]> git.ipfire.org Git - people/ms/linux.git/blob - arch/x86/kvm/x86.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[people/ms/linux.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92
93 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
94
95 #define emul_to_vcpu(ctxt) \
96 ((struct kvm_vcpu *)(ctxt)->vcpu)
97
98 /* EFER defaults:
99 * - enable syscall per default because its emulated by KVM
100 * - enable LME and LMA per default on 64 bit KVM
101 */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112
113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
114
115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
116 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
117
118 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
119 static void process_nmi(struct kvm_vcpu *vcpu);
120 static void process_smi(struct kvm_vcpu *vcpu);
121 static void enter_smm(struct kvm_vcpu *vcpu);
122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
123 static void store_regs(struct kvm_vcpu *vcpu);
124 static int sync_regs(struct kvm_vcpu *vcpu);
125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
126
127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129
130 struct kvm_x86_ops kvm_x86_ops __read_mostly;
131
132 #define KVM_X86_OP(func) \
133 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
134 *(((struct kvm_x86_ops *)0)->func));
135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
137 #include <asm/kvm-x86-ops.h>
138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
140
141 static bool __read_mostly ignore_msrs = 0;
142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143
144 bool __read_mostly report_ignored_msrs = true;
145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
146 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147
148 unsigned int min_timer_period_us = 200;
149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150
151 static bool __read_mostly kvmclock_periodic_sync = true;
152 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153
154 bool __read_mostly kvm_has_tsc_control;
155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
156 u32 __read_mostly kvm_max_guest_tsc_khz;
157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
158 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
160 u64 __read_mostly kvm_max_tsc_scaling_ratio;
161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
162 u64 __read_mostly kvm_default_tsc_scaling_ratio;
163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
164 bool __read_mostly kvm_has_bus_lock_exit;
165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166
167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
168 static u32 __read_mostly tsc_tolerance_ppm = 250;
169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
170
171 /*
172 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
173 * adaptive tuning starting from default advancement of 1000ns. '0' disables
174 * advancement entirely. Any other value is used as-is and disables adaptive
175 * tuning, i.e. allows privileged userspace to set an exact advancement time.
176 */
177 static int __read_mostly lapic_timer_advance_ns = -1;
178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179
180 static bool __read_mostly vector_hashing = true;
181 module_param(vector_hashing, bool, S_IRUGO);
182
183 bool __read_mostly enable_vmware_backdoor = false;
184 module_param(enable_vmware_backdoor, bool, S_IRUGO);
185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186
187 static bool __read_mostly force_emulation_prefix = false;
188 module_param(force_emulation_prefix, bool, S_IRUGO);
189
190 int __read_mostly pi_inject_timer = -1;
191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192
193 /* Enable/disable PMU virtualization */
194 bool __read_mostly enable_pmu = true;
195 EXPORT_SYMBOL_GPL(enable_pmu);
196 module_param(enable_pmu, bool, 0444);
197
198 bool __read_mostly eager_page_split = true;
199 module_param(eager_page_split, bool, 0644);
200
201 /*
202 * Restoring the host value for MSRs that are only consumed when running in
203 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
204 * returns to userspace, i.e. the kernel can run with the guest's value.
205 */
206 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207
208 struct kvm_user_return_msrs {
209 struct user_return_notifier urn;
210 bool registered;
211 struct kvm_user_return_msr_values {
212 u64 host;
213 u64 curr;
214 } values[KVM_MAX_NR_USER_RETURN_MSRS];
215 };
216
217 u32 __read_mostly kvm_nr_uret_msrs;
218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
220 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221
222 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
223 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
224 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
225 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226
227 u64 __read_mostly host_efer;
228 EXPORT_SYMBOL_GPL(host_efer);
229
230 bool __read_mostly allow_smaller_maxphyaddr = 0;
231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
232
233 bool __read_mostly enable_apicv = true;
234 EXPORT_SYMBOL_GPL(enable_apicv);
235
236 u64 __read_mostly host_xss;
237 EXPORT_SYMBOL_GPL(host_xss);
238 u64 __read_mostly supported_xss;
239 EXPORT_SYMBOL_GPL(supported_xss);
240
241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
242 KVM_GENERIC_VM_STATS(),
243 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
244 STATS_DESC_COUNTER(VM, mmu_pte_write),
245 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
246 STATS_DESC_COUNTER(VM, mmu_flooded),
247 STATS_DESC_COUNTER(VM, mmu_recycled),
248 STATS_DESC_COUNTER(VM, mmu_cache_miss),
249 STATS_DESC_ICOUNTER(VM, mmu_unsync),
250 STATS_DESC_ICOUNTER(VM, pages_4k),
251 STATS_DESC_ICOUNTER(VM, pages_2m),
252 STATS_DESC_ICOUNTER(VM, pages_1g),
253 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
254 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
255 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
256 };
257
258 const struct kvm_stats_header kvm_vm_stats_header = {
259 .name_size = KVM_STATS_NAME_SIZE,
260 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
261 .id_offset = sizeof(struct kvm_stats_header),
262 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
263 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
264 sizeof(kvm_vm_stats_desc),
265 };
266
267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
268 KVM_GENERIC_VCPU_STATS(),
269 STATS_DESC_COUNTER(VCPU, pf_taken),
270 STATS_DESC_COUNTER(VCPU, pf_fixed),
271 STATS_DESC_COUNTER(VCPU, pf_emulate),
272 STATS_DESC_COUNTER(VCPU, pf_spurious),
273 STATS_DESC_COUNTER(VCPU, pf_fast),
274 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
275 STATS_DESC_COUNTER(VCPU, pf_guest),
276 STATS_DESC_COUNTER(VCPU, tlb_flush),
277 STATS_DESC_COUNTER(VCPU, invlpg),
278 STATS_DESC_COUNTER(VCPU, exits),
279 STATS_DESC_COUNTER(VCPU, io_exits),
280 STATS_DESC_COUNTER(VCPU, mmio_exits),
281 STATS_DESC_COUNTER(VCPU, signal_exits),
282 STATS_DESC_COUNTER(VCPU, irq_window_exits),
283 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
284 STATS_DESC_COUNTER(VCPU, l1d_flush),
285 STATS_DESC_COUNTER(VCPU, halt_exits),
286 STATS_DESC_COUNTER(VCPU, request_irq_exits),
287 STATS_DESC_COUNTER(VCPU, irq_exits),
288 STATS_DESC_COUNTER(VCPU, host_state_reload),
289 STATS_DESC_COUNTER(VCPU, fpu_reload),
290 STATS_DESC_COUNTER(VCPU, insn_emulation),
291 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
292 STATS_DESC_COUNTER(VCPU, hypercalls),
293 STATS_DESC_COUNTER(VCPU, irq_injections),
294 STATS_DESC_COUNTER(VCPU, nmi_injections),
295 STATS_DESC_COUNTER(VCPU, req_event),
296 STATS_DESC_COUNTER(VCPU, nested_run),
297 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
298 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
299 STATS_DESC_COUNTER(VCPU, preemption_reported),
300 STATS_DESC_COUNTER(VCPU, preemption_other),
301 STATS_DESC_ICOUNTER(VCPU, guest_mode)
302 };
303
304 const struct kvm_stats_header kvm_vcpu_stats_header = {
305 .name_size = KVM_STATS_NAME_SIZE,
306 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307 .id_offset = sizeof(struct kvm_stats_header),
308 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310 sizeof(kvm_vcpu_stats_desc),
311 };
312
313 u64 __read_mostly host_xcr0;
314 u64 __read_mostly supported_xcr0;
315 EXPORT_SYMBOL_GPL(supported_xcr0);
316
317 static struct kmem_cache *x86_emulator_cache;
318
319 /*
320 * When called, it means the previous get/set msr reached an invalid msr.
321 * Return true if we want to ignore/silent this failed msr access.
322 */
323 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
324 {
325 const char *op = write ? "wrmsr" : "rdmsr";
326
327 if (ignore_msrs) {
328 if (report_ignored_msrs)
329 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
330 op, msr, data);
331 /* Mask the error */
332 return true;
333 } else {
334 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
335 op, msr, data);
336 return false;
337 }
338 }
339
340 static struct kmem_cache *kvm_alloc_emulator_cache(void)
341 {
342 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
343 unsigned int size = sizeof(struct x86_emulate_ctxt);
344
345 return kmem_cache_create_usercopy("x86_emulator", size,
346 __alignof__(struct x86_emulate_ctxt),
347 SLAB_ACCOUNT, useroffset,
348 size - useroffset, NULL);
349 }
350
351 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
352
353 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
354 {
355 int i;
356 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
357 vcpu->arch.apf.gfns[i] = ~0;
358 }
359
360 static void kvm_on_user_return(struct user_return_notifier *urn)
361 {
362 unsigned slot;
363 struct kvm_user_return_msrs *msrs
364 = container_of(urn, struct kvm_user_return_msrs, urn);
365 struct kvm_user_return_msr_values *values;
366 unsigned long flags;
367
368 /*
369 * Disabling irqs at this point since the following code could be
370 * interrupted and executed through kvm_arch_hardware_disable()
371 */
372 local_irq_save(flags);
373 if (msrs->registered) {
374 msrs->registered = false;
375 user_return_notifier_unregister(urn);
376 }
377 local_irq_restore(flags);
378 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
379 values = &msrs->values[slot];
380 if (values->host != values->curr) {
381 wrmsrl(kvm_uret_msrs_list[slot], values->host);
382 values->curr = values->host;
383 }
384 }
385 }
386
387 static int kvm_probe_user_return_msr(u32 msr)
388 {
389 u64 val;
390 int ret;
391
392 preempt_disable();
393 ret = rdmsrl_safe(msr, &val);
394 if (ret)
395 goto out;
396 ret = wrmsrl_safe(msr, val);
397 out:
398 preempt_enable();
399 return ret;
400 }
401
402 int kvm_add_user_return_msr(u32 msr)
403 {
404 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
405
406 if (kvm_probe_user_return_msr(msr))
407 return -1;
408
409 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
410 return kvm_nr_uret_msrs++;
411 }
412 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
413
414 int kvm_find_user_return_msr(u32 msr)
415 {
416 int i;
417
418 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
419 if (kvm_uret_msrs_list[i] == msr)
420 return i;
421 }
422 return -1;
423 }
424 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
425
426 static void kvm_user_return_msr_cpu_online(void)
427 {
428 unsigned int cpu = smp_processor_id();
429 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
430 u64 value;
431 int i;
432
433 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
434 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
435 msrs->values[i].host = value;
436 msrs->values[i].curr = value;
437 }
438 }
439
440 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
441 {
442 unsigned int cpu = smp_processor_id();
443 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
444 int err;
445
446 value = (value & mask) | (msrs->values[slot].host & ~mask);
447 if (value == msrs->values[slot].curr)
448 return 0;
449 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
450 if (err)
451 return 1;
452
453 msrs->values[slot].curr = value;
454 if (!msrs->registered) {
455 msrs->urn.on_user_return = kvm_on_user_return;
456 user_return_notifier_register(&msrs->urn);
457 msrs->registered = true;
458 }
459 return 0;
460 }
461 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
462
463 static void drop_user_return_notifiers(void)
464 {
465 unsigned int cpu = smp_processor_id();
466 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
467
468 if (msrs->registered)
469 kvm_on_user_return(&msrs->urn);
470 }
471
472 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
473 {
474 return vcpu->arch.apic_base;
475 }
476 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
477
478 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
479 {
480 return kvm_apic_mode(kvm_get_apic_base(vcpu));
481 }
482 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
483
484 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
485 {
486 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
487 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
488 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
489 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
490
491 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
492 return 1;
493 if (!msr_info->host_initiated) {
494 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
495 return 1;
496 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
497 return 1;
498 }
499
500 kvm_lapic_set_base(vcpu, msr_info->data);
501 kvm_recalculate_apic_map(vcpu->kvm);
502 return 0;
503 }
504 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
505
506 /*
507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508 *
509 * Hardware virtualization extension instructions may fault if a reboot turns
510 * off virtualization while processes are running. Usually after catching the
511 * fault we just panic; during reboot instead the instruction is ignored.
512 */
513 noinstr void kvm_spurious_fault(void)
514 {
515 /* Fault while not rebooting. We want the trace. */
516 BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519
520 #define EXCPT_BENIGN 0
521 #define EXCPT_CONTRIBUTORY 1
522 #define EXCPT_PF 2
523
524 static int exception_class(int vector)
525 {
526 switch (vector) {
527 case PF_VECTOR:
528 return EXCPT_PF;
529 case DE_VECTOR:
530 case TS_VECTOR:
531 case NP_VECTOR:
532 case SS_VECTOR:
533 case GP_VECTOR:
534 return EXCPT_CONTRIBUTORY;
535 default:
536 break;
537 }
538 return EXCPT_BENIGN;
539 }
540
541 #define EXCPT_FAULT 0
542 #define EXCPT_TRAP 1
543 #define EXCPT_ABORT 2
544 #define EXCPT_INTERRUPT 3
545
546 static int exception_type(int vector)
547 {
548 unsigned int mask;
549
550 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
551 return EXCPT_INTERRUPT;
552
553 mask = 1 << vector;
554
555 /* #DB is trap, as instruction watchpoints are handled elsewhere */
556 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
557 return EXCPT_TRAP;
558
559 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
560 return EXCPT_ABORT;
561
562 /* Reserved exceptions will result in fault */
563 return EXCPT_FAULT;
564 }
565
566 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
567 {
568 unsigned nr = vcpu->arch.exception.nr;
569 bool has_payload = vcpu->arch.exception.has_payload;
570 unsigned long payload = vcpu->arch.exception.payload;
571
572 if (!has_payload)
573 return;
574
575 switch (nr) {
576 case DB_VECTOR:
577 /*
578 * "Certain debug exceptions may clear bit 0-3. The
579 * remaining contents of the DR6 register are never
580 * cleared by the processor".
581 */
582 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
583 /*
584 * In order to reflect the #DB exception payload in guest
585 * dr6, three components need to be considered: active low
586 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
587 * DR6_BS and DR6_BT)
588 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
589 * In the target guest dr6:
590 * FIXED_1 bits should always be set.
591 * Active low bits should be cleared if 1-setting in payload.
592 * Active high bits should be set if 1-setting in payload.
593 *
594 * Note, the payload is compatible with the pending debug
595 * exceptions/exit qualification under VMX, that active_low bits
596 * are active high in payload.
597 * So they need to be flipped for DR6.
598 */
599 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
600 vcpu->arch.dr6 |= payload;
601 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
602
603 /*
604 * The #DB payload is defined as compatible with the 'pending
605 * debug exceptions' field under VMX, not DR6. While bit 12 is
606 * defined in the 'pending debug exceptions' field (enabled
607 * breakpoint), it is reserved and must be zero in DR6.
608 */
609 vcpu->arch.dr6 &= ~BIT(12);
610 break;
611 case PF_VECTOR:
612 vcpu->arch.cr2 = payload;
613 break;
614 }
615
616 vcpu->arch.exception.has_payload = false;
617 vcpu->arch.exception.payload = 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
620
621 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
622 unsigned nr, bool has_error, u32 error_code,
623 bool has_payload, unsigned long payload, bool reinject)
624 {
625 u32 prev_nr;
626 int class1, class2;
627
628 kvm_make_request(KVM_REQ_EVENT, vcpu);
629
630 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
631 queue:
632 if (reinject) {
633 /*
634 * On vmentry, vcpu->arch.exception.pending is only
635 * true if an event injection was blocked by
636 * nested_run_pending. In that case, however,
637 * vcpu_enter_guest requests an immediate exit,
638 * and the guest shouldn't proceed far enough to
639 * need reinjection.
640 */
641 WARN_ON_ONCE(vcpu->arch.exception.pending);
642 vcpu->arch.exception.injected = true;
643 if (WARN_ON_ONCE(has_payload)) {
644 /*
645 * A reinjected event has already
646 * delivered its payload.
647 */
648 has_payload = false;
649 payload = 0;
650 }
651 } else {
652 vcpu->arch.exception.pending = true;
653 vcpu->arch.exception.injected = false;
654 }
655 vcpu->arch.exception.has_error_code = has_error;
656 vcpu->arch.exception.nr = nr;
657 vcpu->arch.exception.error_code = error_code;
658 vcpu->arch.exception.has_payload = has_payload;
659 vcpu->arch.exception.payload = payload;
660 if (!is_guest_mode(vcpu))
661 kvm_deliver_exception_payload(vcpu);
662 return;
663 }
664
665 /* to check exception */
666 prev_nr = vcpu->arch.exception.nr;
667 if (prev_nr == DF_VECTOR) {
668 /* triple fault -> shutdown */
669 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
670 return;
671 }
672 class1 = exception_class(prev_nr);
673 class2 = exception_class(nr);
674 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
675 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
676 /*
677 * Generate double fault per SDM Table 5-5. Set
678 * exception.pending = true so that the double fault
679 * can trigger a nested vmexit.
680 */
681 vcpu->arch.exception.pending = true;
682 vcpu->arch.exception.injected = false;
683 vcpu->arch.exception.has_error_code = true;
684 vcpu->arch.exception.nr = DF_VECTOR;
685 vcpu->arch.exception.error_code = 0;
686 vcpu->arch.exception.has_payload = false;
687 vcpu->arch.exception.payload = 0;
688 } else
689 /* replace previous exception with a new one in a hope
690 that instruction re-execution will regenerate lost
691 exception */
692 goto queue;
693 }
694
695 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
696 {
697 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
698 }
699 EXPORT_SYMBOL_GPL(kvm_queue_exception);
700
701 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
702 {
703 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
704 }
705 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
706
707 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
708 unsigned long payload)
709 {
710 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
711 }
712 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
713
714 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
715 u32 error_code, unsigned long payload)
716 {
717 kvm_multiple_exception(vcpu, nr, true, error_code,
718 true, payload, false);
719 }
720
721 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
722 {
723 if (err)
724 kvm_inject_gp(vcpu, 0);
725 else
726 return kvm_skip_emulated_instruction(vcpu);
727
728 return 1;
729 }
730 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
731
732 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
733 {
734 if (err) {
735 kvm_inject_gp(vcpu, 0);
736 return 1;
737 }
738
739 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
740 EMULTYPE_COMPLETE_USER_EXIT);
741 }
742
743 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
744 {
745 ++vcpu->stat.pf_guest;
746 vcpu->arch.exception.nested_apf =
747 is_guest_mode(vcpu) && fault->async_page_fault;
748 if (vcpu->arch.exception.nested_apf) {
749 vcpu->arch.apf.nested_apf_token = fault->address;
750 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
751 } else {
752 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
753 fault->address);
754 }
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
757
758 /* Returns true if the page fault was immediately morphed into a VM-Exit. */
759 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
760 struct x86_exception *fault)
761 {
762 struct kvm_mmu *fault_mmu;
763 WARN_ON_ONCE(fault->vector != PF_VECTOR);
764
765 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
766 vcpu->arch.walk_mmu;
767
768 /*
769 * Invalidate the TLB entry for the faulting address, if it exists,
770 * else the access will fault indefinitely (and to emulate hardware).
771 */
772 if ((fault->error_code & PFERR_PRESENT_MASK) &&
773 !(fault->error_code & PFERR_RSVD_MASK))
774 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
775 fault_mmu->root.hpa);
776
777 /*
778 * A workaround for KVM's bad exception handling. If KVM injected an
779 * exception into L2, and L2 encountered a #PF while vectoring the
780 * injected exception, manually check to see if L1 wants to intercept
781 * #PF, otherwise queuing the #PF will lead to #DF or a lost exception.
782 * In all other cases, defer the check to nested_ops->check_events(),
783 * which will correctly handle priority (this does not). Note, other
784 * exceptions, e.g. #GP, are theoretically affected, #PF is simply the
785 * most problematic, e.g. when L0 and L1 are both intercepting #PF for
786 * shadow paging.
787 *
788 * TODO: Rewrite exception handling to track injected and pending
789 * (VM-Exit) exceptions separately.
790 */
791 if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) &&
792 kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault))
793 return true;
794
795 fault_mmu->inject_page_fault(vcpu, fault);
796 return false;
797 }
798 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
799
800 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
801 {
802 atomic_inc(&vcpu->arch.nmi_queued);
803 kvm_make_request(KVM_REQ_NMI, vcpu);
804 }
805 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
806
807 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
808 {
809 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
810 }
811 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
812
813 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
814 {
815 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
816 }
817 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
818
819 /*
820 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
821 * a #GP and return false.
822 */
823 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
824 {
825 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
826 return true;
827 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
828 return false;
829 }
830 EXPORT_SYMBOL_GPL(kvm_require_cpl);
831
832 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
833 {
834 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
835 return true;
836
837 kvm_queue_exception(vcpu, UD_VECTOR);
838 return false;
839 }
840 EXPORT_SYMBOL_GPL(kvm_require_dr);
841
842 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
843 {
844 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
845 }
846
847 /*
848 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
849 */
850 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
851 {
852 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
853 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
854 gpa_t real_gpa;
855 int i;
856 int ret;
857 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
858
859 /*
860 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
861 * to an L1 GPA.
862 */
863 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
864 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
865 if (real_gpa == UNMAPPED_GVA)
866 return 0;
867
868 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
869 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
870 cr3 & GENMASK(11, 5), sizeof(pdpte));
871 if (ret < 0)
872 return 0;
873
874 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
875 if ((pdpte[i] & PT_PRESENT_MASK) &&
876 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
877 return 0;
878 }
879 }
880
881 /*
882 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
883 * Shadow page roots need to be reconstructed instead.
884 */
885 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
886 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
887
888 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
889 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
890 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
891 vcpu->arch.pdptrs_from_userspace = false;
892
893 return 1;
894 }
895 EXPORT_SYMBOL_GPL(load_pdptrs);
896
897 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
898 {
899 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
900 kvm_clear_async_pf_completion_queue(vcpu);
901 kvm_async_pf_hash_reset(vcpu);
902
903 /*
904 * Clearing CR0.PG is defined to flush the TLB from the guest's
905 * perspective.
906 */
907 if (!(cr0 & X86_CR0_PG))
908 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
909 }
910
911 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
912 kvm_mmu_reset_context(vcpu);
913
914 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
915 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
916 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
917 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
918 }
919 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
920
921 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
922 {
923 unsigned long old_cr0 = kvm_read_cr0(vcpu);
924
925 cr0 |= X86_CR0_ET;
926
927 #ifdef CONFIG_X86_64
928 if (cr0 & 0xffffffff00000000UL)
929 return 1;
930 #endif
931
932 cr0 &= ~CR0_RESERVED_BITS;
933
934 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
935 return 1;
936
937 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
938 return 1;
939
940 #ifdef CONFIG_X86_64
941 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
942 (cr0 & X86_CR0_PG)) {
943 int cs_db, cs_l;
944
945 if (!is_pae(vcpu))
946 return 1;
947 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
948 if (cs_l)
949 return 1;
950 }
951 #endif
952 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
953 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
954 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
955 return 1;
956
957 if (!(cr0 & X86_CR0_PG) &&
958 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
959 return 1;
960
961 static_call(kvm_x86_set_cr0)(vcpu, cr0);
962
963 kvm_post_set_cr0(vcpu, old_cr0, cr0);
964
965 return 0;
966 }
967 EXPORT_SYMBOL_GPL(kvm_set_cr0);
968
969 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
970 {
971 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
972 }
973 EXPORT_SYMBOL_GPL(kvm_lmsw);
974
975 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
976 {
977 if (vcpu->arch.guest_state_protected)
978 return;
979
980 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
981
982 if (vcpu->arch.xcr0 != host_xcr0)
983 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
984
985 if (vcpu->arch.xsaves_enabled &&
986 vcpu->arch.ia32_xss != host_xss)
987 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
988 }
989
990 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
991 if (static_cpu_has(X86_FEATURE_PKU) &&
992 vcpu->arch.pkru != vcpu->arch.host_pkru &&
993 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
994 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
995 write_pkru(vcpu->arch.pkru);
996 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
997 }
998 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
999
1000 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1001 {
1002 if (vcpu->arch.guest_state_protected)
1003 return;
1004
1005 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1006 if (static_cpu_has(X86_FEATURE_PKU) &&
1007 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1008 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1009 vcpu->arch.pkru = rdpkru();
1010 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1011 write_pkru(vcpu->arch.host_pkru);
1012 }
1013 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1014
1015 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1016
1017 if (vcpu->arch.xcr0 != host_xcr0)
1018 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1019
1020 if (vcpu->arch.xsaves_enabled &&
1021 vcpu->arch.ia32_xss != host_xss)
1022 wrmsrl(MSR_IA32_XSS, host_xss);
1023 }
1024
1025 }
1026 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1027
1028 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
1029 {
1030 return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1031 }
1032
1033 #ifdef CONFIG_X86_64
1034 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1035 {
1036 return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1037 }
1038 #endif
1039
1040 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1041 {
1042 u64 xcr0 = xcr;
1043 u64 old_xcr0 = vcpu->arch.xcr0;
1044 u64 valid_bits;
1045
1046 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1047 if (index != XCR_XFEATURE_ENABLED_MASK)
1048 return 1;
1049 if (!(xcr0 & XFEATURE_MASK_FP))
1050 return 1;
1051 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1052 return 1;
1053
1054 /*
1055 * Do not allow the guest to set bits that we do not support
1056 * saving. However, xcr0 bit 0 is always set, even if the
1057 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1058 */
1059 valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1060 if (xcr0 & ~valid_bits)
1061 return 1;
1062
1063 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1064 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1065 return 1;
1066
1067 if (xcr0 & XFEATURE_MASK_AVX512) {
1068 if (!(xcr0 & XFEATURE_MASK_YMM))
1069 return 1;
1070 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1071 return 1;
1072 }
1073
1074 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1075 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1076 return 1;
1077
1078 vcpu->arch.xcr0 = xcr0;
1079
1080 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1081 kvm_update_cpuid_runtime(vcpu);
1082 return 0;
1083 }
1084
1085 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1086 {
1087 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1088 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1089 kvm_inject_gp(vcpu, 0);
1090 return 1;
1091 }
1092
1093 return kvm_skip_emulated_instruction(vcpu);
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1096
1097 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1098 {
1099 if (cr4 & cr4_reserved_bits)
1100 return false;
1101
1102 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1103 return false;
1104
1105 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1108
1109 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1110 {
1111 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1112 kvm_mmu_reset_context(vcpu);
1113
1114 /*
1115 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1116 * according to the SDM; however, stale prev_roots could be reused
1117 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1118 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1119 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1120 * so fall through.
1121 */
1122 if (!tdp_enabled &&
1123 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1124 kvm_mmu_unload(vcpu);
1125
1126 /*
1127 * The TLB has to be flushed for all PCIDs if any of the following
1128 * (architecturally required) changes happen:
1129 * - CR4.PCIDE is changed from 1 to 0
1130 * - CR4.PGE is toggled
1131 *
1132 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1133 */
1134 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1135 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1136 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1137
1138 /*
1139 * The TLB has to be flushed for the current PCID if any of the
1140 * following (architecturally required) changes happen:
1141 * - CR4.SMEP is changed from 0 to 1
1142 * - CR4.PAE is toggled
1143 */
1144 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1145 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1146 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1147
1148 }
1149 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1150
1151 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1152 {
1153 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1154
1155 if (!kvm_is_valid_cr4(vcpu, cr4))
1156 return 1;
1157
1158 if (is_long_mode(vcpu)) {
1159 if (!(cr4 & X86_CR4_PAE))
1160 return 1;
1161 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1162 return 1;
1163 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1164 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1165 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1166 return 1;
1167
1168 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1169 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1170 return 1;
1171
1172 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1173 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1174 return 1;
1175 }
1176
1177 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1178
1179 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1180
1181 return 0;
1182 }
1183 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1184
1185 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1186 {
1187 struct kvm_mmu *mmu = vcpu->arch.mmu;
1188 unsigned long roots_to_free = 0;
1189 int i;
1190
1191 /*
1192 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1193 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1194 * also via the emulator. KVM's TDP page tables are not in the scope of
1195 * the invalidation, but the guest's TLB entries need to be flushed as
1196 * the CPU may have cached entries in its TLB for the target PCID.
1197 */
1198 if (unlikely(tdp_enabled)) {
1199 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1200 return;
1201 }
1202
1203 /*
1204 * If neither the current CR3 nor any of the prev_roots use the given
1205 * PCID, then nothing needs to be done here because a resync will
1206 * happen anyway before switching to any other CR3.
1207 */
1208 if (kvm_get_active_pcid(vcpu) == pcid) {
1209 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1210 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1211 }
1212
1213 /*
1214 * If PCID is disabled, there is no need to free prev_roots even if the
1215 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1216 * with PCIDE=0.
1217 */
1218 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1219 return;
1220
1221 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1222 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1223 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1224
1225 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1226 }
1227
1228 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1229 {
1230 bool skip_tlb_flush = false;
1231 unsigned long pcid = 0;
1232 #ifdef CONFIG_X86_64
1233 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1234
1235 if (pcid_enabled) {
1236 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1237 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1238 pcid = cr3 & X86_CR3_PCID_MASK;
1239 }
1240 #endif
1241
1242 /* PDPTRs are always reloaded for PAE paging. */
1243 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1244 goto handle_tlb_flush;
1245
1246 /*
1247 * Do not condition the GPA check on long mode, this helper is used to
1248 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1249 * the current vCPU mode is accurate.
1250 */
1251 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1252 return 1;
1253
1254 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1255 return 1;
1256
1257 if (cr3 != kvm_read_cr3(vcpu))
1258 kvm_mmu_new_pgd(vcpu, cr3);
1259
1260 vcpu->arch.cr3 = cr3;
1261 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1262 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1263
1264 handle_tlb_flush:
1265 /*
1266 * A load of CR3 that flushes the TLB flushes only the current PCID,
1267 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1268 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1269 * and it's impossible to use a non-zero PCID when PCID is disabled,
1270 * i.e. only PCID=0 can be relevant.
1271 */
1272 if (!skip_tlb_flush)
1273 kvm_invalidate_pcid(vcpu, pcid);
1274
1275 return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1278
1279 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1280 {
1281 if (cr8 & CR8_RESERVED_BITS)
1282 return 1;
1283 if (lapic_in_kernel(vcpu))
1284 kvm_lapic_set_tpr(vcpu, cr8);
1285 else
1286 vcpu->arch.cr8 = cr8;
1287 return 0;
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1290
1291 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1292 {
1293 if (lapic_in_kernel(vcpu))
1294 return kvm_lapic_get_cr8(vcpu);
1295 else
1296 return vcpu->arch.cr8;
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1299
1300 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1301 {
1302 int i;
1303
1304 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1305 for (i = 0; i < KVM_NR_DB_REGS; i++)
1306 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1307 }
1308 }
1309
1310 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1311 {
1312 unsigned long dr7;
1313
1314 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1315 dr7 = vcpu->arch.guest_debug_dr7;
1316 else
1317 dr7 = vcpu->arch.dr7;
1318 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1319 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1320 if (dr7 & DR7_BP_EN_MASK)
1321 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1322 }
1323 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1324
1325 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1326 {
1327 u64 fixed = DR6_FIXED_1;
1328
1329 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1330 fixed |= DR6_RTM;
1331
1332 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1333 fixed |= DR6_BUS_LOCK;
1334 return fixed;
1335 }
1336
1337 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1338 {
1339 size_t size = ARRAY_SIZE(vcpu->arch.db);
1340
1341 switch (dr) {
1342 case 0 ... 3:
1343 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1344 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1345 vcpu->arch.eff_db[dr] = val;
1346 break;
1347 case 4:
1348 case 6:
1349 if (!kvm_dr6_valid(val))
1350 return 1; /* #GP */
1351 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1352 break;
1353 case 5:
1354 default: /* 7 */
1355 if (!kvm_dr7_valid(val))
1356 return 1; /* #GP */
1357 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1358 kvm_update_dr7(vcpu);
1359 break;
1360 }
1361
1362 return 0;
1363 }
1364 EXPORT_SYMBOL_GPL(kvm_set_dr);
1365
1366 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1367 {
1368 size_t size = ARRAY_SIZE(vcpu->arch.db);
1369
1370 switch (dr) {
1371 case 0 ... 3:
1372 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1373 break;
1374 case 4:
1375 case 6:
1376 *val = vcpu->arch.dr6;
1377 break;
1378 case 5:
1379 default: /* 7 */
1380 *val = vcpu->arch.dr7;
1381 break;
1382 }
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_get_dr);
1385
1386 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1387 {
1388 u32 ecx = kvm_rcx_read(vcpu);
1389 u64 data;
1390
1391 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1392 kvm_inject_gp(vcpu, 0);
1393 return 1;
1394 }
1395
1396 kvm_rax_write(vcpu, (u32)data);
1397 kvm_rdx_write(vcpu, data >> 32);
1398 return kvm_skip_emulated_instruction(vcpu);
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1401
1402 /*
1403 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1404 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1405 *
1406 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1407 * extract the supported MSRs from the related const lists.
1408 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1409 * capabilities of the host cpu. This capabilities test skips MSRs that are
1410 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1411 * may depend on host virtualization features rather than host cpu features.
1412 */
1413
1414 static const u32 msrs_to_save_all[] = {
1415 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1416 MSR_STAR,
1417 #ifdef CONFIG_X86_64
1418 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1419 #endif
1420 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1421 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1422 MSR_IA32_SPEC_CTRL,
1423 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1424 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1425 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1426 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1427 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1428 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1429 MSR_IA32_UMWAIT_CONTROL,
1430
1431 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1432 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1433 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1434 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1435 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1436 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1437 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1438 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1439 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1440 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1441 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1442 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1443 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1444 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1445 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1446 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1447 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1448 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1449 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1450 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1451 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1452 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1453
1454 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1455 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1456 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1457 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1458 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1459 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1460 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1461 };
1462
1463 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1464 static unsigned num_msrs_to_save;
1465
1466 static const u32 emulated_msrs_all[] = {
1467 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1468 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1469 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1470 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1471 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1472 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1473 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1474 HV_X64_MSR_RESET,
1475 HV_X64_MSR_VP_INDEX,
1476 HV_X64_MSR_VP_RUNTIME,
1477 HV_X64_MSR_SCONTROL,
1478 HV_X64_MSR_STIMER0_CONFIG,
1479 HV_X64_MSR_VP_ASSIST_PAGE,
1480 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1481 HV_X64_MSR_TSC_EMULATION_STATUS,
1482 HV_X64_MSR_SYNDBG_OPTIONS,
1483 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1484 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1485 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1486
1487 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1488 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1489
1490 MSR_IA32_TSC_ADJUST,
1491 MSR_IA32_TSC_DEADLINE,
1492 MSR_IA32_ARCH_CAPABILITIES,
1493 MSR_IA32_PERF_CAPABILITIES,
1494 MSR_IA32_MISC_ENABLE,
1495 MSR_IA32_MCG_STATUS,
1496 MSR_IA32_MCG_CTL,
1497 MSR_IA32_MCG_EXT_CTL,
1498 MSR_IA32_SMBASE,
1499 MSR_SMI_COUNT,
1500 MSR_PLATFORM_INFO,
1501 MSR_MISC_FEATURES_ENABLES,
1502 MSR_AMD64_VIRT_SPEC_CTRL,
1503 MSR_AMD64_TSC_RATIO,
1504 MSR_IA32_POWER_CTL,
1505 MSR_IA32_UCODE_REV,
1506
1507 /*
1508 * The following list leaves out MSRs whose values are determined
1509 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1510 * We always support the "true" VMX control MSRs, even if the host
1511 * processor does not, so I am putting these registers here rather
1512 * than in msrs_to_save_all.
1513 */
1514 MSR_IA32_VMX_BASIC,
1515 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1516 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1517 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1518 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1519 MSR_IA32_VMX_MISC,
1520 MSR_IA32_VMX_CR0_FIXED0,
1521 MSR_IA32_VMX_CR4_FIXED0,
1522 MSR_IA32_VMX_VMCS_ENUM,
1523 MSR_IA32_VMX_PROCBASED_CTLS2,
1524 MSR_IA32_VMX_EPT_VPID_CAP,
1525 MSR_IA32_VMX_VMFUNC,
1526
1527 MSR_K7_HWCR,
1528 MSR_KVM_POLL_CONTROL,
1529 };
1530
1531 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1532 static unsigned num_emulated_msrs;
1533
1534 /*
1535 * List of msr numbers which are used to expose MSR-based features that
1536 * can be used by a hypervisor to validate requested CPU features.
1537 */
1538 static const u32 msr_based_features_all[] = {
1539 MSR_IA32_VMX_BASIC,
1540 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1541 MSR_IA32_VMX_PINBASED_CTLS,
1542 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1543 MSR_IA32_VMX_PROCBASED_CTLS,
1544 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1545 MSR_IA32_VMX_EXIT_CTLS,
1546 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1547 MSR_IA32_VMX_ENTRY_CTLS,
1548 MSR_IA32_VMX_MISC,
1549 MSR_IA32_VMX_CR0_FIXED0,
1550 MSR_IA32_VMX_CR0_FIXED1,
1551 MSR_IA32_VMX_CR4_FIXED0,
1552 MSR_IA32_VMX_CR4_FIXED1,
1553 MSR_IA32_VMX_VMCS_ENUM,
1554 MSR_IA32_VMX_PROCBASED_CTLS2,
1555 MSR_IA32_VMX_EPT_VPID_CAP,
1556 MSR_IA32_VMX_VMFUNC,
1557
1558 MSR_F10H_DECFG,
1559 MSR_IA32_UCODE_REV,
1560 MSR_IA32_ARCH_CAPABILITIES,
1561 MSR_IA32_PERF_CAPABILITIES,
1562 };
1563
1564 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1565 static unsigned int num_msr_based_features;
1566
1567 static u64 kvm_get_arch_capabilities(void)
1568 {
1569 u64 data = 0;
1570
1571 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1572 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1573
1574 /*
1575 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1576 * the nested hypervisor runs with NX huge pages. If it is not,
1577 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1578 * L1 guests, so it need not worry about its own (L2) guests.
1579 */
1580 data |= ARCH_CAP_PSCHANGE_MC_NO;
1581
1582 /*
1583 * If we're doing cache flushes (either "always" or "cond")
1584 * we will do one whenever the guest does a vmlaunch/vmresume.
1585 * If an outer hypervisor is doing the cache flush for us
1586 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1587 * capability to the guest too, and if EPT is disabled we're not
1588 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1589 * require a nested hypervisor to do a flush of its own.
1590 */
1591 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1592 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1593
1594 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1595 data |= ARCH_CAP_RDCL_NO;
1596 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1597 data |= ARCH_CAP_SSB_NO;
1598 if (!boot_cpu_has_bug(X86_BUG_MDS))
1599 data |= ARCH_CAP_MDS_NO;
1600
1601 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1602 /*
1603 * If RTM=0 because the kernel has disabled TSX, the host might
1604 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1605 * and therefore knows that there cannot be TAA) but keep
1606 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1607 * and we want to allow migrating those guests to tsx=off hosts.
1608 */
1609 data &= ~ARCH_CAP_TAA_NO;
1610 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1611 data |= ARCH_CAP_TAA_NO;
1612 } else {
1613 /*
1614 * Nothing to do here; we emulate TSX_CTRL if present on the
1615 * host so the guest can choose between disabling TSX or
1616 * using VERW to clear CPU buffers.
1617 */
1618 }
1619
1620 /* Guests don't need to know "Fill buffer clear control" exists */
1621 data &= ~ARCH_CAP_FB_CLEAR_CTRL;
1622
1623 return data;
1624 }
1625
1626 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1627 {
1628 switch (msr->index) {
1629 case MSR_IA32_ARCH_CAPABILITIES:
1630 msr->data = kvm_get_arch_capabilities();
1631 break;
1632 case MSR_IA32_UCODE_REV:
1633 rdmsrl_safe(msr->index, &msr->data);
1634 break;
1635 default:
1636 return static_call(kvm_x86_get_msr_feature)(msr);
1637 }
1638 return 0;
1639 }
1640
1641 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1642 {
1643 struct kvm_msr_entry msr;
1644 int r;
1645
1646 msr.index = index;
1647 r = kvm_get_msr_feature(&msr);
1648
1649 if (r == KVM_MSR_RET_INVALID) {
1650 /* Unconditionally clear the output for simplicity */
1651 *data = 0;
1652 if (kvm_msr_ignored_check(index, 0, false))
1653 r = 0;
1654 }
1655
1656 if (r)
1657 return r;
1658
1659 *data = msr.data;
1660
1661 return 0;
1662 }
1663
1664 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1665 {
1666 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1667 return false;
1668
1669 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1670 return false;
1671
1672 if (efer & (EFER_LME | EFER_LMA) &&
1673 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1674 return false;
1675
1676 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1677 return false;
1678
1679 return true;
1680
1681 }
1682 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1683 {
1684 if (efer & efer_reserved_bits)
1685 return false;
1686
1687 return __kvm_valid_efer(vcpu, efer);
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1690
1691 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1692 {
1693 u64 old_efer = vcpu->arch.efer;
1694 u64 efer = msr_info->data;
1695 int r;
1696
1697 if (efer & efer_reserved_bits)
1698 return 1;
1699
1700 if (!msr_info->host_initiated) {
1701 if (!__kvm_valid_efer(vcpu, efer))
1702 return 1;
1703
1704 if (is_paging(vcpu) &&
1705 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1706 return 1;
1707 }
1708
1709 efer &= ~EFER_LMA;
1710 efer |= vcpu->arch.efer & EFER_LMA;
1711
1712 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1713 if (r) {
1714 WARN_ON(r > 0);
1715 return r;
1716 }
1717
1718 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1719 kvm_mmu_reset_context(vcpu);
1720
1721 return 0;
1722 }
1723
1724 void kvm_enable_efer_bits(u64 mask)
1725 {
1726 efer_reserved_bits &= ~mask;
1727 }
1728 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1729
1730 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1731 {
1732 struct kvm_x86_msr_filter *msr_filter;
1733 struct msr_bitmap_range *ranges;
1734 struct kvm *kvm = vcpu->kvm;
1735 bool allowed;
1736 int idx;
1737 u32 i;
1738
1739 /* x2APIC MSRs do not support filtering. */
1740 if (index >= 0x800 && index <= 0x8ff)
1741 return true;
1742
1743 idx = srcu_read_lock(&kvm->srcu);
1744
1745 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1746 if (!msr_filter) {
1747 allowed = true;
1748 goto out;
1749 }
1750
1751 allowed = msr_filter->default_allow;
1752 ranges = msr_filter->ranges;
1753
1754 for (i = 0; i < msr_filter->count; i++) {
1755 u32 start = ranges[i].base;
1756 u32 end = start + ranges[i].nmsrs;
1757 u32 flags = ranges[i].flags;
1758 unsigned long *bitmap = ranges[i].bitmap;
1759
1760 if ((index >= start) && (index < end) && (flags & type)) {
1761 allowed = !!test_bit(index - start, bitmap);
1762 break;
1763 }
1764 }
1765
1766 out:
1767 srcu_read_unlock(&kvm->srcu, idx);
1768
1769 return allowed;
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1772
1773 /*
1774 * Write @data into the MSR specified by @index. Select MSR specific fault
1775 * checks are bypassed if @host_initiated is %true.
1776 * Returns 0 on success, non-0 otherwise.
1777 * Assumes vcpu_load() was already called.
1778 */
1779 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1780 bool host_initiated)
1781 {
1782 struct msr_data msr;
1783
1784 switch (index) {
1785 case MSR_FS_BASE:
1786 case MSR_GS_BASE:
1787 case MSR_KERNEL_GS_BASE:
1788 case MSR_CSTAR:
1789 case MSR_LSTAR:
1790 if (is_noncanonical_address(data, vcpu))
1791 return 1;
1792 break;
1793 case MSR_IA32_SYSENTER_EIP:
1794 case MSR_IA32_SYSENTER_ESP:
1795 /*
1796 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1797 * non-canonical address is written on Intel but not on
1798 * AMD (which ignores the top 32-bits, because it does
1799 * not implement 64-bit SYSENTER).
1800 *
1801 * 64-bit code should hence be able to write a non-canonical
1802 * value on AMD. Making the address canonical ensures that
1803 * vmentry does not fail on Intel after writing a non-canonical
1804 * value, and that something deterministic happens if the guest
1805 * invokes 64-bit SYSENTER.
1806 */
1807 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1808 break;
1809 case MSR_TSC_AUX:
1810 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1811 return 1;
1812
1813 if (!host_initiated &&
1814 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1815 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1816 return 1;
1817
1818 /*
1819 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1820 * incomplete and conflicting architectural behavior. Current
1821 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1822 * reserved and always read as zeros. Enforce Intel's reserved
1823 * bits check if and only if the guest CPU is Intel, and clear
1824 * the bits in all other cases. This ensures cross-vendor
1825 * migration will provide consistent behavior for the guest.
1826 */
1827 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1828 return 1;
1829
1830 data = (u32)data;
1831 break;
1832 }
1833
1834 msr.data = data;
1835 msr.index = index;
1836 msr.host_initiated = host_initiated;
1837
1838 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1839 }
1840
1841 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1842 u32 index, u64 data, bool host_initiated)
1843 {
1844 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1845
1846 if (ret == KVM_MSR_RET_INVALID)
1847 if (kvm_msr_ignored_check(index, data, true))
1848 ret = 0;
1849
1850 return ret;
1851 }
1852
1853 /*
1854 * Read the MSR specified by @index into @data. Select MSR specific fault
1855 * checks are bypassed if @host_initiated is %true.
1856 * Returns 0 on success, non-0 otherwise.
1857 * Assumes vcpu_load() was already called.
1858 */
1859 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1860 bool host_initiated)
1861 {
1862 struct msr_data msr;
1863 int ret;
1864
1865 switch (index) {
1866 case MSR_TSC_AUX:
1867 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1868 return 1;
1869
1870 if (!host_initiated &&
1871 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1872 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1873 return 1;
1874 break;
1875 }
1876
1877 msr.index = index;
1878 msr.host_initiated = host_initiated;
1879
1880 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1881 if (!ret)
1882 *data = msr.data;
1883 return ret;
1884 }
1885
1886 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1887 u32 index, u64 *data, bool host_initiated)
1888 {
1889 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1890
1891 if (ret == KVM_MSR_RET_INVALID) {
1892 /* Unconditionally clear *data for simplicity */
1893 *data = 0;
1894 if (kvm_msr_ignored_check(index, 0, false))
1895 ret = 0;
1896 }
1897
1898 return ret;
1899 }
1900
1901 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1902 {
1903 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1904 return KVM_MSR_RET_FILTERED;
1905 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1906 }
1907
1908 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1909 {
1910 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1911 return KVM_MSR_RET_FILTERED;
1912 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1913 }
1914
1915 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1916 {
1917 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1918 }
1919 EXPORT_SYMBOL_GPL(kvm_get_msr);
1920
1921 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1922 {
1923 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1924 }
1925 EXPORT_SYMBOL_GPL(kvm_set_msr);
1926
1927 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1928 {
1929 if (!vcpu->run->msr.error) {
1930 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1931 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1932 }
1933 }
1934
1935 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1936 {
1937 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1938 }
1939
1940 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1941 {
1942 complete_userspace_rdmsr(vcpu);
1943 return complete_emulated_msr_access(vcpu);
1944 }
1945
1946 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1947 {
1948 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1949 }
1950
1951 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1952 {
1953 complete_userspace_rdmsr(vcpu);
1954 return complete_fast_msr_access(vcpu);
1955 }
1956
1957 static u64 kvm_msr_reason(int r)
1958 {
1959 switch (r) {
1960 case KVM_MSR_RET_INVALID:
1961 return KVM_MSR_EXIT_REASON_UNKNOWN;
1962 case KVM_MSR_RET_FILTERED:
1963 return KVM_MSR_EXIT_REASON_FILTER;
1964 default:
1965 return KVM_MSR_EXIT_REASON_INVAL;
1966 }
1967 }
1968
1969 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1970 u32 exit_reason, u64 data,
1971 int (*completion)(struct kvm_vcpu *vcpu),
1972 int r)
1973 {
1974 u64 msr_reason = kvm_msr_reason(r);
1975
1976 /* Check if the user wanted to know about this MSR fault */
1977 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1978 return 0;
1979
1980 vcpu->run->exit_reason = exit_reason;
1981 vcpu->run->msr.error = 0;
1982 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1983 vcpu->run->msr.reason = msr_reason;
1984 vcpu->run->msr.index = index;
1985 vcpu->run->msr.data = data;
1986 vcpu->arch.complete_userspace_io = completion;
1987
1988 return 1;
1989 }
1990
1991 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1992 {
1993 u32 ecx = kvm_rcx_read(vcpu);
1994 u64 data;
1995 int r;
1996
1997 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
1998
1999 if (!r) {
2000 trace_kvm_msr_read(ecx, data);
2001
2002 kvm_rax_write(vcpu, data & -1u);
2003 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2004 } else {
2005 /* MSR read failed? See if we should ask user space */
2006 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2007 complete_fast_rdmsr, r))
2008 return 0;
2009 trace_kvm_msr_read_ex(ecx);
2010 }
2011
2012 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2013 }
2014 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2015
2016 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2017 {
2018 u32 ecx = kvm_rcx_read(vcpu);
2019 u64 data = kvm_read_edx_eax(vcpu);
2020 int r;
2021
2022 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2023
2024 if (!r) {
2025 trace_kvm_msr_write(ecx, data);
2026 } else {
2027 /* MSR write failed? See if we should ask user space */
2028 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2029 complete_fast_msr_access, r))
2030 return 0;
2031 /* Signal all other negative errors to userspace */
2032 if (r < 0)
2033 return r;
2034 trace_kvm_msr_write_ex(ecx, data);
2035 }
2036
2037 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2038 }
2039 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2040
2041 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2042 {
2043 return kvm_skip_emulated_instruction(vcpu);
2044 }
2045 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2046
2047 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2048 {
2049 /* Treat an INVD instruction as a NOP and just skip it. */
2050 return kvm_emulate_as_nop(vcpu);
2051 }
2052 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2053
2054 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2055 {
2056 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
2057 return kvm_emulate_as_nop(vcpu);
2058 }
2059 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2060
2061 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2062 {
2063 kvm_queue_exception(vcpu, UD_VECTOR);
2064 return 1;
2065 }
2066 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2067
2068 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2069 {
2070 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2071 return kvm_emulate_as_nop(vcpu);
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2074
2075 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2076 {
2077 xfer_to_guest_mode_prepare();
2078 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2079 xfer_to_guest_mode_work_pending();
2080 }
2081
2082 /*
2083 * The fast path for frequent and performance sensitive wrmsr emulation,
2084 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2085 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2086 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2087 * other cases which must be called after interrupts are enabled on the host.
2088 */
2089 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2090 {
2091 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2092 return 1;
2093
2094 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2095 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2096 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2097 ((u32)(data >> 32) != X2APIC_BROADCAST))
2098 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2099
2100 return 1;
2101 }
2102
2103 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2104 {
2105 if (!kvm_can_use_hv_timer(vcpu))
2106 return 1;
2107
2108 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2109 return 0;
2110 }
2111
2112 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2113 {
2114 u32 msr = kvm_rcx_read(vcpu);
2115 u64 data;
2116 fastpath_t ret = EXIT_FASTPATH_NONE;
2117
2118 switch (msr) {
2119 case APIC_BASE_MSR + (APIC_ICR >> 4):
2120 data = kvm_read_edx_eax(vcpu);
2121 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2122 kvm_skip_emulated_instruction(vcpu);
2123 ret = EXIT_FASTPATH_EXIT_HANDLED;
2124 }
2125 break;
2126 case MSR_IA32_TSC_DEADLINE:
2127 data = kvm_read_edx_eax(vcpu);
2128 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2129 kvm_skip_emulated_instruction(vcpu);
2130 ret = EXIT_FASTPATH_REENTER_GUEST;
2131 }
2132 break;
2133 default:
2134 break;
2135 }
2136
2137 if (ret != EXIT_FASTPATH_NONE)
2138 trace_kvm_msr_write(msr, data);
2139
2140 return ret;
2141 }
2142 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2143
2144 /*
2145 * Adapt set_msr() to msr_io()'s calling convention
2146 */
2147 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2148 {
2149 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2150 }
2151
2152 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2153 {
2154 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2155 }
2156
2157 #ifdef CONFIG_X86_64
2158 struct pvclock_clock {
2159 int vclock_mode;
2160 u64 cycle_last;
2161 u64 mask;
2162 u32 mult;
2163 u32 shift;
2164 u64 base_cycles;
2165 u64 offset;
2166 };
2167
2168 struct pvclock_gtod_data {
2169 seqcount_t seq;
2170
2171 struct pvclock_clock clock; /* extract of a clocksource struct */
2172 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2173
2174 ktime_t offs_boot;
2175 u64 wall_time_sec;
2176 };
2177
2178 static struct pvclock_gtod_data pvclock_gtod_data;
2179
2180 static void update_pvclock_gtod(struct timekeeper *tk)
2181 {
2182 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2183
2184 write_seqcount_begin(&vdata->seq);
2185
2186 /* copy pvclock gtod data */
2187 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2188 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2189 vdata->clock.mask = tk->tkr_mono.mask;
2190 vdata->clock.mult = tk->tkr_mono.mult;
2191 vdata->clock.shift = tk->tkr_mono.shift;
2192 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2193 vdata->clock.offset = tk->tkr_mono.base;
2194
2195 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2196 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2197 vdata->raw_clock.mask = tk->tkr_raw.mask;
2198 vdata->raw_clock.mult = tk->tkr_raw.mult;
2199 vdata->raw_clock.shift = tk->tkr_raw.shift;
2200 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2201 vdata->raw_clock.offset = tk->tkr_raw.base;
2202
2203 vdata->wall_time_sec = tk->xtime_sec;
2204
2205 vdata->offs_boot = tk->offs_boot;
2206
2207 write_seqcount_end(&vdata->seq);
2208 }
2209
2210 static s64 get_kvmclock_base_ns(void)
2211 {
2212 /* Count up from boot time, but with the frequency of the raw clock. */
2213 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2214 }
2215 #else
2216 static s64 get_kvmclock_base_ns(void)
2217 {
2218 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2219 return ktime_get_boottime_ns();
2220 }
2221 #endif
2222
2223 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2224 {
2225 int version;
2226 int r;
2227 struct pvclock_wall_clock wc;
2228 u32 wc_sec_hi;
2229 u64 wall_nsec;
2230
2231 if (!wall_clock)
2232 return;
2233
2234 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2235 if (r)
2236 return;
2237
2238 if (version & 1)
2239 ++version; /* first time write, random junk */
2240
2241 ++version;
2242
2243 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2244 return;
2245
2246 /*
2247 * The guest calculates current wall clock time by adding
2248 * system time (updated by kvm_guest_time_update below) to the
2249 * wall clock specified here. We do the reverse here.
2250 */
2251 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2252
2253 wc.nsec = do_div(wall_nsec, 1000000000);
2254 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2255 wc.version = version;
2256
2257 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2258
2259 if (sec_hi_ofs) {
2260 wc_sec_hi = wall_nsec >> 32;
2261 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2262 &wc_sec_hi, sizeof(wc_sec_hi));
2263 }
2264
2265 version++;
2266 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2267 }
2268
2269 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2270 bool old_msr, bool host_initiated)
2271 {
2272 struct kvm_arch *ka = &vcpu->kvm->arch;
2273
2274 if (vcpu->vcpu_id == 0 && !host_initiated) {
2275 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2276 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2277
2278 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2279 }
2280
2281 vcpu->arch.time = system_time;
2282 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2283
2284 /* we verify if the enable bit is set... */
2285 if (system_time & 1) {
2286 kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2287 KVM_HOST_USES_PFN, system_time & ~1ULL,
2288 sizeof(struct pvclock_vcpu_time_info));
2289 } else {
2290 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
2291 }
2292
2293 return;
2294 }
2295
2296 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2297 {
2298 do_shl32_div32(dividend, divisor);
2299 return dividend;
2300 }
2301
2302 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2303 s8 *pshift, u32 *pmultiplier)
2304 {
2305 uint64_t scaled64;
2306 int32_t shift = 0;
2307 uint64_t tps64;
2308 uint32_t tps32;
2309
2310 tps64 = base_hz;
2311 scaled64 = scaled_hz;
2312 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2313 tps64 >>= 1;
2314 shift--;
2315 }
2316
2317 tps32 = (uint32_t)tps64;
2318 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2319 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2320 scaled64 >>= 1;
2321 else
2322 tps32 <<= 1;
2323 shift++;
2324 }
2325
2326 *pshift = shift;
2327 *pmultiplier = div_frac(scaled64, tps32);
2328 }
2329
2330 #ifdef CONFIG_X86_64
2331 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2332 #endif
2333
2334 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2335 static unsigned long max_tsc_khz;
2336
2337 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2338 {
2339 u64 v = (u64)khz * (1000000 + ppm);
2340 do_div(v, 1000000);
2341 return v;
2342 }
2343
2344 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2345
2346 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2347 {
2348 u64 ratio;
2349
2350 /* Guest TSC same frequency as host TSC? */
2351 if (!scale) {
2352 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2353 return 0;
2354 }
2355
2356 /* TSC scaling supported? */
2357 if (!kvm_has_tsc_control) {
2358 if (user_tsc_khz > tsc_khz) {
2359 vcpu->arch.tsc_catchup = 1;
2360 vcpu->arch.tsc_always_catchup = 1;
2361 return 0;
2362 } else {
2363 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2364 return -1;
2365 }
2366 }
2367
2368 /* TSC scaling required - calculate ratio */
2369 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2370 user_tsc_khz, tsc_khz);
2371
2372 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2373 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2374 user_tsc_khz);
2375 return -1;
2376 }
2377
2378 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2379 return 0;
2380 }
2381
2382 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2383 {
2384 u32 thresh_lo, thresh_hi;
2385 int use_scaling = 0;
2386
2387 /* tsc_khz can be zero if TSC calibration fails */
2388 if (user_tsc_khz == 0) {
2389 /* set tsc_scaling_ratio to a safe value */
2390 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2391 return -1;
2392 }
2393
2394 /* Compute a scale to convert nanoseconds in TSC cycles */
2395 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2396 &vcpu->arch.virtual_tsc_shift,
2397 &vcpu->arch.virtual_tsc_mult);
2398 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2399
2400 /*
2401 * Compute the variation in TSC rate which is acceptable
2402 * within the range of tolerance and decide if the
2403 * rate being applied is within that bounds of the hardware
2404 * rate. If so, no scaling or compensation need be done.
2405 */
2406 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2407 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2408 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2409 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2410 use_scaling = 1;
2411 }
2412 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2413 }
2414
2415 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2416 {
2417 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2418 vcpu->arch.virtual_tsc_mult,
2419 vcpu->arch.virtual_tsc_shift);
2420 tsc += vcpu->arch.this_tsc_write;
2421 return tsc;
2422 }
2423
2424 #ifdef CONFIG_X86_64
2425 static inline int gtod_is_based_on_tsc(int mode)
2426 {
2427 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2428 }
2429 #endif
2430
2431 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2432 {
2433 #ifdef CONFIG_X86_64
2434 bool vcpus_matched;
2435 struct kvm_arch *ka = &vcpu->kvm->arch;
2436 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2437
2438 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2439 atomic_read(&vcpu->kvm->online_vcpus));
2440
2441 /*
2442 * Once the masterclock is enabled, always perform request in
2443 * order to update it.
2444 *
2445 * In order to enable masterclock, the host clocksource must be TSC
2446 * and the vcpus need to have matched TSCs. When that happens,
2447 * perform request to enable masterclock.
2448 */
2449 if (ka->use_master_clock ||
2450 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2451 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2452
2453 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2454 atomic_read(&vcpu->kvm->online_vcpus),
2455 ka->use_master_clock, gtod->clock.vclock_mode);
2456 #endif
2457 }
2458
2459 /*
2460 * Multiply tsc by a fixed point number represented by ratio.
2461 *
2462 * The most significant 64-N bits (mult) of ratio represent the
2463 * integral part of the fixed point number; the remaining N bits
2464 * (frac) represent the fractional part, ie. ratio represents a fixed
2465 * point number (mult + frac * 2^(-N)).
2466 *
2467 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2468 */
2469 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2470 {
2471 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2472 }
2473
2474 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2475 {
2476 u64 _tsc = tsc;
2477
2478 if (ratio != kvm_default_tsc_scaling_ratio)
2479 _tsc = __scale_tsc(ratio, tsc);
2480
2481 return _tsc;
2482 }
2483 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2484
2485 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2486 {
2487 u64 tsc;
2488
2489 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2490
2491 return target_tsc - tsc;
2492 }
2493
2494 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2495 {
2496 return vcpu->arch.l1_tsc_offset +
2497 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2498 }
2499 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2500
2501 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2502 {
2503 u64 nested_offset;
2504
2505 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2506 nested_offset = l1_offset;
2507 else
2508 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2509 kvm_tsc_scaling_ratio_frac_bits);
2510
2511 nested_offset += l2_offset;
2512 return nested_offset;
2513 }
2514 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2515
2516 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2517 {
2518 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2519 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2520 kvm_tsc_scaling_ratio_frac_bits);
2521
2522 return l1_multiplier;
2523 }
2524 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2525
2526 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2527 {
2528 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2529 vcpu->arch.l1_tsc_offset,
2530 l1_offset);
2531
2532 vcpu->arch.l1_tsc_offset = l1_offset;
2533
2534 /*
2535 * If we are here because L1 chose not to trap WRMSR to TSC then
2536 * according to the spec this should set L1's TSC (as opposed to
2537 * setting L1's offset for L2).
2538 */
2539 if (is_guest_mode(vcpu))
2540 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2541 l1_offset,
2542 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2543 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2544 else
2545 vcpu->arch.tsc_offset = l1_offset;
2546
2547 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2548 }
2549
2550 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2551 {
2552 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2553
2554 /* Userspace is changing the multiplier while L2 is active */
2555 if (is_guest_mode(vcpu))
2556 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2557 l1_multiplier,
2558 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2559 else
2560 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2561
2562 if (kvm_has_tsc_control)
2563 static_call(kvm_x86_write_tsc_multiplier)(
2564 vcpu, vcpu->arch.tsc_scaling_ratio);
2565 }
2566
2567 static inline bool kvm_check_tsc_unstable(void)
2568 {
2569 #ifdef CONFIG_X86_64
2570 /*
2571 * TSC is marked unstable when we're running on Hyper-V,
2572 * 'TSC page' clocksource is good.
2573 */
2574 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2575 return false;
2576 #endif
2577 return check_tsc_unstable();
2578 }
2579
2580 /*
2581 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2582 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2583 * participates in.
2584 */
2585 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2586 u64 ns, bool matched)
2587 {
2588 struct kvm *kvm = vcpu->kvm;
2589
2590 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2591
2592 /*
2593 * We also track th most recent recorded KHZ, write and time to
2594 * allow the matching interval to be extended at each write.
2595 */
2596 kvm->arch.last_tsc_nsec = ns;
2597 kvm->arch.last_tsc_write = tsc;
2598 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2599 kvm->arch.last_tsc_offset = offset;
2600
2601 vcpu->arch.last_guest_tsc = tsc;
2602
2603 kvm_vcpu_write_tsc_offset(vcpu, offset);
2604
2605 if (!matched) {
2606 /*
2607 * We split periods of matched TSC writes into generations.
2608 * For each generation, we track the original measured
2609 * nanosecond time, offset, and write, so if TSCs are in
2610 * sync, we can match exact offset, and if not, we can match
2611 * exact software computation in compute_guest_tsc()
2612 *
2613 * These values are tracked in kvm->arch.cur_xxx variables.
2614 */
2615 kvm->arch.cur_tsc_generation++;
2616 kvm->arch.cur_tsc_nsec = ns;
2617 kvm->arch.cur_tsc_write = tsc;
2618 kvm->arch.cur_tsc_offset = offset;
2619 kvm->arch.nr_vcpus_matched_tsc = 0;
2620 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2621 kvm->arch.nr_vcpus_matched_tsc++;
2622 }
2623
2624 /* Keep track of which generation this VCPU has synchronized to */
2625 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2626 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2627 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2628
2629 kvm_track_tsc_matching(vcpu);
2630 }
2631
2632 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2633 {
2634 struct kvm *kvm = vcpu->kvm;
2635 u64 offset, ns, elapsed;
2636 unsigned long flags;
2637 bool matched = false;
2638 bool synchronizing = false;
2639
2640 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2641 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2642 ns = get_kvmclock_base_ns();
2643 elapsed = ns - kvm->arch.last_tsc_nsec;
2644
2645 if (vcpu->arch.virtual_tsc_khz) {
2646 if (data == 0) {
2647 /*
2648 * detection of vcpu initialization -- need to sync
2649 * with other vCPUs. This particularly helps to keep
2650 * kvm_clock stable after CPU hotplug
2651 */
2652 synchronizing = true;
2653 } else {
2654 u64 tsc_exp = kvm->arch.last_tsc_write +
2655 nsec_to_cycles(vcpu, elapsed);
2656 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2657 /*
2658 * Special case: TSC write with a small delta (1 second)
2659 * of virtual cycle time against real time is
2660 * interpreted as an attempt to synchronize the CPU.
2661 */
2662 synchronizing = data < tsc_exp + tsc_hz &&
2663 data + tsc_hz > tsc_exp;
2664 }
2665 }
2666
2667 /*
2668 * For a reliable TSC, we can match TSC offsets, and for an unstable
2669 * TSC, we add elapsed time in this computation. We could let the
2670 * compensation code attempt to catch up if we fall behind, but
2671 * it's better to try to match offsets from the beginning.
2672 */
2673 if (synchronizing &&
2674 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2675 if (!kvm_check_tsc_unstable()) {
2676 offset = kvm->arch.cur_tsc_offset;
2677 } else {
2678 u64 delta = nsec_to_cycles(vcpu, elapsed);
2679 data += delta;
2680 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2681 }
2682 matched = true;
2683 }
2684
2685 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2686 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2687 }
2688
2689 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2690 s64 adjustment)
2691 {
2692 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2693 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2694 }
2695
2696 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2697 {
2698 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2699 WARN_ON(adjustment < 0);
2700 adjustment = kvm_scale_tsc((u64) adjustment,
2701 vcpu->arch.l1_tsc_scaling_ratio);
2702 adjust_tsc_offset_guest(vcpu, adjustment);
2703 }
2704
2705 #ifdef CONFIG_X86_64
2706
2707 static u64 read_tsc(void)
2708 {
2709 u64 ret = (u64)rdtsc_ordered();
2710 u64 last = pvclock_gtod_data.clock.cycle_last;
2711
2712 if (likely(ret >= last))
2713 return ret;
2714
2715 /*
2716 * GCC likes to generate cmov here, but this branch is extremely
2717 * predictable (it's just a function of time and the likely is
2718 * very likely) and there's a data dependence, so force GCC
2719 * to generate a branch instead. I don't barrier() because
2720 * we don't actually need a barrier, and if this function
2721 * ever gets inlined it will generate worse code.
2722 */
2723 asm volatile ("");
2724 return last;
2725 }
2726
2727 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2728 int *mode)
2729 {
2730 long v;
2731 u64 tsc_pg_val;
2732
2733 switch (clock->vclock_mode) {
2734 case VDSO_CLOCKMODE_HVCLOCK:
2735 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2736 tsc_timestamp);
2737 if (tsc_pg_val != U64_MAX) {
2738 /* TSC page valid */
2739 *mode = VDSO_CLOCKMODE_HVCLOCK;
2740 v = (tsc_pg_val - clock->cycle_last) &
2741 clock->mask;
2742 } else {
2743 /* TSC page invalid */
2744 *mode = VDSO_CLOCKMODE_NONE;
2745 }
2746 break;
2747 case VDSO_CLOCKMODE_TSC:
2748 *mode = VDSO_CLOCKMODE_TSC;
2749 *tsc_timestamp = read_tsc();
2750 v = (*tsc_timestamp - clock->cycle_last) &
2751 clock->mask;
2752 break;
2753 default:
2754 *mode = VDSO_CLOCKMODE_NONE;
2755 }
2756
2757 if (*mode == VDSO_CLOCKMODE_NONE)
2758 *tsc_timestamp = v = 0;
2759
2760 return v * clock->mult;
2761 }
2762
2763 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2764 {
2765 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2766 unsigned long seq;
2767 int mode;
2768 u64 ns;
2769
2770 do {
2771 seq = read_seqcount_begin(&gtod->seq);
2772 ns = gtod->raw_clock.base_cycles;
2773 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2774 ns >>= gtod->raw_clock.shift;
2775 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2776 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2777 *t = ns;
2778
2779 return mode;
2780 }
2781
2782 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2783 {
2784 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2785 unsigned long seq;
2786 int mode;
2787 u64 ns;
2788
2789 do {
2790 seq = read_seqcount_begin(&gtod->seq);
2791 ts->tv_sec = gtod->wall_time_sec;
2792 ns = gtod->clock.base_cycles;
2793 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2794 ns >>= gtod->clock.shift;
2795 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2796
2797 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2798 ts->tv_nsec = ns;
2799
2800 return mode;
2801 }
2802
2803 /* returns true if host is using TSC based clocksource */
2804 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2805 {
2806 /* checked again under seqlock below */
2807 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2808 return false;
2809
2810 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2811 tsc_timestamp));
2812 }
2813
2814 /* returns true if host is using TSC based clocksource */
2815 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2816 u64 *tsc_timestamp)
2817 {
2818 /* checked again under seqlock below */
2819 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2820 return false;
2821
2822 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2823 }
2824 #endif
2825
2826 /*
2827 *
2828 * Assuming a stable TSC across physical CPUS, and a stable TSC
2829 * across virtual CPUs, the following condition is possible.
2830 * Each numbered line represents an event visible to both
2831 * CPUs at the next numbered event.
2832 *
2833 * "timespecX" represents host monotonic time. "tscX" represents
2834 * RDTSC value.
2835 *
2836 * VCPU0 on CPU0 | VCPU1 on CPU1
2837 *
2838 * 1. read timespec0,tsc0
2839 * 2. | timespec1 = timespec0 + N
2840 * | tsc1 = tsc0 + M
2841 * 3. transition to guest | transition to guest
2842 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2843 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2844 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2845 *
2846 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2847 *
2848 * - ret0 < ret1
2849 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2850 * ...
2851 * - 0 < N - M => M < N
2852 *
2853 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2854 * always the case (the difference between two distinct xtime instances
2855 * might be smaller then the difference between corresponding TSC reads,
2856 * when updating guest vcpus pvclock areas).
2857 *
2858 * To avoid that problem, do not allow visibility of distinct
2859 * system_timestamp/tsc_timestamp values simultaneously: use a master
2860 * copy of host monotonic time values. Update that master copy
2861 * in lockstep.
2862 *
2863 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2864 *
2865 */
2866
2867 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2868 {
2869 #ifdef CONFIG_X86_64
2870 struct kvm_arch *ka = &kvm->arch;
2871 int vclock_mode;
2872 bool host_tsc_clocksource, vcpus_matched;
2873
2874 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2875 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2876 atomic_read(&kvm->online_vcpus));
2877
2878 /*
2879 * If the host uses TSC clock, then passthrough TSC as stable
2880 * to the guest.
2881 */
2882 host_tsc_clocksource = kvm_get_time_and_clockread(
2883 &ka->master_kernel_ns,
2884 &ka->master_cycle_now);
2885
2886 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2887 && !ka->backwards_tsc_observed
2888 && !ka->boot_vcpu_runs_old_kvmclock;
2889
2890 if (ka->use_master_clock)
2891 atomic_set(&kvm_guest_has_master_clock, 1);
2892
2893 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2894 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2895 vcpus_matched);
2896 #endif
2897 }
2898
2899 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2900 {
2901 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2902 }
2903
2904 static void __kvm_start_pvclock_update(struct kvm *kvm)
2905 {
2906 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2907 write_seqcount_begin(&kvm->arch.pvclock_sc);
2908 }
2909
2910 static void kvm_start_pvclock_update(struct kvm *kvm)
2911 {
2912 kvm_make_mclock_inprogress_request(kvm);
2913
2914 /* no guest entries from this point */
2915 __kvm_start_pvclock_update(kvm);
2916 }
2917
2918 static void kvm_end_pvclock_update(struct kvm *kvm)
2919 {
2920 struct kvm_arch *ka = &kvm->arch;
2921 struct kvm_vcpu *vcpu;
2922 unsigned long i;
2923
2924 write_seqcount_end(&ka->pvclock_sc);
2925 raw_spin_unlock_irq(&ka->tsc_write_lock);
2926 kvm_for_each_vcpu(i, vcpu, kvm)
2927 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2928
2929 /* guest entries allowed */
2930 kvm_for_each_vcpu(i, vcpu, kvm)
2931 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2932 }
2933
2934 static void kvm_update_masterclock(struct kvm *kvm)
2935 {
2936 kvm_hv_request_tsc_page_update(kvm);
2937 kvm_start_pvclock_update(kvm);
2938 pvclock_update_vm_gtod_copy(kvm);
2939 kvm_end_pvclock_update(kvm);
2940 }
2941
2942 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
2943 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2944 {
2945 struct kvm_arch *ka = &kvm->arch;
2946 struct pvclock_vcpu_time_info hv_clock;
2947
2948 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2949 get_cpu();
2950
2951 data->flags = 0;
2952 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2953 #ifdef CONFIG_X86_64
2954 struct timespec64 ts;
2955
2956 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2957 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2958 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2959 } else
2960 #endif
2961 data->host_tsc = rdtsc();
2962
2963 data->flags |= KVM_CLOCK_TSC_STABLE;
2964 hv_clock.tsc_timestamp = ka->master_cycle_now;
2965 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2966 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2967 &hv_clock.tsc_shift,
2968 &hv_clock.tsc_to_system_mul);
2969 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2970 } else {
2971 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2972 }
2973
2974 put_cpu();
2975 }
2976
2977 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2978 {
2979 struct kvm_arch *ka = &kvm->arch;
2980 unsigned seq;
2981
2982 do {
2983 seq = read_seqcount_begin(&ka->pvclock_sc);
2984 __get_kvmclock(kvm, data);
2985 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2986 }
2987
2988 u64 get_kvmclock_ns(struct kvm *kvm)
2989 {
2990 struct kvm_clock_data data;
2991
2992 get_kvmclock(kvm, &data);
2993 return data.clock;
2994 }
2995
2996 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
2997 struct gfn_to_pfn_cache *gpc,
2998 unsigned int offset)
2999 {
3000 struct kvm_vcpu_arch *vcpu = &v->arch;
3001 struct pvclock_vcpu_time_info *guest_hv_clock;
3002 unsigned long flags;
3003
3004 read_lock_irqsave(&gpc->lock, flags);
3005 while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3006 offset + sizeof(*guest_hv_clock))) {
3007 read_unlock_irqrestore(&gpc->lock, flags);
3008
3009 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3010 offset + sizeof(*guest_hv_clock)))
3011 return;
3012
3013 read_lock_irqsave(&gpc->lock, flags);
3014 }
3015
3016 guest_hv_clock = (void *)(gpc->khva + offset);
3017
3018 /*
3019 * This VCPU is paused, but it's legal for a guest to read another
3020 * VCPU's kvmclock, so we really have to follow the specification where
3021 * it says that version is odd if data is being modified, and even after
3022 * it is consistent.
3023 */
3024
3025 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3026 smp_wmb();
3027
3028 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3029 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3030
3031 if (vcpu->pvclock_set_guest_stopped_request) {
3032 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3033 vcpu->pvclock_set_guest_stopped_request = false;
3034 }
3035
3036 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3037 smp_wmb();
3038
3039 guest_hv_clock->version = ++vcpu->hv_clock.version;
3040
3041 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3042 read_unlock_irqrestore(&gpc->lock, flags);
3043
3044 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3045 }
3046
3047 static int kvm_guest_time_update(struct kvm_vcpu *v)
3048 {
3049 unsigned long flags, tgt_tsc_khz;
3050 unsigned seq;
3051 struct kvm_vcpu_arch *vcpu = &v->arch;
3052 struct kvm_arch *ka = &v->kvm->arch;
3053 s64 kernel_ns;
3054 u64 tsc_timestamp, host_tsc;
3055 u8 pvclock_flags;
3056 bool use_master_clock;
3057
3058 kernel_ns = 0;
3059 host_tsc = 0;
3060
3061 /*
3062 * If the host uses TSC clock, then passthrough TSC as stable
3063 * to the guest.
3064 */
3065 do {
3066 seq = read_seqcount_begin(&ka->pvclock_sc);
3067 use_master_clock = ka->use_master_clock;
3068 if (use_master_clock) {
3069 host_tsc = ka->master_cycle_now;
3070 kernel_ns = ka->master_kernel_ns;
3071 }
3072 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3073
3074 /* Keep irq disabled to prevent changes to the clock */
3075 local_irq_save(flags);
3076 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3077 if (unlikely(tgt_tsc_khz == 0)) {
3078 local_irq_restore(flags);
3079 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3080 return 1;
3081 }
3082 if (!use_master_clock) {
3083 host_tsc = rdtsc();
3084 kernel_ns = get_kvmclock_base_ns();
3085 }
3086
3087 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3088
3089 /*
3090 * We may have to catch up the TSC to match elapsed wall clock
3091 * time for two reasons, even if kvmclock is used.
3092 * 1) CPU could have been running below the maximum TSC rate
3093 * 2) Broken TSC compensation resets the base at each VCPU
3094 * entry to avoid unknown leaps of TSC even when running
3095 * again on the same CPU. This may cause apparent elapsed
3096 * time to disappear, and the guest to stand still or run
3097 * very slowly.
3098 */
3099 if (vcpu->tsc_catchup) {
3100 u64 tsc = compute_guest_tsc(v, kernel_ns);
3101 if (tsc > tsc_timestamp) {
3102 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3103 tsc_timestamp = tsc;
3104 }
3105 }
3106
3107 local_irq_restore(flags);
3108
3109 /* With all the info we got, fill in the values */
3110
3111 if (kvm_has_tsc_control)
3112 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3113 v->arch.l1_tsc_scaling_ratio);
3114
3115 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3116 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3117 &vcpu->hv_clock.tsc_shift,
3118 &vcpu->hv_clock.tsc_to_system_mul);
3119 vcpu->hw_tsc_khz = tgt_tsc_khz;
3120 }
3121
3122 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3123 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3124 vcpu->last_guest_tsc = tsc_timestamp;
3125
3126 /* If the host uses TSC clocksource, then it is stable */
3127 pvclock_flags = 0;
3128 if (use_master_clock)
3129 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3130
3131 vcpu->hv_clock.flags = pvclock_flags;
3132
3133 if (vcpu->pv_time.active)
3134 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3135 if (vcpu->xen.vcpu_info_cache.active)
3136 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3137 offsetof(struct compat_vcpu_info, time));
3138 if (vcpu->xen.vcpu_time_info_cache.active)
3139 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3140 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3141 return 0;
3142 }
3143
3144 /*
3145 * kvmclock updates which are isolated to a given vcpu, such as
3146 * vcpu->cpu migration, should not allow system_timestamp from
3147 * the rest of the vcpus to remain static. Otherwise ntp frequency
3148 * correction applies to one vcpu's system_timestamp but not
3149 * the others.
3150 *
3151 * So in those cases, request a kvmclock update for all vcpus.
3152 * We need to rate-limit these requests though, as they can
3153 * considerably slow guests that have a large number of vcpus.
3154 * The time for a remote vcpu to update its kvmclock is bound
3155 * by the delay we use to rate-limit the updates.
3156 */
3157
3158 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3159
3160 static void kvmclock_update_fn(struct work_struct *work)
3161 {
3162 unsigned long i;
3163 struct delayed_work *dwork = to_delayed_work(work);
3164 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3165 kvmclock_update_work);
3166 struct kvm *kvm = container_of(ka, struct kvm, arch);
3167 struct kvm_vcpu *vcpu;
3168
3169 kvm_for_each_vcpu(i, vcpu, kvm) {
3170 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3171 kvm_vcpu_kick(vcpu);
3172 }
3173 }
3174
3175 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3176 {
3177 struct kvm *kvm = v->kvm;
3178
3179 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3180 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3181 KVMCLOCK_UPDATE_DELAY);
3182 }
3183
3184 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3185
3186 static void kvmclock_sync_fn(struct work_struct *work)
3187 {
3188 struct delayed_work *dwork = to_delayed_work(work);
3189 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3190 kvmclock_sync_work);
3191 struct kvm *kvm = container_of(ka, struct kvm, arch);
3192
3193 if (!kvmclock_periodic_sync)
3194 return;
3195
3196 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3197 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3198 KVMCLOCK_SYNC_PERIOD);
3199 }
3200
3201 /*
3202 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3203 */
3204 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3205 {
3206 /* McStatusWrEn enabled? */
3207 if (guest_cpuid_is_amd_or_hygon(vcpu))
3208 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3209
3210 return false;
3211 }
3212
3213 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3214 {
3215 u64 mcg_cap = vcpu->arch.mcg_cap;
3216 unsigned bank_num = mcg_cap & 0xff;
3217 u32 msr = msr_info->index;
3218 u64 data = msr_info->data;
3219
3220 switch (msr) {
3221 case MSR_IA32_MCG_STATUS:
3222 vcpu->arch.mcg_status = data;
3223 break;
3224 case MSR_IA32_MCG_CTL:
3225 if (!(mcg_cap & MCG_CTL_P) &&
3226 (data || !msr_info->host_initiated))
3227 return 1;
3228 if (data != 0 && data != ~(u64)0)
3229 return 1;
3230 vcpu->arch.mcg_ctl = data;
3231 break;
3232 default:
3233 if (msr >= MSR_IA32_MC0_CTL &&
3234 msr < MSR_IA32_MCx_CTL(bank_num)) {
3235 u32 offset = array_index_nospec(
3236 msr - MSR_IA32_MC0_CTL,
3237 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3238
3239 /* only 0 or all 1s can be written to IA32_MCi_CTL
3240 * some Linux kernels though clear bit 10 in bank 4 to
3241 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3242 * this to avoid an uncatched #GP in the guest
3243 */
3244 if ((offset & 0x3) == 0 &&
3245 data != 0 && (data | (1 << 10)) != ~(u64)0)
3246 return -1;
3247
3248 /* MCi_STATUS */
3249 if (!msr_info->host_initiated &&
3250 (offset & 0x3) == 1 && data != 0) {
3251 if (!can_set_mci_status(vcpu))
3252 return -1;
3253 }
3254
3255 vcpu->arch.mce_banks[offset] = data;
3256 break;
3257 }
3258 return 1;
3259 }
3260 return 0;
3261 }
3262
3263 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3264 {
3265 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3266
3267 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3268 }
3269
3270 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3271 {
3272 gpa_t gpa = data & ~0x3f;
3273
3274 /* Bits 4:5 are reserved, Should be zero */
3275 if (data & 0x30)
3276 return 1;
3277
3278 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3279 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3280 return 1;
3281
3282 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3283 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3284 return 1;
3285
3286 if (!lapic_in_kernel(vcpu))
3287 return data ? 1 : 0;
3288
3289 vcpu->arch.apf.msr_en_val = data;
3290
3291 if (!kvm_pv_async_pf_enabled(vcpu)) {
3292 kvm_clear_async_pf_completion_queue(vcpu);
3293 kvm_async_pf_hash_reset(vcpu);
3294 return 0;
3295 }
3296
3297 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3298 sizeof(u64)))
3299 return 1;
3300
3301 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3302 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3303
3304 kvm_async_pf_wakeup_all(vcpu);
3305
3306 return 0;
3307 }
3308
3309 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3310 {
3311 /* Bits 8-63 are reserved */
3312 if (data >> 8)
3313 return 1;
3314
3315 if (!lapic_in_kernel(vcpu))
3316 return 1;
3317
3318 vcpu->arch.apf.msr_int_val = data;
3319
3320 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3321
3322 return 0;
3323 }
3324
3325 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3326 {
3327 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
3328 vcpu->arch.time = 0;
3329 }
3330
3331 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3332 {
3333 ++vcpu->stat.tlb_flush;
3334 static_call(kvm_x86_flush_tlb_all)(vcpu);
3335 }
3336
3337 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3338 {
3339 ++vcpu->stat.tlb_flush;
3340
3341 if (!tdp_enabled) {
3342 /*
3343 * A TLB flush on behalf of the guest is equivalent to
3344 * INVPCID(all), toggling CR4.PGE, etc., which requires
3345 * a forced sync of the shadow page tables. Ensure all the
3346 * roots are synced and the guest TLB in hardware is clean.
3347 */
3348 kvm_mmu_sync_roots(vcpu);
3349 kvm_mmu_sync_prev_roots(vcpu);
3350 }
3351
3352 static_call(kvm_x86_flush_tlb_guest)(vcpu);
3353 }
3354
3355
3356 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3357 {
3358 ++vcpu->stat.tlb_flush;
3359 static_call(kvm_x86_flush_tlb_current)(vcpu);
3360 }
3361
3362 /*
3363 * Service "local" TLB flush requests, which are specific to the current MMU
3364 * context. In addition to the generic event handling in vcpu_enter_guest(),
3365 * TLB flushes that are targeted at an MMU context also need to be serviced
3366 * prior before nested VM-Enter/VM-Exit.
3367 */
3368 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3369 {
3370 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3371 kvm_vcpu_flush_tlb_current(vcpu);
3372
3373 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3374 kvm_vcpu_flush_tlb_guest(vcpu);
3375 }
3376 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3377
3378 static void record_steal_time(struct kvm_vcpu *vcpu)
3379 {
3380 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3381 struct kvm_steal_time __user *st;
3382 struct kvm_memslots *slots;
3383 u64 steal;
3384 u32 version;
3385
3386 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3387 kvm_xen_runstate_set_running(vcpu);
3388 return;
3389 }
3390
3391 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3392 return;
3393
3394 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3395 return;
3396
3397 slots = kvm_memslots(vcpu->kvm);
3398
3399 if (unlikely(slots->generation != ghc->generation ||
3400 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3401 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3402
3403 /* We rely on the fact that it fits in a single page. */
3404 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3405
3406 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3407 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3408 return;
3409 }
3410
3411 st = (struct kvm_steal_time __user *)ghc->hva;
3412 /*
3413 * Doing a TLB flush here, on the guest's behalf, can avoid
3414 * expensive IPIs.
3415 */
3416 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3417 u8 st_preempted = 0;
3418 int err = -EFAULT;
3419
3420 if (!user_access_begin(st, sizeof(*st)))
3421 return;
3422
3423 asm volatile("1: xchgb %0, %2\n"
3424 "xor %1, %1\n"
3425 "2:\n"
3426 _ASM_EXTABLE_UA(1b, 2b)
3427 : "+q" (st_preempted),
3428 "+&r" (err),
3429 "+m" (st->preempted));
3430 if (err)
3431 goto out;
3432
3433 user_access_end();
3434
3435 vcpu->arch.st.preempted = 0;
3436
3437 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3438 st_preempted & KVM_VCPU_FLUSH_TLB);
3439 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3440 kvm_vcpu_flush_tlb_guest(vcpu);
3441
3442 if (!user_access_begin(st, sizeof(*st)))
3443 goto dirty;
3444 } else {
3445 if (!user_access_begin(st, sizeof(*st)))
3446 return;
3447
3448 unsafe_put_user(0, &st->preempted, out);
3449 vcpu->arch.st.preempted = 0;
3450 }
3451
3452 unsafe_get_user(version, &st->version, out);
3453 if (version & 1)
3454 version += 1; /* first time write, random junk */
3455
3456 version += 1;
3457 unsafe_put_user(version, &st->version, out);
3458
3459 smp_wmb();
3460
3461 unsafe_get_user(steal, &st->steal, out);
3462 steal += current->sched_info.run_delay -
3463 vcpu->arch.st.last_steal;
3464 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3465 unsafe_put_user(steal, &st->steal, out);
3466
3467 version += 1;
3468 unsafe_put_user(version, &st->version, out);
3469
3470 out:
3471 user_access_end();
3472 dirty:
3473 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3474 }
3475
3476 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3477 {
3478 bool pr = false;
3479 u32 msr = msr_info->index;
3480 u64 data = msr_info->data;
3481
3482 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3483 return kvm_xen_write_hypercall_page(vcpu, data);
3484
3485 switch (msr) {
3486 case MSR_AMD64_NB_CFG:
3487 case MSR_IA32_UCODE_WRITE:
3488 case MSR_VM_HSAVE_PA:
3489 case MSR_AMD64_PATCH_LOADER:
3490 case MSR_AMD64_BU_CFG2:
3491 case MSR_AMD64_DC_CFG:
3492 case MSR_F15H_EX_CFG:
3493 break;
3494
3495 case MSR_IA32_UCODE_REV:
3496 if (msr_info->host_initiated)
3497 vcpu->arch.microcode_version = data;
3498 break;
3499 case MSR_IA32_ARCH_CAPABILITIES:
3500 if (!msr_info->host_initiated)
3501 return 1;
3502 vcpu->arch.arch_capabilities = data;
3503 break;
3504 case MSR_IA32_PERF_CAPABILITIES: {
3505 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3506
3507 if (!msr_info->host_initiated)
3508 return 1;
3509 if (kvm_get_msr_feature(&msr_ent))
3510 return 1;
3511 if (data & ~msr_ent.data)
3512 return 1;
3513
3514 vcpu->arch.perf_capabilities = data;
3515
3516 return 0;
3517 }
3518 case MSR_EFER:
3519 return set_efer(vcpu, msr_info);
3520 case MSR_K7_HWCR:
3521 data &= ~(u64)0x40; /* ignore flush filter disable */
3522 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3523 data &= ~(u64)0x8; /* ignore TLB cache disable */
3524
3525 /* Handle McStatusWrEn */
3526 if (data == BIT_ULL(18)) {
3527 vcpu->arch.msr_hwcr = data;
3528 } else if (data != 0) {
3529 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3530 data);
3531 return 1;
3532 }
3533 break;
3534 case MSR_FAM10H_MMIO_CONF_BASE:
3535 if (data != 0) {
3536 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3537 "0x%llx\n", data);
3538 return 1;
3539 }
3540 break;
3541 case 0x200 ... 0x2ff:
3542 return kvm_mtrr_set_msr(vcpu, msr, data);
3543 case MSR_IA32_APICBASE:
3544 return kvm_set_apic_base(vcpu, msr_info);
3545 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3546 return kvm_x2apic_msr_write(vcpu, msr, data);
3547 case MSR_IA32_TSC_DEADLINE:
3548 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3549 break;
3550 case MSR_IA32_TSC_ADJUST:
3551 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3552 if (!msr_info->host_initiated) {
3553 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3554 adjust_tsc_offset_guest(vcpu, adj);
3555 /* Before back to guest, tsc_timestamp must be adjusted
3556 * as well, otherwise guest's percpu pvclock time could jump.
3557 */
3558 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3559 }
3560 vcpu->arch.ia32_tsc_adjust_msr = data;
3561 }
3562 break;
3563 case MSR_IA32_MISC_ENABLE:
3564 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3565 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3566 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3567 return 1;
3568 vcpu->arch.ia32_misc_enable_msr = data;
3569 kvm_update_cpuid_runtime(vcpu);
3570 } else {
3571 vcpu->arch.ia32_misc_enable_msr = data;
3572 }
3573 break;
3574 case MSR_IA32_SMBASE:
3575 if (!msr_info->host_initiated)
3576 return 1;
3577 vcpu->arch.smbase = data;
3578 break;
3579 case MSR_IA32_POWER_CTL:
3580 vcpu->arch.msr_ia32_power_ctl = data;
3581 break;
3582 case MSR_IA32_TSC:
3583 if (msr_info->host_initiated) {
3584 kvm_synchronize_tsc(vcpu, data);
3585 } else {
3586 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3587 adjust_tsc_offset_guest(vcpu, adj);
3588 vcpu->arch.ia32_tsc_adjust_msr += adj;
3589 }
3590 break;
3591 case MSR_IA32_XSS:
3592 if (!msr_info->host_initiated &&
3593 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3594 return 1;
3595 /*
3596 * KVM supports exposing PT to the guest, but does not support
3597 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3598 * XSAVES/XRSTORS to save/restore PT MSRs.
3599 */
3600 if (data & ~supported_xss)
3601 return 1;
3602 vcpu->arch.ia32_xss = data;
3603 kvm_update_cpuid_runtime(vcpu);
3604 break;
3605 case MSR_SMI_COUNT:
3606 if (!msr_info->host_initiated)
3607 return 1;
3608 vcpu->arch.smi_count = data;
3609 break;
3610 case MSR_KVM_WALL_CLOCK_NEW:
3611 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3612 return 1;
3613
3614 vcpu->kvm->arch.wall_clock = data;
3615 kvm_write_wall_clock(vcpu->kvm, data, 0);
3616 break;
3617 case MSR_KVM_WALL_CLOCK:
3618 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3619 return 1;
3620
3621 vcpu->kvm->arch.wall_clock = data;
3622 kvm_write_wall_clock(vcpu->kvm, data, 0);
3623 break;
3624 case MSR_KVM_SYSTEM_TIME_NEW:
3625 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3626 return 1;
3627
3628 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3629 break;
3630 case MSR_KVM_SYSTEM_TIME:
3631 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3632 return 1;
3633
3634 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3635 break;
3636 case MSR_KVM_ASYNC_PF_EN:
3637 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3638 return 1;
3639
3640 if (kvm_pv_enable_async_pf(vcpu, data))
3641 return 1;
3642 break;
3643 case MSR_KVM_ASYNC_PF_INT:
3644 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3645 return 1;
3646
3647 if (kvm_pv_enable_async_pf_int(vcpu, data))
3648 return 1;
3649 break;
3650 case MSR_KVM_ASYNC_PF_ACK:
3651 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3652 return 1;
3653 if (data & 0x1) {
3654 vcpu->arch.apf.pageready_pending = false;
3655 kvm_check_async_pf_completion(vcpu);
3656 }
3657 break;
3658 case MSR_KVM_STEAL_TIME:
3659 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3660 return 1;
3661
3662 if (unlikely(!sched_info_on()))
3663 return 1;
3664
3665 if (data & KVM_STEAL_RESERVED_MASK)
3666 return 1;
3667
3668 vcpu->arch.st.msr_val = data;
3669
3670 if (!(data & KVM_MSR_ENABLED))
3671 break;
3672
3673 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3674
3675 break;
3676 case MSR_KVM_PV_EOI_EN:
3677 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3678 return 1;
3679
3680 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3681 return 1;
3682 break;
3683
3684 case MSR_KVM_POLL_CONTROL:
3685 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3686 return 1;
3687
3688 /* only enable bit supported */
3689 if (data & (-1ULL << 1))
3690 return 1;
3691
3692 vcpu->arch.msr_kvm_poll_control = data;
3693 break;
3694
3695 case MSR_IA32_MCG_CTL:
3696 case MSR_IA32_MCG_STATUS:
3697 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3698 return set_msr_mce(vcpu, msr_info);
3699
3700 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3701 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3702 pr = true;
3703 fallthrough;
3704 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3705 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3706 if (kvm_pmu_is_valid_msr(vcpu, msr))
3707 return kvm_pmu_set_msr(vcpu, msr_info);
3708
3709 if (pr || data != 0)
3710 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3711 "0x%x data 0x%llx\n", msr, data);
3712 break;
3713 case MSR_K7_CLK_CTL:
3714 /*
3715 * Ignore all writes to this no longer documented MSR.
3716 * Writes are only relevant for old K7 processors,
3717 * all pre-dating SVM, but a recommended workaround from
3718 * AMD for these chips. It is possible to specify the
3719 * affected processor models on the command line, hence
3720 * the need to ignore the workaround.
3721 */
3722 break;
3723 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3724 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3725 case HV_X64_MSR_SYNDBG_OPTIONS:
3726 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3727 case HV_X64_MSR_CRASH_CTL:
3728 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3729 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3730 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3731 case HV_X64_MSR_TSC_EMULATION_STATUS:
3732 return kvm_hv_set_msr_common(vcpu, msr, data,
3733 msr_info->host_initiated);
3734 case MSR_IA32_BBL_CR_CTL3:
3735 /* Drop writes to this legacy MSR -- see rdmsr
3736 * counterpart for further detail.
3737 */
3738 if (report_ignored_msrs)
3739 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3740 msr, data);
3741 break;
3742 case MSR_AMD64_OSVW_ID_LENGTH:
3743 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3744 return 1;
3745 vcpu->arch.osvw.length = data;
3746 break;
3747 case MSR_AMD64_OSVW_STATUS:
3748 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3749 return 1;
3750 vcpu->arch.osvw.status = data;
3751 break;
3752 case MSR_PLATFORM_INFO:
3753 if (!msr_info->host_initiated ||
3754 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3755 cpuid_fault_enabled(vcpu)))
3756 return 1;
3757 vcpu->arch.msr_platform_info = data;
3758 break;
3759 case MSR_MISC_FEATURES_ENABLES:
3760 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3761 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3762 !supports_cpuid_fault(vcpu)))
3763 return 1;
3764 vcpu->arch.msr_misc_features_enables = data;
3765 break;
3766 #ifdef CONFIG_X86_64
3767 case MSR_IA32_XFD:
3768 if (!msr_info->host_initiated &&
3769 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3770 return 1;
3771
3772 if (data & ~kvm_guest_supported_xfd(vcpu))
3773 return 1;
3774
3775 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3776 break;
3777 case MSR_IA32_XFD_ERR:
3778 if (!msr_info->host_initiated &&
3779 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3780 return 1;
3781
3782 if (data & ~kvm_guest_supported_xfd(vcpu))
3783 return 1;
3784
3785 vcpu->arch.guest_fpu.xfd_err = data;
3786 break;
3787 #endif
3788 default:
3789 if (kvm_pmu_is_valid_msr(vcpu, msr))
3790 return kvm_pmu_set_msr(vcpu, msr_info);
3791 return KVM_MSR_RET_INVALID;
3792 }
3793 return 0;
3794 }
3795 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3796
3797 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3798 {
3799 u64 data;
3800 u64 mcg_cap = vcpu->arch.mcg_cap;
3801 unsigned bank_num = mcg_cap & 0xff;
3802
3803 switch (msr) {
3804 case MSR_IA32_P5_MC_ADDR:
3805 case MSR_IA32_P5_MC_TYPE:
3806 data = 0;
3807 break;
3808 case MSR_IA32_MCG_CAP:
3809 data = vcpu->arch.mcg_cap;
3810 break;
3811 case MSR_IA32_MCG_CTL:
3812 if (!(mcg_cap & MCG_CTL_P) && !host)
3813 return 1;
3814 data = vcpu->arch.mcg_ctl;
3815 break;
3816 case MSR_IA32_MCG_STATUS:
3817 data = vcpu->arch.mcg_status;
3818 break;
3819 default:
3820 if (msr >= MSR_IA32_MC0_CTL &&
3821 msr < MSR_IA32_MCx_CTL(bank_num)) {
3822 u32 offset = array_index_nospec(
3823 msr - MSR_IA32_MC0_CTL,
3824 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3825
3826 data = vcpu->arch.mce_banks[offset];
3827 break;
3828 }
3829 return 1;
3830 }
3831 *pdata = data;
3832 return 0;
3833 }
3834
3835 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3836 {
3837 switch (msr_info->index) {
3838 case MSR_IA32_PLATFORM_ID:
3839 case MSR_IA32_EBL_CR_POWERON:
3840 case MSR_IA32_LASTBRANCHFROMIP:
3841 case MSR_IA32_LASTBRANCHTOIP:
3842 case MSR_IA32_LASTINTFROMIP:
3843 case MSR_IA32_LASTINTTOIP:
3844 case MSR_AMD64_SYSCFG:
3845 case MSR_K8_TSEG_ADDR:
3846 case MSR_K8_TSEG_MASK:
3847 case MSR_VM_HSAVE_PA:
3848 case MSR_K8_INT_PENDING_MSG:
3849 case MSR_AMD64_NB_CFG:
3850 case MSR_FAM10H_MMIO_CONF_BASE:
3851 case MSR_AMD64_BU_CFG2:
3852 case MSR_IA32_PERF_CTL:
3853 case MSR_AMD64_DC_CFG:
3854 case MSR_F15H_EX_CFG:
3855 /*
3856 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3857 * limit) MSRs. Just return 0, as we do not want to expose the host
3858 * data here. Do not conditionalize this on CPUID, as KVM does not do
3859 * so for existing CPU-specific MSRs.
3860 */
3861 case MSR_RAPL_POWER_UNIT:
3862 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3863 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3864 case MSR_PKG_ENERGY_STATUS: /* Total package */
3865 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3866 msr_info->data = 0;
3867 break;
3868 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3869 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3870 return kvm_pmu_get_msr(vcpu, msr_info);
3871 if (!msr_info->host_initiated)
3872 return 1;
3873 msr_info->data = 0;
3874 break;
3875 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3876 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3877 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3878 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3879 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3880 return kvm_pmu_get_msr(vcpu, msr_info);
3881 msr_info->data = 0;
3882 break;
3883 case MSR_IA32_UCODE_REV:
3884 msr_info->data = vcpu->arch.microcode_version;
3885 break;
3886 case MSR_IA32_ARCH_CAPABILITIES:
3887 if (!msr_info->host_initiated &&
3888 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3889 return 1;
3890 msr_info->data = vcpu->arch.arch_capabilities;
3891 break;
3892 case MSR_IA32_PERF_CAPABILITIES:
3893 if (!msr_info->host_initiated &&
3894 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3895 return 1;
3896 msr_info->data = vcpu->arch.perf_capabilities;
3897 break;
3898 case MSR_IA32_POWER_CTL:
3899 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3900 break;
3901 case MSR_IA32_TSC: {
3902 /*
3903 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3904 * even when not intercepted. AMD manual doesn't explicitly
3905 * state this but appears to behave the same.
3906 *
3907 * On userspace reads and writes, however, we unconditionally
3908 * return L1's TSC value to ensure backwards-compatible
3909 * behavior for migration.
3910 */
3911 u64 offset, ratio;
3912
3913 if (msr_info->host_initiated) {
3914 offset = vcpu->arch.l1_tsc_offset;
3915 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3916 } else {
3917 offset = vcpu->arch.tsc_offset;
3918 ratio = vcpu->arch.tsc_scaling_ratio;
3919 }
3920
3921 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3922 break;
3923 }
3924 case MSR_MTRRcap:
3925 case 0x200 ... 0x2ff:
3926 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3927 case 0xcd: /* fsb frequency */
3928 msr_info->data = 3;
3929 break;
3930 /*
3931 * MSR_EBC_FREQUENCY_ID
3932 * Conservative value valid for even the basic CPU models.
3933 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3934 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3935 * and 266MHz for model 3, or 4. Set Core Clock
3936 * Frequency to System Bus Frequency Ratio to 1 (bits
3937 * 31:24) even though these are only valid for CPU
3938 * models > 2, however guests may end up dividing or
3939 * multiplying by zero otherwise.
3940 */
3941 case MSR_EBC_FREQUENCY_ID:
3942 msr_info->data = 1 << 24;
3943 break;
3944 case MSR_IA32_APICBASE:
3945 msr_info->data = kvm_get_apic_base(vcpu);
3946 break;
3947 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3948 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3949 case MSR_IA32_TSC_DEADLINE:
3950 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3951 break;
3952 case MSR_IA32_TSC_ADJUST:
3953 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3954 break;
3955 case MSR_IA32_MISC_ENABLE:
3956 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3957 break;
3958 case MSR_IA32_SMBASE:
3959 if (!msr_info->host_initiated)
3960 return 1;
3961 msr_info->data = vcpu->arch.smbase;
3962 break;
3963 case MSR_SMI_COUNT:
3964 msr_info->data = vcpu->arch.smi_count;
3965 break;
3966 case MSR_IA32_PERF_STATUS:
3967 /* TSC increment by tick */
3968 msr_info->data = 1000ULL;
3969 /* CPU multiplier */
3970 msr_info->data |= (((uint64_t)4ULL) << 40);
3971 break;
3972 case MSR_EFER:
3973 msr_info->data = vcpu->arch.efer;
3974 break;
3975 case MSR_KVM_WALL_CLOCK:
3976 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3977 return 1;
3978
3979 msr_info->data = vcpu->kvm->arch.wall_clock;
3980 break;
3981 case MSR_KVM_WALL_CLOCK_NEW:
3982 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3983 return 1;
3984
3985 msr_info->data = vcpu->kvm->arch.wall_clock;
3986 break;
3987 case MSR_KVM_SYSTEM_TIME:
3988 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3989 return 1;
3990
3991 msr_info->data = vcpu->arch.time;
3992 break;
3993 case MSR_KVM_SYSTEM_TIME_NEW:
3994 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3995 return 1;
3996
3997 msr_info->data = vcpu->arch.time;
3998 break;
3999 case MSR_KVM_ASYNC_PF_EN:
4000 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4001 return 1;
4002
4003 msr_info->data = vcpu->arch.apf.msr_en_val;
4004 break;
4005 case MSR_KVM_ASYNC_PF_INT:
4006 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4007 return 1;
4008
4009 msr_info->data = vcpu->arch.apf.msr_int_val;
4010 break;
4011 case MSR_KVM_ASYNC_PF_ACK:
4012 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4013 return 1;
4014
4015 msr_info->data = 0;
4016 break;
4017 case MSR_KVM_STEAL_TIME:
4018 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4019 return 1;
4020
4021 msr_info->data = vcpu->arch.st.msr_val;
4022 break;
4023 case MSR_KVM_PV_EOI_EN:
4024 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4025 return 1;
4026
4027 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4028 break;
4029 case MSR_KVM_POLL_CONTROL:
4030 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4031 return 1;
4032
4033 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4034 break;
4035 case MSR_IA32_P5_MC_ADDR:
4036 case MSR_IA32_P5_MC_TYPE:
4037 case MSR_IA32_MCG_CAP:
4038 case MSR_IA32_MCG_CTL:
4039 case MSR_IA32_MCG_STATUS:
4040 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4041 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4042 msr_info->host_initiated);
4043 case MSR_IA32_XSS:
4044 if (!msr_info->host_initiated &&
4045 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4046 return 1;
4047 msr_info->data = vcpu->arch.ia32_xss;
4048 break;
4049 case MSR_K7_CLK_CTL:
4050 /*
4051 * Provide expected ramp-up count for K7. All other
4052 * are set to zero, indicating minimum divisors for
4053 * every field.
4054 *
4055 * This prevents guest kernels on AMD host with CPU
4056 * type 6, model 8 and higher from exploding due to
4057 * the rdmsr failing.
4058 */
4059 msr_info->data = 0x20000000;
4060 break;
4061 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4062 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4063 case HV_X64_MSR_SYNDBG_OPTIONS:
4064 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4065 case HV_X64_MSR_CRASH_CTL:
4066 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4067 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4068 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4069 case HV_X64_MSR_TSC_EMULATION_STATUS:
4070 return kvm_hv_get_msr_common(vcpu,
4071 msr_info->index, &msr_info->data,
4072 msr_info->host_initiated);
4073 case MSR_IA32_BBL_CR_CTL3:
4074 /* This legacy MSR exists but isn't fully documented in current
4075 * silicon. It is however accessed by winxp in very narrow
4076 * scenarios where it sets bit #19, itself documented as
4077 * a "reserved" bit. Best effort attempt to source coherent
4078 * read data here should the balance of the register be
4079 * interpreted by the guest:
4080 *
4081 * L2 cache control register 3: 64GB range, 256KB size,
4082 * enabled, latency 0x1, configured
4083 */
4084 msr_info->data = 0xbe702111;
4085 break;
4086 case MSR_AMD64_OSVW_ID_LENGTH:
4087 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4088 return 1;
4089 msr_info->data = vcpu->arch.osvw.length;
4090 break;
4091 case MSR_AMD64_OSVW_STATUS:
4092 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4093 return 1;
4094 msr_info->data = vcpu->arch.osvw.status;
4095 break;
4096 case MSR_PLATFORM_INFO:
4097 if (!msr_info->host_initiated &&
4098 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4099 return 1;
4100 msr_info->data = vcpu->arch.msr_platform_info;
4101 break;
4102 case MSR_MISC_FEATURES_ENABLES:
4103 msr_info->data = vcpu->arch.msr_misc_features_enables;
4104 break;
4105 case MSR_K7_HWCR:
4106 msr_info->data = vcpu->arch.msr_hwcr;
4107 break;
4108 #ifdef CONFIG_X86_64
4109 case MSR_IA32_XFD:
4110 if (!msr_info->host_initiated &&
4111 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4112 return 1;
4113
4114 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4115 break;
4116 case MSR_IA32_XFD_ERR:
4117 if (!msr_info->host_initiated &&
4118 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4119 return 1;
4120
4121 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4122 break;
4123 #endif
4124 default:
4125 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4126 return kvm_pmu_get_msr(vcpu, msr_info);
4127 return KVM_MSR_RET_INVALID;
4128 }
4129 return 0;
4130 }
4131 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4132
4133 /*
4134 * Read or write a bunch of msrs. All parameters are kernel addresses.
4135 *
4136 * @return number of msrs set successfully.
4137 */
4138 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4139 struct kvm_msr_entry *entries,
4140 int (*do_msr)(struct kvm_vcpu *vcpu,
4141 unsigned index, u64 *data))
4142 {
4143 int i;
4144
4145 for (i = 0; i < msrs->nmsrs; ++i)
4146 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4147 break;
4148
4149 return i;
4150 }
4151
4152 /*
4153 * Read or write a bunch of msrs. Parameters are user addresses.
4154 *
4155 * @return number of msrs set successfully.
4156 */
4157 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4158 int (*do_msr)(struct kvm_vcpu *vcpu,
4159 unsigned index, u64 *data),
4160 int writeback)
4161 {
4162 struct kvm_msrs msrs;
4163 struct kvm_msr_entry *entries;
4164 int r, n;
4165 unsigned size;
4166
4167 r = -EFAULT;
4168 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4169 goto out;
4170
4171 r = -E2BIG;
4172 if (msrs.nmsrs >= MAX_IO_MSRS)
4173 goto out;
4174
4175 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4176 entries = memdup_user(user_msrs->entries, size);
4177 if (IS_ERR(entries)) {
4178 r = PTR_ERR(entries);
4179 goto out;
4180 }
4181
4182 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4183 if (r < 0)
4184 goto out_free;
4185
4186 r = -EFAULT;
4187 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4188 goto out_free;
4189
4190 r = n;
4191
4192 out_free:
4193 kfree(entries);
4194 out:
4195 return r;
4196 }
4197
4198 static inline bool kvm_can_mwait_in_guest(void)
4199 {
4200 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4201 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4202 boot_cpu_has(X86_FEATURE_ARAT);
4203 }
4204
4205 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4206 struct kvm_cpuid2 __user *cpuid_arg)
4207 {
4208 struct kvm_cpuid2 cpuid;
4209 int r;
4210
4211 r = -EFAULT;
4212 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4213 return r;
4214
4215 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4216 if (r)
4217 return r;
4218
4219 r = -EFAULT;
4220 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4221 return r;
4222
4223 return 0;
4224 }
4225
4226 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4227 {
4228 int r = 0;
4229
4230 switch (ext) {
4231 case KVM_CAP_IRQCHIP:
4232 case KVM_CAP_HLT:
4233 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4234 case KVM_CAP_SET_TSS_ADDR:
4235 case KVM_CAP_EXT_CPUID:
4236 case KVM_CAP_EXT_EMUL_CPUID:
4237 case KVM_CAP_CLOCKSOURCE:
4238 case KVM_CAP_PIT:
4239 case KVM_CAP_NOP_IO_DELAY:
4240 case KVM_CAP_MP_STATE:
4241 case KVM_CAP_SYNC_MMU:
4242 case KVM_CAP_USER_NMI:
4243 case KVM_CAP_REINJECT_CONTROL:
4244 case KVM_CAP_IRQ_INJECT_STATUS:
4245 case KVM_CAP_IOEVENTFD:
4246 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4247 case KVM_CAP_PIT2:
4248 case KVM_CAP_PIT_STATE2:
4249 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4250 case KVM_CAP_VCPU_EVENTS:
4251 case KVM_CAP_HYPERV:
4252 case KVM_CAP_HYPERV_VAPIC:
4253 case KVM_CAP_HYPERV_SPIN:
4254 case KVM_CAP_HYPERV_SYNIC:
4255 case KVM_CAP_HYPERV_SYNIC2:
4256 case KVM_CAP_HYPERV_VP_INDEX:
4257 case KVM_CAP_HYPERV_EVENTFD:
4258 case KVM_CAP_HYPERV_TLBFLUSH:
4259 case KVM_CAP_HYPERV_SEND_IPI:
4260 case KVM_CAP_HYPERV_CPUID:
4261 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4262 case KVM_CAP_SYS_HYPERV_CPUID:
4263 case KVM_CAP_PCI_SEGMENT:
4264 case KVM_CAP_DEBUGREGS:
4265 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4266 case KVM_CAP_XSAVE:
4267 case KVM_CAP_ASYNC_PF:
4268 case KVM_CAP_ASYNC_PF_INT:
4269 case KVM_CAP_GET_TSC_KHZ:
4270 case KVM_CAP_KVMCLOCK_CTRL:
4271 case KVM_CAP_READONLY_MEM:
4272 case KVM_CAP_HYPERV_TIME:
4273 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4274 case KVM_CAP_TSC_DEADLINE_TIMER:
4275 case KVM_CAP_DISABLE_QUIRKS:
4276 case KVM_CAP_SET_BOOT_CPU_ID:
4277 case KVM_CAP_SPLIT_IRQCHIP:
4278 case KVM_CAP_IMMEDIATE_EXIT:
4279 case KVM_CAP_PMU_EVENT_FILTER:
4280 case KVM_CAP_GET_MSR_FEATURES:
4281 case KVM_CAP_MSR_PLATFORM_INFO:
4282 case KVM_CAP_EXCEPTION_PAYLOAD:
4283 case KVM_CAP_SET_GUEST_DEBUG:
4284 case KVM_CAP_LAST_CPU:
4285 case KVM_CAP_X86_USER_SPACE_MSR:
4286 case KVM_CAP_X86_MSR_FILTER:
4287 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4288 #ifdef CONFIG_X86_SGX_KVM
4289 case KVM_CAP_SGX_ATTRIBUTE:
4290 #endif
4291 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4292 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4293 case KVM_CAP_SREGS2:
4294 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4295 case KVM_CAP_VCPU_ATTRIBUTES:
4296 case KVM_CAP_SYS_ATTRIBUTES:
4297 case KVM_CAP_VAPIC:
4298 case KVM_CAP_ENABLE_CAP:
4299 r = 1;
4300 break;
4301 case KVM_CAP_EXIT_HYPERCALL:
4302 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4303 break;
4304 case KVM_CAP_SET_GUEST_DEBUG2:
4305 return KVM_GUESTDBG_VALID_MASK;
4306 #ifdef CONFIG_KVM_XEN
4307 case KVM_CAP_XEN_HVM:
4308 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4309 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4310 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4311 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4312 KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4313 if (sched_info_on())
4314 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4315 break;
4316 #endif
4317 case KVM_CAP_SYNC_REGS:
4318 r = KVM_SYNC_X86_VALID_FIELDS;
4319 break;
4320 case KVM_CAP_ADJUST_CLOCK:
4321 r = KVM_CLOCK_VALID_FLAGS;
4322 break;
4323 case KVM_CAP_X86_DISABLE_EXITS:
4324 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4325 KVM_X86_DISABLE_EXITS_CSTATE;
4326 if(kvm_can_mwait_in_guest())
4327 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4328 break;
4329 case KVM_CAP_X86_SMM:
4330 /* SMBASE is usually relocated above 1M on modern chipsets,
4331 * and SMM handlers might indeed rely on 4G segment limits,
4332 * so do not report SMM to be available if real mode is
4333 * emulated via vm86 mode. Still, do not go to great lengths
4334 * to avoid userspace's usage of the feature, because it is a
4335 * fringe case that is not enabled except via specific settings
4336 * of the module parameters.
4337 */
4338 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4339 break;
4340 case KVM_CAP_NR_VCPUS:
4341 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4342 break;
4343 case KVM_CAP_MAX_VCPUS:
4344 r = KVM_MAX_VCPUS;
4345 break;
4346 case KVM_CAP_MAX_VCPU_ID:
4347 r = KVM_MAX_VCPU_IDS;
4348 break;
4349 case KVM_CAP_PV_MMU: /* obsolete */
4350 r = 0;
4351 break;
4352 case KVM_CAP_MCE:
4353 r = KVM_MAX_MCE_BANKS;
4354 break;
4355 case KVM_CAP_XCRS:
4356 r = boot_cpu_has(X86_FEATURE_XSAVE);
4357 break;
4358 case KVM_CAP_TSC_CONTROL:
4359 case KVM_CAP_VM_TSC_CONTROL:
4360 r = kvm_has_tsc_control;
4361 break;
4362 case KVM_CAP_X2APIC_API:
4363 r = KVM_X2APIC_API_VALID_FLAGS;
4364 break;
4365 case KVM_CAP_NESTED_STATE:
4366 r = kvm_x86_ops.nested_ops->get_state ?
4367 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4368 break;
4369 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4370 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4371 break;
4372 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4373 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4374 break;
4375 case KVM_CAP_SMALLER_MAXPHYADDR:
4376 r = (int) allow_smaller_maxphyaddr;
4377 break;
4378 case KVM_CAP_STEAL_TIME:
4379 r = sched_info_on();
4380 break;
4381 case KVM_CAP_X86_BUS_LOCK_EXIT:
4382 if (kvm_has_bus_lock_exit)
4383 r = KVM_BUS_LOCK_DETECTION_OFF |
4384 KVM_BUS_LOCK_DETECTION_EXIT;
4385 else
4386 r = 0;
4387 break;
4388 case KVM_CAP_XSAVE2: {
4389 u64 guest_perm = xstate_get_guest_group_perm();
4390
4391 r = xstate_required_size(supported_xcr0 & guest_perm, false);
4392 if (r < sizeof(struct kvm_xsave))
4393 r = sizeof(struct kvm_xsave);
4394 break;
4395 case KVM_CAP_PMU_CAPABILITY:
4396 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4397 break;
4398 }
4399 case KVM_CAP_DISABLE_QUIRKS2:
4400 r = KVM_X86_VALID_QUIRKS;
4401 break;
4402 default:
4403 break;
4404 }
4405 return r;
4406 }
4407
4408 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4409 {
4410 void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4411
4412 if ((u64)(unsigned long)uaddr != attr->addr)
4413 return ERR_PTR_USR(-EFAULT);
4414 return uaddr;
4415 }
4416
4417 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4418 {
4419 u64 __user *uaddr = kvm_get_attr_addr(attr);
4420
4421 if (attr->group)
4422 return -ENXIO;
4423
4424 if (IS_ERR(uaddr))
4425 return PTR_ERR(uaddr);
4426
4427 switch (attr->attr) {
4428 case KVM_X86_XCOMP_GUEST_SUPP:
4429 if (put_user(supported_xcr0, uaddr))
4430 return -EFAULT;
4431 return 0;
4432 default:
4433 return -ENXIO;
4434 break;
4435 }
4436 }
4437
4438 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4439 {
4440 if (attr->group)
4441 return -ENXIO;
4442
4443 switch (attr->attr) {
4444 case KVM_X86_XCOMP_GUEST_SUPP:
4445 return 0;
4446 default:
4447 return -ENXIO;
4448 }
4449 }
4450
4451 long kvm_arch_dev_ioctl(struct file *filp,
4452 unsigned int ioctl, unsigned long arg)
4453 {
4454 void __user *argp = (void __user *)arg;
4455 long r;
4456
4457 switch (ioctl) {
4458 case KVM_GET_MSR_INDEX_LIST: {
4459 struct kvm_msr_list __user *user_msr_list = argp;
4460 struct kvm_msr_list msr_list;
4461 unsigned n;
4462
4463 r = -EFAULT;
4464 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4465 goto out;
4466 n = msr_list.nmsrs;
4467 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4468 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4469 goto out;
4470 r = -E2BIG;
4471 if (n < msr_list.nmsrs)
4472 goto out;
4473 r = -EFAULT;
4474 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4475 num_msrs_to_save * sizeof(u32)))
4476 goto out;
4477 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4478 &emulated_msrs,
4479 num_emulated_msrs * sizeof(u32)))
4480 goto out;
4481 r = 0;
4482 break;
4483 }
4484 case KVM_GET_SUPPORTED_CPUID:
4485 case KVM_GET_EMULATED_CPUID: {
4486 struct kvm_cpuid2 __user *cpuid_arg = argp;
4487 struct kvm_cpuid2 cpuid;
4488
4489 r = -EFAULT;
4490 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4491 goto out;
4492
4493 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4494 ioctl);
4495 if (r)
4496 goto out;
4497
4498 r = -EFAULT;
4499 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4500 goto out;
4501 r = 0;
4502 break;
4503 }
4504 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4505 r = -EFAULT;
4506 if (copy_to_user(argp, &kvm_mce_cap_supported,
4507 sizeof(kvm_mce_cap_supported)))
4508 goto out;
4509 r = 0;
4510 break;
4511 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4512 struct kvm_msr_list __user *user_msr_list = argp;
4513 struct kvm_msr_list msr_list;
4514 unsigned int n;
4515
4516 r = -EFAULT;
4517 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4518 goto out;
4519 n = msr_list.nmsrs;
4520 msr_list.nmsrs = num_msr_based_features;
4521 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4522 goto out;
4523 r = -E2BIG;
4524 if (n < msr_list.nmsrs)
4525 goto out;
4526 r = -EFAULT;
4527 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4528 num_msr_based_features * sizeof(u32)))
4529 goto out;
4530 r = 0;
4531 break;
4532 }
4533 case KVM_GET_MSRS:
4534 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4535 break;
4536 case KVM_GET_SUPPORTED_HV_CPUID:
4537 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4538 break;
4539 case KVM_GET_DEVICE_ATTR: {
4540 struct kvm_device_attr attr;
4541 r = -EFAULT;
4542 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4543 break;
4544 r = kvm_x86_dev_get_attr(&attr);
4545 break;
4546 }
4547 case KVM_HAS_DEVICE_ATTR: {
4548 struct kvm_device_attr attr;
4549 r = -EFAULT;
4550 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4551 break;
4552 r = kvm_x86_dev_has_attr(&attr);
4553 break;
4554 }
4555 default:
4556 r = -EINVAL;
4557 break;
4558 }
4559 out:
4560 return r;
4561 }
4562
4563 static void wbinvd_ipi(void *garbage)
4564 {
4565 wbinvd();
4566 }
4567
4568 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4569 {
4570 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4571 }
4572
4573 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4574 {
4575 /* Address WBINVD may be executed by guest */
4576 if (need_emulate_wbinvd(vcpu)) {
4577 if (static_call(kvm_x86_has_wbinvd_exit)())
4578 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4579 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4580 smp_call_function_single(vcpu->cpu,
4581 wbinvd_ipi, NULL, 1);
4582 }
4583
4584 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4585
4586 /* Save host pkru register if supported */
4587 vcpu->arch.host_pkru = read_pkru();
4588
4589 /* Apply any externally detected TSC adjustments (due to suspend) */
4590 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4591 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4592 vcpu->arch.tsc_offset_adjustment = 0;
4593 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4594 }
4595
4596 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4597 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4598 rdtsc() - vcpu->arch.last_host_tsc;
4599 if (tsc_delta < 0)
4600 mark_tsc_unstable("KVM discovered backwards TSC");
4601
4602 if (kvm_check_tsc_unstable()) {
4603 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4604 vcpu->arch.last_guest_tsc);
4605 kvm_vcpu_write_tsc_offset(vcpu, offset);
4606 vcpu->arch.tsc_catchup = 1;
4607 }
4608
4609 if (kvm_lapic_hv_timer_in_use(vcpu))
4610 kvm_lapic_restart_hv_timer(vcpu);
4611
4612 /*
4613 * On a host with synchronized TSC, there is no need to update
4614 * kvmclock on vcpu->cpu migration
4615 */
4616 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4617 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4618 if (vcpu->cpu != cpu)
4619 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4620 vcpu->cpu = cpu;
4621 }
4622
4623 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4624 }
4625
4626 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4627 {
4628 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4629 struct kvm_steal_time __user *st;
4630 struct kvm_memslots *slots;
4631 static const u8 preempted = KVM_VCPU_PREEMPTED;
4632
4633 /*
4634 * The vCPU can be marked preempted if and only if the VM-Exit was on
4635 * an instruction boundary and will not trigger guest emulation of any
4636 * kind (see vcpu_run). Vendor specific code controls (conservatively)
4637 * when this is true, for example allowing the vCPU to be marked
4638 * preempted if and only if the VM-Exit was due to a host interrupt.
4639 */
4640 if (!vcpu->arch.at_instruction_boundary) {
4641 vcpu->stat.preemption_other++;
4642 return;
4643 }
4644
4645 vcpu->stat.preemption_reported++;
4646 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4647 return;
4648
4649 if (vcpu->arch.st.preempted)
4650 return;
4651
4652 /* This happens on process exit */
4653 if (unlikely(current->mm != vcpu->kvm->mm))
4654 return;
4655
4656 slots = kvm_memslots(vcpu->kvm);
4657
4658 if (unlikely(slots->generation != ghc->generation ||
4659 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4660 return;
4661
4662 st = (struct kvm_steal_time __user *)ghc->hva;
4663 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4664
4665 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4666 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4667
4668 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4669 }
4670
4671 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4672 {
4673 int idx;
4674
4675 if (vcpu->preempted) {
4676 if (!vcpu->arch.guest_state_protected)
4677 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4678
4679 /*
4680 * Take the srcu lock as memslots will be accessed to check the gfn
4681 * cache generation against the memslots generation.
4682 */
4683 idx = srcu_read_lock(&vcpu->kvm->srcu);
4684 if (kvm_xen_msr_enabled(vcpu->kvm))
4685 kvm_xen_runstate_set_preempted(vcpu);
4686 else
4687 kvm_steal_time_set_preempted(vcpu);
4688 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4689 }
4690
4691 static_call(kvm_x86_vcpu_put)(vcpu);
4692 vcpu->arch.last_host_tsc = rdtsc();
4693 }
4694
4695 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4696 struct kvm_lapic_state *s)
4697 {
4698 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4699
4700 return kvm_apic_get_state(vcpu, s);
4701 }
4702
4703 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4704 struct kvm_lapic_state *s)
4705 {
4706 int r;
4707
4708 r = kvm_apic_set_state(vcpu, s);
4709 if (r)
4710 return r;
4711 update_cr8_intercept(vcpu);
4712
4713 return 0;
4714 }
4715
4716 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4717 {
4718 /*
4719 * We can accept userspace's request for interrupt injection
4720 * as long as we have a place to store the interrupt number.
4721 * The actual injection will happen when the CPU is able to
4722 * deliver the interrupt.
4723 */
4724 if (kvm_cpu_has_extint(vcpu))
4725 return false;
4726
4727 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4728 return (!lapic_in_kernel(vcpu) ||
4729 kvm_apic_accept_pic_intr(vcpu));
4730 }
4731
4732 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4733 {
4734 /*
4735 * Do not cause an interrupt window exit if an exception
4736 * is pending or an event needs reinjection; userspace
4737 * might want to inject the interrupt manually using KVM_SET_REGS
4738 * or KVM_SET_SREGS. For that to work, we must be at an
4739 * instruction boundary and with no events half-injected.
4740 */
4741 return (kvm_arch_interrupt_allowed(vcpu) &&
4742 kvm_cpu_accept_dm_intr(vcpu) &&
4743 !kvm_event_needs_reinjection(vcpu) &&
4744 !vcpu->arch.exception.pending);
4745 }
4746
4747 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4748 struct kvm_interrupt *irq)
4749 {
4750 if (irq->irq >= KVM_NR_INTERRUPTS)
4751 return -EINVAL;
4752
4753 if (!irqchip_in_kernel(vcpu->kvm)) {
4754 kvm_queue_interrupt(vcpu, irq->irq, false);
4755 kvm_make_request(KVM_REQ_EVENT, vcpu);
4756 return 0;
4757 }
4758
4759 /*
4760 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4761 * fail for in-kernel 8259.
4762 */
4763 if (pic_in_kernel(vcpu->kvm))
4764 return -ENXIO;
4765
4766 if (vcpu->arch.pending_external_vector != -1)
4767 return -EEXIST;
4768
4769 vcpu->arch.pending_external_vector = irq->irq;
4770 kvm_make_request(KVM_REQ_EVENT, vcpu);
4771 return 0;
4772 }
4773
4774 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4775 {
4776 kvm_inject_nmi(vcpu);
4777
4778 return 0;
4779 }
4780
4781 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4782 {
4783 kvm_make_request(KVM_REQ_SMI, vcpu);
4784
4785 return 0;
4786 }
4787
4788 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4789 struct kvm_tpr_access_ctl *tac)
4790 {
4791 if (tac->flags)
4792 return -EINVAL;
4793 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4794 return 0;
4795 }
4796
4797 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4798 u64 mcg_cap)
4799 {
4800 int r;
4801 unsigned bank_num = mcg_cap & 0xff, bank;
4802
4803 r = -EINVAL;
4804 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4805 goto out;
4806 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4807 goto out;
4808 r = 0;
4809 vcpu->arch.mcg_cap = mcg_cap;
4810 /* Init IA32_MCG_CTL to all 1s */
4811 if (mcg_cap & MCG_CTL_P)
4812 vcpu->arch.mcg_ctl = ~(u64)0;
4813 /* Init IA32_MCi_CTL to all 1s */
4814 for (bank = 0; bank < bank_num; bank++)
4815 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4816
4817 static_call(kvm_x86_setup_mce)(vcpu);
4818 out:
4819 return r;
4820 }
4821
4822 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4823 struct kvm_x86_mce *mce)
4824 {
4825 u64 mcg_cap = vcpu->arch.mcg_cap;
4826 unsigned bank_num = mcg_cap & 0xff;
4827 u64 *banks = vcpu->arch.mce_banks;
4828
4829 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4830 return -EINVAL;
4831 /*
4832 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4833 * reporting is disabled
4834 */
4835 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4836 vcpu->arch.mcg_ctl != ~(u64)0)
4837 return 0;
4838 banks += 4 * mce->bank;
4839 /*
4840 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4841 * reporting is disabled for the bank
4842 */
4843 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4844 return 0;
4845 if (mce->status & MCI_STATUS_UC) {
4846 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4847 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4848 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4849 return 0;
4850 }
4851 if (banks[1] & MCI_STATUS_VAL)
4852 mce->status |= MCI_STATUS_OVER;
4853 banks[2] = mce->addr;
4854 banks[3] = mce->misc;
4855 vcpu->arch.mcg_status = mce->mcg_status;
4856 banks[1] = mce->status;
4857 kvm_queue_exception(vcpu, MC_VECTOR);
4858 } else if (!(banks[1] & MCI_STATUS_VAL)
4859 || !(banks[1] & MCI_STATUS_UC)) {
4860 if (banks[1] & MCI_STATUS_VAL)
4861 mce->status |= MCI_STATUS_OVER;
4862 banks[2] = mce->addr;
4863 banks[3] = mce->misc;
4864 banks[1] = mce->status;
4865 } else
4866 banks[1] |= MCI_STATUS_OVER;
4867 return 0;
4868 }
4869
4870 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4871 struct kvm_vcpu_events *events)
4872 {
4873 process_nmi(vcpu);
4874
4875 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4876 process_smi(vcpu);
4877
4878 /*
4879 * In guest mode, payload delivery should be deferred,
4880 * so that the L1 hypervisor can intercept #PF before
4881 * CR2 is modified (or intercept #DB before DR6 is
4882 * modified under nVMX). Unless the per-VM capability,
4883 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4884 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4885 * opportunistically defer the exception payload, deliver it if the
4886 * capability hasn't been requested before processing a
4887 * KVM_GET_VCPU_EVENTS.
4888 */
4889 if (!vcpu->kvm->arch.exception_payload_enabled &&
4890 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4891 kvm_deliver_exception_payload(vcpu);
4892
4893 /*
4894 * The API doesn't provide the instruction length for software
4895 * exceptions, so don't report them. As long as the guest RIP
4896 * isn't advanced, we should expect to encounter the exception
4897 * again.
4898 */
4899 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4900 events->exception.injected = 0;
4901 events->exception.pending = 0;
4902 } else {
4903 events->exception.injected = vcpu->arch.exception.injected;
4904 events->exception.pending = vcpu->arch.exception.pending;
4905 /*
4906 * For ABI compatibility, deliberately conflate
4907 * pending and injected exceptions when
4908 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4909 */
4910 if (!vcpu->kvm->arch.exception_payload_enabled)
4911 events->exception.injected |=
4912 vcpu->arch.exception.pending;
4913 }
4914 events->exception.nr = vcpu->arch.exception.nr;
4915 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4916 events->exception.error_code = vcpu->arch.exception.error_code;
4917 events->exception_has_payload = vcpu->arch.exception.has_payload;
4918 events->exception_payload = vcpu->arch.exception.payload;
4919
4920 events->interrupt.injected =
4921 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4922 events->interrupt.nr = vcpu->arch.interrupt.nr;
4923 events->interrupt.soft = 0;
4924 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4925
4926 events->nmi.injected = vcpu->arch.nmi_injected;
4927 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4928 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4929 events->nmi.pad = 0;
4930
4931 events->sipi_vector = 0; /* never valid when reporting to user space */
4932
4933 events->smi.smm = is_smm(vcpu);
4934 events->smi.pending = vcpu->arch.smi_pending;
4935 events->smi.smm_inside_nmi =
4936 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4937 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4938
4939 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4940 | KVM_VCPUEVENT_VALID_SHADOW
4941 | KVM_VCPUEVENT_VALID_SMM);
4942 if (vcpu->kvm->arch.exception_payload_enabled)
4943 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4944
4945 memset(&events->reserved, 0, sizeof(events->reserved));
4946 }
4947
4948 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4949
4950 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4951 struct kvm_vcpu_events *events)
4952 {
4953 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4954 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4955 | KVM_VCPUEVENT_VALID_SHADOW
4956 | KVM_VCPUEVENT_VALID_SMM
4957 | KVM_VCPUEVENT_VALID_PAYLOAD))
4958 return -EINVAL;
4959
4960 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4961 if (!vcpu->kvm->arch.exception_payload_enabled)
4962 return -EINVAL;
4963 if (events->exception.pending)
4964 events->exception.injected = 0;
4965 else
4966 events->exception_has_payload = 0;
4967 } else {
4968 events->exception.pending = 0;
4969 events->exception_has_payload = 0;
4970 }
4971
4972 if ((events->exception.injected || events->exception.pending) &&
4973 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4974 return -EINVAL;
4975
4976 /* INITs are latched while in SMM */
4977 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4978 (events->smi.smm || events->smi.pending) &&
4979 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4980 return -EINVAL;
4981
4982 process_nmi(vcpu);
4983 vcpu->arch.exception.injected = events->exception.injected;
4984 vcpu->arch.exception.pending = events->exception.pending;
4985 vcpu->arch.exception.nr = events->exception.nr;
4986 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4987 vcpu->arch.exception.error_code = events->exception.error_code;
4988 vcpu->arch.exception.has_payload = events->exception_has_payload;
4989 vcpu->arch.exception.payload = events->exception_payload;
4990
4991 vcpu->arch.interrupt.injected = events->interrupt.injected;
4992 vcpu->arch.interrupt.nr = events->interrupt.nr;
4993 vcpu->arch.interrupt.soft = events->interrupt.soft;
4994 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4995 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4996 events->interrupt.shadow);
4997
4998 vcpu->arch.nmi_injected = events->nmi.injected;
4999 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5000 vcpu->arch.nmi_pending = events->nmi.pending;
5001 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5002
5003 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5004 lapic_in_kernel(vcpu))
5005 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5006
5007 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5008 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5009 kvm_x86_ops.nested_ops->leave_nested(vcpu);
5010 kvm_smm_changed(vcpu, events->smi.smm);
5011 }
5012
5013 vcpu->arch.smi_pending = events->smi.pending;
5014
5015 if (events->smi.smm) {
5016 if (events->smi.smm_inside_nmi)
5017 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5018 else
5019 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5020 }
5021
5022 if (lapic_in_kernel(vcpu)) {
5023 if (events->smi.latched_init)
5024 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5025 else
5026 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5027 }
5028 }
5029
5030 kvm_make_request(KVM_REQ_EVENT, vcpu);
5031
5032 return 0;
5033 }
5034
5035 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5036 struct kvm_debugregs *dbgregs)
5037 {
5038 unsigned long val;
5039
5040 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5041 kvm_get_dr(vcpu, 6, &val);
5042 dbgregs->dr6 = val;
5043 dbgregs->dr7 = vcpu->arch.dr7;
5044 dbgregs->flags = 0;
5045 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5046 }
5047
5048 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5049 struct kvm_debugregs *dbgregs)
5050 {
5051 if (dbgregs->flags)
5052 return -EINVAL;
5053
5054 if (!kvm_dr6_valid(dbgregs->dr6))
5055 return -EINVAL;
5056 if (!kvm_dr7_valid(dbgregs->dr7))
5057 return -EINVAL;
5058
5059 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5060 kvm_update_dr0123(vcpu);
5061 vcpu->arch.dr6 = dbgregs->dr6;
5062 vcpu->arch.dr7 = dbgregs->dr7;
5063 kvm_update_dr7(vcpu);
5064
5065 return 0;
5066 }
5067
5068 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5069 struct kvm_xsave *guest_xsave)
5070 {
5071 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5072 return;
5073
5074 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5075 guest_xsave->region,
5076 sizeof(guest_xsave->region),
5077 vcpu->arch.pkru);
5078 }
5079
5080 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5081 u8 *state, unsigned int size)
5082 {
5083 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5084 return;
5085
5086 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5087 state, size, vcpu->arch.pkru);
5088 }
5089
5090 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5091 struct kvm_xsave *guest_xsave)
5092 {
5093 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5094 return 0;
5095
5096 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5097 guest_xsave->region,
5098 supported_xcr0, &vcpu->arch.pkru);
5099 }
5100
5101 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5102 struct kvm_xcrs *guest_xcrs)
5103 {
5104 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5105 guest_xcrs->nr_xcrs = 0;
5106 return;
5107 }
5108
5109 guest_xcrs->nr_xcrs = 1;
5110 guest_xcrs->flags = 0;
5111 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5112 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5113 }
5114
5115 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5116 struct kvm_xcrs *guest_xcrs)
5117 {
5118 int i, r = 0;
5119
5120 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5121 return -EINVAL;
5122
5123 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5124 return -EINVAL;
5125
5126 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5127 /* Only support XCR0 currently */
5128 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5129 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5130 guest_xcrs->xcrs[i].value);
5131 break;
5132 }
5133 if (r)
5134 r = -EINVAL;
5135 return r;
5136 }
5137
5138 /*
5139 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5140 * stopped by the hypervisor. This function will be called from the host only.
5141 * EINVAL is returned when the host attempts to set the flag for a guest that
5142 * does not support pv clocks.
5143 */
5144 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5145 {
5146 if (!vcpu->arch.pv_time.active)
5147 return -EINVAL;
5148 vcpu->arch.pvclock_set_guest_stopped_request = true;
5149 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5150 return 0;
5151 }
5152
5153 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5154 struct kvm_device_attr *attr)
5155 {
5156 int r;
5157
5158 switch (attr->attr) {
5159 case KVM_VCPU_TSC_OFFSET:
5160 r = 0;
5161 break;
5162 default:
5163 r = -ENXIO;
5164 }
5165
5166 return r;
5167 }
5168
5169 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5170 struct kvm_device_attr *attr)
5171 {
5172 u64 __user *uaddr = kvm_get_attr_addr(attr);
5173 int r;
5174
5175 if (IS_ERR(uaddr))
5176 return PTR_ERR(uaddr);
5177
5178 switch (attr->attr) {
5179 case KVM_VCPU_TSC_OFFSET:
5180 r = -EFAULT;
5181 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5182 break;
5183 r = 0;
5184 break;
5185 default:
5186 r = -ENXIO;
5187 }
5188
5189 return r;
5190 }
5191
5192 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5193 struct kvm_device_attr *attr)
5194 {
5195 u64 __user *uaddr = kvm_get_attr_addr(attr);
5196 struct kvm *kvm = vcpu->kvm;
5197 int r;
5198
5199 if (IS_ERR(uaddr))
5200 return PTR_ERR(uaddr);
5201
5202 switch (attr->attr) {
5203 case KVM_VCPU_TSC_OFFSET: {
5204 u64 offset, tsc, ns;
5205 unsigned long flags;
5206 bool matched;
5207
5208 r = -EFAULT;
5209 if (get_user(offset, uaddr))
5210 break;
5211
5212 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5213
5214 matched = (vcpu->arch.virtual_tsc_khz &&
5215 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5216 kvm->arch.last_tsc_offset == offset);
5217
5218 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5219 ns = get_kvmclock_base_ns();
5220
5221 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5222 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5223
5224 r = 0;
5225 break;
5226 }
5227 default:
5228 r = -ENXIO;
5229 }
5230
5231 return r;
5232 }
5233
5234 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5235 unsigned int ioctl,
5236 void __user *argp)
5237 {
5238 struct kvm_device_attr attr;
5239 int r;
5240
5241 if (copy_from_user(&attr, argp, sizeof(attr)))
5242 return -EFAULT;
5243
5244 if (attr.group != KVM_VCPU_TSC_CTRL)
5245 return -ENXIO;
5246
5247 switch (ioctl) {
5248 case KVM_HAS_DEVICE_ATTR:
5249 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5250 break;
5251 case KVM_GET_DEVICE_ATTR:
5252 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5253 break;
5254 case KVM_SET_DEVICE_ATTR:
5255 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5256 break;
5257 }
5258
5259 return r;
5260 }
5261
5262 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5263 struct kvm_enable_cap *cap)
5264 {
5265 int r;
5266 uint16_t vmcs_version;
5267 void __user *user_ptr;
5268
5269 if (cap->flags)
5270 return -EINVAL;
5271
5272 switch (cap->cap) {
5273 case KVM_CAP_HYPERV_SYNIC2:
5274 if (cap->args[0])
5275 return -EINVAL;
5276 fallthrough;
5277
5278 case KVM_CAP_HYPERV_SYNIC:
5279 if (!irqchip_in_kernel(vcpu->kvm))
5280 return -EINVAL;
5281 return kvm_hv_activate_synic(vcpu, cap->cap ==
5282 KVM_CAP_HYPERV_SYNIC2);
5283 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5284 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5285 return -ENOTTY;
5286 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5287 if (!r) {
5288 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5289 if (copy_to_user(user_ptr, &vmcs_version,
5290 sizeof(vmcs_version)))
5291 r = -EFAULT;
5292 }
5293 return r;
5294 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5295 if (!kvm_x86_ops.enable_direct_tlbflush)
5296 return -ENOTTY;
5297
5298 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5299
5300 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5301 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5302
5303 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5304 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5305 if (vcpu->arch.pv_cpuid.enforce)
5306 kvm_update_pv_runtime(vcpu);
5307
5308 return 0;
5309 default:
5310 return -EINVAL;
5311 }
5312 }
5313
5314 long kvm_arch_vcpu_ioctl(struct file *filp,
5315 unsigned int ioctl, unsigned long arg)
5316 {
5317 struct kvm_vcpu *vcpu = filp->private_data;
5318 void __user *argp = (void __user *)arg;
5319 int r;
5320 union {
5321 struct kvm_sregs2 *sregs2;
5322 struct kvm_lapic_state *lapic;
5323 struct kvm_xsave *xsave;
5324 struct kvm_xcrs *xcrs;
5325 void *buffer;
5326 } u;
5327
5328 vcpu_load(vcpu);
5329
5330 u.buffer = NULL;
5331 switch (ioctl) {
5332 case KVM_GET_LAPIC: {
5333 r = -EINVAL;
5334 if (!lapic_in_kernel(vcpu))
5335 goto out;
5336 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5337 GFP_KERNEL_ACCOUNT);
5338
5339 r = -ENOMEM;
5340 if (!u.lapic)
5341 goto out;
5342 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5343 if (r)
5344 goto out;
5345 r = -EFAULT;
5346 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5347 goto out;
5348 r = 0;
5349 break;
5350 }
5351 case KVM_SET_LAPIC: {
5352 r = -EINVAL;
5353 if (!lapic_in_kernel(vcpu))
5354 goto out;
5355 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5356 if (IS_ERR(u.lapic)) {
5357 r = PTR_ERR(u.lapic);
5358 goto out_nofree;
5359 }
5360
5361 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5362 break;
5363 }
5364 case KVM_INTERRUPT: {
5365 struct kvm_interrupt irq;
5366
5367 r = -EFAULT;
5368 if (copy_from_user(&irq, argp, sizeof(irq)))
5369 goto out;
5370 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5371 break;
5372 }
5373 case KVM_NMI: {
5374 r = kvm_vcpu_ioctl_nmi(vcpu);
5375 break;
5376 }
5377 case KVM_SMI: {
5378 r = kvm_vcpu_ioctl_smi(vcpu);
5379 break;
5380 }
5381 case KVM_SET_CPUID: {
5382 struct kvm_cpuid __user *cpuid_arg = argp;
5383 struct kvm_cpuid cpuid;
5384
5385 r = -EFAULT;
5386 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5387 goto out;
5388 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5389 break;
5390 }
5391 case KVM_SET_CPUID2: {
5392 struct kvm_cpuid2 __user *cpuid_arg = argp;
5393 struct kvm_cpuid2 cpuid;
5394
5395 r = -EFAULT;
5396 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5397 goto out;
5398 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5399 cpuid_arg->entries);
5400 break;
5401 }
5402 case KVM_GET_CPUID2: {
5403 struct kvm_cpuid2 __user *cpuid_arg = argp;
5404 struct kvm_cpuid2 cpuid;
5405
5406 r = -EFAULT;
5407 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5408 goto out;
5409 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5410 cpuid_arg->entries);
5411 if (r)
5412 goto out;
5413 r = -EFAULT;
5414 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5415 goto out;
5416 r = 0;
5417 break;
5418 }
5419 case KVM_GET_MSRS: {
5420 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5421 r = msr_io(vcpu, argp, do_get_msr, 1);
5422 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5423 break;
5424 }
5425 case KVM_SET_MSRS: {
5426 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5427 r = msr_io(vcpu, argp, do_set_msr, 0);
5428 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5429 break;
5430 }
5431 case KVM_TPR_ACCESS_REPORTING: {
5432 struct kvm_tpr_access_ctl tac;
5433
5434 r = -EFAULT;
5435 if (copy_from_user(&tac, argp, sizeof(tac)))
5436 goto out;
5437 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5438 if (r)
5439 goto out;
5440 r = -EFAULT;
5441 if (copy_to_user(argp, &tac, sizeof(tac)))
5442 goto out;
5443 r = 0;
5444 break;
5445 };
5446 case KVM_SET_VAPIC_ADDR: {
5447 struct kvm_vapic_addr va;
5448 int idx;
5449
5450 r = -EINVAL;
5451 if (!lapic_in_kernel(vcpu))
5452 goto out;
5453 r = -EFAULT;
5454 if (copy_from_user(&va, argp, sizeof(va)))
5455 goto out;
5456 idx = srcu_read_lock(&vcpu->kvm->srcu);
5457 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5458 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5459 break;
5460 }
5461 case KVM_X86_SETUP_MCE: {
5462 u64 mcg_cap;
5463
5464 r = -EFAULT;
5465 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5466 goto out;
5467 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5468 break;
5469 }
5470 case KVM_X86_SET_MCE: {
5471 struct kvm_x86_mce mce;
5472
5473 r = -EFAULT;
5474 if (copy_from_user(&mce, argp, sizeof(mce)))
5475 goto out;
5476 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5477 break;
5478 }
5479 case KVM_GET_VCPU_EVENTS: {
5480 struct kvm_vcpu_events events;
5481
5482 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5483
5484 r = -EFAULT;
5485 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5486 break;
5487 r = 0;
5488 break;
5489 }
5490 case KVM_SET_VCPU_EVENTS: {
5491 struct kvm_vcpu_events events;
5492
5493 r = -EFAULT;
5494 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5495 break;
5496
5497 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5498 break;
5499 }
5500 case KVM_GET_DEBUGREGS: {
5501 struct kvm_debugregs dbgregs;
5502
5503 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5504
5505 r = -EFAULT;
5506 if (copy_to_user(argp, &dbgregs,
5507 sizeof(struct kvm_debugregs)))
5508 break;
5509 r = 0;
5510 break;
5511 }
5512 case KVM_SET_DEBUGREGS: {
5513 struct kvm_debugregs dbgregs;
5514
5515 r = -EFAULT;
5516 if (copy_from_user(&dbgregs, argp,
5517 sizeof(struct kvm_debugregs)))
5518 break;
5519
5520 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5521 break;
5522 }
5523 case KVM_GET_XSAVE: {
5524 r = -EINVAL;
5525 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5526 break;
5527
5528 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5529 r = -ENOMEM;
5530 if (!u.xsave)
5531 break;
5532
5533 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5534
5535 r = -EFAULT;
5536 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5537 break;
5538 r = 0;
5539 break;
5540 }
5541 case KVM_SET_XSAVE: {
5542 int size = vcpu->arch.guest_fpu.uabi_size;
5543
5544 u.xsave = memdup_user(argp, size);
5545 if (IS_ERR(u.xsave)) {
5546 r = PTR_ERR(u.xsave);
5547 goto out_nofree;
5548 }
5549
5550 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5551 break;
5552 }
5553
5554 case KVM_GET_XSAVE2: {
5555 int size = vcpu->arch.guest_fpu.uabi_size;
5556
5557 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5558 r = -ENOMEM;
5559 if (!u.xsave)
5560 break;
5561
5562 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5563
5564 r = -EFAULT;
5565 if (copy_to_user(argp, u.xsave, size))
5566 break;
5567
5568 r = 0;
5569 break;
5570 }
5571
5572 case KVM_GET_XCRS: {
5573 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5574 r = -ENOMEM;
5575 if (!u.xcrs)
5576 break;
5577
5578 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5579
5580 r = -EFAULT;
5581 if (copy_to_user(argp, u.xcrs,
5582 sizeof(struct kvm_xcrs)))
5583 break;
5584 r = 0;
5585 break;
5586 }
5587 case KVM_SET_XCRS: {
5588 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5589 if (IS_ERR(u.xcrs)) {
5590 r = PTR_ERR(u.xcrs);
5591 goto out_nofree;
5592 }
5593
5594 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5595 break;
5596 }
5597 case KVM_SET_TSC_KHZ: {
5598 u32 user_tsc_khz;
5599
5600 r = -EINVAL;
5601 user_tsc_khz = (u32)arg;
5602
5603 if (kvm_has_tsc_control &&
5604 user_tsc_khz >= kvm_max_guest_tsc_khz)
5605 goto out;
5606
5607 if (user_tsc_khz == 0)
5608 user_tsc_khz = tsc_khz;
5609
5610 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5611 r = 0;
5612
5613 goto out;
5614 }
5615 case KVM_GET_TSC_KHZ: {
5616 r = vcpu->arch.virtual_tsc_khz;
5617 goto out;
5618 }
5619 case KVM_KVMCLOCK_CTRL: {
5620 r = kvm_set_guest_paused(vcpu);
5621 goto out;
5622 }
5623 case KVM_ENABLE_CAP: {
5624 struct kvm_enable_cap cap;
5625
5626 r = -EFAULT;
5627 if (copy_from_user(&cap, argp, sizeof(cap)))
5628 goto out;
5629 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5630 break;
5631 }
5632 case KVM_GET_NESTED_STATE: {
5633 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5634 u32 user_data_size;
5635
5636 r = -EINVAL;
5637 if (!kvm_x86_ops.nested_ops->get_state)
5638 break;
5639
5640 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5641 r = -EFAULT;
5642 if (get_user(user_data_size, &user_kvm_nested_state->size))
5643 break;
5644
5645 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5646 user_data_size);
5647 if (r < 0)
5648 break;
5649
5650 if (r > user_data_size) {
5651 if (put_user(r, &user_kvm_nested_state->size))
5652 r = -EFAULT;
5653 else
5654 r = -E2BIG;
5655 break;
5656 }
5657
5658 r = 0;
5659 break;
5660 }
5661 case KVM_SET_NESTED_STATE: {
5662 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5663 struct kvm_nested_state kvm_state;
5664 int idx;
5665
5666 r = -EINVAL;
5667 if (!kvm_x86_ops.nested_ops->set_state)
5668 break;
5669
5670 r = -EFAULT;
5671 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5672 break;
5673
5674 r = -EINVAL;
5675 if (kvm_state.size < sizeof(kvm_state))
5676 break;
5677
5678 if (kvm_state.flags &
5679 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5680 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5681 | KVM_STATE_NESTED_GIF_SET))
5682 break;
5683
5684 /* nested_run_pending implies guest_mode. */
5685 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5686 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5687 break;
5688
5689 idx = srcu_read_lock(&vcpu->kvm->srcu);
5690 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5691 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5692 break;
5693 }
5694 case KVM_GET_SUPPORTED_HV_CPUID:
5695 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5696 break;
5697 #ifdef CONFIG_KVM_XEN
5698 case KVM_XEN_VCPU_GET_ATTR: {
5699 struct kvm_xen_vcpu_attr xva;
5700
5701 r = -EFAULT;
5702 if (copy_from_user(&xva, argp, sizeof(xva)))
5703 goto out;
5704 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5705 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5706 r = -EFAULT;
5707 break;
5708 }
5709 case KVM_XEN_VCPU_SET_ATTR: {
5710 struct kvm_xen_vcpu_attr xva;
5711
5712 r = -EFAULT;
5713 if (copy_from_user(&xva, argp, sizeof(xva)))
5714 goto out;
5715 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5716 break;
5717 }
5718 #endif
5719 case KVM_GET_SREGS2: {
5720 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5721 r = -ENOMEM;
5722 if (!u.sregs2)
5723 goto out;
5724 __get_sregs2(vcpu, u.sregs2);
5725 r = -EFAULT;
5726 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5727 goto out;
5728 r = 0;
5729 break;
5730 }
5731 case KVM_SET_SREGS2: {
5732 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5733 if (IS_ERR(u.sregs2)) {
5734 r = PTR_ERR(u.sregs2);
5735 u.sregs2 = NULL;
5736 goto out;
5737 }
5738 r = __set_sregs2(vcpu, u.sregs2);
5739 break;
5740 }
5741 case KVM_HAS_DEVICE_ATTR:
5742 case KVM_GET_DEVICE_ATTR:
5743 case KVM_SET_DEVICE_ATTR:
5744 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5745 break;
5746 default:
5747 r = -EINVAL;
5748 }
5749 out:
5750 kfree(u.buffer);
5751 out_nofree:
5752 vcpu_put(vcpu);
5753 return r;
5754 }
5755
5756 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5757 {
5758 return VM_FAULT_SIGBUS;
5759 }
5760
5761 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5762 {
5763 int ret;
5764
5765 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5766 return -EINVAL;
5767 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5768 return ret;
5769 }
5770
5771 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5772 u64 ident_addr)
5773 {
5774 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5775 }
5776
5777 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5778 unsigned long kvm_nr_mmu_pages)
5779 {
5780 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5781 return -EINVAL;
5782
5783 mutex_lock(&kvm->slots_lock);
5784
5785 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5786 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5787
5788 mutex_unlock(&kvm->slots_lock);
5789 return 0;
5790 }
5791
5792 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5793 {
5794 return kvm->arch.n_max_mmu_pages;
5795 }
5796
5797 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5798 {
5799 struct kvm_pic *pic = kvm->arch.vpic;
5800 int r;
5801
5802 r = 0;
5803 switch (chip->chip_id) {
5804 case KVM_IRQCHIP_PIC_MASTER:
5805 memcpy(&chip->chip.pic, &pic->pics[0],
5806 sizeof(struct kvm_pic_state));
5807 break;
5808 case KVM_IRQCHIP_PIC_SLAVE:
5809 memcpy(&chip->chip.pic, &pic->pics[1],
5810 sizeof(struct kvm_pic_state));
5811 break;
5812 case KVM_IRQCHIP_IOAPIC:
5813 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5814 break;
5815 default:
5816 r = -EINVAL;
5817 break;
5818 }
5819 return r;
5820 }
5821
5822 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5823 {
5824 struct kvm_pic *pic = kvm->arch.vpic;
5825 int r;
5826
5827 r = 0;
5828 switch (chip->chip_id) {
5829 case KVM_IRQCHIP_PIC_MASTER:
5830 spin_lock(&pic->lock);
5831 memcpy(&pic->pics[0], &chip->chip.pic,
5832 sizeof(struct kvm_pic_state));
5833 spin_unlock(&pic->lock);
5834 break;
5835 case KVM_IRQCHIP_PIC_SLAVE:
5836 spin_lock(&pic->lock);
5837 memcpy(&pic->pics[1], &chip->chip.pic,
5838 sizeof(struct kvm_pic_state));
5839 spin_unlock(&pic->lock);
5840 break;
5841 case KVM_IRQCHIP_IOAPIC:
5842 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5843 break;
5844 default:
5845 r = -EINVAL;
5846 break;
5847 }
5848 kvm_pic_update_irq(pic);
5849 return r;
5850 }
5851
5852 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5853 {
5854 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5855
5856 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5857
5858 mutex_lock(&kps->lock);
5859 memcpy(ps, &kps->channels, sizeof(*ps));
5860 mutex_unlock(&kps->lock);
5861 return 0;
5862 }
5863
5864 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5865 {
5866 int i;
5867 struct kvm_pit *pit = kvm->arch.vpit;
5868
5869 mutex_lock(&pit->pit_state.lock);
5870 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5871 for (i = 0; i < 3; i++)
5872 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5873 mutex_unlock(&pit->pit_state.lock);
5874 return 0;
5875 }
5876
5877 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5878 {
5879 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5880 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5881 sizeof(ps->channels));
5882 ps->flags = kvm->arch.vpit->pit_state.flags;
5883 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5884 memset(&ps->reserved, 0, sizeof(ps->reserved));
5885 return 0;
5886 }
5887
5888 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5889 {
5890 int start = 0;
5891 int i;
5892 u32 prev_legacy, cur_legacy;
5893 struct kvm_pit *pit = kvm->arch.vpit;
5894
5895 mutex_lock(&pit->pit_state.lock);
5896 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5897 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5898 if (!prev_legacy && cur_legacy)
5899 start = 1;
5900 memcpy(&pit->pit_state.channels, &ps->channels,
5901 sizeof(pit->pit_state.channels));
5902 pit->pit_state.flags = ps->flags;
5903 for (i = 0; i < 3; i++)
5904 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5905 start && i == 0);
5906 mutex_unlock(&pit->pit_state.lock);
5907 return 0;
5908 }
5909
5910 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5911 struct kvm_reinject_control *control)
5912 {
5913 struct kvm_pit *pit = kvm->arch.vpit;
5914
5915 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5916 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5917 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5918 */
5919 mutex_lock(&pit->pit_state.lock);
5920 kvm_pit_set_reinject(pit, control->pit_reinject);
5921 mutex_unlock(&pit->pit_state.lock);
5922
5923 return 0;
5924 }
5925
5926 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5927 {
5928
5929 /*
5930 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5931 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5932 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5933 * VM-Exit.
5934 */
5935 struct kvm_vcpu *vcpu;
5936 unsigned long i;
5937
5938 kvm_for_each_vcpu(i, vcpu, kvm)
5939 kvm_vcpu_kick(vcpu);
5940 }
5941
5942 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5943 bool line_status)
5944 {
5945 if (!irqchip_in_kernel(kvm))
5946 return -ENXIO;
5947
5948 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5949 irq_event->irq, irq_event->level,
5950 line_status);
5951 return 0;
5952 }
5953
5954 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5955 struct kvm_enable_cap *cap)
5956 {
5957 int r;
5958
5959 if (cap->flags)
5960 return -EINVAL;
5961
5962 switch (cap->cap) {
5963 case KVM_CAP_DISABLE_QUIRKS2:
5964 r = -EINVAL;
5965 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
5966 break;
5967 fallthrough;
5968 case KVM_CAP_DISABLE_QUIRKS:
5969 kvm->arch.disabled_quirks = cap->args[0];
5970 r = 0;
5971 break;
5972 case KVM_CAP_SPLIT_IRQCHIP: {
5973 mutex_lock(&kvm->lock);
5974 r = -EINVAL;
5975 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5976 goto split_irqchip_unlock;
5977 r = -EEXIST;
5978 if (irqchip_in_kernel(kvm))
5979 goto split_irqchip_unlock;
5980 if (kvm->created_vcpus)
5981 goto split_irqchip_unlock;
5982 r = kvm_setup_empty_irq_routing(kvm);
5983 if (r)
5984 goto split_irqchip_unlock;
5985 /* Pairs with irqchip_in_kernel. */
5986 smp_wmb();
5987 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5988 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5989 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
5990 r = 0;
5991 split_irqchip_unlock:
5992 mutex_unlock(&kvm->lock);
5993 break;
5994 }
5995 case KVM_CAP_X2APIC_API:
5996 r = -EINVAL;
5997 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5998 break;
5999
6000 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6001 kvm->arch.x2apic_format = true;
6002 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6003 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6004
6005 r = 0;
6006 break;
6007 case KVM_CAP_X86_DISABLE_EXITS:
6008 r = -EINVAL;
6009 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6010 break;
6011
6012 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6013 kvm_can_mwait_in_guest())
6014 kvm->arch.mwait_in_guest = true;
6015 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6016 kvm->arch.hlt_in_guest = true;
6017 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6018 kvm->arch.pause_in_guest = true;
6019 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6020 kvm->arch.cstate_in_guest = true;
6021 r = 0;
6022 break;
6023 case KVM_CAP_MSR_PLATFORM_INFO:
6024 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6025 r = 0;
6026 break;
6027 case KVM_CAP_EXCEPTION_PAYLOAD:
6028 kvm->arch.exception_payload_enabled = cap->args[0];
6029 r = 0;
6030 break;
6031 case KVM_CAP_X86_USER_SPACE_MSR:
6032 kvm->arch.user_space_msr_mask = cap->args[0];
6033 r = 0;
6034 break;
6035 case KVM_CAP_X86_BUS_LOCK_EXIT:
6036 r = -EINVAL;
6037 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6038 break;
6039
6040 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6041 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6042 break;
6043
6044 if (kvm_has_bus_lock_exit &&
6045 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6046 kvm->arch.bus_lock_detection_enabled = true;
6047 r = 0;
6048 break;
6049 #ifdef CONFIG_X86_SGX_KVM
6050 case KVM_CAP_SGX_ATTRIBUTE: {
6051 unsigned long allowed_attributes = 0;
6052
6053 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6054 if (r)
6055 break;
6056
6057 /* KVM only supports the PROVISIONKEY privileged attribute. */
6058 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6059 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6060 kvm->arch.sgx_provisioning_allowed = true;
6061 else
6062 r = -EINVAL;
6063 break;
6064 }
6065 #endif
6066 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6067 r = -EINVAL;
6068 if (!kvm_x86_ops.vm_copy_enc_context_from)
6069 break;
6070
6071 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6072 break;
6073 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6074 r = -EINVAL;
6075 if (!kvm_x86_ops.vm_move_enc_context_from)
6076 break;
6077
6078 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6079 break;
6080 case KVM_CAP_EXIT_HYPERCALL:
6081 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6082 r = -EINVAL;
6083 break;
6084 }
6085 kvm->arch.hypercall_exit_enabled = cap->args[0];
6086 r = 0;
6087 break;
6088 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6089 r = -EINVAL;
6090 if (cap->args[0] & ~1)
6091 break;
6092 kvm->arch.exit_on_emulation_error = cap->args[0];
6093 r = 0;
6094 break;
6095 case KVM_CAP_PMU_CAPABILITY:
6096 r = -EINVAL;
6097 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6098 break;
6099
6100 mutex_lock(&kvm->lock);
6101 if (!kvm->created_vcpus) {
6102 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6103 r = 0;
6104 }
6105 mutex_unlock(&kvm->lock);
6106 break;
6107 default:
6108 r = -EINVAL;
6109 break;
6110 }
6111 return r;
6112 }
6113
6114 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6115 {
6116 struct kvm_x86_msr_filter *msr_filter;
6117
6118 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6119 if (!msr_filter)
6120 return NULL;
6121
6122 msr_filter->default_allow = default_allow;
6123 return msr_filter;
6124 }
6125
6126 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6127 {
6128 u32 i;
6129
6130 if (!msr_filter)
6131 return;
6132
6133 for (i = 0; i < msr_filter->count; i++)
6134 kfree(msr_filter->ranges[i].bitmap);
6135
6136 kfree(msr_filter);
6137 }
6138
6139 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6140 struct kvm_msr_filter_range *user_range)
6141 {
6142 unsigned long *bitmap = NULL;
6143 size_t bitmap_size;
6144
6145 if (!user_range->nmsrs)
6146 return 0;
6147
6148 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6149 return -EINVAL;
6150
6151 if (!user_range->flags)
6152 return -EINVAL;
6153
6154 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6155 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6156 return -EINVAL;
6157
6158 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6159 if (IS_ERR(bitmap))
6160 return PTR_ERR(bitmap);
6161
6162 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6163 .flags = user_range->flags,
6164 .base = user_range->base,
6165 .nmsrs = user_range->nmsrs,
6166 .bitmap = bitmap,
6167 };
6168
6169 msr_filter->count++;
6170 return 0;
6171 }
6172
6173 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6174 {
6175 struct kvm_msr_filter __user *user_msr_filter = argp;
6176 struct kvm_x86_msr_filter *new_filter, *old_filter;
6177 struct kvm_msr_filter filter;
6178 bool default_allow;
6179 bool empty = true;
6180 int r = 0;
6181 u32 i;
6182
6183 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6184 return -EFAULT;
6185
6186 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6187 empty &= !filter.ranges[i].nmsrs;
6188
6189 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6190 if (empty && !default_allow)
6191 return -EINVAL;
6192
6193 new_filter = kvm_alloc_msr_filter(default_allow);
6194 if (!new_filter)
6195 return -ENOMEM;
6196
6197 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6198 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6199 if (r) {
6200 kvm_free_msr_filter(new_filter);
6201 return r;
6202 }
6203 }
6204
6205 mutex_lock(&kvm->lock);
6206
6207 /* The per-VM filter is protected by kvm->lock... */
6208 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6209
6210 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6211 synchronize_srcu(&kvm->srcu);
6212
6213 kvm_free_msr_filter(old_filter);
6214
6215 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6216 mutex_unlock(&kvm->lock);
6217
6218 return 0;
6219 }
6220
6221 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6222 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6223 {
6224 struct kvm_vcpu *vcpu;
6225 unsigned long i;
6226 int ret = 0;
6227
6228 mutex_lock(&kvm->lock);
6229 kvm_for_each_vcpu(i, vcpu, kvm) {
6230 if (!vcpu->arch.pv_time.active)
6231 continue;
6232
6233 ret = kvm_set_guest_paused(vcpu);
6234 if (ret) {
6235 kvm_err("Failed to pause guest VCPU%d: %d\n",
6236 vcpu->vcpu_id, ret);
6237 break;
6238 }
6239 }
6240 mutex_unlock(&kvm->lock);
6241
6242 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6243 }
6244
6245 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6246 {
6247 switch (state) {
6248 case PM_HIBERNATION_PREPARE:
6249 case PM_SUSPEND_PREPARE:
6250 return kvm_arch_suspend_notifier(kvm);
6251 }
6252
6253 return NOTIFY_DONE;
6254 }
6255 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6256
6257 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6258 {
6259 struct kvm_clock_data data = { 0 };
6260
6261 get_kvmclock(kvm, &data);
6262 if (copy_to_user(argp, &data, sizeof(data)))
6263 return -EFAULT;
6264
6265 return 0;
6266 }
6267
6268 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6269 {
6270 struct kvm_arch *ka = &kvm->arch;
6271 struct kvm_clock_data data;
6272 u64 now_raw_ns;
6273
6274 if (copy_from_user(&data, argp, sizeof(data)))
6275 return -EFAULT;
6276
6277 /*
6278 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6279 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6280 */
6281 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6282 return -EINVAL;
6283
6284 kvm_hv_request_tsc_page_update(kvm);
6285 kvm_start_pvclock_update(kvm);
6286 pvclock_update_vm_gtod_copy(kvm);
6287
6288 /*
6289 * This pairs with kvm_guest_time_update(): when masterclock is
6290 * in use, we use master_kernel_ns + kvmclock_offset to set
6291 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6292 * is slightly ahead) here we risk going negative on unsigned
6293 * 'system_time' when 'data.clock' is very small.
6294 */
6295 if (data.flags & KVM_CLOCK_REALTIME) {
6296 u64 now_real_ns = ktime_get_real_ns();
6297
6298 /*
6299 * Avoid stepping the kvmclock backwards.
6300 */
6301 if (now_real_ns > data.realtime)
6302 data.clock += now_real_ns - data.realtime;
6303 }
6304
6305 if (ka->use_master_clock)
6306 now_raw_ns = ka->master_kernel_ns;
6307 else
6308 now_raw_ns = get_kvmclock_base_ns();
6309 ka->kvmclock_offset = data.clock - now_raw_ns;
6310 kvm_end_pvclock_update(kvm);
6311 return 0;
6312 }
6313
6314 long kvm_arch_vm_ioctl(struct file *filp,
6315 unsigned int ioctl, unsigned long arg)
6316 {
6317 struct kvm *kvm = filp->private_data;
6318 void __user *argp = (void __user *)arg;
6319 int r = -ENOTTY;
6320 /*
6321 * This union makes it completely explicit to gcc-3.x
6322 * that these two variables' stack usage should be
6323 * combined, not added together.
6324 */
6325 union {
6326 struct kvm_pit_state ps;
6327 struct kvm_pit_state2 ps2;
6328 struct kvm_pit_config pit_config;
6329 } u;
6330
6331 switch (ioctl) {
6332 case KVM_SET_TSS_ADDR:
6333 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6334 break;
6335 case KVM_SET_IDENTITY_MAP_ADDR: {
6336 u64 ident_addr;
6337
6338 mutex_lock(&kvm->lock);
6339 r = -EINVAL;
6340 if (kvm->created_vcpus)
6341 goto set_identity_unlock;
6342 r = -EFAULT;
6343 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6344 goto set_identity_unlock;
6345 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6346 set_identity_unlock:
6347 mutex_unlock(&kvm->lock);
6348 break;
6349 }
6350 case KVM_SET_NR_MMU_PAGES:
6351 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6352 break;
6353 case KVM_GET_NR_MMU_PAGES:
6354 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6355 break;
6356 case KVM_CREATE_IRQCHIP: {
6357 mutex_lock(&kvm->lock);
6358
6359 r = -EEXIST;
6360 if (irqchip_in_kernel(kvm))
6361 goto create_irqchip_unlock;
6362
6363 r = -EINVAL;
6364 if (kvm->created_vcpus)
6365 goto create_irqchip_unlock;
6366
6367 r = kvm_pic_init(kvm);
6368 if (r)
6369 goto create_irqchip_unlock;
6370
6371 r = kvm_ioapic_init(kvm);
6372 if (r) {
6373 kvm_pic_destroy(kvm);
6374 goto create_irqchip_unlock;
6375 }
6376
6377 r = kvm_setup_default_irq_routing(kvm);
6378 if (r) {
6379 kvm_ioapic_destroy(kvm);
6380 kvm_pic_destroy(kvm);
6381 goto create_irqchip_unlock;
6382 }
6383 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6384 smp_wmb();
6385 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6386 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6387 create_irqchip_unlock:
6388 mutex_unlock(&kvm->lock);
6389 break;
6390 }
6391 case KVM_CREATE_PIT:
6392 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6393 goto create_pit;
6394 case KVM_CREATE_PIT2:
6395 r = -EFAULT;
6396 if (copy_from_user(&u.pit_config, argp,
6397 sizeof(struct kvm_pit_config)))
6398 goto out;
6399 create_pit:
6400 mutex_lock(&kvm->lock);
6401 r = -EEXIST;
6402 if (kvm->arch.vpit)
6403 goto create_pit_unlock;
6404 r = -ENOMEM;
6405 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6406 if (kvm->arch.vpit)
6407 r = 0;
6408 create_pit_unlock:
6409 mutex_unlock(&kvm->lock);
6410 break;
6411 case KVM_GET_IRQCHIP: {
6412 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6413 struct kvm_irqchip *chip;
6414
6415 chip = memdup_user(argp, sizeof(*chip));
6416 if (IS_ERR(chip)) {
6417 r = PTR_ERR(chip);
6418 goto out;
6419 }
6420
6421 r = -ENXIO;
6422 if (!irqchip_kernel(kvm))
6423 goto get_irqchip_out;
6424 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6425 if (r)
6426 goto get_irqchip_out;
6427 r = -EFAULT;
6428 if (copy_to_user(argp, chip, sizeof(*chip)))
6429 goto get_irqchip_out;
6430 r = 0;
6431 get_irqchip_out:
6432 kfree(chip);
6433 break;
6434 }
6435 case KVM_SET_IRQCHIP: {
6436 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6437 struct kvm_irqchip *chip;
6438
6439 chip = memdup_user(argp, sizeof(*chip));
6440 if (IS_ERR(chip)) {
6441 r = PTR_ERR(chip);
6442 goto out;
6443 }
6444
6445 r = -ENXIO;
6446 if (!irqchip_kernel(kvm))
6447 goto set_irqchip_out;
6448 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6449 set_irqchip_out:
6450 kfree(chip);
6451 break;
6452 }
6453 case KVM_GET_PIT: {
6454 r = -EFAULT;
6455 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6456 goto out;
6457 r = -ENXIO;
6458 if (!kvm->arch.vpit)
6459 goto out;
6460 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6461 if (r)
6462 goto out;
6463 r = -EFAULT;
6464 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6465 goto out;
6466 r = 0;
6467 break;
6468 }
6469 case KVM_SET_PIT: {
6470 r = -EFAULT;
6471 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6472 goto out;
6473 mutex_lock(&kvm->lock);
6474 r = -ENXIO;
6475 if (!kvm->arch.vpit)
6476 goto set_pit_out;
6477 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6478 set_pit_out:
6479 mutex_unlock(&kvm->lock);
6480 break;
6481 }
6482 case KVM_GET_PIT2: {
6483 r = -ENXIO;
6484 if (!kvm->arch.vpit)
6485 goto out;
6486 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6487 if (r)
6488 goto out;
6489 r = -EFAULT;
6490 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6491 goto out;
6492 r = 0;
6493 break;
6494 }
6495 case KVM_SET_PIT2: {
6496 r = -EFAULT;
6497 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6498 goto out;
6499 mutex_lock(&kvm->lock);
6500 r = -ENXIO;
6501 if (!kvm->arch.vpit)
6502 goto set_pit2_out;
6503 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6504 set_pit2_out:
6505 mutex_unlock(&kvm->lock);
6506 break;
6507 }
6508 case KVM_REINJECT_CONTROL: {
6509 struct kvm_reinject_control control;
6510 r = -EFAULT;
6511 if (copy_from_user(&control, argp, sizeof(control)))
6512 goto out;
6513 r = -ENXIO;
6514 if (!kvm->arch.vpit)
6515 goto out;
6516 r = kvm_vm_ioctl_reinject(kvm, &control);
6517 break;
6518 }
6519 case KVM_SET_BOOT_CPU_ID:
6520 r = 0;
6521 mutex_lock(&kvm->lock);
6522 if (kvm->created_vcpus)
6523 r = -EBUSY;
6524 else
6525 kvm->arch.bsp_vcpu_id = arg;
6526 mutex_unlock(&kvm->lock);
6527 break;
6528 #ifdef CONFIG_KVM_XEN
6529 case KVM_XEN_HVM_CONFIG: {
6530 struct kvm_xen_hvm_config xhc;
6531 r = -EFAULT;
6532 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6533 goto out;
6534 r = kvm_xen_hvm_config(kvm, &xhc);
6535 break;
6536 }
6537 case KVM_XEN_HVM_GET_ATTR: {
6538 struct kvm_xen_hvm_attr xha;
6539
6540 r = -EFAULT;
6541 if (copy_from_user(&xha, argp, sizeof(xha)))
6542 goto out;
6543 r = kvm_xen_hvm_get_attr(kvm, &xha);
6544 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6545 r = -EFAULT;
6546 break;
6547 }
6548 case KVM_XEN_HVM_SET_ATTR: {
6549 struct kvm_xen_hvm_attr xha;
6550
6551 r = -EFAULT;
6552 if (copy_from_user(&xha, argp, sizeof(xha)))
6553 goto out;
6554 r = kvm_xen_hvm_set_attr(kvm, &xha);
6555 break;
6556 }
6557 case KVM_XEN_HVM_EVTCHN_SEND: {
6558 struct kvm_irq_routing_xen_evtchn uxe;
6559
6560 r = -EFAULT;
6561 if (copy_from_user(&uxe, argp, sizeof(uxe)))
6562 goto out;
6563 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6564 break;
6565 }
6566 #endif
6567 case KVM_SET_CLOCK:
6568 r = kvm_vm_ioctl_set_clock(kvm, argp);
6569 break;
6570 case KVM_GET_CLOCK:
6571 r = kvm_vm_ioctl_get_clock(kvm, argp);
6572 break;
6573 case KVM_SET_TSC_KHZ: {
6574 u32 user_tsc_khz;
6575
6576 r = -EINVAL;
6577 user_tsc_khz = (u32)arg;
6578
6579 if (kvm_has_tsc_control &&
6580 user_tsc_khz >= kvm_max_guest_tsc_khz)
6581 goto out;
6582
6583 if (user_tsc_khz == 0)
6584 user_tsc_khz = tsc_khz;
6585
6586 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6587 r = 0;
6588
6589 goto out;
6590 }
6591 case KVM_GET_TSC_KHZ: {
6592 r = READ_ONCE(kvm->arch.default_tsc_khz);
6593 goto out;
6594 }
6595 case KVM_MEMORY_ENCRYPT_OP: {
6596 r = -ENOTTY;
6597 if (!kvm_x86_ops.mem_enc_ioctl)
6598 goto out;
6599
6600 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6601 break;
6602 }
6603 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6604 struct kvm_enc_region region;
6605
6606 r = -EFAULT;
6607 if (copy_from_user(&region, argp, sizeof(region)))
6608 goto out;
6609
6610 r = -ENOTTY;
6611 if (!kvm_x86_ops.mem_enc_register_region)
6612 goto out;
6613
6614 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6615 break;
6616 }
6617 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6618 struct kvm_enc_region region;
6619
6620 r = -EFAULT;
6621 if (copy_from_user(&region, argp, sizeof(region)))
6622 goto out;
6623
6624 r = -ENOTTY;
6625 if (!kvm_x86_ops.mem_enc_unregister_region)
6626 goto out;
6627
6628 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6629 break;
6630 }
6631 case KVM_HYPERV_EVENTFD: {
6632 struct kvm_hyperv_eventfd hvevfd;
6633
6634 r = -EFAULT;
6635 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6636 goto out;
6637 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6638 break;
6639 }
6640 case KVM_SET_PMU_EVENT_FILTER:
6641 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6642 break;
6643 case KVM_X86_SET_MSR_FILTER:
6644 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6645 break;
6646 default:
6647 r = -ENOTTY;
6648 }
6649 out:
6650 return r;
6651 }
6652
6653 static void kvm_init_msr_list(void)
6654 {
6655 struct x86_pmu_capability x86_pmu;
6656 u32 dummy[2];
6657 unsigned i;
6658
6659 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6660 "Please update the fixed PMCs in msrs_to_saved_all[]");
6661
6662 perf_get_x86_pmu_capability(&x86_pmu);
6663
6664 num_msrs_to_save = 0;
6665 num_emulated_msrs = 0;
6666 num_msr_based_features = 0;
6667
6668 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6669 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6670 continue;
6671
6672 /*
6673 * Even MSRs that are valid in the host may not be exposed
6674 * to the guests in some cases.
6675 */
6676 switch (msrs_to_save_all[i]) {
6677 case MSR_IA32_BNDCFGS:
6678 if (!kvm_mpx_supported())
6679 continue;
6680 break;
6681 case MSR_TSC_AUX:
6682 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6683 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6684 continue;
6685 break;
6686 case MSR_IA32_UMWAIT_CONTROL:
6687 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6688 continue;
6689 break;
6690 case MSR_IA32_RTIT_CTL:
6691 case MSR_IA32_RTIT_STATUS:
6692 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6693 continue;
6694 break;
6695 case MSR_IA32_RTIT_CR3_MATCH:
6696 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6697 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6698 continue;
6699 break;
6700 case MSR_IA32_RTIT_OUTPUT_BASE:
6701 case MSR_IA32_RTIT_OUTPUT_MASK:
6702 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6703 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6704 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6705 continue;
6706 break;
6707 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6708 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6709 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6710 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6711 continue;
6712 break;
6713 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6714 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6715 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6716 continue;
6717 break;
6718 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6719 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6720 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6721 continue;
6722 break;
6723 case MSR_IA32_XFD:
6724 case MSR_IA32_XFD_ERR:
6725 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6726 continue;
6727 break;
6728 default:
6729 break;
6730 }
6731
6732 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6733 }
6734
6735 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6736 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6737 continue;
6738
6739 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6740 }
6741
6742 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6743 struct kvm_msr_entry msr;
6744
6745 msr.index = msr_based_features_all[i];
6746 if (kvm_get_msr_feature(&msr))
6747 continue;
6748
6749 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6750 }
6751 }
6752
6753 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6754 const void *v)
6755 {
6756 int handled = 0;
6757 int n;
6758
6759 do {
6760 n = min(len, 8);
6761 if (!(lapic_in_kernel(vcpu) &&
6762 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6763 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6764 break;
6765 handled += n;
6766 addr += n;
6767 len -= n;
6768 v += n;
6769 } while (len);
6770
6771 return handled;
6772 }
6773
6774 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6775 {
6776 int handled = 0;
6777 int n;
6778
6779 do {
6780 n = min(len, 8);
6781 if (!(lapic_in_kernel(vcpu) &&
6782 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6783 addr, n, v))
6784 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6785 break;
6786 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6787 handled += n;
6788 addr += n;
6789 len -= n;
6790 v += n;
6791 } while (len);
6792
6793 return handled;
6794 }
6795
6796 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6797 struct kvm_segment *var, int seg)
6798 {
6799 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6800 }
6801
6802 void kvm_get_segment(struct kvm_vcpu *vcpu,
6803 struct kvm_segment *var, int seg)
6804 {
6805 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6806 }
6807
6808 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
6809 struct x86_exception *exception)
6810 {
6811 struct kvm_mmu *mmu = vcpu->arch.mmu;
6812 gpa_t t_gpa;
6813
6814 BUG_ON(!mmu_is_nested(vcpu));
6815
6816 /* NPT walks are always user-walks */
6817 access |= PFERR_USER_MASK;
6818 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6819
6820 return t_gpa;
6821 }
6822
6823 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6824 struct x86_exception *exception)
6825 {
6826 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6827
6828 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6829 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6830 }
6831 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6832
6833 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6834 struct x86_exception *exception)
6835 {
6836 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6837
6838 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6839 access |= PFERR_FETCH_MASK;
6840 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6841 }
6842
6843 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6844 struct x86_exception *exception)
6845 {
6846 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6847
6848 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6849 access |= PFERR_WRITE_MASK;
6850 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6851 }
6852 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6853
6854 /* uses this to access any guest's mapped memory without checking CPL */
6855 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6856 struct x86_exception *exception)
6857 {
6858 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6859
6860 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6861 }
6862
6863 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6864 struct kvm_vcpu *vcpu, u64 access,
6865 struct x86_exception *exception)
6866 {
6867 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6868 void *data = val;
6869 int r = X86EMUL_CONTINUE;
6870
6871 while (bytes) {
6872 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6873 unsigned offset = addr & (PAGE_SIZE-1);
6874 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6875 int ret;
6876
6877 if (gpa == UNMAPPED_GVA)
6878 return X86EMUL_PROPAGATE_FAULT;
6879 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6880 offset, toread);
6881 if (ret < 0) {
6882 r = X86EMUL_IO_NEEDED;
6883 goto out;
6884 }
6885
6886 bytes -= toread;
6887 data += toread;
6888 addr += toread;
6889 }
6890 out:
6891 return r;
6892 }
6893
6894 /* used for instruction fetching */
6895 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6896 gva_t addr, void *val, unsigned int bytes,
6897 struct x86_exception *exception)
6898 {
6899 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6900 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6901 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6902 unsigned offset;
6903 int ret;
6904
6905 /* Inline kvm_read_guest_virt_helper for speed. */
6906 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6907 exception);
6908 if (unlikely(gpa == UNMAPPED_GVA))
6909 return X86EMUL_PROPAGATE_FAULT;
6910
6911 offset = addr & (PAGE_SIZE-1);
6912 if (WARN_ON(offset + bytes > PAGE_SIZE))
6913 bytes = (unsigned)PAGE_SIZE - offset;
6914 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6915 offset, bytes);
6916 if (unlikely(ret < 0))
6917 return X86EMUL_IO_NEEDED;
6918
6919 return X86EMUL_CONTINUE;
6920 }
6921
6922 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6923 gva_t addr, void *val, unsigned int bytes,
6924 struct x86_exception *exception)
6925 {
6926 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6927
6928 /*
6929 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6930 * is returned, but our callers are not ready for that and they blindly
6931 * call kvm_inject_page_fault. Ensure that they at least do not leak
6932 * uninitialized kernel stack memory into cr2 and error code.
6933 */
6934 memset(exception, 0, sizeof(*exception));
6935 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6936 exception);
6937 }
6938 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6939
6940 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6941 gva_t addr, void *val, unsigned int bytes,
6942 struct x86_exception *exception, bool system)
6943 {
6944 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6945 u64 access = 0;
6946
6947 if (system)
6948 access |= PFERR_IMPLICIT_ACCESS;
6949 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6950 access |= PFERR_USER_MASK;
6951
6952 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6953 }
6954
6955 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6956 unsigned long addr, void *val, unsigned int bytes)
6957 {
6958 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6959 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6960
6961 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6962 }
6963
6964 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6965 struct kvm_vcpu *vcpu, u64 access,
6966 struct x86_exception *exception)
6967 {
6968 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6969 void *data = val;
6970 int r = X86EMUL_CONTINUE;
6971
6972 while (bytes) {
6973 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6974 unsigned offset = addr & (PAGE_SIZE-1);
6975 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6976 int ret;
6977
6978 if (gpa == UNMAPPED_GVA)
6979 return X86EMUL_PROPAGATE_FAULT;
6980 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6981 if (ret < 0) {
6982 r = X86EMUL_IO_NEEDED;
6983 goto out;
6984 }
6985
6986 bytes -= towrite;
6987 data += towrite;
6988 addr += towrite;
6989 }
6990 out:
6991 return r;
6992 }
6993
6994 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6995 unsigned int bytes, struct x86_exception *exception,
6996 bool system)
6997 {
6998 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6999 u64 access = PFERR_WRITE_MASK;
7000
7001 if (system)
7002 access |= PFERR_IMPLICIT_ACCESS;
7003 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7004 access |= PFERR_USER_MASK;
7005
7006 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7007 access, exception);
7008 }
7009
7010 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7011 unsigned int bytes, struct x86_exception *exception)
7012 {
7013 /* kvm_write_guest_virt_system can pull in tons of pages. */
7014 vcpu->arch.l1tf_flush_l1d = true;
7015
7016 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7017 PFERR_WRITE_MASK, exception);
7018 }
7019 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7020
7021 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7022 void *insn, int insn_len)
7023 {
7024 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7025 insn, insn_len);
7026 }
7027
7028 int handle_ud(struct kvm_vcpu *vcpu)
7029 {
7030 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7031 int emul_type = EMULTYPE_TRAP_UD;
7032 char sig[5]; /* ud2; .ascii "kvm" */
7033 struct x86_exception e;
7034
7035 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7036 return 1;
7037
7038 if (force_emulation_prefix &&
7039 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7040 sig, sizeof(sig), &e) == 0 &&
7041 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7042 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7043 emul_type = EMULTYPE_TRAP_UD_FORCED;
7044 }
7045
7046 return kvm_emulate_instruction(vcpu, emul_type);
7047 }
7048 EXPORT_SYMBOL_GPL(handle_ud);
7049
7050 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7051 gpa_t gpa, bool write)
7052 {
7053 /* For APIC access vmexit */
7054 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7055 return 1;
7056
7057 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7058 trace_vcpu_match_mmio(gva, gpa, write, true);
7059 return 1;
7060 }
7061
7062 return 0;
7063 }
7064
7065 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7066 gpa_t *gpa, struct x86_exception *exception,
7067 bool write)
7068 {
7069 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7070 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7071 | (write ? PFERR_WRITE_MASK : 0);
7072
7073 /*
7074 * currently PKRU is only applied to ept enabled guest so
7075 * there is no pkey in EPT page table for L1 guest or EPT
7076 * shadow page table for L2 guest.
7077 */
7078 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7079 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7080 vcpu->arch.mmio_access, 0, access))) {
7081 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7082 (gva & (PAGE_SIZE - 1));
7083 trace_vcpu_match_mmio(gva, *gpa, write, false);
7084 return 1;
7085 }
7086
7087 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7088
7089 if (*gpa == UNMAPPED_GVA)
7090 return -1;
7091
7092 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7093 }
7094
7095 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7096 const void *val, int bytes)
7097 {
7098 int ret;
7099
7100 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7101 if (ret < 0)
7102 return 0;
7103 kvm_page_track_write(vcpu, gpa, val, bytes);
7104 return 1;
7105 }
7106
7107 struct read_write_emulator_ops {
7108 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7109 int bytes);
7110 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7111 void *val, int bytes);
7112 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7113 int bytes, void *val);
7114 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7115 void *val, int bytes);
7116 bool write;
7117 };
7118
7119 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7120 {
7121 if (vcpu->mmio_read_completed) {
7122 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7123 vcpu->mmio_fragments[0].gpa, val);
7124 vcpu->mmio_read_completed = 0;
7125 return 1;
7126 }
7127
7128 return 0;
7129 }
7130
7131 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7132 void *val, int bytes)
7133 {
7134 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7135 }
7136
7137 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7138 void *val, int bytes)
7139 {
7140 return emulator_write_phys(vcpu, gpa, val, bytes);
7141 }
7142
7143 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7144 {
7145 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7146 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7147 }
7148
7149 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7150 void *val, int bytes)
7151 {
7152 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7153 return X86EMUL_IO_NEEDED;
7154 }
7155
7156 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7157 void *val, int bytes)
7158 {
7159 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7160
7161 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7162 return X86EMUL_CONTINUE;
7163 }
7164
7165 static const struct read_write_emulator_ops read_emultor = {
7166 .read_write_prepare = read_prepare,
7167 .read_write_emulate = read_emulate,
7168 .read_write_mmio = vcpu_mmio_read,
7169 .read_write_exit_mmio = read_exit_mmio,
7170 };
7171
7172 static const struct read_write_emulator_ops write_emultor = {
7173 .read_write_emulate = write_emulate,
7174 .read_write_mmio = write_mmio,
7175 .read_write_exit_mmio = write_exit_mmio,
7176 .write = true,
7177 };
7178
7179 static int emulator_read_write_onepage(unsigned long addr, void *val,
7180 unsigned int bytes,
7181 struct x86_exception *exception,
7182 struct kvm_vcpu *vcpu,
7183 const struct read_write_emulator_ops *ops)
7184 {
7185 gpa_t gpa;
7186 int handled, ret;
7187 bool write = ops->write;
7188 struct kvm_mmio_fragment *frag;
7189 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7190
7191 /*
7192 * If the exit was due to a NPF we may already have a GPA.
7193 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7194 * Note, this cannot be used on string operations since string
7195 * operation using rep will only have the initial GPA from the NPF
7196 * occurred.
7197 */
7198 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7199 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7200 gpa = ctxt->gpa_val;
7201 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7202 } else {
7203 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7204 if (ret < 0)
7205 return X86EMUL_PROPAGATE_FAULT;
7206 }
7207
7208 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7209 return X86EMUL_CONTINUE;
7210
7211 /*
7212 * Is this MMIO handled locally?
7213 */
7214 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7215 if (handled == bytes)
7216 return X86EMUL_CONTINUE;
7217
7218 gpa += handled;
7219 bytes -= handled;
7220 val += handled;
7221
7222 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7223 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7224 frag->gpa = gpa;
7225 frag->data = val;
7226 frag->len = bytes;
7227 return X86EMUL_CONTINUE;
7228 }
7229
7230 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7231 unsigned long addr,
7232 void *val, unsigned int bytes,
7233 struct x86_exception *exception,
7234 const struct read_write_emulator_ops *ops)
7235 {
7236 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7237 gpa_t gpa;
7238 int rc;
7239
7240 if (ops->read_write_prepare &&
7241 ops->read_write_prepare(vcpu, val, bytes))
7242 return X86EMUL_CONTINUE;
7243
7244 vcpu->mmio_nr_fragments = 0;
7245
7246 /* Crossing a page boundary? */
7247 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7248 int now;
7249
7250 now = -addr & ~PAGE_MASK;
7251 rc = emulator_read_write_onepage(addr, val, now, exception,
7252 vcpu, ops);
7253
7254 if (rc != X86EMUL_CONTINUE)
7255 return rc;
7256 addr += now;
7257 if (ctxt->mode != X86EMUL_MODE_PROT64)
7258 addr = (u32)addr;
7259 val += now;
7260 bytes -= now;
7261 }
7262
7263 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7264 vcpu, ops);
7265 if (rc != X86EMUL_CONTINUE)
7266 return rc;
7267
7268 if (!vcpu->mmio_nr_fragments)
7269 return rc;
7270
7271 gpa = vcpu->mmio_fragments[0].gpa;
7272
7273 vcpu->mmio_needed = 1;
7274 vcpu->mmio_cur_fragment = 0;
7275
7276 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7277 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7278 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7279 vcpu->run->mmio.phys_addr = gpa;
7280
7281 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7282 }
7283
7284 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7285 unsigned long addr,
7286 void *val,
7287 unsigned int bytes,
7288 struct x86_exception *exception)
7289 {
7290 return emulator_read_write(ctxt, addr, val, bytes,
7291 exception, &read_emultor);
7292 }
7293
7294 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7295 unsigned long addr,
7296 const void *val,
7297 unsigned int bytes,
7298 struct x86_exception *exception)
7299 {
7300 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7301 exception, &write_emultor);
7302 }
7303
7304 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7305 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7306
7307 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7308 unsigned long addr,
7309 const void *old,
7310 const void *new,
7311 unsigned int bytes,
7312 struct x86_exception *exception)
7313 {
7314 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7315 u64 page_line_mask;
7316 unsigned long hva;
7317 gpa_t gpa;
7318 int r;
7319
7320 /* guests cmpxchg8b have to be emulated atomically */
7321 if (bytes > 8 || (bytes & (bytes - 1)))
7322 goto emul_write;
7323
7324 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7325
7326 if (gpa == UNMAPPED_GVA ||
7327 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7328 goto emul_write;
7329
7330 /*
7331 * Emulate the atomic as a straight write to avoid #AC if SLD is
7332 * enabled in the host and the access splits a cache line.
7333 */
7334 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7335 page_line_mask = ~(cache_line_size() - 1);
7336 else
7337 page_line_mask = PAGE_MASK;
7338
7339 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7340 goto emul_write;
7341
7342 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7343 if (kvm_is_error_hva(hva))
7344 goto emul_write;
7345
7346 hva += offset_in_page(gpa);
7347
7348 switch (bytes) {
7349 case 1:
7350 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7351 break;
7352 case 2:
7353 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7354 break;
7355 case 4:
7356 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7357 break;
7358 case 8:
7359 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7360 break;
7361 default:
7362 BUG();
7363 }
7364
7365 if (r < 0)
7366 return X86EMUL_UNHANDLEABLE;
7367 if (r)
7368 return X86EMUL_CMPXCHG_FAILED;
7369
7370 kvm_page_track_write(vcpu, gpa, new, bytes);
7371
7372 return X86EMUL_CONTINUE;
7373
7374 emul_write:
7375 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7376
7377 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7378 }
7379
7380 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7381 {
7382 int r = 0, i;
7383
7384 for (i = 0; i < vcpu->arch.pio.count; i++) {
7385 if (vcpu->arch.pio.in)
7386 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7387 vcpu->arch.pio.size, pd);
7388 else
7389 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7390 vcpu->arch.pio.port, vcpu->arch.pio.size,
7391 pd);
7392 if (r)
7393 break;
7394 pd += vcpu->arch.pio.size;
7395 }
7396 return r;
7397 }
7398
7399 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7400 unsigned short port,
7401 unsigned int count, bool in)
7402 {
7403 vcpu->arch.pio.port = port;
7404 vcpu->arch.pio.in = in;
7405 vcpu->arch.pio.count = count;
7406 vcpu->arch.pio.size = size;
7407
7408 if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7409 return 1;
7410
7411 vcpu->run->exit_reason = KVM_EXIT_IO;
7412 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7413 vcpu->run->io.size = size;
7414 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7415 vcpu->run->io.count = count;
7416 vcpu->run->io.port = port;
7417
7418 return 0;
7419 }
7420
7421 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7422 unsigned short port, unsigned int count)
7423 {
7424 WARN_ON(vcpu->arch.pio.count);
7425 memset(vcpu->arch.pio_data, 0, size * count);
7426 return emulator_pio_in_out(vcpu, size, port, count, true);
7427 }
7428
7429 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7430 {
7431 int size = vcpu->arch.pio.size;
7432 unsigned count = vcpu->arch.pio.count;
7433 memcpy(val, vcpu->arch.pio_data, size * count);
7434 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7435 vcpu->arch.pio.count = 0;
7436 }
7437
7438 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7439 unsigned short port, void *val, unsigned int count)
7440 {
7441 if (vcpu->arch.pio.count) {
7442 /*
7443 * Complete a previous iteration that required userspace I/O.
7444 * Note, @count isn't guaranteed to match pio.count as userspace
7445 * can modify ECX before rerunning the vCPU. Ignore any such
7446 * shenanigans as KVM doesn't support modifying the rep count,
7447 * and the emulator ensures @count doesn't overflow the buffer.
7448 */
7449 } else {
7450 int r = __emulator_pio_in(vcpu, size, port, count);
7451 if (!r)
7452 return r;
7453
7454 /* Results already available, fall through. */
7455 }
7456
7457 complete_emulator_pio_in(vcpu, val);
7458 return 1;
7459 }
7460
7461 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7462 int size, unsigned short port, void *val,
7463 unsigned int count)
7464 {
7465 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7466
7467 }
7468
7469 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7470 unsigned short port, const void *val,
7471 unsigned int count)
7472 {
7473 int ret;
7474
7475 memcpy(vcpu->arch.pio_data, val, size * count);
7476 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7477 ret = emulator_pio_in_out(vcpu, size, port, count, false);
7478 if (ret)
7479 vcpu->arch.pio.count = 0;
7480
7481 return ret;
7482 }
7483
7484 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7485 int size, unsigned short port,
7486 const void *val, unsigned int count)
7487 {
7488 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7489 }
7490
7491 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7492 {
7493 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7494 }
7495
7496 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7497 {
7498 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7499 }
7500
7501 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7502 {
7503 if (!need_emulate_wbinvd(vcpu))
7504 return X86EMUL_CONTINUE;
7505
7506 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7507 int cpu = get_cpu();
7508
7509 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7510 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7511 wbinvd_ipi, NULL, 1);
7512 put_cpu();
7513 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7514 } else
7515 wbinvd();
7516 return X86EMUL_CONTINUE;
7517 }
7518
7519 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7520 {
7521 kvm_emulate_wbinvd_noskip(vcpu);
7522 return kvm_skip_emulated_instruction(vcpu);
7523 }
7524 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7525
7526
7527
7528 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7529 {
7530 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7531 }
7532
7533 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7534 unsigned long *dest)
7535 {
7536 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7537 }
7538
7539 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7540 unsigned long value)
7541 {
7542
7543 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7544 }
7545
7546 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7547 {
7548 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7549 }
7550
7551 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7552 {
7553 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7554 unsigned long value;
7555
7556 switch (cr) {
7557 case 0:
7558 value = kvm_read_cr0(vcpu);
7559 break;
7560 case 2:
7561 value = vcpu->arch.cr2;
7562 break;
7563 case 3:
7564 value = kvm_read_cr3(vcpu);
7565 break;
7566 case 4:
7567 value = kvm_read_cr4(vcpu);
7568 break;
7569 case 8:
7570 value = kvm_get_cr8(vcpu);
7571 break;
7572 default:
7573 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7574 return 0;
7575 }
7576
7577 return value;
7578 }
7579
7580 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7581 {
7582 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7583 int res = 0;
7584
7585 switch (cr) {
7586 case 0:
7587 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7588 break;
7589 case 2:
7590 vcpu->arch.cr2 = val;
7591 break;
7592 case 3:
7593 res = kvm_set_cr3(vcpu, val);
7594 break;
7595 case 4:
7596 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7597 break;
7598 case 8:
7599 res = kvm_set_cr8(vcpu, val);
7600 break;
7601 default:
7602 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7603 res = -1;
7604 }
7605
7606 return res;
7607 }
7608
7609 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7610 {
7611 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7612 }
7613
7614 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7615 {
7616 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7617 }
7618
7619 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7620 {
7621 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7622 }
7623
7624 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7625 {
7626 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7627 }
7628
7629 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7630 {
7631 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7632 }
7633
7634 static unsigned long emulator_get_cached_segment_base(
7635 struct x86_emulate_ctxt *ctxt, int seg)
7636 {
7637 return get_segment_base(emul_to_vcpu(ctxt), seg);
7638 }
7639
7640 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7641 struct desc_struct *desc, u32 *base3,
7642 int seg)
7643 {
7644 struct kvm_segment var;
7645
7646 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7647 *selector = var.selector;
7648
7649 if (var.unusable) {
7650 memset(desc, 0, sizeof(*desc));
7651 if (base3)
7652 *base3 = 0;
7653 return false;
7654 }
7655
7656 if (var.g)
7657 var.limit >>= 12;
7658 set_desc_limit(desc, var.limit);
7659 set_desc_base(desc, (unsigned long)var.base);
7660 #ifdef CONFIG_X86_64
7661 if (base3)
7662 *base3 = var.base >> 32;
7663 #endif
7664 desc->type = var.type;
7665 desc->s = var.s;
7666 desc->dpl = var.dpl;
7667 desc->p = var.present;
7668 desc->avl = var.avl;
7669 desc->l = var.l;
7670 desc->d = var.db;
7671 desc->g = var.g;
7672
7673 return true;
7674 }
7675
7676 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7677 struct desc_struct *desc, u32 base3,
7678 int seg)
7679 {
7680 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7681 struct kvm_segment var;
7682
7683 var.selector = selector;
7684 var.base = get_desc_base(desc);
7685 #ifdef CONFIG_X86_64
7686 var.base |= ((u64)base3) << 32;
7687 #endif
7688 var.limit = get_desc_limit(desc);
7689 if (desc->g)
7690 var.limit = (var.limit << 12) | 0xfff;
7691 var.type = desc->type;
7692 var.dpl = desc->dpl;
7693 var.db = desc->d;
7694 var.s = desc->s;
7695 var.l = desc->l;
7696 var.g = desc->g;
7697 var.avl = desc->avl;
7698 var.present = desc->p;
7699 var.unusable = !var.present;
7700 var.padding = 0;
7701
7702 kvm_set_segment(vcpu, &var, seg);
7703 return;
7704 }
7705
7706 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7707 u32 msr_index, u64 *pdata)
7708 {
7709 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7710 int r;
7711
7712 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7713
7714 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7715 complete_emulated_rdmsr, r)) {
7716 /* Bounce to user space */
7717 return X86EMUL_IO_NEEDED;
7718 }
7719
7720 return r;
7721 }
7722
7723 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7724 u32 msr_index, u64 data)
7725 {
7726 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7727 int r;
7728
7729 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7730
7731 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7732 complete_emulated_msr_access, r)) {
7733 /* Bounce to user space */
7734 return X86EMUL_IO_NEEDED;
7735 }
7736
7737 return r;
7738 }
7739
7740 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7741 u32 msr_index, u64 *pdata)
7742 {
7743 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7744 }
7745
7746 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7747 u32 msr_index, u64 data)
7748 {
7749 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7750 }
7751
7752 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7753 {
7754 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7755
7756 return vcpu->arch.smbase;
7757 }
7758
7759 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7760 {
7761 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7762
7763 vcpu->arch.smbase = smbase;
7764 }
7765
7766 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7767 u32 pmc)
7768 {
7769 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7770 return 0;
7771 return -EINVAL;
7772 }
7773
7774 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7775 u32 pmc, u64 *pdata)
7776 {
7777 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7778 }
7779
7780 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7781 {
7782 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7783 }
7784
7785 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7786 struct x86_instruction_info *info,
7787 enum x86_intercept_stage stage)
7788 {
7789 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7790 &ctxt->exception);
7791 }
7792
7793 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7794 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7795 bool exact_only)
7796 {
7797 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7798 }
7799
7800 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7801 {
7802 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7803 }
7804
7805 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7806 {
7807 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7808 }
7809
7810 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7811 {
7812 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7813 }
7814
7815 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7816 {
7817 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7818 }
7819
7820 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7821 {
7822 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7823 }
7824
7825 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7826 {
7827 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7828 }
7829
7830 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7831 {
7832 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7833 }
7834
7835 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7836 {
7837 return emul_to_vcpu(ctxt)->arch.hflags;
7838 }
7839
7840 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7841 {
7842 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7843
7844 kvm_smm_changed(vcpu, false);
7845 }
7846
7847 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7848 const char *smstate)
7849 {
7850 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7851 }
7852
7853 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7854 {
7855 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7856 }
7857
7858 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7859 {
7860 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7861 }
7862
7863 static const struct x86_emulate_ops emulate_ops = {
7864 .read_gpr = emulator_read_gpr,
7865 .write_gpr = emulator_write_gpr,
7866 .read_std = emulator_read_std,
7867 .write_std = emulator_write_std,
7868 .read_phys = kvm_read_guest_phys_system,
7869 .fetch = kvm_fetch_guest_virt,
7870 .read_emulated = emulator_read_emulated,
7871 .write_emulated = emulator_write_emulated,
7872 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7873 .invlpg = emulator_invlpg,
7874 .pio_in_emulated = emulator_pio_in_emulated,
7875 .pio_out_emulated = emulator_pio_out_emulated,
7876 .get_segment = emulator_get_segment,
7877 .set_segment = emulator_set_segment,
7878 .get_cached_segment_base = emulator_get_cached_segment_base,
7879 .get_gdt = emulator_get_gdt,
7880 .get_idt = emulator_get_idt,
7881 .set_gdt = emulator_set_gdt,
7882 .set_idt = emulator_set_idt,
7883 .get_cr = emulator_get_cr,
7884 .set_cr = emulator_set_cr,
7885 .cpl = emulator_get_cpl,
7886 .get_dr = emulator_get_dr,
7887 .set_dr = emulator_set_dr,
7888 .get_smbase = emulator_get_smbase,
7889 .set_smbase = emulator_set_smbase,
7890 .set_msr_with_filter = emulator_set_msr_with_filter,
7891 .get_msr_with_filter = emulator_get_msr_with_filter,
7892 .set_msr = emulator_set_msr,
7893 .get_msr = emulator_get_msr,
7894 .check_pmc = emulator_check_pmc,
7895 .read_pmc = emulator_read_pmc,
7896 .halt = emulator_halt,
7897 .wbinvd = emulator_wbinvd,
7898 .fix_hypercall = emulator_fix_hypercall,
7899 .intercept = emulator_intercept,
7900 .get_cpuid = emulator_get_cpuid,
7901 .guest_has_long_mode = emulator_guest_has_long_mode,
7902 .guest_has_movbe = emulator_guest_has_movbe,
7903 .guest_has_fxsr = emulator_guest_has_fxsr,
7904 .guest_has_rdpid = emulator_guest_has_rdpid,
7905 .set_nmi_mask = emulator_set_nmi_mask,
7906 .get_hflags = emulator_get_hflags,
7907 .exiting_smm = emulator_exiting_smm,
7908 .leave_smm = emulator_leave_smm,
7909 .triple_fault = emulator_triple_fault,
7910 .set_xcr = emulator_set_xcr,
7911 };
7912
7913 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7914 {
7915 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7916 /*
7917 * an sti; sti; sequence only disable interrupts for the first
7918 * instruction. So, if the last instruction, be it emulated or
7919 * not, left the system with the INT_STI flag enabled, it
7920 * means that the last instruction is an sti. We should not
7921 * leave the flag on in this case. The same goes for mov ss
7922 */
7923 if (int_shadow & mask)
7924 mask = 0;
7925 if (unlikely(int_shadow || mask)) {
7926 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7927 if (!mask)
7928 kvm_make_request(KVM_REQ_EVENT, vcpu);
7929 }
7930 }
7931
7932 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7933 {
7934 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7935 if (ctxt->exception.vector == PF_VECTOR)
7936 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7937
7938 if (ctxt->exception.error_code_valid)
7939 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7940 ctxt->exception.error_code);
7941 else
7942 kvm_queue_exception(vcpu, ctxt->exception.vector);
7943 return false;
7944 }
7945
7946 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7947 {
7948 struct x86_emulate_ctxt *ctxt;
7949
7950 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7951 if (!ctxt) {
7952 pr_err("kvm: failed to allocate vcpu's emulator\n");
7953 return NULL;
7954 }
7955
7956 ctxt->vcpu = vcpu;
7957 ctxt->ops = &emulate_ops;
7958 vcpu->arch.emulate_ctxt = ctxt;
7959
7960 return ctxt;
7961 }
7962
7963 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7964 {
7965 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7966 int cs_db, cs_l;
7967
7968 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7969
7970 ctxt->gpa_available = false;
7971 ctxt->eflags = kvm_get_rflags(vcpu);
7972 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7973
7974 ctxt->eip = kvm_rip_read(vcpu);
7975 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7976 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7977 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7978 cs_db ? X86EMUL_MODE_PROT32 :
7979 X86EMUL_MODE_PROT16;
7980 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7981 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7982 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7983
7984 ctxt->interruptibility = 0;
7985 ctxt->have_exception = false;
7986 ctxt->exception.vector = -1;
7987 ctxt->perm_ok = false;
7988
7989 init_decode_cache(ctxt);
7990 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7991 }
7992
7993 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7994 {
7995 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7996 int ret;
7997
7998 init_emulate_ctxt(vcpu);
7999
8000 ctxt->op_bytes = 2;
8001 ctxt->ad_bytes = 2;
8002 ctxt->_eip = ctxt->eip + inc_eip;
8003 ret = emulate_int_real(ctxt, irq);
8004
8005 if (ret != X86EMUL_CONTINUE) {
8006 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8007 } else {
8008 ctxt->eip = ctxt->_eip;
8009 kvm_rip_write(vcpu, ctxt->eip);
8010 kvm_set_rflags(vcpu, ctxt->eflags);
8011 }
8012 }
8013 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8014
8015 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8016 u8 ndata, u8 *insn_bytes, u8 insn_size)
8017 {
8018 struct kvm_run *run = vcpu->run;
8019 u64 info[5];
8020 u8 info_start;
8021
8022 /*
8023 * Zero the whole array used to retrieve the exit info, as casting to
8024 * u32 for select entries will leave some chunks uninitialized.
8025 */
8026 memset(&info, 0, sizeof(info));
8027
8028 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8029 &info[2], (u32 *)&info[3],
8030 (u32 *)&info[4]);
8031
8032 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8033 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8034
8035 /*
8036 * There's currently space for 13 entries, but 5 are used for the exit
8037 * reason and info. Restrict to 4 to reduce the maintenance burden
8038 * when expanding kvm_run.emulation_failure in the future.
8039 */
8040 if (WARN_ON_ONCE(ndata > 4))
8041 ndata = 4;
8042
8043 /* Always include the flags as a 'data' entry. */
8044 info_start = 1;
8045 run->emulation_failure.flags = 0;
8046
8047 if (insn_size) {
8048 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8049 sizeof(run->emulation_failure.insn_bytes) != 16));
8050 info_start += 2;
8051 run->emulation_failure.flags |=
8052 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8053 run->emulation_failure.insn_size = insn_size;
8054 memset(run->emulation_failure.insn_bytes, 0x90,
8055 sizeof(run->emulation_failure.insn_bytes));
8056 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8057 }
8058
8059 memcpy(&run->internal.data[info_start], info, sizeof(info));
8060 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8061 ndata * sizeof(data[0]));
8062
8063 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8064 }
8065
8066 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8067 {
8068 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8069
8070 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8071 ctxt->fetch.end - ctxt->fetch.data);
8072 }
8073
8074 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8075 u8 ndata)
8076 {
8077 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8078 }
8079 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8080
8081 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8082 {
8083 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8084 }
8085 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8086
8087 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8088 {
8089 struct kvm *kvm = vcpu->kvm;
8090
8091 ++vcpu->stat.insn_emulation_fail;
8092 trace_kvm_emulate_insn_failed(vcpu);
8093
8094 if (emulation_type & EMULTYPE_VMWARE_GP) {
8095 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8096 return 1;
8097 }
8098
8099 if (kvm->arch.exit_on_emulation_error ||
8100 (emulation_type & EMULTYPE_SKIP)) {
8101 prepare_emulation_ctxt_failure_exit(vcpu);
8102 return 0;
8103 }
8104
8105 kvm_queue_exception(vcpu, UD_VECTOR);
8106
8107 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8108 prepare_emulation_ctxt_failure_exit(vcpu);
8109 return 0;
8110 }
8111
8112 return 1;
8113 }
8114
8115 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8116 bool write_fault_to_shadow_pgtable,
8117 int emulation_type)
8118 {
8119 gpa_t gpa = cr2_or_gpa;
8120 kvm_pfn_t pfn;
8121
8122 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8123 return false;
8124
8125 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8126 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8127 return false;
8128
8129 if (!vcpu->arch.mmu->root_role.direct) {
8130 /*
8131 * Write permission should be allowed since only
8132 * write access need to be emulated.
8133 */
8134 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8135
8136 /*
8137 * If the mapping is invalid in guest, let cpu retry
8138 * it to generate fault.
8139 */
8140 if (gpa == UNMAPPED_GVA)
8141 return true;
8142 }
8143
8144 /*
8145 * Do not retry the unhandleable instruction if it faults on the
8146 * readonly host memory, otherwise it will goto a infinite loop:
8147 * retry instruction -> write #PF -> emulation fail -> retry
8148 * instruction -> ...
8149 */
8150 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8151
8152 /*
8153 * If the instruction failed on the error pfn, it can not be fixed,
8154 * report the error to userspace.
8155 */
8156 if (is_error_noslot_pfn(pfn))
8157 return false;
8158
8159 kvm_release_pfn_clean(pfn);
8160
8161 /* The instructions are well-emulated on direct mmu. */
8162 if (vcpu->arch.mmu->root_role.direct) {
8163 unsigned int indirect_shadow_pages;
8164
8165 write_lock(&vcpu->kvm->mmu_lock);
8166 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8167 write_unlock(&vcpu->kvm->mmu_lock);
8168
8169 if (indirect_shadow_pages)
8170 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8171
8172 return true;
8173 }
8174
8175 /*
8176 * if emulation was due to access to shadowed page table
8177 * and it failed try to unshadow page and re-enter the
8178 * guest to let CPU execute the instruction.
8179 */
8180 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8181
8182 /*
8183 * If the access faults on its page table, it can not
8184 * be fixed by unprotecting shadow page and it should
8185 * be reported to userspace.
8186 */
8187 return !write_fault_to_shadow_pgtable;
8188 }
8189
8190 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8191 gpa_t cr2_or_gpa, int emulation_type)
8192 {
8193 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8194 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8195
8196 last_retry_eip = vcpu->arch.last_retry_eip;
8197 last_retry_addr = vcpu->arch.last_retry_addr;
8198
8199 /*
8200 * If the emulation is caused by #PF and it is non-page_table
8201 * writing instruction, it means the VM-EXIT is caused by shadow
8202 * page protected, we can zap the shadow page and retry this
8203 * instruction directly.
8204 *
8205 * Note: if the guest uses a non-page-table modifying instruction
8206 * on the PDE that points to the instruction, then we will unmap
8207 * the instruction and go to an infinite loop. So, we cache the
8208 * last retried eip and the last fault address, if we meet the eip
8209 * and the address again, we can break out of the potential infinite
8210 * loop.
8211 */
8212 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8213
8214 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8215 return false;
8216
8217 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8218 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8219 return false;
8220
8221 if (x86_page_table_writing_insn(ctxt))
8222 return false;
8223
8224 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8225 return false;
8226
8227 vcpu->arch.last_retry_eip = ctxt->eip;
8228 vcpu->arch.last_retry_addr = cr2_or_gpa;
8229
8230 if (!vcpu->arch.mmu->root_role.direct)
8231 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8232
8233 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8234
8235 return true;
8236 }
8237
8238 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8239 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8240
8241 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8242 {
8243 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8244
8245 if (entering_smm) {
8246 vcpu->arch.hflags |= HF_SMM_MASK;
8247 } else {
8248 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8249
8250 /* Process a latched INIT or SMI, if any. */
8251 kvm_make_request(KVM_REQ_EVENT, vcpu);
8252
8253 /*
8254 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8255 * on SMM exit we still need to reload them from
8256 * guest memory
8257 */
8258 vcpu->arch.pdptrs_from_userspace = false;
8259 }
8260
8261 kvm_mmu_reset_context(vcpu);
8262 }
8263
8264 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8265 unsigned long *db)
8266 {
8267 u32 dr6 = 0;
8268 int i;
8269 u32 enable, rwlen;
8270
8271 enable = dr7;
8272 rwlen = dr7 >> 16;
8273 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8274 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8275 dr6 |= (1 << i);
8276 return dr6;
8277 }
8278
8279 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8280 {
8281 struct kvm_run *kvm_run = vcpu->run;
8282
8283 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8284 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8285 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8286 kvm_run->debug.arch.exception = DB_VECTOR;
8287 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8288 return 0;
8289 }
8290 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8291 return 1;
8292 }
8293
8294 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8295 {
8296 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8297 int r;
8298
8299 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8300 if (unlikely(!r))
8301 return 0;
8302
8303 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8304
8305 /*
8306 * rflags is the old, "raw" value of the flags. The new value has
8307 * not been saved yet.
8308 *
8309 * This is correct even for TF set by the guest, because "the
8310 * processor will not generate this exception after the instruction
8311 * that sets the TF flag".
8312 */
8313 if (unlikely(rflags & X86_EFLAGS_TF))
8314 r = kvm_vcpu_do_singlestep(vcpu);
8315 return r;
8316 }
8317 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8318
8319 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
8320 {
8321 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8322 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8323 struct kvm_run *kvm_run = vcpu->run;
8324 unsigned long eip = kvm_get_linear_rip(vcpu);
8325 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8326 vcpu->arch.guest_debug_dr7,
8327 vcpu->arch.eff_db);
8328
8329 if (dr6 != 0) {
8330 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8331 kvm_run->debug.arch.pc = eip;
8332 kvm_run->debug.arch.exception = DB_VECTOR;
8333 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8334 *r = 0;
8335 return true;
8336 }
8337 }
8338
8339 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8340 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8341 unsigned long eip = kvm_get_linear_rip(vcpu);
8342 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8343 vcpu->arch.dr7,
8344 vcpu->arch.db);
8345
8346 if (dr6 != 0) {
8347 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8348 *r = 1;
8349 return true;
8350 }
8351 }
8352
8353 return false;
8354 }
8355
8356 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8357 {
8358 switch (ctxt->opcode_len) {
8359 case 1:
8360 switch (ctxt->b) {
8361 case 0xe4: /* IN */
8362 case 0xe5:
8363 case 0xec:
8364 case 0xed:
8365 case 0xe6: /* OUT */
8366 case 0xe7:
8367 case 0xee:
8368 case 0xef:
8369 case 0x6c: /* INS */
8370 case 0x6d:
8371 case 0x6e: /* OUTS */
8372 case 0x6f:
8373 return true;
8374 }
8375 break;
8376 case 2:
8377 switch (ctxt->b) {
8378 case 0x33: /* RDPMC */
8379 return true;
8380 }
8381 break;
8382 }
8383
8384 return false;
8385 }
8386
8387 /*
8388 * Decode an instruction for emulation. The caller is responsible for handling
8389 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
8390 * (and wrong) when emulating on an intercepted fault-like exception[*], as
8391 * code breakpoints have higher priority and thus have already been done by
8392 * hardware.
8393 *
8394 * [*] Except #MC, which is higher priority, but KVM should never emulate in
8395 * response to a machine check.
8396 */
8397 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8398 void *insn, int insn_len)
8399 {
8400 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8401 int r;
8402
8403 init_emulate_ctxt(vcpu);
8404
8405 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8406
8407 trace_kvm_emulate_insn_start(vcpu);
8408 ++vcpu->stat.insn_emulation;
8409
8410 return r;
8411 }
8412 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8413
8414 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8415 int emulation_type, void *insn, int insn_len)
8416 {
8417 int r;
8418 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8419 bool writeback = true;
8420 bool write_fault_to_spt;
8421
8422 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8423 return 1;
8424
8425 vcpu->arch.l1tf_flush_l1d = true;
8426
8427 /*
8428 * Clear write_fault_to_shadow_pgtable here to ensure it is
8429 * never reused.
8430 */
8431 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8432 vcpu->arch.write_fault_to_shadow_pgtable = false;
8433
8434 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8435 kvm_clear_exception_queue(vcpu);
8436
8437 /*
8438 * Return immediately if RIP hits a code breakpoint, such #DBs
8439 * are fault-like and are higher priority than any faults on
8440 * the code fetch itself.
8441 */
8442 if (!(emulation_type & EMULTYPE_SKIP) &&
8443 kvm_vcpu_check_code_breakpoint(vcpu, &r))
8444 return r;
8445
8446 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8447 insn, insn_len);
8448 if (r != EMULATION_OK) {
8449 if ((emulation_type & EMULTYPE_TRAP_UD) ||
8450 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8451 kvm_queue_exception(vcpu, UD_VECTOR);
8452 return 1;
8453 }
8454 if (reexecute_instruction(vcpu, cr2_or_gpa,
8455 write_fault_to_spt,
8456 emulation_type))
8457 return 1;
8458 if (ctxt->have_exception) {
8459 /*
8460 * #UD should result in just EMULATION_FAILED, and trap-like
8461 * exception should not be encountered during decode.
8462 */
8463 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8464 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8465 inject_emulated_exception(vcpu);
8466 return 1;
8467 }
8468 return handle_emulation_failure(vcpu, emulation_type);
8469 }
8470 }
8471
8472 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8473 !is_vmware_backdoor_opcode(ctxt)) {
8474 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8475 return 1;
8476 }
8477
8478 /*
8479 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8480 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8481 * The caller is responsible for updating interruptibility state and
8482 * injecting single-step #DBs.
8483 */
8484 if (emulation_type & EMULTYPE_SKIP) {
8485 if (ctxt->mode != X86EMUL_MODE_PROT64)
8486 ctxt->eip = (u32)ctxt->_eip;
8487 else
8488 ctxt->eip = ctxt->_eip;
8489
8490 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8491 r = 1;
8492 goto writeback;
8493 }
8494
8495 kvm_rip_write(vcpu, ctxt->eip);
8496 if (ctxt->eflags & X86_EFLAGS_RF)
8497 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8498 return 1;
8499 }
8500
8501 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8502 return 1;
8503
8504 /* this is needed for vmware backdoor interface to work since it
8505 changes registers values during IO operation */
8506 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8507 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8508 emulator_invalidate_register_cache(ctxt);
8509 }
8510
8511 restart:
8512 if (emulation_type & EMULTYPE_PF) {
8513 /* Save the faulting GPA (cr2) in the address field */
8514 ctxt->exception.address = cr2_or_gpa;
8515
8516 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8517 if (vcpu->arch.mmu->root_role.direct) {
8518 ctxt->gpa_available = true;
8519 ctxt->gpa_val = cr2_or_gpa;
8520 }
8521 } else {
8522 /* Sanitize the address out of an abundance of paranoia. */
8523 ctxt->exception.address = 0;
8524 }
8525
8526 r = x86_emulate_insn(ctxt);
8527
8528 if (r == EMULATION_INTERCEPTED)
8529 return 1;
8530
8531 if (r == EMULATION_FAILED) {
8532 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8533 emulation_type))
8534 return 1;
8535
8536 return handle_emulation_failure(vcpu, emulation_type);
8537 }
8538
8539 if (ctxt->have_exception) {
8540 r = 1;
8541 if (inject_emulated_exception(vcpu))
8542 return r;
8543 } else if (vcpu->arch.pio.count) {
8544 if (!vcpu->arch.pio.in) {
8545 /* FIXME: return into emulator if single-stepping. */
8546 vcpu->arch.pio.count = 0;
8547 } else {
8548 writeback = false;
8549 vcpu->arch.complete_userspace_io = complete_emulated_pio;
8550 }
8551 r = 0;
8552 } else if (vcpu->mmio_needed) {
8553 ++vcpu->stat.mmio_exits;
8554
8555 if (!vcpu->mmio_is_write)
8556 writeback = false;
8557 r = 0;
8558 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8559 } else if (vcpu->arch.complete_userspace_io) {
8560 writeback = false;
8561 r = 0;
8562 } else if (r == EMULATION_RESTART)
8563 goto restart;
8564 else
8565 r = 1;
8566
8567 writeback:
8568 if (writeback) {
8569 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8570 toggle_interruptibility(vcpu, ctxt->interruptibility);
8571 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8572 if (!ctxt->have_exception ||
8573 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8574 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8575 if (ctxt->is_branch)
8576 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8577 kvm_rip_write(vcpu, ctxt->eip);
8578 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8579 r = kvm_vcpu_do_singlestep(vcpu);
8580 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8581 __kvm_set_rflags(vcpu, ctxt->eflags);
8582 }
8583
8584 /*
8585 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8586 * do nothing, and it will be requested again as soon as
8587 * the shadow expires. But we still need to check here,
8588 * because POPF has no interrupt shadow.
8589 */
8590 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8591 kvm_make_request(KVM_REQ_EVENT, vcpu);
8592 } else
8593 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8594
8595 return r;
8596 }
8597
8598 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8599 {
8600 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8601 }
8602 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8603
8604 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8605 void *insn, int insn_len)
8606 {
8607 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8608 }
8609 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8610
8611 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8612 {
8613 vcpu->arch.pio.count = 0;
8614 return 1;
8615 }
8616
8617 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8618 {
8619 vcpu->arch.pio.count = 0;
8620
8621 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8622 return 1;
8623
8624 return kvm_skip_emulated_instruction(vcpu);
8625 }
8626
8627 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8628 unsigned short port)
8629 {
8630 unsigned long val = kvm_rax_read(vcpu);
8631 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8632
8633 if (ret)
8634 return ret;
8635
8636 /*
8637 * Workaround userspace that relies on old KVM behavior of %rip being
8638 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8639 */
8640 if (port == 0x7e &&
8641 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8642 vcpu->arch.complete_userspace_io =
8643 complete_fast_pio_out_port_0x7e;
8644 kvm_skip_emulated_instruction(vcpu);
8645 } else {
8646 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8647 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8648 }
8649 return 0;
8650 }
8651
8652 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8653 {
8654 unsigned long val;
8655
8656 /* We should only ever be called with arch.pio.count equal to 1 */
8657 BUG_ON(vcpu->arch.pio.count != 1);
8658
8659 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8660 vcpu->arch.pio.count = 0;
8661 return 1;
8662 }
8663
8664 /* For size less than 4 we merge, else we zero extend */
8665 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8666
8667 /*
8668 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8669 * the copy and tracing
8670 */
8671 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8672 kvm_rax_write(vcpu, val);
8673
8674 return kvm_skip_emulated_instruction(vcpu);
8675 }
8676
8677 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8678 unsigned short port)
8679 {
8680 unsigned long val;
8681 int ret;
8682
8683 /* For size less than 4 we merge, else we zero extend */
8684 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8685
8686 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8687 if (ret) {
8688 kvm_rax_write(vcpu, val);
8689 return ret;
8690 }
8691
8692 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8693 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8694
8695 return 0;
8696 }
8697
8698 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8699 {
8700 int ret;
8701
8702 if (in)
8703 ret = kvm_fast_pio_in(vcpu, size, port);
8704 else
8705 ret = kvm_fast_pio_out(vcpu, size, port);
8706 return ret && kvm_skip_emulated_instruction(vcpu);
8707 }
8708 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8709
8710 static int kvmclock_cpu_down_prep(unsigned int cpu)
8711 {
8712 __this_cpu_write(cpu_tsc_khz, 0);
8713 return 0;
8714 }
8715
8716 static void tsc_khz_changed(void *data)
8717 {
8718 struct cpufreq_freqs *freq = data;
8719 unsigned long khz = 0;
8720
8721 if (data)
8722 khz = freq->new;
8723 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8724 khz = cpufreq_quick_get(raw_smp_processor_id());
8725 if (!khz)
8726 khz = tsc_khz;
8727 __this_cpu_write(cpu_tsc_khz, khz);
8728 }
8729
8730 #ifdef CONFIG_X86_64
8731 static void kvm_hyperv_tsc_notifier(void)
8732 {
8733 struct kvm *kvm;
8734 int cpu;
8735
8736 mutex_lock(&kvm_lock);
8737 list_for_each_entry(kvm, &vm_list, vm_list)
8738 kvm_make_mclock_inprogress_request(kvm);
8739
8740 /* no guest entries from this point */
8741 hyperv_stop_tsc_emulation();
8742
8743 /* TSC frequency always matches when on Hyper-V */
8744 for_each_present_cpu(cpu)
8745 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8746 kvm_max_guest_tsc_khz = tsc_khz;
8747
8748 list_for_each_entry(kvm, &vm_list, vm_list) {
8749 __kvm_start_pvclock_update(kvm);
8750 pvclock_update_vm_gtod_copy(kvm);
8751 kvm_end_pvclock_update(kvm);
8752 }
8753
8754 mutex_unlock(&kvm_lock);
8755 }
8756 #endif
8757
8758 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8759 {
8760 struct kvm *kvm;
8761 struct kvm_vcpu *vcpu;
8762 int send_ipi = 0;
8763 unsigned long i;
8764
8765 /*
8766 * We allow guests to temporarily run on slowing clocks,
8767 * provided we notify them after, or to run on accelerating
8768 * clocks, provided we notify them before. Thus time never
8769 * goes backwards.
8770 *
8771 * However, we have a problem. We can't atomically update
8772 * the frequency of a given CPU from this function; it is
8773 * merely a notifier, which can be called from any CPU.
8774 * Changing the TSC frequency at arbitrary points in time
8775 * requires a recomputation of local variables related to
8776 * the TSC for each VCPU. We must flag these local variables
8777 * to be updated and be sure the update takes place with the
8778 * new frequency before any guests proceed.
8779 *
8780 * Unfortunately, the combination of hotplug CPU and frequency
8781 * change creates an intractable locking scenario; the order
8782 * of when these callouts happen is undefined with respect to
8783 * CPU hotplug, and they can race with each other. As such,
8784 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8785 * undefined; you can actually have a CPU frequency change take
8786 * place in between the computation of X and the setting of the
8787 * variable. To protect against this problem, all updates of
8788 * the per_cpu tsc_khz variable are done in an interrupt
8789 * protected IPI, and all callers wishing to update the value
8790 * must wait for a synchronous IPI to complete (which is trivial
8791 * if the caller is on the CPU already). This establishes the
8792 * necessary total order on variable updates.
8793 *
8794 * Note that because a guest time update may take place
8795 * anytime after the setting of the VCPU's request bit, the
8796 * correct TSC value must be set before the request. However,
8797 * to ensure the update actually makes it to any guest which
8798 * starts running in hardware virtualization between the set
8799 * and the acquisition of the spinlock, we must also ping the
8800 * CPU after setting the request bit.
8801 *
8802 */
8803
8804 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8805
8806 mutex_lock(&kvm_lock);
8807 list_for_each_entry(kvm, &vm_list, vm_list) {
8808 kvm_for_each_vcpu(i, vcpu, kvm) {
8809 if (vcpu->cpu != cpu)
8810 continue;
8811 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8812 if (vcpu->cpu != raw_smp_processor_id())
8813 send_ipi = 1;
8814 }
8815 }
8816 mutex_unlock(&kvm_lock);
8817
8818 if (freq->old < freq->new && send_ipi) {
8819 /*
8820 * We upscale the frequency. Must make the guest
8821 * doesn't see old kvmclock values while running with
8822 * the new frequency, otherwise we risk the guest sees
8823 * time go backwards.
8824 *
8825 * In case we update the frequency for another cpu
8826 * (which might be in guest context) send an interrupt
8827 * to kick the cpu out of guest context. Next time
8828 * guest context is entered kvmclock will be updated,
8829 * so the guest will not see stale values.
8830 */
8831 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8832 }
8833 }
8834
8835 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8836 void *data)
8837 {
8838 struct cpufreq_freqs *freq = data;
8839 int cpu;
8840
8841 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8842 return 0;
8843 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8844 return 0;
8845
8846 for_each_cpu(cpu, freq->policy->cpus)
8847 __kvmclock_cpufreq_notifier(freq, cpu);
8848
8849 return 0;
8850 }
8851
8852 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8853 .notifier_call = kvmclock_cpufreq_notifier
8854 };
8855
8856 static int kvmclock_cpu_online(unsigned int cpu)
8857 {
8858 tsc_khz_changed(NULL);
8859 return 0;
8860 }
8861
8862 static void kvm_timer_init(void)
8863 {
8864 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8865 max_tsc_khz = tsc_khz;
8866
8867 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
8868 struct cpufreq_policy *policy;
8869 int cpu;
8870
8871 cpu = get_cpu();
8872 policy = cpufreq_cpu_get(cpu);
8873 if (policy) {
8874 if (policy->cpuinfo.max_freq)
8875 max_tsc_khz = policy->cpuinfo.max_freq;
8876 cpufreq_cpu_put(policy);
8877 }
8878 put_cpu();
8879 }
8880 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8881 CPUFREQ_TRANSITION_NOTIFIER);
8882 }
8883
8884 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8885 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8886 }
8887
8888 #ifdef CONFIG_X86_64
8889 static void pvclock_gtod_update_fn(struct work_struct *work)
8890 {
8891 struct kvm *kvm;
8892 struct kvm_vcpu *vcpu;
8893 unsigned long i;
8894
8895 mutex_lock(&kvm_lock);
8896 list_for_each_entry(kvm, &vm_list, vm_list)
8897 kvm_for_each_vcpu(i, vcpu, kvm)
8898 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8899 atomic_set(&kvm_guest_has_master_clock, 0);
8900 mutex_unlock(&kvm_lock);
8901 }
8902
8903 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8904
8905 /*
8906 * Indirection to move queue_work() out of the tk_core.seq write held
8907 * region to prevent possible deadlocks against time accessors which
8908 * are invoked with work related locks held.
8909 */
8910 static void pvclock_irq_work_fn(struct irq_work *w)
8911 {
8912 queue_work(system_long_wq, &pvclock_gtod_work);
8913 }
8914
8915 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8916
8917 /*
8918 * Notification about pvclock gtod data update.
8919 */
8920 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8921 void *priv)
8922 {
8923 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8924 struct timekeeper *tk = priv;
8925
8926 update_pvclock_gtod(tk);
8927
8928 /*
8929 * Disable master clock if host does not trust, or does not use,
8930 * TSC based clocksource. Delegate queue_work() to irq_work as
8931 * this is invoked with tk_core.seq write held.
8932 */
8933 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8934 atomic_read(&kvm_guest_has_master_clock) != 0)
8935 irq_work_queue(&pvclock_irq_work);
8936 return 0;
8937 }
8938
8939 static struct notifier_block pvclock_gtod_notifier = {
8940 .notifier_call = pvclock_gtod_notify,
8941 };
8942 #endif
8943
8944 int kvm_arch_init(void *opaque)
8945 {
8946 struct kvm_x86_init_ops *ops = opaque;
8947 int r;
8948
8949 if (kvm_x86_ops.hardware_enable) {
8950 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8951 r = -EEXIST;
8952 goto out;
8953 }
8954
8955 if (!ops->cpu_has_kvm_support()) {
8956 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8957 ops->runtime_ops->name);
8958 r = -EOPNOTSUPP;
8959 goto out;
8960 }
8961 if (ops->disabled_by_bios()) {
8962 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8963 ops->runtime_ops->name);
8964 r = -EOPNOTSUPP;
8965 goto out;
8966 }
8967
8968 /*
8969 * KVM explicitly assumes that the guest has an FPU and
8970 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8971 * vCPU's FPU state as a fxregs_state struct.
8972 */
8973 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8974 printk(KERN_ERR "kvm: inadequate fpu\n");
8975 r = -EOPNOTSUPP;
8976 goto out;
8977 }
8978
8979 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8980 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
8981 r = -EOPNOTSUPP;
8982 goto out;
8983 }
8984
8985 r = -ENOMEM;
8986
8987 x86_emulator_cache = kvm_alloc_emulator_cache();
8988 if (!x86_emulator_cache) {
8989 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8990 goto out;
8991 }
8992
8993 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8994 if (!user_return_msrs) {
8995 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8996 goto out_free_x86_emulator_cache;
8997 }
8998 kvm_nr_uret_msrs = 0;
8999
9000 r = kvm_mmu_vendor_module_init();
9001 if (r)
9002 goto out_free_percpu;
9003
9004 kvm_timer_init();
9005
9006 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9007 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9008 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9009 }
9010
9011 if (pi_inject_timer == -1)
9012 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9013 #ifdef CONFIG_X86_64
9014 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9015
9016 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9017 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9018 #endif
9019
9020 return 0;
9021
9022 out_free_percpu:
9023 free_percpu(user_return_msrs);
9024 out_free_x86_emulator_cache:
9025 kmem_cache_destroy(x86_emulator_cache);
9026 out:
9027 return r;
9028 }
9029
9030 void kvm_arch_exit(void)
9031 {
9032 #ifdef CONFIG_X86_64
9033 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9034 clear_hv_tscchange_cb();
9035 #endif
9036 kvm_lapic_exit();
9037
9038 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9039 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9040 CPUFREQ_TRANSITION_NOTIFIER);
9041 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9042 #ifdef CONFIG_X86_64
9043 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9044 irq_work_sync(&pvclock_irq_work);
9045 cancel_work_sync(&pvclock_gtod_work);
9046 #endif
9047 kvm_x86_ops.hardware_enable = NULL;
9048 kvm_mmu_vendor_module_exit();
9049 free_percpu(user_return_msrs);
9050 kmem_cache_destroy(x86_emulator_cache);
9051 #ifdef CONFIG_KVM_XEN
9052 static_key_deferred_flush(&kvm_xen_enabled);
9053 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9054 #endif
9055 }
9056
9057 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9058 {
9059 /*
9060 * The vCPU has halted, e.g. executed HLT. Update the run state if the
9061 * local APIC is in-kernel, the run loop will detect the non-runnable
9062 * state and halt the vCPU. Exit to userspace if the local APIC is
9063 * managed by userspace, in which case userspace is responsible for
9064 * handling wake events.
9065 */
9066 ++vcpu->stat.halt_exits;
9067 if (lapic_in_kernel(vcpu)) {
9068 vcpu->arch.mp_state = state;
9069 return 1;
9070 } else {
9071 vcpu->run->exit_reason = reason;
9072 return 0;
9073 }
9074 }
9075
9076 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9077 {
9078 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9079 }
9080 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9081
9082 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9083 {
9084 int ret = kvm_skip_emulated_instruction(vcpu);
9085 /*
9086 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9087 * KVM_EXIT_DEBUG here.
9088 */
9089 return kvm_emulate_halt_noskip(vcpu) && ret;
9090 }
9091 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9092
9093 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9094 {
9095 int ret = kvm_skip_emulated_instruction(vcpu);
9096
9097 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9098 KVM_EXIT_AP_RESET_HOLD) && ret;
9099 }
9100 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9101
9102 #ifdef CONFIG_X86_64
9103 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9104 unsigned long clock_type)
9105 {
9106 struct kvm_clock_pairing clock_pairing;
9107 struct timespec64 ts;
9108 u64 cycle;
9109 int ret;
9110
9111 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9112 return -KVM_EOPNOTSUPP;
9113
9114 /*
9115 * When tsc is in permanent catchup mode guests won't be able to use
9116 * pvclock_read_retry loop to get consistent view of pvclock
9117 */
9118 if (vcpu->arch.tsc_always_catchup)
9119 return -KVM_EOPNOTSUPP;
9120
9121 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9122 return -KVM_EOPNOTSUPP;
9123
9124 clock_pairing.sec = ts.tv_sec;
9125 clock_pairing.nsec = ts.tv_nsec;
9126 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9127 clock_pairing.flags = 0;
9128 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9129
9130 ret = 0;
9131 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9132 sizeof(struct kvm_clock_pairing)))
9133 ret = -KVM_EFAULT;
9134
9135 return ret;
9136 }
9137 #endif
9138
9139 /*
9140 * kvm_pv_kick_cpu_op: Kick a vcpu.
9141 *
9142 * @apicid - apicid of vcpu to be kicked.
9143 */
9144 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9145 {
9146 struct kvm_lapic_irq lapic_irq;
9147
9148 lapic_irq.shorthand = APIC_DEST_NOSHORT;
9149 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
9150 lapic_irq.level = 0;
9151 lapic_irq.dest_id = apicid;
9152 lapic_irq.msi_redir_hint = false;
9153
9154 lapic_irq.delivery_mode = APIC_DM_REMRD;
9155 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9156 }
9157
9158 bool kvm_apicv_activated(struct kvm *kvm)
9159 {
9160 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9161 }
9162 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9163
9164 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9165 {
9166 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9167 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9168
9169 return (vm_reasons | vcpu_reasons) == 0;
9170 }
9171 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9172
9173 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9174 enum kvm_apicv_inhibit reason, bool set)
9175 {
9176 if (set)
9177 __set_bit(reason, inhibits);
9178 else
9179 __clear_bit(reason, inhibits);
9180
9181 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9182 }
9183
9184 static void kvm_apicv_init(struct kvm *kvm)
9185 {
9186 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9187
9188 init_rwsem(&kvm->arch.apicv_update_lock);
9189
9190 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9191
9192 if (!enable_apicv)
9193 set_or_clear_apicv_inhibit(inhibits,
9194 APICV_INHIBIT_REASON_DISABLE, true);
9195 }
9196
9197 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9198 {
9199 struct kvm_vcpu *target = NULL;
9200 struct kvm_apic_map *map;
9201
9202 vcpu->stat.directed_yield_attempted++;
9203
9204 if (single_task_running())
9205 goto no_yield;
9206
9207 rcu_read_lock();
9208 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9209
9210 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9211 target = map->phys_map[dest_id]->vcpu;
9212
9213 rcu_read_unlock();
9214
9215 if (!target || !READ_ONCE(target->ready))
9216 goto no_yield;
9217
9218 /* Ignore requests to yield to self */
9219 if (vcpu == target)
9220 goto no_yield;
9221
9222 if (kvm_vcpu_yield_to(target) <= 0)
9223 goto no_yield;
9224
9225 vcpu->stat.directed_yield_successful++;
9226
9227 no_yield:
9228 return;
9229 }
9230
9231 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9232 {
9233 u64 ret = vcpu->run->hypercall.ret;
9234
9235 if (!is_64_bit_mode(vcpu))
9236 ret = (u32)ret;
9237 kvm_rax_write(vcpu, ret);
9238 ++vcpu->stat.hypercalls;
9239 return kvm_skip_emulated_instruction(vcpu);
9240 }
9241
9242 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9243 {
9244 unsigned long nr, a0, a1, a2, a3, ret;
9245 int op_64_bit;
9246
9247 if (kvm_xen_hypercall_enabled(vcpu->kvm))
9248 return kvm_xen_hypercall(vcpu);
9249
9250 if (kvm_hv_hypercall_enabled(vcpu))
9251 return kvm_hv_hypercall(vcpu);
9252
9253 nr = kvm_rax_read(vcpu);
9254 a0 = kvm_rbx_read(vcpu);
9255 a1 = kvm_rcx_read(vcpu);
9256 a2 = kvm_rdx_read(vcpu);
9257 a3 = kvm_rsi_read(vcpu);
9258
9259 trace_kvm_hypercall(nr, a0, a1, a2, a3);
9260
9261 op_64_bit = is_64_bit_hypercall(vcpu);
9262 if (!op_64_bit) {
9263 nr &= 0xFFFFFFFF;
9264 a0 &= 0xFFFFFFFF;
9265 a1 &= 0xFFFFFFFF;
9266 a2 &= 0xFFFFFFFF;
9267 a3 &= 0xFFFFFFFF;
9268 }
9269
9270 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9271 ret = -KVM_EPERM;
9272 goto out;
9273 }
9274
9275 ret = -KVM_ENOSYS;
9276
9277 switch (nr) {
9278 case KVM_HC_VAPIC_POLL_IRQ:
9279 ret = 0;
9280 break;
9281 case KVM_HC_KICK_CPU:
9282 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9283 break;
9284
9285 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9286 kvm_sched_yield(vcpu, a1);
9287 ret = 0;
9288 break;
9289 #ifdef CONFIG_X86_64
9290 case KVM_HC_CLOCK_PAIRING:
9291 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9292 break;
9293 #endif
9294 case KVM_HC_SEND_IPI:
9295 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9296 break;
9297
9298 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9299 break;
9300 case KVM_HC_SCHED_YIELD:
9301 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9302 break;
9303
9304 kvm_sched_yield(vcpu, a0);
9305 ret = 0;
9306 break;
9307 case KVM_HC_MAP_GPA_RANGE: {
9308 u64 gpa = a0, npages = a1, attrs = a2;
9309
9310 ret = -KVM_ENOSYS;
9311 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9312 break;
9313
9314 if (!PAGE_ALIGNED(gpa) || !npages ||
9315 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9316 ret = -KVM_EINVAL;
9317 break;
9318 }
9319
9320 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
9321 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
9322 vcpu->run->hypercall.args[0] = gpa;
9323 vcpu->run->hypercall.args[1] = npages;
9324 vcpu->run->hypercall.args[2] = attrs;
9325 vcpu->run->hypercall.longmode = op_64_bit;
9326 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9327 return 0;
9328 }
9329 default:
9330 ret = -KVM_ENOSYS;
9331 break;
9332 }
9333 out:
9334 if (!op_64_bit)
9335 ret = (u32)ret;
9336 kvm_rax_write(vcpu, ret);
9337
9338 ++vcpu->stat.hypercalls;
9339 return kvm_skip_emulated_instruction(vcpu);
9340 }
9341 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9342
9343 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9344 {
9345 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9346 char instruction[3];
9347 unsigned long rip = kvm_rip_read(vcpu);
9348
9349 /*
9350 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9351 * the pieces.
9352 */
9353 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9354 ctxt->exception.error_code_valid = false;
9355 ctxt->exception.vector = UD_VECTOR;
9356 ctxt->have_exception = true;
9357 return X86EMUL_PROPAGATE_FAULT;
9358 }
9359
9360 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9361
9362 return emulator_write_emulated(ctxt, rip, instruction, 3,
9363 &ctxt->exception);
9364 }
9365
9366 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9367 {
9368 return vcpu->run->request_interrupt_window &&
9369 likely(!pic_in_kernel(vcpu->kvm));
9370 }
9371
9372 /* Called within kvm->srcu read side. */
9373 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9374 {
9375 struct kvm_run *kvm_run = vcpu->run;
9376
9377 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9378 kvm_run->cr8 = kvm_get_cr8(vcpu);
9379 kvm_run->apic_base = kvm_get_apic_base(vcpu);
9380
9381 kvm_run->ready_for_interrupt_injection =
9382 pic_in_kernel(vcpu->kvm) ||
9383 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9384
9385 if (is_smm(vcpu))
9386 kvm_run->flags |= KVM_RUN_X86_SMM;
9387 }
9388
9389 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9390 {
9391 int max_irr, tpr;
9392
9393 if (!kvm_x86_ops.update_cr8_intercept)
9394 return;
9395
9396 if (!lapic_in_kernel(vcpu))
9397 return;
9398
9399 if (vcpu->arch.apicv_active)
9400 return;
9401
9402 if (!vcpu->arch.apic->vapic_addr)
9403 max_irr = kvm_lapic_find_highest_irr(vcpu);
9404 else
9405 max_irr = -1;
9406
9407 if (max_irr != -1)
9408 max_irr >>= 4;
9409
9410 tpr = kvm_lapic_get_cr8(vcpu);
9411
9412 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9413 }
9414
9415
9416 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9417 {
9418 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9419 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9420 return 1;
9421 }
9422
9423 return kvm_x86_ops.nested_ops->check_events(vcpu);
9424 }
9425
9426 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9427 {
9428 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9429 vcpu->arch.exception.error_code = false;
9430 static_call(kvm_x86_queue_exception)(vcpu);
9431 }
9432
9433 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9434 {
9435 int r;
9436 bool can_inject = true;
9437
9438 /* try to reinject previous events if any */
9439
9440 if (vcpu->arch.exception.injected) {
9441 kvm_inject_exception(vcpu);
9442 can_inject = false;
9443 }
9444 /*
9445 * Do not inject an NMI or interrupt if there is a pending
9446 * exception. Exceptions and interrupts are recognized at
9447 * instruction boundaries, i.e. the start of an instruction.
9448 * Trap-like exceptions, e.g. #DB, have higher priority than
9449 * NMIs and interrupts, i.e. traps are recognized before an
9450 * NMI/interrupt that's pending on the same instruction.
9451 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9452 * priority, but are only generated (pended) during instruction
9453 * execution, i.e. a pending fault-like exception means the
9454 * fault occurred on the *previous* instruction and must be
9455 * serviced prior to recognizing any new events in order to
9456 * fully complete the previous instruction.
9457 */
9458 else if (!vcpu->arch.exception.pending) {
9459 if (vcpu->arch.nmi_injected) {
9460 static_call(kvm_x86_inject_nmi)(vcpu);
9461 can_inject = false;
9462 } else if (vcpu->arch.interrupt.injected) {
9463 static_call(kvm_x86_inject_irq)(vcpu);
9464 can_inject = false;
9465 }
9466 }
9467
9468 WARN_ON_ONCE(vcpu->arch.exception.injected &&
9469 vcpu->arch.exception.pending);
9470
9471 /*
9472 * Call check_nested_events() even if we reinjected a previous event
9473 * in order for caller to determine if it should require immediate-exit
9474 * from L2 to L1 due to pending L1 events which require exit
9475 * from L2 to L1.
9476 */
9477 if (is_guest_mode(vcpu)) {
9478 r = kvm_check_nested_events(vcpu);
9479 if (r < 0)
9480 goto out;
9481 }
9482
9483 /* try to inject new event if pending */
9484 if (vcpu->arch.exception.pending) {
9485 trace_kvm_inj_exception(vcpu->arch.exception.nr,
9486 vcpu->arch.exception.has_error_code,
9487 vcpu->arch.exception.error_code);
9488
9489 vcpu->arch.exception.pending = false;
9490 vcpu->arch.exception.injected = true;
9491
9492 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9493 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9494 X86_EFLAGS_RF);
9495
9496 if (vcpu->arch.exception.nr == DB_VECTOR) {
9497 kvm_deliver_exception_payload(vcpu);
9498 if (vcpu->arch.dr7 & DR7_GD) {
9499 vcpu->arch.dr7 &= ~DR7_GD;
9500 kvm_update_dr7(vcpu);
9501 }
9502 }
9503
9504 kvm_inject_exception(vcpu);
9505 can_inject = false;
9506 }
9507
9508 /* Don't inject interrupts if the user asked to avoid doing so */
9509 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9510 return 0;
9511
9512 /*
9513 * Finally, inject interrupt events. If an event cannot be injected
9514 * due to architectural conditions (e.g. IF=0) a window-open exit
9515 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
9516 * and can architecturally be injected, but we cannot do it right now:
9517 * an interrupt could have arrived just now and we have to inject it
9518 * as a vmexit, or there could already an event in the queue, which is
9519 * indicated by can_inject. In that case we request an immediate exit
9520 * in order to make progress and get back here for another iteration.
9521 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9522 */
9523 if (vcpu->arch.smi_pending) {
9524 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9525 if (r < 0)
9526 goto out;
9527 if (r) {
9528 vcpu->arch.smi_pending = false;
9529 ++vcpu->arch.smi_count;
9530 enter_smm(vcpu);
9531 can_inject = false;
9532 } else
9533 static_call(kvm_x86_enable_smi_window)(vcpu);
9534 }
9535
9536 if (vcpu->arch.nmi_pending) {
9537 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9538 if (r < 0)
9539 goto out;
9540 if (r) {
9541 --vcpu->arch.nmi_pending;
9542 vcpu->arch.nmi_injected = true;
9543 static_call(kvm_x86_inject_nmi)(vcpu);
9544 can_inject = false;
9545 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9546 }
9547 if (vcpu->arch.nmi_pending)
9548 static_call(kvm_x86_enable_nmi_window)(vcpu);
9549 }
9550
9551 if (kvm_cpu_has_injectable_intr(vcpu)) {
9552 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9553 if (r < 0)
9554 goto out;
9555 if (r) {
9556 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9557 static_call(kvm_x86_inject_irq)(vcpu);
9558 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9559 }
9560 if (kvm_cpu_has_injectable_intr(vcpu))
9561 static_call(kvm_x86_enable_irq_window)(vcpu);
9562 }
9563
9564 if (is_guest_mode(vcpu) &&
9565 kvm_x86_ops.nested_ops->hv_timer_pending &&
9566 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9567 *req_immediate_exit = true;
9568
9569 WARN_ON(vcpu->arch.exception.pending);
9570 return 0;
9571
9572 out:
9573 if (r == -EBUSY) {
9574 *req_immediate_exit = true;
9575 r = 0;
9576 }
9577 return r;
9578 }
9579
9580 static void process_nmi(struct kvm_vcpu *vcpu)
9581 {
9582 unsigned limit = 2;
9583
9584 /*
9585 * x86 is limited to one NMI running, and one NMI pending after it.
9586 * If an NMI is already in progress, limit further NMIs to just one.
9587 * Otherwise, allow two (and we'll inject the first one immediately).
9588 */
9589 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9590 limit = 1;
9591
9592 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9593 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9594 kvm_make_request(KVM_REQ_EVENT, vcpu);
9595 }
9596
9597 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9598 {
9599 u32 flags = 0;
9600 flags |= seg->g << 23;
9601 flags |= seg->db << 22;
9602 flags |= seg->l << 21;
9603 flags |= seg->avl << 20;
9604 flags |= seg->present << 15;
9605 flags |= seg->dpl << 13;
9606 flags |= seg->s << 12;
9607 flags |= seg->type << 8;
9608 return flags;
9609 }
9610
9611 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9612 {
9613 struct kvm_segment seg;
9614 int offset;
9615
9616 kvm_get_segment(vcpu, &seg, n);
9617 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9618
9619 if (n < 3)
9620 offset = 0x7f84 + n * 12;
9621 else
9622 offset = 0x7f2c + (n - 3) * 12;
9623
9624 put_smstate(u32, buf, offset + 8, seg.base);
9625 put_smstate(u32, buf, offset + 4, seg.limit);
9626 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9627 }
9628
9629 #ifdef CONFIG_X86_64
9630 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9631 {
9632 struct kvm_segment seg;
9633 int offset;
9634 u16 flags;
9635
9636 kvm_get_segment(vcpu, &seg, n);
9637 offset = 0x7e00 + n * 16;
9638
9639 flags = enter_smm_get_segment_flags(&seg) >> 8;
9640 put_smstate(u16, buf, offset, seg.selector);
9641 put_smstate(u16, buf, offset + 2, flags);
9642 put_smstate(u32, buf, offset + 4, seg.limit);
9643 put_smstate(u64, buf, offset + 8, seg.base);
9644 }
9645 #endif
9646
9647 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9648 {
9649 struct desc_ptr dt;
9650 struct kvm_segment seg;
9651 unsigned long val;
9652 int i;
9653
9654 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9655 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9656 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9657 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9658
9659 for (i = 0; i < 8; i++)
9660 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9661
9662 kvm_get_dr(vcpu, 6, &val);
9663 put_smstate(u32, buf, 0x7fcc, (u32)val);
9664 kvm_get_dr(vcpu, 7, &val);
9665 put_smstate(u32, buf, 0x7fc8, (u32)val);
9666
9667 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9668 put_smstate(u32, buf, 0x7fc4, seg.selector);
9669 put_smstate(u32, buf, 0x7f64, seg.base);
9670 put_smstate(u32, buf, 0x7f60, seg.limit);
9671 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9672
9673 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9674 put_smstate(u32, buf, 0x7fc0, seg.selector);
9675 put_smstate(u32, buf, 0x7f80, seg.base);
9676 put_smstate(u32, buf, 0x7f7c, seg.limit);
9677 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9678
9679 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9680 put_smstate(u32, buf, 0x7f74, dt.address);
9681 put_smstate(u32, buf, 0x7f70, dt.size);
9682
9683 static_call(kvm_x86_get_idt)(vcpu, &dt);
9684 put_smstate(u32, buf, 0x7f58, dt.address);
9685 put_smstate(u32, buf, 0x7f54, dt.size);
9686
9687 for (i = 0; i < 6; i++)
9688 enter_smm_save_seg_32(vcpu, buf, i);
9689
9690 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9691
9692 /* revision id */
9693 put_smstate(u32, buf, 0x7efc, 0x00020000);
9694 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9695 }
9696
9697 #ifdef CONFIG_X86_64
9698 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9699 {
9700 struct desc_ptr dt;
9701 struct kvm_segment seg;
9702 unsigned long val;
9703 int i;
9704
9705 for (i = 0; i < 16; i++)
9706 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9707
9708 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9709 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9710
9711 kvm_get_dr(vcpu, 6, &val);
9712 put_smstate(u64, buf, 0x7f68, val);
9713 kvm_get_dr(vcpu, 7, &val);
9714 put_smstate(u64, buf, 0x7f60, val);
9715
9716 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9717 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9718 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9719
9720 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9721
9722 /* revision id */
9723 put_smstate(u32, buf, 0x7efc, 0x00020064);
9724
9725 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9726
9727 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9728 put_smstate(u16, buf, 0x7e90, seg.selector);
9729 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9730 put_smstate(u32, buf, 0x7e94, seg.limit);
9731 put_smstate(u64, buf, 0x7e98, seg.base);
9732
9733 static_call(kvm_x86_get_idt)(vcpu, &dt);
9734 put_smstate(u32, buf, 0x7e84, dt.size);
9735 put_smstate(u64, buf, 0x7e88, dt.address);
9736
9737 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9738 put_smstate(u16, buf, 0x7e70, seg.selector);
9739 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9740 put_smstate(u32, buf, 0x7e74, seg.limit);
9741 put_smstate(u64, buf, 0x7e78, seg.base);
9742
9743 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9744 put_smstate(u32, buf, 0x7e64, dt.size);
9745 put_smstate(u64, buf, 0x7e68, dt.address);
9746
9747 for (i = 0; i < 6; i++)
9748 enter_smm_save_seg_64(vcpu, buf, i);
9749 }
9750 #endif
9751
9752 static void enter_smm(struct kvm_vcpu *vcpu)
9753 {
9754 struct kvm_segment cs, ds;
9755 struct desc_ptr dt;
9756 unsigned long cr0;
9757 char buf[512];
9758
9759 memset(buf, 0, 512);
9760 #ifdef CONFIG_X86_64
9761 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9762 enter_smm_save_state_64(vcpu, buf);
9763 else
9764 #endif
9765 enter_smm_save_state_32(vcpu, buf);
9766
9767 /*
9768 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9769 * state (e.g. leave guest mode) after we've saved the state into the
9770 * SMM state-save area.
9771 */
9772 static_call(kvm_x86_enter_smm)(vcpu, buf);
9773
9774 kvm_smm_changed(vcpu, true);
9775 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9776
9777 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9778 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9779 else
9780 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9781
9782 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9783 kvm_rip_write(vcpu, 0x8000);
9784
9785 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9786 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9787 vcpu->arch.cr0 = cr0;
9788
9789 static_call(kvm_x86_set_cr4)(vcpu, 0);
9790
9791 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9792 dt.address = dt.size = 0;
9793 static_call(kvm_x86_set_idt)(vcpu, &dt);
9794
9795 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9796
9797 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9798 cs.base = vcpu->arch.smbase;
9799
9800 ds.selector = 0;
9801 ds.base = 0;
9802
9803 cs.limit = ds.limit = 0xffffffff;
9804 cs.type = ds.type = 0x3;
9805 cs.dpl = ds.dpl = 0;
9806 cs.db = ds.db = 0;
9807 cs.s = ds.s = 1;
9808 cs.l = ds.l = 0;
9809 cs.g = ds.g = 1;
9810 cs.avl = ds.avl = 0;
9811 cs.present = ds.present = 1;
9812 cs.unusable = ds.unusable = 0;
9813 cs.padding = ds.padding = 0;
9814
9815 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9816 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9817 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9818 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9819 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9820 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9821
9822 #ifdef CONFIG_X86_64
9823 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9824 static_call(kvm_x86_set_efer)(vcpu, 0);
9825 #endif
9826
9827 kvm_update_cpuid_runtime(vcpu);
9828 kvm_mmu_reset_context(vcpu);
9829 }
9830
9831 static void process_smi(struct kvm_vcpu *vcpu)
9832 {
9833 vcpu->arch.smi_pending = true;
9834 kvm_make_request(KVM_REQ_EVENT, vcpu);
9835 }
9836
9837 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9838 unsigned long *vcpu_bitmap)
9839 {
9840 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9841 }
9842
9843 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9844 {
9845 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9846 }
9847
9848 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9849 {
9850 bool activate;
9851
9852 if (!lapic_in_kernel(vcpu))
9853 return;
9854
9855 down_read(&vcpu->kvm->arch.apicv_update_lock);
9856 preempt_disable();
9857
9858 activate = kvm_vcpu_apicv_activated(vcpu);
9859
9860 if (vcpu->arch.apicv_active == activate)
9861 goto out;
9862
9863 vcpu->arch.apicv_active = activate;
9864 kvm_apic_update_apicv(vcpu);
9865 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9866
9867 /*
9868 * When APICv gets disabled, we may still have injected interrupts
9869 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9870 * still active when the interrupt got accepted. Make sure
9871 * inject_pending_event() is called to check for that.
9872 */
9873 if (!vcpu->arch.apicv_active)
9874 kvm_make_request(KVM_REQ_EVENT, vcpu);
9875
9876 out:
9877 preempt_enable();
9878 up_read(&vcpu->kvm->arch.apicv_update_lock);
9879 }
9880 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9881
9882 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9883 enum kvm_apicv_inhibit reason, bool set)
9884 {
9885 unsigned long old, new;
9886
9887 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9888
9889 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
9890 return;
9891
9892 old = new = kvm->arch.apicv_inhibit_reasons;
9893
9894 set_or_clear_apicv_inhibit(&new, reason, set);
9895
9896 if (!!old != !!new) {
9897 /*
9898 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9899 * false positives in the sanity check WARN in svm_vcpu_run().
9900 * This task will wait for all vCPUs to ack the kick IRQ before
9901 * updating apicv_inhibit_reasons, and all other vCPUs will
9902 * block on acquiring apicv_update_lock so that vCPUs can't
9903 * redo svm_vcpu_run() without seeing the new inhibit state.
9904 *
9905 * Note, holding apicv_update_lock and taking it in the read
9906 * side (handling the request) also prevents other vCPUs from
9907 * servicing the request with a stale apicv_inhibit_reasons.
9908 */
9909 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9910 kvm->arch.apicv_inhibit_reasons = new;
9911 if (new) {
9912 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9913 kvm_zap_gfn_range(kvm, gfn, gfn+1);
9914 }
9915 } else {
9916 kvm->arch.apicv_inhibit_reasons = new;
9917 }
9918 }
9919
9920 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9921 enum kvm_apicv_inhibit reason, bool set)
9922 {
9923 if (!enable_apicv)
9924 return;
9925
9926 down_write(&kvm->arch.apicv_update_lock);
9927 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
9928 up_write(&kvm->arch.apicv_update_lock);
9929 }
9930 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
9931
9932 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9933 {
9934 if (!kvm_apic_present(vcpu))
9935 return;
9936
9937 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9938
9939 if (irqchip_split(vcpu->kvm))
9940 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9941 else {
9942 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9943 if (ioapic_in_kernel(vcpu->kvm))
9944 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9945 }
9946
9947 if (is_guest_mode(vcpu))
9948 vcpu->arch.load_eoi_exitmap_pending = true;
9949 else
9950 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9951 }
9952
9953 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9954 {
9955 u64 eoi_exit_bitmap[4];
9956
9957 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9958 return;
9959
9960 if (to_hv_vcpu(vcpu)) {
9961 bitmap_or((ulong *)eoi_exit_bitmap,
9962 vcpu->arch.ioapic_handled_vectors,
9963 to_hv_synic(vcpu)->vec_bitmap, 256);
9964 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9965 return;
9966 }
9967
9968 static_call_cond(kvm_x86_load_eoi_exitmap)(
9969 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9970 }
9971
9972 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9973 unsigned long start, unsigned long end)
9974 {
9975 unsigned long apic_address;
9976
9977 /*
9978 * The physical address of apic access page is stored in the VMCS.
9979 * Update it when it becomes invalid.
9980 */
9981 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9982 if (start <= apic_address && apic_address < end)
9983 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9984 }
9985
9986 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
9987 {
9988 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
9989 }
9990
9991 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9992 {
9993 if (!lapic_in_kernel(vcpu))
9994 return;
9995
9996 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
9997 }
9998
9999 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10000 {
10001 smp_send_reschedule(vcpu->cpu);
10002 }
10003 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10004
10005 /*
10006 * Called within kvm->srcu read side.
10007 * Returns 1 to let vcpu_run() continue the guest execution loop without
10008 * exiting to the userspace. Otherwise, the value will be returned to the
10009 * userspace.
10010 */
10011 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10012 {
10013 int r;
10014 bool req_int_win =
10015 dm_request_for_irq_injection(vcpu) &&
10016 kvm_cpu_accept_dm_intr(vcpu);
10017 fastpath_t exit_fastpath;
10018
10019 bool req_immediate_exit = false;
10020
10021 /* Forbid vmenter if vcpu dirty ring is soft-full */
10022 if (unlikely(vcpu->kvm->dirty_ring_size &&
10023 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10024 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10025 trace_kvm_dirty_ring_exit(vcpu);
10026 r = 0;
10027 goto out;
10028 }
10029
10030 if (kvm_request_pending(vcpu)) {
10031 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10032 r = -EIO;
10033 goto out;
10034 }
10035 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10036 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10037 r = 0;
10038 goto out;
10039 }
10040 }
10041 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10042 kvm_mmu_free_obsolete_roots(vcpu);
10043 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10044 __kvm_migrate_timers(vcpu);
10045 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10046 kvm_update_masterclock(vcpu->kvm);
10047 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10048 kvm_gen_kvmclock_update(vcpu);
10049 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10050 r = kvm_guest_time_update(vcpu);
10051 if (unlikely(r))
10052 goto out;
10053 }
10054 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10055 kvm_mmu_sync_roots(vcpu);
10056 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10057 kvm_mmu_load_pgd(vcpu);
10058 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10059 kvm_vcpu_flush_tlb_all(vcpu);
10060
10061 /* Flushing all ASIDs flushes the current ASID... */
10062 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10063 }
10064 kvm_service_local_tlb_flush_requests(vcpu);
10065
10066 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10067 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10068 r = 0;
10069 goto out;
10070 }
10071 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10072 if (is_guest_mode(vcpu)) {
10073 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10074 } else {
10075 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10076 vcpu->mmio_needed = 0;
10077 r = 0;
10078 goto out;
10079 }
10080 }
10081 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10082 /* Page is swapped out. Do synthetic halt */
10083 vcpu->arch.apf.halted = true;
10084 r = 1;
10085 goto out;
10086 }
10087 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10088 record_steal_time(vcpu);
10089 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10090 process_smi(vcpu);
10091 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10092 process_nmi(vcpu);
10093 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10094 kvm_pmu_handle_event(vcpu);
10095 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10096 kvm_pmu_deliver_pmi(vcpu);
10097 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10098 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10099 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10100 vcpu->arch.ioapic_handled_vectors)) {
10101 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10102 vcpu->run->eoi.vector =
10103 vcpu->arch.pending_ioapic_eoi;
10104 r = 0;
10105 goto out;
10106 }
10107 }
10108 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10109 vcpu_scan_ioapic(vcpu);
10110 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10111 vcpu_load_eoi_exitmap(vcpu);
10112 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10113 kvm_vcpu_reload_apic_access_page(vcpu);
10114 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10115 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10116 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10117 vcpu->run->system_event.ndata = 0;
10118 r = 0;
10119 goto out;
10120 }
10121 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10122 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10123 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10124 vcpu->run->system_event.ndata = 0;
10125 r = 0;
10126 goto out;
10127 }
10128 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10129 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10130
10131 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10132 vcpu->run->hyperv = hv_vcpu->exit;
10133 r = 0;
10134 goto out;
10135 }
10136
10137 /*
10138 * KVM_REQ_HV_STIMER has to be processed after
10139 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10140 * depend on the guest clock being up-to-date
10141 */
10142 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10143 kvm_hv_process_stimers(vcpu);
10144 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10145 kvm_vcpu_update_apicv(vcpu);
10146 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10147 kvm_check_async_pf_completion(vcpu);
10148 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10149 static_call(kvm_x86_msr_filter_changed)(vcpu);
10150
10151 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10152 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10153 }
10154
10155 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10156 kvm_xen_has_interrupt(vcpu)) {
10157 ++vcpu->stat.req_event;
10158 r = kvm_apic_accept_events(vcpu);
10159 if (r < 0) {
10160 r = 0;
10161 goto out;
10162 }
10163 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10164 r = 1;
10165 goto out;
10166 }
10167
10168 r = inject_pending_event(vcpu, &req_immediate_exit);
10169 if (r < 0) {
10170 r = 0;
10171 goto out;
10172 }
10173 if (req_int_win)
10174 static_call(kvm_x86_enable_irq_window)(vcpu);
10175
10176 if (kvm_lapic_enabled(vcpu)) {
10177 update_cr8_intercept(vcpu);
10178 kvm_lapic_sync_to_vapic(vcpu);
10179 }
10180 }
10181
10182 r = kvm_mmu_reload(vcpu);
10183 if (unlikely(r)) {
10184 goto cancel_injection;
10185 }
10186
10187 preempt_disable();
10188
10189 static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10190
10191 /*
10192 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10193 * IPI are then delayed after guest entry, which ensures that they
10194 * result in virtual interrupt delivery.
10195 */
10196 local_irq_disable();
10197
10198 /* Store vcpu->apicv_active before vcpu->mode. */
10199 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10200
10201 kvm_vcpu_srcu_read_unlock(vcpu);
10202
10203 /*
10204 * 1) We should set ->mode before checking ->requests. Please see
10205 * the comment in kvm_vcpu_exiting_guest_mode().
10206 *
10207 * 2) For APICv, we should set ->mode before checking PID.ON. This
10208 * pairs with the memory barrier implicit in pi_test_and_set_on
10209 * (see vmx_deliver_posted_interrupt).
10210 *
10211 * 3) This also orders the write to mode from any reads to the page
10212 * tables done while the VCPU is running. Please see the comment
10213 * in kvm_flush_remote_tlbs.
10214 */
10215 smp_mb__after_srcu_read_unlock();
10216
10217 /*
10218 * Process pending posted interrupts to handle the case where the
10219 * notification IRQ arrived in the host, or was never sent (because the
10220 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10221 * status, KVM doesn't update assigned devices when APICv is inhibited,
10222 * i.e. they can post interrupts even if APICv is temporarily disabled.
10223 */
10224 if (kvm_lapic_enabled(vcpu))
10225 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10226
10227 if (kvm_vcpu_exit_request(vcpu)) {
10228 vcpu->mode = OUTSIDE_GUEST_MODE;
10229 smp_wmb();
10230 local_irq_enable();
10231 preempt_enable();
10232 kvm_vcpu_srcu_read_lock(vcpu);
10233 r = 1;
10234 goto cancel_injection;
10235 }
10236
10237 if (req_immediate_exit) {
10238 kvm_make_request(KVM_REQ_EVENT, vcpu);
10239 static_call(kvm_x86_request_immediate_exit)(vcpu);
10240 }
10241
10242 fpregs_assert_state_consistent();
10243 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10244 switch_fpu_return();
10245
10246 if (vcpu->arch.guest_fpu.xfd_err)
10247 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10248
10249 if (unlikely(vcpu->arch.switch_db_regs)) {
10250 set_debugreg(0, 7);
10251 set_debugreg(vcpu->arch.eff_db[0], 0);
10252 set_debugreg(vcpu->arch.eff_db[1], 1);
10253 set_debugreg(vcpu->arch.eff_db[2], 2);
10254 set_debugreg(vcpu->arch.eff_db[3], 3);
10255 } else if (unlikely(hw_breakpoint_active())) {
10256 set_debugreg(0, 7);
10257 }
10258
10259 guest_timing_enter_irqoff();
10260
10261 for (;;) {
10262 /*
10263 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10264 * update must kick and wait for all vCPUs before toggling the
10265 * per-VM state, and responsing vCPUs must wait for the update
10266 * to complete before servicing KVM_REQ_APICV_UPDATE.
10267 */
10268 WARN_ON_ONCE(kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu));
10269
10270 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10271 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10272 break;
10273
10274 if (kvm_lapic_enabled(vcpu))
10275 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10276
10277 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10278 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10279 break;
10280 }
10281 }
10282
10283 /*
10284 * Do this here before restoring debug registers on the host. And
10285 * since we do this before handling the vmexit, a DR access vmexit
10286 * can (a) read the correct value of the debug registers, (b) set
10287 * KVM_DEBUGREG_WONT_EXIT again.
10288 */
10289 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10290 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10291 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10292 kvm_update_dr0123(vcpu);
10293 kvm_update_dr7(vcpu);
10294 }
10295
10296 /*
10297 * If the guest has used debug registers, at least dr7
10298 * will be disabled while returning to the host.
10299 * If we don't have active breakpoints in the host, we don't
10300 * care about the messed up debug address registers. But if
10301 * we have some of them active, restore the old state.
10302 */
10303 if (hw_breakpoint_active())
10304 hw_breakpoint_restore();
10305
10306 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10307 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10308
10309 vcpu->mode = OUTSIDE_GUEST_MODE;
10310 smp_wmb();
10311
10312 /*
10313 * Sync xfd before calling handle_exit_irqoff() which may
10314 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10315 * in #NM irqoff handler).
10316 */
10317 if (vcpu->arch.xfd_no_write_intercept)
10318 fpu_sync_guest_vmexit_xfd_state();
10319
10320 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10321
10322 if (vcpu->arch.guest_fpu.xfd_err)
10323 wrmsrl(MSR_IA32_XFD_ERR, 0);
10324
10325 /*
10326 * Consume any pending interrupts, including the possible source of
10327 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10328 * An instruction is required after local_irq_enable() to fully unblock
10329 * interrupts on processors that implement an interrupt shadow, the
10330 * stat.exits increment will do nicely.
10331 */
10332 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10333 local_irq_enable();
10334 ++vcpu->stat.exits;
10335 local_irq_disable();
10336 kvm_after_interrupt(vcpu);
10337
10338 /*
10339 * Wait until after servicing IRQs to account guest time so that any
10340 * ticks that occurred while running the guest are properly accounted
10341 * to the guest. Waiting until IRQs are enabled degrades the accuracy
10342 * of accounting via context tracking, but the loss of accuracy is
10343 * acceptable for all known use cases.
10344 */
10345 guest_timing_exit_irqoff();
10346
10347 local_irq_enable();
10348 preempt_enable();
10349
10350 kvm_vcpu_srcu_read_lock(vcpu);
10351
10352 /*
10353 * Profile KVM exit RIPs:
10354 */
10355 if (unlikely(prof_on == KVM_PROFILING)) {
10356 unsigned long rip = kvm_rip_read(vcpu);
10357 profile_hit(KVM_PROFILING, (void *)rip);
10358 }
10359
10360 if (unlikely(vcpu->arch.tsc_always_catchup))
10361 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10362
10363 if (vcpu->arch.apic_attention)
10364 kvm_lapic_sync_from_vapic(vcpu);
10365
10366 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10367 return r;
10368
10369 cancel_injection:
10370 if (req_immediate_exit)
10371 kvm_make_request(KVM_REQ_EVENT, vcpu);
10372 static_call(kvm_x86_cancel_injection)(vcpu);
10373 if (unlikely(vcpu->arch.apic_attention))
10374 kvm_lapic_sync_from_vapic(vcpu);
10375 out:
10376 return r;
10377 }
10378
10379 /* Called within kvm->srcu read side. */
10380 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10381 {
10382 bool hv_timer;
10383
10384 if (!kvm_arch_vcpu_runnable(vcpu)) {
10385 /*
10386 * Switch to the software timer before halt-polling/blocking as
10387 * the guest's timer may be a break event for the vCPU, and the
10388 * hypervisor timer runs only when the CPU is in guest mode.
10389 * Switch before halt-polling so that KVM recognizes an expired
10390 * timer before blocking.
10391 */
10392 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10393 if (hv_timer)
10394 kvm_lapic_switch_to_sw_timer(vcpu);
10395
10396 kvm_vcpu_srcu_read_unlock(vcpu);
10397 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10398 kvm_vcpu_halt(vcpu);
10399 else
10400 kvm_vcpu_block(vcpu);
10401 kvm_vcpu_srcu_read_lock(vcpu);
10402
10403 if (hv_timer)
10404 kvm_lapic_switch_to_hv_timer(vcpu);
10405
10406 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10407 return 1;
10408 }
10409
10410 if (kvm_apic_accept_events(vcpu) < 0)
10411 return 0;
10412 switch(vcpu->arch.mp_state) {
10413 case KVM_MP_STATE_HALTED:
10414 case KVM_MP_STATE_AP_RESET_HOLD:
10415 vcpu->arch.pv.pv_unhalted = false;
10416 vcpu->arch.mp_state =
10417 KVM_MP_STATE_RUNNABLE;
10418 fallthrough;
10419 case KVM_MP_STATE_RUNNABLE:
10420 vcpu->arch.apf.halted = false;
10421 break;
10422 case KVM_MP_STATE_INIT_RECEIVED:
10423 break;
10424 default:
10425 return -EINTR;
10426 }
10427 return 1;
10428 }
10429
10430 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10431 {
10432 if (is_guest_mode(vcpu))
10433 kvm_check_nested_events(vcpu);
10434
10435 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10436 !vcpu->arch.apf.halted);
10437 }
10438
10439 /* Called within kvm->srcu read side. */
10440 static int vcpu_run(struct kvm_vcpu *vcpu)
10441 {
10442 int r;
10443
10444 vcpu->arch.l1tf_flush_l1d = true;
10445
10446 for (;;) {
10447 /*
10448 * If another guest vCPU requests a PV TLB flush in the middle
10449 * of instruction emulation, the rest of the emulation could
10450 * use a stale page translation. Assume that any code after
10451 * this point can start executing an instruction.
10452 */
10453 vcpu->arch.at_instruction_boundary = false;
10454 if (kvm_vcpu_running(vcpu)) {
10455 r = vcpu_enter_guest(vcpu);
10456 } else {
10457 r = vcpu_block(vcpu);
10458 }
10459
10460 if (r <= 0)
10461 break;
10462
10463 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10464 if (kvm_xen_has_pending_events(vcpu))
10465 kvm_xen_inject_pending_events(vcpu);
10466
10467 if (kvm_cpu_has_pending_timer(vcpu))
10468 kvm_inject_pending_timer_irqs(vcpu);
10469
10470 if (dm_request_for_irq_injection(vcpu) &&
10471 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10472 r = 0;
10473 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10474 ++vcpu->stat.request_irq_exits;
10475 break;
10476 }
10477
10478 if (__xfer_to_guest_mode_work_pending()) {
10479 kvm_vcpu_srcu_read_unlock(vcpu);
10480 r = xfer_to_guest_mode_handle_work(vcpu);
10481 kvm_vcpu_srcu_read_lock(vcpu);
10482 if (r)
10483 return r;
10484 }
10485 }
10486
10487 return r;
10488 }
10489
10490 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10491 {
10492 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10493 }
10494
10495 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10496 {
10497 BUG_ON(!vcpu->arch.pio.count);
10498
10499 return complete_emulated_io(vcpu);
10500 }
10501
10502 /*
10503 * Implements the following, as a state machine:
10504 *
10505 * read:
10506 * for each fragment
10507 * for each mmio piece in the fragment
10508 * write gpa, len
10509 * exit
10510 * copy data
10511 * execute insn
10512 *
10513 * write:
10514 * for each fragment
10515 * for each mmio piece in the fragment
10516 * write gpa, len
10517 * copy data
10518 * exit
10519 */
10520 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10521 {
10522 struct kvm_run *run = vcpu->run;
10523 struct kvm_mmio_fragment *frag;
10524 unsigned len;
10525
10526 BUG_ON(!vcpu->mmio_needed);
10527
10528 /* Complete previous fragment */
10529 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10530 len = min(8u, frag->len);
10531 if (!vcpu->mmio_is_write)
10532 memcpy(frag->data, run->mmio.data, len);
10533
10534 if (frag->len <= 8) {
10535 /* Switch to the next fragment. */
10536 frag++;
10537 vcpu->mmio_cur_fragment++;
10538 } else {
10539 /* Go forward to the next mmio piece. */
10540 frag->data += len;
10541 frag->gpa += len;
10542 frag->len -= len;
10543 }
10544
10545 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10546 vcpu->mmio_needed = 0;
10547
10548 /* FIXME: return into emulator if single-stepping. */
10549 if (vcpu->mmio_is_write)
10550 return 1;
10551 vcpu->mmio_read_completed = 1;
10552 return complete_emulated_io(vcpu);
10553 }
10554
10555 run->exit_reason = KVM_EXIT_MMIO;
10556 run->mmio.phys_addr = frag->gpa;
10557 if (vcpu->mmio_is_write)
10558 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10559 run->mmio.len = min(8u, frag->len);
10560 run->mmio.is_write = vcpu->mmio_is_write;
10561 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10562 return 0;
10563 }
10564
10565 /* Swap (qemu) user FPU context for the guest FPU context. */
10566 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10567 {
10568 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10569 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10570 trace_kvm_fpu(1);
10571 }
10572
10573 /* When vcpu_run ends, restore user space FPU context. */
10574 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10575 {
10576 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10577 ++vcpu->stat.fpu_reload;
10578 trace_kvm_fpu(0);
10579 }
10580
10581 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10582 {
10583 struct kvm_run *kvm_run = vcpu->run;
10584 int r;
10585
10586 vcpu_load(vcpu);
10587 kvm_sigset_activate(vcpu);
10588 kvm_run->flags = 0;
10589 kvm_load_guest_fpu(vcpu);
10590
10591 kvm_vcpu_srcu_read_lock(vcpu);
10592 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10593 if (kvm_run->immediate_exit) {
10594 r = -EINTR;
10595 goto out;
10596 }
10597 /*
10598 * It should be impossible for the hypervisor timer to be in
10599 * use before KVM has ever run the vCPU.
10600 */
10601 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10602
10603 kvm_vcpu_srcu_read_unlock(vcpu);
10604 kvm_vcpu_block(vcpu);
10605 kvm_vcpu_srcu_read_lock(vcpu);
10606
10607 if (kvm_apic_accept_events(vcpu) < 0) {
10608 r = 0;
10609 goto out;
10610 }
10611 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10612 r = -EAGAIN;
10613 if (signal_pending(current)) {
10614 r = -EINTR;
10615 kvm_run->exit_reason = KVM_EXIT_INTR;
10616 ++vcpu->stat.signal_exits;
10617 }
10618 goto out;
10619 }
10620
10621 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10622 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10623 r = -EINVAL;
10624 goto out;
10625 }
10626
10627 if (kvm_run->kvm_dirty_regs) {
10628 r = sync_regs(vcpu);
10629 if (r != 0)
10630 goto out;
10631 }
10632
10633 /* re-sync apic's tpr */
10634 if (!lapic_in_kernel(vcpu)) {
10635 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10636 r = -EINVAL;
10637 goto out;
10638 }
10639 }
10640
10641 if (unlikely(vcpu->arch.complete_userspace_io)) {
10642 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10643 vcpu->arch.complete_userspace_io = NULL;
10644 r = cui(vcpu);
10645 if (r <= 0)
10646 goto out;
10647 } else
10648 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10649
10650 if (kvm_run->immediate_exit) {
10651 r = -EINTR;
10652 goto out;
10653 }
10654
10655 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10656 if (r <= 0)
10657 goto out;
10658
10659 r = vcpu_run(vcpu);
10660
10661 out:
10662 kvm_put_guest_fpu(vcpu);
10663 if (kvm_run->kvm_valid_regs)
10664 store_regs(vcpu);
10665 post_kvm_run_save(vcpu);
10666 kvm_vcpu_srcu_read_unlock(vcpu);
10667
10668 kvm_sigset_deactivate(vcpu);
10669 vcpu_put(vcpu);
10670 return r;
10671 }
10672
10673 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10674 {
10675 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10676 /*
10677 * We are here if userspace calls get_regs() in the middle of
10678 * instruction emulation. Registers state needs to be copied
10679 * back from emulation context to vcpu. Userspace shouldn't do
10680 * that usually, but some bad designed PV devices (vmware
10681 * backdoor interface) need this to work
10682 */
10683 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10684 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10685 }
10686 regs->rax = kvm_rax_read(vcpu);
10687 regs->rbx = kvm_rbx_read(vcpu);
10688 regs->rcx = kvm_rcx_read(vcpu);
10689 regs->rdx = kvm_rdx_read(vcpu);
10690 regs->rsi = kvm_rsi_read(vcpu);
10691 regs->rdi = kvm_rdi_read(vcpu);
10692 regs->rsp = kvm_rsp_read(vcpu);
10693 regs->rbp = kvm_rbp_read(vcpu);
10694 #ifdef CONFIG_X86_64
10695 regs->r8 = kvm_r8_read(vcpu);
10696 regs->r9 = kvm_r9_read(vcpu);
10697 regs->r10 = kvm_r10_read(vcpu);
10698 regs->r11 = kvm_r11_read(vcpu);
10699 regs->r12 = kvm_r12_read(vcpu);
10700 regs->r13 = kvm_r13_read(vcpu);
10701 regs->r14 = kvm_r14_read(vcpu);
10702 regs->r15 = kvm_r15_read(vcpu);
10703 #endif
10704
10705 regs->rip = kvm_rip_read(vcpu);
10706 regs->rflags = kvm_get_rflags(vcpu);
10707 }
10708
10709 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10710 {
10711 vcpu_load(vcpu);
10712 __get_regs(vcpu, regs);
10713 vcpu_put(vcpu);
10714 return 0;
10715 }
10716
10717 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10718 {
10719 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10720 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10721
10722 kvm_rax_write(vcpu, regs->rax);
10723 kvm_rbx_write(vcpu, regs->rbx);
10724 kvm_rcx_write(vcpu, regs->rcx);
10725 kvm_rdx_write(vcpu, regs->rdx);
10726 kvm_rsi_write(vcpu, regs->rsi);
10727 kvm_rdi_write(vcpu, regs->rdi);
10728 kvm_rsp_write(vcpu, regs->rsp);
10729 kvm_rbp_write(vcpu, regs->rbp);
10730 #ifdef CONFIG_X86_64
10731 kvm_r8_write(vcpu, regs->r8);
10732 kvm_r9_write(vcpu, regs->r9);
10733 kvm_r10_write(vcpu, regs->r10);
10734 kvm_r11_write(vcpu, regs->r11);
10735 kvm_r12_write(vcpu, regs->r12);
10736 kvm_r13_write(vcpu, regs->r13);
10737 kvm_r14_write(vcpu, regs->r14);
10738 kvm_r15_write(vcpu, regs->r15);
10739 #endif
10740
10741 kvm_rip_write(vcpu, regs->rip);
10742 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10743
10744 vcpu->arch.exception.pending = false;
10745
10746 kvm_make_request(KVM_REQ_EVENT, vcpu);
10747 }
10748
10749 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10750 {
10751 vcpu_load(vcpu);
10752 __set_regs(vcpu, regs);
10753 vcpu_put(vcpu);
10754 return 0;
10755 }
10756
10757 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10758 {
10759 struct desc_ptr dt;
10760
10761 if (vcpu->arch.guest_state_protected)
10762 goto skip_protected_regs;
10763
10764 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10765 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10766 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10767 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10768 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10769 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10770
10771 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10772 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10773
10774 static_call(kvm_x86_get_idt)(vcpu, &dt);
10775 sregs->idt.limit = dt.size;
10776 sregs->idt.base = dt.address;
10777 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10778 sregs->gdt.limit = dt.size;
10779 sregs->gdt.base = dt.address;
10780
10781 sregs->cr2 = vcpu->arch.cr2;
10782 sregs->cr3 = kvm_read_cr3(vcpu);
10783
10784 skip_protected_regs:
10785 sregs->cr0 = kvm_read_cr0(vcpu);
10786 sregs->cr4 = kvm_read_cr4(vcpu);
10787 sregs->cr8 = kvm_get_cr8(vcpu);
10788 sregs->efer = vcpu->arch.efer;
10789 sregs->apic_base = kvm_get_apic_base(vcpu);
10790 }
10791
10792 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10793 {
10794 __get_sregs_common(vcpu, sregs);
10795
10796 if (vcpu->arch.guest_state_protected)
10797 return;
10798
10799 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10800 set_bit(vcpu->arch.interrupt.nr,
10801 (unsigned long *)sregs->interrupt_bitmap);
10802 }
10803
10804 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10805 {
10806 int i;
10807
10808 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10809
10810 if (vcpu->arch.guest_state_protected)
10811 return;
10812
10813 if (is_pae_paging(vcpu)) {
10814 for (i = 0 ; i < 4 ; i++)
10815 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10816 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10817 }
10818 }
10819
10820 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10821 struct kvm_sregs *sregs)
10822 {
10823 vcpu_load(vcpu);
10824 __get_sregs(vcpu, sregs);
10825 vcpu_put(vcpu);
10826 return 0;
10827 }
10828
10829 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10830 struct kvm_mp_state *mp_state)
10831 {
10832 int r;
10833
10834 vcpu_load(vcpu);
10835 if (kvm_mpx_supported())
10836 kvm_load_guest_fpu(vcpu);
10837
10838 r = kvm_apic_accept_events(vcpu);
10839 if (r < 0)
10840 goto out;
10841 r = 0;
10842
10843 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10844 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10845 vcpu->arch.pv.pv_unhalted)
10846 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10847 else
10848 mp_state->mp_state = vcpu->arch.mp_state;
10849
10850 out:
10851 if (kvm_mpx_supported())
10852 kvm_put_guest_fpu(vcpu);
10853 vcpu_put(vcpu);
10854 return r;
10855 }
10856
10857 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10858 struct kvm_mp_state *mp_state)
10859 {
10860 int ret = -EINVAL;
10861
10862 vcpu_load(vcpu);
10863
10864 if (!lapic_in_kernel(vcpu) &&
10865 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10866 goto out;
10867
10868 /*
10869 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10870 * INIT state; latched init should be reported using
10871 * KVM_SET_VCPU_EVENTS, so reject it here.
10872 */
10873 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10874 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10875 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10876 goto out;
10877
10878 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10879 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10880 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10881 } else
10882 vcpu->arch.mp_state = mp_state->mp_state;
10883 kvm_make_request(KVM_REQ_EVENT, vcpu);
10884
10885 ret = 0;
10886 out:
10887 vcpu_put(vcpu);
10888 return ret;
10889 }
10890
10891 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10892 int reason, bool has_error_code, u32 error_code)
10893 {
10894 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10895 int ret;
10896
10897 init_emulate_ctxt(vcpu);
10898
10899 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10900 has_error_code, error_code);
10901 if (ret) {
10902 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10903 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10904 vcpu->run->internal.ndata = 0;
10905 return 0;
10906 }
10907
10908 kvm_rip_write(vcpu, ctxt->eip);
10909 kvm_set_rflags(vcpu, ctxt->eflags);
10910 return 1;
10911 }
10912 EXPORT_SYMBOL_GPL(kvm_task_switch);
10913
10914 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10915 {
10916 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10917 /*
10918 * When EFER.LME and CR0.PG are set, the processor is in
10919 * 64-bit mode (though maybe in a 32-bit code segment).
10920 * CR4.PAE and EFER.LMA must be set.
10921 */
10922 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10923 return false;
10924 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10925 return false;
10926 } else {
10927 /*
10928 * Not in 64-bit mode: EFER.LMA is clear and the code
10929 * segment cannot be 64-bit.
10930 */
10931 if (sregs->efer & EFER_LMA || sregs->cs.l)
10932 return false;
10933 }
10934
10935 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10936 }
10937
10938 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10939 int *mmu_reset_needed, bool update_pdptrs)
10940 {
10941 struct msr_data apic_base_msr;
10942 int idx;
10943 struct desc_ptr dt;
10944
10945 if (!kvm_is_valid_sregs(vcpu, sregs))
10946 return -EINVAL;
10947
10948 apic_base_msr.data = sregs->apic_base;
10949 apic_base_msr.host_initiated = true;
10950 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10951 return -EINVAL;
10952
10953 if (vcpu->arch.guest_state_protected)
10954 return 0;
10955
10956 dt.size = sregs->idt.limit;
10957 dt.address = sregs->idt.base;
10958 static_call(kvm_x86_set_idt)(vcpu, &dt);
10959 dt.size = sregs->gdt.limit;
10960 dt.address = sregs->gdt.base;
10961 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10962
10963 vcpu->arch.cr2 = sregs->cr2;
10964 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10965 vcpu->arch.cr3 = sregs->cr3;
10966 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10967 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10968
10969 kvm_set_cr8(vcpu, sregs->cr8);
10970
10971 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10972 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10973
10974 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10975 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10976 vcpu->arch.cr0 = sregs->cr0;
10977
10978 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10979 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10980
10981 if (update_pdptrs) {
10982 idx = srcu_read_lock(&vcpu->kvm->srcu);
10983 if (is_pae_paging(vcpu)) {
10984 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10985 *mmu_reset_needed = 1;
10986 }
10987 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10988 }
10989
10990 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10991 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10992 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10993 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10994 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10995 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10996
10997 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10998 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10999
11000 update_cr8_intercept(vcpu);
11001
11002 /* Older userspace won't unhalt the vcpu on reset. */
11003 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11004 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11005 !is_protmode(vcpu))
11006 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11007
11008 return 0;
11009 }
11010
11011 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11012 {
11013 int pending_vec, max_bits;
11014 int mmu_reset_needed = 0;
11015 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11016
11017 if (ret)
11018 return ret;
11019
11020 if (mmu_reset_needed)
11021 kvm_mmu_reset_context(vcpu);
11022
11023 max_bits = KVM_NR_INTERRUPTS;
11024 pending_vec = find_first_bit(
11025 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11026
11027 if (pending_vec < max_bits) {
11028 kvm_queue_interrupt(vcpu, pending_vec, false);
11029 pr_debug("Set back pending irq %d\n", pending_vec);
11030 kvm_make_request(KVM_REQ_EVENT, vcpu);
11031 }
11032 return 0;
11033 }
11034
11035 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11036 {
11037 int mmu_reset_needed = 0;
11038 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11039 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11040 !(sregs2->efer & EFER_LMA);
11041 int i, ret;
11042
11043 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11044 return -EINVAL;
11045
11046 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11047 return -EINVAL;
11048
11049 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11050 &mmu_reset_needed, !valid_pdptrs);
11051 if (ret)
11052 return ret;
11053
11054 if (valid_pdptrs) {
11055 for (i = 0; i < 4 ; i++)
11056 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11057
11058 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11059 mmu_reset_needed = 1;
11060 vcpu->arch.pdptrs_from_userspace = true;
11061 }
11062 if (mmu_reset_needed)
11063 kvm_mmu_reset_context(vcpu);
11064 return 0;
11065 }
11066
11067 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11068 struct kvm_sregs *sregs)
11069 {
11070 int ret;
11071
11072 vcpu_load(vcpu);
11073 ret = __set_sregs(vcpu, sregs);
11074 vcpu_put(vcpu);
11075 return ret;
11076 }
11077
11078 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11079 {
11080 bool set = false;
11081 struct kvm_vcpu *vcpu;
11082 unsigned long i;
11083
11084 if (!enable_apicv)
11085 return;
11086
11087 down_write(&kvm->arch.apicv_update_lock);
11088
11089 kvm_for_each_vcpu(i, vcpu, kvm) {
11090 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11091 set = true;
11092 break;
11093 }
11094 }
11095 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11096 up_write(&kvm->arch.apicv_update_lock);
11097 }
11098
11099 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11100 struct kvm_guest_debug *dbg)
11101 {
11102 unsigned long rflags;
11103 int i, r;
11104
11105 if (vcpu->arch.guest_state_protected)
11106 return -EINVAL;
11107
11108 vcpu_load(vcpu);
11109
11110 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11111 r = -EBUSY;
11112 if (vcpu->arch.exception.pending)
11113 goto out;
11114 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11115 kvm_queue_exception(vcpu, DB_VECTOR);
11116 else
11117 kvm_queue_exception(vcpu, BP_VECTOR);
11118 }
11119
11120 /*
11121 * Read rflags as long as potentially injected trace flags are still
11122 * filtered out.
11123 */
11124 rflags = kvm_get_rflags(vcpu);
11125
11126 vcpu->guest_debug = dbg->control;
11127 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11128 vcpu->guest_debug = 0;
11129
11130 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11131 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11132 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11133 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11134 } else {
11135 for (i = 0; i < KVM_NR_DB_REGS; i++)
11136 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11137 }
11138 kvm_update_dr7(vcpu);
11139
11140 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11141 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11142
11143 /*
11144 * Trigger an rflags update that will inject or remove the trace
11145 * flags.
11146 */
11147 kvm_set_rflags(vcpu, rflags);
11148
11149 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11150
11151 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11152
11153 r = 0;
11154
11155 out:
11156 vcpu_put(vcpu);
11157 return r;
11158 }
11159
11160 /*
11161 * Translate a guest virtual address to a guest physical address.
11162 */
11163 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11164 struct kvm_translation *tr)
11165 {
11166 unsigned long vaddr = tr->linear_address;
11167 gpa_t gpa;
11168 int idx;
11169
11170 vcpu_load(vcpu);
11171
11172 idx = srcu_read_lock(&vcpu->kvm->srcu);
11173 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11174 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11175 tr->physical_address = gpa;
11176 tr->valid = gpa != UNMAPPED_GVA;
11177 tr->writeable = 1;
11178 tr->usermode = 0;
11179
11180 vcpu_put(vcpu);
11181 return 0;
11182 }
11183
11184 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11185 {
11186 struct fxregs_state *fxsave;
11187
11188 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11189 return 0;
11190
11191 vcpu_load(vcpu);
11192
11193 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11194 memcpy(fpu->fpr, fxsave->st_space, 128);
11195 fpu->fcw = fxsave->cwd;
11196 fpu->fsw = fxsave->swd;
11197 fpu->ftwx = fxsave->twd;
11198 fpu->last_opcode = fxsave->fop;
11199 fpu->last_ip = fxsave->rip;
11200 fpu->last_dp = fxsave->rdp;
11201 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11202
11203 vcpu_put(vcpu);
11204 return 0;
11205 }
11206
11207 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11208 {
11209 struct fxregs_state *fxsave;
11210
11211 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11212 return 0;
11213
11214 vcpu_load(vcpu);
11215
11216 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11217
11218 memcpy(fxsave->st_space, fpu->fpr, 128);
11219 fxsave->cwd = fpu->fcw;
11220 fxsave->swd = fpu->fsw;
11221 fxsave->twd = fpu->ftwx;
11222 fxsave->fop = fpu->last_opcode;
11223 fxsave->rip = fpu->last_ip;
11224 fxsave->rdp = fpu->last_dp;
11225 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11226
11227 vcpu_put(vcpu);
11228 return 0;
11229 }
11230
11231 static void store_regs(struct kvm_vcpu *vcpu)
11232 {
11233 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11234
11235 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11236 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11237
11238 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11239 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11240
11241 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11242 kvm_vcpu_ioctl_x86_get_vcpu_events(
11243 vcpu, &vcpu->run->s.regs.events);
11244 }
11245
11246 static int sync_regs(struct kvm_vcpu *vcpu)
11247 {
11248 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11249 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11250 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11251 }
11252 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11253 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11254 return -EINVAL;
11255 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11256 }
11257 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11258 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11259 vcpu, &vcpu->run->s.regs.events))
11260 return -EINVAL;
11261 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11262 }
11263
11264 return 0;
11265 }
11266
11267 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11268 {
11269 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11270 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11271 "guest TSC will not be reliable\n");
11272
11273 return 0;
11274 }
11275
11276 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11277 {
11278 struct page *page;
11279 int r;
11280
11281 vcpu->arch.last_vmentry_cpu = -1;
11282 vcpu->arch.regs_avail = ~0;
11283 vcpu->arch.regs_dirty = ~0;
11284
11285 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11286 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11287 else
11288 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11289
11290 r = kvm_mmu_create(vcpu);
11291 if (r < 0)
11292 return r;
11293
11294 if (irqchip_in_kernel(vcpu->kvm)) {
11295 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11296 if (r < 0)
11297 goto fail_mmu_destroy;
11298
11299 /*
11300 * Defer evaluating inhibits until the vCPU is first run, as
11301 * this vCPU will not get notified of any changes until this
11302 * vCPU is visible to other vCPUs (marked online and added to
11303 * the set of vCPUs). Opportunistically mark APICv active as
11304 * VMX in particularly is highly unlikely to have inhibits.
11305 * Ignore the current per-VM APICv state so that vCPU creation
11306 * is guaranteed to run with a deterministic value, the request
11307 * will ensure the vCPU gets the correct state before VM-Entry.
11308 */
11309 if (enable_apicv) {
11310 vcpu->arch.apicv_active = true;
11311 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11312 }
11313 } else
11314 static_branch_inc(&kvm_has_noapic_vcpu);
11315
11316 r = -ENOMEM;
11317
11318 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11319 if (!page)
11320 goto fail_free_lapic;
11321 vcpu->arch.pio_data = page_address(page);
11322
11323 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11324 GFP_KERNEL_ACCOUNT);
11325 if (!vcpu->arch.mce_banks)
11326 goto fail_free_pio_data;
11327 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11328
11329 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11330 GFP_KERNEL_ACCOUNT))
11331 goto fail_free_mce_banks;
11332
11333 if (!alloc_emulate_ctxt(vcpu))
11334 goto free_wbinvd_dirty_mask;
11335
11336 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11337 pr_err("kvm: failed to allocate vcpu's fpu\n");
11338 goto free_emulate_ctxt;
11339 }
11340
11341 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11342 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11343
11344 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11345
11346 kvm_async_pf_hash_reset(vcpu);
11347 kvm_pmu_init(vcpu);
11348
11349 vcpu->arch.pending_external_vector = -1;
11350 vcpu->arch.preempted_in_kernel = false;
11351
11352 #if IS_ENABLED(CONFIG_HYPERV)
11353 vcpu->arch.hv_root_tdp = INVALID_PAGE;
11354 #endif
11355
11356 r = static_call(kvm_x86_vcpu_create)(vcpu);
11357 if (r)
11358 goto free_guest_fpu;
11359
11360 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11361 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11362 kvm_xen_init_vcpu(vcpu);
11363 kvm_vcpu_mtrr_init(vcpu);
11364 vcpu_load(vcpu);
11365 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11366 kvm_vcpu_reset(vcpu, false);
11367 kvm_init_mmu(vcpu);
11368 vcpu_put(vcpu);
11369 return 0;
11370
11371 free_guest_fpu:
11372 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11373 free_emulate_ctxt:
11374 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11375 free_wbinvd_dirty_mask:
11376 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11377 fail_free_mce_banks:
11378 kfree(vcpu->arch.mce_banks);
11379 fail_free_pio_data:
11380 free_page((unsigned long)vcpu->arch.pio_data);
11381 fail_free_lapic:
11382 kvm_free_lapic(vcpu);
11383 fail_mmu_destroy:
11384 kvm_mmu_destroy(vcpu);
11385 return r;
11386 }
11387
11388 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11389 {
11390 struct kvm *kvm = vcpu->kvm;
11391
11392 if (mutex_lock_killable(&vcpu->mutex))
11393 return;
11394 vcpu_load(vcpu);
11395 kvm_synchronize_tsc(vcpu, 0);
11396 vcpu_put(vcpu);
11397
11398 /* poll control enabled by default */
11399 vcpu->arch.msr_kvm_poll_control = 1;
11400
11401 mutex_unlock(&vcpu->mutex);
11402
11403 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11404 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11405 KVMCLOCK_SYNC_PERIOD);
11406 }
11407
11408 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11409 {
11410 int idx;
11411
11412 kvmclock_reset(vcpu);
11413
11414 static_call(kvm_x86_vcpu_free)(vcpu);
11415
11416 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11417 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11418 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11419
11420 kvm_xen_destroy_vcpu(vcpu);
11421 kvm_hv_vcpu_uninit(vcpu);
11422 kvm_pmu_destroy(vcpu);
11423 kfree(vcpu->arch.mce_banks);
11424 kvm_free_lapic(vcpu);
11425 idx = srcu_read_lock(&vcpu->kvm->srcu);
11426 kvm_mmu_destroy(vcpu);
11427 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11428 free_page((unsigned long)vcpu->arch.pio_data);
11429 kvfree(vcpu->arch.cpuid_entries);
11430 if (!lapic_in_kernel(vcpu))
11431 static_branch_dec(&kvm_has_noapic_vcpu);
11432 }
11433
11434 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11435 {
11436 struct kvm_cpuid_entry2 *cpuid_0x1;
11437 unsigned long old_cr0 = kvm_read_cr0(vcpu);
11438 unsigned long new_cr0;
11439
11440 /*
11441 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11442 * to handle side effects. RESET emulation hits those flows and relies
11443 * on emulated/virtualized registers, including those that are loaded
11444 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
11445 * to detect improper or missing initialization.
11446 */
11447 WARN_ON_ONCE(!init_event &&
11448 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11449
11450 kvm_lapic_reset(vcpu, init_event);
11451
11452 vcpu->arch.hflags = 0;
11453
11454 vcpu->arch.smi_pending = 0;
11455 vcpu->arch.smi_count = 0;
11456 atomic_set(&vcpu->arch.nmi_queued, 0);
11457 vcpu->arch.nmi_pending = 0;
11458 vcpu->arch.nmi_injected = false;
11459 kvm_clear_interrupt_queue(vcpu);
11460 kvm_clear_exception_queue(vcpu);
11461
11462 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11463 kvm_update_dr0123(vcpu);
11464 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11465 vcpu->arch.dr7 = DR7_FIXED_1;
11466 kvm_update_dr7(vcpu);
11467
11468 vcpu->arch.cr2 = 0;
11469
11470 kvm_make_request(KVM_REQ_EVENT, vcpu);
11471 vcpu->arch.apf.msr_en_val = 0;
11472 vcpu->arch.apf.msr_int_val = 0;
11473 vcpu->arch.st.msr_val = 0;
11474
11475 kvmclock_reset(vcpu);
11476
11477 kvm_clear_async_pf_completion_queue(vcpu);
11478 kvm_async_pf_hash_reset(vcpu);
11479 vcpu->arch.apf.halted = false;
11480
11481 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11482 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11483
11484 /*
11485 * To avoid have the INIT path from kvm_apic_has_events() that be
11486 * called with loaded FPU and does not let userspace fix the state.
11487 */
11488 if (init_event)
11489 kvm_put_guest_fpu(vcpu);
11490
11491 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11492 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11493
11494 if (init_event)
11495 kvm_load_guest_fpu(vcpu);
11496 }
11497
11498 if (!init_event) {
11499 kvm_pmu_reset(vcpu);
11500 vcpu->arch.smbase = 0x30000;
11501
11502 vcpu->arch.msr_misc_features_enables = 0;
11503
11504 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11505 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11506 }
11507
11508 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11509 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11510 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11511
11512 /*
11513 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11514 * if no CPUID match is found. Note, it's impossible to get a match at
11515 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11516 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11517 * on RESET. But, go through the motions in case that's ever remedied.
11518 */
11519 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11520 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11521
11522 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11523
11524 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11525 kvm_rip_write(vcpu, 0xfff0);
11526
11527 vcpu->arch.cr3 = 0;
11528 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11529
11530 /*
11531 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
11532 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11533 * (or qualify) that with a footnote stating that CD/NW are preserved.
11534 */
11535 new_cr0 = X86_CR0_ET;
11536 if (init_event)
11537 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11538 else
11539 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11540
11541 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11542 static_call(kvm_x86_set_cr4)(vcpu, 0);
11543 static_call(kvm_x86_set_efer)(vcpu, 0);
11544 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11545
11546 /*
11547 * On the standard CR0/CR4/EFER modification paths, there are several
11548 * complex conditions determining whether the MMU has to be reset and/or
11549 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
11550 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11551 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11552 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
11553 */
11554 if (old_cr0 & X86_CR0_PG) {
11555 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11556 kvm_mmu_reset_context(vcpu);
11557 }
11558
11559 /*
11560 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
11561 * APM states the TLBs are untouched by INIT, but it also states that
11562 * the TLBs are flushed on "External initialization of the processor."
11563 * Flush the guest TLB regardless of vendor, there is no meaningful
11564 * benefit in relying on the guest to flush the TLB immediately after
11565 * INIT. A spurious TLB flush is benign and likely negligible from a
11566 * performance perspective.
11567 */
11568 if (init_event)
11569 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11570 }
11571 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11572
11573 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11574 {
11575 struct kvm_segment cs;
11576
11577 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11578 cs.selector = vector << 8;
11579 cs.base = vector << 12;
11580 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11581 kvm_rip_write(vcpu, 0);
11582 }
11583 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11584
11585 int kvm_arch_hardware_enable(void)
11586 {
11587 struct kvm *kvm;
11588 struct kvm_vcpu *vcpu;
11589 unsigned long i;
11590 int ret;
11591 u64 local_tsc;
11592 u64 max_tsc = 0;
11593 bool stable, backwards_tsc = false;
11594
11595 kvm_user_return_msr_cpu_online();
11596 ret = static_call(kvm_x86_hardware_enable)();
11597 if (ret != 0)
11598 return ret;
11599
11600 local_tsc = rdtsc();
11601 stable = !kvm_check_tsc_unstable();
11602 list_for_each_entry(kvm, &vm_list, vm_list) {
11603 kvm_for_each_vcpu(i, vcpu, kvm) {
11604 if (!stable && vcpu->cpu == smp_processor_id())
11605 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11606 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11607 backwards_tsc = true;
11608 if (vcpu->arch.last_host_tsc > max_tsc)
11609 max_tsc = vcpu->arch.last_host_tsc;
11610 }
11611 }
11612 }
11613
11614 /*
11615 * Sometimes, even reliable TSCs go backwards. This happens on
11616 * platforms that reset TSC during suspend or hibernate actions, but
11617 * maintain synchronization. We must compensate. Fortunately, we can
11618 * detect that condition here, which happens early in CPU bringup,
11619 * before any KVM threads can be running. Unfortunately, we can't
11620 * bring the TSCs fully up to date with real time, as we aren't yet far
11621 * enough into CPU bringup that we know how much real time has actually
11622 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11623 * variables that haven't been updated yet.
11624 *
11625 * So we simply find the maximum observed TSC above, then record the
11626 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
11627 * the adjustment will be applied. Note that we accumulate
11628 * adjustments, in case multiple suspend cycles happen before some VCPU
11629 * gets a chance to run again. In the event that no KVM threads get a
11630 * chance to run, we will miss the entire elapsed period, as we'll have
11631 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11632 * loose cycle time. This isn't too big a deal, since the loss will be
11633 * uniform across all VCPUs (not to mention the scenario is extremely
11634 * unlikely). It is possible that a second hibernate recovery happens
11635 * much faster than a first, causing the observed TSC here to be
11636 * smaller; this would require additional padding adjustment, which is
11637 * why we set last_host_tsc to the local tsc observed here.
11638 *
11639 * N.B. - this code below runs only on platforms with reliable TSC,
11640 * as that is the only way backwards_tsc is set above. Also note
11641 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11642 * have the same delta_cyc adjustment applied if backwards_tsc
11643 * is detected. Note further, this adjustment is only done once,
11644 * as we reset last_host_tsc on all VCPUs to stop this from being
11645 * called multiple times (one for each physical CPU bringup).
11646 *
11647 * Platforms with unreliable TSCs don't have to deal with this, they
11648 * will be compensated by the logic in vcpu_load, which sets the TSC to
11649 * catchup mode. This will catchup all VCPUs to real time, but cannot
11650 * guarantee that they stay in perfect synchronization.
11651 */
11652 if (backwards_tsc) {
11653 u64 delta_cyc = max_tsc - local_tsc;
11654 list_for_each_entry(kvm, &vm_list, vm_list) {
11655 kvm->arch.backwards_tsc_observed = true;
11656 kvm_for_each_vcpu(i, vcpu, kvm) {
11657 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11658 vcpu->arch.last_host_tsc = local_tsc;
11659 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11660 }
11661
11662 /*
11663 * We have to disable TSC offset matching.. if you were
11664 * booting a VM while issuing an S4 host suspend....
11665 * you may have some problem. Solving this issue is
11666 * left as an exercise to the reader.
11667 */
11668 kvm->arch.last_tsc_nsec = 0;
11669 kvm->arch.last_tsc_write = 0;
11670 }
11671
11672 }
11673 return 0;
11674 }
11675
11676 void kvm_arch_hardware_disable(void)
11677 {
11678 static_call(kvm_x86_hardware_disable)();
11679 drop_user_return_notifiers();
11680 }
11681
11682 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11683 {
11684 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11685
11686 #define __KVM_X86_OP(func) \
11687 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11688 #define KVM_X86_OP(func) \
11689 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11690 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11691 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11692 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11693 (void *)__static_call_return0);
11694 #include <asm/kvm-x86-ops.h>
11695 #undef __KVM_X86_OP
11696
11697 kvm_pmu_ops_update(ops->pmu_ops);
11698 }
11699
11700 int kvm_arch_hardware_setup(void *opaque)
11701 {
11702 struct kvm_x86_init_ops *ops = opaque;
11703 int r;
11704
11705 rdmsrl_safe(MSR_EFER, &host_efer);
11706
11707 if (boot_cpu_has(X86_FEATURE_XSAVES))
11708 rdmsrl(MSR_IA32_XSS, host_xss);
11709
11710 r = ops->hardware_setup();
11711 if (r != 0)
11712 return r;
11713
11714 kvm_ops_update(ops);
11715
11716 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11717
11718 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11719 supported_xss = 0;
11720
11721 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11722 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11723 #undef __kvm_cpu_cap_has
11724
11725 if (kvm_has_tsc_control) {
11726 /*
11727 * Make sure the user can only configure tsc_khz values that
11728 * fit into a signed integer.
11729 * A min value is not calculated because it will always
11730 * be 1 on all machines.
11731 */
11732 u64 max = min(0x7fffffffULL,
11733 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11734 kvm_max_guest_tsc_khz = max;
11735 }
11736 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11737 kvm_init_msr_list();
11738 return 0;
11739 }
11740
11741 void kvm_arch_hardware_unsetup(void)
11742 {
11743 kvm_unregister_perf_callbacks();
11744
11745 static_call(kvm_x86_hardware_unsetup)();
11746 }
11747
11748 int kvm_arch_check_processor_compat(void *opaque)
11749 {
11750 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11751 struct kvm_x86_init_ops *ops = opaque;
11752
11753 WARN_ON(!irqs_disabled());
11754
11755 if (__cr4_reserved_bits(cpu_has, c) !=
11756 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11757 return -EIO;
11758
11759 return ops->check_processor_compatibility();
11760 }
11761
11762 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11763 {
11764 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11765 }
11766 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11767
11768 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11769 {
11770 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11771 }
11772
11773 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11774 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11775
11776 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11777 {
11778 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11779
11780 vcpu->arch.l1tf_flush_l1d = true;
11781 if (pmu->version && unlikely(pmu->event_count)) {
11782 pmu->need_cleanup = true;
11783 kvm_make_request(KVM_REQ_PMU, vcpu);
11784 }
11785 static_call(kvm_x86_sched_in)(vcpu, cpu);
11786 }
11787
11788 void kvm_arch_free_vm(struct kvm *kvm)
11789 {
11790 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11791 __kvm_arch_free_vm(kvm);
11792 }
11793
11794
11795 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11796 {
11797 int ret;
11798 unsigned long flags;
11799
11800 if (type)
11801 return -EINVAL;
11802
11803 ret = kvm_page_track_init(kvm);
11804 if (ret)
11805 goto out;
11806
11807 ret = kvm_mmu_init_vm(kvm);
11808 if (ret)
11809 goto out_page_track;
11810
11811 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11812 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11813 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11814
11815 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11816 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11817 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11818 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11819 &kvm->arch.irq_sources_bitmap);
11820
11821 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11822 mutex_init(&kvm->arch.apic_map_lock);
11823 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11824 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11825
11826 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11827 pvclock_update_vm_gtod_copy(kvm);
11828 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11829
11830 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
11831 kvm->arch.guest_can_read_msr_platform_info = true;
11832 kvm->arch.enable_pmu = enable_pmu;
11833
11834 #if IS_ENABLED(CONFIG_HYPERV)
11835 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11836 kvm->arch.hv_root_tdp = INVALID_PAGE;
11837 #endif
11838
11839 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11840 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11841
11842 kvm_apicv_init(kvm);
11843 kvm_hv_init_vm(kvm);
11844 kvm_xen_init_vm(kvm);
11845
11846 return static_call(kvm_x86_vm_init)(kvm);
11847
11848 out_page_track:
11849 kvm_page_track_cleanup(kvm);
11850 out:
11851 return ret;
11852 }
11853
11854 int kvm_arch_post_init_vm(struct kvm *kvm)
11855 {
11856 return kvm_mmu_post_init_vm(kvm);
11857 }
11858
11859 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11860 {
11861 vcpu_load(vcpu);
11862 kvm_mmu_unload(vcpu);
11863 vcpu_put(vcpu);
11864 }
11865
11866 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
11867 {
11868 unsigned long i;
11869 struct kvm_vcpu *vcpu;
11870
11871 kvm_for_each_vcpu(i, vcpu, kvm) {
11872 kvm_clear_async_pf_completion_queue(vcpu);
11873 kvm_unload_vcpu_mmu(vcpu);
11874 }
11875 }
11876
11877 void kvm_arch_sync_events(struct kvm *kvm)
11878 {
11879 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11880 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11881 kvm_free_pit(kvm);
11882 }
11883
11884 /**
11885 * __x86_set_memory_region: Setup KVM internal memory slot
11886 *
11887 * @kvm: the kvm pointer to the VM.
11888 * @id: the slot ID to setup.
11889 * @gpa: the GPA to install the slot (unused when @size == 0).
11890 * @size: the size of the slot. Set to zero to uninstall a slot.
11891 *
11892 * This function helps to setup a KVM internal memory slot. Specify
11893 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11894 * slot. The return code can be one of the following:
11895 *
11896 * HVA: on success (uninstall will return a bogus HVA)
11897 * -errno: on error
11898 *
11899 * The caller should always use IS_ERR() to check the return value
11900 * before use. Note, the KVM internal memory slots are guaranteed to
11901 * remain valid and unchanged until the VM is destroyed, i.e., the
11902 * GPA->HVA translation will not change. However, the HVA is a user
11903 * address, i.e. its accessibility is not guaranteed, and must be
11904 * accessed via __copy_{to,from}_user().
11905 */
11906 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11907 u32 size)
11908 {
11909 int i, r;
11910 unsigned long hva, old_npages;
11911 struct kvm_memslots *slots = kvm_memslots(kvm);
11912 struct kvm_memory_slot *slot;
11913
11914 /* Called with kvm->slots_lock held. */
11915 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11916 return ERR_PTR_USR(-EINVAL);
11917
11918 slot = id_to_memslot(slots, id);
11919 if (size) {
11920 if (slot && slot->npages)
11921 return ERR_PTR_USR(-EEXIST);
11922
11923 /*
11924 * MAP_SHARED to prevent internal slot pages from being moved
11925 * by fork()/COW.
11926 */
11927 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11928 MAP_SHARED | MAP_ANONYMOUS, 0);
11929 if (IS_ERR((void *)hva))
11930 return (void __user *)hva;
11931 } else {
11932 if (!slot || !slot->npages)
11933 return NULL;
11934
11935 old_npages = slot->npages;
11936 hva = slot->userspace_addr;
11937 }
11938
11939 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11940 struct kvm_userspace_memory_region m;
11941
11942 m.slot = id | (i << 16);
11943 m.flags = 0;
11944 m.guest_phys_addr = gpa;
11945 m.userspace_addr = hva;
11946 m.memory_size = size;
11947 r = __kvm_set_memory_region(kvm, &m);
11948 if (r < 0)
11949 return ERR_PTR_USR(r);
11950 }
11951
11952 if (!size)
11953 vm_munmap(hva, old_npages * PAGE_SIZE);
11954
11955 return (void __user *)hva;
11956 }
11957 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11958
11959 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11960 {
11961 kvm_mmu_pre_destroy_vm(kvm);
11962 }
11963
11964 void kvm_arch_destroy_vm(struct kvm *kvm)
11965 {
11966 if (current->mm == kvm->mm) {
11967 /*
11968 * Free memory regions allocated on behalf of userspace,
11969 * unless the memory map has changed due to process exit
11970 * or fd copying.
11971 */
11972 mutex_lock(&kvm->slots_lock);
11973 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11974 0, 0);
11975 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11976 0, 0);
11977 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11978 mutex_unlock(&kvm->slots_lock);
11979 }
11980 kvm_unload_vcpu_mmus(kvm);
11981 static_call_cond(kvm_x86_vm_destroy)(kvm);
11982 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11983 kvm_pic_destroy(kvm);
11984 kvm_ioapic_destroy(kvm);
11985 kvm_destroy_vcpus(kvm);
11986 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11987 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11988 kvm_mmu_uninit_vm(kvm);
11989 kvm_page_track_cleanup(kvm);
11990 kvm_xen_destroy_vm(kvm);
11991 kvm_hv_destroy_vm(kvm);
11992 }
11993
11994 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11995 {
11996 int i;
11997
11998 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11999 kvfree(slot->arch.rmap[i]);
12000 slot->arch.rmap[i] = NULL;
12001 }
12002 }
12003
12004 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12005 {
12006 int i;
12007
12008 memslot_rmap_free(slot);
12009
12010 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12011 kvfree(slot->arch.lpage_info[i - 1]);
12012 slot->arch.lpage_info[i - 1] = NULL;
12013 }
12014
12015 kvm_page_track_free_memslot(slot);
12016 }
12017
12018 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12019 {
12020 const int sz = sizeof(*slot->arch.rmap[0]);
12021 int i;
12022
12023 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12024 int level = i + 1;
12025 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12026
12027 if (slot->arch.rmap[i])
12028 continue;
12029
12030 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12031 if (!slot->arch.rmap[i]) {
12032 memslot_rmap_free(slot);
12033 return -ENOMEM;
12034 }
12035 }
12036
12037 return 0;
12038 }
12039
12040 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12041 struct kvm_memory_slot *slot)
12042 {
12043 unsigned long npages = slot->npages;
12044 int i, r;
12045
12046 /*
12047 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12048 * old arrays will be freed by __kvm_set_memory_region() if installing
12049 * the new memslot is successful.
12050 */
12051 memset(&slot->arch, 0, sizeof(slot->arch));
12052
12053 if (kvm_memslots_have_rmaps(kvm)) {
12054 r = memslot_rmap_alloc(slot, npages);
12055 if (r)
12056 return r;
12057 }
12058
12059 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12060 struct kvm_lpage_info *linfo;
12061 unsigned long ugfn;
12062 int lpages;
12063 int level = i + 1;
12064
12065 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12066
12067 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12068 if (!linfo)
12069 goto out_free;
12070
12071 slot->arch.lpage_info[i - 1] = linfo;
12072
12073 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12074 linfo[0].disallow_lpage = 1;
12075 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12076 linfo[lpages - 1].disallow_lpage = 1;
12077 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12078 /*
12079 * If the gfn and userspace address are not aligned wrt each
12080 * other, disable large page support for this slot.
12081 */
12082 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12083 unsigned long j;
12084
12085 for (j = 0; j < lpages; ++j)
12086 linfo[j].disallow_lpage = 1;
12087 }
12088 }
12089
12090 if (kvm_page_track_create_memslot(kvm, slot, npages))
12091 goto out_free;
12092
12093 return 0;
12094
12095 out_free:
12096 memslot_rmap_free(slot);
12097
12098 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12099 kvfree(slot->arch.lpage_info[i - 1]);
12100 slot->arch.lpage_info[i - 1] = NULL;
12101 }
12102 return -ENOMEM;
12103 }
12104
12105 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12106 {
12107 struct kvm_vcpu *vcpu;
12108 unsigned long i;
12109
12110 /*
12111 * memslots->generation has been incremented.
12112 * mmio generation may have reached its maximum value.
12113 */
12114 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12115
12116 /* Force re-initialization of steal_time cache */
12117 kvm_for_each_vcpu(i, vcpu, kvm)
12118 kvm_vcpu_kick(vcpu);
12119 }
12120
12121 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12122 const struct kvm_memory_slot *old,
12123 struct kvm_memory_slot *new,
12124 enum kvm_mr_change change)
12125 {
12126 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12127 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12128 return -EINVAL;
12129
12130 return kvm_alloc_memslot_metadata(kvm, new);
12131 }
12132
12133 if (change == KVM_MR_FLAGS_ONLY)
12134 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12135 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12136 return -EIO;
12137
12138 return 0;
12139 }
12140
12141
12142 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12143 {
12144 struct kvm_arch *ka = &kvm->arch;
12145
12146 if (!kvm_x86_ops.cpu_dirty_log_size)
12147 return;
12148
12149 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12150 (!enable && --ka->cpu_dirty_logging_count == 0))
12151 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12152
12153 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12154 }
12155
12156 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12157 struct kvm_memory_slot *old,
12158 const struct kvm_memory_slot *new,
12159 enum kvm_mr_change change)
12160 {
12161 u32 old_flags = old ? old->flags : 0;
12162 u32 new_flags = new ? new->flags : 0;
12163 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12164
12165 /*
12166 * Update CPU dirty logging if dirty logging is being toggled. This
12167 * applies to all operations.
12168 */
12169 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12170 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12171
12172 /*
12173 * Nothing more to do for RO slots (which can't be dirtied and can't be
12174 * made writable) or CREATE/MOVE/DELETE of a slot.
12175 *
12176 * For a memslot with dirty logging disabled:
12177 * CREATE: No dirty mappings will already exist.
12178 * MOVE/DELETE: The old mappings will already have been cleaned up by
12179 * kvm_arch_flush_shadow_memslot()
12180 *
12181 * For a memslot with dirty logging enabled:
12182 * CREATE: No shadow pages exist, thus nothing to write-protect
12183 * and no dirty bits to clear.
12184 * MOVE/DELETE: The old mappings will already have been cleaned up by
12185 * kvm_arch_flush_shadow_memslot().
12186 */
12187 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12188 return;
12189
12190 /*
12191 * READONLY and non-flags changes were filtered out above, and the only
12192 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12193 * logging isn't being toggled on or off.
12194 */
12195 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12196 return;
12197
12198 if (!log_dirty_pages) {
12199 /*
12200 * Dirty logging tracks sptes in 4k granularity, meaning that
12201 * large sptes have to be split. If live migration succeeds,
12202 * the guest in the source machine will be destroyed and large
12203 * sptes will be created in the destination. However, if the
12204 * guest continues to run in the source machine (for example if
12205 * live migration fails), small sptes will remain around and
12206 * cause bad performance.
12207 *
12208 * Scan sptes if dirty logging has been stopped, dropping those
12209 * which can be collapsed into a single large-page spte. Later
12210 * page faults will create the large-page sptes.
12211 */
12212 kvm_mmu_zap_collapsible_sptes(kvm, new);
12213 } else {
12214 /*
12215 * Initially-all-set does not require write protecting any page,
12216 * because they're all assumed to be dirty.
12217 */
12218 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12219 return;
12220
12221 if (READ_ONCE(eager_page_split))
12222 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12223
12224 if (kvm_x86_ops.cpu_dirty_log_size) {
12225 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12226 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12227 } else {
12228 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12229 }
12230 }
12231 }
12232
12233 void kvm_arch_commit_memory_region(struct kvm *kvm,
12234 struct kvm_memory_slot *old,
12235 const struct kvm_memory_slot *new,
12236 enum kvm_mr_change change)
12237 {
12238 if (!kvm->arch.n_requested_mmu_pages &&
12239 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12240 unsigned long nr_mmu_pages;
12241
12242 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12243 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12244 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12245 }
12246
12247 kvm_mmu_slot_apply_flags(kvm, old, new, change);
12248
12249 /* Free the arrays associated with the old memslot. */
12250 if (change == KVM_MR_MOVE)
12251 kvm_arch_free_memslot(kvm, old);
12252 }
12253
12254 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12255 {
12256 kvm_mmu_zap_all(kvm);
12257 }
12258
12259 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12260 struct kvm_memory_slot *slot)
12261 {
12262 kvm_page_track_flush_slot(kvm, slot);
12263 }
12264
12265 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12266 {
12267 return (is_guest_mode(vcpu) &&
12268 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12269 }
12270
12271 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12272 {
12273 if (!list_empty_careful(&vcpu->async_pf.done))
12274 return true;
12275
12276 if (kvm_apic_has_events(vcpu))
12277 return true;
12278
12279 if (vcpu->arch.pv.pv_unhalted)
12280 return true;
12281
12282 if (vcpu->arch.exception.pending)
12283 return true;
12284
12285 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12286 (vcpu->arch.nmi_pending &&
12287 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12288 return true;
12289
12290 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12291 (vcpu->arch.smi_pending &&
12292 static_call(kvm_x86_smi_allowed)(vcpu, false)))
12293 return true;
12294
12295 if (kvm_arch_interrupt_allowed(vcpu) &&
12296 (kvm_cpu_has_interrupt(vcpu) ||
12297 kvm_guest_apic_has_interrupt(vcpu)))
12298 return true;
12299
12300 if (kvm_hv_has_stimer_pending(vcpu))
12301 return true;
12302
12303 if (is_guest_mode(vcpu) &&
12304 kvm_x86_ops.nested_ops->hv_timer_pending &&
12305 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12306 return true;
12307
12308 if (kvm_xen_has_pending_events(vcpu))
12309 return true;
12310
12311 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu))
12312 return true;
12313
12314 return false;
12315 }
12316
12317 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12318 {
12319 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12320 }
12321
12322 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12323 {
12324 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12325 return true;
12326
12327 return false;
12328 }
12329
12330 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12331 {
12332 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12333 return true;
12334
12335 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12336 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12337 kvm_test_request(KVM_REQ_EVENT, vcpu))
12338 return true;
12339
12340 return kvm_arch_dy_has_pending_interrupt(vcpu);
12341 }
12342
12343 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12344 {
12345 if (vcpu->arch.guest_state_protected)
12346 return true;
12347
12348 return vcpu->arch.preempted_in_kernel;
12349 }
12350
12351 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12352 {
12353 return kvm_rip_read(vcpu);
12354 }
12355
12356 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12357 {
12358 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12359 }
12360
12361 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12362 {
12363 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12364 }
12365
12366 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12367 {
12368 /* Can't read the RIP when guest state is protected, just return 0 */
12369 if (vcpu->arch.guest_state_protected)
12370 return 0;
12371
12372 if (is_64_bit_mode(vcpu))
12373 return kvm_rip_read(vcpu);
12374 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12375 kvm_rip_read(vcpu));
12376 }
12377 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12378
12379 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12380 {
12381 return kvm_get_linear_rip(vcpu) == linear_rip;
12382 }
12383 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12384
12385 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12386 {
12387 unsigned long rflags;
12388
12389 rflags = static_call(kvm_x86_get_rflags)(vcpu);
12390 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12391 rflags &= ~X86_EFLAGS_TF;
12392 return rflags;
12393 }
12394 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12395
12396 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12397 {
12398 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12399 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12400 rflags |= X86_EFLAGS_TF;
12401 static_call(kvm_x86_set_rflags)(vcpu, rflags);
12402 }
12403
12404 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12405 {
12406 __kvm_set_rflags(vcpu, rflags);
12407 kvm_make_request(KVM_REQ_EVENT, vcpu);
12408 }
12409 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12410
12411 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12412 {
12413 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12414
12415 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12416 }
12417
12418 static inline u32 kvm_async_pf_next_probe(u32 key)
12419 {
12420 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12421 }
12422
12423 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12424 {
12425 u32 key = kvm_async_pf_hash_fn(gfn);
12426
12427 while (vcpu->arch.apf.gfns[key] != ~0)
12428 key = kvm_async_pf_next_probe(key);
12429
12430 vcpu->arch.apf.gfns[key] = gfn;
12431 }
12432
12433 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12434 {
12435 int i;
12436 u32 key = kvm_async_pf_hash_fn(gfn);
12437
12438 for (i = 0; i < ASYNC_PF_PER_VCPU &&
12439 (vcpu->arch.apf.gfns[key] != gfn &&
12440 vcpu->arch.apf.gfns[key] != ~0); i++)
12441 key = kvm_async_pf_next_probe(key);
12442
12443 return key;
12444 }
12445
12446 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12447 {
12448 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12449 }
12450
12451 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12452 {
12453 u32 i, j, k;
12454
12455 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12456
12457 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12458 return;
12459
12460 while (true) {
12461 vcpu->arch.apf.gfns[i] = ~0;
12462 do {
12463 j = kvm_async_pf_next_probe(j);
12464 if (vcpu->arch.apf.gfns[j] == ~0)
12465 return;
12466 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12467 /*
12468 * k lies cyclically in ]i,j]
12469 * | i.k.j |
12470 * |....j i.k.| or |.k..j i...|
12471 */
12472 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12473 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12474 i = j;
12475 }
12476 }
12477
12478 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12479 {
12480 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12481
12482 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12483 sizeof(reason));
12484 }
12485
12486 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12487 {
12488 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12489
12490 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12491 &token, offset, sizeof(token));
12492 }
12493
12494 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12495 {
12496 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12497 u32 val;
12498
12499 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12500 &val, offset, sizeof(val)))
12501 return false;
12502
12503 return !val;
12504 }
12505
12506 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12507 {
12508
12509 if (!kvm_pv_async_pf_enabled(vcpu))
12510 return false;
12511
12512 if (vcpu->arch.apf.send_user_only &&
12513 static_call(kvm_x86_get_cpl)(vcpu) == 0)
12514 return false;
12515
12516 if (is_guest_mode(vcpu)) {
12517 /*
12518 * L1 needs to opt into the special #PF vmexits that are
12519 * used to deliver async page faults.
12520 */
12521 return vcpu->arch.apf.delivery_as_pf_vmexit;
12522 } else {
12523 /*
12524 * Play it safe in case the guest temporarily disables paging.
12525 * The real mode IDT in particular is unlikely to have a #PF
12526 * exception setup.
12527 */
12528 return is_paging(vcpu);
12529 }
12530 }
12531
12532 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12533 {
12534 if (unlikely(!lapic_in_kernel(vcpu) ||
12535 kvm_event_needs_reinjection(vcpu) ||
12536 vcpu->arch.exception.pending))
12537 return false;
12538
12539 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12540 return false;
12541
12542 /*
12543 * If interrupts are off we cannot even use an artificial
12544 * halt state.
12545 */
12546 return kvm_arch_interrupt_allowed(vcpu);
12547 }
12548
12549 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12550 struct kvm_async_pf *work)
12551 {
12552 struct x86_exception fault;
12553
12554 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12555 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12556
12557 if (kvm_can_deliver_async_pf(vcpu) &&
12558 !apf_put_user_notpresent(vcpu)) {
12559 fault.vector = PF_VECTOR;
12560 fault.error_code_valid = true;
12561 fault.error_code = 0;
12562 fault.nested_page_fault = false;
12563 fault.address = work->arch.token;
12564 fault.async_page_fault = true;
12565 kvm_inject_page_fault(vcpu, &fault);
12566 return true;
12567 } else {
12568 /*
12569 * It is not possible to deliver a paravirtualized asynchronous
12570 * page fault, but putting the guest in an artificial halt state
12571 * can be beneficial nevertheless: if an interrupt arrives, we
12572 * can deliver it timely and perhaps the guest will schedule
12573 * another process. When the instruction that triggered a page
12574 * fault is retried, hopefully the page will be ready in the host.
12575 */
12576 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12577 return false;
12578 }
12579 }
12580
12581 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12582 struct kvm_async_pf *work)
12583 {
12584 struct kvm_lapic_irq irq = {
12585 .delivery_mode = APIC_DM_FIXED,
12586 .vector = vcpu->arch.apf.vec
12587 };
12588
12589 if (work->wakeup_all)
12590 work->arch.token = ~0; /* broadcast wakeup */
12591 else
12592 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12593 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12594
12595 if ((work->wakeup_all || work->notpresent_injected) &&
12596 kvm_pv_async_pf_enabled(vcpu) &&
12597 !apf_put_user_ready(vcpu, work->arch.token)) {
12598 vcpu->arch.apf.pageready_pending = true;
12599 kvm_apic_set_irq(vcpu, &irq, NULL);
12600 }
12601
12602 vcpu->arch.apf.halted = false;
12603 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12604 }
12605
12606 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12607 {
12608 kvm_make_request(KVM_REQ_APF_READY, vcpu);
12609 if (!vcpu->arch.apf.pageready_pending)
12610 kvm_vcpu_kick(vcpu);
12611 }
12612
12613 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12614 {
12615 if (!kvm_pv_async_pf_enabled(vcpu))
12616 return true;
12617 else
12618 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12619 }
12620
12621 void kvm_arch_start_assignment(struct kvm *kvm)
12622 {
12623 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12624 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12625 }
12626 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12627
12628 void kvm_arch_end_assignment(struct kvm *kvm)
12629 {
12630 atomic_dec(&kvm->arch.assigned_device_count);
12631 }
12632 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12633
12634 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12635 {
12636 return atomic_read(&kvm->arch.assigned_device_count);
12637 }
12638 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12639
12640 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12641 {
12642 atomic_inc(&kvm->arch.noncoherent_dma_count);
12643 }
12644 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12645
12646 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12647 {
12648 atomic_dec(&kvm->arch.noncoherent_dma_count);
12649 }
12650 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12651
12652 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12653 {
12654 return atomic_read(&kvm->arch.noncoherent_dma_count);
12655 }
12656 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12657
12658 bool kvm_arch_has_irq_bypass(void)
12659 {
12660 return true;
12661 }
12662
12663 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12664 struct irq_bypass_producer *prod)
12665 {
12666 struct kvm_kernel_irqfd *irqfd =
12667 container_of(cons, struct kvm_kernel_irqfd, consumer);
12668 int ret;
12669
12670 irqfd->producer = prod;
12671 kvm_arch_start_assignment(irqfd->kvm);
12672 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12673 prod->irq, irqfd->gsi, 1);
12674
12675 if (ret)
12676 kvm_arch_end_assignment(irqfd->kvm);
12677
12678 return ret;
12679 }
12680
12681 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12682 struct irq_bypass_producer *prod)
12683 {
12684 int ret;
12685 struct kvm_kernel_irqfd *irqfd =
12686 container_of(cons, struct kvm_kernel_irqfd, consumer);
12687
12688 WARN_ON(irqfd->producer != prod);
12689 irqfd->producer = NULL;
12690
12691 /*
12692 * When producer of consumer is unregistered, we change back to
12693 * remapped mode, so we can re-use the current implementation
12694 * when the irq is masked/disabled or the consumer side (KVM
12695 * int this case doesn't want to receive the interrupts.
12696 */
12697 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12698 if (ret)
12699 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12700 " fails: %d\n", irqfd->consumer.token, ret);
12701
12702 kvm_arch_end_assignment(irqfd->kvm);
12703 }
12704
12705 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12706 uint32_t guest_irq, bool set)
12707 {
12708 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12709 }
12710
12711 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12712 struct kvm_kernel_irq_routing_entry *new)
12713 {
12714 if (new->type != KVM_IRQ_ROUTING_MSI)
12715 return true;
12716
12717 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12718 }
12719
12720 bool kvm_vector_hashing_enabled(void)
12721 {
12722 return vector_hashing;
12723 }
12724
12725 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12726 {
12727 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12728 }
12729 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12730
12731
12732 int kvm_spec_ctrl_test_value(u64 value)
12733 {
12734 /*
12735 * test that setting IA32_SPEC_CTRL to given value
12736 * is allowed by the host processor
12737 */
12738
12739 u64 saved_value;
12740 unsigned long flags;
12741 int ret = 0;
12742
12743 local_irq_save(flags);
12744
12745 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12746 ret = 1;
12747 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12748 ret = 1;
12749 else
12750 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12751
12752 local_irq_restore(flags);
12753
12754 return ret;
12755 }
12756 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12757
12758 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12759 {
12760 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12761 struct x86_exception fault;
12762 u64 access = error_code &
12763 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12764
12765 if (!(error_code & PFERR_PRESENT_MASK) ||
12766 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12767 /*
12768 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12769 * tables probably do not match the TLB. Just proceed
12770 * with the error code that the processor gave.
12771 */
12772 fault.vector = PF_VECTOR;
12773 fault.error_code_valid = true;
12774 fault.error_code = error_code;
12775 fault.nested_page_fault = false;
12776 fault.address = gva;
12777 }
12778 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12779 }
12780 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12781
12782 /*
12783 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12784 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12785 * indicates whether exit to userspace is needed.
12786 */
12787 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12788 struct x86_exception *e)
12789 {
12790 if (r == X86EMUL_PROPAGATE_FAULT) {
12791 kvm_inject_emulated_page_fault(vcpu, e);
12792 return 1;
12793 }
12794
12795 /*
12796 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12797 * while handling a VMX instruction KVM could've handled the request
12798 * correctly by exiting to userspace and performing I/O but there
12799 * doesn't seem to be a real use-case behind such requests, just return
12800 * KVM_EXIT_INTERNAL_ERROR for now.
12801 */
12802 kvm_prepare_emulation_failure_exit(vcpu);
12803
12804 return 0;
12805 }
12806 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12807
12808 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12809 {
12810 bool pcid_enabled;
12811 struct x86_exception e;
12812 struct {
12813 u64 pcid;
12814 u64 gla;
12815 } operand;
12816 int r;
12817
12818 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12819 if (r != X86EMUL_CONTINUE)
12820 return kvm_handle_memory_failure(vcpu, r, &e);
12821
12822 if (operand.pcid >> 12 != 0) {
12823 kvm_inject_gp(vcpu, 0);
12824 return 1;
12825 }
12826
12827 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12828
12829 switch (type) {
12830 case INVPCID_TYPE_INDIV_ADDR:
12831 if ((!pcid_enabled && (operand.pcid != 0)) ||
12832 is_noncanonical_address(operand.gla, vcpu)) {
12833 kvm_inject_gp(vcpu, 0);
12834 return 1;
12835 }
12836 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12837 return kvm_skip_emulated_instruction(vcpu);
12838
12839 case INVPCID_TYPE_SINGLE_CTXT:
12840 if (!pcid_enabled && (operand.pcid != 0)) {
12841 kvm_inject_gp(vcpu, 0);
12842 return 1;
12843 }
12844
12845 kvm_invalidate_pcid(vcpu, operand.pcid);
12846 return kvm_skip_emulated_instruction(vcpu);
12847
12848 case INVPCID_TYPE_ALL_NON_GLOBAL:
12849 /*
12850 * Currently, KVM doesn't mark global entries in the shadow
12851 * page tables, so a non-global flush just degenerates to a
12852 * global flush. If needed, we could optimize this later by
12853 * keeping track of global entries in shadow page tables.
12854 */
12855
12856 fallthrough;
12857 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12858 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12859 return kvm_skip_emulated_instruction(vcpu);
12860
12861 default:
12862 kvm_inject_gp(vcpu, 0);
12863 return 1;
12864 }
12865 }
12866 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12867
12868 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12869 {
12870 struct kvm_run *run = vcpu->run;
12871 struct kvm_mmio_fragment *frag;
12872 unsigned int len;
12873
12874 BUG_ON(!vcpu->mmio_needed);
12875
12876 /* Complete previous fragment */
12877 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12878 len = min(8u, frag->len);
12879 if (!vcpu->mmio_is_write)
12880 memcpy(frag->data, run->mmio.data, len);
12881
12882 if (frag->len <= 8) {
12883 /* Switch to the next fragment. */
12884 frag++;
12885 vcpu->mmio_cur_fragment++;
12886 } else {
12887 /* Go forward to the next mmio piece. */
12888 frag->data += len;
12889 frag->gpa += len;
12890 frag->len -= len;
12891 }
12892
12893 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12894 vcpu->mmio_needed = 0;
12895
12896 // VMG change, at this point, we're always done
12897 // RIP has already been advanced
12898 return 1;
12899 }
12900
12901 // More MMIO is needed
12902 run->mmio.phys_addr = frag->gpa;
12903 run->mmio.len = min(8u, frag->len);
12904 run->mmio.is_write = vcpu->mmio_is_write;
12905 if (run->mmio.is_write)
12906 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12907 run->exit_reason = KVM_EXIT_MMIO;
12908
12909 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12910
12911 return 0;
12912 }
12913
12914 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12915 void *data)
12916 {
12917 int handled;
12918 struct kvm_mmio_fragment *frag;
12919
12920 if (!data)
12921 return -EINVAL;
12922
12923 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12924 if (handled == bytes)
12925 return 1;
12926
12927 bytes -= handled;
12928 gpa += handled;
12929 data += handled;
12930
12931 /*TODO: Check if need to increment number of frags */
12932 frag = vcpu->mmio_fragments;
12933 vcpu->mmio_nr_fragments = 1;
12934 frag->len = bytes;
12935 frag->gpa = gpa;
12936 frag->data = data;
12937
12938 vcpu->mmio_needed = 1;
12939 vcpu->mmio_cur_fragment = 0;
12940
12941 vcpu->run->mmio.phys_addr = gpa;
12942 vcpu->run->mmio.len = min(8u, frag->len);
12943 vcpu->run->mmio.is_write = 1;
12944 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12945 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12946
12947 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12948
12949 return 0;
12950 }
12951 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12952
12953 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12954 void *data)
12955 {
12956 int handled;
12957 struct kvm_mmio_fragment *frag;
12958
12959 if (!data)
12960 return -EINVAL;
12961
12962 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12963 if (handled == bytes)
12964 return 1;
12965
12966 bytes -= handled;
12967 gpa += handled;
12968 data += handled;
12969
12970 /*TODO: Check if need to increment number of frags */
12971 frag = vcpu->mmio_fragments;
12972 vcpu->mmio_nr_fragments = 1;
12973 frag->len = bytes;
12974 frag->gpa = gpa;
12975 frag->data = data;
12976
12977 vcpu->mmio_needed = 1;
12978 vcpu->mmio_cur_fragment = 0;
12979
12980 vcpu->run->mmio.phys_addr = gpa;
12981 vcpu->run->mmio.len = min(8u, frag->len);
12982 vcpu->run->mmio.is_write = 0;
12983 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12984
12985 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12986
12987 return 0;
12988 }
12989 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12990
12991 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12992 unsigned int port);
12993
12994 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12995 {
12996 int size = vcpu->arch.pio.size;
12997 int port = vcpu->arch.pio.port;
12998
12999 vcpu->arch.pio.count = 0;
13000 if (vcpu->arch.sev_pio_count)
13001 return kvm_sev_es_outs(vcpu, size, port);
13002 return 1;
13003 }
13004
13005 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13006 unsigned int port)
13007 {
13008 for (;;) {
13009 unsigned int count =
13010 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13011 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13012
13013 /* memcpy done already by emulator_pio_out. */
13014 vcpu->arch.sev_pio_count -= count;
13015 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13016 if (!ret)
13017 break;
13018
13019 /* Emulation done by the kernel. */
13020 if (!vcpu->arch.sev_pio_count)
13021 return 1;
13022 }
13023
13024 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13025 return 0;
13026 }
13027
13028 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13029 unsigned int port);
13030
13031 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13032 {
13033 unsigned count = vcpu->arch.pio.count;
13034 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13035 vcpu->arch.sev_pio_count -= count;
13036 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13037 }
13038
13039 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13040 {
13041 int size = vcpu->arch.pio.size;
13042 int port = vcpu->arch.pio.port;
13043
13044 advance_sev_es_emulated_ins(vcpu);
13045 if (vcpu->arch.sev_pio_count)
13046 return kvm_sev_es_ins(vcpu, size, port);
13047 return 1;
13048 }
13049
13050 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13051 unsigned int port)
13052 {
13053 for (;;) {
13054 unsigned int count =
13055 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13056 if (!__emulator_pio_in(vcpu, size, port, count))
13057 break;
13058
13059 /* Emulation done by the kernel. */
13060 advance_sev_es_emulated_ins(vcpu);
13061 if (!vcpu->arch.sev_pio_count)
13062 return 1;
13063 }
13064
13065 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13066 return 0;
13067 }
13068
13069 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13070 unsigned int port, void *data, unsigned int count,
13071 int in)
13072 {
13073 vcpu->arch.sev_pio_data = data;
13074 vcpu->arch.sev_pio_count = count;
13075 return in ? kvm_sev_es_ins(vcpu, size, port)
13076 : kvm_sev_es_outs(vcpu, size, port);
13077 }
13078 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13079
13080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13081 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13082 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13083 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13084 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13085 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13086 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13087 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
13088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13091 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13092 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13093 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13094 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13095 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13096 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13097 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13098 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13099 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13100 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13101 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13102 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13103 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13104 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13105 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13106 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13107 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13108
13109 static int __init kvm_x86_init(void)
13110 {
13111 kvm_mmu_x86_module_init();
13112 return 0;
13113 }
13114 module_init(kvm_x86_init);
13115
13116 static void __exit kvm_x86_exit(void)
13117 {
13118 /*
13119 * If module_init() is implemented, module_exit() must also be
13120 * implemented to allow module unload.
13121 */
13122 }
13123 module_exit(kvm_x86_exit);