]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/kvm/x86.c
kvm/x86: allocate the write-tracking metadata on-demand
[thirdparty/kernel/stable.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 struct kvm_caps kvm_caps __read_mostly = {
96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99
100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
101
102 #define emul_to_vcpu(ctxt) \
103 ((struct kvm_vcpu *)(ctxt)->vcpu)
104
105 /* EFER defaults:
106 * - enable syscall per default because its emulated by KVM
107 * - enable LME and LMA per default on 64 bit KVM
108 */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137
138 #define KVM_X86_OP(func) \
139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
140 *(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, 0644);
149
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, 0644);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, 0644);
156
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, 0444);
159
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, 0644);
163
164 /*
165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
166 * adaptive tuning starting from default advancement of 1000ns. '0' disables
167 * advancement entirely. Any other value is used as-is and disables adaptive
168 * tuning, i.e. allows privileged userspace to set an exact advancement time.
169 */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, 0644);
172
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, 0444);
175
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, 0444);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179
180 /*
181 * Flags to manipulate forced emulation behavior (any non-zero value will
182 * enable forced emulation).
183 */
184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, 0644);
190
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202
203 /*
204 * Restoring the host value for MSRs that are only consumed when running in
205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206 * returns to userspace, i.e. the kernel can run with the guest's value.
207 */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209
210 struct kvm_user_return_msrs {
211 struct user_return_notifier urn;
212 bool registered;
213 struct kvm_user_return_msr_values {
214 u64 host;
215 u64 curr;
216 } values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223
224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 KVM_GENERIC_VM_STATS(),
246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 STATS_DESC_COUNTER(VM, mmu_pte_write),
248 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 STATS_DESC_COUNTER(VM, mmu_flooded),
250 STATS_DESC_COUNTER(VM, mmu_recycled),
251 STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 STATS_DESC_ICOUNTER(VM, pages_4k),
254 STATS_DESC_ICOUNTER(VM, pages_2m),
255 STATS_DESC_ICOUNTER(VM, pages_1g),
256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 .name_size = KVM_STATS_NAME_SIZE,
263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 .id_offset = sizeof(struct kvm_stats_header),
265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 sizeof(kvm_vm_stats_desc),
268 };
269
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 KVM_GENERIC_VCPU_STATS(),
272 STATS_DESC_COUNTER(VCPU, pf_taken),
273 STATS_DESC_COUNTER(VCPU, pf_fixed),
274 STATS_DESC_COUNTER(VCPU, pf_emulate),
275 STATS_DESC_COUNTER(VCPU, pf_spurious),
276 STATS_DESC_COUNTER(VCPU, pf_fast),
277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 STATS_DESC_COUNTER(VCPU, pf_guest),
279 STATS_DESC_COUNTER(VCPU, tlb_flush),
280 STATS_DESC_COUNTER(VCPU, invlpg),
281 STATS_DESC_COUNTER(VCPU, exits),
282 STATS_DESC_COUNTER(VCPU, io_exits),
283 STATS_DESC_COUNTER(VCPU, mmio_exits),
284 STATS_DESC_COUNTER(VCPU, signal_exits),
285 STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 STATS_DESC_COUNTER(VCPU, l1d_flush),
288 STATS_DESC_COUNTER(VCPU, halt_exits),
289 STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 STATS_DESC_COUNTER(VCPU, irq_exits),
291 STATS_DESC_COUNTER(VCPU, host_state_reload),
292 STATS_DESC_COUNTER(VCPU, fpu_reload),
293 STATS_DESC_COUNTER(VCPU, insn_emulation),
294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 STATS_DESC_COUNTER(VCPU, hypercalls),
296 STATS_DESC_COUNTER(VCPU, irq_injections),
297 STATS_DESC_COUNTER(VCPU, nmi_injections),
298 STATS_DESC_COUNTER(VCPU, req_event),
299 STATS_DESC_COUNTER(VCPU, nested_run),
300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 STATS_DESC_COUNTER(VCPU, preemption_reported),
303 STATS_DESC_COUNTER(VCPU, preemption_other),
304 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 .name_size = KVM_STATS_NAME_SIZE,
310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 .id_offset = sizeof(struct kvm_stats_header),
312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 sizeof(kvm_vcpu_stats_desc),
315 };
316
317 u64 __read_mostly host_xcr0;
318
319 static struct kmem_cache *x86_emulator_cache;
320
321 /*
322 * When called, it means the previous get/set msr reached an invalid msr.
323 * Return true if we want to ignore/silent this failed msr access.
324 */
325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327 const char *op = write ? "wrmsr" : "rdmsr";
328
329 if (ignore_msrs) {
330 if (report_ignored_msrs)
331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 op, msr, data);
333 /* Mask the error */
334 return true;
335 } else {
336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337 op, msr, data);
338 return false;
339 }
340 }
341
342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 unsigned int size = sizeof(struct x86_emulate_ctxt);
346
347 return kmem_cache_create_usercopy("x86_emulator", size,
348 __alignof__(struct x86_emulate_ctxt),
349 SLAB_ACCOUNT, useroffset,
350 size - useroffset, NULL);
351 }
352
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354
355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357 int i;
358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 vcpu->arch.apf.gfns[i] = ~0;
360 }
361
362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364 unsigned slot;
365 struct kvm_user_return_msrs *msrs
366 = container_of(urn, struct kvm_user_return_msrs, urn);
367 struct kvm_user_return_msr_values *values;
368 unsigned long flags;
369
370 /*
371 * Disabling irqs at this point since the following code could be
372 * interrupted and executed through kvm_arch_hardware_disable()
373 */
374 local_irq_save(flags);
375 if (msrs->registered) {
376 msrs->registered = false;
377 user_return_notifier_unregister(urn);
378 }
379 local_irq_restore(flags);
380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 values = &msrs->values[slot];
382 if (values->host != values->curr) {
383 wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 values->curr = values->host;
385 }
386 }
387 }
388
389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391 u64 val;
392 int ret;
393
394 preempt_disable();
395 ret = rdmsrl_safe(msr, &val);
396 if (ret)
397 goto out;
398 ret = wrmsrl_safe(msr, val);
399 out:
400 preempt_enable();
401 return ret;
402 }
403
404 int kvm_add_user_return_msr(u32 msr)
405 {
406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407
408 if (kvm_probe_user_return_msr(msr))
409 return -1;
410
411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415
416 int kvm_find_user_return_msr(u32 msr)
417 {
418 int i;
419
420 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 if (kvm_uret_msrs_list[i] == msr)
422 return i;
423 }
424 return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427
428 static void kvm_user_return_msr_cpu_online(void)
429 {
430 unsigned int cpu = smp_processor_id();
431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432 u64 value;
433 int i;
434
435 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 msrs->values[i].host = value;
438 msrs->values[i].curr = value;
439 }
440 }
441
442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444 unsigned int cpu = smp_processor_id();
445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446 int err;
447
448 value = (value & mask) | (msrs->values[slot].host & ~mask);
449 if (value == msrs->values[slot].curr)
450 return 0;
451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452 if (err)
453 return 1;
454
455 msrs->values[slot].curr = value;
456 if (!msrs->registered) {
457 msrs->urn.on_user_return = kvm_on_user_return;
458 user_return_notifier_register(&msrs->urn);
459 msrs->registered = true;
460 }
461 return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464
465 static void drop_user_return_notifiers(void)
466 {
467 unsigned int cpu = smp_processor_id();
468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469
470 if (msrs->registered)
471 kvm_on_user_return(&msrs->urn);
472 }
473
474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476 return vcpu->arch.apic_base;
477 }
478
479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481 return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484
485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491
492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493 return 1;
494 if (!msr_info->host_initiated) {
495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496 return 1;
497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498 return 1;
499 }
500
501 kvm_lapic_set_base(vcpu, msr_info->data);
502 kvm_recalculate_apic_map(vcpu->kvm);
503 return 0;
504 }
505
506 /*
507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508 *
509 * Hardware virtualization extension instructions may fault if a reboot turns
510 * off virtualization while processes are running. Usually after catching the
511 * fault we just panic; during reboot instead the instruction is ignored.
512 */
513 noinstr void kvm_spurious_fault(void)
514 {
515 /* Fault while not rebooting. We want the trace. */
516 BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519
520 #define EXCPT_BENIGN 0
521 #define EXCPT_CONTRIBUTORY 1
522 #define EXCPT_PF 2
523
524 static int exception_class(int vector)
525 {
526 switch (vector) {
527 case PF_VECTOR:
528 return EXCPT_PF;
529 case DE_VECTOR:
530 case TS_VECTOR:
531 case NP_VECTOR:
532 case SS_VECTOR:
533 case GP_VECTOR:
534 return EXCPT_CONTRIBUTORY;
535 default:
536 break;
537 }
538 return EXCPT_BENIGN;
539 }
540
541 #define EXCPT_FAULT 0
542 #define EXCPT_TRAP 1
543 #define EXCPT_ABORT 2
544 #define EXCPT_INTERRUPT 3
545 #define EXCPT_DB 4
546
547 static int exception_type(int vector)
548 {
549 unsigned int mask;
550
551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 return EXCPT_INTERRUPT;
553
554 mask = 1 << vector;
555
556 /*
557 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559 */
560 if (mask & (1 << DB_VECTOR))
561 return EXCPT_DB;
562
563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564 return EXCPT_TRAP;
565
566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567 return EXCPT_ABORT;
568
569 /* Reserved exceptions will result in fault */
570 return EXCPT_FAULT;
571 }
572
573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 struct kvm_queued_exception *ex)
575 {
576 if (!ex->has_payload)
577 return;
578
579 switch (ex->vector) {
580 case DB_VECTOR:
581 /*
582 * "Certain debug exceptions may clear bit 0-3. The
583 * remaining contents of the DR6 register are never
584 * cleared by the processor".
585 */
586 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587 /*
588 * In order to reflect the #DB exception payload in guest
589 * dr6, three components need to be considered: active low
590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591 * DR6_BS and DR6_BT)
592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 * In the target guest dr6:
594 * FIXED_1 bits should always be set.
595 * Active low bits should be cleared if 1-setting in payload.
596 * Active high bits should be set if 1-setting in payload.
597 *
598 * Note, the payload is compatible with the pending debug
599 * exceptions/exit qualification under VMX, that active_low bits
600 * are active high in payload.
601 * So they need to be flipped for DR6.
602 */
603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 vcpu->arch.dr6 |= ex->payload;
605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606
607 /*
608 * The #DB payload is defined as compatible with the 'pending
609 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 * defined in the 'pending debug exceptions' field (enabled
611 * breakpoint), it is reserved and must be zero in DR6.
612 */
613 vcpu->arch.dr6 &= ~BIT(12);
614 break;
615 case PF_VECTOR:
616 vcpu->arch.cr2 = ex->payload;
617 break;
618 }
619
620 ex->has_payload = false;
621 ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624
625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 bool has_error_code, u32 error_code,
627 bool has_payload, unsigned long payload)
628 {
629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630
631 ex->vector = vector;
632 ex->injected = false;
633 ex->pending = true;
634 ex->has_error_code = has_error_code;
635 ex->error_code = error_code;
636 ex->has_payload = has_payload;
637 ex->payload = payload;
638 }
639
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643 kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645
646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 unsigned nr, bool has_error, u32 error_code,
648 bool has_payload, unsigned long payload, bool reinject)
649 {
650 u32 prev_nr;
651 int class1, class2;
652
653 kvm_make_request(KVM_REQ_EVENT, vcpu);
654
655 /*
656 * If the exception is destined for L2 and isn't being reinjected,
657 * morph it to a VM-Exit if L1 wants to intercept the exception. A
658 * previously injected exception is not checked because it was checked
659 * when it was original queued, and re-checking is incorrect if _L1_
660 * injected the exception, in which case it's exempt from interception.
661 */
662 if (!reinject && is_guest_mode(vcpu) &&
663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 has_payload, payload);
666 return;
667 }
668
669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670 queue:
671 if (reinject) {
672 /*
673 * On VM-Entry, an exception can be pending if and only
674 * if event injection was blocked by nested_run_pending.
675 * In that case, however, vcpu_enter_guest() requests an
676 * immediate exit, and the guest shouldn't proceed far
677 * enough to need reinjection.
678 */
679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 vcpu->arch.exception.injected = true;
681 if (WARN_ON_ONCE(has_payload)) {
682 /*
683 * A reinjected event has already
684 * delivered its payload.
685 */
686 has_payload = false;
687 payload = 0;
688 }
689 } else {
690 vcpu->arch.exception.pending = true;
691 vcpu->arch.exception.injected = false;
692 }
693 vcpu->arch.exception.has_error_code = has_error;
694 vcpu->arch.exception.vector = nr;
695 vcpu->arch.exception.error_code = error_code;
696 vcpu->arch.exception.has_payload = has_payload;
697 vcpu->arch.exception.payload = payload;
698 if (!is_guest_mode(vcpu))
699 kvm_deliver_exception_payload(vcpu,
700 &vcpu->arch.exception);
701 return;
702 }
703
704 /* to check exception */
705 prev_nr = vcpu->arch.exception.vector;
706 if (prev_nr == DF_VECTOR) {
707 /* triple fault -> shutdown */
708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709 return;
710 }
711 class1 = exception_class(prev_nr);
712 class2 = exception_class(nr);
713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715 /*
716 * Synthesize #DF. Clear the previously injected or pending
717 * exception so as not to incorrectly trigger shutdown.
718 */
719 vcpu->arch.exception.injected = false;
720 vcpu->arch.exception.pending = false;
721
722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723 } else {
724 /* replace previous exception with a new one in a hope
725 that instruction re-execution will regenerate lost
726 exception */
727 goto queue;
728 }
729 }
730
731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736
737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742
743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 unsigned long payload)
745 {
746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749
750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 u32 error_code, unsigned long payload)
752 {
753 kvm_multiple_exception(vcpu, nr, true, error_code,
754 true, payload, false);
755 }
756
757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759 if (err)
760 kvm_inject_gp(vcpu, 0);
761 else
762 return kvm_skip_emulated_instruction(vcpu);
763
764 return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767
768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770 if (err) {
771 kvm_inject_gp(vcpu, 0);
772 return 1;
773 }
774
775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 EMULTYPE_COMPLETE_USER_EXIT);
777 }
778
779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781 ++vcpu->stat.pf_guest;
782
783 /*
784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 * whether or not L1 wants to intercept "regular" #PF.
786 */
787 if (is_guest_mode(vcpu) && fault->async_page_fault)
788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 true, fault->error_code,
790 true, fault->address);
791 else
792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793 fault->address);
794 }
795
796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 struct x86_exception *fault)
798 {
799 struct kvm_mmu *fault_mmu;
800 WARN_ON_ONCE(fault->vector != PF_VECTOR);
801
802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803 vcpu->arch.walk_mmu;
804
805 /*
806 * Invalidate the TLB entry for the faulting address, if it exists,
807 * else the access will fault indefinitely (and to emulate hardware).
808 */
809 if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 !(fault->error_code & PFERR_RSVD_MASK))
811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 KVM_MMU_ROOT_CURRENT);
813
814 fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817
818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820 atomic_inc(&vcpu->arch.nmi_queued);
821 kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823
824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829
830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835
836 /*
837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
838 * a #GP and return false.
839 */
840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843 return true;
844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845 return false;
846 }
847
848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851 return true;
852
853 kvm_queue_exception(vcpu, UD_VECTOR);
854 return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857
858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862
863 /*
864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
865 */
866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870 gpa_t real_gpa;
871 int i;
872 int ret;
873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874
875 /*
876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877 * to an L1 GPA.
878 */
879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 if (real_gpa == INVALID_GPA)
882 return 0;
883
884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 cr3 & GENMASK(11, 5), sizeof(pdpte));
887 if (ret < 0)
888 return 0;
889
890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 if ((pdpte[i] & PT_PRESENT_MASK) &&
892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893 return 0;
894 }
895 }
896
897 /*
898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 * Shadow page roots need to be reconstructed instead.
900 */
901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903
904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 vcpu->arch.pdptrs_from_userspace = false;
908
909 return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912
913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916 if (cr0 & 0xffffffff00000000UL)
917 return false;
918 #endif
919
920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 return false;
922
923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 return false;
925
926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928
929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931 /*
932 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 * indirect shadow MMUs. If paging is disabled, no updates are needed
934 * as there are no permission bits to emulate. If TDP is enabled, the
935 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 * translations does the right thing, but there's no need to unload the
937 * root as CR0.WP doesn't affect SPTEs.
938 */
939 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 if (!(cr0 & X86_CR0_PG))
941 return;
942
943 if (tdp_enabled) {
944 kvm_init_mmu(vcpu);
945 return;
946 }
947 }
948
949 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 kvm_clear_async_pf_completion_queue(vcpu);
951 kvm_async_pf_hash_reset(vcpu);
952
953 /*
954 * Clearing CR0.PG is defined to flush the TLB from the guest's
955 * perspective.
956 */
957 if (!(cr0 & X86_CR0_PG))
958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959 }
960
961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 kvm_mmu_reset_context(vcpu);
963
964 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970
971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973 unsigned long old_cr0 = kvm_read_cr0(vcpu);
974
975 if (!kvm_is_valid_cr0(vcpu, cr0))
976 return 1;
977
978 cr0 |= X86_CR0_ET;
979
980 /* Write to CR0 reserved bits are ignored, even on Intel. */
981 cr0 &= ~CR0_RESERVED_BITS;
982
983 #ifdef CONFIG_X86_64
984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 (cr0 & X86_CR0_PG)) {
986 int cs_db, cs_l;
987
988 if (!is_pae(vcpu))
989 return 1;
990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991 if (cs_l)
992 return 1;
993 }
994 #endif
995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998 return 1;
999
1000 if (!(cr0 & X86_CR0_PG) &&
1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002 return 1;
1003
1004 static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005
1006 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007
1008 return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011
1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017
1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020 if (vcpu->arch.guest_state_protected)
1021 return;
1022
1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024
1025 if (vcpu->arch.xcr0 != host_xcr0)
1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027
1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 vcpu->arch.ia32_xss != host_xss)
1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031 }
1032
1033 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040
1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043 if (vcpu->arch.guest_state_protected)
1044 return;
1045
1046 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 vcpu->arch.pkru = rdpkru();
1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 write_pkru(vcpu->arch.host_pkru);
1052 }
1053
1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055
1056 if (vcpu->arch.xcr0 != host_xcr0)
1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058
1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 vcpu->arch.ia32_xss != host_xss)
1061 wrmsrl(MSR_IA32_XSS, host_xss);
1062 }
1063
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066
1067 #ifdef CONFIG_X86_64
1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073
1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076 u64 xcr0 = xcr;
1077 u64 old_xcr0 = vcpu->arch.xcr0;
1078 u64 valid_bits;
1079
1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1081 if (index != XCR_XFEATURE_ENABLED_MASK)
1082 return 1;
1083 if (!(xcr0 & XFEATURE_MASK_FP))
1084 return 1;
1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086 return 1;
1087
1088 /*
1089 * Do not allow the guest to set bits that we do not support
1090 * saving. However, xcr0 bit 0 is always set, even if the
1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092 */
1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 if (xcr0 & ~valid_bits)
1095 return 1;
1096
1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099 return 1;
1100
1101 if (xcr0 & XFEATURE_MASK_AVX512) {
1102 if (!(xcr0 & XFEATURE_MASK_YMM))
1103 return 1;
1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105 return 1;
1106 }
1107
1108 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110 return 1;
1111
1112 vcpu->arch.xcr0 = xcr0;
1113
1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 kvm_update_cpuid_runtime(vcpu);
1116 return 0;
1117 }
1118
1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 kvm_inject_gp(vcpu, 0);
1125 return 1;
1126 }
1127
1128 return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131
1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134 if (cr4 & cr4_reserved_bits)
1135 return false;
1136
1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138 return false;
1139
1140 return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143
1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146 return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149
1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 kvm_mmu_reset_context(vcpu);
1154
1155 /*
1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 * according to the SDM; however, stale prev_roots could be reused
1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161 * so fall through.
1162 */
1163 if (!tdp_enabled &&
1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 kvm_mmu_unload(vcpu);
1166
1167 /*
1168 * The TLB has to be flushed for all PCIDs if any of the following
1169 * (architecturally required) changes happen:
1170 * - CR4.PCIDE is changed from 1 to 0
1171 * - CR4.PGE is toggled
1172 *
1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174 */
1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178
1179 /*
1180 * The TLB has to be flushed for the current PCID if any of the
1181 * following (architecturally required) changes happen:
1182 * - CR4.SMEP is changed from 0 to 1
1183 * - CR4.PAE is toggled
1184 */
1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191
1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195
1196 if (!kvm_is_valid_cr4(vcpu, cr4))
1197 return 1;
1198
1199 if (is_long_mode(vcpu)) {
1200 if (!(cr4 & X86_CR4_PAE))
1201 return 1;
1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203 return 1;
1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207 return 1;
1208
1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212 return 1;
1213 }
1214
1215 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216
1217 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218
1219 return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222
1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225 struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 unsigned long roots_to_free = 0;
1227 int i;
1228
1229 /*
1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1232 * also via the emulator. KVM's TDP page tables are not in the scope of
1233 * the invalidation, but the guest's TLB entries need to be flushed as
1234 * the CPU may have cached entries in its TLB for the target PCID.
1235 */
1236 if (unlikely(tdp_enabled)) {
1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238 return;
1239 }
1240
1241 /*
1242 * If neither the current CR3 nor any of the prev_roots use the given
1243 * PCID, then nothing needs to be done here because a resync will
1244 * happen anyway before switching to any other CR3.
1245 */
1246 if (kvm_get_active_pcid(vcpu) == pcid) {
1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249 }
1250
1251 /*
1252 * If PCID is disabled, there is no need to free prev_roots even if the
1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254 * with PCIDE=0.
1255 */
1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257 return;
1258
1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262
1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265
1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268 bool skip_tlb_flush = false;
1269 unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 pcid = cr3 & X86_CR3_PCID_MASK;
1275 }
1276 #endif
1277
1278 /* PDPTRs are always reloaded for PAE paging. */
1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 goto handle_tlb_flush;
1281
1282 /*
1283 * Do not condition the GPA check on long mode, this helper is used to
1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 * the current vCPU mode is accurate.
1286 */
1287 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1288 return 1;
1289
1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291 return 1;
1292
1293 if (cr3 != kvm_read_cr3(vcpu))
1294 kvm_mmu_new_pgd(vcpu, cr3);
1295
1296 vcpu->arch.cr3 = cr3;
1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1299
1300 handle_tlb_flush:
1301 /*
1302 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1304 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 * i.e. only PCID=0 can be relevant.
1307 */
1308 if (!skip_tlb_flush)
1309 kvm_invalidate_pcid(vcpu, pcid);
1310
1311 return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314
1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317 if (cr8 & CR8_RESERVED_BITS)
1318 return 1;
1319 if (lapic_in_kernel(vcpu))
1320 kvm_lapic_set_tpr(vcpu, cr8);
1321 else
1322 vcpu->arch.cr8 = cr8;
1323 return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326
1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329 if (lapic_in_kernel(vcpu))
1330 return kvm_lapic_get_cr8(vcpu);
1331 else
1332 return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335
1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338 int i;
1339
1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343 }
1344 }
1345
1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348 unsigned long dr7;
1349
1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 dr7 = vcpu->arch.guest_debug_dr7;
1352 else
1353 dr7 = vcpu->arch.dr7;
1354 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 if (dr7 & DR7_BP_EN_MASK)
1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360
1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363 u64 fixed = DR6_FIXED_1;
1364
1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366 fixed |= DR6_RTM;
1367
1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 fixed |= DR6_BUS_LOCK;
1370 return fixed;
1371 }
1372
1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375 size_t size = ARRAY_SIZE(vcpu->arch.db);
1376
1377 switch (dr) {
1378 case 0 ... 3:
1379 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 vcpu->arch.eff_db[dr] = val;
1382 break;
1383 case 4:
1384 case 6:
1385 if (!kvm_dr6_valid(val))
1386 return 1; /* #GP */
1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388 break;
1389 case 5:
1390 default: /* 7 */
1391 if (!kvm_dr7_valid(val))
1392 return 1; /* #GP */
1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 kvm_update_dr7(vcpu);
1395 break;
1396 }
1397
1398 return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401
1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404 size_t size = ARRAY_SIZE(vcpu->arch.db);
1405
1406 switch (dr) {
1407 case 0 ... 3:
1408 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1409 break;
1410 case 4:
1411 case 6:
1412 *val = vcpu->arch.dr6;
1413 break;
1414 case 5:
1415 default: /* 7 */
1416 *val = vcpu->arch.dr7;
1417 break;
1418 }
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421
1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424 u32 ecx = kvm_rcx_read(vcpu);
1425 u64 data;
1426
1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428 kvm_inject_gp(vcpu, 0);
1429 return 1;
1430 }
1431
1432 kvm_rax_write(vcpu, (u32)data);
1433 kvm_rdx_write(vcpu, data >> 32);
1434 return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437
1438 /*
1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
1443 * MSRs that KVM emulates without strictly requiring host support.
1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
1446 * msrs_to_save and emulated_msrs.
1447 */
1448
1449 static const u32 msrs_to_save_base[] = {
1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451 MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464 MSR_IA32_UMWAIT_CONTROL,
1465
1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468
1469 static const u32 msrs_to_save_pmu[] = {
1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475
1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485
1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488
1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494
1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501 ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503
1504 static const u32 emulated_msrs_all[] = {
1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507
1508 #ifdef CONFIG_KVM_HYPERV
1509 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1510 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1511 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1512 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1513 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1514 HV_X64_MSR_RESET,
1515 HV_X64_MSR_VP_INDEX,
1516 HV_X64_MSR_VP_RUNTIME,
1517 HV_X64_MSR_SCONTROL,
1518 HV_X64_MSR_STIMER0_CONFIG,
1519 HV_X64_MSR_VP_ASSIST_PAGE,
1520 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1521 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1522 HV_X64_MSR_SYNDBG_OPTIONS,
1523 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1524 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1525 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1526 #endif
1527
1528 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1529 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1530
1531 MSR_IA32_TSC_ADJUST,
1532 MSR_IA32_TSC_DEADLINE,
1533 MSR_IA32_ARCH_CAPABILITIES,
1534 MSR_IA32_PERF_CAPABILITIES,
1535 MSR_IA32_MISC_ENABLE,
1536 MSR_IA32_MCG_STATUS,
1537 MSR_IA32_MCG_CTL,
1538 MSR_IA32_MCG_EXT_CTL,
1539 MSR_IA32_SMBASE,
1540 MSR_SMI_COUNT,
1541 MSR_PLATFORM_INFO,
1542 MSR_MISC_FEATURES_ENABLES,
1543 MSR_AMD64_VIRT_SPEC_CTRL,
1544 MSR_AMD64_TSC_RATIO,
1545 MSR_IA32_POWER_CTL,
1546 MSR_IA32_UCODE_REV,
1547
1548 /*
1549 * KVM always supports the "true" VMX control MSRs, even if the host
1550 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
1551 * doesn't strictly require them to exist in the host (ignoring that
1552 * KVM would refuse to load in the first place if the core set of MSRs
1553 * aren't supported).
1554 */
1555 MSR_IA32_VMX_BASIC,
1556 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1557 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1558 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1559 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1560 MSR_IA32_VMX_MISC,
1561 MSR_IA32_VMX_CR0_FIXED0,
1562 MSR_IA32_VMX_CR4_FIXED0,
1563 MSR_IA32_VMX_VMCS_ENUM,
1564 MSR_IA32_VMX_PROCBASED_CTLS2,
1565 MSR_IA32_VMX_EPT_VPID_CAP,
1566 MSR_IA32_VMX_VMFUNC,
1567
1568 MSR_K7_HWCR,
1569 MSR_KVM_POLL_CONTROL,
1570 };
1571
1572 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1573 static unsigned num_emulated_msrs;
1574
1575 /*
1576 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1577 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
1578 * feature MSRs, but are handled separately to allow expedited lookups.
1579 */
1580 static const u32 msr_based_features_all_except_vmx[] = {
1581 MSR_AMD64_DE_CFG,
1582 MSR_IA32_UCODE_REV,
1583 MSR_IA32_ARCH_CAPABILITIES,
1584 MSR_IA32_PERF_CAPABILITIES,
1585 };
1586
1587 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1588 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1589 static unsigned int num_msr_based_features;
1590
1591 /*
1592 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1593 * patch, are immutable once the vCPU model is defined.
1594 */
1595 static bool kvm_is_immutable_feature_msr(u32 msr)
1596 {
1597 int i;
1598
1599 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1600 return true;
1601
1602 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1603 if (msr == msr_based_features_all_except_vmx[i])
1604 return msr != MSR_IA32_UCODE_REV;
1605 }
1606
1607 return false;
1608 }
1609
1610 /*
1611 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1612 * does not yet virtualize. These include:
1613 * 10 - MISC_PACKAGE_CTRLS
1614 * 11 - ENERGY_FILTERING_CTL
1615 * 12 - DOITM
1616 * 18 - FB_CLEAR_CTRL
1617 * 21 - XAPIC_DISABLE_STATUS
1618 * 23 - OVERCLOCKING_STATUS
1619 */
1620
1621 #define KVM_SUPPORTED_ARCH_CAP \
1622 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1623 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1624 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1625 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1626 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1627
1628 static u64 kvm_get_arch_capabilities(void)
1629 {
1630 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1631
1632 /*
1633 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1634 * the nested hypervisor runs with NX huge pages. If it is not,
1635 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1636 * L1 guests, so it need not worry about its own (L2) guests.
1637 */
1638 data |= ARCH_CAP_PSCHANGE_MC_NO;
1639
1640 /*
1641 * If we're doing cache flushes (either "always" or "cond")
1642 * we will do one whenever the guest does a vmlaunch/vmresume.
1643 * If an outer hypervisor is doing the cache flush for us
1644 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1645 * capability to the guest too, and if EPT is disabled we're not
1646 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1647 * require a nested hypervisor to do a flush of its own.
1648 */
1649 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1650 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1651
1652 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1653 data |= ARCH_CAP_RDCL_NO;
1654 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1655 data |= ARCH_CAP_SSB_NO;
1656 if (!boot_cpu_has_bug(X86_BUG_MDS))
1657 data |= ARCH_CAP_MDS_NO;
1658
1659 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1660 /*
1661 * If RTM=0 because the kernel has disabled TSX, the host might
1662 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1663 * and therefore knows that there cannot be TAA) but keep
1664 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1665 * and we want to allow migrating those guests to tsx=off hosts.
1666 */
1667 data &= ~ARCH_CAP_TAA_NO;
1668 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1669 data |= ARCH_CAP_TAA_NO;
1670 } else {
1671 /*
1672 * Nothing to do here; we emulate TSX_CTRL if present on the
1673 * host so the guest can choose between disabling TSX or
1674 * using VERW to clear CPU buffers.
1675 */
1676 }
1677
1678 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1679 data |= ARCH_CAP_GDS_NO;
1680
1681 return data;
1682 }
1683
1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1685 {
1686 switch (msr->index) {
1687 case MSR_IA32_ARCH_CAPABILITIES:
1688 msr->data = kvm_get_arch_capabilities();
1689 break;
1690 case MSR_IA32_PERF_CAPABILITIES:
1691 msr->data = kvm_caps.supported_perf_cap;
1692 break;
1693 case MSR_IA32_UCODE_REV:
1694 rdmsrl_safe(msr->index, &msr->data);
1695 break;
1696 default:
1697 return static_call(kvm_x86_get_msr_feature)(msr);
1698 }
1699 return 0;
1700 }
1701
1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1703 {
1704 struct kvm_msr_entry msr;
1705 int r;
1706
1707 msr.index = index;
1708 r = kvm_get_msr_feature(&msr);
1709
1710 if (r == KVM_MSR_RET_INVALID) {
1711 /* Unconditionally clear the output for simplicity */
1712 *data = 0;
1713 if (kvm_msr_ignored_check(index, 0, false))
1714 r = 0;
1715 }
1716
1717 if (r)
1718 return r;
1719
1720 *data = msr.data;
1721
1722 return 0;
1723 }
1724
1725 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1726 {
1727 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1728 return false;
1729
1730 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1731 return false;
1732
1733 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1734 return false;
1735
1736 if (efer & (EFER_LME | EFER_LMA) &&
1737 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1738 return false;
1739
1740 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1741 return false;
1742
1743 return true;
1744
1745 }
1746 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1747 {
1748 if (efer & efer_reserved_bits)
1749 return false;
1750
1751 return __kvm_valid_efer(vcpu, efer);
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1754
1755 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1756 {
1757 u64 old_efer = vcpu->arch.efer;
1758 u64 efer = msr_info->data;
1759 int r;
1760
1761 if (efer & efer_reserved_bits)
1762 return 1;
1763
1764 if (!msr_info->host_initiated) {
1765 if (!__kvm_valid_efer(vcpu, efer))
1766 return 1;
1767
1768 if (is_paging(vcpu) &&
1769 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1770 return 1;
1771 }
1772
1773 efer &= ~EFER_LMA;
1774 efer |= vcpu->arch.efer & EFER_LMA;
1775
1776 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1777 if (r) {
1778 WARN_ON(r > 0);
1779 return r;
1780 }
1781
1782 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1783 kvm_mmu_reset_context(vcpu);
1784
1785 return 0;
1786 }
1787
1788 void kvm_enable_efer_bits(u64 mask)
1789 {
1790 efer_reserved_bits &= ~mask;
1791 }
1792 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1793
1794 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1795 {
1796 struct kvm_x86_msr_filter *msr_filter;
1797 struct msr_bitmap_range *ranges;
1798 struct kvm *kvm = vcpu->kvm;
1799 bool allowed;
1800 int idx;
1801 u32 i;
1802
1803 /* x2APIC MSRs do not support filtering. */
1804 if (index >= 0x800 && index <= 0x8ff)
1805 return true;
1806
1807 idx = srcu_read_lock(&kvm->srcu);
1808
1809 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1810 if (!msr_filter) {
1811 allowed = true;
1812 goto out;
1813 }
1814
1815 allowed = msr_filter->default_allow;
1816 ranges = msr_filter->ranges;
1817
1818 for (i = 0; i < msr_filter->count; i++) {
1819 u32 start = ranges[i].base;
1820 u32 end = start + ranges[i].nmsrs;
1821 u32 flags = ranges[i].flags;
1822 unsigned long *bitmap = ranges[i].bitmap;
1823
1824 if ((index >= start) && (index < end) && (flags & type)) {
1825 allowed = test_bit(index - start, bitmap);
1826 break;
1827 }
1828 }
1829
1830 out:
1831 srcu_read_unlock(&kvm->srcu, idx);
1832
1833 return allowed;
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1836
1837 /*
1838 * Write @data into the MSR specified by @index. Select MSR specific fault
1839 * checks are bypassed if @host_initiated is %true.
1840 * Returns 0 on success, non-0 otherwise.
1841 * Assumes vcpu_load() was already called.
1842 */
1843 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1844 bool host_initiated)
1845 {
1846 struct msr_data msr;
1847
1848 switch (index) {
1849 case MSR_FS_BASE:
1850 case MSR_GS_BASE:
1851 case MSR_KERNEL_GS_BASE:
1852 case MSR_CSTAR:
1853 case MSR_LSTAR:
1854 if (is_noncanonical_address(data, vcpu))
1855 return 1;
1856 break;
1857 case MSR_IA32_SYSENTER_EIP:
1858 case MSR_IA32_SYSENTER_ESP:
1859 /*
1860 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1861 * non-canonical address is written on Intel but not on
1862 * AMD (which ignores the top 32-bits, because it does
1863 * not implement 64-bit SYSENTER).
1864 *
1865 * 64-bit code should hence be able to write a non-canonical
1866 * value on AMD. Making the address canonical ensures that
1867 * vmentry does not fail on Intel after writing a non-canonical
1868 * value, and that something deterministic happens if the guest
1869 * invokes 64-bit SYSENTER.
1870 */
1871 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1872 break;
1873 case MSR_TSC_AUX:
1874 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1875 return 1;
1876
1877 if (!host_initiated &&
1878 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1879 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1880 return 1;
1881
1882 /*
1883 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1884 * incomplete and conflicting architectural behavior. Current
1885 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1886 * reserved and always read as zeros. Enforce Intel's reserved
1887 * bits check if and only if the guest CPU is Intel, and clear
1888 * the bits in all other cases. This ensures cross-vendor
1889 * migration will provide consistent behavior for the guest.
1890 */
1891 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1892 return 1;
1893
1894 data = (u32)data;
1895 break;
1896 }
1897
1898 msr.data = data;
1899 msr.index = index;
1900 msr.host_initiated = host_initiated;
1901
1902 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1903 }
1904
1905 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1906 u32 index, u64 data, bool host_initiated)
1907 {
1908 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1909
1910 if (ret == KVM_MSR_RET_INVALID)
1911 if (kvm_msr_ignored_check(index, data, true))
1912 ret = 0;
1913
1914 return ret;
1915 }
1916
1917 /*
1918 * Read the MSR specified by @index into @data. Select MSR specific fault
1919 * checks are bypassed if @host_initiated is %true.
1920 * Returns 0 on success, non-0 otherwise.
1921 * Assumes vcpu_load() was already called.
1922 */
1923 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1924 bool host_initiated)
1925 {
1926 struct msr_data msr;
1927 int ret;
1928
1929 switch (index) {
1930 case MSR_TSC_AUX:
1931 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1932 return 1;
1933
1934 if (!host_initiated &&
1935 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1936 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1937 return 1;
1938 break;
1939 }
1940
1941 msr.index = index;
1942 msr.host_initiated = host_initiated;
1943
1944 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1945 if (!ret)
1946 *data = msr.data;
1947 return ret;
1948 }
1949
1950 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1951 u32 index, u64 *data, bool host_initiated)
1952 {
1953 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1954
1955 if (ret == KVM_MSR_RET_INVALID) {
1956 /* Unconditionally clear *data for simplicity */
1957 *data = 0;
1958 if (kvm_msr_ignored_check(index, 0, false))
1959 ret = 0;
1960 }
1961
1962 return ret;
1963 }
1964
1965 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1966 {
1967 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1968 return KVM_MSR_RET_FILTERED;
1969 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1970 }
1971
1972 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1973 {
1974 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1975 return KVM_MSR_RET_FILTERED;
1976 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1977 }
1978
1979 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1980 {
1981 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_get_msr);
1984
1985 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1986 {
1987 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_set_msr);
1990
1991 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1992 {
1993 if (!vcpu->run->msr.error) {
1994 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1995 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1996 }
1997 }
1998
1999 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2000 {
2001 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2002 }
2003
2004 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2005 {
2006 complete_userspace_rdmsr(vcpu);
2007 return complete_emulated_msr_access(vcpu);
2008 }
2009
2010 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2011 {
2012 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2013 }
2014
2015 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2016 {
2017 complete_userspace_rdmsr(vcpu);
2018 return complete_fast_msr_access(vcpu);
2019 }
2020
2021 static u64 kvm_msr_reason(int r)
2022 {
2023 switch (r) {
2024 case KVM_MSR_RET_INVALID:
2025 return KVM_MSR_EXIT_REASON_UNKNOWN;
2026 case KVM_MSR_RET_FILTERED:
2027 return KVM_MSR_EXIT_REASON_FILTER;
2028 default:
2029 return KVM_MSR_EXIT_REASON_INVAL;
2030 }
2031 }
2032
2033 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2034 u32 exit_reason, u64 data,
2035 int (*completion)(struct kvm_vcpu *vcpu),
2036 int r)
2037 {
2038 u64 msr_reason = kvm_msr_reason(r);
2039
2040 /* Check if the user wanted to know about this MSR fault */
2041 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2042 return 0;
2043
2044 vcpu->run->exit_reason = exit_reason;
2045 vcpu->run->msr.error = 0;
2046 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2047 vcpu->run->msr.reason = msr_reason;
2048 vcpu->run->msr.index = index;
2049 vcpu->run->msr.data = data;
2050 vcpu->arch.complete_userspace_io = completion;
2051
2052 return 1;
2053 }
2054
2055 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2056 {
2057 u32 ecx = kvm_rcx_read(vcpu);
2058 u64 data;
2059 int r;
2060
2061 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2062
2063 if (!r) {
2064 trace_kvm_msr_read(ecx, data);
2065
2066 kvm_rax_write(vcpu, data & -1u);
2067 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2068 } else {
2069 /* MSR read failed? See if we should ask user space */
2070 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2071 complete_fast_rdmsr, r))
2072 return 0;
2073 trace_kvm_msr_read_ex(ecx);
2074 }
2075
2076 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2079
2080 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2081 {
2082 u32 ecx = kvm_rcx_read(vcpu);
2083 u64 data = kvm_read_edx_eax(vcpu);
2084 int r;
2085
2086 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2087
2088 if (!r) {
2089 trace_kvm_msr_write(ecx, data);
2090 } else {
2091 /* MSR write failed? See if we should ask user space */
2092 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2093 complete_fast_msr_access, r))
2094 return 0;
2095 /* Signal all other negative errors to userspace */
2096 if (r < 0)
2097 return r;
2098 trace_kvm_msr_write_ex(ecx, data);
2099 }
2100
2101 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2102 }
2103 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2104
2105 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2106 {
2107 return kvm_skip_emulated_instruction(vcpu);
2108 }
2109
2110 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2111 {
2112 /* Treat an INVD instruction as a NOP and just skip it. */
2113 return kvm_emulate_as_nop(vcpu);
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2116
2117 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2118 {
2119 kvm_queue_exception(vcpu, UD_VECTOR);
2120 return 1;
2121 }
2122 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2123
2124
2125 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2126 {
2127 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2128 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2129 return kvm_handle_invalid_op(vcpu);
2130
2131 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2132 return kvm_emulate_as_nop(vcpu);
2133 }
2134 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2135 {
2136 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2137 }
2138 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2139
2140 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2141 {
2142 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2143 }
2144 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2145
2146 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2147 {
2148 xfer_to_guest_mode_prepare();
2149 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2150 xfer_to_guest_mode_work_pending();
2151 }
2152
2153 /*
2154 * The fast path for frequent and performance sensitive wrmsr emulation,
2155 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2156 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2157 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2158 * other cases which must be called after interrupts are enabled on the host.
2159 */
2160 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2161 {
2162 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2163 return 1;
2164
2165 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2166 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2167 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2168 ((u32)(data >> 32) != X2APIC_BROADCAST))
2169 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2170
2171 return 1;
2172 }
2173
2174 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2175 {
2176 if (!kvm_can_use_hv_timer(vcpu))
2177 return 1;
2178
2179 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2180 return 0;
2181 }
2182
2183 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2184 {
2185 u32 msr = kvm_rcx_read(vcpu);
2186 u64 data;
2187 fastpath_t ret = EXIT_FASTPATH_NONE;
2188
2189 kvm_vcpu_srcu_read_lock(vcpu);
2190
2191 switch (msr) {
2192 case APIC_BASE_MSR + (APIC_ICR >> 4):
2193 data = kvm_read_edx_eax(vcpu);
2194 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2195 kvm_skip_emulated_instruction(vcpu);
2196 ret = EXIT_FASTPATH_EXIT_HANDLED;
2197 }
2198 break;
2199 case MSR_IA32_TSC_DEADLINE:
2200 data = kvm_read_edx_eax(vcpu);
2201 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2202 kvm_skip_emulated_instruction(vcpu);
2203 ret = EXIT_FASTPATH_REENTER_GUEST;
2204 }
2205 break;
2206 default:
2207 break;
2208 }
2209
2210 if (ret != EXIT_FASTPATH_NONE)
2211 trace_kvm_msr_write(msr, data);
2212
2213 kvm_vcpu_srcu_read_unlock(vcpu);
2214
2215 return ret;
2216 }
2217 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2218
2219 /*
2220 * Adapt set_msr() to msr_io()'s calling convention
2221 */
2222 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2223 {
2224 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2225 }
2226
2227 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2228 {
2229 u64 val;
2230
2231 /*
2232 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2233 * not support modifying the guest vCPU model on the fly, e.g. changing
2234 * the nVMX capabilities while L2 is running is nonsensical. Ignore
2235 * writes of the same value, e.g. to allow userspace to blindly stuff
2236 * all MSRs when emulating RESET.
2237 */
2238 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2239 if (do_get_msr(vcpu, index, &val) || *data != val)
2240 return -EINVAL;
2241
2242 return 0;
2243 }
2244
2245 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2246 }
2247
2248 #ifdef CONFIG_X86_64
2249 struct pvclock_clock {
2250 int vclock_mode;
2251 u64 cycle_last;
2252 u64 mask;
2253 u32 mult;
2254 u32 shift;
2255 u64 base_cycles;
2256 u64 offset;
2257 };
2258
2259 struct pvclock_gtod_data {
2260 seqcount_t seq;
2261
2262 struct pvclock_clock clock; /* extract of a clocksource struct */
2263 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2264
2265 ktime_t offs_boot;
2266 u64 wall_time_sec;
2267 };
2268
2269 static struct pvclock_gtod_data pvclock_gtod_data;
2270
2271 static void update_pvclock_gtod(struct timekeeper *tk)
2272 {
2273 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2274
2275 write_seqcount_begin(&vdata->seq);
2276
2277 /* copy pvclock gtod data */
2278 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2279 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2280 vdata->clock.mask = tk->tkr_mono.mask;
2281 vdata->clock.mult = tk->tkr_mono.mult;
2282 vdata->clock.shift = tk->tkr_mono.shift;
2283 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2284 vdata->clock.offset = tk->tkr_mono.base;
2285
2286 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2287 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2288 vdata->raw_clock.mask = tk->tkr_raw.mask;
2289 vdata->raw_clock.mult = tk->tkr_raw.mult;
2290 vdata->raw_clock.shift = tk->tkr_raw.shift;
2291 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2292 vdata->raw_clock.offset = tk->tkr_raw.base;
2293
2294 vdata->wall_time_sec = tk->xtime_sec;
2295
2296 vdata->offs_boot = tk->offs_boot;
2297
2298 write_seqcount_end(&vdata->seq);
2299 }
2300
2301 static s64 get_kvmclock_base_ns(void)
2302 {
2303 /* Count up from boot time, but with the frequency of the raw clock. */
2304 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2305 }
2306 #else
2307 static s64 get_kvmclock_base_ns(void)
2308 {
2309 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2310 return ktime_get_boottime_ns();
2311 }
2312 #endif
2313
2314 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2315 {
2316 int version;
2317 int r;
2318 struct pvclock_wall_clock wc;
2319 u32 wc_sec_hi;
2320 u64 wall_nsec;
2321
2322 if (!wall_clock)
2323 return;
2324
2325 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2326 if (r)
2327 return;
2328
2329 if (version & 1)
2330 ++version; /* first time write, random junk */
2331
2332 ++version;
2333
2334 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2335 return;
2336
2337 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2338
2339 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2340 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2341 wc.version = version;
2342
2343 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2344
2345 if (sec_hi_ofs) {
2346 wc_sec_hi = wall_nsec >> 32;
2347 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2348 &wc_sec_hi, sizeof(wc_sec_hi));
2349 }
2350
2351 version++;
2352 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2353 }
2354
2355 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2356 bool old_msr, bool host_initiated)
2357 {
2358 struct kvm_arch *ka = &vcpu->kvm->arch;
2359
2360 if (vcpu->vcpu_id == 0 && !host_initiated) {
2361 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2362 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2363
2364 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2365 }
2366
2367 vcpu->arch.time = system_time;
2368 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2369
2370 /* we verify if the enable bit is set... */
2371 if (system_time & 1)
2372 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2373 sizeof(struct pvclock_vcpu_time_info));
2374 else
2375 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2376
2377 return;
2378 }
2379
2380 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2381 {
2382 do_shl32_div32(dividend, divisor);
2383 return dividend;
2384 }
2385
2386 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2387 s8 *pshift, u32 *pmultiplier)
2388 {
2389 uint64_t scaled64;
2390 int32_t shift = 0;
2391 uint64_t tps64;
2392 uint32_t tps32;
2393
2394 tps64 = base_hz;
2395 scaled64 = scaled_hz;
2396 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2397 tps64 >>= 1;
2398 shift--;
2399 }
2400
2401 tps32 = (uint32_t)tps64;
2402 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2403 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2404 scaled64 >>= 1;
2405 else
2406 tps32 <<= 1;
2407 shift++;
2408 }
2409
2410 *pshift = shift;
2411 *pmultiplier = div_frac(scaled64, tps32);
2412 }
2413
2414 #ifdef CONFIG_X86_64
2415 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2416 #endif
2417
2418 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2419 static unsigned long max_tsc_khz;
2420
2421 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2422 {
2423 u64 v = (u64)khz * (1000000 + ppm);
2424 do_div(v, 1000000);
2425 return v;
2426 }
2427
2428 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2429
2430 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2431 {
2432 u64 ratio;
2433
2434 /* Guest TSC same frequency as host TSC? */
2435 if (!scale) {
2436 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2437 return 0;
2438 }
2439
2440 /* TSC scaling supported? */
2441 if (!kvm_caps.has_tsc_control) {
2442 if (user_tsc_khz > tsc_khz) {
2443 vcpu->arch.tsc_catchup = 1;
2444 vcpu->arch.tsc_always_catchup = 1;
2445 return 0;
2446 } else {
2447 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2448 return -1;
2449 }
2450 }
2451
2452 /* TSC scaling required - calculate ratio */
2453 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2454 user_tsc_khz, tsc_khz);
2455
2456 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2457 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2458 user_tsc_khz);
2459 return -1;
2460 }
2461
2462 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2463 return 0;
2464 }
2465
2466 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2467 {
2468 u32 thresh_lo, thresh_hi;
2469 int use_scaling = 0;
2470
2471 /* tsc_khz can be zero if TSC calibration fails */
2472 if (user_tsc_khz == 0) {
2473 /* set tsc_scaling_ratio to a safe value */
2474 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2475 return -1;
2476 }
2477
2478 /* Compute a scale to convert nanoseconds in TSC cycles */
2479 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2480 &vcpu->arch.virtual_tsc_shift,
2481 &vcpu->arch.virtual_tsc_mult);
2482 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2483
2484 /*
2485 * Compute the variation in TSC rate which is acceptable
2486 * within the range of tolerance and decide if the
2487 * rate being applied is within that bounds of the hardware
2488 * rate. If so, no scaling or compensation need be done.
2489 */
2490 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2491 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2492 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2493 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2494 user_tsc_khz, thresh_lo, thresh_hi);
2495 use_scaling = 1;
2496 }
2497 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2498 }
2499
2500 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2501 {
2502 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2503 vcpu->arch.virtual_tsc_mult,
2504 vcpu->arch.virtual_tsc_shift);
2505 tsc += vcpu->arch.this_tsc_write;
2506 return tsc;
2507 }
2508
2509 #ifdef CONFIG_X86_64
2510 static inline int gtod_is_based_on_tsc(int mode)
2511 {
2512 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2513 }
2514 #endif
2515
2516 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2517 {
2518 #ifdef CONFIG_X86_64
2519 struct kvm_arch *ka = &vcpu->kvm->arch;
2520 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2521
2522 /*
2523 * To use the masterclock, the host clocksource must be based on TSC
2524 * and all vCPUs must have matching TSCs. Note, the count for matching
2525 * vCPUs doesn't include the reference vCPU, hence "+1".
2526 */
2527 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2528 atomic_read(&vcpu->kvm->online_vcpus)) &&
2529 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2530
2531 /*
2532 * Request a masterclock update if the masterclock needs to be toggled
2533 * on/off, or when starting a new generation and the masterclock is
2534 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2535 * taken _after_ the new generation is created).
2536 */
2537 if ((ka->use_master_clock && new_generation) ||
2538 (ka->use_master_clock != use_master_clock))
2539 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2540
2541 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2542 atomic_read(&vcpu->kvm->online_vcpus),
2543 ka->use_master_clock, gtod->clock.vclock_mode);
2544 #endif
2545 }
2546
2547 /*
2548 * Multiply tsc by a fixed point number represented by ratio.
2549 *
2550 * The most significant 64-N bits (mult) of ratio represent the
2551 * integral part of the fixed point number; the remaining N bits
2552 * (frac) represent the fractional part, ie. ratio represents a fixed
2553 * point number (mult + frac * 2^(-N)).
2554 *
2555 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2556 */
2557 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2558 {
2559 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2560 }
2561
2562 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2563 {
2564 u64 _tsc = tsc;
2565
2566 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2567 _tsc = __scale_tsc(ratio, tsc);
2568
2569 return _tsc;
2570 }
2571
2572 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2573 {
2574 u64 tsc;
2575
2576 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2577
2578 return target_tsc - tsc;
2579 }
2580
2581 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2582 {
2583 return vcpu->arch.l1_tsc_offset +
2584 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2585 }
2586 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2587
2588 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2589 {
2590 u64 nested_offset;
2591
2592 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2593 nested_offset = l1_offset;
2594 else
2595 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2596 kvm_caps.tsc_scaling_ratio_frac_bits);
2597
2598 nested_offset += l2_offset;
2599 return nested_offset;
2600 }
2601 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2602
2603 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2604 {
2605 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2606 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2607 kvm_caps.tsc_scaling_ratio_frac_bits);
2608
2609 return l1_multiplier;
2610 }
2611 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2612
2613 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2614 {
2615 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2616 vcpu->arch.l1_tsc_offset,
2617 l1_offset);
2618
2619 vcpu->arch.l1_tsc_offset = l1_offset;
2620
2621 /*
2622 * If we are here because L1 chose not to trap WRMSR to TSC then
2623 * according to the spec this should set L1's TSC (as opposed to
2624 * setting L1's offset for L2).
2625 */
2626 if (is_guest_mode(vcpu))
2627 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2628 l1_offset,
2629 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2630 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2631 else
2632 vcpu->arch.tsc_offset = l1_offset;
2633
2634 static_call(kvm_x86_write_tsc_offset)(vcpu);
2635 }
2636
2637 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2638 {
2639 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2640
2641 /* Userspace is changing the multiplier while L2 is active */
2642 if (is_guest_mode(vcpu))
2643 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2644 l1_multiplier,
2645 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2646 else
2647 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2648
2649 if (kvm_caps.has_tsc_control)
2650 static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2651 }
2652
2653 static inline bool kvm_check_tsc_unstable(void)
2654 {
2655 #ifdef CONFIG_X86_64
2656 /*
2657 * TSC is marked unstable when we're running on Hyper-V,
2658 * 'TSC page' clocksource is good.
2659 */
2660 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2661 return false;
2662 #endif
2663 return check_tsc_unstable();
2664 }
2665
2666 /*
2667 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2668 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2669 * participates in.
2670 */
2671 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2672 u64 ns, bool matched)
2673 {
2674 struct kvm *kvm = vcpu->kvm;
2675
2676 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2677
2678 /*
2679 * We also track th most recent recorded KHZ, write and time to
2680 * allow the matching interval to be extended at each write.
2681 */
2682 kvm->arch.last_tsc_nsec = ns;
2683 kvm->arch.last_tsc_write = tsc;
2684 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2685 kvm->arch.last_tsc_offset = offset;
2686
2687 vcpu->arch.last_guest_tsc = tsc;
2688
2689 kvm_vcpu_write_tsc_offset(vcpu, offset);
2690
2691 if (!matched) {
2692 /*
2693 * We split periods of matched TSC writes into generations.
2694 * For each generation, we track the original measured
2695 * nanosecond time, offset, and write, so if TSCs are in
2696 * sync, we can match exact offset, and if not, we can match
2697 * exact software computation in compute_guest_tsc()
2698 *
2699 * These values are tracked in kvm->arch.cur_xxx variables.
2700 */
2701 kvm->arch.cur_tsc_generation++;
2702 kvm->arch.cur_tsc_nsec = ns;
2703 kvm->arch.cur_tsc_write = tsc;
2704 kvm->arch.cur_tsc_offset = offset;
2705 kvm->arch.nr_vcpus_matched_tsc = 0;
2706 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2707 kvm->arch.nr_vcpus_matched_tsc++;
2708 }
2709
2710 /* Keep track of which generation this VCPU has synchronized to */
2711 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2712 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2713 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2714
2715 kvm_track_tsc_matching(vcpu, !matched);
2716 }
2717
2718 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2719 {
2720 u64 data = user_value ? *user_value : 0;
2721 struct kvm *kvm = vcpu->kvm;
2722 u64 offset, ns, elapsed;
2723 unsigned long flags;
2724 bool matched = false;
2725 bool synchronizing = false;
2726
2727 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2728 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2729 ns = get_kvmclock_base_ns();
2730 elapsed = ns - kvm->arch.last_tsc_nsec;
2731
2732 if (vcpu->arch.virtual_tsc_khz) {
2733 if (data == 0) {
2734 /*
2735 * Force synchronization when creating a vCPU, or when
2736 * userspace explicitly writes a zero value.
2737 */
2738 synchronizing = true;
2739 } else if (kvm->arch.user_set_tsc) {
2740 u64 tsc_exp = kvm->arch.last_tsc_write +
2741 nsec_to_cycles(vcpu, elapsed);
2742 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2743 /*
2744 * Here lies UAPI baggage: when a user-initiated TSC write has
2745 * a small delta (1 second) of virtual cycle time against the
2746 * previously set vCPU, we assume that they were intended to be
2747 * in sync and the delta was only due to the racy nature of the
2748 * legacy API.
2749 *
2750 * This trick falls down when restoring a guest which genuinely
2751 * has been running for less time than the 1 second of imprecision
2752 * which we allow for in the legacy API. In this case, the first
2753 * value written by userspace (on any vCPU) should not be subject
2754 * to this 'correction' to make it sync up with values that only
2755 * come from the kernel's default vCPU creation. Make the 1-second
2756 * slop hack only trigger if the user_set_tsc flag is already set.
2757 */
2758 synchronizing = data < tsc_exp + tsc_hz &&
2759 data + tsc_hz > tsc_exp;
2760 }
2761 }
2762
2763 if (user_value)
2764 kvm->arch.user_set_tsc = true;
2765
2766 /*
2767 * For a reliable TSC, we can match TSC offsets, and for an unstable
2768 * TSC, we add elapsed time in this computation. We could let the
2769 * compensation code attempt to catch up if we fall behind, but
2770 * it's better to try to match offsets from the beginning.
2771 */
2772 if (synchronizing &&
2773 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2774 if (!kvm_check_tsc_unstable()) {
2775 offset = kvm->arch.cur_tsc_offset;
2776 } else {
2777 u64 delta = nsec_to_cycles(vcpu, elapsed);
2778 data += delta;
2779 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2780 }
2781 matched = true;
2782 }
2783
2784 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2785 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2786 }
2787
2788 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2789 s64 adjustment)
2790 {
2791 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2792 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2793 }
2794
2795 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2796 {
2797 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2798 WARN_ON(adjustment < 0);
2799 adjustment = kvm_scale_tsc((u64) adjustment,
2800 vcpu->arch.l1_tsc_scaling_ratio);
2801 adjust_tsc_offset_guest(vcpu, adjustment);
2802 }
2803
2804 #ifdef CONFIG_X86_64
2805
2806 static u64 read_tsc(void)
2807 {
2808 u64 ret = (u64)rdtsc_ordered();
2809 u64 last = pvclock_gtod_data.clock.cycle_last;
2810
2811 if (likely(ret >= last))
2812 return ret;
2813
2814 /*
2815 * GCC likes to generate cmov here, but this branch is extremely
2816 * predictable (it's just a function of time and the likely is
2817 * very likely) and there's a data dependence, so force GCC
2818 * to generate a branch instead. I don't barrier() because
2819 * we don't actually need a barrier, and if this function
2820 * ever gets inlined it will generate worse code.
2821 */
2822 asm volatile ("");
2823 return last;
2824 }
2825
2826 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2827 int *mode)
2828 {
2829 u64 tsc_pg_val;
2830 long v;
2831
2832 switch (clock->vclock_mode) {
2833 case VDSO_CLOCKMODE_HVCLOCK:
2834 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2835 tsc_timestamp, &tsc_pg_val)) {
2836 /* TSC page valid */
2837 *mode = VDSO_CLOCKMODE_HVCLOCK;
2838 v = (tsc_pg_val - clock->cycle_last) &
2839 clock->mask;
2840 } else {
2841 /* TSC page invalid */
2842 *mode = VDSO_CLOCKMODE_NONE;
2843 }
2844 break;
2845 case VDSO_CLOCKMODE_TSC:
2846 *mode = VDSO_CLOCKMODE_TSC;
2847 *tsc_timestamp = read_tsc();
2848 v = (*tsc_timestamp - clock->cycle_last) &
2849 clock->mask;
2850 break;
2851 default:
2852 *mode = VDSO_CLOCKMODE_NONE;
2853 }
2854
2855 if (*mode == VDSO_CLOCKMODE_NONE)
2856 *tsc_timestamp = v = 0;
2857
2858 return v * clock->mult;
2859 }
2860
2861 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2862 {
2863 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2864 unsigned long seq;
2865 int mode;
2866 u64 ns;
2867
2868 do {
2869 seq = read_seqcount_begin(&gtod->seq);
2870 ns = gtod->raw_clock.base_cycles;
2871 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2872 ns >>= gtod->raw_clock.shift;
2873 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2874 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2875 *t = ns;
2876
2877 return mode;
2878 }
2879
2880 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2881 {
2882 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2883 unsigned long seq;
2884 int mode;
2885 u64 ns;
2886
2887 do {
2888 seq = read_seqcount_begin(&gtod->seq);
2889 ts->tv_sec = gtod->wall_time_sec;
2890 ns = gtod->clock.base_cycles;
2891 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2892 ns >>= gtod->clock.shift;
2893 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2894
2895 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2896 ts->tv_nsec = ns;
2897
2898 return mode;
2899 }
2900
2901 /* returns true if host is using TSC based clocksource */
2902 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2903 {
2904 /* checked again under seqlock below */
2905 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2906 return false;
2907
2908 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2909 tsc_timestamp));
2910 }
2911
2912 /* returns true if host is using TSC based clocksource */
2913 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2914 u64 *tsc_timestamp)
2915 {
2916 /* checked again under seqlock below */
2917 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2918 return false;
2919
2920 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2921 }
2922 #endif
2923
2924 /*
2925 *
2926 * Assuming a stable TSC across physical CPUS, and a stable TSC
2927 * across virtual CPUs, the following condition is possible.
2928 * Each numbered line represents an event visible to both
2929 * CPUs at the next numbered event.
2930 *
2931 * "timespecX" represents host monotonic time. "tscX" represents
2932 * RDTSC value.
2933 *
2934 * VCPU0 on CPU0 | VCPU1 on CPU1
2935 *
2936 * 1. read timespec0,tsc0
2937 * 2. | timespec1 = timespec0 + N
2938 * | tsc1 = tsc0 + M
2939 * 3. transition to guest | transition to guest
2940 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2941 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2942 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2943 *
2944 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2945 *
2946 * - ret0 < ret1
2947 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2948 * ...
2949 * - 0 < N - M => M < N
2950 *
2951 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2952 * always the case (the difference between two distinct xtime instances
2953 * might be smaller then the difference between corresponding TSC reads,
2954 * when updating guest vcpus pvclock areas).
2955 *
2956 * To avoid that problem, do not allow visibility of distinct
2957 * system_timestamp/tsc_timestamp values simultaneously: use a master
2958 * copy of host monotonic time values. Update that master copy
2959 * in lockstep.
2960 *
2961 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2962 *
2963 */
2964
2965 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2966 {
2967 #ifdef CONFIG_X86_64
2968 struct kvm_arch *ka = &kvm->arch;
2969 int vclock_mode;
2970 bool host_tsc_clocksource, vcpus_matched;
2971
2972 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2973 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2974 atomic_read(&kvm->online_vcpus));
2975
2976 /*
2977 * If the host uses TSC clock, then passthrough TSC as stable
2978 * to the guest.
2979 */
2980 host_tsc_clocksource = kvm_get_time_and_clockread(
2981 &ka->master_kernel_ns,
2982 &ka->master_cycle_now);
2983
2984 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2985 && !ka->backwards_tsc_observed
2986 && !ka->boot_vcpu_runs_old_kvmclock;
2987
2988 if (ka->use_master_clock)
2989 atomic_set(&kvm_guest_has_master_clock, 1);
2990
2991 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2992 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2993 vcpus_matched);
2994 #endif
2995 }
2996
2997 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2998 {
2999 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3000 }
3001
3002 static void __kvm_start_pvclock_update(struct kvm *kvm)
3003 {
3004 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3005 write_seqcount_begin(&kvm->arch.pvclock_sc);
3006 }
3007
3008 static void kvm_start_pvclock_update(struct kvm *kvm)
3009 {
3010 kvm_make_mclock_inprogress_request(kvm);
3011
3012 /* no guest entries from this point */
3013 __kvm_start_pvclock_update(kvm);
3014 }
3015
3016 static void kvm_end_pvclock_update(struct kvm *kvm)
3017 {
3018 struct kvm_arch *ka = &kvm->arch;
3019 struct kvm_vcpu *vcpu;
3020 unsigned long i;
3021
3022 write_seqcount_end(&ka->pvclock_sc);
3023 raw_spin_unlock_irq(&ka->tsc_write_lock);
3024 kvm_for_each_vcpu(i, vcpu, kvm)
3025 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3026
3027 /* guest entries allowed */
3028 kvm_for_each_vcpu(i, vcpu, kvm)
3029 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3030 }
3031
3032 static void kvm_update_masterclock(struct kvm *kvm)
3033 {
3034 kvm_hv_request_tsc_page_update(kvm);
3035 kvm_start_pvclock_update(kvm);
3036 pvclock_update_vm_gtod_copy(kvm);
3037 kvm_end_pvclock_update(kvm);
3038 }
3039
3040 /*
3041 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3042 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3043 * can change during boot even if the TSC is constant, as it's possible for KVM
3044 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3045 * notification when calibration completes, but practically speaking calibration
3046 * will complete before userspace is alive enough to create VMs.
3047 */
3048 static unsigned long get_cpu_tsc_khz(void)
3049 {
3050 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3051 return tsc_khz;
3052 else
3053 return __this_cpu_read(cpu_tsc_khz);
3054 }
3055
3056 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
3057 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3058 {
3059 struct kvm_arch *ka = &kvm->arch;
3060 struct pvclock_vcpu_time_info hv_clock;
3061
3062 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3063 get_cpu();
3064
3065 data->flags = 0;
3066 if (ka->use_master_clock &&
3067 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3068 #ifdef CONFIG_X86_64
3069 struct timespec64 ts;
3070
3071 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3072 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3073 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3074 } else
3075 #endif
3076 data->host_tsc = rdtsc();
3077
3078 data->flags |= KVM_CLOCK_TSC_STABLE;
3079 hv_clock.tsc_timestamp = ka->master_cycle_now;
3080 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3081 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3082 &hv_clock.tsc_shift,
3083 &hv_clock.tsc_to_system_mul);
3084 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3085 } else {
3086 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3087 }
3088
3089 put_cpu();
3090 }
3091
3092 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3093 {
3094 struct kvm_arch *ka = &kvm->arch;
3095 unsigned seq;
3096
3097 do {
3098 seq = read_seqcount_begin(&ka->pvclock_sc);
3099 __get_kvmclock(kvm, data);
3100 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3101 }
3102
3103 u64 get_kvmclock_ns(struct kvm *kvm)
3104 {
3105 struct kvm_clock_data data;
3106
3107 get_kvmclock(kvm, &data);
3108 return data.clock;
3109 }
3110
3111 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3112 struct gfn_to_pfn_cache *gpc,
3113 unsigned int offset,
3114 bool force_tsc_unstable)
3115 {
3116 struct kvm_vcpu_arch *vcpu = &v->arch;
3117 struct pvclock_vcpu_time_info *guest_hv_clock;
3118 unsigned long flags;
3119
3120 read_lock_irqsave(&gpc->lock, flags);
3121 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3122 read_unlock_irqrestore(&gpc->lock, flags);
3123
3124 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3125 return;
3126
3127 read_lock_irqsave(&gpc->lock, flags);
3128 }
3129
3130 guest_hv_clock = (void *)(gpc->khva + offset);
3131
3132 /*
3133 * This VCPU is paused, but it's legal for a guest to read another
3134 * VCPU's kvmclock, so we really have to follow the specification where
3135 * it says that version is odd if data is being modified, and even after
3136 * it is consistent.
3137 */
3138
3139 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3140 smp_wmb();
3141
3142 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3143 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3144
3145 if (vcpu->pvclock_set_guest_stopped_request) {
3146 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3147 vcpu->pvclock_set_guest_stopped_request = false;
3148 }
3149
3150 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3151
3152 if (force_tsc_unstable)
3153 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3154
3155 smp_wmb();
3156
3157 guest_hv_clock->version = ++vcpu->hv_clock.version;
3158
3159 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3160 read_unlock_irqrestore(&gpc->lock, flags);
3161
3162 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3163 }
3164
3165 static int kvm_guest_time_update(struct kvm_vcpu *v)
3166 {
3167 unsigned long flags, tgt_tsc_khz;
3168 unsigned seq;
3169 struct kvm_vcpu_arch *vcpu = &v->arch;
3170 struct kvm_arch *ka = &v->kvm->arch;
3171 s64 kernel_ns;
3172 u64 tsc_timestamp, host_tsc;
3173 u8 pvclock_flags;
3174 bool use_master_clock;
3175 #ifdef CONFIG_KVM_XEN
3176 /*
3177 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3178 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3179 * This default behaviour led to bugs in some guest kernels which cause
3180 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3181 */
3182 bool xen_pvclock_tsc_unstable =
3183 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3184 #endif
3185
3186 kernel_ns = 0;
3187 host_tsc = 0;
3188
3189 /*
3190 * If the host uses TSC clock, then passthrough TSC as stable
3191 * to the guest.
3192 */
3193 do {
3194 seq = read_seqcount_begin(&ka->pvclock_sc);
3195 use_master_clock = ka->use_master_clock;
3196 if (use_master_clock) {
3197 host_tsc = ka->master_cycle_now;
3198 kernel_ns = ka->master_kernel_ns;
3199 }
3200 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3201
3202 /* Keep irq disabled to prevent changes to the clock */
3203 local_irq_save(flags);
3204 tgt_tsc_khz = get_cpu_tsc_khz();
3205 if (unlikely(tgt_tsc_khz == 0)) {
3206 local_irq_restore(flags);
3207 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3208 return 1;
3209 }
3210 if (!use_master_clock) {
3211 host_tsc = rdtsc();
3212 kernel_ns = get_kvmclock_base_ns();
3213 }
3214
3215 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3216
3217 /*
3218 * We may have to catch up the TSC to match elapsed wall clock
3219 * time for two reasons, even if kvmclock is used.
3220 * 1) CPU could have been running below the maximum TSC rate
3221 * 2) Broken TSC compensation resets the base at each VCPU
3222 * entry to avoid unknown leaps of TSC even when running
3223 * again on the same CPU. This may cause apparent elapsed
3224 * time to disappear, and the guest to stand still or run
3225 * very slowly.
3226 */
3227 if (vcpu->tsc_catchup) {
3228 u64 tsc = compute_guest_tsc(v, kernel_ns);
3229 if (tsc > tsc_timestamp) {
3230 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3231 tsc_timestamp = tsc;
3232 }
3233 }
3234
3235 local_irq_restore(flags);
3236
3237 /* With all the info we got, fill in the values */
3238
3239 if (kvm_caps.has_tsc_control)
3240 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3241 v->arch.l1_tsc_scaling_ratio);
3242
3243 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3244 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3245 &vcpu->hv_clock.tsc_shift,
3246 &vcpu->hv_clock.tsc_to_system_mul);
3247 vcpu->hw_tsc_khz = tgt_tsc_khz;
3248 kvm_xen_update_tsc_info(v);
3249 }
3250
3251 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3252 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3253 vcpu->last_guest_tsc = tsc_timestamp;
3254
3255 /* If the host uses TSC clocksource, then it is stable */
3256 pvclock_flags = 0;
3257 if (use_master_clock)
3258 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3259
3260 vcpu->hv_clock.flags = pvclock_flags;
3261
3262 if (vcpu->pv_time.active)
3263 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3264 #ifdef CONFIG_KVM_XEN
3265 if (vcpu->xen.vcpu_info_cache.active)
3266 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3267 offsetof(struct compat_vcpu_info, time),
3268 xen_pvclock_tsc_unstable);
3269 if (vcpu->xen.vcpu_time_info_cache.active)
3270 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3271 xen_pvclock_tsc_unstable);
3272 #endif
3273 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3274 return 0;
3275 }
3276
3277 /*
3278 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3279 * which it started (i.e. its epoch, when its kvmclock was zero).
3280 *
3281 * In fact those clocks are subtly different; wall clock frequency is
3282 * adjusted by NTP and has leap seconds, while the kvmclock is a
3283 * simple function of the TSC without any such adjustment.
3284 *
3285 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3286 * that and kvmclock, but even that would be subject to change over
3287 * time.
3288 *
3289 * Attempt to calculate the epoch at a given moment using the *same*
3290 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3291 * wallclock and kvmclock times, and subtracting one from the other.
3292 *
3293 * Fall back to using their values at slightly different moments by
3294 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3295 */
3296 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3297 {
3298 #ifdef CONFIG_X86_64
3299 struct pvclock_vcpu_time_info hv_clock;
3300 struct kvm_arch *ka = &kvm->arch;
3301 unsigned long seq, local_tsc_khz;
3302 struct timespec64 ts;
3303 uint64_t host_tsc;
3304
3305 do {
3306 seq = read_seqcount_begin(&ka->pvclock_sc);
3307
3308 local_tsc_khz = 0;
3309 if (!ka->use_master_clock)
3310 break;
3311
3312 /*
3313 * The TSC read and the call to get_cpu_tsc_khz() must happen
3314 * on the same CPU.
3315 */
3316 get_cpu();
3317
3318 local_tsc_khz = get_cpu_tsc_khz();
3319
3320 if (local_tsc_khz &&
3321 !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3322 local_tsc_khz = 0; /* Fall back to old method */
3323
3324 put_cpu();
3325
3326 /*
3327 * These values must be snapshotted within the seqcount loop.
3328 * After that, it's just mathematics which can happen on any
3329 * CPU at any time.
3330 */
3331 hv_clock.tsc_timestamp = ka->master_cycle_now;
3332 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3333
3334 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3335
3336 /*
3337 * If the conditions were right, and obtaining the wallclock+TSC was
3338 * successful, calculate the KVM clock at the corresponding time and
3339 * subtract one from the other to get the guest's epoch in nanoseconds
3340 * since 1970-01-01.
3341 */
3342 if (local_tsc_khz) {
3343 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3344 &hv_clock.tsc_shift,
3345 &hv_clock.tsc_to_system_mul);
3346 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3347 __pvclock_read_cycles(&hv_clock, host_tsc);
3348 }
3349 #endif
3350 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3351 }
3352
3353 /*
3354 * kvmclock updates which are isolated to a given vcpu, such as
3355 * vcpu->cpu migration, should not allow system_timestamp from
3356 * the rest of the vcpus to remain static. Otherwise ntp frequency
3357 * correction applies to one vcpu's system_timestamp but not
3358 * the others.
3359 *
3360 * So in those cases, request a kvmclock update for all vcpus.
3361 * We need to rate-limit these requests though, as they can
3362 * considerably slow guests that have a large number of vcpus.
3363 * The time for a remote vcpu to update its kvmclock is bound
3364 * by the delay we use to rate-limit the updates.
3365 */
3366
3367 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3368
3369 static void kvmclock_update_fn(struct work_struct *work)
3370 {
3371 unsigned long i;
3372 struct delayed_work *dwork = to_delayed_work(work);
3373 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3374 kvmclock_update_work);
3375 struct kvm *kvm = container_of(ka, struct kvm, arch);
3376 struct kvm_vcpu *vcpu;
3377
3378 kvm_for_each_vcpu(i, vcpu, kvm) {
3379 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3380 kvm_vcpu_kick(vcpu);
3381 }
3382 }
3383
3384 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3385 {
3386 struct kvm *kvm = v->kvm;
3387
3388 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3389 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3390 KVMCLOCK_UPDATE_DELAY);
3391 }
3392
3393 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3394
3395 static void kvmclock_sync_fn(struct work_struct *work)
3396 {
3397 struct delayed_work *dwork = to_delayed_work(work);
3398 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3399 kvmclock_sync_work);
3400 struct kvm *kvm = container_of(ka, struct kvm, arch);
3401
3402 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3403 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3404 KVMCLOCK_SYNC_PERIOD);
3405 }
3406
3407 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3408 static bool is_mci_control_msr(u32 msr)
3409 {
3410 return (msr & 3) == 0;
3411 }
3412 static bool is_mci_status_msr(u32 msr)
3413 {
3414 return (msr & 3) == 1;
3415 }
3416
3417 /*
3418 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3419 */
3420 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3421 {
3422 /* McStatusWrEn enabled? */
3423 if (guest_cpuid_is_amd_or_hygon(vcpu))
3424 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3425
3426 return false;
3427 }
3428
3429 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3430 {
3431 u64 mcg_cap = vcpu->arch.mcg_cap;
3432 unsigned bank_num = mcg_cap & 0xff;
3433 u32 msr = msr_info->index;
3434 u64 data = msr_info->data;
3435 u32 offset, last_msr;
3436
3437 switch (msr) {
3438 case MSR_IA32_MCG_STATUS:
3439 vcpu->arch.mcg_status = data;
3440 break;
3441 case MSR_IA32_MCG_CTL:
3442 if (!(mcg_cap & MCG_CTL_P) &&
3443 (data || !msr_info->host_initiated))
3444 return 1;
3445 if (data != 0 && data != ~(u64)0)
3446 return 1;
3447 vcpu->arch.mcg_ctl = data;
3448 break;
3449 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3450 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3451 if (msr > last_msr)
3452 return 1;
3453
3454 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3455 return 1;
3456 /* An attempt to write a 1 to a reserved bit raises #GP */
3457 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3458 return 1;
3459 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3460 last_msr + 1 - MSR_IA32_MC0_CTL2);
3461 vcpu->arch.mci_ctl2_banks[offset] = data;
3462 break;
3463 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3464 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3465 if (msr > last_msr)
3466 return 1;
3467
3468 /*
3469 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3470 * values are architecturally undefined. But, some Linux
3471 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3472 * issue on AMD K8s, allow bit 10 to be clear when setting all
3473 * other bits in order to avoid an uncaught #GP in the guest.
3474 *
3475 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3476 * single-bit ECC data errors.
3477 */
3478 if (is_mci_control_msr(msr) &&
3479 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3480 return 1;
3481
3482 /*
3483 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3484 * AMD-based CPUs allow non-zero values, but if and only if
3485 * HWCR[McStatusWrEn] is set.
3486 */
3487 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3488 data != 0 && !can_set_mci_status(vcpu))
3489 return 1;
3490
3491 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3492 last_msr + 1 - MSR_IA32_MC0_CTL);
3493 vcpu->arch.mce_banks[offset] = data;
3494 break;
3495 default:
3496 return 1;
3497 }
3498 return 0;
3499 }
3500
3501 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3502 {
3503 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3504
3505 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3506 }
3507
3508 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3509 {
3510 gpa_t gpa = data & ~0x3f;
3511
3512 /* Bits 4:5 are reserved, Should be zero */
3513 if (data & 0x30)
3514 return 1;
3515
3516 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3517 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3518 return 1;
3519
3520 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3521 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3522 return 1;
3523
3524 if (!lapic_in_kernel(vcpu))
3525 return data ? 1 : 0;
3526
3527 vcpu->arch.apf.msr_en_val = data;
3528
3529 if (!kvm_pv_async_pf_enabled(vcpu)) {
3530 kvm_clear_async_pf_completion_queue(vcpu);
3531 kvm_async_pf_hash_reset(vcpu);
3532 return 0;
3533 }
3534
3535 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3536 sizeof(u64)))
3537 return 1;
3538
3539 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3540 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3541
3542 kvm_async_pf_wakeup_all(vcpu);
3543
3544 return 0;
3545 }
3546
3547 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3548 {
3549 /* Bits 8-63 are reserved */
3550 if (data >> 8)
3551 return 1;
3552
3553 if (!lapic_in_kernel(vcpu))
3554 return 1;
3555
3556 vcpu->arch.apf.msr_int_val = data;
3557
3558 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3559
3560 return 0;
3561 }
3562
3563 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3564 {
3565 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3566 vcpu->arch.time = 0;
3567 }
3568
3569 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3570 {
3571 ++vcpu->stat.tlb_flush;
3572 static_call(kvm_x86_flush_tlb_all)(vcpu);
3573
3574 /* Flushing all ASIDs flushes the current ASID... */
3575 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3576 }
3577
3578 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3579 {
3580 ++vcpu->stat.tlb_flush;
3581
3582 if (!tdp_enabled) {
3583 /*
3584 * A TLB flush on behalf of the guest is equivalent to
3585 * INVPCID(all), toggling CR4.PGE, etc., which requires
3586 * a forced sync of the shadow page tables. Ensure all the
3587 * roots are synced and the guest TLB in hardware is clean.
3588 */
3589 kvm_mmu_sync_roots(vcpu);
3590 kvm_mmu_sync_prev_roots(vcpu);
3591 }
3592
3593 static_call(kvm_x86_flush_tlb_guest)(vcpu);
3594
3595 /*
3596 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3597 * grained flushing.
3598 */
3599 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3600 }
3601
3602
3603 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3604 {
3605 ++vcpu->stat.tlb_flush;
3606 static_call(kvm_x86_flush_tlb_current)(vcpu);
3607 }
3608
3609 /*
3610 * Service "local" TLB flush requests, which are specific to the current MMU
3611 * context. In addition to the generic event handling in vcpu_enter_guest(),
3612 * TLB flushes that are targeted at an MMU context also need to be serviced
3613 * prior before nested VM-Enter/VM-Exit.
3614 */
3615 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3616 {
3617 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3618 kvm_vcpu_flush_tlb_current(vcpu);
3619
3620 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3621 kvm_vcpu_flush_tlb_guest(vcpu);
3622 }
3623 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3624
3625 static void record_steal_time(struct kvm_vcpu *vcpu)
3626 {
3627 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3628 struct kvm_steal_time __user *st;
3629 struct kvm_memslots *slots;
3630 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3631 u64 steal;
3632 u32 version;
3633
3634 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3635 kvm_xen_runstate_set_running(vcpu);
3636 return;
3637 }
3638
3639 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3640 return;
3641
3642 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3643 return;
3644
3645 slots = kvm_memslots(vcpu->kvm);
3646
3647 if (unlikely(slots->generation != ghc->generation ||
3648 gpa != ghc->gpa ||
3649 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3650 /* We rely on the fact that it fits in a single page. */
3651 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3652
3653 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3654 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3655 return;
3656 }
3657
3658 st = (struct kvm_steal_time __user *)ghc->hva;
3659 /*
3660 * Doing a TLB flush here, on the guest's behalf, can avoid
3661 * expensive IPIs.
3662 */
3663 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3664 u8 st_preempted = 0;
3665 int err = -EFAULT;
3666
3667 if (!user_access_begin(st, sizeof(*st)))
3668 return;
3669
3670 asm volatile("1: xchgb %0, %2\n"
3671 "xor %1, %1\n"
3672 "2:\n"
3673 _ASM_EXTABLE_UA(1b, 2b)
3674 : "+q" (st_preempted),
3675 "+&r" (err),
3676 "+m" (st->preempted));
3677 if (err)
3678 goto out;
3679
3680 user_access_end();
3681
3682 vcpu->arch.st.preempted = 0;
3683
3684 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3685 st_preempted & KVM_VCPU_FLUSH_TLB);
3686 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3687 kvm_vcpu_flush_tlb_guest(vcpu);
3688
3689 if (!user_access_begin(st, sizeof(*st)))
3690 goto dirty;
3691 } else {
3692 if (!user_access_begin(st, sizeof(*st)))
3693 return;
3694
3695 unsafe_put_user(0, &st->preempted, out);
3696 vcpu->arch.st.preempted = 0;
3697 }
3698
3699 unsafe_get_user(version, &st->version, out);
3700 if (version & 1)
3701 version += 1; /* first time write, random junk */
3702
3703 version += 1;
3704 unsafe_put_user(version, &st->version, out);
3705
3706 smp_wmb();
3707
3708 unsafe_get_user(steal, &st->steal, out);
3709 steal += current->sched_info.run_delay -
3710 vcpu->arch.st.last_steal;
3711 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3712 unsafe_put_user(steal, &st->steal, out);
3713
3714 version += 1;
3715 unsafe_put_user(version, &st->version, out);
3716
3717 out:
3718 user_access_end();
3719 dirty:
3720 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3721 }
3722
3723 static bool kvm_is_msr_to_save(u32 msr_index)
3724 {
3725 unsigned int i;
3726
3727 for (i = 0; i < num_msrs_to_save; i++) {
3728 if (msrs_to_save[i] == msr_index)
3729 return true;
3730 }
3731
3732 return false;
3733 }
3734
3735 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3736 {
3737 u32 msr = msr_info->index;
3738 u64 data = msr_info->data;
3739
3740 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3741 return kvm_xen_write_hypercall_page(vcpu, data);
3742
3743 switch (msr) {
3744 case MSR_AMD64_NB_CFG:
3745 case MSR_IA32_UCODE_WRITE:
3746 case MSR_VM_HSAVE_PA:
3747 case MSR_AMD64_PATCH_LOADER:
3748 case MSR_AMD64_BU_CFG2:
3749 case MSR_AMD64_DC_CFG:
3750 case MSR_AMD64_TW_CFG:
3751 case MSR_F15H_EX_CFG:
3752 break;
3753
3754 case MSR_IA32_UCODE_REV:
3755 if (msr_info->host_initiated)
3756 vcpu->arch.microcode_version = data;
3757 break;
3758 case MSR_IA32_ARCH_CAPABILITIES:
3759 if (!msr_info->host_initiated)
3760 return 1;
3761 vcpu->arch.arch_capabilities = data;
3762 break;
3763 case MSR_IA32_PERF_CAPABILITIES:
3764 if (!msr_info->host_initiated)
3765 return 1;
3766 if (data & ~kvm_caps.supported_perf_cap)
3767 return 1;
3768
3769 /*
3770 * Note, this is not just a performance optimization! KVM
3771 * disallows changing feature MSRs after the vCPU has run; PMU
3772 * refresh will bug the VM if called after the vCPU has run.
3773 */
3774 if (vcpu->arch.perf_capabilities == data)
3775 break;
3776
3777 vcpu->arch.perf_capabilities = data;
3778 kvm_pmu_refresh(vcpu);
3779 break;
3780 case MSR_IA32_PRED_CMD: {
3781 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3782
3783 if (!msr_info->host_initiated) {
3784 if ((!guest_has_pred_cmd_msr(vcpu)))
3785 return 1;
3786
3787 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3788 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3789 reserved_bits |= PRED_CMD_IBPB;
3790
3791 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3792 reserved_bits |= PRED_CMD_SBPB;
3793 }
3794
3795 if (!boot_cpu_has(X86_FEATURE_IBPB))
3796 reserved_bits |= PRED_CMD_IBPB;
3797
3798 if (!boot_cpu_has(X86_FEATURE_SBPB))
3799 reserved_bits |= PRED_CMD_SBPB;
3800
3801 if (data & reserved_bits)
3802 return 1;
3803
3804 if (!data)
3805 break;
3806
3807 wrmsrl(MSR_IA32_PRED_CMD, data);
3808 break;
3809 }
3810 case MSR_IA32_FLUSH_CMD:
3811 if (!msr_info->host_initiated &&
3812 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3813 return 1;
3814
3815 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3816 return 1;
3817 if (!data)
3818 break;
3819
3820 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3821 break;
3822 case MSR_EFER:
3823 return set_efer(vcpu, msr_info);
3824 case MSR_K7_HWCR:
3825 data &= ~(u64)0x40; /* ignore flush filter disable */
3826 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3827 data &= ~(u64)0x8; /* ignore TLB cache disable */
3828
3829 /*
3830 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3831 * through at least v6.6 whine if TscFreqSel is clear,
3832 * depending on F/M/S.
3833 */
3834 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3835 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3836 return 1;
3837 }
3838 vcpu->arch.msr_hwcr = data;
3839 break;
3840 case MSR_FAM10H_MMIO_CONF_BASE:
3841 if (data != 0) {
3842 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3843 return 1;
3844 }
3845 break;
3846 case MSR_IA32_CR_PAT:
3847 if (!kvm_pat_valid(data))
3848 return 1;
3849
3850 vcpu->arch.pat = data;
3851 break;
3852 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3853 case MSR_MTRRdefType:
3854 return kvm_mtrr_set_msr(vcpu, msr, data);
3855 case MSR_IA32_APICBASE:
3856 return kvm_set_apic_base(vcpu, msr_info);
3857 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3858 return kvm_x2apic_msr_write(vcpu, msr, data);
3859 case MSR_IA32_TSC_DEADLINE:
3860 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3861 break;
3862 case MSR_IA32_TSC_ADJUST:
3863 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3864 if (!msr_info->host_initiated) {
3865 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3866 adjust_tsc_offset_guest(vcpu, adj);
3867 /* Before back to guest, tsc_timestamp must be adjusted
3868 * as well, otherwise guest's percpu pvclock time could jump.
3869 */
3870 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3871 }
3872 vcpu->arch.ia32_tsc_adjust_msr = data;
3873 }
3874 break;
3875 case MSR_IA32_MISC_ENABLE: {
3876 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3877
3878 if (!msr_info->host_initiated) {
3879 /* RO bits */
3880 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3881 return 1;
3882
3883 /* R bits, i.e. writes are ignored, but don't fault. */
3884 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3885 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3886 }
3887
3888 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3889 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3890 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3891 return 1;
3892 vcpu->arch.ia32_misc_enable_msr = data;
3893 kvm_update_cpuid_runtime(vcpu);
3894 } else {
3895 vcpu->arch.ia32_misc_enable_msr = data;
3896 }
3897 break;
3898 }
3899 case MSR_IA32_SMBASE:
3900 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3901 return 1;
3902 vcpu->arch.smbase = data;
3903 break;
3904 case MSR_IA32_POWER_CTL:
3905 vcpu->arch.msr_ia32_power_ctl = data;
3906 break;
3907 case MSR_IA32_TSC:
3908 if (msr_info->host_initiated) {
3909 kvm_synchronize_tsc(vcpu, &data);
3910 } else {
3911 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3912 adjust_tsc_offset_guest(vcpu, adj);
3913 vcpu->arch.ia32_tsc_adjust_msr += adj;
3914 }
3915 break;
3916 case MSR_IA32_XSS:
3917 if (!msr_info->host_initiated &&
3918 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3919 return 1;
3920 /*
3921 * KVM supports exposing PT to the guest, but does not support
3922 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3923 * XSAVES/XRSTORS to save/restore PT MSRs.
3924 */
3925 if (data & ~kvm_caps.supported_xss)
3926 return 1;
3927 vcpu->arch.ia32_xss = data;
3928 kvm_update_cpuid_runtime(vcpu);
3929 break;
3930 case MSR_SMI_COUNT:
3931 if (!msr_info->host_initiated)
3932 return 1;
3933 vcpu->arch.smi_count = data;
3934 break;
3935 case MSR_KVM_WALL_CLOCK_NEW:
3936 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3937 return 1;
3938
3939 vcpu->kvm->arch.wall_clock = data;
3940 kvm_write_wall_clock(vcpu->kvm, data, 0);
3941 break;
3942 case MSR_KVM_WALL_CLOCK:
3943 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3944 return 1;
3945
3946 vcpu->kvm->arch.wall_clock = data;
3947 kvm_write_wall_clock(vcpu->kvm, data, 0);
3948 break;
3949 case MSR_KVM_SYSTEM_TIME_NEW:
3950 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3951 return 1;
3952
3953 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3954 break;
3955 case MSR_KVM_SYSTEM_TIME:
3956 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3957 return 1;
3958
3959 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3960 break;
3961 case MSR_KVM_ASYNC_PF_EN:
3962 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3963 return 1;
3964
3965 if (kvm_pv_enable_async_pf(vcpu, data))
3966 return 1;
3967 break;
3968 case MSR_KVM_ASYNC_PF_INT:
3969 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3970 return 1;
3971
3972 if (kvm_pv_enable_async_pf_int(vcpu, data))
3973 return 1;
3974 break;
3975 case MSR_KVM_ASYNC_PF_ACK:
3976 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3977 return 1;
3978 if (data & 0x1) {
3979 vcpu->arch.apf.pageready_pending = false;
3980 kvm_check_async_pf_completion(vcpu);
3981 }
3982 break;
3983 case MSR_KVM_STEAL_TIME:
3984 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3985 return 1;
3986
3987 if (unlikely(!sched_info_on()))
3988 return 1;
3989
3990 if (data & KVM_STEAL_RESERVED_MASK)
3991 return 1;
3992
3993 vcpu->arch.st.msr_val = data;
3994
3995 if (!(data & KVM_MSR_ENABLED))
3996 break;
3997
3998 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3999
4000 break;
4001 case MSR_KVM_PV_EOI_EN:
4002 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4003 return 1;
4004
4005 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4006 return 1;
4007 break;
4008
4009 case MSR_KVM_POLL_CONTROL:
4010 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4011 return 1;
4012
4013 /* only enable bit supported */
4014 if (data & (-1ULL << 1))
4015 return 1;
4016
4017 vcpu->arch.msr_kvm_poll_control = data;
4018 break;
4019
4020 case MSR_IA32_MCG_CTL:
4021 case MSR_IA32_MCG_STATUS:
4022 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4023 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4024 return set_msr_mce(vcpu, msr_info);
4025
4026 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4027 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4028 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4029 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4030 if (kvm_pmu_is_valid_msr(vcpu, msr))
4031 return kvm_pmu_set_msr(vcpu, msr_info);
4032
4033 if (data)
4034 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4035 break;
4036 case MSR_K7_CLK_CTL:
4037 /*
4038 * Ignore all writes to this no longer documented MSR.
4039 * Writes are only relevant for old K7 processors,
4040 * all pre-dating SVM, but a recommended workaround from
4041 * AMD for these chips. It is possible to specify the
4042 * affected processor models on the command line, hence
4043 * the need to ignore the workaround.
4044 */
4045 break;
4046 #ifdef CONFIG_KVM_HYPERV
4047 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4048 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4049 case HV_X64_MSR_SYNDBG_OPTIONS:
4050 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4051 case HV_X64_MSR_CRASH_CTL:
4052 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4053 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4054 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4055 case HV_X64_MSR_TSC_EMULATION_STATUS:
4056 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4057 return kvm_hv_set_msr_common(vcpu, msr, data,
4058 msr_info->host_initiated);
4059 #endif
4060 case MSR_IA32_BBL_CR_CTL3:
4061 /* Drop writes to this legacy MSR -- see rdmsr
4062 * counterpart for further detail.
4063 */
4064 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4065 break;
4066 case MSR_AMD64_OSVW_ID_LENGTH:
4067 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4068 return 1;
4069 vcpu->arch.osvw.length = data;
4070 break;
4071 case MSR_AMD64_OSVW_STATUS:
4072 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4073 return 1;
4074 vcpu->arch.osvw.status = data;
4075 break;
4076 case MSR_PLATFORM_INFO:
4077 if (!msr_info->host_initiated ||
4078 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4079 cpuid_fault_enabled(vcpu)))
4080 return 1;
4081 vcpu->arch.msr_platform_info = data;
4082 break;
4083 case MSR_MISC_FEATURES_ENABLES:
4084 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4085 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4086 !supports_cpuid_fault(vcpu)))
4087 return 1;
4088 vcpu->arch.msr_misc_features_enables = data;
4089 break;
4090 #ifdef CONFIG_X86_64
4091 case MSR_IA32_XFD:
4092 if (!msr_info->host_initiated &&
4093 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4094 return 1;
4095
4096 if (data & ~kvm_guest_supported_xfd(vcpu))
4097 return 1;
4098
4099 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4100 break;
4101 case MSR_IA32_XFD_ERR:
4102 if (!msr_info->host_initiated &&
4103 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4104 return 1;
4105
4106 if (data & ~kvm_guest_supported_xfd(vcpu))
4107 return 1;
4108
4109 vcpu->arch.guest_fpu.xfd_err = data;
4110 break;
4111 #endif
4112 default:
4113 if (kvm_pmu_is_valid_msr(vcpu, msr))
4114 return kvm_pmu_set_msr(vcpu, msr_info);
4115
4116 /*
4117 * Userspace is allowed to write '0' to MSRs that KVM reports
4118 * as to-be-saved, even if an MSRs isn't fully supported.
4119 */
4120 if (msr_info->host_initiated && !data &&
4121 kvm_is_msr_to_save(msr))
4122 break;
4123
4124 return KVM_MSR_RET_INVALID;
4125 }
4126 return 0;
4127 }
4128 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4129
4130 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4131 {
4132 u64 data;
4133 u64 mcg_cap = vcpu->arch.mcg_cap;
4134 unsigned bank_num = mcg_cap & 0xff;
4135 u32 offset, last_msr;
4136
4137 switch (msr) {
4138 case MSR_IA32_P5_MC_ADDR:
4139 case MSR_IA32_P5_MC_TYPE:
4140 data = 0;
4141 break;
4142 case MSR_IA32_MCG_CAP:
4143 data = vcpu->arch.mcg_cap;
4144 break;
4145 case MSR_IA32_MCG_CTL:
4146 if (!(mcg_cap & MCG_CTL_P) && !host)
4147 return 1;
4148 data = vcpu->arch.mcg_ctl;
4149 break;
4150 case MSR_IA32_MCG_STATUS:
4151 data = vcpu->arch.mcg_status;
4152 break;
4153 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4154 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4155 if (msr > last_msr)
4156 return 1;
4157
4158 if (!(mcg_cap & MCG_CMCI_P) && !host)
4159 return 1;
4160 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4161 last_msr + 1 - MSR_IA32_MC0_CTL2);
4162 data = vcpu->arch.mci_ctl2_banks[offset];
4163 break;
4164 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4165 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4166 if (msr > last_msr)
4167 return 1;
4168
4169 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4170 last_msr + 1 - MSR_IA32_MC0_CTL);
4171 data = vcpu->arch.mce_banks[offset];
4172 break;
4173 default:
4174 return 1;
4175 }
4176 *pdata = data;
4177 return 0;
4178 }
4179
4180 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4181 {
4182 switch (msr_info->index) {
4183 case MSR_IA32_PLATFORM_ID:
4184 case MSR_IA32_EBL_CR_POWERON:
4185 case MSR_IA32_LASTBRANCHFROMIP:
4186 case MSR_IA32_LASTBRANCHTOIP:
4187 case MSR_IA32_LASTINTFROMIP:
4188 case MSR_IA32_LASTINTTOIP:
4189 case MSR_AMD64_SYSCFG:
4190 case MSR_K8_TSEG_ADDR:
4191 case MSR_K8_TSEG_MASK:
4192 case MSR_VM_HSAVE_PA:
4193 case MSR_K8_INT_PENDING_MSG:
4194 case MSR_AMD64_NB_CFG:
4195 case MSR_FAM10H_MMIO_CONF_BASE:
4196 case MSR_AMD64_BU_CFG2:
4197 case MSR_IA32_PERF_CTL:
4198 case MSR_AMD64_DC_CFG:
4199 case MSR_AMD64_TW_CFG:
4200 case MSR_F15H_EX_CFG:
4201 /*
4202 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4203 * limit) MSRs. Just return 0, as we do not want to expose the host
4204 * data here. Do not conditionalize this on CPUID, as KVM does not do
4205 * so for existing CPU-specific MSRs.
4206 */
4207 case MSR_RAPL_POWER_UNIT:
4208 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4209 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4210 case MSR_PKG_ENERGY_STATUS: /* Total package */
4211 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4212 msr_info->data = 0;
4213 break;
4214 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4215 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4216 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4217 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4218 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4219 return kvm_pmu_get_msr(vcpu, msr_info);
4220 msr_info->data = 0;
4221 break;
4222 case MSR_IA32_UCODE_REV:
4223 msr_info->data = vcpu->arch.microcode_version;
4224 break;
4225 case MSR_IA32_ARCH_CAPABILITIES:
4226 if (!msr_info->host_initiated &&
4227 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4228 return 1;
4229 msr_info->data = vcpu->arch.arch_capabilities;
4230 break;
4231 case MSR_IA32_PERF_CAPABILITIES:
4232 if (!msr_info->host_initiated &&
4233 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4234 return 1;
4235 msr_info->data = vcpu->arch.perf_capabilities;
4236 break;
4237 case MSR_IA32_POWER_CTL:
4238 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4239 break;
4240 case MSR_IA32_TSC: {
4241 /*
4242 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4243 * even when not intercepted. AMD manual doesn't explicitly
4244 * state this but appears to behave the same.
4245 *
4246 * On userspace reads and writes, however, we unconditionally
4247 * return L1's TSC value to ensure backwards-compatible
4248 * behavior for migration.
4249 */
4250 u64 offset, ratio;
4251
4252 if (msr_info->host_initiated) {
4253 offset = vcpu->arch.l1_tsc_offset;
4254 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4255 } else {
4256 offset = vcpu->arch.tsc_offset;
4257 ratio = vcpu->arch.tsc_scaling_ratio;
4258 }
4259
4260 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4261 break;
4262 }
4263 case MSR_IA32_CR_PAT:
4264 msr_info->data = vcpu->arch.pat;
4265 break;
4266 case MSR_MTRRcap:
4267 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4268 case MSR_MTRRdefType:
4269 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4270 case 0xcd: /* fsb frequency */
4271 msr_info->data = 3;
4272 break;
4273 /*
4274 * MSR_EBC_FREQUENCY_ID
4275 * Conservative value valid for even the basic CPU models.
4276 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4277 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4278 * and 266MHz for model 3, or 4. Set Core Clock
4279 * Frequency to System Bus Frequency Ratio to 1 (bits
4280 * 31:24) even though these are only valid for CPU
4281 * models > 2, however guests may end up dividing or
4282 * multiplying by zero otherwise.
4283 */
4284 case MSR_EBC_FREQUENCY_ID:
4285 msr_info->data = 1 << 24;
4286 break;
4287 case MSR_IA32_APICBASE:
4288 msr_info->data = kvm_get_apic_base(vcpu);
4289 break;
4290 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4291 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4292 case MSR_IA32_TSC_DEADLINE:
4293 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4294 break;
4295 case MSR_IA32_TSC_ADJUST:
4296 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4297 break;
4298 case MSR_IA32_MISC_ENABLE:
4299 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4300 break;
4301 case MSR_IA32_SMBASE:
4302 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4303 return 1;
4304 msr_info->data = vcpu->arch.smbase;
4305 break;
4306 case MSR_SMI_COUNT:
4307 msr_info->data = vcpu->arch.smi_count;
4308 break;
4309 case MSR_IA32_PERF_STATUS:
4310 /* TSC increment by tick */
4311 msr_info->data = 1000ULL;
4312 /* CPU multiplier */
4313 msr_info->data |= (((uint64_t)4ULL) << 40);
4314 break;
4315 case MSR_EFER:
4316 msr_info->data = vcpu->arch.efer;
4317 break;
4318 case MSR_KVM_WALL_CLOCK:
4319 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4320 return 1;
4321
4322 msr_info->data = vcpu->kvm->arch.wall_clock;
4323 break;
4324 case MSR_KVM_WALL_CLOCK_NEW:
4325 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4326 return 1;
4327
4328 msr_info->data = vcpu->kvm->arch.wall_clock;
4329 break;
4330 case MSR_KVM_SYSTEM_TIME:
4331 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4332 return 1;
4333
4334 msr_info->data = vcpu->arch.time;
4335 break;
4336 case MSR_KVM_SYSTEM_TIME_NEW:
4337 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4338 return 1;
4339
4340 msr_info->data = vcpu->arch.time;
4341 break;
4342 case MSR_KVM_ASYNC_PF_EN:
4343 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4344 return 1;
4345
4346 msr_info->data = vcpu->arch.apf.msr_en_val;
4347 break;
4348 case MSR_KVM_ASYNC_PF_INT:
4349 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4350 return 1;
4351
4352 msr_info->data = vcpu->arch.apf.msr_int_val;
4353 break;
4354 case MSR_KVM_ASYNC_PF_ACK:
4355 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4356 return 1;
4357
4358 msr_info->data = 0;
4359 break;
4360 case MSR_KVM_STEAL_TIME:
4361 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4362 return 1;
4363
4364 msr_info->data = vcpu->arch.st.msr_val;
4365 break;
4366 case MSR_KVM_PV_EOI_EN:
4367 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4368 return 1;
4369
4370 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4371 break;
4372 case MSR_KVM_POLL_CONTROL:
4373 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4374 return 1;
4375
4376 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4377 break;
4378 case MSR_IA32_P5_MC_ADDR:
4379 case MSR_IA32_P5_MC_TYPE:
4380 case MSR_IA32_MCG_CAP:
4381 case MSR_IA32_MCG_CTL:
4382 case MSR_IA32_MCG_STATUS:
4383 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4384 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4385 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4386 msr_info->host_initiated);
4387 case MSR_IA32_XSS:
4388 if (!msr_info->host_initiated &&
4389 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4390 return 1;
4391 msr_info->data = vcpu->arch.ia32_xss;
4392 break;
4393 case MSR_K7_CLK_CTL:
4394 /*
4395 * Provide expected ramp-up count for K7. All other
4396 * are set to zero, indicating minimum divisors for
4397 * every field.
4398 *
4399 * This prevents guest kernels on AMD host with CPU
4400 * type 6, model 8 and higher from exploding due to
4401 * the rdmsr failing.
4402 */
4403 msr_info->data = 0x20000000;
4404 break;
4405 #ifdef CONFIG_KVM_HYPERV
4406 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4407 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4408 case HV_X64_MSR_SYNDBG_OPTIONS:
4409 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4410 case HV_X64_MSR_CRASH_CTL:
4411 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4412 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4413 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4414 case HV_X64_MSR_TSC_EMULATION_STATUS:
4415 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4416 return kvm_hv_get_msr_common(vcpu,
4417 msr_info->index, &msr_info->data,
4418 msr_info->host_initiated);
4419 #endif
4420 case MSR_IA32_BBL_CR_CTL3:
4421 /* This legacy MSR exists but isn't fully documented in current
4422 * silicon. It is however accessed by winxp in very narrow
4423 * scenarios where it sets bit #19, itself documented as
4424 * a "reserved" bit. Best effort attempt to source coherent
4425 * read data here should the balance of the register be
4426 * interpreted by the guest:
4427 *
4428 * L2 cache control register 3: 64GB range, 256KB size,
4429 * enabled, latency 0x1, configured
4430 */
4431 msr_info->data = 0xbe702111;
4432 break;
4433 case MSR_AMD64_OSVW_ID_LENGTH:
4434 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4435 return 1;
4436 msr_info->data = vcpu->arch.osvw.length;
4437 break;
4438 case MSR_AMD64_OSVW_STATUS:
4439 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4440 return 1;
4441 msr_info->data = vcpu->arch.osvw.status;
4442 break;
4443 case MSR_PLATFORM_INFO:
4444 if (!msr_info->host_initiated &&
4445 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4446 return 1;
4447 msr_info->data = vcpu->arch.msr_platform_info;
4448 break;
4449 case MSR_MISC_FEATURES_ENABLES:
4450 msr_info->data = vcpu->arch.msr_misc_features_enables;
4451 break;
4452 case MSR_K7_HWCR:
4453 msr_info->data = vcpu->arch.msr_hwcr;
4454 break;
4455 #ifdef CONFIG_X86_64
4456 case MSR_IA32_XFD:
4457 if (!msr_info->host_initiated &&
4458 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4459 return 1;
4460
4461 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4462 break;
4463 case MSR_IA32_XFD_ERR:
4464 if (!msr_info->host_initiated &&
4465 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4466 return 1;
4467
4468 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4469 break;
4470 #endif
4471 default:
4472 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4473 return kvm_pmu_get_msr(vcpu, msr_info);
4474
4475 /*
4476 * Userspace is allowed to read MSRs that KVM reports as
4477 * to-be-saved, even if an MSR isn't fully supported.
4478 */
4479 if (msr_info->host_initiated &&
4480 kvm_is_msr_to_save(msr_info->index)) {
4481 msr_info->data = 0;
4482 break;
4483 }
4484
4485 return KVM_MSR_RET_INVALID;
4486 }
4487 return 0;
4488 }
4489 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4490
4491 /*
4492 * Read or write a bunch of msrs. All parameters are kernel addresses.
4493 *
4494 * @return number of msrs set successfully.
4495 */
4496 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4497 struct kvm_msr_entry *entries,
4498 int (*do_msr)(struct kvm_vcpu *vcpu,
4499 unsigned index, u64 *data))
4500 {
4501 int i;
4502
4503 for (i = 0; i < msrs->nmsrs; ++i)
4504 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4505 break;
4506
4507 return i;
4508 }
4509
4510 /*
4511 * Read or write a bunch of msrs. Parameters are user addresses.
4512 *
4513 * @return number of msrs set successfully.
4514 */
4515 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4516 int (*do_msr)(struct kvm_vcpu *vcpu,
4517 unsigned index, u64 *data),
4518 int writeback)
4519 {
4520 struct kvm_msrs msrs;
4521 struct kvm_msr_entry *entries;
4522 unsigned size;
4523 int r;
4524
4525 r = -EFAULT;
4526 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4527 goto out;
4528
4529 r = -E2BIG;
4530 if (msrs.nmsrs >= MAX_IO_MSRS)
4531 goto out;
4532
4533 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4534 entries = memdup_user(user_msrs->entries, size);
4535 if (IS_ERR(entries)) {
4536 r = PTR_ERR(entries);
4537 goto out;
4538 }
4539
4540 r = __msr_io(vcpu, &msrs, entries, do_msr);
4541
4542 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4543 r = -EFAULT;
4544
4545 kfree(entries);
4546 out:
4547 return r;
4548 }
4549
4550 static inline bool kvm_can_mwait_in_guest(void)
4551 {
4552 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4553 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4554 boot_cpu_has(X86_FEATURE_ARAT);
4555 }
4556
4557 #ifdef CONFIG_KVM_HYPERV
4558 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4559 struct kvm_cpuid2 __user *cpuid_arg)
4560 {
4561 struct kvm_cpuid2 cpuid;
4562 int r;
4563
4564 r = -EFAULT;
4565 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4566 return r;
4567
4568 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4569 if (r)
4570 return r;
4571
4572 r = -EFAULT;
4573 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4574 return r;
4575
4576 return 0;
4577 }
4578 #endif
4579
4580 static bool kvm_is_vm_type_supported(unsigned long type)
4581 {
4582 return type == KVM_X86_DEFAULT_VM ||
4583 (type == KVM_X86_SW_PROTECTED_VM &&
4584 IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_enabled);
4585 }
4586
4587 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4588 {
4589 int r = 0;
4590
4591 switch (ext) {
4592 case KVM_CAP_IRQCHIP:
4593 case KVM_CAP_HLT:
4594 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4595 case KVM_CAP_SET_TSS_ADDR:
4596 case KVM_CAP_EXT_CPUID:
4597 case KVM_CAP_EXT_EMUL_CPUID:
4598 case KVM_CAP_CLOCKSOURCE:
4599 case KVM_CAP_PIT:
4600 case KVM_CAP_NOP_IO_DELAY:
4601 case KVM_CAP_MP_STATE:
4602 case KVM_CAP_SYNC_MMU:
4603 case KVM_CAP_USER_NMI:
4604 case KVM_CAP_REINJECT_CONTROL:
4605 case KVM_CAP_IRQ_INJECT_STATUS:
4606 case KVM_CAP_IOEVENTFD:
4607 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4608 case KVM_CAP_PIT2:
4609 case KVM_CAP_PIT_STATE2:
4610 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4611 case KVM_CAP_VCPU_EVENTS:
4612 #ifdef CONFIG_KVM_HYPERV
4613 case KVM_CAP_HYPERV:
4614 case KVM_CAP_HYPERV_VAPIC:
4615 case KVM_CAP_HYPERV_SPIN:
4616 case KVM_CAP_HYPERV_TIME:
4617 case KVM_CAP_HYPERV_SYNIC:
4618 case KVM_CAP_HYPERV_SYNIC2:
4619 case KVM_CAP_HYPERV_VP_INDEX:
4620 case KVM_CAP_HYPERV_EVENTFD:
4621 case KVM_CAP_HYPERV_TLBFLUSH:
4622 case KVM_CAP_HYPERV_SEND_IPI:
4623 case KVM_CAP_HYPERV_CPUID:
4624 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4625 case KVM_CAP_SYS_HYPERV_CPUID:
4626 #endif
4627 case KVM_CAP_PCI_SEGMENT:
4628 case KVM_CAP_DEBUGREGS:
4629 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4630 case KVM_CAP_XSAVE:
4631 case KVM_CAP_ASYNC_PF:
4632 case KVM_CAP_ASYNC_PF_INT:
4633 case KVM_CAP_GET_TSC_KHZ:
4634 case KVM_CAP_KVMCLOCK_CTRL:
4635 case KVM_CAP_READONLY_MEM:
4636 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4637 case KVM_CAP_TSC_DEADLINE_TIMER:
4638 case KVM_CAP_DISABLE_QUIRKS:
4639 case KVM_CAP_SET_BOOT_CPU_ID:
4640 case KVM_CAP_SPLIT_IRQCHIP:
4641 case KVM_CAP_IMMEDIATE_EXIT:
4642 case KVM_CAP_PMU_EVENT_FILTER:
4643 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4644 case KVM_CAP_GET_MSR_FEATURES:
4645 case KVM_CAP_MSR_PLATFORM_INFO:
4646 case KVM_CAP_EXCEPTION_PAYLOAD:
4647 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4648 case KVM_CAP_SET_GUEST_DEBUG:
4649 case KVM_CAP_LAST_CPU:
4650 case KVM_CAP_X86_USER_SPACE_MSR:
4651 case KVM_CAP_X86_MSR_FILTER:
4652 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4653 #ifdef CONFIG_X86_SGX_KVM
4654 case KVM_CAP_SGX_ATTRIBUTE:
4655 #endif
4656 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4657 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4658 case KVM_CAP_SREGS2:
4659 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4660 case KVM_CAP_VCPU_ATTRIBUTES:
4661 case KVM_CAP_SYS_ATTRIBUTES:
4662 case KVM_CAP_VAPIC:
4663 case KVM_CAP_ENABLE_CAP:
4664 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4665 case KVM_CAP_IRQFD_RESAMPLE:
4666 case KVM_CAP_MEMORY_FAULT_INFO:
4667 r = 1;
4668 break;
4669 case KVM_CAP_EXIT_HYPERCALL:
4670 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4671 break;
4672 case KVM_CAP_SET_GUEST_DEBUG2:
4673 return KVM_GUESTDBG_VALID_MASK;
4674 #ifdef CONFIG_KVM_XEN
4675 case KVM_CAP_XEN_HVM:
4676 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4677 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4678 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4679 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4680 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4681 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
4682 if (sched_info_on())
4683 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4684 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4685 break;
4686 #endif
4687 case KVM_CAP_SYNC_REGS:
4688 r = KVM_SYNC_X86_VALID_FIELDS;
4689 break;
4690 case KVM_CAP_ADJUST_CLOCK:
4691 r = KVM_CLOCK_VALID_FLAGS;
4692 break;
4693 case KVM_CAP_X86_DISABLE_EXITS:
4694 r = KVM_X86_DISABLE_EXITS_PAUSE;
4695
4696 if (!mitigate_smt_rsb) {
4697 r |= KVM_X86_DISABLE_EXITS_HLT |
4698 KVM_X86_DISABLE_EXITS_CSTATE;
4699
4700 if (kvm_can_mwait_in_guest())
4701 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4702 }
4703 break;
4704 case KVM_CAP_X86_SMM:
4705 if (!IS_ENABLED(CONFIG_KVM_SMM))
4706 break;
4707
4708 /* SMBASE is usually relocated above 1M on modern chipsets,
4709 * and SMM handlers might indeed rely on 4G segment limits,
4710 * so do not report SMM to be available if real mode is
4711 * emulated via vm86 mode. Still, do not go to great lengths
4712 * to avoid userspace's usage of the feature, because it is a
4713 * fringe case that is not enabled except via specific settings
4714 * of the module parameters.
4715 */
4716 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4717 break;
4718 case KVM_CAP_NR_VCPUS:
4719 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4720 break;
4721 case KVM_CAP_MAX_VCPUS:
4722 r = KVM_MAX_VCPUS;
4723 break;
4724 case KVM_CAP_MAX_VCPU_ID:
4725 r = KVM_MAX_VCPU_IDS;
4726 break;
4727 case KVM_CAP_PV_MMU: /* obsolete */
4728 r = 0;
4729 break;
4730 case KVM_CAP_MCE:
4731 r = KVM_MAX_MCE_BANKS;
4732 break;
4733 case KVM_CAP_XCRS:
4734 r = boot_cpu_has(X86_FEATURE_XSAVE);
4735 break;
4736 case KVM_CAP_TSC_CONTROL:
4737 case KVM_CAP_VM_TSC_CONTROL:
4738 r = kvm_caps.has_tsc_control;
4739 break;
4740 case KVM_CAP_X2APIC_API:
4741 r = KVM_X2APIC_API_VALID_FLAGS;
4742 break;
4743 case KVM_CAP_NESTED_STATE:
4744 r = kvm_x86_ops.nested_ops->get_state ?
4745 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4746 break;
4747 #ifdef CONFIG_KVM_HYPERV
4748 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4749 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4750 break;
4751 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4752 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4753 break;
4754 #endif
4755 case KVM_CAP_SMALLER_MAXPHYADDR:
4756 r = (int) allow_smaller_maxphyaddr;
4757 break;
4758 case KVM_CAP_STEAL_TIME:
4759 r = sched_info_on();
4760 break;
4761 case KVM_CAP_X86_BUS_LOCK_EXIT:
4762 if (kvm_caps.has_bus_lock_exit)
4763 r = KVM_BUS_LOCK_DETECTION_OFF |
4764 KVM_BUS_LOCK_DETECTION_EXIT;
4765 else
4766 r = 0;
4767 break;
4768 case KVM_CAP_XSAVE2: {
4769 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4770 if (r < sizeof(struct kvm_xsave))
4771 r = sizeof(struct kvm_xsave);
4772 break;
4773 }
4774 case KVM_CAP_PMU_CAPABILITY:
4775 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4776 break;
4777 case KVM_CAP_DISABLE_QUIRKS2:
4778 r = KVM_X86_VALID_QUIRKS;
4779 break;
4780 case KVM_CAP_X86_NOTIFY_VMEXIT:
4781 r = kvm_caps.has_notify_vmexit;
4782 break;
4783 case KVM_CAP_VM_TYPES:
4784 r = BIT(KVM_X86_DEFAULT_VM);
4785 if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM))
4786 r |= BIT(KVM_X86_SW_PROTECTED_VM);
4787 break;
4788 default:
4789 break;
4790 }
4791 return r;
4792 }
4793
4794 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4795 {
4796 void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4797
4798 if ((u64)(unsigned long)uaddr != attr->addr)
4799 return ERR_PTR_USR(-EFAULT);
4800 return uaddr;
4801 }
4802
4803 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4804 {
4805 u64 __user *uaddr = kvm_get_attr_addr(attr);
4806
4807 if (attr->group)
4808 return -ENXIO;
4809
4810 if (IS_ERR(uaddr))
4811 return PTR_ERR(uaddr);
4812
4813 switch (attr->attr) {
4814 case KVM_X86_XCOMP_GUEST_SUPP:
4815 if (put_user(kvm_caps.supported_xcr0, uaddr))
4816 return -EFAULT;
4817 return 0;
4818 default:
4819 return -ENXIO;
4820 }
4821 }
4822
4823 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4824 {
4825 if (attr->group)
4826 return -ENXIO;
4827
4828 switch (attr->attr) {
4829 case KVM_X86_XCOMP_GUEST_SUPP:
4830 return 0;
4831 default:
4832 return -ENXIO;
4833 }
4834 }
4835
4836 long kvm_arch_dev_ioctl(struct file *filp,
4837 unsigned int ioctl, unsigned long arg)
4838 {
4839 void __user *argp = (void __user *)arg;
4840 long r;
4841
4842 switch (ioctl) {
4843 case KVM_GET_MSR_INDEX_LIST: {
4844 struct kvm_msr_list __user *user_msr_list = argp;
4845 struct kvm_msr_list msr_list;
4846 unsigned n;
4847
4848 r = -EFAULT;
4849 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4850 goto out;
4851 n = msr_list.nmsrs;
4852 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4853 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4854 goto out;
4855 r = -E2BIG;
4856 if (n < msr_list.nmsrs)
4857 goto out;
4858 r = -EFAULT;
4859 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4860 num_msrs_to_save * sizeof(u32)))
4861 goto out;
4862 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4863 &emulated_msrs,
4864 num_emulated_msrs * sizeof(u32)))
4865 goto out;
4866 r = 0;
4867 break;
4868 }
4869 case KVM_GET_SUPPORTED_CPUID:
4870 case KVM_GET_EMULATED_CPUID: {
4871 struct kvm_cpuid2 __user *cpuid_arg = argp;
4872 struct kvm_cpuid2 cpuid;
4873
4874 r = -EFAULT;
4875 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4876 goto out;
4877
4878 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4879 ioctl);
4880 if (r)
4881 goto out;
4882
4883 r = -EFAULT;
4884 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4885 goto out;
4886 r = 0;
4887 break;
4888 }
4889 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4890 r = -EFAULT;
4891 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4892 sizeof(kvm_caps.supported_mce_cap)))
4893 goto out;
4894 r = 0;
4895 break;
4896 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4897 struct kvm_msr_list __user *user_msr_list = argp;
4898 struct kvm_msr_list msr_list;
4899 unsigned int n;
4900
4901 r = -EFAULT;
4902 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4903 goto out;
4904 n = msr_list.nmsrs;
4905 msr_list.nmsrs = num_msr_based_features;
4906 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4907 goto out;
4908 r = -E2BIG;
4909 if (n < msr_list.nmsrs)
4910 goto out;
4911 r = -EFAULT;
4912 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4913 num_msr_based_features * sizeof(u32)))
4914 goto out;
4915 r = 0;
4916 break;
4917 }
4918 case KVM_GET_MSRS:
4919 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4920 break;
4921 #ifdef CONFIG_KVM_HYPERV
4922 case KVM_GET_SUPPORTED_HV_CPUID:
4923 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4924 break;
4925 #endif
4926 case KVM_GET_DEVICE_ATTR: {
4927 struct kvm_device_attr attr;
4928 r = -EFAULT;
4929 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4930 break;
4931 r = kvm_x86_dev_get_attr(&attr);
4932 break;
4933 }
4934 case KVM_HAS_DEVICE_ATTR: {
4935 struct kvm_device_attr attr;
4936 r = -EFAULT;
4937 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4938 break;
4939 r = kvm_x86_dev_has_attr(&attr);
4940 break;
4941 }
4942 default:
4943 r = -EINVAL;
4944 break;
4945 }
4946 out:
4947 return r;
4948 }
4949
4950 static void wbinvd_ipi(void *garbage)
4951 {
4952 wbinvd();
4953 }
4954
4955 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4956 {
4957 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4958 }
4959
4960 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4961 {
4962 /* Address WBINVD may be executed by guest */
4963 if (need_emulate_wbinvd(vcpu)) {
4964 if (static_call(kvm_x86_has_wbinvd_exit)())
4965 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4966 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4967 smp_call_function_single(vcpu->cpu,
4968 wbinvd_ipi, NULL, 1);
4969 }
4970
4971 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4972
4973 /* Save host pkru register if supported */
4974 vcpu->arch.host_pkru = read_pkru();
4975
4976 /* Apply any externally detected TSC adjustments (due to suspend) */
4977 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4978 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4979 vcpu->arch.tsc_offset_adjustment = 0;
4980 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4981 }
4982
4983 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4984 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4985 rdtsc() - vcpu->arch.last_host_tsc;
4986 if (tsc_delta < 0)
4987 mark_tsc_unstable("KVM discovered backwards TSC");
4988
4989 if (kvm_check_tsc_unstable()) {
4990 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4991 vcpu->arch.last_guest_tsc);
4992 kvm_vcpu_write_tsc_offset(vcpu, offset);
4993 vcpu->arch.tsc_catchup = 1;
4994 }
4995
4996 if (kvm_lapic_hv_timer_in_use(vcpu))
4997 kvm_lapic_restart_hv_timer(vcpu);
4998
4999 /*
5000 * On a host with synchronized TSC, there is no need to update
5001 * kvmclock on vcpu->cpu migration
5002 */
5003 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5004 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5005 if (vcpu->cpu != cpu)
5006 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5007 vcpu->cpu = cpu;
5008 }
5009
5010 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5011 }
5012
5013 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5014 {
5015 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5016 struct kvm_steal_time __user *st;
5017 struct kvm_memslots *slots;
5018 static const u8 preempted = KVM_VCPU_PREEMPTED;
5019 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5020
5021 /*
5022 * The vCPU can be marked preempted if and only if the VM-Exit was on
5023 * an instruction boundary and will not trigger guest emulation of any
5024 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5025 * when this is true, for example allowing the vCPU to be marked
5026 * preempted if and only if the VM-Exit was due to a host interrupt.
5027 */
5028 if (!vcpu->arch.at_instruction_boundary) {
5029 vcpu->stat.preemption_other++;
5030 return;
5031 }
5032
5033 vcpu->stat.preemption_reported++;
5034 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5035 return;
5036
5037 if (vcpu->arch.st.preempted)
5038 return;
5039
5040 /* This happens on process exit */
5041 if (unlikely(current->mm != vcpu->kvm->mm))
5042 return;
5043
5044 slots = kvm_memslots(vcpu->kvm);
5045
5046 if (unlikely(slots->generation != ghc->generation ||
5047 gpa != ghc->gpa ||
5048 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5049 return;
5050
5051 st = (struct kvm_steal_time __user *)ghc->hva;
5052 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5053
5054 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5055 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5056
5057 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5058 }
5059
5060 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5061 {
5062 int idx;
5063
5064 if (vcpu->preempted) {
5065 if (!vcpu->arch.guest_state_protected)
5066 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
5067
5068 /*
5069 * Take the srcu lock as memslots will be accessed to check the gfn
5070 * cache generation against the memslots generation.
5071 */
5072 idx = srcu_read_lock(&vcpu->kvm->srcu);
5073 if (kvm_xen_msr_enabled(vcpu->kvm))
5074 kvm_xen_runstate_set_preempted(vcpu);
5075 else
5076 kvm_steal_time_set_preempted(vcpu);
5077 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5078 }
5079
5080 static_call(kvm_x86_vcpu_put)(vcpu);
5081 vcpu->arch.last_host_tsc = rdtsc();
5082 }
5083
5084 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5085 struct kvm_lapic_state *s)
5086 {
5087 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5088
5089 return kvm_apic_get_state(vcpu, s);
5090 }
5091
5092 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5093 struct kvm_lapic_state *s)
5094 {
5095 int r;
5096
5097 r = kvm_apic_set_state(vcpu, s);
5098 if (r)
5099 return r;
5100 update_cr8_intercept(vcpu);
5101
5102 return 0;
5103 }
5104
5105 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5106 {
5107 /*
5108 * We can accept userspace's request for interrupt injection
5109 * as long as we have a place to store the interrupt number.
5110 * The actual injection will happen when the CPU is able to
5111 * deliver the interrupt.
5112 */
5113 if (kvm_cpu_has_extint(vcpu))
5114 return false;
5115
5116 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5117 return (!lapic_in_kernel(vcpu) ||
5118 kvm_apic_accept_pic_intr(vcpu));
5119 }
5120
5121 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5122 {
5123 /*
5124 * Do not cause an interrupt window exit if an exception
5125 * is pending or an event needs reinjection; userspace
5126 * might want to inject the interrupt manually using KVM_SET_REGS
5127 * or KVM_SET_SREGS. For that to work, we must be at an
5128 * instruction boundary and with no events half-injected.
5129 */
5130 return (kvm_arch_interrupt_allowed(vcpu) &&
5131 kvm_cpu_accept_dm_intr(vcpu) &&
5132 !kvm_event_needs_reinjection(vcpu) &&
5133 !kvm_is_exception_pending(vcpu));
5134 }
5135
5136 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5137 struct kvm_interrupt *irq)
5138 {
5139 if (irq->irq >= KVM_NR_INTERRUPTS)
5140 return -EINVAL;
5141
5142 if (!irqchip_in_kernel(vcpu->kvm)) {
5143 kvm_queue_interrupt(vcpu, irq->irq, false);
5144 kvm_make_request(KVM_REQ_EVENT, vcpu);
5145 return 0;
5146 }
5147
5148 /*
5149 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5150 * fail for in-kernel 8259.
5151 */
5152 if (pic_in_kernel(vcpu->kvm))
5153 return -ENXIO;
5154
5155 if (vcpu->arch.pending_external_vector != -1)
5156 return -EEXIST;
5157
5158 vcpu->arch.pending_external_vector = irq->irq;
5159 kvm_make_request(KVM_REQ_EVENT, vcpu);
5160 return 0;
5161 }
5162
5163 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5164 {
5165 kvm_inject_nmi(vcpu);
5166
5167 return 0;
5168 }
5169
5170 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5171 struct kvm_tpr_access_ctl *tac)
5172 {
5173 if (tac->flags)
5174 return -EINVAL;
5175 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5176 return 0;
5177 }
5178
5179 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5180 u64 mcg_cap)
5181 {
5182 int r;
5183 unsigned bank_num = mcg_cap & 0xff, bank;
5184
5185 r = -EINVAL;
5186 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5187 goto out;
5188 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5189 goto out;
5190 r = 0;
5191 vcpu->arch.mcg_cap = mcg_cap;
5192 /* Init IA32_MCG_CTL to all 1s */
5193 if (mcg_cap & MCG_CTL_P)
5194 vcpu->arch.mcg_ctl = ~(u64)0;
5195 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5196 for (bank = 0; bank < bank_num; bank++) {
5197 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5198 if (mcg_cap & MCG_CMCI_P)
5199 vcpu->arch.mci_ctl2_banks[bank] = 0;
5200 }
5201
5202 kvm_apic_after_set_mcg_cap(vcpu);
5203
5204 static_call(kvm_x86_setup_mce)(vcpu);
5205 out:
5206 return r;
5207 }
5208
5209 /*
5210 * Validate this is an UCNA (uncorrectable no action) error by checking the
5211 * MCG_STATUS and MCi_STATUS registers:
5212 * - none of the bits for Machine Check Exceptions are set
5213 * - both the VAL (valid) and UC (uncorrectable) bits are set
5214 * MCI_STATUS_PCC - Processor Context Corrupted
5215 * MCI_STATUS_S - Signaled as a Machine Check Exception
5216 * MCI_STATUS_AR - Software recoverable Action Required
5217 */
5218 static bool is_ucna(struct kvm_x86_mce *mce)
5219 {
5220 return !mce->mcg_status &&
5221 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5222 (mce->status & MCI_STATUS_VAL) &&
5223 (mce->status & MCI_STATUS_UC);
5224 }
5225
5226 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5227 {
5228 u64 mcg_cap = vcpu->arch.mcg_cap;
5229
5230 banks[1] = mce->status;
5231 banks[2] = mce->addr;
5232 banks[3] = mce->misc;
5233 vcpu->arch.mcg_status = mce->mcg_status;
5234
5235 if (!(mcg_cap & MCG_CMCI_P) ||
5236 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5237 return 0;
5238
5239 if (lapic_in_kernel(vcpu))
5240 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5241
5242 return 0;
5243 }
5244
5245 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5246 struct kvm_x86_mce *mce)
5247 {
5248 u64 mcg_cap = vcpu->arch.mcg_cap;
5249 unsigned bank_num = mcg_cap & 0xff;
5250 u64 *banks = vcpu->arch.mce_banks;
5251
5252 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5253 return -EINVAL;
5254
5255 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5256
5257 if (is_ucna(mce))
5258 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5259
5260 /*
5261 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5262 * reporting is disabled
5263 */
5264 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5265 vcpu->arch.mcg_ctl != ~(u64)0)
5266 return 0;
5267 /*
5268 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5269 * reporting is disabled for the bank
5270 */
5271 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5272 return 0;
5273 if (mce->status & MCI_STATUS_UC) {
5274 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5275 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5276 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5277 return 0;
5278 }
5279 if (banks[1] & MCI_STATUS_VAL)
5280 mce->status |= MCI_STATUS_OVER;
5281 banks[2] = mce->addr;
5282 banks[3] = mce->misc;
5283 vcpu->arch.mcg_status = mce->mcg_status;
5284 banks[1] = mce->status;
5285 kvm_queue_exception(vcpu, MC_VECTOR);
5286 } else if (!(banks[1] & MCI_STATUS_VAL)
5287 || !(banks[1] & MCI_STATUS_UC)) {
5288 if (banks[1] & MCI_STATUS_VAL)
5289 mce->status |= MCI_STATUS_OVER;
5290 banks[2] = mce->addr;
5291 banks[3] = mce->misc;
5292 banks[1] = mce->status;
5293 } else
5294 banks[1] |= MCI_STATUS_OVER;
5295 return 0;
5296 }
5297
5298 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5299 struct kvm_vcpu_events *events)
5300 {
5301 struct kvm_queued_exception *ex;
5302
5303 process_nmi(vcpu);
5304
5305 #ifdef CONFIG_KVM_SMM
5306 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5307 process_smi(vcpu);
5308 #endif
5309
5310 /*
5311 * KVM's ABI only allows for one exception to be migrated. Luckily,
5312 * the only time there can be two queued exceptions is if there's a
5313 * non-exiting _injected_ exception, and a pending exiting exception.
5314 * In that case, ignore the VM-Exiting exception as it's an extension
5315 * of the injected exception.
5316 */
5317 if (vcpu->arch.exception_vmexit.pending &&
5318 !vcpu->arch.exception.pending &&
5319 !vcpu->arch.exception.injected)
5320 ex = &vcpu->arch.exception_vmexit;
5321 else
5322 ex = &vcpu->arch.exception;
5323
5324 /*
5325 * In guest mode, payload delivery should be deferred if the exception
5326 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5327 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5328 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5329 * propagate the payload and so it cannot be safely deferred. Deliver
5330 * the payload if the capability hasn't been requested.
5331 */
5332 if (!vcpu->kvm->arch.exception_payload_enabled &&
5333 ex->pending && ex->has_payload)
5334 kvm_deliver_exception_payload(vcpu, ex);
5335
5336 memset(events, 0, sizeof(*events));
5337
5338 /*
5339 * The API doesn't provide the instruction length for software
5340 * exceptions, so don't report them. As long as the guest RIP
5341 * isn't advanced, we should expect to encounter the exception
5342 * again.
5343 */
5344 if (!kvm_exception_is_soft(ex->vector)) {
5345 events->exception.injected = ex->injected;
5346 events->exception.pending = ex->pending;
5347 /*
5348 * For ABI compatibility, deliberately conflate
5349 * pending and injected exceptions when
5350 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5351 */
5352 if (!vcpu->kvm->arch.exception_payload_enabled)
5353 events->exception.injected |= ex->pending;
5354 }
5355 events->exception.nr = ex->vector;
5356 events->exception.has_error_code = ex->has_error_code;
5357 events->exception.error_code = ex->error_code;
5358 events->exception_has_payload = ex->has_payload;
5359 events->exception_payload = ex->payload;
5360
5361 events->interrupt.injected =
5362 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5363 events->interrupt.nr = vcpu->arch.interrupt.nr;
5364 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5365
5366 events->nmi.injected = vcpu->arch.nmi_injected;
5367 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5368 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5369
5370 /* events->sipi_vector is never valid when reporting to user space */
5371
5372 #ifdef CONFIG_KVM_SMM
5373 events->smi.smm = is_smm(vcpu);
5374 events->smi.pending = vcpu->arch.smi_pending;
5375 events->smi.smm_inside_nmi =
5376 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5377 #endif
5378 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5379
5380 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5381 | KVM_VCPUEVENT_VALID_SHADOW
5382 | KVM_VCPUEVENT_VALID_SMM);
5383 if (vcpu->kvm->arch.exception_payload_enabled)
5384 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5385 if (vcpu->kvm->arch.triple_fault_event) {
5386 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5387 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5388 }
5389 }
5390
5391 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5392 struct kvm_vcpu_events *events)
5393 {
5394 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5395 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5396 | KVM_VCPUEVENT_VALID_SHADOW
5397 | KVM_VCPUEVENT_VALID_SMM
5398 | KVM_VCPUEVENT_VALID_PAYLOAD
5399 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5400 return -EINVAL;
5401
5402 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5403 if (!vcpu->kvm->arch.exception_payload_enabled)
5404 return -EINVAL;
5405 if (events->exception.pending)
5406 events->exception.injected = 0;
5407 else
5408 events->exception_has_payload = 0;
5409 } else {
5410 events->exception.pending = 0;
5411 events->exception_has_payload = 0;
5412 }
5413
5414 if ((events->exception.injected || events->exception.pending) &&
5415 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5416 return -EINVAL;
5417
5418 /* INITs are latched while in SMM */
5419 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5420 (events->smi.smm || events->smi.pending) &&
5421 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5422 return -EINVAL;
5423
5424 process_nmi(vcpu);
5425
5426 /*
5427 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5428 * morph the exception to a VM-Exit if appropriate. Do this only for
5429 * pending exceptions, already-injected exceptions are not subject to
5430 * intercpetion. Note, userspace that conflates pending and injected
5431 * is hosed, and will incorrectly convert an injected exception into a
5432 * pending exception, which in turn may cause a spurious VM-Exit.
5433 */
5434 vcpu->arch.exception_from_userspace = events->exception.pending;
5435
5436 vcpu->arch.exception_vmexit.pending = false;
5437
5438 vcpu->arch.exception.injected = events->exception.injected;
5439 vcpu->arch.exception.pending = events->exception.pending;
5440 vcpu->arch.exception.vector = events->exception.nr;
5441 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5442 vcpu->arch.exception.error_code = events->exception.error_code;
5443 vcpu->arch.exception.has_payload = events->exception_has_payload;
5444 vcpu->arch.exception.payload = events->exception_payload;
5445
5446 vcpu->arch.interrupt.injected = events->interrupt.injected;
5447 vcpu->arch.interrupt.nr = events->interrupt.nr;
5448 vcpu->arch.interrupt.soft = events->interrupt.soft;
5449 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5450 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5451 events->interrupt.shadow);
5452
5453 vcpu->arch.nmi_injected = events->nmi.injected;
5454 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5455 vcpu->arch.nmi_pending = 0;
5456 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5457 kvm_make_request(KVM_REQ_NMI, vcpu);
5458 }
5459 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5460
5461 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5462 lapic_in_kernel(vcpu))
5463 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5464
5465 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5466 #ifdef CONFIG_KVM_SMM
5467 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5468 kvm_leave_nested(vcpu);
5469 kvm_smm_changed(vcpu, events->smi.smm);
5470 }
5471
5472 vcpu->arch.smi_pending = events->smi.pending;
5473
5474 if (events->smi.smm) {
5475 if (events->smi.smm_inside_nmi)
5476 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5477 else
5478 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5479 }
5480
5481 #else
5482 if (events->smi.smm || events->smi.pending ||
5483 events->smi.smm_inside_nmi)
5484 return -EINVAL;
5485 #endif
5486
5487 if (lapic_in_kernel(vcpu)) {
5488 if (events->smi.latched_init)
5489 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5490 else
5491 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5492 }
5493 }
5494
5495 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5496 if (!vcpu->kvm->arch.triple_fault_event)
5497 return -EINVAL;
5498 if (events->triple_fault.pending)
5499 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5500 else
5501 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5502 }
5503
5504 kvm_make_request(KVM_REQ_EVENT, vcpu);
5505
5506 return 0;
5507 }
5508
5509 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5510 struct kvm_debugregs *dbgregs)
5511 {
5512 unsigned long val;
5513
5514 memset(dbgregs, 0, sizeof(*dbgregs));
5515 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5516 kvm_get_dr(vcpu, 6, &val);
5517 dbgregs->dr6 = val;
5518 dbgregs->dr7 = vcpu->arch.dr7;
5519 }
5520
5521 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5522 struct kvm_debugregs *dbgregs)
5523 {
5524 if (dbgregs->flags)
5525 return -EINVAL;
5526
5527 if (!kvm_dr6_valid(dbgregs->dr6))
5528 return -EINVAL;
5529 if (!kvm_dr7_valid(dbgregs->dr7))
5530 return -EINVAL;
5531
5532 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5533 kvm_update_dr0123(vcpu);
5534 vcpu->arch.dr6 = dbgregs->dr6;
5535 vcpu->arch.dr7 = dbgregs->dr7;
5536 kvm_update_dr7(vcpu);
5537
5538 return 0;
5539 }
5540
5541
5542 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5543 u8 *state, unsigned int size)
5544 {
5545 /*
5546 * Only copy state for features that are enabled for the guest. The
5547 * state itself isn't problematic, but setting bits in the header for
5548 * features that are supported in *this* host but not exposed to the
5549 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5550 * compatible host without the features that are NOT exposed to the
5551 * guest.
5552 *
5553 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5554 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5555 * supported by the host.
5556 */
5557 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5558 XFEATURE_MASK_FPSSE;
5559
5560 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5561 return;
5562
5563 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5564 supported_xcr0, vcpu->arch.pkru);
5565 }
5566
5567 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5568 struct kvm_xsave *guest_xsave)
5569 {
5570 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5571 sizeof(guest_xsave->region));
5572 }
5573
5574 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5575 struct kvm_xsave *guest_xsave)
5576 {
5577 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5578 return 0;
5579
5580 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5581 guest_xsave->region,
5582 kvm_caps.supported_xcr0,
5583 &vcpu->arch.pkru);
5584 }
5585
5586 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5587 struct kvm_xcrs *guest_xcrs)
5588 {
5589 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5590 guest_xcrs->nr_xcrs = 0;
5591 return;
5592 }
5593
5594 guest_xcrs->nr_xcrs = 1;
5595 guest_xcrs->flags = 0;
5596 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5597 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5598 }
5599
5600 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5601 struct kvm_xcrs *guest_xcrs)
5602 {
5603 int i, r = 0;
5604
5605 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5606 return -EINVAL;
5607
5608 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5609 return -EINVAL;
5610
5611 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5612 /* Only support XCR0 currently */
5613 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5614 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5615 guest_xcrs->xcrs[i].value);
5616 break;
5617 }
5618 if (r)
5619 r = -EINVAL;
5620 return r;
5621 }
5622
5623 /*
5624 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5625 * stopped by the hypervisor. This function will be called from the host only.
5626 * EINVAL is returned when the host attempts to set the flag for a guest that
5627 * does not support pv clocks.
5628 */
5629 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5630 {
5631 if (!vcpu->arch.pv_time.active)
5632 return -EINVAL;
5633 vcpu->arch.pvclock_set_guest_stopped_request = true;
5634 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5635 return 0;
5636 }
5637
5638 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5639 struct kvm_device_attr *attr)
5640 {
5641 int r;
5642
5643 switch (attr->attr) {
5644 case KVM_VCPU_TSC_OFFSET:
5645 r = 0;
5646 break;
5647 default:
5648 r = -ENXIO;
5649 }
5650
5651 return r;
5652 }
5653
5654 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5655 struct kvm_device_attr *attr)
5656 {
5657 u64 __user *uaddr = kvm_get_attr_addr(attr);
5658 int r;
5659
5660 if (IS_ERR(uaddr))
5661 return PTR_ERR(uaddr);
5662
5663 switch (attr->attr) {
5664 case KVM_VCPU_TSC_OFFSET:
5665 r = -EFAULT;
5666 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5667 break;
5668 r = 0;
5669 break;
5670 default:
5671 r = -ENXIO;
5672 }
5673
5674 return r;
5675 }
5676
5677 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5678 struct kvm_device_attr *attr)
5679 {
5680 u64 __user *uaddr = kvm_get_attr_addr(attr);
5681 struct kvm *kvm = vcpu->kvm;
5682 int r;
5683
5684 if (IS_ERR(uaddr))
5685 return PTR_ERR(uaddr);
5686
5687 switch (attr->attr) {
5688 case KVM_VCPU_TSC_OFFSET: {
5689 u64 offset, tsc, ns;
5690 unsigned long flags;
5691 bool matched;
5692
5693 r = -EFAULT;
5694 if (get_user(offset, uaddr))
5695 break;
5696
5697 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5698
5699 matched = (vcpu->arch.virtual_tsc_khz &&
5700 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5701 kvm->arch.last_tsc_offset == offset);
5702
5703 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5704 ns = get_kvmclock_base_ns();
5705
5706 kvm->arch.user_set_tsc = true;
5707 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5708 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5709
5710 r = 0;
5711 break;
5712 }
5713 default:
5714 r = -ENXIO;
5715 }
5716
5717 return r;
5718 }
5719
5720 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5721 unsigned int ioctl,
5722 void __user *argp)
5723 {
5724 struct kvm_device_attr attr;
5725 int r;
5726
5727 if (copy_from_user(&attr, argp, sizeof(attr)))
5728 return -EFAULT;
5729
5730 if (attr.group != KVM_VCPU_TSC_CTRL)
5731 return -ENXIO;
5732
5733 switch (ioctl) {
5734 case KVM_HAS_DEVICE_ATTR:
5735 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5736 break;
5737 case KVM_GET_DEVICE_ATTR:
5738 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5739 break;
5740 case KVM_SET_DEVICE_ATTR:
5741 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5742 break;
5743 }
5744
5745 return r;
5746 }
5747
5748 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5749 struct kvm_enable_cap *cap)
5750 {
5751 if (cap->flags)
5752 return -EINVAL;
5753
5754 switch (cap->cap) {
5755 #ifdef CONFIG_KVM_HYPERV
5756 case KVM_CAP_HYPERV_SYNIC2:
5757 if (cap->args[0])
5758 return -EINVAL;
5759 fallthrough;
5760
5761 case KVM_CAP_HYPERV_SYNIC:
5762 if (!irqchip_in_kernel(vcpu->kvm))
5763 return -EINVAL;
5764 return kvm_hv_activate_synic(vcpu, cap->cap ==
5765 KVM_CAP_HYPERV_SYNIC2);
5766 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5767 {
5768 int r;
5769 uint16_t vmcs_version;
5770 void __user *user_ptr;
5771
5772 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5773 return -ENOTTY;
5774 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5775 if (!r) {
5776 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5777 if (copy_to_user(user_ptr, &vmcs_version,
5778 sizeof(vmcs_version)))
5779 r = -EFAULT;
5780 }
5781 return r;
5782 }
5783 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5784 if (!kvm_x86_ops.enable_l2_tlb_flush)
5785 return -ENOTTY;
5786
5787 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5788
5789 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5790 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5791 #endif
5792
5793 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5794 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5795 if (vcpu->arch.pv_cpuid.enforce)
5796 kvm_update_pv_runtime(vcpu);
5797
5798 return 0;
5799 default:
5800 return -EINVAL;
5801 }
5802 }
5803
5804 long kvm_arch_vcpu_ioctl(struct file *filp,
5805 unsigned int ioctl, unsigned long arg)
5806 {
5807 struct kvm_vcpu *vcpu = filp->private_data;
5808 void __user *argp = (void __user *)arg;
5809 int r;
5810 union {
5811 struct kvm_sregs2 *sregs2;
5812 struct kvm_lapic_state *lapic;
5813 struct kvm_xsave *xsave;
5814 struct kvm_xcrs *xcrs;
5815 void *buffer;
5816 } u;
5817
5818 vcpu_load(vcpu);
5819
5820 u.buffer = NULL;
5821 switch (ioctl) {
5822 case KVM_GET_LAPIC: {
5823 r = -EINVAL;
5824 if (!lapic_in_kernel(vcpu))
5825 goto out;
5826 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5827 GFP_KERNEL_ACCOUNT);
5828
5829 r = -ENOMEM;
5830 if (!u.lapic)
5831 goto out;
5832 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5833 if (r)
5834 goto out;
5835 r = -EFAULT;
5836 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5837 goto out;
5838 r = 0;
5839 break;
5840 }
5841 case KVM_SET_LAPIC: {
5842 r = -EINVAL;
5843 if (!lapic_in_kernel(vcpu))
5844 goto out;
5845 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5846 if (IS_ERR(u.lapic)) {
5847 r = PTR_ERR(u.lapic);
5848 goto out_nofree;
5849 }
5850
5851 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5852 break;
5853 }
5854 case KVM_INTERRUPT: {
5855 struct kvm_interrupt irq;
5856
5857 r = -EFAULT;
5858 if (copy_from_user(&irq, argp, sizeof(irq)))
5859 goto out;
5860 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5861 break;
5862 }
5863 case KVM_NMI: {
5864 r = kvm_vcpu_ioctl_nmi(vcpu);
5865 break;
5866 }
5867 case KVM_SMI: {
5868 r = kvm_inject_smi(vcpu);
5869 break;
5870 }
5871 case KVM_SET_CPUID: {
5872 struct kvm_cpuid __user *cpuid_arg = argp;
5873 struct kvm_cpuid cpuid;
5874
5875 r = -EFAULT;
5876 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5877 goto out;
5878 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5879 break;
5880 }
5881 case KVM_SET_CPUID2: {
5882 struct kvm_cpuid2 __user *cpuid_arg = argp;
5883 struct kvm_cpuid2 cpuid;
5884
5885 r = -EFAULT;
5886 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5887 goto out;
5888 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5889 cpuid_arg->entries);
5890 break;
5891 }
5892 case KVM_GET_CPUID2: {
5893 struct kvm_cpuid2 __user *cpuid_arg = argp;
5894 struct kvm_cpuid2 cpuid;
5895
5896 r = -EFAULT;
5897 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5898 goto out;
5899 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5900 cpuid_arg->entries);
5901 if (r)
5902 goto out;
5903 r = -EFAULT;
5904 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5905 goto out;
5906 r = 0;
5907 break;
5908 }
5909 case KVM_GET_MSRS: {
5910 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5911 r = msr_io(vcpu, argp, do_get_msr, 1);
5912 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5913 break;
5914 }
5915 case KVM_SET_MSRS: {
5916 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5917 r = msr_io(vcpu, argp, do_set_msr, 0);
5918 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5919 break;
5920 }
5921 case KVM_TPR_ACCESS_REPORTING: {
5922 struct kvm_tpr_access_ctl tac;
5923
5924 r = -EFAULT;
5925 if (copy_from_user(&tac, argp, sizeof(tac)))
5926 goto out;
5927 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5928 if (r)
5929 goto out;
5930 r = -EFAULT;
5931 if (copy_to_user(argp, &tac, sizeof(tac)))
5932 goto out;
5933 r = 0;
5934 break;
5935 };
5936 case KVM_SET_VAPIC_ADDR: {
5937 struct kvm_vapic_addr va;
5938 int idx;
5939
5940 r = -EINVAL;
5941 if (!lapic_in_kernel(vcpu))
5942 goto out;
5943 r = -EFAULT;
5944 if (copy_from_user(&va, argp, sizeof(va)))
5945 goto out;
5946 idx = srcu_read_lock(&vcpu->kvm->srcu);
5947 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5948 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5949 break;
5950 }
5951 case KVM_X86_SETUP_MCE: {
5952 u64 mcg_cap;
5953
5954 r = -EFAULT;
5955 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5956 goto out;
5957 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5958 break;
5959 }
5960 case KVM_X86_SET_MCE: {
5961 struct kvm_x86_mce mce;
5962
5963 r = -EFAULT;
5964 if (copy_from_user(&mce, argp, sizeof(mce)))
5965 goto out;
5966 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5967 break;
5968 }
5969 case KVM_GET_VCPU_EVENTS: {
5970 struct kvm_vcpu_events events;
5971
5972 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5973
5974 r = -EFAULT;
5975 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5976 break;
5977 r = 0;
5978 break;
5979 }
5980 case KVM_SET_VCPU_EVENTS: {
5981 struct kvm_vcpu_events events;
5982
5983 r = -EFAULT;
5984 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5985 break;
5986
5987 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5988 break;
5989 }
5990 case KVM_GET_DEBUGREGS: {
5991 struct kvm_debugregs dbgregs;
5992
5993 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5994
5995 r = -EFAULT;
5996 if (copy_to_user(argp, &dbgregs,
5997 sizeof(struct kvm_debugregs)))
5998 break;
5999 r = 0;
6000 break;
6001 }
6002 case KVM_SET_DEBUGREGS: {
6003 struct kvm_debugregs dbgregs;
6004
6005 r = -EFAULT;
6006 if (copy_from_user(&dbgregs, argp,
6007 sizeof(struct kvm_debugregs)))
6008 break;
6009
6010 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6011 break;
6012 }
6013 case KVM_GET_XSAVE: {
6014 r = -EINVAL;
6015 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6016 break;
6017
6018 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
6019 r = -ENOMEM;
6020 if (!u.xsave)
6021 break;
6022
6023 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6024
6025 r = -EFAULT;
6026 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6027 break;
6028 r = 0;
6029 break;
6030 }
6031 case KVM_SET_XSAVE: {
6032 int size = vcpu->arch.guest_fpu.uabi_size;
6033
6034 u.xsave = memdup_user(argp, size);
6035 if (IS_ERR(u.xsave)) {
6036 r = PTR_ERR(u.xsave);
6037 goto out_nofree;
6038 }
6039
6040 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6041 break;
6042 }
6043
6044 case KVM_GET_XSAVE2: {
6045 int size = vcpu->arch.guest_fpu.uabi_size;
6046
6047 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
6048 r = -ENOMEM;
6049 if (!u.xsave)
6050 break;
6051
6052 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6053
6054 r = -EFAULT;
6055 if (copy_to_user(argp, u.xsave, size))
6056 break;
6057
6058 r = 0;
6059 break;
6060 }
6061
6062 case KVM_GET_XCRS: {
6063 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6064 r = -ENOMEM;
6065 if (!u.xcrs)
6066 break;
6067
6068 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6069
6070 r = -EFAULT;
6071 if (copy_to_user(argp, u.xcrs,
6072 sizeof(struct kvm_xcrs)))
6073 break;
6074 r = 0;
6075 break;
6076 }
6077 case KVM_SET_XCRS: {
6078 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6079 if (IS_ERR(u.xcrs)) {
6080 r = PTR_ERR(u.xcrs);
6081 goto out_nofree;
6082 }
6083
6084 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6085 break;
6086 }
6087 case KVM_SET_TSC_KHZ: {
6088 u32 user_tsc_khz;
6089
6090 r = -EINVAL;
6091 user_tsc_khz = (u32)arg;
6092
6093 if (kvm_caps.has_tsc_control &&
6094 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6095 goto out;
6096
6097 if (user_tsc_khz == 0)
6098 user_tsc_khz = tsc_khz;
6099
6100 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6101 r = 0;
6102
6103 goto out;
6104 }
6105 case KVM_GET_TSC_KHZ: {
6106 r = vcpu->arch.virtual_tsc_khz;
6107 goto out;
6108 }
6109 case KVM_KVMCLOCK_CTRL: {
6110 r = kvm_set_guest_paused(vcpu);
6111 goto out;
6112 }
6113 case KVM_ENABLE_CAP: {
6114 struct kvm_enable_cap cap;
6115
6116 r = -EFAULT;
6117 if (copy_from_user(&cap, argp, sizeof(cap)))
6118 goto out;
6119 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6120 break;
6121 }
6122 case KVM_GET_NESTED_STATE: {
6123 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6124 u32 user_data_size;
6125
6126 r = -EINVAL;
6127 if (!kvm_x86_ops.nested_ops->get_state)
6128 break;
6129
6130 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6131 r = -EFAULT;
6132 if (get_user(user_data_size, &user_kvm_nested_state->size))
6133 break;
6134
6135 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6136 user_data_size);
6137 if (r < 0)
6138 break;
6139
6140 if (r > user_data_size) {
6141 if (put_user(r, &user_kvm_nested_state->size))
6142 r = -EFAULT;
6143 else
6144 r = -E2BIG;
6145 break;
6146 }
6147
6148 r = 0;
6149 break;
6150 }
6151 case KVM_SET_NESTED_STATE: {
6152 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6153 struct kvm_nested_state kvm_state;
6154 int idx;
6155
6156 r = -EINVAL;
6157 if (!kvm_x86_ops.nested_ops->set_state)
6158 break;
6159
6160 r = -EFAULT;
6161 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6162 break;
6163
6164 r = -EINVAL;
6165 if (kvm_state.size < sizeof(kvm_state))
6166 break;
6167
6168 if (kvm_state.flags &
6169 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6170 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6171 | KVM_STATE_NESTED_GIF_SET))
6172 break;
6173
6174 /* nested_run_pending implies guest_mode. */
6175 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6176 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6177 break;
6178
6179 idx = srcu_read_lock(&vcpu->kvm->srcu);
6180 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6181 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6182 break;
6183 }
6184 #ifdef CONFIG_KVM_HYPERV
6185 case KVM_GET_SUPPORTED_HV_CPUID:
6186 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6187 break;
6188 #endif
6189 #ifdef CONFIG_KVM_XEN
6190 case KVM_XEN_VCPU_GET_ATTR: {
6191 struct kvm_xen_vcpu_attr xva;
6192
6193 r = -EFAULT;
6194 if (copy_from_user(&xva, argp, sizeof(xva)))
6195 goto out;
6196 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6197 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6198 r = -EFAULT;
6199 break;
6200 }
6201 case KVM_XEN_VCPU_SET_ATTR: {
6202 struct kvm_xen_vcpu_attr xva;
6203
6204 r = -EFAULT;
6205 if (copy_from_user(&xva, argp, sizeof(xva)))
6206 goto out;
6207 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6208 break;
6209 }
6210 #endif
6211 case KVM_GET_SREGS2: {
6212 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6213 r = -ENOMEM;
6214 if (!u.sregs2)
6215 goto out;
6216 __get_sregs2(vcpu, u.sregs2);
6217 r = -EFAULT;
6218 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6219 goto out;
6220 r = 0;
6221 break;
6222 }
6223 case KVM_SET_SREGS2: {
6224 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6225 if (IS_ERR(u.sregs2)) {
6226 r = PTR_ERR(u.sregs2);
6227 u.sregs2 = NULL;
6228 goto out;
6229 }
6230 r = __set_sregs2(vcpu, u.sregs2);
6231 break;
6232 }
6233 case KVM_HAS_DEVICE_ATTR:
6234 case KVM_GET_DEVICE_ATTR:
6235 case KVM_SET_DEVICE_ATTR:
6236 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6237 break;
6238 default:
6239 r = -EINVAL;
6240 }
6241 out:
6242 kfree(u.buffer);
6243 out_nofree:
6244 vcpu_put(vcpu);
6245 return r;
6246 }
6247
6248 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6249 {
6250 return VM_FAULT_SIGBUS;
6251 }
6252
6253 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6254 {
6255 int ret;
6256
6257 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6258 return -EINVAL;
6259 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6260 return ret;
6261 }
6262
6263 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6264 u64 ident_addr)
6265 {
6266 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6267 }
6268
6269 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6270 unsigned long kvm_nr_mmu_pages)
6271 {
6272 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6273 return -EINVAL;
6274
6275 mutex_lock(&kvm->slots_lock);
6276
6277 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6278 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6279
6280 mutex_unlock(&kvm->slots_lock);
6281 return 0;
6282 }
6283
6284 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6285 {
6286 struct kvm_pic *pic = kvm->arch.vpic;
6287 int r;
6288
6289 r = 0;
6290 switch (chip->chip_id) {
6291 case KVM_IRQCHIP_PIC_MASTER:
6292 memcpy(&chip->chip.pic, &pic->pics[0],
6293 sizeof(struct kvm_pic_state));
6294 break;
6295 case KVM_IRQCHIP_PIC_SLAVE:
6296 memcpy(&chip->chip.pic, &pic->pics[1],
6297 sizeof(struct kvm_pic_state));
6298 break;
6299 case KVM_IRQCHIP_IOAPIC:
6300 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6301 break;
6302 default:
6303 r = -EINVAL;
6304 break;
6305 }
6306 return r;
6307 }
6308
6309 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6310 {
6311 struct kvm_pic *pic = kvm->arch.vpic;
6312 int r;
6313
6314 r = 0;
6315 switch (chip->chip_id) {
6316 case KVM_IRQCHIP_PIC_MASTER:
6317 spin_lock(&pic->lock);
6318 memcpy(&pic->pics[0], &chip->chip.pic,
6319 sizeof(struct kvm_pic_state));
6320 spin_unlock(&pic->lock);
6321 break;
6322 case KVM_IRQCHIP_PIC_SLAVE:
6323 spin_lock(&pic->lock);
6324 memcpy(&pic->pics[1], &chip->chip.pic,
6325 sizeof(struct kvm_pic_state));
6326 spin_unlock(&pic->lock);
6327 break;
6328 case KVM_IRQCHIP_IOAPIC:
6329 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6330 break;
6331 default:
6332 r = -EINVAL;
6333 break;
6334 }
6335 kvm_pic_update_irq(pic);
6336 return r;
6337 }
6338
6339 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6340 {
6341 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6342
6343 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6344
6345 mutex_lock(&kps->lock);
6346 memcpy(ps, &kps->channels, sizeof(*ps));
6347 mutex_unlock(&kps->lock);
6348 return 0;
6349 }
6350
6351 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6352 {
6353 int i;
6354 struct kvm_pit *pit = kvm->arch.vpit;
6355
6356 mutex_lock(&pit->pit_state.lock);
6357 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6358 for (i = 0; i < 3; i++)
6359 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6360 mutex_unlock(&pit->pit_state.lock);
6361 return 0;
6362 }
6363
6364 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6365 {
6366 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6367 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6368 sizeof(ps->channels));
6369 ps->flags = kvm->arch.vpit->pit_state.flags;
6370 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6371 memset(&ps->reserved, 0, sizeof(ps->reserved));
6372 return 0;
6373 }
6374
6375 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6376 {
6377 int start = 0;
6378 int i;
6379 u32 prev_legacy, cur_legacy;
6380 struct kvm_pit *pit = kvm->arch.vpit;
6381
6382 mutex_lock(&pit->pit_state.lock);
6383 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6384 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6385 if (!prev_legacy && cur_legacy)
6386 start = 1;
6387 memcpy(&pit->pit_state.channels, &ps->channels,
6388 sizeof(pit->pit_state.channels));
6389 pit->pit_state.flags = ps->flags;
6390 for (i = 0; i < 3; i++)
6391 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6392 start && i == 0);
6393 mutex_unlock(&pit->pit_state.lock);
6394 return 0;
6395 }
6396
6397 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6398 struct kvm_reinject_control *control)
6399 {
6400 struct kvm_pit *pit = kvm->arch.vpit;
6401
6402 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6403 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6404 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6405 */
6406 mutex_lock(&pit->pit_state.lock);
6407 kvm_pit_set_reinject(pit, control->pit_reinject);
6408 mutex_unlock(&pit->pit_state.lock);
6409
6410 return 0;
6411 }
6412
6413 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6414 {
6415
6416 /*
6417 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6418 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6419 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6420 * VM-Exit.
6421 */
6422 struct kvm_vcpu *vcpu;
6423 unsigned long i;
6424
6425 if (!kvm_x86_ops.cpu_dirty_log_size)
6426 return;
6427
6428 kvm_for_each_vcpu(i, vcpu, kvm)
6429 kvm_vcpu_kick(vcpu);
6430 }
6431
6432 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6433 bool line_status)
6434 {
6435 if (!irqchip_in_kernel(kvm))
6436 return -ENXIO;
6437
6438 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6439 irq_event->irq, irq_event->level,
6440 line_status);
6441 return 0;
6442 }
6443
6444 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6445 struct kvm_enable_cap *cap)
6446 {
6447 int r;
6448
6449 if (cap->flags)
6450 return -EINVAL;
6451
6452 switch (cap->cap) {
6453 case KVM_CAP_DISABLE_QUIRKS2:
6454 r = -EINVAL;
6455 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6456 break;
6457 fallthrough;
6458 case KVM_CAP_DISABLE_QUIRKS:
6459 kvm->arch.disabled_quirks = cap->args[0];
6460 r = 0;
6461 break;
6462 case KVM_CAP_SPLIT_IRQCHIP: {
6463 mutex_lock(&kvm->lock);
6464 r = -EINVAL;
6465 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6466 goto split_irqchip_unlock;
6467 r = -EEXIST;
6468 if (irqchip_in_kernel(kvm))
6469 goto split_irqchip_unlock;
6470 if (kvm->created_vcpus)
6471 goto split_irqchip_unlock;
6472 r = kvm_setup_empty_irq_routing(kvm);
6473 if (r)
6474 goto split_irqchip_unlock;
6475 /* Pairs with irqchip_in_kernel. */
6476 smp_wmb();
6477 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6478 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6479 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6480 r = 0;
6481 split_irqchip_unlock:
6482 mutex_unlock(&kvm->lock);
6483 break;
6484 }
6485 case KVM_CAP_X2APIC_API:
6486 r = -EINVAL;
6487 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6488 break;
6489
6490 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6491 kvm->arch.x2apic_format = true;
6492 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6493 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6494
6495 r = 0;
6496 break;
6497 case KVM_CAP_X86_DISABLE_EXITS:
6498 r = -EINVAL;
6499 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6500 break;
6501
6502 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6503 kvm->arch.pause_in_guest = true;
6504
6505 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6506 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6507
6508 if (!mitigate_smt_rsb) {
6509 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6510 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6511 pr_warn_once(SMT_RSB_MSG);
6512
6513 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6514 kvm_can_mwait_in_guest())
6515 kvm->arch.mwait_in_guest = true;
6516 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6517 kvm->arch.hlt_in_guest = true;
6518 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6519 kvm->arch.cstate_in_guest = true;
6520 }
6521
6522 r = 0;
6523 break;
6524 case KVM_CAP_MSR_PLATFORM_INFO:
6525 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6526 r = 0;
6527 break;
6528 case KVM_CAP_EXCEPTION_PAYLOAD:
6529 kvm->arch.exception_payload_enabled = cap->args[0];
6530 r = 0;
6531 break;
6532 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6533 kvm->arch.triple_fault_event = cap->args[0];
6534 r = 0;
6535 break;
6536 case KVM_CAP_X86_USER_SPACE_MSR:
6537 r = -EINVAL;
6538 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6539 break;
6540 kvm->arch.user_space_msr_mask = cap->args[0];
6541 r = 0;
6542 break;
6543 case KVM_CAP_X86_BUS_LOCK_EXIT:
6544 r = -EINVAL;
6545 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6546 break;
6547
6548 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6549 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6550 break;
6551
6552 if (kvm_caps.has_bus_lock_exit &&
6553 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6554 kvm->arch.bus_lock_detection_enabled = true;
6555 r = 0;
6556 break;
6557 #ifdef CONFIG_X86_SGX_KVM
6558 case KVM_CAP_SGX_ATTRIBUTE: {
6559 unsigned long allowed_attributes = 0;
6560
6561 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6562 if (r)
6563 break;
6564
6565 /* KVM only supports the PROVISIONKEY privileged attribute. */
6566 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6567 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6568 kvm->arch.sgx_provisioning_allowed = true;
6569 else
6570 r = -EINVAL;
6571 break;
6572 }
6573 #endif
6574 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6575 r = -EINVAL;
6576 if (!kvm_x86_ops.vm_copy_enc_context_from)
6577 break;
6578
6579 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6580 break;
6581 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6582 r = -EINVAL;
6583 if (!kvm_x86_ops.vm_move_enc_context_from)
6584 break;
6585
6586 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6587 break;
6588 case KVM_CAP_EXIT_HYPERCALL:
6589 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6590 r = -EINVAL;
6591 break;
6592 }
6593 kvm->arch.hypercall_exit_enabled = cap->args[0];
6594 r = 0;
6595 break;
6596 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6597 r = -EINVAL;
6598 if (cap->args[0] & ~1)
6599 break;
6600 kvm->arch.exit_on_emulation_error = cap->args[0];
6601 r = 0;
6602 break;
6603 case KVM_CAP_PMU_CAPABILITY:
6604 r = -EINVAL;
6605 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6606 break;
6607
6608 mutex_lock(&kvm->lock);
6609 if (!kvm->created_vcpus) {
6610 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6611 r = 0;
6612 }
6613 mutex_unlock(&kvm->lock);
6614 break;
6615 case KVM_CAP_MAX_VCPU_ID:
6616 r = -EINVAL;
6617 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6618 break;
6619
6620 mutex_lock(&kvm->lock);
6621 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6622 r = 0;
6623 } else if (!kvm->arch.max_vcpu_ids) {
6624 kvm->arch.max_vcpu_ids = cap->args[0];
6625 r = 0;
6626 }
6627 mutex_unlock(&kvm->lock);
6628 break;
6629 case KVM_CAP_X86_NOTIFY_VMEXIT:
6630 r = -EINVAL;
6631 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6632 break;
6633 if (!kvm_caps.has_notify_vmexit)
6634 break;
6635 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6636 break;
6637 mutex_lock(&kvm->lock);
6638 if (!kvm->created_vcpus) {
6639 kvm->arch.notify_window = cap->args[0] >> 32;
6640 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6641 r = 0;
6642 }
6643 mutex_unlock(&kvm->lock);
6644 break;
6645 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6646 r = -EINVAL;
6647
6648 /*
6649 * Since the risk of disabling NX hugepages is a guest crashing
6650 * the system, ensure the userspace process has permission to
6651 * reboot the system.
6652 *
6653 * Note that unlike the reboot() syscall, the process must have
6654 * this capability in the root namespace because exposing
6655 * /dev/kvm into a container does not limit the scope of the
6656 * iTLB multihit bug to that container. In other words,
6657 * this must use capable(), not ns_capable().
6658 */
6659 if (!capable(CAP_SYS_BOOT)) {
6660 r = -EPERM;
6661 break;
6662 }
6663
6664 if (cap->args[0])
6665 break;
6666
6667 mutex_lock(&kvm->lock);
6668 if (!kvm->created_vcpus) {
6669 kvm->arch.disable_nx_huge_pages = true;
6670 r = 0;
6671 }
6672 mutex_unlock(&kvm->lock);
6673 break;
6674 default:
6675 r = -EINVAL;
6676 break;
6677 }
6678 return r;
6679 }
6680
6681 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6682 {
6683 struct kvm_x86_msr_filter *msr_filter;
6684
6685 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6686 if (!msr_filter)
6687 return NULL;
6688
6689 msr_filter->default_allow = default_allow;
6690 return msr_filter;
6691 }
6692
6693 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6694 {
6695 u32 i;
6696
6697 if (!msr_filter)
6698 return;
6699
6700 for (i = 0; i < msr_filter->count; i++)
6701 kfree(msr_filter->ranges[i].bitmap);
6702
6703 kfree(msr_filter);
6704 }
6705
6706 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6707 struct kvm_msr_filter_range *user_range)
6708 {
6709 unsigned long *bitmap;
6710 size_t bitmap_size;
6711
6712 if (!user_range->nmsrs)
6713 return 0;
6714
6715 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6716 return -EINVAL;
6717
6718 if (!user_range->flags)
6719 return -EINVAL;
6720
6721 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6722 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6723 return -EINVAL;
6724
6725 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6726 if (IS_ERR(bitmap))
6727 return PTR_ERR(bitmap);
6728
6729 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6730 .flags = user_range->flags,
6731 .base = user_range->base,
6732 .nmsrs = user_range->nmsrs,
6733 .bitmap = bitmap,
6734 };
6735
6736 msr_filter->count++;
6737 return 0;
6738 }
6739
6740 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6741 struct kvm_msr_filter *filter)
6742 {
6743 struct kvm_x86_msr_filter *new_filter, *old_filter;
6744 bool default_allow;
6745 bool empty = true;
6746 int r;
6747 u32 i;
6748
6749 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6750 return -EINVAL;
6751
6752 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6753 empty &= !filter->ranges[i].nmsrs;
6754
6755 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6756 if (empty && !default_allow)
6757 return -EINVAL;
6758
6759 new_filter = kvm_alloc_msr_filter(default_allow);
6760 if (!new_filter)
6761 return -ENOMEM;
6762
6763 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6764 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6765 if (r) {
6766 kvm_free_msr_filter(new_filter);
6767 return r;
6768 }
6769 }
6770
6771 mutex_lock(&kvm->lock);
6772 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6773 mutex_is_locked(&kvm->lock));
6774 mutex_unlock(&kvm->lock);
6775 synchronize_srcu(&kvm->srcu);
6776
6777 kvm_free_msr_filter(old_filter);
6778
6779 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6780
6781 return 0;
6782 }
6783
6784 #ifdef CONFIG_KVM_COMPAT
6785 /* for KVM_X86_SET_MSR_FILTER */
6786 struct kvm_msr_filter_range_compat {
6787 __u32 flags;
6788 __u32 nmsrs;
6789 __u32 base;
6790 __u32 bitmap;
6791 };
6792
6793 struct kvm_msr_filter_compat {
6794 __u32 flags;
6795 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6796 };
6797
6798 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6799
6800 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6801 unsigned long arg)
6802 {
6803 void __user *argp = (void __user *)arg;
6804 struct kvm *kvm = filp->private_data;
6805 long r = -ENOTTY;
6806
6807 switch (ioctl) {
6808 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6809 struct kvm_msr_filter __user *user_msr_filter = argp;
6810 struct kvm_msr_filter_compat filter_compat;
6811 struct kvm_msr_filter filter;
6812 int i;
6813
6814 if (copy_from_user(&filter_compat, user_msr_filter,
6815 sizeof(filter_compat)))
6816 return -EFAULT;
6817
6818 filter.flags = filter_compat.flags;
6819 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6820 struct kvm_msr_filter_range_compat *cr;
6821
6822 cr = &filter_compat.ranges[i];
6823 filter.ranges[i] = (struct kvm_msr_filter_range) {
6824 .flags = cr->flags,
6825 .nmsrs = cr->nmsrs,
6826 .base = cr->base,
6827 .bitmap = (__u8 *)(ulong)cr->bitmap,
6828 };
6829 }
6830
6831 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6832 break;
6833 }
6834 }
6835
6836 return r;
6837 }
6838 #endif
6839
6840 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6841 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6842 {
6843 struct kvm_vcpu *vcpu;
6844 unsigned long i;
6845 int ret = 0;
6846
6847 mutex_lock(&kvm->lock);
6848 kvm_for_each_vcpu(i, vcpu, kvm) {
6849 if (!vcpu->arch.pv_time.active)
6850 continue;
6851
6852 ret = kvm_set_guest_paused(vcpu);
6853 if (ret) {
6854 kvm_err("Failed to pause guest VCPU%d: %d\n",
6855 vcpu->vcpu_id, ret);
6856 break;
6857 }
6858 }
6859 mutex_unlock(&kvm->lock);
6860
6861 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6862 }
6863
6864 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6865 {
6866 switch (state) {
6867 case PM_HIBERNATION_PREPARE:
6868 case PM_SUSPEND_PREPARE:
6869 return kvm_arch_suspend_notifier(kvm);
6870 }
6871
6872 return NOTIFY_DONE;
6873 }
6874 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6875
6876 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6877 {
6878 struct kvm_clock_data data = { 0 };
6879
6880 get_kvmclock(kvm, &data);
6881 if (copy_to_user(argp, &data, sizeof(data)))
6882 return -EFAULT;
6883
6884 return 0;
6885 }
6886
6887 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6888 {
6889 struct kvm_arch *ka = &kvm->arch;
6890 struct kvm_clock_data data;
6891 u64 now_raw_ns;
6892
6893 if (copy_from_user(&data, argp, sizeof(data)))
6894 return -EFAULT;
6895
6896 /*
6897 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6898 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6899 */
6900 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6901 return -EINVAL;
6902
6903 kvm_hv_request_tsc_page_update(kvm);
6904 kvm_start_pvclock_update(kvm);
6905 pvclock_update_vm_gtod_copy(kvm);
6906
6907 /*
6908 * This pairs with kvm_guest_time_update(): when masterclock is
6909 * in use, we use master_kernel_ns + kvmclock_offset to set
6910 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6911 * is slightly ahead) here we risk going negative on unsigned
6912 * 'system_time' when 'data.clock' is very small.
6913 */
6914 if (data.flags & KVM_CLOCK_REALTIME) {
6915 u64 now_real_ns = ktime_get_real_ns();
6916
6917 /*
6918 * Avoid stepping the kvmclock backwards.
6919 */
6920 if (now_real_ns > data.realtime)
6921 data.clock += now_real_ns - data.realtime;
6922 }
6923
6924 if (ka->use_master_clock)
6925 now_raw_ns = ka->master_kernel_ns;
6926 else
6927 now_raw_ns = get_kvmclock_base_ns();
6928 ka->kvmclock_offset = data.clock - now_raw_ns;
6929 kvm_end_pvclock_update(kvm);
6930 return 0;
6931 }
6932
6933 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6934 {
6935 struct kvm *kvm = filp->private_data;
6936 void __user *argp = (void __user *)arg;
6937 int r = -ENOTTY;
6938 /*
6939 * This union makes it completely explicit to gcc-3.x
6940 * that these two variables' stack usage should be
6941 * combined, not added together.
6942 */
6943 union {
6944 struct kvm_pit_state ps;
6945 struct kvm_pit_state2 ps2;
6946 struct kvm_pit_config pit_config;
6947 } u;
6948
6949 switch (ioctl) {
6950 case KVM_SET_TSS_ADDR:
6951 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6952 break;
6953 case KVM_SET_IDENTITY_MAP_ADDR: {
6954 u64 ident_addr;
6955
6956 mutex_lock(&kvm->lock);
6957 r = -EINVAL;
6958 if (kvm->created_vcpus)
6959 goto set_identity_unlock;
6960 r = -EFAULT;
6961 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6962 goto set_identity_unlock;
6963 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6964 set_identity_unlock:
6965 mutex_unlock(&kvm->lock);
6966 break;
6967 }
6968 case KVM_SET_NR_MMU_PAGES:
6969 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6970 break;
6971 case KVM_CREATE_IRQCHIP: {
6972 mutex_lock(&kvm->lock);
6973
6974 r = -EEXIST;
6975 if (irqchip_in_kernel(kvm))
6976 goto create_irqchip_unlock;
6977
6978 r = -EINVAL;
6979 if (kvm->created_vcpus)
6980 goto create_irqchip_unlock;
6981
6982 r = kvm_pic_init(kvm);
6983 if (r)
6984 goto create_irqchip_unlock;
6985
6986 r = kvm_ioapic_init(kvm);
6987 if (r) {
6988 kvm_pic_destroy(kvm);
6989 goto create_irqchip_unlock;
6990 }
6991
6992 r = kvm_setup_default_irq_routing(kvm);
6993 if (r) {
6994 kvm_ioapic_destroy(kvm);
6995 kvm_pic_destroy(kvm);
6996 goto create_irqchip_unlock;
6997 }
6998 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6999 smp_wmb();
7000 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7001 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7002 create_irqchip_unlock:
7003 mutex_unlock(&kvm->lock);
7004 break;
7005 }
7006 case KVM_CREATE_PIT:
7007 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7008 goto create_pit;
7009 case KVM_CREATE_PIT2:
7010 r = -EFAULT;
7011 if (copy_from_user(&u.pit_config, argp,
7012 sizeof(struct kvm_pit_config)))
7013 goto out;
7014 create_pit:
7015 mutex_lock(&kvm->lock);
7016 r = -EEXIST;
7017 if (kvm->arch.vpit)
7018 goto create_pit_unlock;
7019 r = -ENOMEM;
7020 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7021 if (kvm->arch.vpit)
7022 r = 0;
7023 create_pit_unlock:
7024 mutex_unlock(&kvm->lock);
7025 break;
7026 case KVM_GET_IRQCHIP: {
7027 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7028 struct kvm_irqchip *chip;
7029
7030 chip = memdup_user(argp, sizeof(*chip));
7031 if (IS_ERR(chip)) {
7032 r = PTR_ERR(chip);
7033 goto out;
7034 }
7035
7036 r = -ENXIO;
7037 if (!irqchip_kernel(kvm))
7038 goto get_irqchip_out;
7039 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7040 if (r)
7041 goto get_irqchip_out;
7042 r = -EFAULT;
7043 if (copy_to_user(argp, chip, sizeof(*chip)))
7044 goto get_irqchip_out;
7045 r = 0;
7046 get_irqchip_out:
7047 kfree(chip);
7048 break;
7049 }
7050 case KVM_SET_IRQCHIP: {
7051 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7052 struct kvm_irqchip *chip;
7053
7054 chip = memdup_user(argp, sizeof(*chip));
7055 if (IS_ERR(chip)) {
7056 r = PTR_ERR(chip);
7057 goto out;
7058 }
7059
7060 r = -ENXIO;
7061 if (!irqchip_kernel(kvm))
7062 goto set_irqchip_out;
7063 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7064 set_irqchip_out:
7065 kfree(chip);
7066 break;
7067 }
7068 case KVM_GET_PIT: {
7069 r = -EFAULT;
7070 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7071 goto out;
7072 r = -ENXIO;
7073 if (!kvm->arch.vpit)
7074 goto out;
7075 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7076 if (r)
7077 goto out;
7078 r = -EFAULT;
7079 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7080 goto out;
7081 r = 0;
7082 break;
7083 }
7084 case KVM_SET_PIT: {
7085 r = -EFAULT;
7086 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7087 goto out;
7088 mutex_lock(&kvm->lock);
7089 r = -ENXIO;
7090 if (!kvm->arch.vpit)
7091 goto set_pit_out;
7092 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7093 set_pit_out:
7094 mutex_unlock(&kvm->lock);
7095 break;
7096 }
7097 case KVM_GET_PIT2: {
7098 r = -ENXIO;
7099 if (!kvm->arch.vpit)
7100 goto out;
7101 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7102 if (r)
7103 goto out;
7104 r = -EFAULT;
7105 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7106 goto out;
7107 r = 0;
7108 break;
7109 }
7110 case KVM_SET_PIT2: {
7111 r = -EFAULT;
7112 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7113 goto out;
7114 mutex_lock(&kvm->lock);
7115 r = -ENXIO;
7116 if (!kvm->arch.vpit)
7117 goto set_pit2_out;
7118 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7119 set_pit2_out:
7120 mutex_unlock(&kvm->lock);
7121 break;
7122 }
7123 case KVM_REINJECT_CONTROL: {
7124 struct kvm_reinject_control control;
7125 r = -EFAULT;
7126 if (copy_from_user(&control, argp, sizeof(control)))
7127 goto out;
7128 r = -ENXIO;
7129 if (!kvm->arch.vpit)
7130 goto out;
7131 r = kvm_vm_ioctl_reinject(kvm, &control);
7132 break;
7133 }
7134 case KVM_SET_BOOT_CPU_ID:
7135 r = 0;
7136 mutex_lock(&kvm->lock);
7137 if (kvm->created_vcpus)
7138 r = -EBUSY;
7139 else
7140 kvm->arch.bsp_vcpu_id = arg;
7141 mutex_unlock(&kvm->lock);
7142 break;
7143 #ifdef CONFIG_KVM_XEN
7144 case KVM_XEN_HVM_CONFIG: {
7145 struct kvm_xen_hvm_config xhc;
7146 r = -EFAULT;
7147 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7148 goto out;
7149 r = kvm_xen_hvm_config(kvm, &xhc);
7150 break;
7151 }
7152 case KVM_XEN_HVM_GET_ATTR: {
7153 struct kvm_xen_hvm_attr xha;
7154
7155 r = -EFAULT;
7156 if (copy_from_user(&xha, argp, sizeof(xha)))
7157 goto out;
7158 r = kvm_xen_hvm_get_attr(kvm, &xha);
7159 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7160 r = -EFAULT;
7161 break;
7162 }
7163 case KVM_XEN_HVM_SET_ATTR: {
7164 struct kvm_xen_hvm_attr xha;
7165
7166 r = -EFAULT;
7167 if (copy_from_user(&xha, argp, sizeof(xha)))
7168 goto out;
7169 r = kvm_xen_hvm_set_attr(kvm, &xha);
7170 break;
7171 }
7172 case KVM_XEN_HVM_EVTCHN_SEND: {
7173 struct kvm_irq_routing_xen_evtchn uxe;
7174
7175 r = -EFAULT;
7176 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7177 goto out;
7178 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7179 break;
7180 }
7181 #endif
7182 case KVM_SET_CLOCK:
7183 r = kvm_vm_ioctl_set_clock(kvm, argp);
7184 break;
7185 case KVM_GET_CLOCK:
7186 r = kvm_vm_ioctl_get_clock(kvm, argp);
7187 break;
7188 case KVM_SET_TSC_KHZ: {
7189 u32 user_tsc_khz;
7190
7191 r = -EINVAL;
7192 user_tsc_khz = (u32)arg;
7193
7194 if (kvm_caps.has_tsc_control &&
7195 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7196 goto out;
7197
7198 if (user_tsc_khz == 0)
7199 user_tsc_khz = tsc_khz;
7200
7201 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7202 r = 0;
7203
7204 goto out;
7205 }
7206 case KVM_GET_TSC_KHZ: {
7207 r = READ_ONCE(kvm->arch.default_tsc_khz);
7208 goto out;
7209 }
7210 case KVM_MEMORY_ENCRYPT_OP: {
7211 r = -ENOTTY;
7212 if (!kvm_x86_ops.mem_enc_ioctl)
7213 goto out;
7214
7215 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7216 break;
7217 }
7218 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7219 struct kvm_enc_region region;
7220
7221 r = -EFAULT;
7222 if (copy_from_user(&region, argp, sizeof(region)))
7223 goto out;
7224
7225 r = -ENOTTY;
7226 if (!kvm_x86_ops.mem_enc_register_region)
7227 goto out;
7228
7229 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7230 break;
7231 }
7232 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7233 struct kvm_enc_region region;
7234
7235 r = -EFAULT;
7236 if (copy_from_user(&region, argp, sizeof(region)))
7237 goto out;
7238
7239 r = -ENOTTY;
7240 if (!kvm_x86_ops.mem_enc_unregister_region)
7241 goto out;
7242
7243 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7244 break;
7245 }
7246 #ifdef CONFIG_KVM_HYPERV
7247 case KVM_HYPERV_EVENTFD: {
7248 struct kvm_hyperv_eventfd hvevfd;
7249
7250 r = -EFAULT;
7251 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7252 goto out;
7253 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7254 break;
7255 }
7256 #endif
7257 case KVM_SET_PMU_EVENT_FILTER:
7258 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7259 break;
7260 case KVM_X86_SET_MSR_FILTER: {
7261 struct kvm_msr_filter __user *user_msr_filter = argp;
7262 struct kvm_msr_filter filter;
7263
7264 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7265 return -EFAULT;
7266
7267 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7268 break;
7269 }
7270 default:
7271 r = -ENOTTY;
7272 }
7273 out:
7274 return r;
7275 }
7276
7277 static void kvm_probe_feature_msr(u32 msr_index)
7278 {
7279 struct kvm_msr_entry msr = {
7280 .index = msr_index,
7281 };
7282
7283 if (kvm_get_msr_feature(&msr))
7284 return;
7285
7286 msr_based_features[num_msr_based_features++] = msr_index;
7287 }
7288
7289 static void kvm_probe_msr_to_save(u32 msr_index)
7290 {
7291 u32 dummy[2];
7292
7293 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7294 return;
7295
7296 /*
7297 * Even MSRs that are valid in the host may not be exposed to guests in
7298 * some cases.
7299 */
7300 switch (msr_index) {
7301 case MSR_IA32_BNDCFGS:
7302 if (!kvm_mpx_supported())
7303 return;
7304 break;
7305 case MSR_TSC_AUX:
7306 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7307 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7308 return;
7309 break;
7310 case MSR_IA32_UMWAIT_CONTROL:
7311 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7312 return;
7313 break;
7314 case MSR_IA32_RTIT_CTL:
7315 case MSR_IA32_RTIT_STATUS:
7316 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7317 return;
7318 break;
7319 case MSR_IA32_RTIT_CR3_MATCH:
7320 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7321 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7322 return;
7323 break;
7324 case MSR_IA32_RTIT_OUTPUT_BASE:
7325 case MSR_IA32_RTIT_OUTPUT_MASK:
7326 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7327 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7328 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7329 return;
7330 break;
7331 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7332 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7333 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7334 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7335 return;
7336 break;
7337 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7338 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7339 kvm_pmu_cap.num_counters_gp)
7340 return;
7341 break;
7342 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7343 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7344 kvm_pmu_cap.num_counters_gp)
7345 return;
7346 break;
7347 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7348 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7349 kvm_pmu_cap.num_counters_fixed)
7350 return;
7351 break;
7352 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7353 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7354 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7355 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7356 return;
7357 break;
7358 case MSR_IA32_XFD:
7359 case MSR_IA32_XFD_ERR:
7360 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7361 return;
7362 break;
7363 case MSR_IA32_TSX_CTRL:
7364 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7365 return;
7366 break;
7367 default:
7368 break;
7369 }
7370
7371 msrs_to_save[num_msrs_to_save++] = msr_index;
7372 }
7373
7374 static void kvm_init_msr_lists(void)
7375 {
7376 unsigned i;
7377
7378 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7379 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7380
7381 num_msrs_to_save = 0;
7382 num_emulated_msrs = 0;
7383 num_msr_based_features = 0;
7384
7385 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7386 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7387
7388 if (enable_pmu) {
7389 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7390 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7391 }
7392
7393 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7394 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7395 continue;
7396
7397 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7398 }
7399
7400 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7401 kvm_probe_feature_msr(i);
7402
7403 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7404 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7405 }
7406
7407 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7408 const void *v)
7409 {
7410 int handled = 0;
7411 int n;
7412
7413 do {
7414 n = min(len, 8);
7415 if (!(lapic_in_kernel(vcpu) &&
7416 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7417 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7418 break;
7419 handled += n;
7420 addr += n;
7421 len -= n;
7422 v += n;
7423 } while (len);
7424
7425 return handled;
7426 }
7427
7428 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7429 {
7430 int handled = 0;
7431 int n;
7432
7433 do {
7434 n = min(len, 8);
7435 if (!(lapic_in_kernel(vcpu) &&
7436 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7437 addr, n, v))
7438 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7439 break;
7440 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7441 handled += n;
7442 addr += n;
7443 len -= n;
7444 v += n;
7445 } while (len);
7446
7447 return handled;
7448 }
7449
7450 void kvm_set_segment(struct kvm_vcpu *vcpu,
7451 struct kvm_segment *var, int seg)
7452 {
7453 static_call(kvm_x86_set_segment)(vcpu, var, seg);
7454 }
7455
7456 void kvm_get_segment(struct kvm_vcpu *vcpu,
7457 struct kvm_segment *var, int seg)
7458 {
7459 static_call(kvm_x86_get_segment)(vcpu, var, seg);
7460 }
7461
7462 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7463 struct x86_exception *exception)
7464 {
7465 struct kvm_mmu *mmu = vcpu->arch.mmu;
7466 gpa_t t_gpa;
7467
7468 BUG_ON(!mmu_is_nested(vcpu));
7469
7470 /* NPT walks are always user-walks */
7471 access |= PFERR_USER_MASK;
7472 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7473
7474 return t_gpa;
7475 }
7476
7477 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7478 struct x86_exception *exception)
7479 {
7480 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7481
7482 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7483 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7484 }
7485 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7486
7487 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7488 struct x86_exception *exception)
7489 {
7490 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7491
7492 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7493 access |= PFERR_WRITE_MASK;
7494 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7495 }
7496 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7497
7498 /* uses this to access any guest's mapped memory without checking CPL */
7499 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7500 struct x86_exception *exception)
7501 {
7502 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7503
7504 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7505 }
7506
7507 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7508 struct kvm_vcpu *vcpu, u64 access,
7509 struct x86_exception *exception)
7510 {
7511 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7512 void *data = val;
7513 int r = X86EMUL_CONTINUE;
7514
7515 while (bytes) {
7516 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7517 unsigned offset = addr & (PAGE_SIZE-1);
7518 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7519 int ret;
7520
7521 if (gpa == INVALID_GPA)
7522 return X86EMUL_PROPAGATE_FAULT;
7523 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7524 offset, toread);
7525 if (ret < 0) {
7526 r = X86EMUL_IO_NEEDED;
7527 goto out;
7528 }
7529
7530 bytes -= toread;
7531 data += toread;
7532 addr += toread;
7533 }
7534 out:
7535 return r;
7536 }
7537
7538 /* used for instruction fetching */
7539 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7540 gva_t addr, void *val, unsigned int bytes,
7541 struct x86_exception *exception)
7542 {
7543 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7544 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7545 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7546 unsigned offset;
7547 int ret;
7548
7549 /* Inline kvm_read_guest_virt_helper for speed. */
7550 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7551 exception);
7552 if (unlikely(gpa == INVALID_GPA))
7553 return X86EMUL_PROPAGATE_FAULT;
7554
7555 offset = addr & (PAGE_SIZE-1);
7556 if (WARN_ON(offset + bytes > PAGE_SIZE))
7557 bytes = (unsigned)PAGE_SIZE - offset;
7558 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7559 offset, bytes);
7560 if (unlikely(ret < 0))
7561 return X86EMUL_IO_NEEDED;
7562
7563 return X86EMUL_CONTINUE;
7564 }
7565
7566 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7567 gva_t addr, void *val, unsigned int bytes,
7568 struct x86_exception *exception)
7569 {
7570 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7571
7572 /*
7573 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7574 * is returned, but our callers are not ready for that and they blindly
7575 * call kvm_inject_page_fault. Ensure that they at least do not leak
7576 * uninitialized kernel stack memory into cr2 and error code.
7577 */
7578 memset(exception, 0, sizeof(*exception));
7579 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7580 exception);
7581 }
7582 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7583
7584 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7585 gva_t addr, void *val, unsigned int bytes,
7586 struct x86_exception *exception, bool system)
7587 {
7588 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7589 u64 access = 0;
7590
7591 if (system)
7592 access |= PFERR_IMPLICIT_ACCESS;
7593 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7594 access |= PFERR_USER_MASK;
7595
7596 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7597 }
7598
7599 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7600 struct kvm_vcpu *vcpu, u64 access,
7601 struct x86_exception *exception)
7602 {
7603 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7604 void *data = val;
7605 int r = X86EMUL_CONTINUE;
7606
7607 while (bytes) {
7608 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7609 unsigned offset = addr & (PAGE_SIZE-1);
7610 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7611 int ret;
7612
7613 if (gpa == INVALID_GPA)
7614 return X86EMUL_PROPAGATE_FAULT;
7615 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7616 if (ret < 0) {
7617 r = X86EMUL_IO_NEEDED;
7618 goto out;
7619 }
7620
7621 bytes -= towrite;
7622 data += towrite;
7623 addr += towrite;
7624 }
7625 out:
7626 return r;
7627 }
7628
7629 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7630 unsigned int bytes, struct x86_exception *exception,
7631 bool system)
7632 {
7633 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7634 u64 access = PFERR_WRITE_MASK;
7635
7636 if (system)
7637 access |= PFERR_IMPLICIT_ACCESS;
7638 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7639 access |= PFERR_USER_MASK;
7640
7641 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7642 access, exception);
7643 }
7644
7645 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7646 unsigned int bytes, struct x86_exception *exception)
7647 {
7648 /* kvm_write_guest_virt_system can pull in tons of pages. */
7649 vcpu->arch.l1tf_flush_l1d = true;
7650
7651 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7652 PFERR_WRITE_MASK, exception);
7653 }
7654 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7655
7656 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7657 void *insn, int insn_len)
7658 {
7659 return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7660 insn, insn_len);
7661 }
7662
7663 int handle_ud(struct kvm_vcpu *vcpu)
7664 {
7665 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7666 int fep_flags = READ_ONCE(force_emulation_prefix);
7667 int emul_type = EMULTYPE_TRAP_UD;
7668 char sig[5]; /* ud2; .ascii "kvm" */
7669 struct x86_exception e;
7670 int r;
7671
7672 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7673 if (r != X86EMUL_CONTINUE)
7674 return 1;
7675
7676 if (fep_flags &&
7677 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7678 sig, sizeof(sig), &e) == 0 &&
7679 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7680 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7681 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7682 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7683 emul_type = EMULTYPE_TRAP_UD_FORCED;
7684 }
7685
7686 return kvm_emulate_instruction(vcpu, emul_type);
7687 }
7688 EXPORT_SYMBOL_GPL(handle_ud);
7689
7690 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7691 gpa_t gpa, bool write)
7692 {
7693 /* For APIC access vmexit */
7694 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7695 return 1;
7696
7697 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7698 trace_vcpu_match_mmio(gva, gpa, write, true);
7699 return 1;
7700 }
7701
7702 return 0;
7703 }
7704
7705 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7706 gpa_t *gpa, struct x86_exception *exception,
7707 bool write)
7708 {
7709 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7710 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7711 | (write ? PFERR_WRITE_MASK : 0);
7712
7713 /*
7714 * currently PKRU is only applied to ept enabled guest so
7715 * there is no pkey in EPT page table for L1 guest or EPT
7716 * shadow page table for L2 guest.
7717 */
7718 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7719 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7720 vcpu->arch.mmio_access, 0, access))) {
7721 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7722 (gva & (PAGE_SIZE - 1));
7723 trace_vcpu_match_mmio(gva, *gpa, write, false);
7724 return 1;
7725 }
7726
7727 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7728
7729 if (*gpa == INVALID_GPA)
7730 return -1;
7731
7732 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7733 }
7734
7735 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7736 const void *val, int bytes)
7737 {
7738 int ret;
7739
7740 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7741 if (ret < 0)
7742 return 0;
7743 kvm_page_track_write(vcpu, gpa, val, bytes);
7744 return 1;
7745 }
7746
7747 struct read_write_emulator_ops {
7748 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7749 int bytes);
7750 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7751 void *val, int bytes);
7752 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7753 int bytes, void *val);
7754 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7755 void *val, int bytes);
7756 bool write;
7757 };
7758
7759 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7760 {
7761 if (vcpu->mmio_read_completed) {
7762 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7763 vcpu->mmio_fragments[0].gpa, val);
7764 vcpu->mmio_read_completed = 0;
7765 return 1;
7766 }
7767
7768 return 0;
7769 }
7770
7771 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7772 void *val, int bytes)
7773 {
7774 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7775 }
7776
7777 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7778 void *val, int bytes)
7779 {
7780 return emulator_write_phys(vcpu, gpa, val, bytes);
7781 }
7782
7783 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7784 {
7785 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7786 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7787 }
7788
7789 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7790 void *val, int bytes)
7791 {
7792 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7793 return X86EMUL_IO_NEEDED;
7794 }
7795
7796 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7797 void *val, int bytes)
7798 {
7799 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7800
7801 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7802 return X86EMUL_CONTINUE;
7803 }
7804
7805 static const struct read_write_emulator_ops read_emultor = {
7806 .read_write_prepare = read_prepare,
7807 .read_write_emulate = read_emulate,
7808 .read_write_mmio = vcpu_mmio_read,
7809 .read_write_exit_mmio = read_exit_mmio,
7810 };
7811
7812 static const struct read_write_emulator_ops write_emultor = {
7813 .read_write_emulate = write_emulate,
7814 .read_write_mmio = write_mmio,
7815 .read_write_exit_mmio = write_exit_mmio,
7816 .write = true,
7817 };
7818
7819 static int emulator_read_write_onepage(unsigned long addr, void *val,
7820 unsigned int bytes,
7821 struct x86_exception *exception,
7822 struct kvm_vcpu *vcpu,
7823 const struct read_write_emulator_ops *ops)
7824 {
7825 gpa_t gpa;
7826 int handled, ret;
7827 bool write = ops->write;
7828 struct kvm_mmio_fragment *frag;
7829 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7830
7831 /*
7832 * If the exit was due to a NPF we may already have a GPA.
7833 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7834 * Note, this cannot be used on string operations since string
7835 * operation using rep will only have the initial GPA from the NPF
7836 * occurred.
7837 */
7838 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7839 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7840 gpa = ctxt->gpa_val;
7841 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7842 } else {
7843 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7844 if (ret < 0)
7845 return X86EMUL_PROPAGATE_FAULT;
7846 }
7847
7848 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7849 return X86EMUL_CONTINUE;
7850
7851 /*
7852 * Is this MMIO handled locally?
7853 */
7854 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7855 if (handled == bytes)
7856 return X86EMUL_CONTINUE;
7857
7858 gpa += handled;
7859 bytes -= handled;
7860 val += handled;
7861
7862 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7863 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7864 frag->gpa = gpa;
7865 frag->data = val;
7866 frag->len = bytes;
7867 return X86EMUL_CONTINUE;
7868 }
7869
7870 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7871 unsigned long addr,
7872 void *val, unsigned int bytes,
7873 struct x86_exception *exception,
7874 const struct read_write_emulator_ops *ops)
7875 {
7876 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7877 gpa_t gpa;
7878 int rc;
7879
7880 if (ops->read_write_prepare &&
7881 ops->read_write_prepare(vcpu, val, bytes))
7882 return X86EMUL_CONTINUE;
7883
7884 vcpu->mmio_nr_fragments = 0;
7885
7886 /* Crossing a page boundary? */
7887 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7888 int now;
7889
7890 now = -addr & ~PAGE_MASK;
7891 rc = emulator_read_write_onepage(addr, val, now, exception,
7892 vcpu, ops);
7893
7894 if (rc != X86EMUL_CONTINUE)
7895 return rc;
7896 addr += now;
7897 if (ctxt->mode != X86EMUL_MODE_PROT64)
7898 addr = (u32)addr;
7899 val += now;
7900 bytes -= now;
7901 }
7902
7903 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7904 vcpu, ops);
7905 if (rc != X86EMUL_CONTINUE)
7906 return rc;
7907
7908 if (!vcpu->mmio_nr_fragments)
7909 return rc;
7910
7911 gpa = vcpu->mmio_fragments[0].gpa;
7912
7913 vcpu->mmio_needed = 1;
7914 vcpu->mmio_cur_fragment = 0;
7915
7916 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7917 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7918 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7919 vcpu->run->mmio.phys_addr = gpa;
7920
7921 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7922 }
7923
7924 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7925 unsigned long addr,
7926 void *val,
7927 unsigned int bytes,
7928 struct x86_exception *exception)
7929 {
7930 return emulator_read_write(ctxt, addr, val, bytes,
7931 exception, &read_emultor);
7932 }
7933
7934 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7935 unsigned long addr,
7936 const void *val,
7937 unsigned int bytes,
7938 struct x86_exception *exception)
7939 {
7940 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7941 exception, &write_emultor);
7942 }
7943
7944 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7945 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7946
7947 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7948 unsigned long addr,
7949 const void *old,
7950 const void *new,
7951 unsigned int bytes,
7952 struct x86_exception *exception)
7953 {
7954 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7955 u64 page_line_mask;
7956 unsigned long hva;
7957 gpa_t gpa;
7958 int r;
7959
7960 /* guests cmpxchg8b have to be emulated atomically */
7961 if (bytes > 8 || (bytes & (bytes - 1)))
7962 goto emul_write;
7963
7964 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7965
7966 if (gpa == INVALID_GPA ||
7967 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7968 goto emul_write;
7969
7970 /*
7971 * Emulate the atomic as a straight write to avoid #AC if SLD is
7972 * enabled in the host and the access splits a cache line.
7973 */
7974 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7975 page_line_mask = ~(cache_line_size() - 1);
7976 else
7977 page_line_mask = PAGE_MASK;
7978
7979 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7980 goto emul_write;
7981
7982 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7983 if (kvm_is_error_hva(hva))
7984 goto emul_write;
7985
7986 hva += offset_in_page(gpa);
7987
7988 switch (bytes) {
7989 case 1:
7990 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7991 break;
7992 case 2:
7993 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7994 break;
7995 case 4:
7996 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7997 break;
7998 case 8:
7999 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8000 break;
8001 default:
8002 BUG();
8003 }
8004
8005 if (r < 0)
8006 return X86EMUL_UNHANDLEABLE;
8007 if (r)
8008 return X86EMUL_CMPXCHG_FAILED;
8009
8010 kvm_page_track_write(vcpu, gpa, new, bytes);
8011
8012 return X86EMUL_CONTINUE;
8013
8014 emul_write:
8015 pr_warn_once("emulating exchange as write\n");
8016
8017 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8018 }
8019
8020 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8021 unsigned short port, void *data,
8022 unsigned int count, bool in)
8023 {
8024 unsigned i;
8025 int r;
8026
8027 WARN_ON_ONCE(vcpu->arch.pio.count);
8028 for (i = 0; i < count; i++) {
8029 if (in)
8030 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8031 else
8032 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8033
8034 if (r) {
8035 if (i == 0)
8036 goto userspace_io;
8037
8038 /*
8039 * Userspace must have unregistered the device while PIO
8040 * was running. Drop writes / read as 0.
8041 */
8042 if (in)
8043 memset(data, 0, size * (count - i));
8044 break;
8045 }
8046
8047 data += size;
8048 }
8049 return 1;
8050
8051 userspace_io:
8052 vcpu->arch.pio.port = port;
8053 vcpu->arch.pio.in = in;
8054 vcpu->arch.pio.count = count;
8055 vcpu->arch.pio.size = size;
8056
8057 if (in)
8058 memset(vcpu->arch.pio_data, 0, size * count);
8059 else
8060 memcpy(vcpu->arch.pio_data, data, size * count);
8061
8062 vcpu->run->exit_reason = KVM_EXIT_IO;
8063 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8064 vcpu->run->io.size = size;
8065 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8066 vcpu->run->io.count = count;
8067 vcpu->run->io.port = port;
8068 return 0;
8069 }
8070
8071 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8072 unsigned short port, void *val, unsigned int count)
8073 {
8074 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8075 if (r)
8076 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8077
8078 return r;
8079 }
8080
8081 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8082 {
8083 int size = vcpu->arch.pio.size;
8084 unsigned int count = vcpu->arch.pio.count;
8085 memcpy(val, vcpu->arch.pio_data, size * count);
8086 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8087 vcpu->arch.pio.count = 0;
8088 }
8089
8090 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8091 int size, unsigned short port, void *val,
8092 unsigned int count)
8093 {
8094 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8095 if (vcpu->arch.pio.count) {
8096 /*
8097 * Complete a previous iteration that required userspace I/O.
8098 * Note, @count isn't guaranteed to match pio.count as userspace
8099 * can modify ECX before rerunning the vCPU. Ignore any such
8100 * shenanigans as KVM doesn't support modifying the rep count,
8101 * and the emulator ensures @count doesn't overflow the buffer.
8102 */
8103 complete_emulator_pio_in(vcpu, val);
8104 return 1;
8105 }
8106
8107 return emulator_pio_in(vcpu, size, port, val, count);
8108 }
8109
8110 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8111 unsigned short port, const void *val,
8112 unsigned int count)
8113 {
8114 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8115 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8116 }
8117
8118 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8119 int size, unsigned short port,
8120 const void *val, unsigned int count)
8121 {
8122 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8123 }
8124
8125 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8126 {
8127 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8128 }
8129
8130 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8131 {
8132 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8133 }
8134
8135 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8136 {
8137 if (!need_emulate_wbinvd(vcpu))
8138 return X86EMUL_CONTINUE;
8139
8140 if (static_call(kvm_x86_has_wbinvd_exit)()) {
8141 int cpu = get_cpu();
8142
8143 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8144 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8145 wbinvd_ipi, NULL, 1);
8146 put_cpu();
8147 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8148 } else
8149 wbinvd();
8150 return X86EMUL_CONTINUE;
8151 }
8152
8153 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8154 {
8155 kvm_emulate_wbinvd_noskip(vcpu);
8156 return kvm_skip_emulated_instruction(vcpu);
8157 }
8158 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8159
8160
8161
8162 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8163 {
8164 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8165 }
8166
8167 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8168 unsigned long *dest)
8169 {
8170 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8171 }
8172
8173 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8174 unsigned long value)
8175 {
8176
8177 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8178 }
8179
8180 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8181 {
8182 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8183 }
8184
8185 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8186 {
8187 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8188 unsigned long value;
8189
8190 switch (cr) {
8191 case 0:
8192 value = kvm_read_cr0(vcpu);
8193 break;
8194 case 2:
8195 value = vcpu->arch.cr2;
8196 break;
8197 case 3:
8198 value = kvm_read_cr3(vcpu);
8199 break;
8200 case 4:
8201 value = kvm_read_cr4(vcpu);
8202 break;
8203 case 8:
8204 value = kvm_get_cr8(vcpu);
8205 break;
8206 default:
8207 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8208 return 0;
8209 }
8210
8211 return value;
8212 }
8213
8214 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8215 {
8216 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8217 int res = 0;
8218
8219 switch (cr) {
8220 case 0:
8221 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8222 break;
8223 case 2:
8224 vcpu->arch.cr2 = val;
8225 break;
8226 case 3:
8227 res = kvm_set_cr3(vcpu, val);
8228 break;
8229 case 4:
8230 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8231 break;
8232 case 8:
8233 res = kvm_set_cr8(vcpu, val);
8234 break;
8235 default:
8236 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8237 res = -1;
8238 }
8239
8240 return res;
8241 }
8242
8243 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8244 {
8245 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8246 }
8247
8248 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8249 {
8250 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8251 }
8252
8253 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8254 {
8255 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8256 }
8257
8258 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8259 {
8260 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8261 }
8262
8263 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8264 {
8265 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8266 }
8267
8268 static unsigned long emulator_get_cached_segment_base(
8269 struct x86_emulate_ctxt *ctxt, int seg)
8270 {
8271 return get_segment_base(emul_to_vcpu(ctxt), seg);
8272 }
8273
8274 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8275 struct desc_struct *desc, u32 *base3,
8276 int seg)
8277 {
8278 struct kvm_segment var;
8279
8280 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8281 *selector = var.selector;
8282
8283 if (var.unusable) {
8284 memset(desc, 0, sizeof(*desc));
8285 if (base3)
8286 *base3 = 0;
8287 return false;
8288 }
8289
8290 if (var.g)
8291 var.limit >>= 12;
8292 set_desc_limit(desc, var.limit);
8293 set_desc_base(desc, (unsigned long)var.base);
8294 #ifdef CONFIG_X86_64
8295 if (base3)
8296 *base3 = var.base >> 32;
8297 #endif
8298 desc->type = var.type;
8299 desc->s = var.s;
8300 desc->dpl = var.dpl;
8301 desc->p = var.present;
8302 desc->avl = var.avl;
8303 desc->l = var.l;
8304 desc->d = var.db;
8305 desc->g = var.g;
8306
8307 return true;
8308 }
8309
8310 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8311 struct desc_struct *desc, u32 base3,
8312 int seg)
8313 {
8314 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8315 struct kvm_segment var;
8316
8317 var.selector = selector;
8318 var.base = get_desc_base(desc);
8319 #ifdef CONFIG_X86_64
8320 var.base |= ((u64)base3) << 32;
8321 #endif
8322 var.limit = get_desc_limit(desc);
8323 if (desc->g)
8324 var.limit = (var.limit << 12) | 0xfff;
8325 var.type = desc->type;
8326 var.dpl = desc->dpl;
8327 var.db = desc->d;
8328 var.s = desc->s;
8329 var.l = desc->l;
8330 var.g = desc->g;
8331 var.avl = desc->avl;
8332 var.present = desc->p;
8333 var.unusable = !var.present;
8334 var.padding = 0;
8335
8336 kvm_set_segment(vcpu, &var, seg);
8337 return;
8338 }
8339
8340 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8341 u32 msr_index, u64 *pdata)
8342 {
8343 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8344 int r;
8345
8346 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8347 if (r < 0)
8348 return X86EMUL_UNHANDLEABLE;
8349
8350 if (r) {
8351 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8352 complete_emulated_rdmsr, r))
8353 return X86EMUL_IO_NEEDED;
8354
8355 trace_kvm_msr_read_ex(msr_index);
8356 return X86EMUL_PROPAGATE_FAULT;
8357 }
8358
8359 trace_kvm_msr_read(msr_index, *pdata);
8360 return X86EMUL_CONTINUE;
8361 }
8362
8363 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8364 u32 msr_index, u64 data)
8365 {
8366 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8367 int r;
8368
8369 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8370 if (r < 0)
8371 return X86EMUL_UNHANDLEABLE;
8372
8373 if (r) {
8374 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8375 complete_emulated_msr_access, r))
8376 return X86EMUL_IO_NEEDED;
8377
8378 trace_kvm_msr_write_ex(msr_index, data);
8379 return X86EMUL_PROPAGATE_FAULT;
8380 }
8381
8382 trace_kvm_msr_write(msr_index, data);
8383 return X86EMUL_CONTINUE;
8384 }
8385
8386 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8387 u32 msr_index, u64 *pdata)
8388 {
8389 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8390 }
8391
8392 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8393 u32 pmc)
8394 {
8395 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8396 return 0;
8397 return -EINVAL;
8398 }
8399
8400 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8401 u32 pmc, u64 *pdata)
8402 {
8403 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8404 }
8405
8406 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8407 {
8408 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8409 }
8410
8411 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8412 struct x86_instruction_info *info,
8413 enum x86_intercept_stage stage)
8414 {
8415 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8416 &ctxt->exception);
8417 }
8418
8419 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8420 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8421 bool exact_only)
8422 {
8423 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8424 }
8425
8426 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8427 {
8428 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8429 }
8430
8431 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8432 {
8433 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8434 }
8435
8436 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8437 {
8438 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8439 }
8440
8441 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8442 {
8443 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8444 }
8445
8446 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8447 {
8448 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8449 }
8450
8451 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8452 {
8453 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8454 }
8455
8456 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8457 {
8458 return is_smm(emul_to_vcpu(ctxt));
8459 }
8460
8461 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8462 {
8463 return is_guest_mode(emul_to_vcpu(ctxt));
8464 }
8465
8466 #ifndef CONFIG_KVM_SMM
8467 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8468 {
8469 WARN_ON_ONCE(1);
8470 return X86EMUL_UNHANDLEABLE;
8471 }
8472 #endif
8473
8474 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8475 {
8476 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8477 }
8478
8479 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8480 {
8481 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8482 }
8483
8484 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8485 {
8486 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8487
8488 if (!kvm->vm_bugged)
8489 kvm_vm_bugged(kvm);
8490 }
8491
8492 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8493 gva_t addr, unsigned int flags)
8494 {
8495 if (!kvm_x86_ops.get_untagged_addr)
8496 return addr;
8497
8498 return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags);
8499 }
8500
8501 static const struct x86_emulate_ops emulate_ops = {
8502 .vm_bugged = emulator_vm_bugged,
8503 .read_gpr = emulator_read_gpr,
8504 .write_gpr = emulator_write_gpr,
8505 .read_std = emulator_read_std,
8506 .write_std = emulator_write_std,
8507 .fetch = kvm_fetch_guest_virt,
8508 .read_emulated = emulator_read_emulated,
8509 .write_emulated = emulator_write_emulated,
8510 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8511 .invlpg = emulator_invlpg,
8512 .pio_in_emulated = emulator_pio_in_emulated,
8513 .pio_out_emulated = emulator_pio_out_emulated,
8514 .get_segment = emulator_get_segment,
8515 .set_segment = emulator_set_segment,
8516 .get_cached_segment_base = emulator_get_cached_segment_base,
8517 .get_gdt = emulator_get_gdt,
8518 .get_idt = emulator_get_idt,
8519 .set_gdt = emulator_set_gdt,
8520 .set_idt = emulator_set_idt,
8521 .get_cr = emulator_get_cr,
8522 .set_cr = emulator_set_cr,
8523 .cpl = emulator_get_cpl,
8524 .get_dr = emulator_get_dr,
8525 .set_dr = emulator_set_dr,
8526 .set_msr_with_filter = emulator_set_msr_with_filter,
8527 .get_msr_with_filter = emulator_get_msr_with_filter,
8528 .get_msr = emulator_get_msr,
8529 .check_pmc = emulator_check_pmc,
8530 .read_pmc = emulator_read_pmc,
8531 .halt = emulator_halt,
8532 .wbinvd = emulator_wbinvd,
8533 .fix_hypercall = emulator_fix_hypercall,
8534 .intercept = emulator_intercept,
8535 .get_cpuid = emulator_get_cpuid,
8536 .guest_has_movbe = emulator_guest_has_movbe,
8537 .guest_has_fxsr = emulator_guest_has_fxsr,
8538 .guest_has_rdpid = emulator_guest_has_rdpid,
8539 .set_nmi_mask = emulator_set_nmi_mask,
8540 .is_smm = emulator_is_smm,
8541 .is_guest_mode = emulator_is_guest_mode,
8542 .leave_smm = emulator_leave_smm,
8543 .triple_fault = emulator_triple_fault,
8544 .set_xcr = emulator_set_xcr,
8545 .get_untagged_addr = emulator_get_untagged_addr,
8546 };
8547
8548 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8549 {
8550 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8551 /*
8552 * an sti; sti; sequence only disable interrupts for the first
8553 * instruction. So, if the last instruction, be it emulated or
8554 * not, left the system with the INT_STI flag enabled, it
8555 * means that the last instruction is an sti. We should not
8556 * leave the flag on in this case. The same goes for mov ss
8557 */
8558 if (int_shadow & mask)
8559 mask = 0;
8560 if (unlikely(int_shadow || mask)) {
8561 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8562 if (!mask)
8563 kvm_make_request(KVM_REQ_EVENT, vcpu);
8564 }
8565 }
8566
8567 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8568 {
8569 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8570
8571 if (ctxt->exception.vector == PF_VECTOR)
8572 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8573 else if (ctxt->exception.error_code_valid)
8574 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8575 ctxt->exception.error_code);
8576 else
8577 kvm_queue_exception(vcpu, ctxt->exception.vector);
8578 }
8579
8580 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8581 {
8582 struct x86_emulate_ctxt *ctxt;
8583
8584 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8585 if (!ctxt) {
8586 pr_err("failed to allocate vcpu's emulator\n");
8587 return NULL;
8588 }
8589
8590 ctxt->vcpu = vcpu;
8591 ctxt->ops = &emulate_ops;
8592 vcpu->arch.emulate_ctxt = ctxt;
8593
8594 return ctxt;
8595 }
8596
8597 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8598 {
8599 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8600 int cs_db, cs_l;
8601
8602 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8603
8604 ctxt->gpa_available = false;
8605 ctxt->eflags = kvm_get_rflags(vcpu);
8606 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8607
8608 ctxt->eip = kvm_rip_read(vcpu);
8609 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8610 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8611 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8612 cs_db ? X86EMUL_MODE_PROT32 :
8613 X86EMUL_MODE_PROT16;
8614 ctxt->interruptibility = 0;
8615 ctxt->have_exception = false;
8616 ctxt->exception.vector = -1;
8617 ctxt->perm_ok = false;
8618
8619 init_decode_cache(ctxt);
8620 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8621 }
8622
8623 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8624 {
8625 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8626 int ret;
8627
8628 init_emulate_ctxt(vcpu);
8629
8630 ctxt->op_bytes = 2;
8631 ctxt->ad_bytes = 2;
8632 ctxt->_eip = ctxt->eip + inc_eip;
8633 ret = emulate_int_real(ctxt, irq);
8634
8635 if (ret != X86EMUL_CONTINUE) {
8636 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8637 } else {
8638 ctxt->eip = ctxt->_eip;
8639 kvm_rip_write(vcpu, ctxt->eip);
8640 kvm_set_rflags(vcpu, ctxt->eflags);
8641 }
8642 }
8643 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8644
8645 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8646 u8 ndata, u8 *insn_bytes, u8 insn_size)
8647 {
8648 struct kvm_run *run = vcpu->run;
8649 u64 info[5];
8650 u8 info_start;
8651
8652 /*
8653 * Zero the whole array used to retrieve the exit info, as casting to
8654 * u32 for select entries will leave some chunks uninitialized.
8655 */
8656 memset(&info, 0, sizeof(info));
8657
8658 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8659 &info[2], (u32 *)&info[3],
8660 (u32 *)&info[4]);
8661
8662 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8663 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8664
8665 /*
8666 * There's currently space for 13 entries, but 5 are used for the exit
8667 * reason and info. Restrict to 4 to reduce the maintenance burden
8668 * when expanding kvm_run.emulation_failure in the future.
8669 */
8670 if (WARN_ON_ONCE(ndata > 4))
8671 ndata = 4;
8672
8673 /* Always include the flags as a 'data' entry. */
8674 info_start = 1;
8675 run->emulation_failure.flags = 0;
8676
8677 if (insn_size) {
8678 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8679 sizeof(run->emulation_failure.insn_bytes) != 16));
8680 info_start += 2;
8681 run->emulation_failure.flags |=
8682 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8683 run->emulation_failure.insn_size = insn_size;
8684 memset(run->emulation_failure.insn_bytes, 0x90,
8685 sizeof(run->emulation_failure.insn_bytes));
8686 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8687 }
8688
8689 memcpy(&run->internal.data[info_start], info, sizeof(info));
8690 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8691 ndata * sizeof(data[0]));
8692
8693 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8694 }
8695
8696 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8697 {
8698 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8699
8700 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8701 ctxt->fetch.end - ctxt->fetch.data);
8702 }
8703
8704 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8705 u8 ndata)
8706 {
8707 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8708 }
8709 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8710
8711 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8712 {
8713 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8714 }
8715 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8716
8717 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8718 {
8719 struct kvm *kvm = vcpu->kvm;
8720
8721 ++vcpu->stat.insn_emulation_fail;
8722 trace_kvm_emulate_insn_failed(vcpu);
8723
8724 if (emulation_type & EMULTYPE_VMWARE_GP) {
8725 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8726 return 1;
8727 }
8728
8729 if (kvm->arch.exit_on_emulation_error ||
8730 (emulation_type & EMULTYPE_SKIP)) {
8731 prepare_emulation_ctxt_failure_exit(vcpu);
8732 return 0;
8733 }
8734
8735 kvm_queue_exception(vcpu, UD_VECTOR);
8736
8737 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8738 prepare_emulation_ctxt_failure_exit(vcpu);
8739 return 0;
8740 }
8741
8742 return 1;
8743 }
8744
8745 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8746 int emulation_type)
8747 {
8748 gpa_t gpa = cr2_or_gpa;
8749 kvm_pfn_t pfn;
8750
8751 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8752 return false;
8753
8754 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8755 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8756 return false;
8757
8758 if (!vcpu->arch.mmu->root_role.direct) {
8759 /*
8760 * Write permission should be allowed since only
8761 * write access need to be emulated.
8762 */
8763 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8764
8765 /*
8766 * If the mapping is invalid in guest, let cpu retry
8767 * it to generate fault.
8768 */
8769 if (gpa == INVALID_GPA)
8770 return true;
8771 }
8772
8773 /*
8774 * Do not retry the unhandleable instruction if it faults on the
8775 * readonly host memory, otherwise it will goto a infinite loop:
8776 * retry instruction -> write #PF -> emulation fail -> retry
8777 * instruction -> ...
8778 */
8779 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8780
8781 /*
8782 * If the instruction failed on the error pfn, it can not be fixed,
8783 * report the error to userspace.
8784 */
8785 if (is_error_noslot_pfn(pfn))
8786 return false;
8787
8788 kvm_release_pfn_clean(pfn);
8789
8790 /*
8791 * If emulation may have been triggered by a write to a shadowed page
8792 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8793 * guest to let the CPU re-execute the instruction in the hope that the
8794 * CPU can cleanly execute the instruction that KVM failed to emulate.
8795 */
8796 if (vcpu->kvm->arch.indirect_shadow_pages)
8797 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8798
8799 /*
8800 * If the failed instruction faulted on an access to page tables that
8801 * are used to translate any part of the instruction, KVM can't resolve
8802 * the issue by unprotecting the gfn, as zapping the shadow page will
8803 * result in the instruction taking a !PRESENT page fault and thus put
8804 * the vCPU into an infinite loop of page faults. E.g. KVM will create
8805 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8806 * then zap the SPTE to unprotect the gfn, and then do it all over
8807 * again. Report the error to userspace.
8808 */
8809 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8810 }
8811
8812 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8813 gpa_t cr2_or_gpa, int emulation_type)
8814 {
8815 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8816 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8817
8818 last_retry_eip = vcpu->arch.last_retry_eip;
8819 last_retry_addr = vcpu->arch.last_retry_addr;
8820
8821 /*
8822 * If the emulation is caused by #PF and it is non-page_table
8823 * writing instruction, it means the VM-EXIT is caused by shadow
8824 * page protected, we can zap the shadow page and retry this
8825 * instruction directly.
8826 *
8827 * Note: if the guest uses a non-page-table modifying instruction
8828 * on the PDE that points to the instruction, then we will unmap
8829 * the instruction and go to an infinite loop. So, we cache the
8830 * last retried eip and the last fault address, if we meet the eip
8831 * and the address again, we can break out of the potential infinite
8832 * loop.
8833 */
8834 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8835
8836 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8837 return false;
8838
8839 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8840 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8841 return false;
8842
8843 if (x86_page_table_writing_insn(ctxt))
8844 return false;
8845
8846 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8847 return false;
8848
8849 vcpu->arch.last_retry_eip = ctxt->eip;
8850 vcpu->arch.last_retry_addr = cr2_or_gpa;
8851
8852 if (!vcpu->arch.mmu->root_role.direct)
8853 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8854
8855 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8856
8857 return true;
8858 }
8859
8860 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8861 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8862
8863 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8864 unsigned long *db)
8865 {
8866 u32 dr6 = 0;
8867 int i;
8868 u32 enable, rwlen;
8869
8870 enable = dr7;
8871 rwlen = dr7 >> 16;
8872 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8873 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8874 dr6 |= (1 << i);
8875 return dr6;
8876 }
8877
8878 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8879 {
8880 struct kvm_run *kvm_run = vcpu->run;
8881
8882 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8883 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8884 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8885 kvm_run->debug.arch.exception = DB_VECTOR;
8886 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8887 return 0;
8888 }
8889 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8890 return 1;
8891 }
8892
8893 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8894 {
8895 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8896 int r;
8897
8898 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8899 if (unlikely(!r))
8900 return 0;
8901
8902 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8903
8904 /*
8905 * rflags is the old, "raw" value of the flags. The new value has
8906 * not been saved yet.
8907 *
8908 * This is correct even for TF set by the guest, because "the
8909 * processor will not generate this exception after the instruction
8910 * that sets the TF flag".
8911 */
8912 if (unlikely(rflags & X86_EFLAGS_TF))
8913 r = kvm_vcpu_do_singlestep(vcpu);
8914 return r;
8915 }
8916 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8917
8918 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8919 {
8920 u32 shadow;
8921
8922 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8923 return true;
8924
8925 /*
8926 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8927 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first
8928 * to avoid the relatively expensive CPUID lookup.
8929 */
8930 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8931 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8932 guest_cpuid_is_intel(vcpu);
8933 }
8934
8935 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8936 int emulation_type, int *r)
8937 {
8938 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8939
8940 /*
8941 * Do not check for code breakpoints if hardware has already done the
8942 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8943 * the instruction has passed all exception checks, and all intercepted
8944 * exceptions that trigger emulation have lower priority than code
8945 * breakpoints, i.e. the fact that the intercepted exception occurred
8946 * means any code breakpoints have already been serviced.
8947 *
8948 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8949 * hardware has checked the RIP of the magic prefix, but not the RIP of
8950 * the instruction being emulated. The intent of forced emulation is
8951 * to behave as if KVM intercepted the instruction without an exception
8952 * and without a prefix.
8953 */
8954 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8955 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8956 return false;
8957
8958 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8959 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8960 struct kvm_run *kvm_run = vcpu->run;
8961 unsigned long eip = kvm_get_linear_rip(vcpu);
8962 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8963 vcpu->arch.guest_debug_dr7,
8964 vcpu->arch.eff_db);
8965
8966 if (dr6 != 0) {
8967 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8968 kvm_run->debug.arch.pc = eip;
8969 kvm_run->debug.arch.exception = DB_VECTOR;
8970 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8971 *r = 0;
8972 return true;
8973 }
8974 }
8975
8976 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8977 !kvm_is_code_breakpoint_inhibited(vcpu)) {
8978 unsigned long eip = kvm_get_linear_rip(vcpu);
8979 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8980 vcpu->arch.dr7,
8981 vcpu->arch.db);
8982
8983 if (dr6 != 0) {
8984 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8985 *r = 1;
8986 return true;
8987 }
8988 }
8989
8990 return false;
8991 }
8992
8993 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8994 {
8995 switch (ctxt->opcode_len) {
8996 case 1:
8997 switch (ctxt->b) {
8998 case 0xe4: /* IN */
8999 case 0xe5:
9000 case 0xec:
9001 case 0xed:
9002 case 0xe6: /* OUT */
9003 case 0xe7:
9004 case 0xee:
9005 case 0xef:
9006 case 0x6c: /* INS */
9007 case 0x6d:
9008 case 0x6e: /* OUTS */
9009 case 0x6f:
9010 return true;
9011 }
9012 break;
9013 case 2:
9014 switch (ctxt->b) {
9015 case 0x33: /* RDPMC */
9016 return true;
9017 }
9018 break;
9019 }
9020
9021 return false;
9022 }
9023
9024 /*
9025 * Decode an instruction for emulation. The caller is responsible for handling
9026 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9027 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9028 * code breakpoints have higher priority and thus have already been done by
9029 * hardware.
9030 *
9031 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9032 * response to a machine check.
9033 */
9034 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9035 void *insn, int insn_len)
9036 {
9037 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9038 int r;
9039
9040 init_emulate_ctxt(vcpu);
9041
9042 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9043
9044 trace_kvm_emulate_insn_start(vcpu);
9045 ++vcpu->stat.insn_emulation;
9046
9047 return r;
9048 }
9049 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9050
9051 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9052 int emulation_type, void *insn, int insn_len)
9053 {
9054 int r;
9055 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9056 bool writeback = true;
9057
9058 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9059 if (r != X86EMUL_CONTINUE) {
9060 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9061 return 1;
9062
9063 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9064 return handle_emulation_failure(vcpu, emulation_type);
9065 }
9066
9067 vcpu->arch.l1tf_flush_l1d = true;
9068
9069 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9070 kvm_clear_exception_queue(vcpu);
9071
9072 /*
9073 * Return immediately if RIP hits a code breakpoint, such #DBs
9074 * are fault-like and are higher priority than any faults on
9075 * the code fetch itself.
9076 */
9077 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9078 return r;
9079
9080 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9081 insn, insn_len);
9082 if (r != EMULATION_OK) {
9083 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9084 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9085 kvm_queue_exception(vcpu, UD_VECTOR);
9086 return 1;
9087 }
9088 if (reexecute_instruction(vcpu, cr2_or_gpa,
9089 emulation_type))
9090 return 1;
9091
9092 if (ctxt->have_exception &&
9093 !(emulation_type & EMULTYPE_SKIP)) {
9094 /*
9095 * #UD should result in just EMULATION_FAILED, and trap-like
9096 * exception should not be encountered during decode.
9097 */
9098 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9099 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9100 inject_emulated_exception(vcpu);
9101 return 1;
9102 }
9103 return handle_emulation_failure(vcpu, emulation_type);
9104 }
9105 }
9106
9107 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9108 !is_vmware_backdoor_opcode(ctxt)) {
9109 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9110 return 1;
9111 }
9112
9113 /*
9114 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9115 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9116 * The caller is responsible for updating interruptibility state and
9117 * injecting single-step #DBs.
9118 */
9119 if (emulation_type & EMULTYPE_SKIP) {
9120 if (ctxt->mode != X86EMUL_MODE_PROT64)
9121 ctxt->eip = (u32)ctxt->_eip;
9122 else
9123 ctxt->eip = ctxt->_eip;
9124
9125 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9126 r = 1;
9127 goto writeback;
9128 }
9129
9130 kvm_rip_write(vcpu, ctxt->eip);
9131 if (ctxt->eflags & X86_EFLAGS_RF)
9132 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9133 return 1;
9134 }
9135
9136 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9137 return 1;
9138
9139 /* this is needed for vmware backdoor interface to work since it
9140 changes registers values during IO operation */
9141 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9142 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9143 emulator_invalidate_register_cache(ctxt);
9144 }
9145
9146 restart:
9147 if (emulation_type & EMULTYPE_PF) {
9148 /* Save the faulting GPA (cr2) in the address field */
9149 ctxt->exception.address = cr2_or_gpa;
9150
9151 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9152 if (vcpu->arch.mmu->root_role.direct) {
9153 ctxt->gpa_available = true;
9154 ctxt->gpa_val = cr2_or_gpa;
9155 }
9156 } else {
9157 /* Sanitize the address out of an abundance of paranoia. */
9158 ctxt->exception.address = 0;
9159 }
9160
9161 r = x86_emulate_insn(ctxt);
9162
9163 if (r == EMULATION_INTERCEPTED)
9164 return 1;
9165
9166 if (r == EMULATION_FAILED) {
9167 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9168 return 1;
9169
9170 return handle_emulation_failure(vcpu, emulation_type);
9171 }
9172
9173 if (ctxt->have_exception) {
9174 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9175 vcpu->mmio_needed = false;
9176 r = 1;
9177 inject_emulated_exception(vcpu);
9178 } else if (vcpu->arch.pio.count) {
9179 if (!vcpu->arch.pio.in) {
9180 /* FIXME: return into emulator if single-stepping. */
9181 vcpu->arch.pio.count = 0;
9182 } else {
9183 writeback = false;
9184 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9185 }
9186 r = 0;
9187 } else if (vcpu->mmio_needed) {
9188 ++vcpu->stat.mmio_exits;
9189
9190 if (!vcpu->mmio_is_write)
9191 writeback = false;
9192 r = 0;
9193 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9194 } else if (vcpu->arch.complete_userspace_io) {
9195 writeback = false;
9196 r = 0;
9197 } else if (r == EMULATION_RESTART)
9198 goto restart;
9199 else
9200 r = 1;
9201
9202 writeback:
9203 if (writeback) {
9204 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9205 toggle_interruptibility(vcpu, ctxt->interruptibility);
9206 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9207
9208 /*
9209 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9210 * only supports code breakpoints and general detect #DB, both
9211 * of which are fault-like.
9212 */
9213 if (!ctxt->have_exception ||
9214 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9215 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9216 if (ctxt->is_branch)
9217 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9218 kvm_rip_write(vcpu, ctxt->eip);
9219 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9220 r = kvm_vcpu_do_singlestep(vcpu);
9221 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9222 __kvm_set_rflags(vcpu, ctxt->eflags);
9223 }
9224
9225 /*
9226 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9227 * do nothing, and it will be requested again as soon as
9228 * the shadow expires. But we still need to check here,
9229 * because POPF has no interrupt shadow.
9230 */
9231 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9232 kvm_make_request(KVM_REQ_EVENT, vcpu);
9233 } else
9234 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9235
9236 return r;
9237 }
9238
9239 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9240 {
9241 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9242 }
9243 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9244
9245 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9246 void *insn, int insn_len)
9247 {
9248 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9249 }
9250 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9251
9252 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9253 {
9254 vcpu->arch.pio.count = 0;
9255 return 1;
9256 }
9257
9258 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9259 {
9260 vcpu->arch.pio.count = 0;
9261
9262 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9263 return 1;
9264
9265 return kvm_skip_emulated_instruction(vcpu);
9266 }
9267
9268 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9269 unsigned short port)
9270 {
9271 unsigned long val = kvm_rax_read(vcpu);
9272 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9273
9274 if (ret)
9275 return ret;
9276
9277 /*
9278 * Workaround userspace that relies on old KVM behavior of %rip being
9279 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9280 */
9281 if (port == 0x7e &&
9282 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9283 vcpu->arch.complete_userspace_io =
9284 complete_fast_pio_out_port_0x7e;
9285 kvm_skip_emulated_instruction(vcpu);
9286 } else {
9287 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9288 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9289 }
9290 return 0;
9291 }
9292
9293 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9294 {
9295 unsigned long val;
9296
9297 /* We should only ever be called with arch.pio.count equal to 1 */
9298 BUG_ON(vcpu->arch.pio.count != 1);
9299
9300 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9301 vcpu->arch.pio.count = 0;
9302 return 1;
9303 }
9304
9305 /* For size less than 4 we merge, else we zero extend */
9306 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9307
9308 complete_emulator_pio_in(vcpu, &val);
9309 kvm_rax_write(vcpu, val);
9310
9311 return kvm_skip_emulated_instruction(vcpu);
9312 }
9313
9314 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9315 unsigned short port)
9316 {
9317 unsigned long val;
9318 int ret;
9319
9320 /* For size less than 4 we merge, else we zero extend */
9321 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9322
9323 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9324 if (ret) {
9325 kvm_rax_write(vcpu, val);
9326 return ret;
9327 }
9328
9329 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9330 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9331
9332 return 0;
9333 }
9334
9335 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9336 {
9337 int ret;
9338
9339 if (in)
9340 ret = kvm_fast_pio_in(vcpu, size, port);
9341 else
9342 ret = kvm_fast_pio_out(vcpu, size, port);
9343 return ret && kvm_skip_emulated_instruction(vcpu);
9344 }
9345 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9346
9347 static int kvmclock_cpu_down_prep(unsigned int cpu)
9348 {
9349 __this_cpu_write(cpu_tsc_khz, 0);
9350 return 0;
9351 }
9352
9353 static void tsc_khz_changed(void *data)
9354 {
9355 struct cpufreq_freqs *freq = data;
9356 unsigned long khz;
9357
9358 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9359
9360 if (data)
9361 khz = freq->new;
9362 else
9363 khz = cpufreq_quick_get(raw_smp_processor_id());
9364 if (!khz)
9365 khz = tsc_khz;
9366 __this_cpu_write(cpu_tsc_khz, khz);
9367 }
9368
9369 #ifdef CONFIG_X86_64
9370 static void kvm_hyperv_tsc_notifier(void)
9371 {
9372 struct kvm *kvm;
9373 int cpu;
9374
9375 mutex_lock(&kvm_lock);
9376 list_for_each_entry(kvm, &vm_list, vm_list)
9377 kvm_make_mclock_inprogress_request(kvm);
9378
9379 /* no guest entries from this point */
9380 hyperv_stop_tsc_emulation();
9381
9382 /* TSC frequency always matches when on Hyper-V */
9383 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9384 for_each_present_cpu(cpu)
9385 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9386 }
9387 kvm_caps.max_guest_tsc_khz = tsc_khz;
9388
9389 list_for_each_entry(kvm, &vm_list, vm_list) {
9390 __kvm_start_pvclock_update(kvm);
9391 pvclock_update_vm_gtod_copy(kvm);
9392 kvm_end_pvclock_update(kvm);
9393 }
9394
9395 mutex_unlock(&kvm_lock);
9396 }
9397 #endif
9398
9399 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9400 {
9401 struct kvm *kvm;
9402 struct kvm_vcpu *vcpu;
9403 int send_ipi = 0;
9404 unsigned long i;
9405
9406 /*
9407 * We allow guests to temporarily run on slowing clocks,
9408 * provided we notify them after, or to run on accelerating
9409 * clocks, provided we notify them before. Thus time never
9410 * goes backwards.
9411 *
9412 * However, we have a problem. We can't atomically update
9413 * the frequency of a given CPU from this function; it is
9414 * merely a notifier, which can be called from any CPU.
9415 * Changing the TSC frequency at arbitrary points in time
9416 * requires a recomputation of local variables related to
9417 * the TSC for each VCPU. We must flag these local variables
9418 * to be updated and be sure the update takes place with the
9419 * new frequency before any guests proceed.
9420 *
9421 * Unfortunately, the combination of hotplug CPU and frequency
9422 * change creates an intractable locking scenario; the order
9423 * of when these callouts happen is undefined with respect to
9424 * CPU hotplug, and they can race with each other. As such,
9425 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9426 * undefined; you can actually have a CPU frequency change take
9427 * place in between the computation of X and the setting of the
9428 * variable. To protect against this problem, all updates of
9429 * the per_cpu tsc_khz variable are done in an interrupt
9430 * protected IPI, and all callers wishing to update the value
9431 * must wait for a synchronous IPI to complete (which is trivial
9432 * if the caller is on the CPU already). This establishes the
9433 * necessary total order on variable updates.
9434 *
9435 * Note that because a guest time update may take place
9436 * anytime after the setting of the VCPU's request bit, the
9437 * correct TSC value must be set before the request. However,
9438 * to ensure the update actually makes it to any guest which
9439 * starts running in hardware virtualization between the set
9440 * and the acquisition of the spinlock, we must also ping the
9441 * CPU after setting the request bit.
9442 *
9443 */
9444
9445 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9446
9447 mutex_lock(&kvm_lock);
9448 list_for_each_entry(kvm, &vm_list, vm_list) {
9449 kvm_for_each_vcpu(i, vcpu, kvm) {
9450 if (vcpu->cpu != cpu)
9451 continue;
9452 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9453 if (vcpu->cpu != raw_smp_processor_id())
9454 send_ipi = 1;
9455 }
9456 }
9457 mutex_unlock(&kvm_lock);
9458
9459 if (freq->old < freq->new && send_ipi) {
9460 /*
9461 * We upscale the frequency. Must make the guest
9462 * doesn't see old kvmclock values while running with
9463 * the new frequency, otherwise we risk the guest sees
9464 * time go backwards.
9465 *
9466 * In case we update the frequency for another cpu
9467 * (which might be in guest context) send an interrupt
9468 * to kick the cpu out of guest context. Next time
9469 * guest context is entered kvmclock will be updated,
9470 * so the guest will not see stale values.
9471 */
9472 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9473 }
9474 }
9475
9476 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9477 void *data)
9478 {
9479 struct cpufreq_freqs *freq = data;
9480 int cpu;
9481
9482 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9483 return 0;
9484 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9485 return 0;
9486
9487 for_each_cpu(cpu, freq->policy->cpus)
9488 __kvmclock_cpufreq_notifier(freq, cpu);
9489
9490 return 0;
9491 }
9492
9493 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9494 .notifier_call = kvmclock_cpufreq_notifier
9495 };
9496
9497 static int kvmclock_cpu_online(unsigned int cpu)
9498 {
9499 tsc_khz_changed(NULL);
9500 return 0;
9501 }
9502
9503 static void kvm_timer_init(void)
9504 {
9505 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9506 max_tsc_khz = tsc_khz;
9507
9508 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9509 struct cpufreq_policy *policy;
9510 int cpu;
9511
9512 cpu = get_cpu();
9513 policy = cpufreq_cpu_get(cpu);
9514 if (policy) {
9515 if (policy->cpuinfo.max_freq)
9516 max_tsc_khz = policy->cpuinfo.max_freq;
9517 cpufreq_cpu_put(policy);
9518 }
9519 put_cpu();
9520 }
9521 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9522 CPUFREQ_TRANSITION_NOTIFIER);
9523
9524 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9525 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9526 }
9527 }
9528
9529 #ifdef CONFIG_X86_64
9530 static void pvclock_gtod_update_fn(struct work_struct *work)
9531 {
9532 struct kvm *kvm;
9533 struct kvm_vcpu *vcpu;
9534 unsigned long i;
9535
9536 mutex_lock(&kvm_lock);
9537 list_for_each_entry(kvm, &vm_list, vm_list)
9538 kvm_for_each_vcpu(i, vcpu, kvm)
9539 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9540 atomic_set(&kvm_guest_has_master_clock, 0);
9541 mutex_unlock(&kvm_lock);
9542 }
9543
9544 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9545
9546 /*
9547 * Indirection to move queue_work() out of the tk_core.seq write held
9548 * region to prevent possible deadlocks against time accessors which
9549 * are invoked with work related locks held.
9550 */
9551 static void pvclock_irq_work_fn(struct irq_work *w)
9552 {
9553 queue_work(system_long_wq, &pvclock_gtod_work);
9554 }
9555
9556 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9557
9558 /*
9559 * Notification about pvclock gtod data update.
9560 */
9561 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9562 void *priv)
9563 {
9564 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9565 struct timekeeper *tk = priv;
9566
9567 update_pvclock_gtod(tk);
9568
9569 /*
9570 * Disable master clock if host does not trust, or does not use,
9571 * TSC based clocksource. Delegate queue_work() to irq_work as
9572 * this is invoked with tk_core.seq write held.
9573 */
9574 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9575 atomic_read(&kvm_guest_has_master_clock) != 0)
9576 irq_work_queue(&pvclock_irq_work);
9577 return 0;
9578 }
9579
9580 static struct notifier_block pvclock_gtod_notifier = {
9581 .notifier_call = pvclock_gtod_notify,
9582 };
9583 #endif
9584
9585 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9586 {
9587 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9588
9589 #define __KVM_X86_OP(func) \
9590 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9591 #define KVM_X86_OP(func) \
9592 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9593 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9594 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9595 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9596 (void *)__static_call_return0);
9597 #include <asm/kvm-x86-ops.h>
9598 #undef __KVM_X86_OP
9599
9600 kvm_pmu_ops_update(ops->pmu_ops);
9601 }
9602
9603 static int kvm_x86_check_processor_compatibility(void)
9604 {
9605 int cpu = smp_processor_id();
9606 struct cpuinfo_x86 *c = &cpu_data(cpu);
9607
9608 /*
9609 * Compatibility checks are done when loading KVM and when enabling
9610 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9611 * compatible, i.e. KVM should never perform a compatibility check on
9612 * an offline CPU.
9613 */
9614 WARN_ON(!cpu_online(cpu));
9615
9616 if (__cr4_reserved_bits(cpu_has, c) !=
9617 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9618 return -EIO;
9619
9620 return static_call(kvm_x86_check_processor_compatibility)();
9621 }
9622
9623 static void kvm_x86_check_cpu_compat(void *ret)
9624 {
9625 *(int *)ret = kvm_x86_check_processor_compatibility();
9626 }
9627
9628 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9629 {
9630 u64 host_pat;
9631 int r, cpu;
9632
9633 if (kvm_x86_ops.hardware_enable) {
9634 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9635 return -EEXIST;
9636 }
9637
9638 /*
9639 * KVM explicitly assumes that the guest has an FPU and
9640 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9641 * vCPU's FPU state as a fxregs_state struct.
9642 */
9643 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9644 pr_err("inadequate fpu\n");
9645 return -EOPNOTSUPP;
9646 }
9647
9648 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9649 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9650 return -EOPNOTSUPP;
9651 }
9652
9653 /*
9654 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9655 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9656 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9657 * with an exception. PAT[0] is set to WB on RESET and also by the
9658 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9659 */
9660 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9661 (host_pat & GENMASK(2, 0)) != 6) {
9662 pr_err("host PAT[0] is not WB\n");
9663 return -EIO;
9664 }
9665
9666 x86_emulator_cache = kvm_alloc_emulator_cache();
9667 if (!x86_emulator_cache) {
9668 pr_err("failed to allocate cache for x86 emulator\n");
9669 return -ENOMEM;
9670 }
9671
9672 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9673 if (!user_return_msrs) {
9674 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9675 r = -ENOMEM;
9676 goto out_free_x86_emulator_cache;
9677 }
9678 kvm_nr_uret_msrs = 0;
9679
9680 r = kvm_mmu_vendor_module_init();
9681 if (r)
9682 goto out_free_percpu;
9683
9684 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9685 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9686 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9687 }
9688
9689 rdmsrl_safe(MSR_EFER, &host_efer);
9690
9691 if (boot_cpu_has(X86_FEATURE_XSAVES))
9692 rdmsrl(MSR_IA32_XSS, host_xss);
9693
9694 kvm_init_pmu_capability(ops->pmu_ops);
9695
9696 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9697 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9698
9699 r = ops->hardware_setup();
9700 if (r != 0)
9701 goto out_mmu_exit;
9702
9703 kvm_ops_update(ops);
9704
9705 for_each_online_cpu(cpu) {
9706 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9707 if (r < 0)
9708 goto out_unwind_ops;
9709 }
9710
9711 /*
9712 * Point of no return! DO NOT add error paths below this point unless
9713 * absolutely necessary, as most operations from this point forward
9714 * require unwinding.
9715 */
9716 kvm_timer_init();
9717
9718 if (pi_inject_timer == -1)
9719 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9720 #ifdef CONFIG_X86_64
9721 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9722
9723 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9724 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9725 #endif
9726
9727 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9728
9729 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9730 kvm_caps.supported_xss = 0;
9731
9732 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9733 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9734 #undef __kvm_cpu_cap_has
9735
9736 if (kvm_caps.has_tsc_control) {
9737 /*
9738 * Make sure the user can only configure tsc_khz values that
9739 * fit into a signed integer.
9740 * A min value is not calculated because it will always
9741 * be 1 on all machines.
9742 */
9743 u64 max = min(0x7fffffffULL,
9744 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9745 kvm_caps.max_guest_tsc_khz = max;
9746 }
9747 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9748 kvm_init_msr_lists();
9749 return 0;
9750
9751 out_unwind_ops:
9752 kvm_x86_ops.hardware_enable = NULL;
9753 static_call(kvm_x86_hardware_unsetup)();
9754 out_mmu_exit:
9755 kvm_mmu_vendor_module_exit();
9756 out_free_percpu:
9757 free_percpu(user_return_msrs);
9758 out_free_x86_emulator_cache:
9759 kmem_cache_destroy(x86_emulator_cache);
9760 return r;
9761 }
9762
9763 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9764 {
9765 int r;
9766
9767 mutex_lock(&vendor_module_lock);
9768 r = __kvm_x86_vendor_init(ops);
9769 mutex_unlock(&vendor_module_lock);
9770
9771 return r;
9772 }
9773 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9774
9775 void kvm_x86_vendor_exit(void)
9776 {
9777 kvm_unregister_perf_callbacks();
9778
9779 #ifdef CONFIG_X86_64
9780 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9781 clear_hv_tscchange_cb();
9782 #endif
9783 kvm_lapic_exit();
9784
9785 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9786 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9787 CPUFREQ_TRANSITION_NOTIFIER);
9788 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9789 }
9790 #ifdef CONFIG_X86_64
9791 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9792 irq_work_sync(&pvclock_irq_work);
9793 cancel_work_sync(&pvclock_gtod_work);
9794 #endif
9795 static_call(kvm_x86_hardware_unsetup)();
9796 kvm_mmu_vendor_module_exit();
9797 free_percpu(user_return_msrs);
9798 kmem_cache_destroy(x86_emulator_cache);
9799 #ifdef CONFIG_KVM_XEN
9800 static_key_deferred_flush(&kvm_xen_enabled);
9801 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9802 #endif
9803 mutex_lock(&vendor_module_lock);
9804 kvm_x86_ops.hardware_enable = NULL;
9805 mutex_unlock(&vendor_module_lock);
9806 }
9807 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9808
9809 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9810 {
9811 /*
9812 * The vCPU has halted, e.g. executed HLT. Update the run state if the
9813 * local APIC is in-kernel, the run loop will detect the non-runnable
9814 * state and halt the vCPU. Exit to userspace if the local APIC is
9815 * managed by userspace, in which case userspace is responsible for
9816 * handling wake events.
9817 */
9818 ++vcpu->stat.halt_exits;
9819 if (lapic_in_kernel(vcpu)) {
9820 vcpu->arch.mp_state = state;
9821 return 1;
9822 } else {
9823 vcpu->run->exit_reason = reason;
9824 return 0;
9825 }
9826 }
9827
9828 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9829 {
9830 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9831 }
9832 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9833
9834 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9835 {
9836 int ret = kvm_skip_emulated_instruction(vcpu);
9837 /*
9838 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9839 * KVM_EXIT_DEBUG here.
9840 */
9841 return kvm_emulate_halt_noskip(vcpu) && ret;
9842 }
9843 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9844
9845 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9846 {
9847 int ret = kvm_skip_emulated_instruction(vcpu);
9848
9849 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9850 KVM_EXIT_AP_RESET_HOLD) && ret;
9851 }
9852 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9853
9854 #ifdef CONFIG_X86_64
9855 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9856 unsigned long clock_type)
9857 {
9858 struct kvm_clock_pairing clock_pairing;
9859 struct timespec64 ts;
9860 u64 cycle;
9861 int ret;
9862
9863 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9864 return -KVM_EOPNOTSUPP;
9865
9866 /*
9867 * When tsc is in permanent catchup mode guests won't be able to use
9868 * pvclock_read_retry loop to get consistent view of pvclock
9869 */
9870 if (vcpu->arch.tsc_always_catchup)
9871 return -KVM_EOPNOTSUPP;
9872
9873 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9874 return -KVM_EOPNOTSUPP;
9875
9876 clock_pairing.sec = ts.tv_sec;
9877 clock_pairing.nsec = ts.tv_nsec;
9878 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9879 clock_pairing.flags = 0;
9880 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9881
9882 ret = 0;
9883 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9884 sizeof(struct kvm_clock_pairing)))
9885 ret = -KVM_EFAULT;
9886
9887 return ret;
9888 }
9889 #endif
9890
9891 /*
9892 * kvm_pv_kick_cpu_op: Kick a vcpu.
9893 *
9894 * @apicid - apicid of vcpu to be kicked.
9895 */
9896 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9897 {
9898 /*
9899 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9900 * common code, e.g. for tracing. Defer initialization to the compiler.
9901 */
9902 struct kvm_lapic_irq lapic_irq = {
9903 .delivery_mode = APIC_DM_REMRD,
9904 .dest_mode = APIC_DEST_PHYSICAL,
9905 .shorthand = APIC_DEST_NOSHORT,
9906 .dest_id = apicid,
9907 };
9908
9909 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9910 }
9911
9912 bool kvm_apicv_activated(struct kvm *kvm)
9913 {
9914 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9915 }
9916 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9917
9918 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9919 {
9920 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9921 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9922
9923 return (vm_reasons | vcpu_reasons) == 0;
9924 }
9925 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9926
9927 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9928 enum kvm_apicv_inhibit reason, bool set)
9929 {
9930 if (set)
9931 __set_bit(reason, inhibits);
9932 else
9933 __clear_bit(reason, inhibits);
9934
9935 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9936 }
9937
9938 static void kvm_apicv_init(struct kvm *kvm)
9939 {
9940 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9941
9942 init_rwsem(&kvm->arch.apicv_update_lock);
9943
9944 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9945
9946 if (!enable_apicv)
9947 set_or_clear_apicv_inhibit(inhibits,
9948 APICV_INHIBIT_REASON_DISABLE, true);
9949 }
9950
9951 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9952 {
9953 struct kvm_vcpu *target = NULL;
9954 struct kvm_apic_map *map;
9955
9956 vcpu->stat.directed_yield_attempted++;
9957
9958 if (single_task_running())
9959 goto no_yield;
9960
9961 rcu_read_lock();
9962 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9963
9964 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9965 target = map->phys_map[dest_id]->vcpu;
9966
9967 rcu_read_unlock();
9968
9969 if (!target || !READ_ONCE(target->ready))
9970 goto no_yield;
9971
9972 /* Ignore requests to yield to self */
9973 if (vcpu == target)
9974 goto no_yield;
9975
9976 if (kvm_vcpu_yield_to(target) <= 0)
9977 goto no_yield;
9978
9979 vcpu->stat.directed_yield_successful++;
9980
9981 no_yield:
9982 return;
9983 }
9984
9985 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9986 {
9987 u64 ret = vcpu->run->hypercall.ret;
9988
9989 if (!is_64_bit_mode(vcpu))
9990 ret = (u32)ret;
9991 kvm_rax_write(vcpu, ret);
9992 ++vcpu->stat.hypercalls;
9993 return kvm_skip_emulated_instruction(vcpu);
9994 }
9995
9996 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9997 {
9998 unsigned long nr, a0, a1, a2, a3, ret;
9999 int op_64_bit;
10000
10001 if (kvm_xen_hypercall_enabled(vcpu->kvm))
10002 return kvm_xen_hypercall(vcpu);
10003
10004 if (kvm_hv_hypercall_enabled(vcpu))
10005 return kvm_hv_hypercall(vcpu);
10006
10007 nr = kvm_rax_read(vcpu);
10008 a0 = kvm_rbx_read(vcpu);
10009 a1 = kvm_rcx_read(vcpu);
10010 a2 = kvm_rdx_read(vcpu);
10011 a3 = kvm_rsi_read(vcpu);
10012
10013 trace_kvm_hypercall(nr, a0, a1, a2, a3);
10014
10015 op_64_bit = is_64_bit_hypercall(vcpu);
10016 if (!op_64_bit) {
10017 nr &= 0xFFFFFFFF;
10018 a0 &= 0xFFFFFFFF;
10019 a1 &= 0xFFFFFFFF;
10020 a2 &= 0xFFFFFFFF;
10021 a3 &= 0xFFFFFFFF;
10022 }
10023
10024 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
10025 ret = -KVM_EPERM;
10026 goto out;
10027 }
10028
10029 ret = -KVM_ENOSYS;
10030
10031 switch (nr) {
10032 case KVM_HC_VAPIC_POLL_IRQ:
10033 ret = 0;
10034 break;
10035 case KVM_HC_KICK_CPU:
10036 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10037 break;
10038
10039 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10040 kvm_sched_yield(vcpu, a1);
10041 ret = 0;
10042 break;
10043 #ifdef CONFIG_X86_64
10044 case KVM_HC_CLOCK_PAIRING:
10045 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10046 break;
10047 #endif
10048 case KVM_HC_SEND_IPI:
10049 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10050 break;
10051
10052 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10053 break;
10054 case KVM_HC_SCHED_YIELD:
10055 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10056 break;
10057
10058 kvm_sched_yield(vcpu, a0);
10059 ret = 0;
10060 break;
10061 case KVM_HC_MAP_GPA_RANGE: {
10062 u64 gpa = a0, npages = a1, attrs = a2;
10063
10064 ret = -KVM_ENOSYS;
10065 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10066 break;
10067
10068 if (!PAGE_ALIGNED(gpa) || !npages ||
10069 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10070 ret = -KVM_EINVAL;
10071 break;
10072 }
10073
10074 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10075 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10076 vcpu->run->hypercall.args[0] = gpa;
10077 vcpu->run->hypercall.args[1] = npages;
10078 vcpu->run->hypercall.args[2] = attrs;
10079 vcpu->run->hypercall.flags = 0;
10080 if (op_64_bit)
10081 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10082
10083 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10084 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10085 return 0;
10086 }
10087 default:
10088 ret = -KVM_ENOSYS;
10089 break;
10090 }
10091 out:
10092 if (!op_64_bit)
10093 ret = (u32)ret;
10094 kvm_rax_write(vcpu, ret);
10095
10096 ++vcpu->stat.hypercalls;
10097 return kvm_skip_emulated_instruction(vcpu);
10098 }
10099 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10100
10101 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10102 {
10103 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10104 char instruction[3];
10105 unsigned long rip = kvm_rip_read(vcpu);
10106
10107 /*
10108 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10109 * the pieces.
10110 */
10111 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10112 ctxt->exception.error_code_valid = false;
10113 ctxt->exception.vector = UD_VECTOR;
10114 ctxt->have_exception = true;
10115 return X86EMUL_PROPAGATE_FAULT;
10116 }
10117
10118 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10119
10120 return emulator_write_emulated(ctxt, rip, instruction, 3,
10121 &ctxt->exception);
10122 }
10123
10124 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10125 {
10126 return vcpu->run->request_interrupt_window &&
10127 likely(!pic_in_kernel(vcpu->kvm));
10128 }
10129
10130 /* Called within kvm->srcu read side. */
10131 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10132 {
10133 struct kvm_run *kvm_run = vcpu->run;
10134
10135 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10136 kvm_run->cr8 = kvm_get_cr8(vcpu);
10137 kvm_run->apic_base = kvm_get_apic_base(vcpu);
10138
10139 kvm_run->ready_for_interrupt_injection =
10140 pic_in_kernel(vcpu->kvm) ||
10141 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10142
10143 if (is_smm(vcpu))
10144 kvm_run->flags |= KVM_RUN_X86_SMM;
10145 }
10146
10147 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10148 {
10149 int max_irr, tpr;
10150
10151 if (!kvm_x86_ops.update_cr8_intercept)
10152 return;
10153
10154 if (!lapic_in_kernel(vcpu))
10155 return;
10156
10157 if (vcpu->arch.apic->apicv_active)
10158 return;
10159
10160 if (!vcpu->arch.apic->vapic_addr)
10161 max_irr = kvm_lapic_find_highest_irr(vcpu);
10162 else
10163 max_irr = -1;
10164
10165 if (max_irr != -1)
10166 max_irr >>= 4;
10167
10168 tpr = kvm_lapic_get_cr8(vcpu);
10169
10170 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10171 }
10172
10173
10174 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10175 {
10176 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10177 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10178 return 1;
10179 }
10180
10181 return kvm_x86_ops.nested_ops->check_events(vcpu);
10182 }
10183
10184 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10185 {
10186 /*
10187 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10188 * exceptions don't report error codes. The presence of an error code
10189 * is carried with the exception and only stripped when the exception
10190 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10191 * report an error code despite the CPU being in Real Mode.
10192 */
10193 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10194
10195 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10196 vcpu->arch.exception.has_error_code,
10197 vcpu->arch.exception.error_code,
10198 vcpu->arch.exception.injected);
10199
10200 static_call(kvm_x86_inject_exception)(vcpu);
10201 }
10202
10203 /*
10204 * Check for any event (interrupt or exception) that is ready to be injected,
10205 * and if there is at least one event, inject the event with the highest
10206 * priority. This handles both "pending" events, i.e. events that have never
10207 * been injected into the guest, and "injected" events, i.e. events that were
10208 * injected as part of a previous VM-Enter, but weren't successfully delivered
10209 * and need to be re-injected.
10210 *
10211 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10212 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10213 * be able to inject exceptions in the "middle" of an instruction, and so must
10214 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10215 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10216 * boundaries is necessary and correct.
10217 *
10218 * For simplicity, KVM uses a single path to inject all events (except events
10219 * that are injected directly from L1 to L2) and doesn't explicitly track
10220 * instruction boundaries for asynchronous events. However, because VM-Exits
10221 * that can occur during instruction execution typically result in KVM skipping
10222 * the instruction or injecting an exception, e.g. instruction and exception
10223 * intercepts, and because pending exceptions have higher priority than pending
10224 * interrupts, KVM still honors instruction boundaries in most scenarios.
10225 *
10226 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10227 * the instruction or inject an exception, then KVM can incorrecty inject a new
10228 * asynchronous event if the event became pending after the CPU fetched the
10229 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10230 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10231 * injected on the restarted instruction instead of being deferred until the
10232 * instruction completes.
10233 *
10234 * In practice, this virtualization hole is unlikely to be observed by the
10235 * guest, and even less likely to cause functional problems. To detect the
10236 * hole, the guest would have to trigger an event on a side effect of an early
10237 * phase of instruction execution, e.g. on the instruction fetch from memory.
10238 * And for it to be a functional problem, the guest would need to depend on the
10239 * ordering between that side effect, the instruction completing, _and_ the
10240 * delivery of the asynchronous event.
10241 */
10242 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10243 bool *req_immediate_exit)
10244 {
10245 bool can_inject;
10246 int r;
10247
10248 /*
10249 * Process nested events first, as nested VM-Exit supersedes event
10250 * re-injection. If there's an event queued for re-injection, it will
10251 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10252 */
10253 if (is_guest_mode(vcpu))
10254 r = kvm_check_nested_events(vcpu);
10255 else
10256 r = 0;
10257
10258 /*
10259 * Re-inject exceptions and events *especially* if immediate entry+exit
10260 * to/from L2 is needed, as any event that has already been injected
10261 * into L2 needs to complete its lifecycle before injecting a new event.
10262 *
10263 * Don't re-inject an NMI or interrupt if there is a pending exception.
10264 * This collision arises if an exception occurred while vectoring the
10265 * injected event, KVM intercepted said exception, and KVM ultimately
10266 * determined the fault belongs to the guest and queues the exception
10267 * for injection back into the guest.
10268 *
10269 * "Injected" interrupts can also collide with pending exceptions if
10270 * userspace ignores the "ready for injection" flag and blindly queues
10271 * an interrupt. In that case, prioritizing the exception is correct,
10272 * as the exception "occurred" before the exit to userspace. Trap-like
10273 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10274 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10275 * priority, they're only generated (pended) during instruction
10276 * execution, and interrupts are recognized at instruction boundaries.
10277 * Thus a pending fault-like exception means the fault occurred on the
10278 * *previous* instruction and must be serviced prior to recognizing any
10279 * new events in order to fully complete the previous instruction.
10280 */
10281 if (vcpu->arch.exception.injected)
10282 kvm_inject_exception(vcpu);
10283 else if (kvm_is_exception_pending(vcpu))
10284 ; /* see above */
10285 else if (vcpu->arch.nmi_injected)
10286 static_call(kvm_x86_inject_nmi)(vcpu);
10287 else if (vcpu->arch.interrupt.injected)
10288 static_call(kvm_x86_inject_irq)(vcpu, true);
10289
10290 /*
10291 * Exceptions that morph to VM-Exits are handled above, and pending
10292 * exceptions on top of injected exceptions that do not VM-Exit should
10293 * either morph to #DF or, sadly, override the injected exception.
10294 */
10295 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10296 vcpu->arch.exception.pending);
10297
10298 /*
10299 * Bail if immediate entry+exit to/from the guest is needed to complete
10300 * nested VM-Enter or event re-injection so that a different pending
10301 * event can be serviced (or if KVM needs to exit to userspace).
10302 *
10303 * Otherwise, continue processing events even if VM-Exit occurred. The
10304 * VM-Exit will have cleared exceptions that were meant for L2, but
10305 * there may now be events that can be injected into L1.
10306 */
10307 if (r < 0)
10308 goto out;
10309
10310 /*
10311 * A pending exception VM-Exit should either result in nested VM-Exit
10312 * or force an immediate re-entry and exit to/from L2, and exception
10313 * VM-Exits cannot be injected (flag should _never_ be set).
10314 */
10315 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10316 vcpu->arch.exception_vmexit.pending);
10317
10318 /*
10319 * New events, other than exceptions, cannot be injected if KVM needs
10320 * to re-inject a previous event. See above comments on re-injecting
10321 * for why pending exceptions get priority.
10322 */
10323 can_inject = !kvm_event_needs_reinjection(vcpu);
10324
10325 if (vcpu->arch.exception.pending) {
10326 /*
10327 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10328 * value pushed on the stack. Trap-like exception and all #DBs
10329 * leave RF as-is (KVM follows Intel's behavior in this regard;
10330 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10331 *
10332 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10333 * describe the behavior of General Detect #DBs, which are
10334 * fault-like. They do _not_ set RF, a la code breakpoints.
10335 */
10336 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10337 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10338 X86_EFLAGS_RF);
10339
10340 if (vcpu->arch.exception.vector == DB_VECTOR) {
10341 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10342 if (vcpu->arch.dr7 & DR7_GD) {
10343 vcpu->arch.dr7 &= ~DR7_GD;
10344 kvm_update_dr7(vcpu);
10345 }
10346 }
10347
10348 kvm_inject_exception(vcpu);
10349
10350 vcpu->arch.exception.pending = false;
10351 vcpu->arch.exception.injected = true;
10352
10353 can_inject = false;
10354 }
10355
10356 /* Don't inject interrupts if the user asked to avoid doing so */
10357 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10358 return 0;
10359
10360 /*
10361 * Finally, inject interrupt events. If an event cannot be injected
10362 * due to architectural conditions (e.g. IF=0) a window-open exit
10363 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10364 * and can architecturally be injected, but we cannot do it right now:
10365 * an interrupt could have arrived just now and we have to inject it
10366 * as a vmexit, or there could already an event in the queue, which is
10367 * indicated by can_inject. In that case we request an immediate exit
10368 * in order to make progress and get back here for another iteration.
10369 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10370 */
10371 #ifdef CONFIG_KVM_SMM
10372 if (vcpu->arch.smi_pending) {
10373 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10374 if (r < 0)
10375 goto out;
10376 if (r) {
10377 vcpu->arch.smi_pending = false;
10378 ++vcpu->arch.smi_count;
10379 enter_smm(vcpu);
10380 can_inject = false;
10381 } else
10382 static_call(kvm_x86_enable_smi_window)(vcpu);
10383 }
10384 #endif
10385
10386 if (vcpu->arch.nmi_pending) {
10387 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10388 if (r < 0)
10389 goto out;
10390 if (r) {
10391 --vcpu->arch.nmi_pending;
10392 vcpu->arch.nmi_injected = true;
10393 static_call(kvm_x86_inject_nmi)(vcpu);
10394 can_inject = false;
10395 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10396 }
10397 if (vcpu->arch.nmi_pending)
10398 static_call(kvm_x86_enable_nmi_window)(vcpu);
10399 }
10400
10401 if (kvm_cpu_has_injectable_intr(vcpu)) {
10402 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10403 if (r < 0)
10404 goto out;
10405 if (r) {
10406 int irq = kvm_cpu_get_interrupt(vcpu);
10407
10408 if (!WARN_ON_ONCE(irq == -1)) {
10409 kvm_queue_interrupt(vcpu, irq, false);
10410 static_call(kvm_x86_inject_irq)(vcpu, false);
10411 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10412 }
10413 }
10414 if (kvm_cpu_has_injectable_intr(vcpu))
10415 static_call(kvm_x86_enable_irq_window)(vcpu);
10416 }
10417
10418 if (is_guest_mode(vcpu) &&
10419 kvm_x86_ops.nested_ops->has_events &&
10420 kvm_x86_ops.nested_ops->has_events(vcpu))
10421 *req_immediate_exit = true;
10422
10423 /*
10424 * KVM must never queue a new exception while injecting an event; KVM
10425 * is done emulating and should only propagate the to-be-injected event
10426 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10427 * infinite loop as KVM will bail from VM-Enter to inject the pending
10428 * exception and start the cycle all over.
10429 *
10430 * Exempt triple faults as they have special handling and won't put the
10431 * vCPU into an infinite loop. Triple fault can be queued when running
10432 * VMX without unrestricted guest, as that requires KVM to emulate Real
10433 * Mode events (see kvm_inject_realmode_interrupt()).
10434 */
10435 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10436 vcpu->arch.exception_vmexit.pending);
10437 return 0;
10438
10439 out:
10440 if (r == -EBUSY) {
10441 *req_immediate_exit = true;
10442 r = 0;
10443 }
10444 return r;
10445 }
10446
10447 static void process_nmi(struct kvm_vcpu *vcpu)
10448 {
10449 unsigned int limit;
10450
10451 /*
10452 * x86 is limited to one NMI pending, but because KVM can't react to
10453 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10454 * scheduled out, KVM needs to play nice with two queued NMIs showing
10455 * up at the same time. To handle this scenario, allow two NMIs to be
10456 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10457 * waiting for a previous NMI injection to complete (which effectively
10458 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10459 * will request an NMI window to handle the second NMI.
10460 */
10461 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10462 limit = 1;
10463 else
10464 limit = 2;
10465
10466 /*
10467 * Adjust the limit to account for pending virtual NMIs, which aren't
10468 * tracked in vcpu->arch.nmi_pending.
10469 */
10470 if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10471 limit--;
10472
10473 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10474 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10475
10476 if (vcpu->arch.nmi_pending &&
10477 (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10478 vcpu->arch.nmi_pending--;
10479
10480 if (vcpu->arch.nmi_pending)
10481 kvm_make_request(KVM_REQ_EVENT, vcpu);
10482 }
10483
10484 /* Return total number of NMIs pending injection to the VM */
10485 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10486 {
10487 return vcpu->arch.nmi_pending +
10488 static_call(kvm_x86_is_vnmi_pending)(vcpu);
10489 }
10490
10491 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10492 unsigned long *vcpu_bitmap)
10493 {
10494 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10495 }
10496
10497 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10498 {
10499 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10500 }
10501
10502 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10503 {
10504 struct kvm_lapic *apic = vcpu->arch.apic;
10505 bool activate;
10506
10507 if (!lapic_in_kernel(vcpu))
10508 return;
10509
10510 down_read(&vcpu->kvm->arch.apicv_update_lock);
10511 preempt_disable();
10512
10513 /* Do not activate APICV when APIC is disabled */
10514 activate = kvm_vcpu_apicv_activated(vcpu) &&
10515 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10516
10517 if (apic->apicv_active == activate)
10518 goto out;
10519
10520 apic->apicv_active = activate;
10521 kvm_apic_update_apicv(vcpu);
10522 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10523
10524 /*
10525 * When APICv gets disabled, we may still have injected interrupts
10526 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10527 * still active when the interrupt got accepted. Make sure
10528 * kvm_check_and_inject_events() is called to check for that.
10529 */
10530 if (!apic->apicv_active)
10531 kvm_make_request(KVM_REQ_EVENT, vcpu);
10532
10533 out:
10534 preempt_enable();
10535 up_read(&vcpu->kvm->arch.apicv_update_lock);
10536 }
10537 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10538
10539 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10540 {
10541 if (!lapic_in_kernel(vcpu))
10542 return;
10543
10544 /*
10545 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10546 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10547 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10548 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10549 * this case so that KVM can the AVIC doorbell to inject interrupts to
10550 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10551 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10552 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10553 * access page is sticky.
10554 */
10555 if (apic_x2apic_mode(vcpu->arch.apic) &&
10556 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10557 kvm_inhibit_apic_access_page(vcpu);
10558
10559 __kvm_vcpu_update_apicv(vcpu);
10560 }
10561
10562 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10563 enum kvm_apicv_inhibit reason, bool set)
10564 {
10565 unsigned long old, new;
10566
10567 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10568
10569 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10570 return;
10571
10572 old = new = kvm->arch.apicv_inhibit_reasons;
10573
10574 set_or_clear_apicv_inhibit(&new, reason, set);
10575
10576 if (!!old != !!new) {
10577 /*
10578 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10579 * false positives in the sanity check WARN in svm_vcpu_run().
10580 * This task will wait for all vCPUs to ack the kick IRQ before
10581 * updating apicv_inhibit_reasons, and all other vCPUs will
10582 * block on acquiring apicv_update_lock so that vCPUs can't
10583 * redo svm_vcpu_run() without seeing the new inhibit state.
10584 *
10585 * Note, holding apicv_update_lock and taking it in the read
10586 * side (handling the request) also prevents other vCPUs from
10587 * servicing the request with a stale apicv_inhibit_reasons.
10588 */
10589 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10590 kvm->arch.apicv_inhibit_reasons = new;
10591 if (new) {
10592 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10593 int idx = srcu_read_lock(&kvm->srcu);
10594
10595 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10596 srcu_read_unlock(&kvm->srcu, idx);
10597 }
10598 } else {
10599 kvm->arch.apicv_inhibit_reasons = new;
10600 }
10601 }
10602
10603 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10604 enum kvm_apicv_inhibit reason, bool set)
10605 {
10606 if (!enable_apicv)
10607 return;
10608
10609 down_write(&kvm->arch.apicv_update_lock);
10610 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10611 up_write(&kvm->arch.apicv_update_lock);
10612 }
10613 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10614
10615 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10616 {
10617 if (!kvm_apic_present(vcpu))
10618 return;
10619
10620 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10621
10622 if (irqchip_split(vcpu->kvm))
10623 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10624 else {
10625 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10626 if (ioapic_in_kernel(vcpu->kvm))
10627 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10628 }
10629
10630 if (is_guest_mode(vcpu))
10631 vcpu->arch.load_eoi_exitmap_pending = true;
10632 else
10633 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10634 }
10635
10636 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10637 {
10638 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10639 return;
10640
10641 #ifdef CONFIG_KVM_HYPERV
10642 if (to_hv_vcpu(vcpu)) {
10643 u64 eoi_exit_bitmap[4];
10644
10645 bitmap_or((ulong *)eoi_exit_bitmap,
10646 vcpu->arch.ioapic_handled_vectors,
10647 to_hv_synic(vcpu)->vec_bitmap, 256);
10648 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10649 return;
10650 }
10651 #endif
10652 static_call_cond(kvm_x86_load_eoi_exitmap)(
10653 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10654 }
10655
10656 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10657 {
10658 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10659 }
10660
10661 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10662 {
10663 if (!lapic_in_kernel(vcpu))
10664 return;
10665
10666 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10667 }
10668
10669 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10670 {
10671 smp_send_reschedule(vcpu->cpu);
10672 }
10673 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10674
10675 /*
10676 * Called within kvm->srcu read side.
10677 * Returns 1 to let vcpu_run() continue the guest execution loop without
10678 * exiting to the userspace. Otherwise, the value will be returned to the
10679 * userspace.
10680 */
10681 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10682 {
10683 int r;
10684 bool req_int_win =
10685 dm_request_for_irq_injection(vcpu) &&
10686 kvm_cpu_accept_dm_intr(vcpu);
10687 fastpath_t exit_fastpath;
10688
10689 bool req_immediate_exit = false;
10690
10691 if (kvm_request_pending(vcpu)) {
10692 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10693 r = -EIO;
10694 goto out;
10695 }
10696
10697 if (kvm_dirty_ring_check_request(vcpu)) {
10698 r = 0;
10699 goto out;
10700 }
10701
10702 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10703 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10704 r = 0;
10705 goto out;
10706 }
10707 }
10708 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10709 kvm_mmu_free_obsolete_roots(vcpu);
10710 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10711 __kvm_migrate_timers(vcpu);
10712 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10713 kvm_update_masterclock(vcpu->kvm);
10714 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10715 kvm_gen_kvmclock_update(vcpu);
10716 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10717 r = kvm_guest_time_update(vcpu);
10718 if (unlikely(r))
10719 goto out;
10720 }
10721 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10722 kvm_mmu_sync_roots(vcpu);
10723 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10724 kvm_mmu_load_pgd(vcpu);
10725
10726 /*
10727 * Note, the order matters here, as flushing "all" TLB entries
10728 * also flushes the "current" TLB entries, i.e. servicing the
10729 * flush "all" will clear any request to flush "current".
10730 */
10731 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10732 kvm_vcpu_flush_tlb_all(vcpu);
10733
10734 kvm_service_local_tlb_flush_requests(vcpu);
10735
10736 /*
10737 * Fall back to a "full" guest flush if Hyper-V's precise
10738 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10739 * the flushes are considered "remote" and not "local" because
10740 * the requests can be initiated from other vCPUs.
10741 */
10742 #ifdef CONFIG_KVM_HYPERV
10743 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10744 kvm_hv_vcpu_flush_tlb(vcpu))
10745 kvm_vcpu_flush_tlb_guest(vcpu);
10746 #endif
10747
10748 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10749 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10750 r = 0;
10751 goto out;
10752 }
10753 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10754 if (is_guest_mode(vcpu))
10755 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10756
10757 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10758 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10759 vcpu->mmio_needed = 0;
10760 r = 0;
10761 goto out;
10762 }
10763 }
10764 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10765 /* Page is swapped out. Do synthetic halt */
10766 vcpu->arch.apf.halted = true;
10767 r = 1;
10768 goto out;
10769 }
10770 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10771 record_steal_time(vcpu);
10772 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10773 kvm_pmu_handle_event(vcpu);
10774 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10775 kvm_pmu_deliver_pmi(vcpu);
10776 #ifdef CONFIG_KVM_SMM
10777 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10778 process_smi(vcpu);
10779 #endif
10780 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10781 process_nmi(vcpu);
10782 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10783 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10784 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10785 vcpu->arch.ioapic_handled_vectors)) {
10786 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10787 vcpu->run->eoi.vector =
10788 vcpu->arch.pending_ioapic_eoi;
10789 r = 0;
10790 goto out;
10791 }
10792 }
10793 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10794 vcpu_scan_ioapic(vcpu);
10795 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10796 vcpu_load_eoi_exitmap(vcpu);
10797 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10798 kvm_vcpu_reload_apic_access_page(vcpu);
10799 #ifdef CONFIG_KVM_HYPERV
10800 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10801 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10802 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10803 vcpu->run->system_event.ndata = 0;
10804 r = 0;
10805 goto out;
10806 }
10807 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10808 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10809 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10810 vcpu->run->system_event.ndata = 0;
10811 r = 0;
10812 goto out;
10813 }
10814 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10815 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10816
10817 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10818 vcpu->run->hyperv = hv_vcpu->exit;
10819 r = 0;
10820 goto out;
10821 }
10822
10823 /*
10824 * KVM_REQ_HV_STIMER has to be processed after
10825 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10826 * depend on the guest clock being up-to-date
10827 */
10828 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10829 kvm_hv_process_stimers(vcpu);
10830 #endif
10831 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10832 kvm_vcpu_update_apicv(vcpu);
10833 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10834 kvm_check_async_pf_completion(vcpu);
10835 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10836 static_call(kvm_x86_msr_filter_changed)(vcpu);
10837
10838 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10839 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10840 }
10841
10842 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10843 kvm_xen_has_interrupt(vcpu)) {
10844 ++vcpu->stat.req_event;
10845 r = kvm_apic_accept_events(vcpu);
10846 if (r < 0) {
10847 r = 0;
10848 goto out;
10849 }
10850 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10851 r = 1;
10852 goto out;
10853 }
10854
10855 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10856 if (r < 0) {
10857 r = 0;
10858 goto out;
10859 }
10860 if (req_int_win)
10861 static_call(kvm_x86_enable_irq_window)(vcpu);
10862
10863 if (kvm_lapic_enabled(vcpu)) {
10864 update_cr8_intercept(vcpu);
10865 kvm_lapic_sync_to_vapic(vcpu);
10866 }
10867 }
10868
10869 r = kvm_mmu_reload(vcpu);
10870 if (unlikely(r)) {
10871 goto cancel_injection;
10872 }
10873
10874 preempt_disable();
10875
10876 static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10877
10878 /*
10879 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10880 * IPI are then delayed after guest entry, which ensures that they
10881 * result in virtual interrupt delivery.
10882 */
10883 local_irq_disable();
10884
10885 /* Store vcpu->apicv_active before vcpu->mode. */
10886 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10887
10888 kvm_vcpu_srcu_read_unlock(vcpu);
10889
10890 /*
10891 * 1) We should set ->mode before checking ->requests. Please see
10892 * the comment in kvm_vcpu_exiting_guest_mode().
10893 *
10894 * 2) For APICv, we should set ->mode before checking PID.ON. This
10895 * pairs with the memory barrier implicit in pi_test_and_set_on
10896 * (see vmx_deliver_posted_interrupt).
10897 *
10898 * 3) This also orders the write to mode from any reads to the page
10899 * tables done while the VCPU is running. Please see the comment
10900 * in kvm_flush_remote_tlbs.
10901 */
10902 smp_mb__after_srcu_read_unlock();
10903
10904 /*
10905 * Process pending posted interrupts to handle the case where the
10906 * notification IRQ arrived in the host, or was never sent (because the
10907 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10908 * status, KVM doesn't update assigned devices when APICv is inhibited,
10909 * i.e. they can post interrupts even if APICv is temporarily disabled.
10910 */
10911 if (kvm_lapic_enabled(vcpu))
10912 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10913
10914 if (kvm_vcpu_exit_request(vcpu)) {
10915 vcpu->mode = OUTSIDE_GUEST_MODE;
10916 smp_wmb();
10917 local_irq_enable();
10918 preempt_enable();
10919 kvm_vcpu_srcu_read_lock(vcpu);
10920 r = 1;
10921 goto cancel_injection;
10922 }
10923
10924 if (req_immediate_exit) {
10925 kvm_make_request(KVM_REQ_EVENT, vcpu);
10926 static_call(kvm_x86_request_immediate_exit)(vcpu);
10927 }
10928
10929 fpregs_assert_state_consistent();
10930 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10931 switch_fpu_return();
10932
10933 if (vcpu->arch.guest_fpu.xfd_err)
10934 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10935
10936 if (unlikely(vcpu->arch.switch_db_regs)) {
10937 set_debugreg(0, 7);
10938 set_debugreg(vcpu->arch.eff_db[0], 0);
10939 set_debugreg(vcpu->arch.eff_db[1], 1);
10940 set_debugreg(vcpu->arch.eff_db[2], 2);
10941 set_debugreg(vcpu->arch.eff_db[3], 3);
10942 } else if (unlikely(hw_breakpoint_active())) {
10943 set_debugreg(0, 7);
10944 }
10945
10946 guest_timing_enter_irqoff();
10947
10948 for (;;) {
10949 /*
10950 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10951 * update must kick and wait for all vCPUs before toggling the
10952 * per-VM state, and responding vCPUs must wait for the update
10953 * to complete before servicing KVM_REQ_APICV_UPDATE.
10954 */
10955 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10956 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10957
10958 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10959 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10960 break;
10961
10962 if (kvm_lapic_enabled(vcpu))
10963 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10964
10965 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10966 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10967 break;
10968 }
10969
10970 /* Note, VM-Exits that go down the "slow" path are accounted below. */
10971 ++vcpu->stat.exits;
10972 }
10973
10974 /*
10975 * Do this here before restoring debug registers on the host. And
10976 * since we do this before handling the vmexit, a DR access vmexit
10977 * can (a) read the correct value of the debug registers, (b) set
10978 * KVM_DEBUGREG_WONT_EXIT again.
10979 */
10980 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10981 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10982 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10983 kvm_update_dr0123(vcpu);
10984 kvm_update_dr7(vcpu);
10985 }
10986
10987 /*
10988 * If the guest has used debug registers, at least dr7
10989 * will be disabled while returning to the host.
10990 * If we don't have active breakpoints in the host, we don't
10991 * care about the messed up debug address registers. But if
10992 * we have some of them active, restore the old state.
10993 */
10994 if (hw_breakpoint_active())
10995 hw_breakpoint_restore();
10996
10997 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10998 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10999
11000 vcpu->mode = OUTSIDE_GUEST_MODE;
11001 smp_wmb();
11002
11003 /*
11004 * Sync xfd before calling handle_exit_irqoff() which may
11005 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11006 * in #NM irqoff handler).
11007 */
11008 if (vcpu->arch.xfd_no_write_intercept)
11009 fpu_sync_guest_vmexit_xfd_state();
11010
11011 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
11012
11013 if (vcpu->arch.guest_fpu.xfd_err)
11014 wrmsrl(MSR_IA32_XFD_ERR, 0);
11015
11016 /*
11017 * Consume any pending interrupts, including the possible source of
11018 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11019 * An instruction is required after local_irq_enable() to fully unblock
11020 * interrupts on processors that implement an interrupt shadow, the
11021 * stat.exits increment will do nicely.
11022 */
11023 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11024 local_irq_enable();
11025 ++vcpu->stat.exits;
11026 local_irq_disable();
11027 kvm_after_interrupt(vcpu);
11028
11029 /*
11030 * Wait until after servicing IRQs to account guest time so that any
11031 * ticks that occurred while running the guest are properly accounted
11032 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11033 * of accounting via context tracking, but the loss of accuracy is
11034 * acceptable for all known use cases.
11035 */
11036 guest_timing_exit_irqoff();
11037
11038 local_irq_enable();
11039 preempt_enable();
11040
11041 kvm_vcpu_srcu_read_lock(vcpu);
11042
11043 /*
11044 * Profile KVM exit RIPs:
11045 */
11046 if (unlikely(prof_on == KVM_PROFILING)) {
11047 unsigned long rip = kvm_rip_read(vcpu);
11048 profile_hit(KVM_PROFILING, (void *)rip);
11049 }
11050
11051 if (unlikely(vcpu->arch.tsc_always_catchup))
11052 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11053
11054 if (vcpu->arch.apic_attention)
11055 kvm_lapic_sync_from_vapic(vcpu);
11056
11057 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
11058 return r;
11059
11060 cancel_injection:
11061 if (req_immediate_exit)
11062 kvm_make_request(KVM_REQ_EVENT, vcpu);
11063 static_call(kvm_x86_cancel_injection)(vcpu);
11064 if (unlikely(vcpu->arch.apic_attention))
11065 kvm_lapic_sync_from_vapic(vcpu);
11066 out:
11067 return r;
11068 }
11069
11070 /* Called within kvm->srcu read side. */
11071 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11072 {
11073 bool hv_timer;
11074
11075 if (!kvm_arch_vcpu_runnable(vcpu)) {
11076 /*
11077 * Switch to the software timer before halt-polling/blocking as
11078 * the guest's timer may be a break event for the vCPU, and the
11079 * hypervisor timer runs only when the CPU is in guest mode.
11080 * Switch before halt-polling so that KVM recognizes an expired
11081 * timer before blocking.
11082 */
11083 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11084 if (hv_timer)
11085 kvm_lapic_switch_to_sw_timer(vcpu);
11086
11087 kvm_vcpu_srcu_read_unlock(vcpu);
11088 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11089 kvm_vcpu_halt(vcpu);
11090 else
11091 kvm_vcpu_block(vcpu);
11092 kvm_vcpu_srcu_read_lock(vcpu);
11093
11094 if (hv_timer)
11095 kvm_lapic_switch_to_hv_timer(vcpu);
11096
11097 /*
11098 * If the vCPU is not runnable, a signal or another host event
11099 * of some kind is pending; service it without changing the
11100 * vCPU's activity state.
11101 */
11102 if (!kvm_arch_vcpu_runnable(vcpu))
11103 return 1;
11104 }
11105
11106 /*
11107 * Evaluate nested events before exiting the halted state. This allows
11108 * the halt state to be recorded properly in the VMCS12's activity
11109 * state field (AMD does not have a similar field and a VM-Exit always
11110 * causes a spurious wakeup from HLT).
11111 */
11112 if (is_guest_mode(vcpu)) {
11113 if (kvm_check_nested_events(vcpu) < 0)
11114 return 0;
11115 }
11116
11117 if (kvm_apic_accept_events(vcpu) < 0)
11118 return 0;
11119 switch(vcpu->arch.mp_state) {
11120 case KVM_MP_STATE_HALTED:
11121 case KVM_MP_STATE_AP_RESET_HOLD:
11122 vcpu->arch.pv.pv_unhalted = false;
11123 vcpu->arch.mp_state =
11124 KVM_MP_STATE_RUNNABLE;
11125 fallthrough;
11126 case KVM_MP_STATE_RUNNABLE:
11127 vcpu->arch.apf.halted = false;
11128 break;
11129 case KVM_MP_STATE_INIT_RECEIVED:
11130 break;
11131 default:
11132 WARN_ON_ONCE(1);
11133 break;
11134 }
11135 return 1;
11136 }
11137
11138 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11139 {
11140 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11141 !vcpu->arch.apf.halted);
11142 }
11143
11144 /* Called within kvm->srcu read side. */
11145 static int vcpu_run(struct kvm_vcpu *vcpu)
11146 {
11147 int r;
11148
11149 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11150 vcpu->arch.l1tf_flush_l1d = true;
11151
11152 for (;;) {
11153 /*
11154 * If another guest vCPU requests a PV TLB flush in the middle
11155 * of instruction emulation, the rest of the emulation could
11156 * use a stale page translation. Assume that any code after
11157 * this point can start executing an instruction.
11158 */
11159 vcpu->arch.at_instruction_boundary = false;
11160 if (kvm_vcpu_running(vcpu)) {
11161 r = vcpu_enter_guest(vcpu);
11162 } else {
11163 r = vcpu_block(vcpu);
11164 }
11165
11166 if (r <= 0)
11167 break;
11168
11169 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11170 if (kvm_xen_has_pending_events(vcpu))
11171 kvm_xen_inject_pending_events(vcpu);
11172
11173 if (kvm_cpu_has_pending_timer(vcpu))
11174 kvm_inject_pending_timer_irqs(vcpu);
11175
11176 if (dm_request_for_irq_injection(vcpu) &&
11177 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11178 r = 0;
11179 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11180 ++vcpu->stat.request_irq_exits;
11181 break;
11182 }
11183
11184 if (__xfer_to_guest_mode_work_pending()) {
11185 kvm_vcpu_srcu_read_unlock(vcpu);
11186 r = xfer_to_guest_mode_handle_work(vcpu);
11187 kvm_vcpu_srcu_read_lock(vcpu);
11188 if (r)
11189 return r;
11190 }
11191 }
11192
11193 return r;
11194 }
11195
11196 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11197 {
11198 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11199 }
11200
11201 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11202 {
11203 BUG_ON(!vcpu->arch.pio.count);
11204
11205 return complete_emulated_io(vcpu);
11206 }
11207
11208 /*
11209 * Implements the following, as a state machine:
11210 *
11211 * read:
11212 * for each fragment
11213 * for each mmio piece in the fragment
11214 * write gpa, len
11215 * exit
11216 * copy data
11217 * execute insn
11218 *
11219 * write:
11220 * for each fragment
11221 * for each mmio piece in the fragment
11222 * write gpa, len
11223 * copy data
11224 * exit
11225 */
11226 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11227 {
11228 struct kvm_run *run = vcpu->run;
11229 struct kvm_mmio_fragment *frag;
11230 unsigned len;
11231
11232 BUG_ON(!vcpu->mmio_needed);
11233
11234 /* Complete previous fragment */
11235 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11236 len = min(8u, frag->len);
11237 if (!vcpu->mmio_is_write)
11238 memcpy(frag->data, run->mmio.data, len);
11239
11240 if (frag->len <= 8) {
11241 /* Switch to the next fragment. */
11242 frag++;
11243 vcpu->mmio_cur_fragment++;
11244 } else {
11245 /* Go forward to the next mmio piece. */
11246 frag->data += len;
11247 frag->gpa += len;
11248 frag->len -= len;
11249 }
11250
11251 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11252 vcpu->mmio_needed = 0;
11253
11254 /* FIXME: return into emulator if single-stepping. */
11255 if (vcpu->mmio_is_write)
11256 return 1;
11257 vcpu->mmio_read_completed = 1;
11258 return complete_emulated_io(vcpu);
11259 }
11260
11261 run->exit_reason = KVM_EXIT_MMIO;
11262 run->mmio.phys_addr = frag->gpa;
11263 if (vcpu->mmio_is_write)
11264 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11265 run->mmio.len = min(8u, frag->len);
11266 run->mmio.is_write = vcpu->mmio_is_write;
11267 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11268 return 0;
11269 }
11270
11271 /* Swap (qemu) user FPU context for the guest FPU context. */
11272 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11273 {
11274 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11275 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11276 trace_kvm_fpu(1);
11277 }
11278
11279 /* When vcpu_run ends, restore user space FPU context. */
11280 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11281 {
11282 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11283 ++vcpu->stat.fpu_reload;
11284 trace_kvm_fpu(0);
11285 }
11286
11287 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11288 {
11289 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11290 struct kvm_run *kvm_run = vcpu->run;
11291 int r;
11292
11293 vcpu_load(vcpu);
11294 kvm_sigset_activate(vcpu);
11295 kvm_run->flags = 0;
11296 kvm_load_guest_fpu(vcpu);
11297
11298 kvm_vcpu_srcu_read_lock(vcpu);
11299 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11300 if (kvm_run->immediate_exit) {
11301 r = -EINTR;
11302 goto out;
11303 }
11304
11305 /*
11306 * Don't bother switching APIC timer emulation from the
11307 * hypervisor timer to the software timer, the only way for the
11308 * APIC timer to be active is if userspace stuffed vCPU state,
11309 * i.e. put the vCPU into a nonsensical state. Only an INIT
11310 * will transition the vCPU out of UNINITIALIZED (without more
11311 * state stuffing from userspace), which will reset the local
11312 * APIC and thus cancel the timer or drop the IRQ (if the timer
11313 * already expired).
11314 */
11315 kvm_vcpu_srcu_read_unlock(vcpu);
11316 kvm_vcpu_block(vcpu);
11317 kvm_vcpu_srcu_read_lock(vcpu);
11318
11319 if (kvm_apic_accept_events(vcpu) < 0) {
11320 r = 0;
11321 goto out;
11322 }
11323 r = -EAGAIN;
11324 if (signal_pending(current)) {
11325 r = -EINTR;
11326 kvm_run->exit_reason = KVM_EXIT_INTR;
11327 ++vcpu->stat.signal_exits;
11328 }
11329 goto out;
11330 }
11331
11332 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11333 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11334 r = -EINVAL;
11335 goto out;
11336 }
11337
11338 if (kvm_run->kvm_dirty_regs) {
11339 r = sync_regs(vcpu);
11340 if (r != 0)
11341 goto out;
11342 }
11343
11344 /* re-sync apic's tpr */
11345 if (!lapic_in_kernel(vcpu)) {
11346 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11347 r = -EINVAL;
11348 goto out;
11349 }
11350 }
11351
11352 /*
11353 * If userspace set a pending exception and L2 is active, convert it to
11354 * a pending VM-Exit if L1 wants to intercept the exception.
11355 */
11356 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11357 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11358 ex->error_code)) {
11359 kvm_queue_exception_vmexit(vcpu, ex->vector,
11360 ex->has_error_code, ex->error_code,
11361 ex->has_payload, ex->payload);
11362 ex->injected = false;
11363 ex->pending = false;
11364 }
11365 vcpu->arch.exception_from_userspace = false;
11366
11367 if (unlikely(vcpu->arch.complete_userspace_io)) {
11368 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11369 vcpu->arch.complete_userspace_io = NULL;
11370 r = cui(vcpu);
11371 if (r <= 0)
11372 goto out;
11373 } else {
11374 WARN_ON_ONCE(vcpu->arch.pio.count);
11375 WARN_ON_ONCE(vcpu->mmio_needed);
11376 }
11377
11378 if (kvm_run->immediate_exit) {
11379 r = -EINTR;
11380 goto out;
11381 }
11382
11383 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11384 if (r <= 0)
11385 goto out;
11386
11387 r = vcpu_run(vcpu);
11388
11389 out:
11390 kvm_put_guest_fpu(vcpu);
11391 if (kvm_run->kvm_valid_regs)
11392 store_regs(vcpu);
11393 post_kvm_run_save(vcpu);
11394 kvm_vcpu_srcu_read_unlock(vcpu);
11395
11396 kvm_sigset_deactivate(vcpu);
11397 vcpu_put(vcpu);
11398 return r;
11399 }
11400
11401 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11402 {
11403 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11404 /*
11405 * We are here if userspace calls get_regs() in the middle of
11406 * instruction emulation. Registers state needs to be copied
11407 * back from emulation context to vcpu. Userspace shouldn't do
11408 * that usually, but some bad designed PV devices (vmware
11409 * backdoor interface) need this to work
11410 */
11411 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11412 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11413 }
11414 regs->rax = kvm_rax_read(vcpu);
11415 regs->rbx = kvm_rbx_read(vcpu);
11416 regs->rcx = kvm_rcx_read(vcpu);
11417 regs->rdx = kvm_rdx_read(vcpu);
11418 regs->rsi = kvm_rsi_read(vcpu);
11419 regs->rdi = kvm_rdi_read(vcpu);
11420 regs->rsp = kvm_rsp_read(vcpu);
11421 regs->rbp = kvm_rbp_read(vcpu);
11422 #ifdef CONFIG_X86_64
11423 regs->r8 = kvm_r8_read(vcpu);
11424 regs->r9 = kvm_r9_read(vcpu);
11425 regs->r10 = kvm_r10_read(vcpu);
11426 regs->r11 = kvm_r11_read(vcpu);
11427 regs->r12 = kvm_r12_read(vcpu);
11428 regs->r13 = kvm_r13_read(vcpu);
11429 regs->r14 = kvm_r14_read(vcpu);
11430 regs->r15 = kvm_r15_read(vcpu);
11431 #endif
11432
11433 regs->rip = kvm_rip_read(vcpu);
11434 regs->rflags = kvm_get_rflags(vcpu);
11435 }
11436
11437 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11438 {
11439 vcpu_load(vcpu);
11440 __get_regs(vcpu, regs);
11441 vcpu_put(vcpu);
11442 return 0;
11443 }
11444
11445 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11446 {
11447 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11448 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11449
11450 kvm_rax_write(vcpu, regs->rax);
11451 kvm_rbx_write(vcpu, regs->rbx);
11452 kvm_rcx_write(vcpu, regs->rcx);
11453 kvm_rdx_write(vcpu, regs->rdx);
11454 kvm_rsi_write(vcpu, regs->rsi);
11455 kvm_rdi_write(vcpu, regs->rdi);
11456 kvm_rsp_write(vcpu, regs->rsp);
11457 kvm_rbp_write(vcpu, regs->rbp);
11458 #ifdef CONFIG_X86_64
11459 kvm_r8_write(vcpu, regs->r8);
11460 kvm_r9_write(vcpu, regs->r9);
11461 kvm_r10_write(vcpu, regs->r10);
11462 kvm_r11_write(vcpu, regs->r11);
11463 kvm_r12_write(vcpu, regs->r12);
11464 kvm_r13_write(vcpu, regs->r13);
11465 kvm_r14_write(vcpu, regs->r14);
11466 kvm_r15_write(vcpu, regs->r15);
11467 #endif
11468
11469 kvm_rip_write(vcpu, regs->rip);
11470 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11471
11472 vcpu->arch.exception.pending = false;
11473 vcpu->arch.exception_vmexit.pending = false;
11474
11475 kvm_make_request(KVM_REQ_EVENT, vcpu);
11476 }
11477
11478 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11479 {
11480 vcpu_load(vcpu);
11481 __set_regs(vcpu, regs);
11482 vcpu_put(vcpu);
11483 return 0;
11484 }
11485
11486 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11487 {
11488 struct desc_ptr dt;
11489
11490 if (vcpu->arch.guest_state_protected)
11491 goto skip_protected_regs;
11492
11493 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11494 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11495 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11496 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11497 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11498 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11499
11500 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11501 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11502
11503 static_call(kvm_x86_get_idt)(vcpu, &dt);
11504 sregs->idt.limit = dt.size;
11505 sregs->idt.base = dt.address;
11506 static_call(kvm_x86_get_gdt)(vcpu, &dt);
11507 sregs->gdt.limit = dt.size;
11508 sregs->gdt.base = dt.address;
11509
11510 sregs->cr2 = vcpu->arch.cr2;
11511 sregs->cr3 = kvm_read_cr3(vcpu);
11512
11513 skip_protected_regs:
11514 sregs->cr0 = kvm_read_cr0(vcpu);
11515 sregs->cr4 = kvm_read_cr4(vcpu);
11516 sregs->cr8 = kvm_get_cr8(vcpu);
11517 sregs->efer = vcpu->arch.efer;
11518 sregs->apic_base = kvm_get_apic_base(vcpu);
11519 }
11520
11521 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11522 {
11523 __get_sregs_common(vcpu, sregs);
11524
11525 if (vcpu->arch.guest_state_protected)
11526 return;
11527
11528 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11529 set_bit(vcpu->arch.interrupt.nr,
11530 (unsigned long *)sregs->interrupt_bitmap);
11531 }
11532
11533 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11534 {
11535 int i;
11536
11537 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11538
11539 if (vcpu->arch.guest_state_protected)
11540 return;
11541
11542 if (is_pae_paging(vcpu)) {
11543 for (i = 0 ; i < 4 ; i++)
11544 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11545 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11546 }
11547 }
11548
11549 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11550 struct kvm_sregs *sregs)
11551 {
11552 vcpu_load(vcpu);
11553 __get_sregs(vcpu, sregs);
11554 vcpu_put(vcpu);
11555 return 0;
11556 }
11557
11558 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11559 struct kvm_mp_state *mp_state)
11560 {
11561 int r;
11562
11563 vcpu_load(vcpu);
11564 if (kvm_mpx_supported())
11565 kvm_load_guest_fpu(vcpu);
11566
11567 r = kvm_apic_accept_events(vcpu);
11568 if (r < 0)
11569 goto out;
11570 r = 0;
11571
11572 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11573 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11574 vcpu->arch.pv.pv_unhalted)
11575 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11576 else
11577 mp_state->mp_state = vcpu->arch.mp_state;
11578
11579 out:
11580 if (kvm_mpx_supported())
11581 kvm_put_guest_fpu(vcpu);
11582 vcpu_put(vcpu);
11583 return r;
11584 }
11585
11586 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11587 struct kvm_mp_state *mp_state)
11588 {
11589 int ret = -EINVAL;
11590
11591 vcpu_load(vcpu);
11592
11593 switch (mp_state->mp_state) {
11594 case KVM_MP_STATE_UNINITIALIZED:
11595 case KVM_MP_STATE_HALTED:
11596 case KVM_MP_STATE_AP_RESET_HOLD:
11597 case KVM_MP_STATE_INIT_RECEIVED:
11598 case KVM_MP_STATE_SIPI_RECEIVED:
11599 if (!lapic_in_kernel(vcpu))
11600 goto out;
11601 break;
11602
11603 case KVM_MP_STATE_RUNNABLE:
11604 break;
11605
11606 default:
11607 goto out;
11608 }
11609
11610 /*
11611 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11612 * forcing the guest into INIT/SIPI if those events are supposed to be
11613 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11614 * if an SMI is pending as well.
11615 */
11616 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11617 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11618 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11619 goto out;
11620
11621 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11622 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11623 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11624 } else
11625 vcpu->arch.mp_state = mp_state->mp_state;
11626 kvm_make_request(KVM_REQ_EVENT, vcpu);
11627
11628 ret = 0;
11629 out:
11630 vcpu_put(vcpu);
11631 return ret;
11632 }
11633
11634 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11635 int reason, bool has_error_code, u32 error_code)
11636 {
11637 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11638 int ret;
11639
11640 init_emulate_ctxt(vcpu);
11641
11642 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11643 has_error_code, error_code);
11644 if (ret) {
11645 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11646 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11647 vcpu->run->internal.ndata = 0;
11648 return 0;
11649 }
11650
11651 kvm_rip_write(vcpu, ctxt->eip);
11652 kvm_set_rflags(vcpu, ctxt->eflags);
11653 return 1;
11654 }
11655 EXPORT_SYMBOL_GPL(kvm_task_switch);
11656
11657 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11658 {
11659 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11660 /*
11661 * When EFER.LME and CR0.PG are set, the processor is in
11662 * 64-bit mode (though maybe in a 32-bit code segment).
11663 * CR4.PAE and EFER.LMA must be set.
11664 */
11665 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11666 return false;
11667 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11668 return false;
11669 } else {
11670 /*
11671 * Not in 64-bit mode: EFER.LMA is clear and the code
11672 * segment cannot be 64-bit.
11673 */
11674 if (sregs->efer & EFER_LMA || sregs->cs.l)
11675 return false;
11676 }
11677
11678 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11679 kvm_is_valid_cr0(vcpu, sregs->cr0);
11680 }
11681
11682 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11683 int *mmu_reset_needed, bool update_pdptrs)
11684 {
11685 struct msr_data apic_base_msr;
11686 int idx;
11687 struct desc_ptr dt;
11688
11689 if (!kvm_is_valid_sregs(vcpu, sregs))
11690 return -EINVAL;
11691
11692 apic_base_msr.data = sregs->apic_base;
11693 apic_base_msr.host_initiated = true;
11694 if (kvm_set_apic_base(vcpu, &apic_base_msr))
11695 return -EINVAL;
11696
11697 if (vcpu->arch.guest_state_protected)
11698 return 0;
11699
11700 dt.size = sregs->idt.limit;
11701 dt.address = sregs->idt.base;
11702 static_call(kvm_x86_set_idt)(vcpu, &dt);
11703 dt.size = sregs->gdt.limit;
11704 dt.address = sregs->gdt.base;
11705 static_call(kvm_x86_set_gdt)(vcpu, &dt);
11706
11707 vcpu->arch.cr2 = sregs->cr2;
11708 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11709 vcpu->arch.cr3 = sregs->cr3;
11710 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11711 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11712
11713 kvm_set_cr8(vcpu, sregs->cr8);
11714
11715 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11716 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11717
11718 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11719 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11720
11721 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11722 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11723
11724 if (update_pdptrs) {
11725 idx = srcu_read_lock(&vcpu->kvm->srcu);
11726 if (is_pae_paging(vcpu)) {
11727 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11728 *mmu_reset_needed = 1;
11729 }
11730 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11731 }
11732
11733 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11734 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11735 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11736 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11737 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11738 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11739
11740 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11741 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11742
11743 update_cr8_intercept(vcpu);
11744
11745 /* Older userspace won't unhalt the vcpu on reset. */
11746 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11747 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11748 !is_protmode(vcpu))
11749 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11750
11751 return 0;
11752 }
11753
11754 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11755 {
11756 int pending_vec, max_bits;
11757 int mmu_reset_needed = 0;
11758 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11759
11760 if (ret)
11761 return ret;
11762
11763 if (mmu_reset_needed) {
11764 kvm_mmu_reset_context(vcpu);
11765 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11766 }
11767
11768 max_bits = KVM_NR_INTERRUPTS;
11769 pending_vec = find_first_bit(
11770 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11771
11772 if (pending_vec < max_bits) {
11773 kvm_queue_interrupt(vcpu, pending_vec, false);
11774 pr_debug("Set back pending irq %d\n", pending_vec);
11775 kvm_make_request(KVM_REQ_EVENT, vcpu);
11776 }
11777 return 0;
11778 }
11779
11780 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11781 {
11782 int mmu_reset_needed = 0;
11783 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11784 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11785 !(sregs2->efer & EFER_LMA);
11786 int i, ret;
11787
11788 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11789 return -EINVAL;
11790
11791 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11792 return -EINVAL;
11793
11794 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11795 &mmu_reset_needed, !valid_pdptrs);
11796 if (ret)
11797 return ret;
11798
11799 if (valid_pdptrs) {
11800 for (i = 0; i < 4 ; i++)
11801 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11802
11803 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11804 mmu_reset_needed = 1;
11805 vcpu->arch.pdptrs_from_userspace = true;
11806 }
11807 if (mmu_reset_needed) {
11808 kvm_mmu_reset_context(vcpu);
11809 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11810 }
11811 return 0;
11812 }
11813
11814 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11815 struct kvm_sregs *sregs)
11816 {
11817 int ret;
11818
11819 vcpu_load(vcpu);
11820 ret = __set_sregs(vcpu, sregs);
11821 vcpu_put(vcpu);
11822 return ret;
11823 }
11824
11825 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11826 {
11827 bool set = false;
11828 struct kvm_vcpu *vcpu;
11829 unsigned long i;
11830
11831 if (!enable_apicv)
11832 return;
11833
11834 down_write(&kvm->arch.apicv_update_lock);
11835
11836 kvm_for_each_vcpu(i, vcpu, kvm) {
11837 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11838 set = true;
11839 break;
11840 }
11841 }
11842 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11843 up_write(&kvm->arch.apicv_update_lock);
11844 }
11845
11846 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11847 struct kvm_guest_debug *dbg)
11848 {
11849 unsigned long rflags;
11850 int i, r;
11851
11852 if (vcpu->arch.guest_state_protected)
11853 return -EINVAL;
11854
11855 vcpu_load(vcpu);
11856
11857 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11858 r = -EBUSY;
11859 if (kvm_is_exception_pending(vcpu))
11860 goto out;
11861 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11862 kvm_queue_exception(vcpu, DB_VECTOR);
11863 else
11864 kvm_queue_exception(vcpu, BP_VECTOR);
11865 }
11866
11867 /*
11868 * Read rflags as long as potentially injected trace flags are still
11869 * filtered out.
11870 */
11871 rflags = kvm_get_rflags(vcpu);
11872
11873 vcpu->guest_debug = dbg->control;
11874 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11875 vcpu->guest_debug = 0;
11876
11877 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11878 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11879 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11880 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11881 } else {
11882 for (i = 0; i < KVM_NR_DB_REGS; i++)
11883 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11884 }
11885 kvm_update_dr7(vcpu);
11886
11887 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11888 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11889
11890 /*
11891 * Trigger an rflags update that will inject or remove the trace
11892 * flags.
11893 */
11894 kvm_set_rflags(vcpu, rflags);
11895
11896 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11897
11898 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11899
11900 r = 0;
11901
11902 out:
11903 vcpu_put(vcpu);
11904 return r;
11905 }
11906
11907 /*
11908 * Translate a guest virtual address to a guest physical address.
11909 */
11910 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11911 struct kvm_translation *tr)
11912 {
11913 unsigned long vaddr = tr->linear_address;
11914 gpa_t gpa;
11915 int idx;
11916
11917 vcpu_load(vcpu);
11918
11919 idx = srcu_read_lock(&vcpu->kvm->srcu);
11920 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11921 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11922 tr->physical_address = gpa;
11923 tr->valid = gpa != INVALID_GPA;
11924 tr->writeable = 1;
11925 tr->usermode = 0;
11926
11927 vcpu_put(vcpu);
11928 return 0;
11929 }
11930
11931 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11932 {
11933 struct fxregs_state *fxsave;
11934
11935 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11936 return 0;
11937
11938 vcpu_load(vcpu);
11939
11940 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11941 memcpy(fpu->fpr, fxsave->st_space, 128);
11942 fpu->fcw = fxsave->cwd;
11943 fpu->fsw = fxsave->swd;
11944 fpu->ftwx = fxsave->twd;
11945 fpu->last_opcode = fxsave->fop;
11946 fpu->last_ip = fxsave->rip;
11947 fpu->last_dp = fxsave->rdp;
11948 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11949
11950 vcpu_put(vcpu);
11951 return 0;
11952 }
11953
11954 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11955 {
11956 struct fxregs_state *fxsave;
11957
11958 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11959 return 0;
11960
11961 vcpu_load(vcpu);
11962
11963 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11964
11965 memcpy(fxsave->st_space, fpu->fpr, 128);
11966 fxsave->cwd = fpu->fcw;
11967 fxsave->swd = fpu->fsw;
11968 fxsave->twd = fpu->ftwx;
11969 fxsave->fop = fpu->last_opcode;
11970 fxsave->rip = fpu->last_ip;
11971 fxsave->rdp = fpu->last_dp;
11972 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11973
11974 vcpu_put(vcpu);
11975 return 0;
11976 }
11977
11978 static void store_regs(struct kvm_vcpu *vcpu)
11979 {
11980 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11981
11982 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11983 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11984
11985 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11986 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11987
11988 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11989 kvm_vcpu_ioctl_x86_get_vcpu_events(
11990 vcpu, &vcpu->run->s.regs.events);
11991 }
11992
11993 static int sync_regs(struct kvm_vcpu *vcpu)
11994 {
11995 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11996 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11997 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11998 }
11999
12000 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12001 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12002
12003 if (__set_sregs(vcpu, &sregs))
12004 return -EINVAL;
12005
12006 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12007 }
12008
12009 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12010 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12011
12012 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12013 return -EINVAL;
12014
12015 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12016 }
12017
12018 return 0;
12019 }
12020
12021 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12022 {
12023 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12024 pr_warn_once("SMP vm created on host with unstable TSC; "
12025 "guest TSC will not be reliable\n");
12026
12027 if (!kvm->arch.max_vcpu_ids)
12028 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12029
12030 if (id >= kvm->arch.max_vcpu_ids)
12031 return -EINVAL;
12032
12033 return static_call(kvm_x86_vcpu_precreate)(kvm);
12034 }
12035
12036 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12037 {
12038 struct page *page;
12039 int r;
12040
12041 vcpu->arch.last_vmentry_cpu = -1;
12042 vcpu->arch.regs_avail = ~0;
12043 vcpu->arch.regs_dirty = ~0;
12044
12045 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
12046
12047 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12048 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12049 else
12050 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12051
12052 r = kvm_mmu_create(vcpu);
12053 if (r < 0)
12054 return r;
12055
12056 if (irqchip_in_kernel(vcpu->kvm)) {
12057 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
12058 if (r < 0)
12059 goto fail_mmu_destroy;
12060
12061 /*
12062 * Defer evaluating inhibits until the vCPU is first run, as
12063 * this vCPU will not get notified of any changes until this
12064 * vCPU is visible to other vCPUs (marked online and added to
12065 * the set of vCPUs). Opportunistically mark APICv active as
12066 * VMX in particularly is highly unlikely to have inhibits.
12067 * Ignore the current per-VM APICv state so that vCPU creation
12068 * is guaranteed to run with a deterministic value, the request
12069 * will ensure the vCPU gets the correct state before VM-Entry.
12070 */
12071 if (enable_apicv) {
12072 vcpu->arch.apic->apicv_active = true;
12073 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
12074 }
12075 } else
12076 static_branch_inc(&kvm_has_noapic_vcpu);
12077
12078 r = -ENOMEM;
12079
12080 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12081 if (!page)
12082 goto fail_free_lapic;
12083 vcpu->arch.pio_data = page_address(page);
12084
12085 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12086 GFP_KERNEL_ACCOUNT);
12087 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12088 GFP_KERNEL_ACCOUNT);
12089 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12090 goto fail_free_mce_banks;
12091 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12092
12093 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12094 GFP_KERNEL_ACCOUNT))
12095 goto fail_free_mce_banks;
12096
12097 if (!alloc_emulate_ctxt(vcpu))
12098 goto free_wbinvd_dirty_mask;
12099
12100 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12101 pr_err("failed to allocate vcpu's fpu\n");
12102 goto free_emulate_ctxt;
12103 }
12104
12105 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12106 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12107
12108 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12109
12110 kvm_async_pf_hash_reset(vcpu);
12111
12112 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12113 kvm_pmu_init(vcpu);
12114
12115 vcpu->arch.pending_external_vector = -1;
12116 vcpu->arch.preempted_in_kernel = false;
12117
12118 #if IS_ENABLED(CONFIG_HYPERV)
12119 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12120 #endif
12121
12122 r = static_call(kvm_x86_vcpu_create)(vcpu);
12123 if (r)
12124 goto free_guest_fpu;
12125
12126 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12127 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12128 kvm_xen_init_vcpu(vcpu);
12129 kvm_vcpu_mtrr_init(vcpu);
12130 vcpu_load(vcpu);
12131 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12132 kvm_vcpu_reset(vcpu, false);
12133 kvm_init_mmu(vcpu);
12134 vcpu_put(vcpu);
12135 return 0;
12136
12137 free_guest_fpu:
12138 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12139 free_emulate_ctxt:
12140 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12141 free_wbinvd_dirty_mask:
12142 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12143 fail_free_mce_banks:
12144 kfree(vcpu->arch.mce_banks);
12145 kfree(vcpu->arch.mci_ctl2_banks);
12146 free_page((unsigned long)vcpu->arch.pio_data);
12147 fail_free_lapic:
12148 kvm_free_lapic(vcpu);
12149 fail_mmu_destroy:
12150 kvm_mmu_destroy(vcpu);
12151 return r;
12152 }
12153
12154 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12155 {
12156 struct kvm *kvm = vcpu->kvm;
12157
12158 if (mutex_lock_killable(&vcpu->mutex))
12159 return;
12160 vcpu_load(vcpu);
12161 kvm_synchronize_tsc(vcpu, NULL);
12162 vcpu_put(vcpu);
12163
12164 /* poll control enabled by default */
12165 vcpu->arch.msr_kvm_poll_control = 1;
12166
12167 mutex_unlock(&vcpu->mutex);
12168
12169 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12170 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12171 KVMCLOCK_SYNC_PERIOD);
12172 }
12173
12174 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12175 {
12176 int idx;
12177
12178 kvmclock_reset(vcpu);
12179
12180 static_call(kvm_x86_vcpu_free)(vcpu);
12181
12182 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12183 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12184 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12185
12186 kvm_xen_destroy_vcpu(vcpu);
12187 kvm_hv_vcpu_uninit(vcpu);
12188 kvm_pmu_destroy(vcpu);
12189 kfree(vcpu->arch.mce_banks);
12190 kfree(vcpu->arch.mci_ctl2_banks);
12191 kvm_free_lapic(vcpu);
12192 idx = srcu_read_lock(&vcpu->kvm->srcu);
12193 kvm_mmu_destroy(vcpu);
12194 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12195 free_page((unsigned long)vcpu->arch.pio_data);
12196 kvfree(vcpu->arch.cpuid_entries);
12197 if (!lapic_in_kernel(vcpu))
12198 static_branch_dec(&kvm_has_noapic_vcpu);
12199 }
12200
12201 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12202 {
12203 struct kvm_cpuid_entry2 *cpuid_0x1;
12204 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12205 unsigned long new_cr0;
12206
12207 /*
12208 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12209 * to handle side effects. RESET emulation hits those flows and relies
12210 * on emulated/virtualized registers, including those that are loaded
12211 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12212 * to detect improper or missing initialization.
12213 */
12214 WARN_ON_ONCE(!init_event &&
12215 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12216
12217 /*
12218 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12219 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12220 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12221 * bits), i.e. virtualization is disabled.
12222 */
12223 if (is_guest_mode(vcpu))
12224 kvm_leave_nested(vcpu);
12225
12226 kvm_lapic_reset(vcpu, init_event);
12227
12228 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12229 vcpu->arch.hflags = 0;
12230
12231 vcpu->arch.smi_pending = 0;
12232 vcpu->arch.smi_count = 0;
12233 atomic_set(&vcpu->arch.nmi_queued, 0);
12234 vcpu->arch.nmi_pending = 0;
12235 vcpu->arch.nmi_injected = false;
12236 kvm_clear_interrupt_queue(vcpu);
12237 kvm_clear_exception_queue(vcpu);
12238
12239 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12240 kvm_update_dr0123(vcpu);
12241 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12242 vcpu->arch.dr7 = DR7_FIXED_1;
12243 kvm_update_dr7(vcpu);
12244
12245 vcpu->arch.cr2 = 0;
12246
12247 kvm_make_request(KVM_REQ_EVENT, vcpu);
12248 vcpu->arch.apf.msr_en_val = 0;
12249 vcpu->arch.apf.msr_int_val = 0;
12250 vcpu->arch.st.msr_val = 0;
12251
12252 kvmclock_reset(vcpu);
12253
12254 kvm_clear_async_pf_completion_queue(vcpu);
12255 kvm_async_pf_hash_reset(vcpu);
12256 vcpu->arch.apf.halted = false;
12257
12258 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12259 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12260
12261 /*
12262 * All paths that lead to INIT are required to load the guest's
12263 * FPU state (because most paths are buried in KVM_RUN).
12264 */
12265 if (init_event)
12266 kvm_put_guest_fpu(vcpu);
12267
12268 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12269 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12270
12271 if (init_event)
12272 kvm_load_guest_fpu(vcpu);
12273 }
12274
12275 if (!init_event) {
12276 vcpu->arch.smbase = 0x30000;
12277
12278 vcpu->arch.msr_misc_features_enables = 0;
12279 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12280 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12281
12282 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12283 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12284 }
12285
12286 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12287 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12288 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12289
12290 /*
12291 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12292 * if no CPUID match is found. Note, it's impossible to get a match at
12293 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12294 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12295 * on RESET. But, go through the motions in case that's ever remedied.
12296 */
12297 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12298 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12299
12300 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12301
12302 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12303 kvm_rip_write(vcpu, 0xfff0);
12304
12305 vcpu->arch.cr3 = 0;
12306 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12307
12308 /*
12309 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12310 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12311 * (or qualify) that with a footnote stating that CD/NW are preserved.
12312 */
12313 new_cr0 = X86_CR0_ET;
12314 if (init_event)
12315 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12316 else
12317 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12318
12319 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12320 static_call(kvm_x86_set_cr4)(vcpu, 0);
12321 static_call(kvm_x86_set_efer)(vcpu, 0);
12322 static_call(kvm_x86_update_exception_bitmap)(vcpu);
12323
12324 /*
12325 * On the standard CR0/CR4/EFER modification paths, there are several
12326 * complex conditions determining whether the MMU has to be reset and/or
12327 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12328 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12329 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12330 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12331 */
12332 if (old_cr0 & X86_CR0_PG) {
12333 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12334 kvm_mmu_reset_context(vcpu);
12335 }
12336
12337 /*
12338 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12339 * APM states the TLBs are untouched by INIT, but it also states that
12340 * the TLBs are flushed on "External initialization of the processor."
12341 * Flush the guest TLB regardless of vendor, there is no meaningful
12342 * benefit in relying on the guest to flush the TLB immediately after
12343 * INIT. A spurious TLB flush is benign and likely negligible from a
12344 * performance perspective.
12345 */
12346 if (init_event)
12347 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12348 }
12349 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12350
12351 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12352 {
12353 struct kvm_segment cs;
12354
12355 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12356 cs.selector = vector << 8;
12357 cs.base = vector << 12;
12358 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12359 kvm_rip_write(vcpu, 0);
12360 }
12361 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12362
12363 int kvm_arch_hardware_enable(void)
12364 {
12365 struct kvm *kvm;
12366 struct kvm_vcpu *vcpu;
12367 unsigned long i;
12368 int ret;
12369 u64 local_tsc;
12370 u64 max_tsc = 0;
12371 bool stable, backwards_tsc = false;
12372
12373 kvm_user_return_msr_cpu_online();
12374
12375 ret = kvm_x86_check_processor_compatibility();
12376 if (ret)
12377 return ret;
12378
12379 ret = static_call(kvm_x86_hardware_enable)();
12380 if (ret != 0)
12381 return ret;
12382
12383 local_tsc = rdtsc();
12384 stable = !kvm_check_tsc_unstable();
12385 list_for_each_entry(kvm, &vm_list, vm_list) {
12386 kvm_for_each_vcpu(i, vcpu, kvm) {
12387 if (!stable && vcpu->cpu == smp_processor_id())
12388 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12389 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12390 backwards_tsc = true;
12391 if (vcpu->arch.last_host_tsc > max_tsc)
12392 max_tsc = vcpu->arch.last_host_tsc;
12393 }
12394 }
12395 }
12396
12397 /*
12398 * Sometimes, even reliable TSCs go backwards. This happens on
12399 * platforms that reset TSC during suspend or hibernate actions, but
12400 * maintain synchronization. We must compensate. Fortunately, we can
12401 * detect that condition here, which happens early in CPU bringup,
12402 * before any KVM threads can be running. Unfortunately, we can't
12403 * bring the TSCs fully up to date with real time, as we aren't yet far
12404 * enough into CPU bringup that we know how much real time has actually
12405 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12406 * variables that haven't been updated yet.
12407 *
12408 * So we simply find the maximum observed TSC above, then record the
12409 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12410 * the adjustment will be applied. Note that we accumulate
12411 * adjustments, in case multiple suspend cycles happen before some VCPU
12412 * gets a chance to run again. In the event that no KVM threads get a
12413 * chance to run, we will miss the entire elapsed period, as we'll have
12414 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12415 * loose cycle time. This isn't too big a deal, since the loss will be
12416 * uniform across all VCPUs (not to mention the scenario is extremely
12417 * unlikely). It is possible that a second hibernate recovery happens
12418 * much faster than a first, causing the observed TSC here to be
12419 * smaller; this would require additional padding adjustment, which is
12420 * why we set last_host_tsc to the local tsc observed here.
12421 *
12422 * N.B. - this code below runs only on platforms with reliable TSC,
12423 * as that is the only way backwards_tsc is set above. Also note
12424 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12425 * have the same delta_cyc adjustment applied if backwards_tsc
12426 * is detected. Note further, this adjustment is only done once,
12427 * as we reset last_host_tsc on all VCPUs to stop this from being
12428 * called multiple times (one for each physical CPU bringup).
12429 *
12430 * Platforms with unreliable TSCs don't have to deal with this, they
12431 * will be compensated by the logic in vcpu_load, which sets the TSC to
12432 * catchup mode. This will catchup all VCPUs to real time, but cannot
12433 * guarantee that they stay in perfect synchronization.
12434 */
12435 if (backwards_tsc) {
12436 u64 delta_cyc = max_tsc - local_tsc;
12437 list_for_each_entry(kvm, &vm_list, vm_list) {
12438 kvm->arch.backwards_tsc_observed = true;
12439 kvm_for_each_vcpu(i, vcpu, kvm) {
12440 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12441 vcpu->arch.last_host_tsc = local_tsc;
12442 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12443 }
12444
12445 /*
12446 * We have to disable TSC offset matching.. if you were
12447 * booting a VM while issuing an S4 host suspend....
12448 * you may have some problem. Solving this issue is
12449 * left as an exercise to the reader.
12450 */
12451 kvm->arch.last_tsc_nsec = 0;
12452 kvm->arch.last_tsc_write = 0;
12453 }
12454
12455 }
12456 return 0;
12457 }
12458
12459 void kvm_arch_hardware_disable(void)
12460 {
12461 static_call(kvm_x86_hardware_disable)();
12462 drop_user_return_notifiers();
12463 }
12464
12465 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12466 {
12467 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12468 }
12469
12470 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12471 {
12472 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12473 }
12474
12475 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12476 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12477
12478 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12479 {
12480 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12481
12482 vcpu->arch.l1tf_flush_l1d = true;
12483 if (pmu->version && unlikely(pmu->event_count)) {
12484 pmu->need_cleanup = true;
12485 kvm_make_request(KVM_REQ_PMU, vcpu);
12486 }
12487 static_call(kvm_x86_sched_in)(vcpu, cpu);
12488 }
12489
12490 void kvm_arch_free_vm(struct kvm *kvm)
12491 {
12492 #if IS_ENABLED(CONFIG_HYPERV)
12493 kfree(kvm->arch.hv_pa_pg);
12494 #endif
12495 __kvm_arch_free_vm(kvm);
12496 }
12497
12498
12499 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12500 {
12501 int ret;
12502 unsigned long flags;
12503
12504 if (!kvm_is_vm_type_supported(type))
12505 return -EINVAL;
12506
12507 kvm->arch.vm_type = type;
12508
12509 ret = kvm_page_track_init(kvm);
12510 if (ret)
12511 goto out;
12512
12513 kvm_mmu_init_vm(kvm);
12514
12515 ret = static_call(kvm_x86_vm_init)(kvm);
12516 if (ret)
12517 goto out_uninit_mmu;
12518
12519 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12520 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12521
12522 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12523 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12524 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12525 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12526 &kvm->arch.irq_sources_bitmap);
12527
12528 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12529 mutex_init(&kvm->arch.apic_map_lock);
12530 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12531 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12532
12533 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12534 pvclock_update_vm_gtod_copy(kvm);
12535 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12536
12537 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12538 kvm->arch.guest_can_read_msr_platform_info = true;
12539 kvm->arch.enable_pmu = enable_pmu;
12540
12541 #if IS_ENABLED(CONFIG_HYPERV)
12542 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12543 kvm->arch.hv_root_tdp = INVALID_PAGE;
12544 #endif
12545
12546 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12547 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12548
12549 kvm_apicv_init(kvm);
12550 kvm_hv_init_vm(kvm);
12551 kvm_xen_init_vm(kvm);
12552
12553 return 0;
12554
12555 out_uninit_mmu:
12556 kvm_mmu_uninit_vm(kvm);
12557 kvm_page_track_cleanup(kvm);
12558 out:
12559 return ret;
12560 }
12561
12562 int kvm_arch_post_init_vm(struct kvm *kvm)
12563 {
12564 return kvm_mmu_post_init_vm(kvm);
12565 }
12566
12567 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12568 {
12569 vcpu_load(vcpu);
12570 kvm_mmu_unload(vcpu);
12571 vcpu_put(vcpu);
12572 }
12573
12574 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12575 {
12576 unsigned long i;
12577 struct kvm_vcpu *vcpu;
12578
12579 kvm_for_each_vcpu(i, vcpu, kvm) {
12580 kvm_clear_async_pf_completion_queue(vcpu);
12581 kvm_unload_vcpu_mmu(vcpu);
12582 }
12583 }
12584
12585 void kvm_arch_sync_events(struct kvm *kvm)
12586 {
12587 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12588 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12589 kvm_free_pit(kvm);
12590 }
12591
12592 /**
12593 * __x86_set_memory_region: Setup KVM internal memory slot
12594 *
12595 * @kvm: the kvm pointer to the VM.
12596 * @id: the slot ID to setup.
12597 * @gpa: the GPA to install the slot (unused when @size == 0).
12598 * @size: the size of the slot. Set to zero to uninstall a slot.
12599 *
12600 * This function helps to setup a KVM internal memory slot. Specify
12601 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12602 * slot. The return code can be one of the following:
12603 *
12604 * HVA: on success (uninstall will return a bogus HVA)
12605 * -errno: on error
12606 *
12607 * The caller should always use IS_ERR() to check the return value
12608 * before use. Note, the KVM internal memory slots are guaranteed to
12609 * remain valid and unchanged until the VM is destroyed, i.e., the
12610 * GPA->HVA translation will not change. However, the HVA is a user
12611 * address, i.e. its accessibility is not guaranteed, and must be
12612 * accessed via __copy_{to,from}_user().
12613 */
12614 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12615 u32 size)
12616 {
12617 int i, r;
12618 unsigned long hva, old_npages;
12619 struct kvm_memslots *slots = kvm_memslots(kvm);
12620 struct kvm_memory_slot *slot;
12621
12622 /* Called with kvm->slots_lock held. */
12623 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12624 return ERR_PTR_USR(-EINVAL);
12625
12626 slot = id_to_memslot(slots, id);
12627 if (size) {
12628 if (slot && slot->npages)
12629 return ERR_PTR_USR(-EEXIST);
12630
12631 /*
12632 * MAP_SHARED to prevent internal slot pages from being moved
12633 * by fork()/COW.
12634 */
12635 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12636 MAP_SHARED | MAP_ANONYMOUS, 0);
12637 if (IS_ERR_VALUE(hva))
12638 return (void __user *)hva;
12639 } else {
12640 if (!slot || !slot->npages)
12641 return NULL;
12642
12643 old_npages = slot->npages;
12644 hva = slot->userspace_addr;
12645 }
12646
12647 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12648 struct kvm_userspace_memory_region2 m;
12649
12650 m.slot = id | (i << 16);
12651 m.flags = 0;
12652 m.guest_phys_addr = gpa;
12653 m.userspace_addr = hva;
12654 m.memory_size = size;
12655 r = __kvm_set_memory_region(kvm, &m);
12656 if (r < 0)
12657 return ERR_PTR_USR(r);
12658 }
12659
12660 if (!size)
12661 vm_munmap(hva, old_npages * PAGE_SIZE);
12662
12663 return (void __user *)hva;
12664 }
12665 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12666
12667 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12668 {
12669 kvm_mmu_pre_destroy_vm(kvm);
12670 }
12671
12672 void kvm_arch_destroy_vm(struct kvm *kvm)
12673 {
12674 if (current->mm == kvm->mm) {
12675 /*
12676 * Free memory regions allocated on behalf of userspace,
12677 * unless the memory map has changed due to process exit
12678 * or fd copying.
12679 */
12680 mutex_lock(&kvm->slots_lock);
12681 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12682 0, 0);
12683 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12684 0, 0);
12685 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12686 mutex_unlock(&kvm->slots_lock);
12687 }
12688 kvm_unload_vcpu_mmus(kvm);
12689 static_call_cond(kvm_x86_vm_destroy)(kvm);
12690 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12691 kvm_pic_destroy(kvm);
12692 kvm_ioapic_destroy(kvm);
12693 kvm_destroy_vcpus(kvm);
12694 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12695 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12696 kvm_mmu_uninit_vm(kvm);
12697 kvm_page_track_cleanup(kvm);
12698 kvm_xen_destroy_vm(kvm);
12699 kvm_hv_destroy_vm(kvm);
12700 }
12701
12702 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12703 {
12704 int i;
12705
12706 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12707 kvfree(slot->arch.rmap[i]);
12708 slot->arch.rmap[i] = NULL;
12709 }
12710 }
12711
12712 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12713 {
12714 int i;
12715
12716 memslot_rmap_free(slot);
12717
12718 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12719 kvfree(slot->arch.lpage_info[i - 1]);
12720 slot->arch.lpage_info[i - 1] = NULL;
12721 }
12722
12723 kvm_page_track_free_memslot(slot);
12724 }
12725
12726 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12727 {
12728 const int sz = sizeof(*slot->arch.rmap[0]);
12729 int i;
12730
12731 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12732 int level = i + 1;
12733 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12734
12735 if (slot->arch.rmap[i])
12736 continue;
12737
12738 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12739 if (!slot->arch.rmap[i]) {
12740 memslot_rmap_free(slot);
12741 return -ENOMEM;
12742 }
12743 }
12744
12745 return 0;
12746 }
12747
12748 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12749 struct kvm_memory_slot *slot)
12750 {
12751 unsigned long npages = slot->npages;
12752 int i, r;
12753
12754 /*
12755 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12756 * old arrays will be freed by __kvm_set_memory_region() if installing
12757 * the new memslot is successful.
12758 */
12759 memset(&slot->arch, 0, sizeof(slot->arch));
12760
12761 if (kvm_memslots_have_rmaps(kvm)) {
12762 r = memslot_rmap_alloc(slot, npages);
12763 if (r)
12764 return r;
12765 }
12766
12767 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12768 struct kvm_lpage_info *linfo;
12769 unsigned long ugfn;
12770 int lpages;
12771 int level = i + 1;
12772
12773 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12774
12775 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12776 if (!linfo)
12777 goto out_free;
12778
12779 slot->arch.lpage_info[i - 1] = linfo;
12780
12781 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12782 linfo[0].disallow_lpage = 1;
12783 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12784 linfo[lpages - 1].disallow_lpage = 1;
12785 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12786 /*
12787 * If the gfn and userspace address are not aligned wrt each
12788 * other, disable large page support for this slot.
12789 */
12790 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12791 unsigned long j;
12792
12793 for (j = 0; j < lpages; ++j)
12794 linfo[j].disallow_lpage = 1;
12795 }
12796 }
12797
12798 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12799 kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12800 #endif
12801
12802 if (kvm_page_track_create_memslot(kvm, slot, npages))
12803 goto out_free;
12804
12805 return 0;
12806
12807 out_free:
12808 memslot_rmap_free(slot);
12809
12810 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12811 kvfree(slot->arch.lpage_info[i - 1]);
12812 slot->arch.lpage_info[i - 1] = NULL;
12813 }
12814 return -ENOMEM;
12815 }
12816
12817 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12818 {
12819 struct kvm_vcpu *vcpu;
12820 unsigned long i;
12821
12822 /*
12823 * memslots->generation has been incremented.
12824 * mmio generation may have reached its maximum value.
12825 */
12826 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12827
12828 /* Force re-initialization of steal_time cache */
12829 kvm_for_each_vcpu(i, vcpu, kvm)
12830 kvm_vcpu_kick(vcpu);
12831 }
12832
12833 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12834 const struct kvm_memory_slot *old,
12835 struct kvm_memory_slot *new,
12836 enum kvm_mr_change change)
12837 {
12838 /*
12839 * KVM doesn't support moving memslots when there are external page
12840 * trackers attached to the VM, i.e. if KVMGT is in use.
12841 */
12842 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12843 return -EINVAL;
12844
12845 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12846 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12847 return -EINVAL;
12848
12849 return kvm_alloc_memslot_metadata(kvm, new);
12850 }
12851
12852 if (change == KVM_MR_FLAGS_ONLY)
12853 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12854 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12855 return -EIO;
12856
12857 return 0;
12858 }
12859
12860
12861 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12862 {
12863 int nr_slots;
12864
12865 if (!kvm_x86_ops.cpu_dirty_log_size)
12866 return;
12867
12868 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12869 if ((enable && nr_slots == 1) || !nr_slots)
12870 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12871 }
12872
12873 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12874 struct kvm_memory_slot *old,
12875 const struct kvm_memory_slot *new,
12876 enum kvm_mr_change change)
12877 {
12878 u32 old_flags = old ? old->flags : 0;
12879 u32 new_flags = new ? new->flags : 0;
12880 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12881
12882 /*
12883 * Update CPU dirty logging if dirty logging is being toggled. This
12884 * applies to all operations.
12885 */
12886 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12887 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12888
12889 /*
12890 * Nothing more to do for RO slots (which can't be dirtied and can't be
12891 * made writable) or CREATE/MOVE/DELETE of a slot.
12892 *
12893 * For a memslot with dirty logging disabled:
12894 * CREATE: No dirty mappings will already exist.
12895 * MOVE/DELETE: The old mappings will already have been cleaned up by
12896 * kvm_arch_flush_shadow_memslot()
12897 *
12898 * For a memslot with dirty logging enabled:
12899 * CREATE: No shadow pages exist, thus nothing to write-protect
12900 * and no dirty bits to clear.
12901 * MOVE/DELETE: The old mappings will already have been cleaned up by
12902 * kvm_arch_flush_shadow_memslot().
12903 */
12904 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12905 return;
12906
12907 /*
12908 * READONLY and non-flags changes were filtered out above, and the only
12909 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12910 * logging isn't being toggled on or off.
12911 */
12912 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12913 return;
12914
12915 if (!log_dirty_pages) {
12916 /*
12917 * Dirty logging tracks sptes in 4k granularity, meaning that
12918 * large sptes have to be split. If live migration succeeds,
12919 * the guest in the source machine will be destroyed and large
12920 * sptes will be created in the destination. However, if the
12921 * guest continues to run in the source machine (for example if
12922 * live migration fails), small sptes will remain around and
12923 * cause bad performance.
12924 *
12925 * Scan sptes if dirty logging has been stopped, dropping those
12926 * which can be collapsed into a single large-page spte. Later
12927 * page faults will create the large-page sptes.
12928 */
12929 kvm_mmu_zap_collapsible_sptes(kvm, new);
12930 } else {
12931 /*
12932 * Initially-all-set does not require write protecting any page,
12933 * because they're all assumed to be dirty.
12934 */
12935 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12936 return;
12937
12938 if (READ_ONCE(eager_page_split))
12939 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12940
12941 if (kvm_x86_ops.cpu_dirty_log_size) {
12942 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12943 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12944 } else {
12945 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12946 }
12947
12948 /*
12949 * Unconditionally flush the TLBs after enabling dirty logging.
12950 * A flush is almost always going to be necessary (see below),
12951 * and unconditionally flushing allows the helpers to omit
12952 * the subtly complex checks when removing write access.
12953 *
12954 * Do the flush outside of mmu_lock to reduce the amount of
12955 * time mmu_lock is held. Flushing after dropping mmu_lock is
12956 * safe as KVM only needs to guarantee the slot is fully
12957 * write-protected before returning to userspace, i.e. before
12958 * userspace can consume the dirty status.
12959 *
12960 * Flushing outside of mmu_lock requires KVM to be careful when
12961 * making decisions based on writable status of an SPTE, e.g. a
12962 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12963 *
12964 * Specifically, KVM also write-protects guest page tables to
12965 * monitor changes when using shadow paging, and must guarantee
12966 * no CPUs can write to those page before mmu_lock is dropped.
12967 * Because CPUs may have stale TLB entries at this point, a
12968 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12969 *
12970 * KVM also allows making SPTES writable outside of mmu_lock,
12971 * e.g. to allow dirty logging without taking mmu_lock.
12972 *
12973 * To handle these scenarios, KVM uses a separate software-only
12974 * bit (MMU-writable) to track if a SPTE is !writable due to
12975 * a guest page table being write-protected (KVM clears the
12976 * MMU-writable flag when write-protecting for shadow paging).
12977 *
12978 * The use of MMU-writable is also the primary motivation for
12979 * the unconditional flush. Because KVM must guarantee that a
12980 * CPU doesn't contain stale, writable TLB entries for a
12981 * !MMU-writable SPTE, KVM must flush if it encounters any
12982 * MMU-writable SPTE regardless of whether the actual hardware
12983 * writable bit was set. I.e. KVM is almost guaranteed to need
12984 * to flush, while unconditionally flushing allows the "remove
12985 * write access" helpers to ignore MMU-writable entirely.
12986 *
12987 * See is_writable_pte() for more details (the case involving
12988 * access-tracked SPTEs is particularly relevant).
12989 */
12990 kvm_flush_remote_tlbs_memslot(kvm, new);
12991 }
12992 }
12993
12994 void kvm_arch_commit_memory_region(struct kvm *kvm,
12995 struct kvm_memory_slot *old,
12996 const struct kvm_memory_slot *new,
12997 enum kvm_mr_change change)
12998 {
12999 if (change == KVM_MR_DELETE)
13000 kvm_page_track_delete_slot(kvm, old);
13001
13002 if (!kvm->arch.n_requested_mmu_pages &&
13003 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13004 unsigned long nr_mmu_pages;
13005
13006 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13007 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13008 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13009 }
13010
13011 kvm_mmu_slot_apply_flags(kvm, old, new, change);
13012
13013 /* Free the arrays associated with the old memslot. */
13014 if (change == KVM_MR_MOVE)
13015 kvm_arch_free_memslot(kvm, old);
13016 }
13017
13018 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
13019 {
13020 return (is_guest_mode(vcpu) &&
13021 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
13022 }
13023
13024 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
13025 {
13026 if (!list_empty_careful(&vcpu->async_pf.done))
13027 return true;
13028
13029 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
13030 kvm_apic_init_sipi_allowed(vcpu))
13031 return true;
13032
13033 if (vcpu->arch.pv.pv_unhalted)
13034 return true;
13035
13036 if (kvm_is_exception_pending(vcpu))
13037 return true;
13038
13039 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13040 (vcpu->arch.nmi_pending &&
13041 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
13042 return true;
13043
13044 #ifdef CONFIG_KVM_SMM
13045 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
13046 (vcpu->arch.smi_pending &&
13047 static_call(kvm_x86_smi_allowed)(vcpu, false)))
13048 return true;
13049 #endif
13050
13051 if (kvm_test_request(KVM_REQ_PMI, vcpu))
13052 return true;
13053
13054 if (kvm_arch_interrupt_allowed(vcpu) &&
13055 (kvm_cpu_has_interrupt(vcpu) ||
13056 kvm_guest_apic_has_interrupt(vcpu)))
13057 return true;
13058
13059 if (kvm_hv_has_stimer_pending(vcpu))
13060 return true;
13061
13062 if (is_guest_mode(vcpu) &&
13063 kvm_x86_ops.nested_ops->has_events &&
13064 kvm_x86_ops.nested_ops->has_events(vcpu))
13065 return true;
13066
13067 if (kvm_xen_has_pending_events(vcpu))
13068 return true;
13069
13070 return false;
13071 }
13072
13073 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13074 {
13075 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13076 }
13077
13078 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13079 {
13080 if (kvm_vcpu_apicv_active(vcpu) &&
13081 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
13082 return true;
13083
13084 return false;
13085 }
13086
13087 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13088 {
13089 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13090 return true;
13091
13092 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13093 #ifdef CONFIG_KVM_SMM
13094 kvm_test_request(KVM_REQ_SMI, vcpu) ||
13095 #endif
13096 kvm_test_request(KVM_REQ_EVENT, vcpu))
13097 return true;
13098
13099 return kvm_arch_dy_has_pending_interrupt(vcpu);
13100 }
13101
13102 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13103 {
13104 if (vcpu->arch.guest_state_protected)
13105 return true;
13106
13107 if (vcpu != kvm_get_running_vcpu())
13108 return vcpu->arch.preempted_in_kernel;
13109
13110 return static_call(kvm_x86_get_cpl)(vcpu) == 0;
13111 }
13112
13113 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13114 {
13115 return kvm_rip_read(vcpu);
13116 }
13117
13118 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13119 {
13120 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13121 }
13122
13123 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13124 {
13125 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13126 }
13127
13128 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13129 {
13130 /* Can't read the RIP when guest state is protected, just return 0 */
13131 if (vcpu->arch.guest_state_protected)
13132 return 0;
13133
13134 if (is_64_bit_mode(vcpu))
13135 return kvm_rip_read(vcpu);
13136 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13137 kvm_rip_read(vcpu));
13138 }
13139 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13140
13141 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13142 {
13143 return kvm_get_linear_rip(vcpu) == linear_rip;
13144 }
13145 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13146
13147 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13148 {
13149 unsigned long rflags;
13150
13151 rflags = static_call(kvm_x86_get_rflags)(vcpu);
13152 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13153 rflags &= ~X86_EFLAGS_TF;
13154 return rflags;
13155 }
13156 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13157
13158 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13159 {
13160 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13161 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13162 rflags |= X86_EFLAGS_TF;
13163 static_call(kvm_x86_set_rflags)(vcpu, rflags);
13164 }
13165
13166 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13167 {
13168 __kvm_set_rflags(vcpu, rflags);
13169 kvm_make_request(KVM_REQ_EVENT, vcpu);
13170 }
13171 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13172
13173 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13174 {
13175 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13176
13177 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13178 }
13179
13180 static inline u32 kvm_async_pf_next_probe(u32 key)
13181 {
13182 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13183 }
13184
13185 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13186 {
13187 u32 key = kvm_async_pf_hash_fn(gfn);
13188
13189 while (vcpu->arch.apf.gfns[key] != ~0)
13190 key = kvm_async_pf_next_probe(key);
13191
13192 vcpu->arch.apf.gfns[key] = gfn;
13193 }
13194
13195 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13196 {
13197 int i;
13198 u32 key = kvm_async_pf_hash_fn(gfn);
13199
13200 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13201 (vcpu->arch.apf.gfns[key] != gfn &&
13202 vcpu->arch.apf.gfns[key] != ~0); i++)
13203 key = kvm_async_pf_next_probe(key);
13204
13205 return key;
13206 }
13207
13208 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13209 {
13210 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13211 }
13212
13213 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13214 {
13215 u32 i, j, k;
13216
13217 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13218
13219 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13220 return;
13221
13222 while (true) {
13223 vcpu->arch.apf.gfns[i] = ~0;
13224 do {
13225 j = kvm_async_pf_next_probe(j);
13226 if (vcpu->arch.apf.gfns[j] == ~0)
13227 return;
13228 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13229 /*
13230 * k lies cyclically in ]i,j]
13231 * | i.k.j |
13232 * |....j i.k.| or |.k..j i...|
13233 */
13234 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13235 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13236 i = j;
13237 }
13238 }
13239
13240 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13241 {
13242 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13243
13244 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13245 sizeof(reason));
13246 }
13247
13248 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13249 {
13250 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13251
13252 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13253 &token, offset, sizeof(token));
13254 }
13255
13256 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13257 {
13258 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13259 u32 val;
13260
13261 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13262 &val, offset, sizeof(val)))
13263 return false;
13264
13265 return !val;
13266 }
13267
13268 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13269 {
13270
13271 if (!kvm_pv_async_pf_enabled(vcpu))
13272 return false;
13273
13274 if (vcpu->arch.apf.send_user_only &&
13275 static_call(kvm_x86_get_cpl)(vcpu) == 0)
13276 return false;
13277
13278 if (is_guest_mode(vcpu)) {
13279 /*
13280 * L1 needs to opt into the special #PF vmexits that are
13281 * used to deliver async page faults.
13282 */
13283 return vcpu->arch.apf.delivery_as_pf_vmexit;
13284 } else {
13285 /*
13286 * Play it safe in case the guest temporarily disables paging.
13287 * The real mode IDT in particular is unlikely to have a #PF
13288 * exception setup.
13289 */
13290 return is_paging(vcpu);
13291 }
13292 }
13293
13294 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13295 {
13296 if (unlikely(!lapic_in_kernel(vcpu) ||
13297 kvm_event_needs_reinjection(vcpu) ||
13298 kvm_is_exception_pending(vcpu)))
13299 return false;
13300
13301 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13302 return false;
13303
13304 /*
13305 * If interrupts are off we cannot even use an artificial
13306 * halt state.
13307 */
13308 return kvm_arch_interrupt_allowed(vcpu);
13309 }
13310
13311 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13312 struct kvm_async_pf *work)
13313 {
13314 struct x86_exception fault;
13315
13316 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13317 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13318
13319 if (kvm_can_deliver_async_pf(vcpu) &&
13320 !apf_put_user_notpresent(vcpu)) {
13321 fault.vector = PF_VECTOR;
13322 fault.error_code_valid = true;
13323 fault.error_code = 0;
13324 fault.nested_page_fault = false;
13325 fault.address = work->arch.token;
13326 fault.async_page_fault = true;
13327 kvm_inject_page_fault(vcpu, &fault);
13328 return true;
13329 } else {
13330 /*
13331 * It is not possible to deliver a paravirtualized asynchronous
13332 * page fault, but putting the guest in an artificial halt state
13333 * can be beneficial nevertheless: if an interrupt arrives, we
13334 * can deliver it timely and perhaps the guest will schedule
13335 * another process. When the instruction that triggered a page
13336 * fault is retried, hopefully the page will be ready in the host.
13337 */
13338 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13339 return false;
13340 }
13341 }
13342
13343 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13344 struct kvm_async_pf *work)
13345 {
13346 struct kvm_lapic_irq irq = {
13347 .delivery_mode = APIC_DM_FIXED,
13348 .vector = vcpu->arch.apf.vec
13349 };
13350
13351 if (work->wakeup_all)
13352 work->arch.token = ~0; /* broadcast wakeup */
13353 else
13354 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13355 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13356
13357 if ((work->wakeup_all || work->notpresent_injected) &&
13358 kvm_pv_async_pf_enabled(vcpu) &&
13359 !apf_put_user_ready(vcpu, work->arch.token)) {
13360 vcpu->arch.apf.pageready_pending = true;
13361 kvm_apic_set_irq(vcpu, &irq, NULL);
13362 }
13363
13364 vcpu->arch.apf.halted = false;
13365 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13366 }
13367
13368 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13369 {
13370 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13371 if (!vcpu->arch.apf.pageready_pending)
13372 kvm_vcpu_kick(vcpu);
13373 }
13374
13375 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13376 {
13377 if (!kvm_pv_async_pf_enabled(vcpu))
13378 return true;
13379 else
13380 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13381 }
13382
13383 void kvm_arch_start_assignment(struct kvm *kvm)
13384 {
13385 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13386 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13387 }
13388 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13389
13390 void kvm_arch_end_assignment(struct kvm *kvm)
13391 {
13392 atomic_dec(&kvm->arch.assigned_device_count);
13393 }
13394 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13395
13396 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13397 {
13398 return raw_atomic_read(&kvm->arch.assigned_device_count);
13399 }
13400 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13401
13402 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13403 {
13404 /*
13405 * Non-coherent DMA assignment and de-assignment will affect
13406 * whether KVM honors guest MTRRs and cause changes in memtypes
13407 * in TDP.
13408 * So, pass %true unconditionally to indicate non-coherent DMA was,
13409 * or will be involved, and that zapping SPTEs might be necessary.
13410 */
13411 if (__kvm_mmu_honors_guest_mtrrs(true))
13412 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13413 }
13414
13415 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13416 {
13417 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13418 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13419 }
13420 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13421
13422 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13423 {
13424 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13425 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13426 }
13427 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13428
13429 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13430 {
13431 return atomic_read(&kvm->arch.noncoherent_dma_count);
13432 }
13433 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13434
13435 bool kvm_arch_has_irq_bypass(void)
13436 {
13437 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13438 }
13439
13440 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13441 struct irq_bypass_producer *prod)
13442 {
13443 struct kvm_kernel_irqfd *irqfd =
13444 container_of(cons, struct kvm_kernel_irqfd, consumer);
13445 int ret;
13446
13447 irqfd->producer = prod;
13448 kvm_arch_start_assignment(irqfd->kvm);
13449 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13450 prod->irq, irqfd->gsi, 1);
13451
13452 if (ret)
13453 kvm_arch_end_assignment(irqfd->kvm);
13454
13455 return ret;
13456 }
13457
13458 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13459 struct irq_bypass_producer *prod)
13460 {
13461 int ret;
13462 struct kvm_kernel_irqfd *irqfd =
13463 container_of(cons, struct kvm_kernel_irqfd, consumer);
13464
13465 WARN_ON(irqfd->producer != prod);
13466 irqfd->producer = NULL;
13467
13468 /*
13469 * When producer of consumer is unregistered, we change back to
13470 * remapped mode, so we can re-use the current implementation
13471 * when the irq is masked/disabled or the consumer side (KVM
13472 * int this case doesn't want to receive the interrupts.
13473 */
13474 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13475 if (ret)
13476 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13477 " fails: %d\n", irqfd->consumer.token, ret);
13478
13479 kvm_arch_end_assignment(irqfd->kvm);
13480 }
13481
13482 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13483 uint32_t guest_irq, bool set)
13484 {
13485 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13486 }
13487
13488 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13489 struct kvm_kernel_irq_routing_entry *new)
13490 {
13491 if (new->type != KVM_IRQ_ROUTING_MSI)
13492 return true;
13493
13494 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13495 }
13496
13497 bool kvm_vector_hashing_enabled(void)
13498 {
13499 return vector_hashing;
13500 }
13501
13502 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13503 {
13504 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13505 }
13506 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13507
13508
13509 int kvm_spec_ctrl_test_value(u64 value)
13510 {
13511 /*
13512 * test that setting IA32_SPEC_CTRL to given value
13513 * is allowed by the host processor
13514 */
13515
13516 u64 saved_value;
13517 unsigned long flags;
13518 int ret = 0;
13519
13520 local_irq_save(flags);
13521
13522 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13523 ret = 1;
13524 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13525 ret = 1;
13526 else
13527 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13528
13529 local_irq_restore(flags);
13530
13531 return ret;
13532 }
13533 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13534
13535 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13536 {
13537 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13538 struct x86_exception fault;
13539 u64 access = error_code &
13540 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13541
13542 if (!(error_code & PFERR_PRESENT_MASK) ||
13543 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13544 /*
13545 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13546 * tables probably do not match the TLB. Just proceed
13547 * with the error code that the processor gave.
13548 */
13549 fault.vector = PF_VECTOR;
13550 fault.error_code_valid = true;
13551 fault.error_code = error_code;
13552 fault.nested_page_fault = false;
13553 fault.address = gva;
13554 fault.async_page_fault = false;
13555 }
13556 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13557 }
13558 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13559
13560 /*
13561 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13562 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13563 * indicates whether exit to userspace is needed.
13564 */
13565 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13566 struct x86_exception *e)
13567 {
13568 if (r == X86EMUL_PROPAGATE_FAULT) {
13569 if (KVM_BUG_ON(!e, vcpu->kvm))
13570 return -EIO;
13571
13572 kvm_inject_emulated_page_fault(vcpu, e);
13573 return 1;
13574 }
13575
13576 /*
13577 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13578 * while handling a VMX instruction KVM could've handled the request
13579 * correctly by exiting to userspace and performing I/O but there
13580 * doesn't seem to be a real use-case behind such requests, just return
13581 * KVM_EXIT_INTERNAL_ERROR for now.
13582 */
13583 kvm_prepare_emulation_failure_exit(vcpu);
13584
13585 return 0;
13586 }
13587 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13588
13589 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13590 {
13591 bool pcid_enabled;
13592 struct x86_exception e;
13593 struct {
13594 u64 pcid;
13595 u64 gla;
13596 } operand;
13597 int r;
13598
13599 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13600 if (r != X86EMUL_CONTINUE)
13601 return kvm_handle_memory_failure(vcpu, r, &e);
13602
13603 if (operand.pcid >> 12 != 0) {
13604 kvm_inject_gp(vcpu, 0);
13605 return 1;
13606 }
13607
13608 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13609
13610 switch (type) {
13611 case INVPCID_TYPE_INDIV_ADDR:
13612 /*
13613 * LAM doesn't apply to addresses that are inputs to TLB
13614 * invalidation.
13615 */
13616 if ((!pcid_enabled && (operand.pcid != 0)) ||
13617 is_noncanonical_address(operand.gla, vcpu)) {
13618 kvm_inject_gp(vcpu, 0);
13619 return 1;
13620 }
13621 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13622 return kvm_skip_emulated_instruction(vcpu);
13623
13624 case INVPCID_TYPE_SINGLE_CTXT:
13625 if (!pcid_enabled && (operand.pcid != 0)) {
13626 kvm_inject_gp(vcpu, 0);
13627 return 1;
13628 }
13629
13630 kvm_invalidate_pcid(vcpu, operand.pcid);
13631 return kvm_skip_emulated_instruction(vcpu);
13632
13633 case INVPCID_TYPE_ALL_NON_GLOBAL:
13634 /*
13635 * Currently, KVM doesn't mark global entries in the shadow
13636 * page tables, so a non-global flush just degenerates to a
13637 * global flush. If needed, we could optimize this later by
13638 * keeping track of global entries in shadow page tables.
13639 */
13640
13641 fallthrough;
13642 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13643 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13644 return kvm_skip_emulated_instruction(vcpu);
13645
13646 default:
13647 kvm_inject_gp(vcpu, 0);
13648 return 1;
13649 }
13650 }
13651 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13652
13653 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13654 {
13655 struct kvm_run *run = vcpu->run;
13656 struct kvm_mmio_fragment *frag;
13657 unsigned int len;
13658
13659 BUG_ON(!vcpu->mmio_needed);
13660
13661 /* Complete previous fragment */
13662 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13663 len = min(8u, frag->len);
13664 if (!vcpu->mmio_is_write)
13665 memcpy(frag->data, run->mmio.data, len);
13666
13667 if (frag->len <= 8) {
13668 /* Switch to the next fragment. */
13669 frag++;
13670 vcpu->mmio_cur_fragment++;
13671 } else {
13672 /* Go forward to the next mmio piece. */
13673 frag->data += len;
13674 frag->gpa += len;
13675 frag->len -= len;
13676 }
13677
13678 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13679 vcpu->mmio_needed = 0;
13680
13681 // VMG change, at this point, we're always done
13682 // RIP has already been advanced
13683 return 1;
13684 }
13685
13686 // More MMIO is needed
13687 run->mmio.phys_addr = frag->gpa;
13688 run->mmio.len = min(8u, frag->len);
13689 run->mmio.is_write = vcpu->mmio_is_write;
13690 if (run->mmio.is_write)
13691 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13692 run->exit_reason = KVM_EXIT_MMIO;
13693
13694 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13695
13696 return 0;
13697 }
13698
13699 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13700 void *data)
13701 {
13702 int handled;
13703 struct kvm_mmio_fragment *frag;
13704
13705 if (!data)
13706 return -EINVAL;
13707
13708 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13709 if (handled == bytes)
13710 return 1;
13711
13712 bytes -= handled;
13713 gpa += handled;
13714 data += handled;
13715
13716 /*TODO: Check if need to increment number of frags */
13717 frag = vcpu->mmio_fragments;
13718 vcpu->mmio_nr_fragments = 1;
13719 frag->len = bytes;
13720 frag->gpa = gpa;
13721 frag->data = data;
13722
13723 vcpu->mmio_needed = 1;
13724 vcpu->mmio_cur_fragment = 0;
13725
13726 vcpu->run->mmio.phys_addr = gpa;
13727 vcpu->run->mmio.len = min(8u, frag->len);
13728 vcpu->run->mmio.is_write = 1;
13729 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13730 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13731
13732 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13733
13734 return 0;
13735 }
13736 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13737
13738 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13739 void *data)
13740 {
13741 int handled;
13742 struct kvm_mmio_fragment *frag;
13743
13744 if (!data)
13745 return -EINVAL;
13746
13747 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13748 if (handled == bytes)
13749 return 1;
13750
13751 bytes -= handled;
13752 gpa += handled;
13753 data += handled;
13754
13755 /*TODO: Check if need to increment number of frags */
13756 frag = vcpu->mmio_fragments;
13757 vcpu->mmio_nr_fragments = 1;
13758 frag->len = bytes;
13759 frag->gpa = gpa;
13760 frag->data = data;
13761
13762 vcpu->mmio_needed = 1;
13763 vcpu->mmio_cur_fragment = 0;
13764
13765 vcpu->run->mmio.phys_addr = gpa;
13766 vcpu->run->mmio.len = min(8u, frag->len);
13767 vcpu->run->mmio.is_write = 0;
13768 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13769
13770 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13771
13772 return 0;
13773 }
13774 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13775
13776 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13777 {
13778 vcpu->arch.sev_pio_count -= count;
13779 vcpu->arch.sev_pio_data += count * size;
13780 }
13781
13782 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13783 unsigned int port);
13784
13785 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13786 {
13787 int size = vcpu->arch.pio.size;
13788 int port = vcpu->arch.pio.port;
13789
13790 vcpu->arch.pio.count = 0;
13791 if (vcpu->arch.sev_pio_count)
13792 return kvm_sev_es_outs(vcpu, size, port);
13793 return 1;
13794 }
13795
13796 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13797 unsigned int port)
13798 {
13799 for (;;) {
13800 unsigned int count =
13801 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13802 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13803
13804 /* memcpy done already by emulator_pio_out. */
13805 advance_sev_es_emulated_pio(vcpu, count, size);
13806 if (!ret)
13807 break;
13808
13809 /* Emulation done by the kernel. */
13810 if (!vcpu->arch.sev_pio_count)
13811 return 1;
13812 }
13813
13814 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13815 return 0;
13816 }
13817
13818 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13819 unsigned int port);
13820
13821 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13822 {
13823 unsigned count = vcpu->arch.pio.count;
13824 int size = vcpu->arch.pio.size;
13825 int port = vcpu->arch.pio.port;
13826
13827 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13828 advance_sev_es_emulated_pio(vcpu, count, size);
13829 if (vcpu->arch.sev_pio_count)
13830 return kvm_sev_es_ins(vcpu, size, port);
13831 return 1;
13832 }
13833
13834 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13835 unsigned int port)
13836 {
13837 for (;;) {
13838 unsigned int count =
13839 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13840 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13841 break;
13842
13843 /* Emulation done by the kernel. */
13844 advance_sev_es_emulated_pio(vcpu, count, size);
13845 if (!vcpu->arch.sev_pio_count)
13846 return 1;
13847 }
13848
13849 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13850 return 0;
13851 }
13852
13853 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13854 unsigned int port, void *data, unsigned int count,
13855 int in)
13856 {
13857 vcpu->arch.sev_pio_data = data;
13858 vcpu->arch.sev_pio_count = count;
13859 return in ? kvm_sev_es_ins(vcpu, size, port)
13860 : kvm_sev_es_outs(vcpu, size, port);
13861 }
13862 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13863
13864 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13865 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13866 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13867 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13868 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13869 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13870 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13872 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13873 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13893
13894 static int __init kvm_x86_init(void)
13895 {
13896 kvm_mmu_x86_module_init();
13897 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13898 return 0;
13899 }
13900 module_init(kvm_x86_init);
13901
13902 static void __exit kvm_x86_exit(void)
13903 {
13904 /*
13905 * If module_init() is implemented, module_exit() must also be
13906 * implemented to allow module unload.
13907 */
13908 }
13909 module_exit(kvm_x86_exit);