed_vmentry))
7258 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7259
7260 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7261 is_nmi(vmx_get_intr_info(vcpu))) {
7262 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7263 vmx_do_nmi_irqoff();
7264 kvm_after_interrupt(vcpu);
7265 }
7266
7267 out:
7268 guest_state_exit_irqoff();
7269 }
7270
7271 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7272 {
7273 struct vcpu_vmx *vmx = to_vmx(vcpu);
7274 unsigned long cr3, cr4;
7275
7276 /* Record the guest's net vcpu time for enforced NMI injections. */
7277 if (unlikely(!enable_vnmi &&
7278 vmx->loaded_vmcs->soft_vnmi_blocked))
7279 vmx->loaded_vmcs->entry_time = ktime_get();
7280
7281 /*
7282 * Don't enter VMX if guest state is invalid, let the exit handler
7283 * start emulation until we arrive back to a valid state. Synthesize a
7284 * consistency check VM-Exit due to invalid guest state and bail.
7285 */
7286 if (unlikely(vmx->emulation_required)) {
7287 vmx->fail = 0;
7288
7289 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7290 vmx->exit_reason.failed_vmentry = 1;
7291 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7292 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7293 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7294 vmx->exit_intr_info = 0;
7295 return EXIT_FASTPATH_NONE;
7296 }
7297
7298 trace_kvm_entry(vcpu);
7299
7300 if (vmx->ple_window_dirty) {
7301 vmx->ple_window_dirty = false;
7302 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7303 }
7304
7305 /*
7306 * We did this in prepare_switch_to_guest, because it needs to
7307 * be within srcu_read_lock.
7308 */
7309 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7310
7311 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7312 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7313 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7314 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7315 vcpu->arch.regs_dirty = 0;
7316
7317 /*
7318 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7319 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7320 * it switches back to the current->mm, which can occur in KVM context
7321 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7322 * toggles a static key while handling a VM-Exit.
7323 */
7324 cr3 = __get_current_cr3_fast();
7325 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7326 vmcs_writel(HOST_CR3, cr3);
7327 vmx->loaded_vmcs->host_state.cr3 = cr3;
7328 }
7329
7330 cr4 = cr4_read_shadow();
7331 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7332 vmcs_writel(HOST_CR4, cr4);
7333 vmx->loaded_vmcs->host_state.cr4 = cr4;
7334 }
7335
7336 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7337 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7338 set_debugreg(vcpu->arch.dr6, 6);
7339
7340 /* When single-stepping over STI and MOV SS, we must clear the
7341 * corresponding interruptibility bits in the guest state. Otherwise
7342 * vmentry fails as it then expects bit 14 (BS) in pending debug
7343 * exceptions being set, but that's not correct for the guest debugging
7344 * case. */
7345 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7346 vmx_set_interrupt_shadow(vcpu, 0);
7347
7348 kvm_load_guest_xsave_state(vcpu);
7349
7350 pt_guest_enter(vmx);
7351
7352 atomic_switch_perf_msrs(vmx);
7353 if (intel_pmu_lbr_is_enabled(vcpu))
7354 vmx_passthrough_lbr_msrs(vcpu);
7355
7356 if (enable_preemption_timer)
7357 vmx_update_hv_timer(vcpu);
7358
7359 kvm_wait_lapic_expire(vcpu);
7360
7361 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7362 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7363
7364 /* All fields are clean at this point */
7365 if (kvm_is_using_evmcs()) {
7366 current_evmcs->hv_clean_fields |=
7367 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7368
7369 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7370 }
7371
7372 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7373 if (vmx->host_debugctlmsr)
7374 update_debugctlmsr(vmx->host_debugctlmsr);
7375
7376 #ifndef CONFIG_X86_64
7377 /*
7378 * The sysexit path does not restore ds/es, so we must set them to
7379 * a reasonable value ourselves.
7380 *
7381 * We can't defer this to vmx_prepare_switch_to_host() since that
7382 * function may be executed in interrupt context, which saves and
7383 * restore segments around it, nullifying its effect.
7384 */
7385 loadsegment(ds, __USER_DS);
7386 loadsegment(es, __USER_DS);
7387 #endif
7388
7389 pt_guest_exit(vmx);
7390
7391 kvm_load_host_xsave_state(vcpu);
7392
7393 if (is_guest_mode(vcpu)) {
7394 /*
7395 * Track VMLAUNCH/VMRESUME that have made past guest state
7396 * checking.
7397 */
7398 if (vmx->nested.nested_run_pending &&
7399 !vmx->exit_reason.failed_vmentry)
7400 ++vcpu->stat.nested_run;
7401
7402 vmx->nested.nested_run_pending = 0;
7403 }
7404
7405 if (unlikely(vmx->fail))
7406 return EXIT_FASTPATH_NONE;
7407
7408 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7409 kvm_machine_check();
7410
7411 trace_kvm_exit(vcpu, KVM_ISA_VMX);
7412
7413 if (unlikely(vmx->exit_reason.failed_vmentry))
7414 return EXIT_FASTPATH_NONE;
7415
7416 vmx->loaded_vmcs->launched = 1;
7417
7418 vmx_recover_nmi_blocking(vmx);
7419 vmx_complete_interrupts(vmx);
7420
7421 if (is_guest_mode(vcpu))
7422 return EXIT_FASTPATH_NONE;
7423
7424 return vmx_exit_handlers_fastpath(vcpu);
7425 }
7426
7427 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7428 {
7429 struct vcpu_vmx *vmx = to_vmx(vcpu);
7430
7431 if (enable_pml)
7432 vmx_destroy_pml_buffer(vmx);
7433 free_vpid(vmx->vpid);
7434 nested_vmx_free_vcpu(vcpu);
7435 free_loaded_vmcs(vmx->loaded_vmcs);
7436 }
7437
7438 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7439 {
7440 struct vmx_uret_msr *tsx_ctrl;
7441 struct vcpu_vmx *vmx;
7442 int i, err;
7443
7444 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7445 vmx = to_vmx(vcpu);
7446
7447 INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7448
7449 err = -ENOMEM;
7450
7451 vmx->vpid = allocate_vpid();
7452
7453 /*
7454 * If PML is turned on, failure on enabling PML just results in failure
7455 * of creating the vcpu, therefore we can simplify PML logic (by
7456 * avoiding dealing with cases, such as enabling PML partially on vcpus
7457 * for the guest), etc.
7458 */
7459 if (enable_pml) {
7460 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7461 if (!vmx->pml_pg)
7462 goto free_vpid;
7463 }
7464
7465 for (i = 0; i < kvm_nr_uret_msrs; ++i)
7466 vmx->guest_uret_msrs[i].mask = -1ull;
7467 if (boot_cpu_has(X86_FEATURE_RTM)) {
7468 /*
7469 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7470 * Keep the host value unchanged to avoid changing CPUID bits
7471 * under the host kernel's feet.
7472 */
7473 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7474 if (tsx_ctrl)
7475 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7476 }
7477
7478 err = alloc_loaded_vmcs(&vmx->vmcs01);
7479 if (err < 0)
7480 goto free_pml;
7481
7482 /*
7483 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7484 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7485 * feature only for vmcs01, KVM currently isn't equipped to realize any
7486 * performance benefits from enabling it for vmcs02.
7487 */
7488 if (kvm_is_using_evmcs() &&
7489 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7490 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7491
7492 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7493 }
7494
7495 /* The MSR bitmap starts with all ones */
7496 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7497 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7498
7499 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7500 #ifdef CONFIG_X86_64
7501 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7502 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7503 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7504 #endif
7505 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7506 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7507 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7508 if (kvm_cstate_in_guest(vcpu->kvm)) {
7509 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7510 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7511 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7512 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7513 }
7514
7515 vmx->loaded_vmcs = &vmx->vmcs01;
7516
7517 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7518 err = kvm_alloc_apic_access_page(vcpu->kvm);
7519 if (err)
7520 goto free_vmcs;
7521 }
7522
7523 if (enable_ept && !enable_unrestricted_guest) {
7524 err = init_rmode_identity_map(vcpu->kvm);
7525 if (err)
7526 goto free_vmcs;
7527 }
7528
7529 if (vmx_can_use_ipiv(vcpu))
7530 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7531 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7532
7533 return 0;
7534
7535 free_vmcs:
7536 free_loaded_vmcs(vmx->loaded_vmcs);
7537 free_pml:
7538 vmx_destroy_pml_buffer(vmx);
7539 free_vpid:
7540 free_vpid(vmx->vpid);
7541 return err;
7542 }
7543
7544 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7545 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7546
7547 static int vmx_vm_init(struct kvm *kvm)
7548 {
7549 if (!ple_gap)
7550 kvm->arch.pause_in_guest = true;
7551
7552 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7553 switch (l1tf_mitigation) {
7554 case L1TF_MITIGATION_OFF:
7555 case L1TF_MITIGATION_FLUSH_NOWARN:
7556 /* 'I explicitly don't care' is set */
7557 break;
7558 case L1TF_MITIGATION_FLUSH:
7559 case L1TF_MITIGATION_FLUSH_NOSMT:
7560 case L1TF_MITIGATION_FULL:
7561 /*
7562 * Warn upon starting the first VM in a potentially
7563 * insecure environment.
7564 */
7565 if (sched_smt_active())
7566 pr_warn_once(L1TF_MSG_SMT);
7567 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7568 pr_warn_once(L1TF_MSG_L1D);
7569 break;
7570 case L1TF_MITIGATION_FULL_FORCE:
7571 /* Flush is enforced */
7572 break;
7573 }
7574 }
7575 return 0;
7576 }
7577
7578 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7579 {
7580 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7581 * memory aliases with conflicting memory types and sometimes MCEs.
7582 * We have to be careful as to what are honored and when.
7583 *
7584 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
7585 * UC. The effective memory type is UC or WC depending on guest PAT.
7586 * This was historically the source of MCEs and we want to be
7587 * conservative.
7588 *
7589 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7590 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7591 * EPT memory type is set to WB. The effective memory type is forced
7592 * WB.
7593 *
7594 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7595 * EPT memory type is used to emulate guest CD/MTRR.
7596 */
7597
7598 if (is_mmio)
7599 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7600
7601 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7602 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7603
7604 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7605 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7606 return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT;
7607 else
7608 return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) |
7609 VMX_EPT_IPAT_BIT;
7610 }
7611
7612 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7613 }
7614
7615 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7616 {
7617 /*
7618 * These bits in the secondary execution controls field
7619 * are dynamic, the others are mostly based on the hypervisor
7620 * architecture and the guest's CPUID. Do not touch the
7621 * dynamic bits.
7622 */
7623 u32 mask =
7624 SECONDARY_EXEC_SHADOW_VMCS |
7625 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7626 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7627 SECONDARY_EXEC_DESC;
7628
7629 u32 cur_ctl = secondary_exec_controls_get(vmx);
7630
7631 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7632 }
7633
7634 /*
7635 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7636 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7637 */
7638 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7639 {
7640 struct vcpu_vmx *vmx = to_vmx(vcpu);
7641 struct kvm_cpuid_entry2 *entry;
7642
7643 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7644 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7645
7646 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7647 if (entry && (entry->_reg & (_cpuid_mask))) \
7648 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7649 } while (0)
7650
7651 entry = kvm_find_cpuid_entry(vcpu, 0x1);
7652 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7653 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7654 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7655 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7656 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7657 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7658 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7659 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7660 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7661 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7662 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7663 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7664 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7665 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7666
7667 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7668 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7669 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7670 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7671 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7672 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7673 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7674
7675 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7676 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM));
7677
7678 #undef cr4_fixed1_update
7679 }
7680
7681 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7682 {
7683 struct vcpu_vmx *vmx = to_vmx(vcpu);
7684 struct kvm_cpuid_entry2 *best = NULL;
7685 int i;
7686
7687 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7688 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7689 if (!best)
7690 return;
7691 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7692 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7693 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7694 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7695 }
7696
7697 /* Get the number of configurable Address Ranges for filtering */
7698 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7699 PT_CAP_num_address_ranges);
7700
7701 /* Initialize and clear the no dependency bits */
7702 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7703 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7704 RTIT_CTL_BRANCH_EN);
7705
7706 /*
7707 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7708 * will inject an #GP
7709 */
7710 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7711 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7712
7713 /*
7714 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7715 * PSBFreq can be set
7716 */
7717 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7718 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7719 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7720
7721 /*
7722 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7723 */
7724 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7725 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7726 RTIT_CTL_MTC_RANGE);
7727
7728 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7729 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7730 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7731 RTIT_CTL_PTW_EN);
7732
7733 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7734 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7735 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7736
7737 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7738 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7739 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7740
7741 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7742 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7743 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7744
7745 /* unmask address range configure area */
7746 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7747 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7748 }
7749
7750 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7751 {
7752 struct vcpu_vmx *vmx = to_vmx(vcpu);
7753
7754 /*
7755 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7756 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7757 * set if and only if XSAVE is supported.
7758 */
7759 if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7760 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7761 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7762
7763 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7764 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM);
7765
7766 vmx_setup_uret_msrs(vmx);
7767
7768 if (cpu_has_secondary_exec_ctrls())
7769 vmcs_set_secondary_exec_control(vmx,
7770 vmx_secondary_exec_control(vmx));
7771
7772 if (guest_can_use(vcpu, X86_FEATURE_VMX))
7773 vmx->msr_ia32_feature_control_valid_bits |=
7774 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7775 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7776 else
7777 vmx->msr_ia32_feature_control_valid_bits &=
7778 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7779 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7780
7781 if (guest_can_use(vcpu, X86_FEATURE_VMX))
7782 nested_vmx_cr_fixed1_bits_update(vcpu);
7783
7784 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7785 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7786 update_intel_pt_cfg(vcpu);
7787
7788 if (boot_cpu_has(X86_FEATURE_RTM)) {
7789 struct vmx_uret_msr *msr;
7790 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7791 if (msr) {
7792 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7793 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7794 }
7795 }
7796
7797 if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7798 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7799 !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7800
7801 if (boot_cpu_has(X86_FEATURE_IBPB))
7802 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7803 !guest_has_pred_cmd_msr(vcpu));
7804
7805 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7806 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7807 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7808
7809 set_cr4_guest_host_mask(vmx);
7810
7811 vmx_write_encls_bitmap(vcpu, NULL);
7812 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7813 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7814 else
7815 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7816
7817 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7818 vmx->msr_ia32_feature_control_valid_bits |=
7819 FEAT_CTL_SGX_LC_ENABLED;
7820 else
7821 vmx->msr_ia32_feature_control_valid_bits &=
7822 ~FEAT_CTL_SGX_LC_ENABLED;
7823
7824 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7825 vmx_update_exception_bitmap(vcpu);
7826 }
7827
7828 static u64 vmx_get_perf_capabilities(void)
7829 {
7830 u64 perf_cap = PMU_CAP_FW_WRITES;
7831 struct x86_pmu_lbr lbr;
7832 u64 host_perf_cap = 0;
7833
7834 if (!enable_pmu)
7835 return 0;
7836
7837 if (boot_cpu_has(X86_FEATURE_PDCM))
7838 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7839
7840 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7841 x86_perf_get_lbr(&lbr);
7842 if (lbr.nr)
7843 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7844 }
7845
7846 if (vmx_pebs_supported()) {
7847 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7848 if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
7849 perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7850 }
7851
7852 return perf_cap;
7853 }
7854
7855 static __init void vmx_set_cpu_caps(void)
7856 {
7857 kvm_set_cpu_caps();
7858
7859 /* CPUID 0x1 */
7860 if (nested)
7861 kvm_cpu_cap_set(X86_FEATURE_VMX);
7862
7863 /* CPUID 0x7 */
7864 if (kvm_mpx_supported())
7865 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7866 if (!cpu_has_vmx_invpcid())
7867 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7868 if (vmx_pt_mode_is_host_guest())
7869 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7870 if (vmx_pebs_supported()) {
7871 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7872 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7873 }
7874
7875 if (!enable_pmu)
7876 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7877 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7878
7879 if (!enable_sgx) {
7880 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7881 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7882 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7883 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7884 }
7885
7886 if (vmx_umip_emulated())
7887 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7888
7889 /* CPUID 0xD.1 */
7890 kvm_caps.supported_xss = 0;
7891 if (!cpu_has_vmx_xsaves())
7892 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7893
7894 /* CPUID 0x80000001 and 0x7 (RDPID) */
7895 if (!cpu_has_vmx_rdtscp()) {
7896 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7897 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7898 }
7899
7900 if (cpu_has_vmx_waitpkg())
7901 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7902 }
7903
7904 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7905 {
7906 to_vmx(vcpu)->req_immediate_exit = true;
7907 }
7908
7909 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7910 struct x86_instruction_info *info)
7911 {
7912 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7913 unsigned short port;
7914 bool intercept;
7915 int size;
7916
7917 if (info->intercept == x86_intercept_in ||
7918 info->intercept == x86_intercept_ins) {
7919 port = info->src_val;
7920 size = info->dst_bytes;
7921 } else {
7922 port = info->dst_val;
7923 size = info->src_bytes;
7924 }
7925
7926 /*
7927 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7928 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7929 * control.
7930 *
7931 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7932 */
7933 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7934 intercept = nested_cpu_has(vmcs12,
7935 CPU_BASED_UNCOND_IO_EXITING);
7936 else
7937 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7938
7939 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7940 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7941 }
7942
7943 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7944 struct x86_instruction_info *info,
7945 enum x86_intercept_stage stage,
7946 struct x86_exception *exception)
7947 {
7948 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7949
7950 switch (info->intercept) {
7951 /*
7952 * RDPID causes #UD if disabled through secondary execution controls.
7953 * Because it is marked as EmulateOnUD, we need to intercept it here.
7954 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7955 */
7956 case x86_intercept_rdpid:
7957 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7958 exception->vector = UD_VECTOR;
7959 exception->error_code_valid = false;
7960 return X86EMUL_PROPAGATE_FAULT;
7961 }
7962 break;
7963
7964 case x86_intercept_in:
7965 case x86_intercept_ins:
7966 case x86_intercept_out:
7967 case x86_intercept_outs:
7968 return vmx_check_intercept_io(vcpu, info);
7969
7970 case x86_intercept_lgdt:
7971 case x86_intercept_lidt:
7972 case x86_intercept_lldt:
7973 case x86_intercept_ltr:
7974 case x86_intercept_sgdt:
7975 case x86_intercept_sidt:
7976 case x86_intercept_sldt:
7977 case x86_intercept_str:
7978 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7979 return X86EMUL_CONTINUE;
7980
7981 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7982 break;
7983
7984 case x86_intercept_pause:
7985 /*
7986 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
7987 * with vanilla NOPs in the emulator. Apply the interception
7988 * check only to actual PAUSE instructions. Don't check
7989 * PAUSE-loop-exiting, software can't expect a given PAUSE to
7990 * exit, i.e. KVM is within its rights to allow L2 to execute
7991 * the PAUSE.
7992 */
7993 if ((info->rep_prefix != REPE_PREFIX) ||
7994 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
7995 return X86EMUL_CONTINUE;
7996
7997 break;
7998
7999 /* TODO: check more intercepts... */
8000 default:
8001 break;
8002 }
8003
8004 return X86EMUL_UNHANDLEABLE;
8005 }
8006
8007 #ifdef CONFIG_X86_64
8008 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8009 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8010 u64 divisor, u64 *result)
8011 {
8012 u64 low = a << shift, high = a >> (64 - shift);
8013
8014 /* To avoid the overflow on divq */
8015 if (high >= divisor)
8016 return 1;
8017
8018 /* Low hold the result, high hold rem which is discarded */
8019 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8020 "rm" (divisor), "0" (low), "1" (high));
8021 *result = low;
8022
8023 return 0;
8024 }
8025
8026 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8027 bool *expired)
8028 {
8029 struct vcpu_vmx *vmx;
8030 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8031 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8032
8033 vmx = to_vmx(vcpu);
8034 tscl = rdtsc();
8035 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8036 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8037 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8038 ktimer->timer_advance_ns);
8039
8040 if (delta_tsc > lapic_timer_advance_cycles)
8041 delta_tsc -= lapic_timer_advance_cycles;
8042 else
8043 delta_tsc = 0;
8044
8045 /* Convert to host delta tsc if tsc scaling is enabled */
8046 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8047 delta_tsc && u64_shl_div_u64(delta_tsc,
8048 kvm_caps.tsc_scaling_ratio_frac_bits,
8049 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8050 return -ERANGE;
8051
8052 /*
8053 * If the delta tsc can't fit in the 32 bit after the multi shift,
8054 * we can't use the preemption timer.
8055 * It's possible that it fits on later vmentries, but checking
8056 * on every vmentry is costly so we just use an hrtimer.
8057 */
8058 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8059 return -ERANGE;
8060
8061 vmx->hv_deadline_tsc = tscl + delta_tsc;
8062 *expired = !delta_tsc;
8063 return 0;
8064 }
8065
8066 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8067 {
8068 to_vmx(vcpu)->hv_deadline_tsc = -1;
8069 }
8070 #endif
8071
8072 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8073 {
8074 if (!kvm_pause_in_guest(vcpu->kvm))
8075 shrink_ple_window(vcpu);
8076 }
8077
8078 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8079 {
8080 struct vcpu_vmx *vmx = to_vmx(vcpu);
8081
8082 if (WARN_ON_ONCE(!enable_pml))
8083 return;
8084
8085 if (is_guest_mode(vcpu)) {
8086 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8087 return;
8088 }
8089
8090 /*
8091 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8092 * code, but in that case another update request will be made and so
8093 * the guest will never run with a stale PML value.
8094 */
8095 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8096 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8097 else
8098 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8099 }
8100
8101 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8102 {
8103 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8104 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8105 FEAT_CTL_LMCE_ENABLED;
8106 else
8107 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8108 ~FEAT_CTL_LMCE_ENABLED;
8109 }
8110
8111 #ifdef CONFIG_KVM_SMM
8112 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8113 {
8114 /* we need a nested vmexit to enter SMM, postpone if run is pending */
8115 if (to_vmx(vcpu)->nested.nested_run_pending)
8116 return -EBUSY;
8117 return !is_smm(vcpu);
8118 }
8119
8120 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8121 {
8122 struct vcpu_vmx *vmx = to_vmx(vcpu);
8123
8124 /*
8125 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8126 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
8127 * SMI and RSM only modify state that is saved and restored via SMRAM.
8128 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8129 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8130 */
8131 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8132 if (vmx->nested.smm.guest_mode)
8133 nested_vmx_vmexit(vcpu, -1, 0, 0);
8134
8135 vmx->nested.smm.vmxon = vmx->nested.vmxon;
8136 vmx->nested.vmxon = false;
8137 vmx_clear_hlt(vcpu);
8138 return 0;
8139 }
8140
8141 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8142 {
8143 struct vcpu_vmx *vmx = to_vmx(vcpu);
8144 int ret;
8145
8146 if (vmx->nested.smm.vmxon) {
8147 vmx->nested.vmxon = true;
8148 vmx->nested.smm.vmxon = false;
8149 }
8150
8151 if (vmx->nested.smm.guest_mode) {
8152 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8153 if (ret)
8154 return ret;
8155
8156 vmx->nested.nested_run_pending = 1;
8157 vmx->nested.smm.guest_mode = false;
8158 }
8159 return 0;
8160 }
8161
8162 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8163 {
8164 /* RSM will cause a vmexit anyway. */
8165 }
8166 #endif
8167
8168 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8169 {
8170 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8171 }
8172
8173 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8174 {
8175 if (is_guest_mode(vcpu)) {
8176 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8177
8178 if (hrtimer_try_to_cancel(timer) == 1)
8179 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8180 }
8181 }
8182
8183 static void vmx_hardware_unsetup(void)
8184 {
8185 kvm_set_posted_intr_wakeup_handler(NULL);
8186
8187 if (nested)
8188 nested_vmx_hardware_unsetup();
8189
8190 free_kvm_area();
8191 }
8192
8193 #define VMX_REQUIRED_APICV_INHIBITS \
8194 ( \
8195 BIT(APICV_INHIBIT_REASON_DISABLE)| \
8196 BIT(APICV_INHIBIT_REASON_ABSENT) | \
8197 BIT(APICV_INHIBIT_REASON_HYPERV) | \
8198 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \
8199 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
8200 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \
8201 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \
8202 )
8203
8204 static void vmx_vm_destroy(struct kvm *kvm)
8205 {
8206 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8207
8208 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8209 }
8210
8211 /*
8212 * Note, the SDM states that the linear address is masked *after* the modified
8213 * canonicality check, whereas KVM masks (untags) the address and then performs
8214 * a "normal" canonicality check. Functionally, the two methods are identical,
8215 * and when the masking occurs relative to the canonicality check isn't visible
8216 * to software, i.e. KVM's behavior doesn't violate the SDM.
8217 */
8218 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8219 {
8220 int lam_bit;
8221 unsigned long cr3_bits;
8222
8223 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8224 return gva;
8225
8226 if (!is_64_bit_mode(vcpu))
8227 return gva;
8228
8229 /*
8230 * Bit 63 determines if the address should be treated as user address
8231 * or a supervisor address.
8232 */
8233 if (!(gva & BIT_ULL(63))) {
8234 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8235 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8236 return gva;
8237
8238 /* LAM_U48 is ignored if LAM_U57 is set. */
8239 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8240 } else {
8241 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8242 return gva;
8243
8244 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8245 }
8246
8247 /*
8248 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8249 * Bit 63 is retained from the raw virtual address so that untagging
8250 * doesn't change a user access to a supervisor access, and vice versa.
8251 */
8252 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8253 }
8254
8255 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8256 .name = KBUILD_MODNAME,
8257
8258 .check_processor_compatibility = vmx_check_processor_compat,
8259
8260 .hardware_unsetup = vmx_hardware_unsetup,
8261
8262 .hardware_enable = vmx_hardware_enable,
8263 .hardware_disable = vmx_hardware_disable,
8264 .has_emulated_msr = vmx_has_emulated_msr,
8265
8266 .vm_size = sizeof(struct kvm_vmx),
8267 .vm_init = vmx_vm_init,
8268 .vm_destroy = vmx_vm_destroy,
8269
8270 .vcpu_precreate = vmx_vcpu_precreate,
8271 .vcpu_create = vmx_vcpu_create,
8272 .vcpu_free = vmx_vcpu_free,
8273 .vcpu_reset = vmx_vcpu_reset,
8274
8275 .prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8276 .vcpu_load = vmx_vcpu_load,
8277 .vcpu_put = vmx_vcpu_put,
8278
8279 .update_exception_bitmap = vmx_update_exception_bitmap,
8280 .get_msr_feature = vmx_get_msr_feature,
8281 .get_msr = vmx_get_msr,
8282 .set_msr = vmx_set_msr,
8283 .get_segment_base = vmx_get_segment_base,
8284 .get_segment = vmx_get_segment,
8285 .set_segment = vmx_set_segment,
8286 .get_cpl = vmx_get_cpl,
8287 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8288 .is_valid_cr0 = vmx_is_valid_cr0,
8289 .set_cr0 = vmx_set_cr0,
8290 .is_valid_cr4 = vmx_is_valid_cr4,
8291 .set_cr4 = vmx_set_cr4,
8292 .set_efer = vmx_set_efer,
8293 .get_idt = vmx_get_idt,
8294 .set_idt = vmx_set_idt,
8295 .get_gdt = vmx_get_gdt,
8296 .set_gdt = vmx_set_gdt,
8297 .set_dr7 = vmx_set_dr7,
8298 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8299 .cache_reg = vmx_cache_reg,
8300 .get_rflags = vmx_get_rflags,
8301 .set_rflags = vmx_set_rflags,
8302 .get_if_flag = vmx_get_if_flag,
8303
8304 .flush_tlb_all = vmx_flush_tlb_all,
8305 .flush_tlb_current = vmx_flush_tlb_current,
8306 .flush_tlb_gva = vmx_flush_tlb_gva,
8307 .flush_tlb_guest = vmx_flush_tlb_guest,
8308
8309 .vcpu_pre_run = vmx_vcpu_pre_run,
8310 .vcpu_run = vmx_vcpu_run,
8311 .handle_exit = vmx_handle_exit,
8312 .skip_emulated_instruction = vmx_skip_emulated_instruction,
8313 .update_emulated_instruction = vmx_update_emulated_instruction,
8314 .set_interrupt_shadow = vmx_set_interrupt_shadow,
8315 .get_interrupt_shadow = vmx_get_interrupt_shadow,
8316 .patch_hypercall = vmx_patch_hypercall,
8317 .inject_irq = vmx_inject_irq,
8318 .inject_nmi = vmx_inject_nmi,
8319 .inject_exception = vmx_inject_exception,
8320 .cancel_injection = vmx_cancel_injection,
8321 .interrupt_allowed = vmx_interrupt_allowed,
8322 .nmi_allowed = vmx_nmi_allowed,
8323 .get_nmi_mask = vmx_get_nmi_mask,
8324 .set_nmi_mask = vmx_set_nmi_mask,
8325 .enable_nmi_window = vmx_enable_nmi_window,
8326 .enable_irq_window = vmx_enable_irq_window,
8327 .update_cr8_intercept = vmx_update_cr8_intercept,
8328 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8329 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8330 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8331 .load_eoi_exitmap = vmx_load_eoi_exitmap,
8332 .apicv_pre_state_restore = vmx_apicv_pre_state_restore,
8333 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8334 .hwapic_irr_update = vmx_hwapic_irr_update,
8335 .hwapic_isr_update = vmx_hwapic_isr_update,
8336 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8337 .sync_pir_to_irr = vmx_sync_pir_to_irr,
8338 .deliver_interrupt = vmx_deliver_interrupt,
8339 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8340
8341 .set_tss_addr = vmx_set_tss_addr,
8342 .set_identity_map_addr = vmx_set_identity_map_addr,
8343 .get_mt_mask = vmx_get_mt_mask,
8344
8345 .get_exit_info = vmx_get_exit_info,
8346
8347 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8348
8349 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8350
8351 .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8352 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8353 .write_tsc_offset = vmx_write_tsc_offset,
8354 .write_tsc_multiplier = vmx_write_tsc_multiplier,
8355
8356 .load_mmu_pgd = vmx_load_mmu_pgd,
8357
8358 .check_intercept = vmx_check_intercept,
8359 .handle_exit_irqoff = vmx_handle_exit_irqoff,
8360
8361 .request_immediate_exit = vmx_request_immediate_exit,
8362
8363 .sched_in = vmx_sched_in,
8364
8365 .cpu_dirty_log_size = PML_ENTITY_NUM,
8366 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8367
8368 .nested_ops = &vmx_nested_ops,
8369
8370 .pi_update_irte = vmx_pi_update_irte,
8371 .pi_start_assignment = vmx_pi_start_assignment,
8372
8373 #ifdef CONFIG_X86_64
8374 .set_hv_timer = vmx_set_hv_timer,
8375 .cancel_hv_timer = vmx_cancel_hv_timer,
8376 #endif
8377
8378 .setup_mce = vmx_setup_mce,
8379
8380 #ifdef CONFIG_KVM_SMM
8381 .smi_allowed = vmx_smi_allowed,
8382 .enter_smm = vmx_enter_smm,
8383 .leave_smm = vmx_leave_smm,
8384 .enable_smi_window = vmx_enable_smi_window,
8385 #endif
8386
8387 .check_emulate_instruction = vmx_check_emulate_instruction,
8388 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8389 .migrate_timers = vmx_migrate_timers,
8390
8391 .msr_filter_changed = vmx_msr_filter_changed,
8392 .complete_emulated_msr = kvm_complete_insn_gp,
8393
8394 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8395
8396 .get_untagged_addr = vmx_get_untagged_addr,
8397 };
8398
8399 static unsigned int vmx_handle_intel_pt_intr(void)
8400 {
8401 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8402
8403 /* '0' on failure so that the !PT case can use a RET0 static call. */
8404 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8405 return 0;
8406
8407 kvm_make_request(KVM_REQ_PMI, vcpu);
8408 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8409 (unsigned long *)&vcpu->arch.pmu.global_status);
8410 return 1;
8411 }
8412
8413 static __init void vmx_setup_user_return_msrs(void)
8414 {
8415
8416 /*
8417 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8418 * will emulate SYSCALL in legacy mode if the vendor string in guest
8419 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8420 * support this emulation, MSR_STAR is included in the list for i386,
8421 * but is never loaded into hardware. MSR_CSTAR is also never loaded
8422 * into hardware and is here purely for emulation purposes.
8423 */
8424 const u32 vmx_uret_msrs_list[] = {
8425 #ifdef CONFIG_X86_64
8426 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8427 #endif
8428 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8429 MSR_IA32_TSX_CTRL,
8430 };
8431 int i;
8432
8433 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8434
8435 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8436 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8437 }
8438
8439 static void __init vmx_setup_me_spte_mask(void)
8440 {
8441 u64 me_mask = 0;
8442
8443 /*
8444 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use
8445 * the former to avoid exposing shadow_phys_bits.
8446 *
8447 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8448 * shadow_phys_bits. On MKTME and/or TDX capable systems,
8449 * boot_cpu_data.x86_phys_bits holds the actual physical address
8450 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8451 * reported by CPUID. Those bits between are KeyID bits.
8452 */
8453 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8454 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8455 kvm_get_shadow_phys_bits() - 1);
8456 /*
8457 * Unlike SME, host kernel doesn't support setting up any
8458 * MKTME KeyID on Intel platforms. No memory encryption
8459 * bits should be included into the SPTE.
8460 */
8461 kvm_mmu_set_me_spte_mask(0, me_mask);
8462 }
8463
8464 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8465
8466 static __init int hardware_setup(void)
8467 {
8468 unsigned long host_bndcfgs;
8469 struct desc_ptr dt;
8470 int r;
8471
8472 store_idt(&dt);
8473 host_idt_base = dt.address;
8474
8475 vmx_setup_user_return_msrs();
8476
8477 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8478 return -EIO;
8479
8480 if (cpu_has_perf_global_ctrl_bug())
8481 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8482 "does not work properly. Using workaround\n");
8483
8484 if (boot_cpu_has(X86_FEATURE_NX))
8485 kvm_enable_efer_bits(EFER_NX);
8486
8487 if (boot_cpu_has(X86_FEATURE_MPX)) {
8488 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8489 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8490 }
8491
8492 if (!cpu_has_vmx_mpx())
8493 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8494 XFEATURE_MASK_BNDCSR);
8495
8496 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8497 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8498 enable_vpid = 0;
8499
8500 if (!cpu_has_vmx_ept() ||
8501 !cpu_has_vmx_ept_4levels() ||
8502 !cpu_has_vmx_ept_mt_wb() ||
8503 !cpu_has_vmx_invept_global())
8504 enable_ept = 0;
8505
8506 /* NX support is required for shadow paging. */
8507 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8508 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8509 return -EOPNOTSUPP;
8510 }
8511
8512 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8513 enable_ept_ad_bits = 0;
8514
8515 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8516 enable_unrestricted_guest = 0;
8517
8518 if (!cpu_has_vmx_flexpriority())
8519 flexpriority_enabled = 0;
8520
8521 if (!cpu_has_virtual_nmis())
8522 enable_vnmi = 0;
8523
8524 #ifdef CONFIG_X86_SGX_KVM
8525 if (!cpu_has_vmx_encls_vmexit())
8526 enable_sgx = false;
8527 #endif
8528
8529 /*
8530 * set_apic_access_page_addr() is used to reload apic access
8531 * page upon invalidation. No need to do anything if not
8532 * using the APIC_ACCESS_ADDR VMCS field.
8533 */
8534 if (!flexpriority_enabled)
8535 vmx_x86_ops.set_apic_access_page_addr = NULL;
8536
8537 if (!cpu_has_vmx_tpr_shadow())
8538 vmx_x86_ops.update_cr8_intercept = NULL;
8539
8540 #if IS_ENABLED(CONFIG_HYPERV)
8541 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8542 && enable_ept) {
8543 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8544 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8545 }
8546 #endif
8547
8548 if (!cpu_has_vmx_ple()) {
8549 ple_gap = 0;
8550 ple_window = 0;
8551 ple_window_grow = 0;
8552 ple_window_max = 0;
8553 ple_window_shrink = 0;
8554 }
8555
8556 if (!cpu_has_vmx_apicv())
8557 enable_apicv = 0;
8558 if (!enable_apicv)
8559 vmx_x86_ops.sync_pir_to_irr = NULL;
8560
8561 if (!enable_apicv || !cpu_has_vmx_ipiv())
8562 enable_ipiv = false;
8563
8564 if (cpu_has_vmx_tsc_scaling())
8565 kvm_caps.has_tsc_control = true;
8566
8567 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8568 kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8569 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8570 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8571
8572 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8573
8574 if (enable_ept)
8575 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8576 cpu_has_vmx_ept_execute_only());
8577
8578 /*
8579 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8580 * bits to shadow_zero_check.
8581 */
8582 vmx_setup_me_spte_mask();
8583
8584 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8585 ept_caps_to_lpage_level(vmx_capability.ept));
8586
8587 /*
8588 * Only enable PML when hardware supports PML feature, and both EPT
8589 * and EPT A/D bit features are enabled -- PML depends on them to work.
8590 */
8591 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8592 enable_pml = 0;
8593
8594 if (!enable_pml)
8595 vmx_x86_ops.cpu_dirty_log_size = 0;
8596
8597 if (!cpu_has_vmx_preemption_timer())
8598 enable_preemption_timer = false;
8599
8600 if (enable_preemption_timer) {
8601 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8602
8603 cpu_preemption_timer_multi =
8604 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8605
8606 if (tsc_khz)
8607 use_timer_freq = (u64)tsc_khz * 1000;
8608 use_timer_freq >>= cpu_preemption_timer_multi;
8609
8610 /*
8611 * KVM "disables" the preemption timer by setting it to its max
8612 * value. Don't use the timer if it might cause spurious exits
8613 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8614 */
8615 if (use_timer_freq > 0xffffffffu / 10)
8616 enable_preemption_timer = false;
8617 }
8618
8619 if (!enable_preemption_timer) {
8620 vmx_x86_ops.set_hv_timer = NULL;
8621 vmx_x86_ops.cancel_hv_timer = NULL;
8622 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8623 }
8624
8625 kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8626 kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8627
8628 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8629 return -EINVAL;
8630 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8631 pt_mode = PT_MODE_SYSTEM;
8632 if (pt_mode == PT_MODE_HOST_GUEST)
8633 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8634 else
8635 vmx_init_ops.handle_intel_pt_intr = NULL;
8636
8637 setup_default_sgx_lepubkeyhash();
8638
8639 if (nested) {
8640 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8641
8642 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8643 if (r)
8644 return r;
8645 }
8646
8647 vmx_set_cpu_caps();
8648
8649 r = alloc_kvm_area();
8650 if (r && nested)
8651 nested_vmx_hardware_unsetup();
8652
8653 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8654
8655 return r;
8656 }
8657
8658 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8659 .hardware_setup = hardware_setup,
8660 .handle_intel_pt_intr = NULL,
8661
8662 .runtime_ops = &vmx_x86_ops,
8663 .pmu_ops = &intel_pmu_ops,
8664 };
8665
8666 static void vmx_cleanup_l1d_flush(void)
8667 {
8668 if (vmx_l1d_flush_pages) {
8669 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8670 vmx_l1d_flush_pages = NULL;
8671 }
8672 /* Restore state so sysfs ignores VMX */
8673 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8674 }
8675
8676 static void __vmx_exit(void)
8677 {
8678 allow_smaller_maxphyaddr = false;
8679
8680 cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8681
8682 vmx_cleanup_l1d_flush();
8683 }
8684
8685 static void vmx_exit(void)
8686 {
8687 kvm_exit();
8688 kvm_x86_vendor_exit();
8689
8690 __vmx_exit();
8691 }
8692 module_exit(vmx_exit);
8693
8694 static int __init vmx_init(void)
8695 {
8696 int r, cpu;
8697
8698 if (!kvm_is_vmx_supported())
8699 return -EOPNOTSUPP;
8700
8701 /*
8702 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8703 * to unwind if a later step fails.
8704 */
8705 hv_init_evmcs();
8706
8707 r = kvm_x86_vendor_init(&vmx_init_ops);
8708 if (r)
8709 return r;
8710
8711 /*
8712 * Must be called after common x86 init so enable_ept is properly set
8713 * up. Hand the parameter mitigation value in which was stored in
8714 * the pre module init parser. If no parameter was given, it will
8715 * contain 'auto' which will be turned into the default 'cond'
8716 * mitigation mode.
8717 */
8718 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8719 if (r)
8720 goto err_l1d_flush;
8721
8722 for_each_possible_cpu(cpu) {
8723 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8724
8725 pi_init_cpu(cpu);
8726 }
8727
8728 cpu_emergency_register_virt_callback(vmx_emergency_disable);
8729
8730 vmx_check_vmcs12_offsets();
8731
8732 /*
8733 * Shadow paging doesn't have a (further) performance penalty
8734 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8735 * by default
8736 */
8737 if (!enable_ept)
8738 allow_smaller_maxphyaddr = true;
8739
8740 /*
8741 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8742 * exposed to userspace!
8743 */
8744 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8745 THIS_MODULE);
8746 if (r)
8747 goto err_kvm_init;
8748
8749 return 0;
8750
8751 err_kvm_init:
8752 __vmx_exit();
8753 err_l1d_flush:
8754 kvm_x86_vendor_exit();
8755 return r;
8756 }
8757 module_init(vmx_init);