]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/kvm/x86.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "x86.h"
27 #include "cpuid.h"
28 #include "pmu.h"
29 #include "hyperv.h"
30 #include "lapic.h"
31
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/export.h>
38 #include <linux/moduleparam.h>
39 #include <linux/mman.h>
40 #include <linux/highmem.h>
41 #include <linux/iommu.h>
42 #include <linux/intel-iommu.h>
43 #include <linux/cpufreq.h>
44 #include <linux/user-return-notifier.h>
45 #include <linux/srcu.h>
46 #include <linux/slab.h>
47 #include <linux/perf_event.h>
48 #include <linux/uaccess.h>
49 #include <linux/hash.h>
50 #include <linux/pci.h>
51 #include <linux/timekeeper_internal.h>
52 #include <linux/pvclock_gtod.h>
53 #include <linux/kvm_irqfd.h>
54 #include <linux/irqbypass.h>
55 #include <linux/sched/stat.h>
56 #include <linux/sched/isolation.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73 #include <asm/emulate_prefix.h>
74 #include <clocksource/hyperv_timer.h>
75
76 #define CREATE_TRACE_POINTS
77 #include "trace.h"
78
79 #define MAX_IO_MSRS 256
80 #define KVM_MAX_MCE_BANKS 32
81 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
82 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
83
84 #define emul_to_vcpu(ctxt) \
85 ((struct kvm_vcpu *)(ctxt)->vcpu)
86
87 /* EFER defaults:
88 * - enable syscall per default because its emulated by KVM
89 * - enable LME and LMA per default on 64 bit KVM
90 */
91 #ifdef CONFIG_X86_64
92 static
93 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
94 #else
95 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
96 #endif
97
98 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
99
100 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
101 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
102
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void enter_smm(struct kvm_vcpu *vcpu);
109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
110 static void store_regs(struct kvm_vcpu *vcpu);
111 static int sync_regs(struct kvm_vcpu *vcpu);
112
113 struct kvm_x86_ops kvm_x86_ops __read_mostly;
114 EXPORT_SYMBOL_GPL(kvm_x86_ops);
115
116 static bool __read_mostly ignore_msrs = 0;
117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
118
119 static bool __read_mostly report_ignored_msrs = true;
120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121
122 unsigned int min_timer_period_us = 200;
123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124
125 static bool __read_mostly kvmclock_periodic_sync = true;
126 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127
128 bool __read_mostly kvm_has_tsc_control;
129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
130 u32 __read_mostly kvm_max_guest_tsc_khz;
131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
132 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134 u64 __read_mostly kvm_max_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
136 u64 __read_mostly kvm_default_tsc_scaling_ratio;
137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
138
139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
140 static u32 __read_mostly tsc_tolerance_ppm = 250;
141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142
143 /*
144 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
145 * adaptive tuning starting from default advancment of 1000ns. '0' disables
146 * advancement entirely. Any other value is used as-is and disables adaptive
147 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148 */
149 static int __read_mostly lapic_timer_advance_ns = -1;
150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
151
152 static bool __read_mostly vector_hashing = true;
153 module_param(vector_hashing, bool, S_IRUGO);
154
155 bool __read_mostly enable_vmware_backdoor = false;
156 module_param(enable_vmware_backdoor, bool, S_IRUGO);
157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158
159 static bool __read_mostly force_emulation_prefix = false;
160 module_param(force_emulation_prefix, bool, S_IRUGO);
161
162 int __read_mostly pi_inject_timer = -1;
163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164
165 #define KVM_NR_SHARED_MSRS 16
166
167 struct kvm_shared_msrs_global {
168 int nr;
169 u32 msrs[KVM_NR_SHARED_MSRS];
170 };
171
172 struct kvm_shared_msrs {
173 struct user_return_notifier urn;
174 bool registered;
175 struct kvm_shared_msr_values {
176 u64 host;
177 u64 curr;
178 } values[KVM_NR_SHARED_MSRS];
179 };
180
181 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
182 static struct kvm_shared_msrs __percpu *shared_msrs;
183
184 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
185 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
186 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
187 | XFEATURE_MASK_PKRU)
188
189 u64 __read_mostly host_efer;
190 EXPORT_SYMBOL_GPL(host_efer);
191
192 static u64 __read_mostly host_xss;
193 u64 __read_mostly supported_xss;
194 EXPORT_SYMBOL_GPL(supported_xss);
195
196 struct kvm_stats_debugfs_item debugfs_entries[] = {
197 { "pf_fixed", VCPU_STAT(pf_fixed) },
198 { "pf_guest", VCPU_STAT(pf_guest) },
199 { "tlb_flush", VCPU_STAT(tlb_flush) },
200 { "invlpg", VCPU_STAT(invlpg) },
201 { "exits", VCPU_STAT(exits) },
202 { "io_exits", VCPU_STAT(io_exits) },
203 { "mmio_exits", VCPU_STAT(mmio_exits) },
204 { "signal_exits", VCPU_STAT(signal_exits) },
205 { "irq_window", VCPU_STAT(irq_window_exits) },
206 { "nmi_window", VCPU_STAT(nmi_window_exits) },
207 { "halt_exits", VCPU_STAT(halt_exits) },
208 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
209 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
210 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
211 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
212 { "hypercalls", VCPU_STAT(hypercalls) },
213 { "request_irq", VCPU_STAT(request_irq_exits) },
214 { "irq_exits", VCPU_STAT(irq_exits) },
215 { "host_state_reload", VCPU_STAT(host_state_reload) },
216 { "fpu_reload", VCPU_STAT(fpu_reload) },
217 { "insn_emulation", VCPU_STAT(insn_emulation) },
218 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
219 { "irq_injections", VCPU_STAT(irq_injections) },
220 { "nmi_injections", VCPU_STAT(nmi_injections) },
221 { "req_event", VCPU_STAT(req_event) },
222 { "l1d_flush", VCPU_STAT(l1d_flush) },
223 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
224 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
225 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
226 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
227 { "mmu_flooded", VM_STAT(mmu_flooded) },
228 { "mmu_recycled", VM_STAT(mmu_recycled) },
229 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
230 { "mmu_unsync", VM_STAT(mmu_unsync) },
231 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
232 { "largepages", VM_STAT(lpages, .mode = 0444) },
233 { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
234 { "max_mmu_page_hash_collisions",
235 VM_STAT(max_mmu_page_hash_collisions) },
236 { NULL }
237 };
238
239 u64 __read_mostly host_xcr0;
240 u64 __read_mostly supported_xcr0;
241 EXPORT_SYMBOL_GPL(supported_xcr0);
242
243 struct kmem_cache *x86_fpu_cache;
244 EXPORT_SYMBOL_GPL(x86_fpu_cache);
245
246 static struct kmem_cache *x86_emulator_cache;
247
248 static struct kmem_cache *kvm_alloc_emulator_cache(void)
249 {
250 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
251 unsigned int size = sizeof(struct x86_emulate_ctxt);
252
253 return kmem_cache_create_usercopy("x86_emulator", size,
254 __alignof__(struct x86_emulate_ctxt),
255 SLAB_ACCOUNT, useroffset,
256 size - useroffset, NULL);
257 }
258
259 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
260
261 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
262 {
263 int i;
264 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
265 vcpu->arch.apf.gfns[i] = ~0;
266 }
267
268 static void kvm_on_user_return(struct user_return_notifier *urn)
269 {
270 unsigned slot;
271 struct kvm_shared_msrs *locals
272 = container_of(urn, struct kvm_shared_msrs, urn);
273 struct kvm_shared_msr_values *values;
274 unsigned long flags;
275
276 /*
277 * Disabling irqs at this point since the following code could be
278 * interrupted and executed through kvm_arch_hardware_disable()
279 */
280 local_irq_save(flags);
281 if (locals->registered) {
282 locals->registered = false;
283 user_return_notifier_unregister(urn);
284 }
285 local_irq_restore(flags);
286 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
287 values = &locals->values[slot];
288 if (values->host != values->curr) {
289 wrmsrl(shared_msrs_global.msrs[slot], values->host);
290 values->curr = values->host;
291 }
292 }
293 }
294
295 void kvm_define_shared_msr(unsigned slot, u32 msr)
296 {
297 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
298 shared_msrs_global.msrs[slot] = msr;
299 if (slot >= shared_msrs_global.nr)
300 shared_msrs_global.nr = slot + 1;
301 }
302 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
303
304 static void kvm_shared_msr_cpu_online(void)
305 {
306 unsigned int cpu = smp_processor_id();
307 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
308 u64 value;
309 int i;
310
311 for (i = 0; i < shared_msrs_global.nr; ++i) {
312 rdmsrl_safe(shared_msrs_global.msrs[i], &value);
313 smsr->values[i].host = value;
314 smsr->values[i].curr = value;
315 }
316 }
317
318 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
319 {
320 unsigned int cpu = smp_processor_id();
321 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
322 int err;
323
324 value = (value & mask) | (smsr->values[slot].host & ~mask);
325 if (value == smsr->values[slot].curr)
326 return 0;
327 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
328 if (err)
329 return 1;
330
331 smsr->values[slot].curr = value;
332 if (!smsr->registered) {
333 smsr->urn.on_user_return = kvm_on_user_return;
334 user_return_notifier_register(&smsr->urn);
335 smsr->registered = true;
336 }
337 return 0;
338 }
339 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
340
341 static void drop_user_return_notifiers(void)
342 {
343 unsigned int cpu = smp_processor_id();
344 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
345
346 if (smsr->registered)
347 kvm_on_user_return(&smsr->urn);
348 }
349
350 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
351 {
352 return vcpu->arch.apic_base;
353 }
354 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
355
356 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
357 {
358 return kvm_apic_mode(kvm_get_apic_base(vcpu));
359 }
360 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
361
362 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
363 {
364 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
365 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
366 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
367 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
368
369 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
370 return 1;
371 if (!msr_info->host_initiated) {
372 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
373 return 1;
374 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
375 return 1;
376 }
377
378 kvm_lapic_set_base(vcpu, msr_info->data);
379 kvm_recalculate_apic_map(vcpu->kvm);
380 return 0;
381 }
382 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
383
384 asmlinkage __visible void kvm_spurious_fault(void)
385 {
386 /* Fault while not rebooting. We want the trace. */
387 BUG_ON(!kvm_rebooting);
388 }
389 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
390
391 #define EXCPT_BENIGN 0
392 #define EXCPT_CONTRIBUTORY 1
393 #define EXCPT_PF 2
394
395 static int exception_class(int vector)
396 {
397 switch (vector) {
398 case PF_VECTOR:
399 return EXCPT_PF;
400 case DE_VECTOR:
401 case TS_VECTOR:
402 case NP_VECTOR:
403 case SS_VECTOR:
404 case GP_VECTOR:
405 return EXCPT_CONTRIBUTORY;
406 default:
407 break;
408 }
409 return EXCPT_BENIGN;
410 }
411
412 #define EXCPT_FAULT 0
413 #define EXCPT_TRAP 1
414 #define EXCPT_ABORT 2
415 #define EXCPT_INTERRUPT 3
416
417 static int exception_type(int vector)
418 {
419 unsigned int mask;
420
421 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
422 return EXCPT_INTERRUPT;
423
424 mask = 1 << vector;
425
426 /* #DB is trap, as instruction watchpoints are handled elsewhere */
427 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
428 return EXCPT_TRAP;
429
430 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
431 return EXCPT_ABORT;
432
433 /* Reserved exceptions will result in fault */
434 return EXCPT_FAULT;
435 }
436
437 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
438 {
439 unsigned nr = vcpu->arch.exception.nr;
440 bool has_payload = vcpu->arch.exception.has_payload;
441 unsigned long payload = vcpu->arch.exception.payload;
442
443 if (!has_payload)
444 return;
445
446 switch (nr) {
447 case DB_VECTOR:
448 /*
449 * "Certain debug exceptions may clear bit 0-3. The
450 * remaining contents of the DR6 register are never
451 * cleared by the processor".
452 */
453 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
454 /*
455 * DR6.RTM is set by all #DB exceptions that don't clear it.
456 */
457 vcpu->arch.dr6 |= DR6_RTM;
458 vcpu->arch.dr6 |= payload;
459 /*
460 * Bit 16 should be set in the payload whenever the #DB
461 * exception should clear DR6.RTM. This makes the payload
462 * compatible with the pending debug exceptions under VMX.
463 * Though not currently documented in the SDM, this also
464 * makes the payload compatible with the exit qualification
465 * for #DB exceptions under VMX.
466 */
467 vcpu->arch.dr6 ^= payload & DR6_RTM;
468
469 /*
470 * The #DB payload is defined as compatible with the 'pending
471 * debug exceptions' field under VMX, not DR6. While bit 12 is
472 * defined in the 'pending debug exceptions' field (enabled
473 * breakpoint), it is reserved and must be zero in DR6.
474 */
475 vcpu->arch.dr6 &= ~BIT(12);
476 break;
477 case PF_VECTOR:
478 vcpu->arch.cr2 = payload;
479 break;
480 }
481
482 vcpu->arch.exception.has_payload = false;
483 vcpu->arch.exception.payload = 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
486
487 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
488 unsigned nr, bool has_error, u32 error_code,
489 bool has_payload, unsigned long payload, bool reinject)
490 {
491 u32 prev_nr;
492 int class1, class2;
493
494 kvm_make_request(KVM_REQ_EVENT, vcpu);
495
496 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
497 queue:
498 if (has_error && !is_protmode(vcpu))
499 has_error = false;
500 if (reinject) {
501 /*
502 * On vmentry, vcpu->arch.exception.pending is only
503 * true if an event injection was blocked by
504 * nested_run_pending. In that case, however,
505 * vcpu_enter_guest requests an immediate exit,
506 * and the guest shouldn't proceed far enough to
507 * need reinjection.
508 */
509 WARN_ON_ONCE(vcpu->arch.exception.pending);
510 vcpu->arch.exception.injected = true;
511 if (WARN_ON_ONCE(has_payload)) {
512 /*
513 * A reinjected event has already
514 * delivered its payload.
515 */
516 has_payload = false;
517 payload = 0;
518 }
519 } else {
520 vcpu->arch.exception.pending = true;
521 vcpu->arch.exception.injected = false;
522 }
523 vcpu->arch.exception.has_error_code = has_error;
524 vcpu->arch.exception.nr = nr;
525 vcpu->arch.exception.error_code = error_code;
526 vcpu->arch.exception.has_payload = has_payload;
527 vcpu->arch.exception.payload = payload;
528 if (!is_guest_mode(vcpu))
529 kvm_deliver_exception_payload(vcpu);
530 return;
531 }
532
533 /* to check exception */
534 prev_nr = vcpu->arch.exception.nr;
535 if (prev_nr == DF_VECTOR) {
536 /* triple fault -> shutdown */
537 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
538 return;
539 }
540 class1 = exception_class(prev_nr);
541 class2 = exception_class(nr);
542 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
543 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
544 /*
545 * Generate double fault per SDM Table 5-5. Set
546 * exception.pending = true so that the double fault
547 * can trigger a nested vmexit.
548 */
549 vcpu->arch.exception.pending = true;
550 vcpu->arch.exception.injected = false;
551 vcpu->arch.exception.has_error_code = true;
552 vcpu->arch.exception.nr = DF_VECTOR;
553 vcpu->arch.exception.error_code = 0;
554 vcpu->arch.exception.has_payload = false;
555 vcpu->arch.exception.payload = 0;
556 } else
557 /* replace previous exception with a new one in a hope
558 that instruction re-execution will regenerate lost
559 exception */
560 goto queue;
561 }
562
563 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
564 {
565 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
566 }
567 EXPORT_SYMBOL_GPL(kvm_queue_exception);
568
569 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
570 {
571 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
572 }
573 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
574
575 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
576 unsigned long payload)
577 {
578 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
579 }
580
581 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
582 u32 error_code, unsigned long payload)
583 {
584 kvm_multiple_exception(vcpu, nr, true, error_code,
585 true, payload, false);
586 }
587
588 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
589 {
590 if (err)
591 kvm_inject_gp(vcpu, 0);
592 else
593 return kvm_skip_emulated_instruction(vcpu);
594
595 return 1;
596 }
597 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
598
599 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
600 {
601 ++vcpu->stat.pf_guest;
602 vcpu->arch.exception.nested_apf =
603 is_guest_mode(vcpu) && fault->async_page_fault;
604 if (vcpu->arch.exception.nested_apf) {
605 vcpu->arch.apf.nested_apf_token = fault->address;
606 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
607 } else {
608 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
609 fault->address);
610 }
611 }
612 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
613
614 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
615 {
616 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
617 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
618 else
619 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
620
621 return fault->nested_page_fault;
622 }
623
624 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
625 {
626 atomic_inc(&vcpu->arch.nmi_queued);
627 kvm_make_request(KVM_REQ_NMI, vcpu);
628 }
629 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
630
631 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
632 {
633 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
634 }
635 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
636
637 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
638 {
639 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
640 }
641 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
642
643 /*
644 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
645 * a #GP and return false.
646 */
647 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
648 {
649 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
650 return true;
651 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
652 return false;
653 }
654 EXPORT_SYMBOL_GPL(kvm_require_cpl);
655
656 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
657 {
658 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
659 return true;
660
661 kvm_queue_exception(vcpu, UD_VECTOR);
662 return false;
663 }
664 EXPORT_SYMBOL_GPL(kvm_require_dr);
665
666 /*
667 * This function will be used to read from the physical memory of the currently
668 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
669 * can read from guest physical or from the guest's guest physical memory.
670 */
671 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
672 gfn_t ngfn, void *data, int offset, int len,
673 u32 access)
674 {
675 struct x86_exception exception;
676 gfn_t real_gfn;
677 gpa_t ngpa;
678
679 ngpa = gfn_to_gpa(ngfn);
680 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
681 if (real_gfn == UNMAPPED_GVA)
682 return -EFAULT;
683
684 real_gfn = gpa_to_gfn(real_gfn);
685
686 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
687 }
688 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
689
690 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
691 void *data, int offset, int len, u32 access)
692 {
693 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
694 data, offset, len, access);
695 }
696
697 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
698 {
699 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
700 rsvd_bits(1, 2);
701 }
702
703 /*
704 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
705 */
706 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
707 {
708 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
709 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
710 int i;
711 int ret;
712 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
713
714 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
715 offset * sizeof(u64), sizeof(pdpte),
716 PFERR_USER_MASK|PFERR_WRITE_MASK);
717 if (ret < 0) {
718 ret = 0;
719 goto out;
720 }
721 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
722 if ((pdpte[i] & PT_PRESENT_MASK) &&
723 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
724 ret = 0;
725 goto out;
726 }
727 }
728 ret = 1;
729
730 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
731 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
732
733 out:
734
735 return ret;
736 }
737 EXPORT_SYMBOL_GPL(load_pdptrs);
738
739 bool pdptrs_changed(struct kvm_vcpu *vcpu)
740 {
741 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
742 int offset;
743 gfn_t gfn;
744 int r;
745
746 if (!is_pae_paging(vcpu))
747 return false;
748
749 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
750 return true;
751
752 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
753 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
754 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
755 PFERR_USER_MASK | PFERR_WRITE_MASK);
756 if (r < 0)
757 return true;
758
759 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
760 }
761 EXPORT_SYMBOL_GPL(pdptrs_changed);
762
763 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
764 {
765 unsigned long old_cr0 = kvm_read_cr0(vcpu);
766 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
767
768 cr0 |= X86_CR0_ET;
769
770 #ifdef CONFIG_X86_64
771 if (cr0 & 0xffffffff00000000UL)
772 return 1;
773 #endif
774
775 cr0 &= ~CR0_RESERVED_BITS;
776
777 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
778 return 1;
779
780 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
781 return 1;
782
783 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
784 #ifdef CONFIG_X86_64
785 if ((vcpu->arch.efer & EFER_LME)) {
786 int cs_db, cs_l;
787
788 if (!is_pae(vcpu))
789 return 1;
790 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
791 if (cs_l)
792 return 1;
793 } else
794 #endif
795 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
796 kvm_read_cr3(vcpu)))
797 return 1;
798 }
799
800 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
801 return 1;
802
803 kvm_x86_ops.set_cr0(vcpu, cr0);
804
805 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
806 kvm_clear_async_pf_completion_queue(vcpu);
807 kvm_async_pf_hash_reset(vcpu);
808 }
809
810 if ((cr0 ^ old_cr0) & update_bits)
811 kvm_mmu_reset_context(vcpu);
812
813 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
814 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
815 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
816 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
817
818 return 0;
819 }
820 EXPORT_SYMBOL_GPL(kvm_set_cr0);
821
822 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
823 {
824 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
825 }
826 EXPORT_SYMBOL_GPL(kvm_lmsw);
827
828 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
829 {
830 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
831
832 if (vcpu->arch.xcr0 != host_xcr0)
833 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
834
835 if (vcpu->arch.xsaves_enabled &&
836 vcpu->arch.ia32_xss != host_xss)
837 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
838 }
839 }
840 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
841
842 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
843 {
844 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
845
846 if (vcpu->arch.xcr0 != host_xcr0)
847 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
848
849 if (vcpu->arch.xsaves_enabled &&
850 vcpu->arch.ia32_xss != host_xss)
851 wrmsrl(MSR_IA32_XSS, host_xss);
852 }
853
854 }
855 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
856
857 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
858 {
859 u64 xcr0 = xcr;
860 u64 old_xcr0 = vcpu->arch.xcr0;
861 u64 valid_bits;
862
863 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
864 if (index != XCR_XFEATURE_ENABLED_MASK)
865 return 1;
866 if (!(xcr0 & XFEATURE_MASK_FP))
867 return 1;
868 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
869 return 1;
870
871 /*
872 * Do not allow the guest to set bits that we do not support
873 * saving. However, xcr0 bit 0 is always set, even if the
874 * emulated CPU does not support XSAVE (see fx_init).
875 */
876 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
877 if (xcr0 & ~valid_bits)
878 return 1;
879
880 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
881 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
882 return 1;
883
884 if (xcr0 & XFEATURE_MASK_AVX512) {
885 if (!(xcr0 & XFEATURE_MASK_YMM))
886 return 1;
887 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
888 return 1;
889 }
890 vcpu->arch.xcr0 = xcr0;
891
892 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
893 kvm_update_cpuid(vcpu);
894 return 0;
895 }
896
897 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
898 {
899 if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
900 __kvm_set_xcr(vcpu, index, xcr)) {
901 kvm_inject_gp(vcpu, 0);
902 return 1;
903 }
904 return 0;
905 }
906 EXPORT_SYMBOL_GPL(kvm_set_xcr);
907
908 #define __cr4_reserved_bits(__cpu_has, __c) \
909 ({ \
910 u64 __reserved_bits = CR4_RESERVED_BITS; \
911 \
912 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \
913 __reserved_bits |= X86_CR4_OSXSAVE; \
914 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \
915 __reserved_bits |= X86_CR4_SMEP; \
916 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \
917 __reserved_bits |= X86_CR4_SMAP; \
918 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \
919 __reserved_bits |= X86_CR4_FSGSBASE; \
920 if (!__cpu_has(__c, X86_FEATURE_PKU)) \
921 __reserved_bits |= X86_CR4_PKE; \
922 if (!__cpu_has(__c, X86_FEATURE_LA57)) \
923 __reserved_bits |= X86_CR4_LA57; \
924 if (!__cpu_has(__c, X86_FEATURE_UMIP)) \
925 __reserved_bits |= X86_CR4_UMIP; \
926 __reserved_bits; \
927 })
928
929 static u64 kvm_host_cr4_reserved_bits(struct cpuinfo_x86 *c)
930 {
931 u64 reserved_bits = __cr4_reserved_bits(cpu_has, c);
932
933 if (kvm_cpu_cap_has(X86_FEATURE_LA57))
934 reserved_bits &= ~X86_CR4_LA57;
935
936 if (kvm_cpu_cap_has(X86_FEATURE_UMIP))
937 reserved_bits &= ~X86_CR4_UMIP;
938
939 return reserved_bits;
940 }
941
942 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
943 {
944 if (cr4 & cr4_reserved_bits)
945 return -EINVAL;
946
947 if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
948 return -EINVAL;
949
950 return 0;
951 }
952
953 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
954 {
955 unsigned long old_cr4 = kvm_read_cr4(vcpu);
956 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
957 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
958
959 if (kvm_valid_cr4(vcpu, cr4))
960 return 1;
961
962 if (is_long_mode(vcpu)) {
963 if (!(cr4 & X86_CR4_PAE))
964 return 1;
965 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
966 && ((cr4 ^ old_cr4) & pdptr_bits)
967 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
968 kvm_read_cr3(vcpu)))
969 return 1;
970
971 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
972 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
973 return 1;
974
975 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
976 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
977 return 1;
978 }
979
980 if (kvm_x86_ops.set_cr4(vcpu, cr4))
981 return 1;
982
983 if (((cr4 ^ old_cr4) & pdptr_bits) ||
984 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
985 kvm_mmu_reset_context(vcpu);
986
987 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
988 kvm_update_cpuid(vcpu);
989
990 return 0;
991 }
992 EXPORT_SYMBOL_GPL(kvm_set_cr4);
993
994 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
995 {
996 bool skip_tlb_flush = false;
997 #ifdef CONFIG_X86_64
998 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
999
1000 if (pcid_enabled) {
1001 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1002 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1003 }
1004 #endif
1005
1006 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1007 if (!skip_tlb_flush) {
1008 kvm_mmu_sync_roots(vcpu);
1009 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1010 }
1011 return 0;
1012 }
1013
1014 if (is_long_mode(vcpu) &&
1015 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1016 return 1;
1017 else if (is_pae_paging(vcpu) &&
1018 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1019 return 1;
1020
1021 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
1022 vcpu->arch.cr3 = cr3;
1023 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1024
1025 return 0;
1026 }
1027 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1028
1029 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1030 {
1031 if (cr8 & CR8_RESERVED_BITS)
1032 return 1;
1033 if (lapic_in_kernel(vcpu))
1034 kvm_lapic_set_tpr(vcpu, cr8);
1035 else
1036 vcpu->arch.cr8 = cr8;
1037 return 0;
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1040
1041 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1042 {
1043 if (lapic_in_kernel(vcpu))
1044 return kvm_lapic_get_cr8(vcpu);
1045 else
1046 return vcpu->arch.cr8;
1047 }
1048 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1049
1050 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1051 {
1052 int i;
1053
1054 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1055 for (i = 0; i < KVM_NR_DB_REGS; i++)
1056 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1057 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1058 }
1059 }
1060
1061 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1062 {
1063 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1064 kvm_x86_ops.set_dr6(vcpu, vcpu->arch.dr6);
1065 }
1066
1067 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1068 {
1069 unsigned long dr7;
1070
1071 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1072 dr7 = vcpu->arch.guest_debug_dr7;
1073 else
1074 dr7 = vcpu->arch.dr7;
1075 kvm_x86_ops.set_dr7(vcpu, dr7);
1076 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1077 if (dr7 & DR7_BP_EN_MASK)
1078 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1079 }
1080
1081 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1082 {
1083 u64 fixed = DR6_FIXED_1;
1084
1085 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1086 fixed |= DR6_RTM;
1087 return fixed;
1088 }
1089
1090 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1091 {
1092 size_t size = ARRAY_SIZE(vcpu->arch.db);
1093
1094 switch (dr) {
1095 case 0 ... 3:
1096 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1097 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1098 vcpu->arch.eff_db[dr] = val;
1099 break;
1100 case 4:
1101 /* fall through */
1102 case 6:
1103 if (val & 0xffffffff00000000ULL)
1104 return -1; /* #GP */
1105 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1106 kvm_update_dr6(vcpu);
1107 break;
1108 case 5:
1109 /* fall through */
1110 default: /* 7 */
1111 if (!kvm_dr7_valid(val))
1112 return -1; /* #GP */
1113 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1114 kvm_update_dr7(vcpu);
1115 break;
1116 }
1117
1118 return 0;
1119 }
1120
1121 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1122 {
1123 if (__kvm_set_dr(vcpu, dr, val)) {
1124 kvm_inject_gp(vcpu, 0);
1125 return 1;
1126 }
1127 return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_set_dr);
1130
1131 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1132 {
1133 size_t size = ARRAY_SIZE(vcpu->arch.db);
1134
1135 switch (dr) {
1136 case 0 ... 3:
1137 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1138 break;
1139 case 4:
1140 /* fall through */
1141 case 6:
1142 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1143 *val = vcpu->arch.dr6;
1144 else
1145 *val = kvm_x86_ops.get_dr6(vcpu);
1146 break;
1147 case 5:
1148 /* fall through */
1149 default: /* 7 */
1150 *val = vcpu->arch.dr7;
1151 break;
1152 }
1153 return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_get_dr);
1156
1157 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1158 {
1159 u32 ecx = kvm_rcx_read(vcpu);
1160 u64 data;
1161 int err;
1162
1163 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1164 if (err)
1165 return err;
1166 kvm_rax_write(vcpu, (u32)data);
1167 kvm_rdx_write(vcpu, data >> 32);
1168 return err;
1169 }
1170 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1171
1172 /*
1173 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1174 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1175 *
1176 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1177 * extract the supported MSRs from the related const lists.
1178 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1179 * capabilities of the host cpu. This capabilities test skips MSRs that are
1180 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1181 * may depend on host virtualization features rather than host cpu features.
1182 */
1183
1184 static const u32 msrs_to_save_all[] = {
1185 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1186 MSR_STAR,
1187 #ifdef CONFIG_X86_64
1188 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1189 #endif
1190 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1191 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1192 MSR_IA32_SPEC_CTRL,
1193 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1194 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1195 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1196 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1197 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1198 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1199 MSR_IA32_UMWAIT_CONTROL,
1200
1201 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1202 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1203 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1204 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1205 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1206 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1207 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1208 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1209 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1210 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1211 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1212 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1213 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1214 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1215 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1216 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1217 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1218 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1219 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1220 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1221 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1222 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1223 };
1224
1225 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1226 static unsigned num_msrs_to_save;
1227
1228 static const u32 emulated_msrs_all[] = {
1229 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1230 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1231 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1232 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1233 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1234 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1235 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1236 HV_X64_MSR_RESET,
1237 HV_X64_MSR_VP_INDEX,
1238 HV_X64_MSR_VP_RUNTIME,
1239 HV_X64_MSR_SCONTROL,
1240 HV_X64_MSR_STIMER0_CONFIG,
1241 HV_X64_MSR_VP_ASSIST_PAGE,
1242 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1243 HV_X64_MSR_TSC_EMULATION_STATUS,
1244
1245 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1246 MSR_KVM_PV_EOI_EN,
1247
1248 MSR_IA32_TSC_ADJUST,
1249 MSR_IA32_TSCDEADLINE,
1250 MSR_IA32_ARCH_CAPABILITIES,
1251 MSR_IA32_MISC_ENABLE,
1252 MSR_IA32_MCG_STATUS,
1253 MSR_IA32_MCG_CTL,
1254 MSR_IA32_MCG_EXT_CTL,
1255 MSR_IA32_SMBASE,
1256 MSR_SMI_COUNT,
1257 MSR_PLATFORM_INFO,
1258 MSR_MISC_FEATURES_ENABLES,
1259 MSR_AMD64_VIRT_SPEC_CTRL,
1260 MSR_IA32_POWER_CTL,
1261 MSR_IA32_UCODE_REV,
1262
1263 /*
1264 * The following list leaves out MSRs whose values are determined
1265 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1266 * We always support the "true" VMX control MSRs, even if the host
1267 * processor does not, so I am putting these registers here rather
1268 * than in msrs_to_save_all.
1269 */
1270 MSR_IA32_VMX_BASIC,
1271 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1272 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1273 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1274 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1275 MSR_IA32_VMX_MISC,
1276 MSR_IA32_VMX_CR0_FIXED0,
1277 MSR_IA32_VMX_CR4_FIXED0,
1278 MSR_IA32_VMX_VMCS_ENUM,
1279 MSR_IA32_VMX_PROCBASED_CTLS2,
1280 MSR_IA32_VMX_EPT_VPID_CAP,
1281 MSR_IA32_VMX_VMFUNC,
1282
1283 MSR_K7_HWCR,
1284 MSR_KVM_POLL_CONTROL,
1285 };
1286
1287 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1288 static unsigned num_emulated_msrs;
1289
1290 /*
1291 * List of msr numbers which are used to expose MSR-based features that
1292 * can be used by a hypervisor to validate requested CPU features.
1293 */
1294 static const u32 msr_based_features_all[] = {
1295 MSR_IA32_VMX_BASIC,
1296 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1297 MSR_IA32_VMX_PINBASED_CTLS,
1298 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1299 MSR_IA32_VMX_PROCBASED_CTLS,
1300 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1301 MSR_IA32_VMX_EXIT_CTLS,
1302 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1303 MSR_IA32_VMX_ENTRY_CTLS,
1304 MSR_IA32_VMX_MISC,
1305 MSR_IA32_VMX_CR0_FIXED0,
1306 MSR_IA32_VMX_CR0_FIXED1,
1307 MSR_IA32_VMX_CR4_FIXED0,
1308 MSR_IA32_VMX_CR4_FIXED1,
1309 MSR_IA32_VMX_VMCS_ENUM,
1310 MSR_IA32_VMX_PROCBASED_CTLS2,
1311 MSR_IA32_VMX_EPT_VPID_CAP,
1312 MSR_IA32_VMX_VMFUNC,
1313
1314 MSR_F10H_DECFG,
1315 MSR_IA32_UCODE_REV,
1316 MSR_IA32_ARCH_CAPABILITIES,
1317 };
1318
1319 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1320 static unsigned int num_msr_based_features;
1321
1322 static u64 kvm_get_arch_capabilities(void)
1323 {
1324 u64 data = 0;
1325
1326 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1327 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1328
1329 /*
1330 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1331 * the nested hypervisor runs with NX huge pages. If it is not,
1332 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1333 * L1 guests, so it need not worry about its own (L2) guests.
1334 */
1335 data |= ARCH_CAP_PSCHANGE_MC_NO;
1336
1337 /*
1338 * If we're doing cache flushes (either "always" or "cond")
1339 * we will do one whenever the guest does a vmlaunch/vmresume.
1340 * If an outer hypervisor is doing the cache flush for us
1341 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1342 * capability to the guest too, and if EPT is disabled we're not
1343 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1344 * require a nested hypervisor to do a flush of its own.
1345 */
1346 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1347 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1348
1349 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1350 data |= ARCH_CAP_RDCL_NO;
1351 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1352 data |= ARCH_CAP_SSB_NO;
1353 if (!boot_cpu_has_bug(X86_BUG_MDS))
1354 data |= ARCH_CAP_MDS_NO;
1355
1356 /*
1357 * On TAA affected systems:
1358 * - nothing to do if TSX is disabled on the host.
1359 * - we emulate TSX_CTRL if present on the host.
1360 * This lets the guest use VERW to clear CPU buffers.
1361 */
1362 if (!boot_cpu_has(X86_FEATURE_RTM))
1363 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1364 else if (!boot_cpu_has_bug(X86_BUG_TAA))
1365 data |= ARCH_CAP_TAA_NO;
1366
1367 return data;
1368 }
1369
1370 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1371 {
1372 switch (msr->index) {
1373 case MSR_IA32_ARCH_CAPABILITIES:
1374 msr->data = kvm_get_arch_capabilities();
1375 break;
1376 case MSR_IA32_UCODE_REV:
1377 rdmsrl_safe(msr->index, &msr->data);
1378 break;
1379 default:
1380 if (kvm_x86_ops.get_msr_feature(msr))
1381 return 1;
1382 }
1383 return 0;
1384 }
1385
1386 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1387 {
1388 struct kvm_msr_entry msr;
1389 int r;
1390
1391 msr.index = index;
1392 r = kvm_get_msr_feature(&msr);
1393 if (r)
1394 return r;
1395
1396 *data = msr.data;
1397
1398 return 0;
1399 }
1400
1401 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1402 {
1403 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1404 return false;
1405
1406 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1407 return false;
1408
1409 if (efer & (EFER_LME | EFER_LMA) &&
1410 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1411 return false;
1412
1413 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1414 return false;
1415
1416 return true;
1417
1418 }
1419 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1420 {
1421 if (efer & efer_reserved_bits)
1422 return false;
1423
1424 return __kvm_valid_efer(vcpu, efer);
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1427
1428 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1429 {
1430 u64 old_efer = vcpu->arch.efer;
1431 u64 efer = msr_info->data;
1432
1433 if (efer & efer_reserved_bits)
1434 return 1;
1435
1436 if (!msr_info->host_initiated) {
1437 if (!__kvm_valid_efer(vcpu, efer))
1438 return 1;
1439
1440 if (is_paging(vcpu) &&
1441 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1442 return 1;
1443 }
1444
1445 efer &= ~EFER_LMA;
1446 efer |= vcpu->arch.efer & EFER_LMA;
1447
1448 kvm_x86_ops.set_efer(vcpu, efer);
1449
1450 /* Update reserved bits */
1451 if ((efer ^ old_efer) & EFER_NX)
1452 kvm_mmu_reset_context(vcpu);
1453
1454 return 0;
1455 }
1456
1457 void kvm_enable_efer_bits(u64 mask)
1458 {
1459 efer_reserved_bits &= ~mask;
1460 }
1461 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1462
1463 /*
1464 * Write @data into the MSR specified by @index. Select MSR specific fault
1465 * checks are bypassed if @host_initiated is %true.
1466 * Returns 0 on success, non-0 otherwise.
1467 * Assumes vcpu_load() was already called.
1468 */
1469 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1470 bool host_initiated)
1471 {
1472 struct msr_data msr;
1473
1474 switch (index) {
1475 case MSR_FS_BASE:
1476 case MSR_GS_BASE:
1477 case MSR_KERNEL_GS_BASE:
1478 case MSR_CSTAR:
1479 case MSR_LSTAR:
1480 if (is_noncanonical_address(data, vcpu))
1481 return 1;
1482 break;
1483 case MSR_IA32_SYSENTER_EIP:
1484 case MSR_IA32_SYSENTER_ESP:
1485 /*
1486 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1487 * non-canonical address is written on Intel but not on
1488 * AMD (which ignores the top 32-bits, because it does
1489 * not implement 64-bit SYSENTER).
1490 *
1491 * 64-bit code should hence be able to write a non-canonical
1492 * value on AMD. Making the address canonical ensures that
1493 * vmentry does not fail on Intel after writing a non-canonical
1494 * value, and that something deterministic happens if the guest
1495 * invokes 64-bit SYSENTER.
1496 */
1497 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1498 }
1499
1500 msr.data = data;
1501 msr.index = index;
1502 msr.host_initiated = host_initiated;
1503
1504 return kvm_x86_ops.set_msr(vcpu, &msr);
1505 }
1506
1507 /*
1508 * Read the MSR specified by @index into @data. Select MSR specific fault
1509 * checks are bypassed if @host_initiated is %true.
1510 * Returns 0 on success, non-0 otherwise.
1511 * Assumes vcpu_load() was already called.
1512 */
1513 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1514 bool host_initiated)
1515 {
1516 struct msr_data msr;
1517 int ret;
1518
1519 msr.index = index;
1520 msr.host_initiated = host_initiated;
1521
1522 ret = kvm_x86_ops.get_msr(vcpu, &msr);
1523 if (!ret)
1524 *data = msr.data;
1525 return ret;
1526 }
1527
1528 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1529 {
1530 return __kvm_get_msr(vcpu, index, data, false);
1531 }
1532 EXPORT_SYMBOL_GPL(kvm_get_msr);
1533
1534 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1535 {
1536 return __kvm_set_msr(vcpu, index, data, false);
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_set_msr);
1539
1540 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1541 {
1542 u32 ecx = kvm_rcx_read(vcpu);
1543 u64 data;
1544
1545 if (kvm_get_msr(vcpu, ecx, &data)) {
1546 trace_kvm_msr_read_ex(ecx);
1547 kvm_inject_gp(vcpu, 0);
1548 return 1;
1549 }
1550
1551 trace_kvm_msr_read(ecx, data);
1552
1553 kvm_rax_write(vcpu, data & -1u);
1554 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1555 return kvm_skip_emulated_instruction(vcpu);
1556 }
1557 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1558
1559 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1560 {
1561 u32 ecx = kvm_rcx_read(vcpu);
1562 u64 data = kvm_read_edx_eax(vcpu);
1563
1564 if (kvm_set_msr(vcpu, ecx, data)) {
1565 trace_kvm_msr_write_ex(ecx, data);
1566 kvm_inject_gp(vcpu, 0);
1567 return 1;
1568 }
1569
1570 trace_kvm_msr_write(ecx, data);
1571 return kvm_skip_emulated_instruction(vcpu);
1572 }
1573 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1574
1575 /*
1576 * The fast path for frequent and performance sensitive wrmsr emulation,
1577 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1578 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1579 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1580 * other cases which must be called after interrupts are enabled on the host.
1581 */
1582 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1583 {
1584 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1585 return 1;
1586
1587 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1588 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1589 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1590 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1591
1592 data &= ~(1 << 12);
1593 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1594 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1595 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1596 trace_kvm_apic_write(APIC_ICR, (u32)data);
1597 return 0;
1598 }
1599
1600 return 1;
1601 }
1602
1603 enum exit_fastpath_completion handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1604 {
1605 u32 msr = kvm_rcx_read(vcpu);
1606 u64 data;
1607 int ret = 0;
1608
1609 switch (msr) {
1610 case APIC_BASE_MSR + (APIC_ICR >> 4):
1611 data = kvm_read_edx_eax(vcpu);
1612 ret = handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
1613 break;
1614 default:
1615 return EXIT_FASTPATH_NONE;
1616 }
1617
1618 if (!ret) {
1619 trace_kvm_msr_write(msr, data);
1620 return EXIT_FASTPATH_SKIP_EMUL_INS;
1621 }
1622
1623 return EXIT_FASTPATH_NONE;
1624 }
1625 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1626
1627 /*
1628 * Adapt set_msr() to msr_io()'s calling convention
1629 */
1630 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1631 {
1632 return __kvm_get_msr(vcpu, index, data, true);
1633 }
1634
1635 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1636 {
1637 return __kvm_set_msr(vcpu, index, *data, true);
1638 }
1639
1640 #ifdef CONFIG_X86_64
1641 struct pvclock_clock {
1642 int vclock_mode;
1643 u64 cycle_last;
1644 u64 mask;
1645 u32 mult;
1646 u32 shift;
1647 u64 base_cycles;
1648 u64 offset;
1649 };
1650
1651 struct pvclock_gtod_data {
1652 seqcount_t seq;
1653
1654 struct pvclock_clock clock; /* extract of a clocksource struct */
1655 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1656
1657 ktime_t offs_boot;
1658 u64 wall_time_sec;
1659 };
1660
1661 static struct pvclock_gtod_data pvclock_gtod_data;
1662
1663 static void update_pvclock_gtod(struct timekeeper *tk)
1664 {
1665 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1666
1667 write_seqcount_begin(&vdata->seq);
1668
1669 /* copy pvclock gtod data */
1670 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
1671 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1672 vdata->clock.mask = tk->tkr_mono.mask;
1673 vdata->clock.mult = tk->tkr_mono.mult;
1674 vdata->clock.shift = tk->tkr_mono.shift;
1675 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
1676 vdata->clock.offset = tk->tkr_mono.base;
1677
1678 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
1679 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
1680 vdata->raw_clock.mask = tk->tkr_raw.mask;
1681 vdata->raw_clock.mult = tk->tkr_raw.mult;
1682 vdata->raw_clock.shift = tk->tkr_raw.shift;
1683 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
1684 vdata->raw_clock.offset = tk->tkr_raw.base;
1685
1686 vdata->wall_time_sec = tk->xtime_sec;
1687
1688 vdata->offs_boot = tk->offs_boot;
1689
1690 write_seqcount_end(&vdata->seq);
1691 }
1692
1693 static s64 get_kvmclock_base_ns(void)
1694 {
1695 /* Count up from boot time, but with the frequency of the raw clock. */
1696 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1697 }
1698 #else
1699 static s64 get_kvmclock_base_ns(void)
1700 {
1701 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
1702 return ktime_get_boottime_ns();
1703 }
1704 #endif
1705
1706 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1707 {
1708 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1709 kvm_vcpu_kick(vcpu);
1710 }
1711
1712 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1713 {
1714 int version;
1715 int r;
1716 struct pvclock_wall_clock wc;
1717 u64 wall_nsec;
1718
1719 if (!wall_clock)
1720 return;
1721
1722 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1723 if (r)
1724 return;
1725
1726 if (version & 1)
1727 ++version; /* first time write, random junk */
1728
1729 ++version;
1730
1731 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1732 return;
1733
1734 /*
1735 * The guest calculates current wall clock time by adding
1736 * system time (updated by kvm_guest_time_update below) to the
1737 * wall clock specified here. We do the reverse here.
1738 */
1739 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1740
1741 wc.nsec = do_div(wall_nsec, 1000000000);
1742 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1743 wc.version = version;
1744
1745 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1746
1747 version++;
1748 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1749 }
1750
1751 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1752 {
1753 do_shl32_div32(dividend, divisor);
1754 return dividend;
1755 }
1756
1757 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1758 s8 *pshift, u32 *pmultiplier)
1759 {
1760 uint64_t scaled64;
1761 int32_t shift = 0;
1762 uint64_t tps64;
1763 uint32_t tps32;
1764
1765 tps64 = base_hz;
1766 scaled64 = scaled_hz;
1767 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1768 tps64 >>= 1;
1769 shift--;
1770 }
1771
1772 tps32 = (uint32_t)tps64;
1773 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1774 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1775 scaled64 >>= 1;
1776 else
1777 tps32 <<= 1;
1778 shift++;
1779 }
1780
1781 *pshift = shift;
1782 *pmultiplier = div_frac(scaled64, tps32);
1783 }
1784
1785 #ifdef CONFIG_X86_64
1786 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1787 #endif
1788
1789 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1790 static unsigned long max_tsc_khz;
1791
1792 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1793 {
1794 u64 v = (u64)khz * (1000000 + ppm);
1795 do_div(v, 1000000);
1796 return v;
1797 }
1798
1799 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1800 {
1801 u64 ratio;
1802
1803 /* Guest TSC same frequency as host TSC? */
1804 if (!scale) {
1805 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1806 return 0;
1807 }
1808
1809 /* TSC scaling supported? */
1810 if (!kvm_has_tsc_control) {
1811 if (user_tsc_khz > tsc_khz) {
1812 vcpu->arch.tsc_catchup = 1;
1813 vcpu->arch.tsc_always_catchup = 1;
1814 return 0;
1815 } else {
1816 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1817 return -1;
1818 }
1819 }
1820
1821 /* TSC scaling required - calculate ratio */
1822 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1823 user_tsc_khz, tsc_khz);
1824
1825 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1826 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1827 user_tsc_khz);
1828 return -1;
1829 }
1830
1831 vcpu->arch.tsc_scaling_ratio = ratio;
1832 return 0;
1833 }
1834
1835 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1836 {
1837 u32 thresh_lo, thresh_hi;
1838 int use_scaling = 0;
1839
1840 /* tsc_khz can be zero if TSC calibration fails */
1841 if (user_tsc_khz == 0) {
1842 /* set tsc_scaling_ratio to a safe value */
1843 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1844 return -1;
1845 }
1846
1847 /* Compute a scale to convert nanoseconds in TSC cycles */
1848 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1849 &vcpu->arch.virtual_tsc_shift,
1850 &vcpu->arch.virtual_tsc_mult);
1851 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1852
1853 /*
1854 * Compute the variation in TSC rate which is acceptable
1855 * within the range of tolerance and decide if the
1856 * rate being applied is within that bounds of the hardware
1857 * rate. If so, no scaling or compensation need be done.
1858 */
1859 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1860 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1861 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1862 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1863 use_scaling = 1;
1864 }
1865 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1866 }
1867
1868 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1869 {
1870 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1871 vcpu->arch.virtual_tsc_mult,
1872 vcpu->arch.virtual_tsc_shift);
1873 tsc += vcpu->arch.this_tsc_write;
1874 return tsc;
1875 }
1876
1877 static inline int gtod_is_based_on_tsc(int mode)
1878 {
1879 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
1880 }
1881
1882 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1883 {
1884 #ifdef CONFIG_X86_64
1885 bool vcpus_matched;
1886 struct kvm_arch *ka = &vcpu->kvm->arch;
1887 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1888
1889 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1890 atomic_read(&vcpu->kvm->online_vcpus));
1891
1892 /*
1893 * Once the masterclock is enabled, always perform request in
1894 * order to update it.
1895 *
1896 * In order to enable masterclock, the host clocksource must be TSC
1897 * and the vcpus need to have matched TSCs. When that happens,
1898 * perform request to enable masterclock.
1899 */
1900 if (ka->use_master_clock ||
1901 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1902 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1903
1904 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1905 atomic_read(&vcpu->kvm->online_vcpus),
1906 ka->use_master_clock, gtod->clock.vclock_mode);
1907 #endif
1908 }
1909
1910 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1911 {
1912 u64 curr_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
1913 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1914 }
1915
1916 /*
1917 * Multiply tsc by a fixed point number represented by ratio.
1918 *
1919 * The most significant 64-N bits (mult) of ratio represent the
1920 * integral part of the fixed point number; the remaining N bits
1921 * (frac) represent the fractional part, ie. ratio represents a fixed
1922 * point number (mult + frac * 2^(-N)).
1923 *
1924 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1925 */
1926 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1927 {
1928 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1929 }
1930
1931 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1932 {
1933 u64 _tsc = tsc;
1934 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1935
1936 if (ratio != kvm_default_tsc_scaling_ratio)
1937 _tsc = __scale_tsc(ratio, tsc);
1938
1939 return _tsc;
1940 }
1941 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1942
1943 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1944 {
1945 u64 tsc;
1946
1947 tsc = kvm_scale_tsc(vcpu, rdtsc());
1948
1949 return target_tsc - tsc;
1950 }
1951
1952 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1953 {
1954 u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
1955
1956 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1957 }
1958 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1959
1960 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1961 {
1962 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
1963 }
1964
1965 static inline bool kvm_check_tsc_unstable(void)
1966 {
1967 #ifdef CONFIG_X86_64
1968 /*
1969 * TSC is marked unstable when we're running on Hyper-V,
1970 * 'TSC page' clocksource is good.
1971 */
1972 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
1973 return false;
1974 #endif
1975 return check_tsc_unstable();
1976 }
1977
1978 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1979 {
1980 struct kvm *kvm = vcpu->kvm;
1981 u64 offset, ns, elapsed;
1982 unsigned long flags;
1983 bool matched;
1984 bool already_matched;
1985 u64 data = msr->data;
1986 bool synchronizing = false;
1987
1988 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1989 offset = kvm_compute_tsc_offset(vcpu, data);
1990 ns = get_kvmclock_base_ns();
1991 elapsed = ns - kvm->arch.last_tsc_nsec;
1992
1993 if (vcpu->arch.virtual_tsc_khz) {
1994 if (data == 0 && msr->host_initiated) {
1995 /*
1996 * detection of vcpu initialization -- need to sync
1997 * with other vCPUs. This particularly helps to keep
1998 * kvm_clock stable after CPU hotplug
1999 */
2000 synchronizing = true;
2001 } else {
2002 u64 tsc_exp = kvm->arch.last_tsc_write +
2003 nsec_to_cycles(vcpu, elapsed);
2004 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2005 /*
2006 * Special case: TSC write with a small delta (1 second)
2007 * of virtual cycle time against real time is
2008 * interpreted as an attempt to synchronize the CPU.
2009 */
2010 synchronizing = data < tsc_exp + tsc_hz &&
2011 data + tsc_hz > tsc_exp;
2012 }
2013 }
2014
2015 /*
2016 * For a reliable TSC, we can match TSC offsets, and for an unstable
2017 * TSC, we add elapsed time in this computation. We could let the
2018 * compensation code attempt to catch up if we fall behind, but
2019 * it's better to try to match offsets from the beginning.
2020 */
2021 if (synchronizing &&
2022 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2023 if (!kvm_check_tsc_unstable()) {
2024 offset = kvm->arch.cur_tsc_offset;
2025 } else {
2026 u64 delta = nsec_to_cycles(vcpu, elapsed);
2027 data += delta;
2028 offset = kvm_compute_tsc_offset(vcpu, data);
2029 }
2030 matched = true;
2031 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2032 } else {
2033 /*
2034 * We split periods of matched TSC writes into generations.
2035 * For each generation, we track the original measured
2036 * nanosecond time, offset, and write, so if TSCs are in
2037 * sync, we can match exact offset, and if not, we can match
2038 * exact software computation in compute_guest_tsc()
2039 *
2040 * These values are tracked in kvm->arch.cur_xxx variables.
2041 */
2042 kvm->arch.cur_tsc_generation++;
2043 kvm->arch.cur_tsc_nsec = ns;
2044 kvm->arch.cur_tsc_write = data;
2045 kvm->arch.cur_tsc_offset = offset;
2046 matched = false;
2047 }
2048
2049 /*
2050 * We also track th most recent recorded KHZ, write and time to
2051 * allow the matching interval to be extended at each write.
2052 */
2053 kvm->arch.last_tsc_nsec = ns;
2054 kvm->arch.last_tsc_write = data;
2055 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2056
2057 vcpu->arch.last_guest_tsc = data;
2058
2059 /* Keep track of which generation this VCPU has synchronized to */
2060 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2061 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2062 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2063
2064 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2065 update_ia32_tsc_adjust_msr(vcpu, offset);
2066
2067 kvm_vcpu_write_tsc_offset(vcpu, offset);
2068 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2069
2070 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2071 if (!matched) {
2072 kvm->arch.nr_vcpus_matched_tsc = 0;
2073 } else if (!already_matched) {
2074 kvm->arch.nr_vcpus_matched_tsc++;
2075 }
2076
2077 kvm_track_tsc_matching(vcpu);
2078 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2079 }
2080
2081 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2082
2083 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2084 s64 adjustment)
2085 {
2086 u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
2087 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2088 }
2089
2090 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2091 {
2092 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2093 WARN_ON(adjustment < 0);
2094 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2095 adjust_tsc_offset_guest(vcpu, adjustment);
2096 }
2097
2098 #ifdef CONFIG_X86_64
2099
2100 static u64 read_tsc(void)
2101 {
2102 u64 ret = (u64)rdtsc_ordered();
2103 u64 last = pvclock_gtod_data.clock.cycle_last;
2104
2105 if (likely(ret >= last))
2106 return ret;
2107
2108 /*
2109 * GCC likes to generate cmov here, but this branch is extremely
2110 * predictable (it's just a function of time and the likely is
2111 * very likely) and there's a data dependence, so force GCC
2112 * to generate a branch instead. I don't barrier() because
2113 * we don't actually need a barrier, and if this function
2114 * ever gets inlined it will generate worse code.
2115 */
2116 asm volatile ("");
2117 return last;
2118 }
2119
2120 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2121 int *mode)
2122 {
2123 long v;
2124 u64 tsc_pg_val;
2125
2126 switch (clock->vclock_mode) {
2127 case VDSO_CLOCKMODE_HVCLOCK:
2128 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2129 tsc_timestamp);
2130 if (tsc_pg_val != U64_MAX) {
2131 /* TSC page valid */
2132 *mode = VDSO_CLOCKMODE_HVCLOCK;
2133 v = (tsc_pg_val - clock->cycle_last) &
2134 clock->mask;
2135 } else {
2136 /* TSC page invalid */
2137 *mode = VDSO_CLOCKMODE_NONE;
2138 }
2139 break;
2140 case VDSO_CLOCKMODE_TSC:
2141 *mode = VDSO_CLOCKMODE_TSC;
2142 *tsc_timestamp = read_tsc();
2143 v = (*tsc_timestamp - clock->cycle_last) &
2144 clock->mask;
2145 break;
2146 default:
2147 *mode = VDSO_CLOCKMODE_NONE;
2148 }
2149
2150 if (*mode == VDSO_CLOCKMODE_NONE)
2151 *tsc_timestamp = v = 0;
2152
2153 return v * clock->mult;
2154 }
2155
2156 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2157 {
2158 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2159 unsigned long seq;
2160 int mode;
2161 u64 ns;
2162
2163 do {
2164 seq = read_seqcount_begin(&gtod->seq);
2165 ns = gtod->raw_clock.base_cycles;
2166 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2167 ns >>= gtod->raw_clock.shift;
2168 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2169 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2170 *t = ns;
2171
2172 return mode;
2173 }
2174
2175 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2176 {
2177 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2178 unsigned long seq;
2179 int mode;
2180 u64 ns;
2181
2182 do {
2183 seq = read_seqcount_begin(&gtod->seq);
2184 ts->tv_sec = gtod->wall_time_sec;
2185 ns = gtod->clock.base_cycles;
2186 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2187 ns >>= gtod->clock.shift;
2188 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2189
2190 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2191 ts->tv_nsec = ns;
2192
2193 return mode;
2194 }
2195
2196 /* returns true if host is using TSC based clocksource */
2197 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2198 {
2199 /* checked again under seqlock below */
2200 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2201 return false;
2202
2203 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2204 tsc_timestamp));
2205 }
2206
2207 /* returns true if host is using TSC based clocksource */
2208 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2209 u64 *tsc_timestamp)
2210 {
2211 /* checked again under seqlock below */
2212 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2213 return false;
2214
2215 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2216 }
2217 #endif
2218
2219 /*
2220 *
2221 * Assuming a stable TSC across physical CPUS, and a stable TSC
2222 * across virtual CPUs, the following condition is possible.
2223 * Each numbered line represents an event visible to both
2224 * CPUs at the next numbered event.
2225 *
2226 * "timespecX" represents host monotonic time. "tscX" represents
2227 * RDTSC value.
2228 *
2229 * VCPU0 on CPU0 | VCPU1 on CPU1
2230 *
2231 * 1. read timespec0,tsc0
2232 * 2. | timespec1 = timespec0 + N
2233 * | tsc1 = tsc0 + M
2234 * 3. transition to guest | transition to guest
2235 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2236 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2237 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2238 *
2239 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2240 *
2241 * - ret0 < ret1
2242 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2243 * ...
2244 * - 0 < N - M => M < N
2245 *
2246 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2247 * always the case (the difference between two distinct xtime instances
2248 * might be smaller then the difference between corresponding TSC reads,
2249 * when updating guest vcpus pvclock areas).
2250 *
2251 * To avoid that problem, do not allow visibility of distinct
2252 * system_timestamp/tsc_timestamp values simultaneously: use a master
2253 * copy of host monotonic time values. Update that master copy
2254 * in lockstep.
2255 *
2256 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2257 *
2258 */
2259
2260 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2261 {
2262 #ifdef CONFIG_X86_64
2263 struct kvm_arch *ka = &kvm->arch;
2264 int vclock_mode;
2265 bool host_tsc_clocksource, vcpus_matched;
2266
2267 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2268 atomic_read(&kvm->online_vcpus));
2269
2270 /*
2271 * If the host uses TSC clock, then passthrough TSC as stable
2272 * to the guest.
2273 */
2274 host_tsc_clocksource = kvm_get_time_and_clockread(
2275 &ka->master_kernel_ns,
2276 &ka->master_cycle_now);
2277
2278 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2279 && !ka->backwards_tsc_observed
2280 && !ka->boot_vcpu_runs_old_kvmclock;
2281
2282 if (ka->use_master_clock)
2283 atomic_set(&kvm_guest_has_master_clock, 1);
2284
2285 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2286 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2287 vcpus_matched);
2288 #endif
2289 }
2290
2291 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2292 {
2293 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2294 }
2295
2296 static void kvm_gen_update_masterclock(struct kvm *kvm)
2297 {
2298 #ifdef CONFIG_X86_64
2299 int i;
2300 struct kvm_vcpu *vcpu;
2301 struct kvm_arch *ka = &kvm->arch;
2302
2303 spin_lock(&ka->pvclock_gtod_sync_lock);
2304 kvm_make_mclock_inprogress_request(kvm);
2305 /* no guest entries from this point */
2306 pvclock_update_vm_gtod_copy(kvm);
2307
2308 kvm_for_each_vcpu(i, vcpu, kvm)
2309 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2310
2311 /* guest entries allowed */
2312 kvm_for_each_vcpu(i, vcpu, kvm)
2313 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2314
2315 spin_unlock(&ka->pvclock_gtod_sync_lock);
2316 #endif
2317 }
2318
2319 u64 get_kvmclock_ns(struct kvm *kvm)
2320 {
2321 struct kvm_arch *ka = &kvm->arch;
2322 struct pvclock_vcpu_time_info hv_clock;
2323 u64 ret;
2324
2325 spin_lock(&ka->pvclock_gtod_sync_lock);
2326 if (!ka->use_master_clock) {
2327 spin_unlock(&ka->pvclock_gtod_sync_lock);
2328 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2329 }
2330
2331 hv_clock.tsc_timestamp = ka->master_cycle_now;
2332 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2333 spin_unlock(&ka->pvclock_gtod_sync_lock);
2334
2335 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2336 get_cpu();
2337
2338 if (__this_cpu_read(cpu_tsc_khz)) {
2339 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2340 &hv_clock.tsc_shift,
2341 &hv_clock.tsc_to_system_mul);
2342 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2343 } else
2344 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2345
2346 put_cpu();
2347
2348 return ret;
2349 }
2350
2351 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2352 {
2353 struct kvm_vcpu_arch *vcpu = &v->arch;
2354 struct pvclock_vcpu_time_info guest_hv_clock;
2355
2356 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2357 &guest_hv_clock, sizeof(guest_hv_clock))))
2358 return;
2359
2360 /* This VCPU is paused, but it's legal for a guest to read another
2361 * VCPU's kvmclock, so we really have to follow the specification where
2362 * it says that version is odd if data is being modified, and even after
2363 * it is consistent.
2364 *
2365 * Version field updates must be kept separate. This is because
2366 * kvm_write_guest_cached might use a "rep movs" instruction, and
2367 * writes within a string instruction are weakly ordered. So there
2368 * are three writes overall.
2369 *
2370 * As a small optimization, only write the version field in the first
2371 * and third write. The vcpu->pv_time cache is still valid, because the
2372 * version field is the first in the struct.
2373 */
2374 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2375
2376 if (guest_hv_clock.version & 1)
2377 ++guest_hv_clock.version; /* first time write, random junk */
2378
2379 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2380 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2381 &vcpu->hv_clock,
2382 sizeof(vcpu->hv_clock.version));
2383
2384 smp_wmb();
2385
2386 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2387 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2388
2389 if (vcpu->pvclock_set_guest_stopped_request) {
2390 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2391 vcpu->pvclock_set_guest_stopped_request = false;
2392 }
2393
2394 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2395
2396 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2397 &vcpu->hv_clock,
2398 sizeof(vcpu->hv_clock));
2399
2400 smp_wmb();
2401
2402 vcpu->hv_clock.version++;
2403 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2404 &vcpu->hv_clock,
2405 sizeof(vcpu->hv_clock.version));
2406 }
2407
2408 static int kvm_guest_time_update(struct kvm_vcpu *v)
2409 {
2410 unsigned long flags, tgt_tsc_khz;
2411 struct kvm_vcpu_arch *vcpu = &v->arch;
2412 struct kvm_arch *ka = &v->kvm->arch;
2413 s64 kernel_ns;
2414 u64 tsc_timestamp, host_tsc;
2415 u8 pvclock_flags;
2416 bool use_master_clock;
2417
2418 kernel_ns = 0;
2419 host_tsc = 0;
2420
2421 /*
2422 * If the host uses TSC clock, then passthrough TSC as stable
2423 * to the guest.
2424 */
2425 spin_lock(&ka->pvclock_gtod_sync_lock);
2426 use_master_clock = ka->use_master_clock;
2427 if (use_master_clock) {
2428 host_tsc = ka->master_cycle_now;
2429 kernel_ns = ka->master_kernel_ns;
2430 }
2431 spin_unlock(&ka->pvclock_gtod_sync_lock);
2432
2433 /* Keep irq disabled to prevent changes to the clock */
2434 local_irq_save(flags);
2435 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2436 if (unlikely(tgt_tsc_khz == 0)) {
2437 local_irq_restore(flags);
2438 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2439 return 1;
2440 }
2441 if (!use_master_clock) {
2442 host_tsc = rdtsc();
2443 kernel_ns = get_kvmclock_base_ns();
2444 }
2445
2446 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2447
2448 /*
2449 * We may have to catch up the TSC to match elapsed wall clock
2450 * time for two reasons, even if kvmclock is used.
2451 * 1) CPU could have been running below the maximum TSC rate
2452 * 2) Broken TSC compensation resets the base at each VCPU
2453 * entry to avoid unknown leaps of TSC even when running
2454 * again on the same CPU. This may cause apparent elapsed
2455 * time to disappear, and the guest to stand still or run
2456 * very slowly.
2457 */
2458 if (vcpu->tsc_catchup) {
2459 u64 tsc = compute_guest_tsc(v, kernel_ns);
2460 if (tsc > tsc_timestamp) {
2461 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2462 tsc_timestamp = tsc;
2463 }
2464 }
2465
2466 local_irq_restore(flags);
2467
2468 /* With all the info we got, fill in the values */
2469
2470 if (kvm_has_tsc_control)
2471 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2472
2473 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2474 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2475 &vcpu->hv_clock.tsc_shift,
2476 &vcpu->hv_clock.tsc_to_system_mul);
2477 vcpu->hw_tsc_khz = tgt_tsc_khz;
2478 }
2479
2480 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2481 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2482 vcpu->last_guest_tsc = tsc_timestamp;
2483
2484 /* If the host uses TSC clocksource, then it is stable */
2485 pvclock_flags = 0;
2486 if (use_master_clock)
2487 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2488
2489 vcpu->hv_clock.flags = pvclock_flags;
2490
2491 if (vcpu->pv_time_enabled)
2492 kvm_setup_pvclock_page(v);
2493 if (v == kvm_get_vcpu(v->kvm, 0))
2494 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2495 return 0;
2496 }
2497
2498 /*
2499 * kvmclock updates which are isolated to a given vcpu, such as
2500 * vcpu->cpu migration, should not allow system_timestamp from
2501 * the rest of the vcpus to remain static. Otherwise ntp frequency
2502 * correction applies to one vcpu's system_timestamp but not
2503 * the others.
2504 *
2505 * So in those cases, request a kvmclock update for all vcpus.
2506 * We need to rate-limit these requests though, as they can
2507 * considerably slow guests that have a large number of vcpus.
2508 * The time for a remote vcpu to update its kvmclock is bound
2509 * by the delay we use to rate-limit the updates.
2510 */
2511
2512 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2513
2514 static void kvmclock_update_fn(struct work_struct *work)
2515 {
2516 int i;
2517 struct delayed_work *dwork = to_delayed_work(work);
2518 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2519 kvmclock_update_work);
2520 struct kvm *kvm = container_of(ka, struct kvm, arch);
2521 struct kvm_vcpu *vcpu;
2522
2523 kvm_for_each_vcpu(i, vcpu, kvm) {
2524 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2525 kvm_vcpu_kick(vcpu);
2526 }
2527 }
2528
2529 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2530 {
2531 struct kvm *kvm = v->kvm;
2532
2533 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2534 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2535 KVMCLOCK_UPDATE_DELAY);
2536 }
2537
2538 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2539
2540 static void kvmclock_sync_fn(struct work_struct *work)
2541 {
2542 struct delayed_work *dwork = to_delayed_work(work);
2543 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2544 kvmclock_sync_work);
2545 struct kvm *kvm = container_of(ka, struct kvm, arch);
2546
2547 if (!kvmclock_periodic_sync)
2548 return;
2549
2550 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2551 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2552 KVMCLOCK_SYNC_PERIOD);
2553 }
2554
2555 /*
2556 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2557 */
2558 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2559 {
2560 /* McStatusWrEn enabled? */
2561 if (guest_cpuid_is_amd_or_hygon(vcpu))
2562 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2563
2564 return false;
2565 }
2566
2567 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2568 {
2569 u64 mcg_cap = vcpu->arch.mcg_cap;
2570 unsigned bank_num = mcg_cap & 0xff;
2571 u32 msr = msr_info->index;
2572 u64 data = msr_info->data;
2573
2574 switch (msr) {
2575 case MSR_IA32_MCG_STATUS:
2576 vcpu->arch.mcg_status = data;
2577 break;
2578 case MSR_IA32_MCG_CTL:
2579 if (!(mcg_cap & MCG_CTL_P) &&
2580 (data || !msr_info->host_initiated))
2581 return 1;
2582 if (data != 0 && data != ~(u64)0)
2583 return 1;
2584 vcpu->arch.mcg_ctl = data;
2585 break;
2586 default:
2587 if (msr >= MSR_IA32_MC0_CTL &&
2588 msr < MSR_IA32_MCx_CTL(bank_num)) {
2589 u32 offset = array_index_nospec(
2590 msr - MSR_IA32_MC0_CTL,
2591 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2592
2593 /* only 0 or all 1s can be written to IA32_MCi_CTL
2594 * some Linux kernels though clear bit 10 in bank 4 to
2595 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2596 * this to avoid an uncatched #GP in the guest
2597 */
2598 if ((offset & 0x3) == 0 &&
2599 data != 0 && (data | (1 << 10)) != ~(u64)0)
2600 return -1;
2601
2602 /* MCi_STATUS */
2603 if (!msr_info->host_initiated &&
2604 (offset & 0x3) == 1 && data != 0) {
2605 if (!can_set_mci_status(vcpu))
2606 return -1;
2607 }
2608
2609 vcpu->arch.mce_banks[offset] = data;
2610 break;
2611 }
2612 return 1;
2613 }
2614 return 0;
2615 }
2616
2617 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2618 {
2619 struct kvm *kvm = vcpu->kvm;
2620 int lm = is_long_mode(vcpu);
2621 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2622 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2623 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2624 : kvm->arch.xen_hvm_config.blob_size_32;
2625 u32 page_num = data & ~PAGE_MASK;
2626 u64 page_addr = data & PAGE_MASK;
2627 u8 *page;
2628 int r;
2629
2630 r = -E2BIG;
2631 if (page_num >= blob_size)
2632 goto out;
2633 r = -ENOMEM;
2634 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2635 if (IS_ERR(page)) {
2636 r = PTR_ERR(page);
2637 goto out;
2638 }
2639 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2640 goto out_free;
2641 r = 0;
2642 out_free:
2643 kfree(page);
2644 out:
2645 return r;
2646 }
2647
2648 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2649 {
2650 gpa_t gpa = data & ~0x3f;
2651
2652 /* Bits 3:5 are reserved, Should be zero */
2653 if (data & 0x38)
2654 return 1;
2655
2656 vcpu->arch.apf.msr_val = data;
2657
2658 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2659 kvm_clear_async_pf_completion_queue(vcpu);
2660 kvm_async_pf_hash_reset(vcpu);
2661 return 0;
2662 }
2663
2664 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2665 sizeof(u32)))
2666 return 1;
2667
2668 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2669 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2670 kvm_async_pf_wakeup_all(vcpu);
2671 return 0;
2672 }
2673
2674 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2675 {
2676 vcpu->arch.pv_time_enabled = false;
2677 vcpu->arch.time = 0;
2678 }
2679
2680 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2681 {
2682 ++vcpu->stat.tlb_flush;
2683 kvm_x86_ops.tlb_flush(vcpu, invalidate_gpa);
2684 }
2685
2686 static void record_steal_time(struct kvm_vcpu *vcpu)
2687 {
2688 struct kvm_host_map map;
2689 struct kvm_steal_time *st;
2690
2691 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2692 return;
2693
2694 /* -EAGAIN is returned in atomic context so we can just return. */
2695 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2696 &map, &vcpu->arch.st.cache, false))
2697 return;
2698
2699 st = map.hva +
2700 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2701
2702 /*
2703 * Doing a TLB flush here, on the guest's behalf, can avoid
2704 * expensive IPIs.
2705 */
2706 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2707 st->preempted & KVM_VCPU_FLUSH_TLB);
2708 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2709 kvm_vcpu_flush_tlb(vcpu, false);
2710
2711 vcpu->arch.st.preempted = 0;
2712
2713 if (st->version & 1)
2714 st->version += 1; /* first time write, random junk */
2715
2716 st->version += 1;
2717
2718 smp_wmb();
2719
2720 st->steal += current->sched_info.run_delay -
2721 vcpu->arch.st.last_steal;
2722 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2723
2724 smp_wmb();
2725
2726 st->version += 1;
2727
2728 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2729 }
2730
2731 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2732 {
2733 bool pr = false;
2734 u32 msr = msr_info->index;
2735 u64 data = msr_info->data;
2736
2737 switch (msr) {
2738 case MSR_AMD64_NB_CFG:
2739 case MSR_IA32_UCODE_WRITE:
2740 case MSR_VM_HSAVE_PA:
2741 case MSR_AMD64_PATCH_LOADER:
2742 case MSR_AMD64_BU_CFG2:
2743 case MSR_AMD64_DC_CFG:
2744 case MSR_F15H_EX_CFG:
2745 break;
2746
2747 case MSR_IA32_UCODE_REV:
2748 if (msr_info->host_initiated)
2749 vcpu->arch.microcode_version = data;
2750 break;
2751 case MSR_IA32_ARCH_CAPABILITIES:
2752 if (!msr_info->host_initiated)
2753 return 1;
2754 vcpu->arch.arch_capabilities = data;
2755 break;
2756 case MSR_EFER:
2757 return set_efer(vcpu, msr_info);
2758 case MSR_K7_HWCR:
2759 data &= ~(u64)0x40; /* ignore flush filter disable */
2760 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2761 data &= ~(u64)0x8; /* ignore TLB cache disable */
2762
2763 /* Handle McStatusWrEn */
2764 if (data == BIT_ULL(18)) {
2765 vcpu->arch.msr_hwcr = data;
2766 } else if (data != 0) {
2767 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2768 data);
2769 return 1;
2770 }
2771 break;
2772 case MSR_FAM10H_MMIO_CONF_BASE:
2773 if (data != 0) {
2774 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2775 "0x%llx\n", data);
2776 return 1;
2777 }
2778 break;
2779 case MSR_IA32_DEBUGCTLMSR:
2780 if (!data) {
2781 /* We support the non-activated case already */
2782 break;
2783 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2784 /* Values other than LBR and BTF are vendor-specific,
2785 thus reserved and should throw a #GP */
2786 return 1;
2787 }
2788 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2789 __func__, data);
2790 break;
2791 case 0x200 ... 0x2ff:
2792 return kvm_mtrr_set_msr(vcpu, msr, data);
2793 case MSR_IA32_APICBASE:
2794 return kvm_set_apic_base(vcpu, msr_info);
2795 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2796 return kvm_x2apic_msr_write(vcpu, msr, data);
2797 case MSR_IA32_TSCDEADLINE:
2798 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2799 break;
2800 case MSR_IA32_TSC_ADJUST:
2801 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2802 if (!msr_info->host_initiated) {
2803 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2804 adjust_tsc_offset_guest(vcpu, adj);
2805 }
2806 vcpu->arch.ia32_tsc_adjust_msr = data;
2807 }
2808 break;
2809 case MSR_IA32_MISC_ENABLE:
2810 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2811 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2812 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2813 return 1;
2814 vcpu->arch.ia32_misc_enable_msr = data;
2815 kvm_update_cpuid(vcpu);
2816 } else {
2817 vcpu->arch.ia32_misc_enable_msr = data;
2818 }
2819 break;
2820 case MSR_IA32_SMBASE:
2821 if (!msr_info->host_initiated)
2822 return 1;
2823 vcpu->arch.smbase = data;
2824 break;
2825 case MSR_IA32_POWER_CTL:
2826 vcpu->arch.msr_ia32_power_ctl = data;
2827 break;
2828 case MSR_IA32_TSC:
2829 kvm_write_tsc(vcpu, msr_info);
2830 break;
2831 case MSR_IA32_XSS:
2832 if (!msr_info->host_initiated &&
2833 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2834 return 1;
2835 /*
2836 * KVM supports exposing PT to the guest, but does not support
2837 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
2838 * XSAVES/XRSTORS to save/restore PT MSRs.
2839 */
2840 if (data & ~supported_xss)
2841 return 1;
2842 vcpu->arch.ia32_xss = data;
2843 break;
2844 case MSR_SMI_COUNT:
2845 if (!msr_info->host_initiated)
2846 return 1;
2847 vcpu->arch.smi_count = data;
2848 break;
2849 case MSR_KVM_WALL_CLOCK_NEW:
2850 case MSR_KVM_WALL_CLOCK:
2851 vcpu->kvm->arch.wall_clock = data;
2852 kvm_write_wall_clock(vcpu->kvm, data);
2853 break;
2854 case MSR_KVM_SYSTEM_TIME_NEW:
2855 case MSR_KVM_SYSTEM_TIME: {
2856 struct kvm_arch *ka = &vcpu->kvm->arch;
2857
2858 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2859 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2860
2861 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2862 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2863
2864 ka->boot_vcpu_runs_old_kvmclock = tmp;
2865 }
2866
2867 vcpu->arch.time = data;
2868 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2869
2870 /* we verify if the enable bit is set... */
2871 vcpu->arch.pv_time_enabled = false;
2872 if (!(data & 1))
2873 break;
2874
2875 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2876 &vcpu->arch.pv_time, data & ~1ULL,
2877 sizeof(struct pvclock_vcpu_time_info)))
2878 vcpu->arch.pv_time_enabled = true;
2879
2880 break;
2881 }
2882 case MSR_KVM_ASYNC_PF_EN:
2883 if (kvm_pv_enable_async_pf(vcpu, data))
2884 return 1;
2885 break;
2886 case MSR_KVM_STEAL_TIME:
2887
2888 if (unlikely(!sched_info_on()))
2889 return 1;
2890
2891 if (data & KVM_STEAL_RESERVED_MASK)
2892 return 1;
2893
2894 vcpu->arch.st.msr_val = data;
2895
2896 if (!(data & KVM_MSR_ENABLED))
2897 break;
2898
2899 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2900
2901 break;
2902 case MSR_KVM_PV_EOI_EN:
2903 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2904 return 1;
2905 break;
2906
2907 case MSR_KVM_POLL_CONTROL:
2908 /* only enable bit supported */
2909 if (data & (-1ULL << 1))
2910 return 1;
2911
2912 vcpu->arch.msr_kvm_poll_control = data;
2913 break;
2914
2915 case MSR_IA32_MCG_CTL:
2916 case MSR_IA32_MCG_STATUS:
2917 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2918 return set_msr_mce(vcpu, msr_info);
2919
2920 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2921 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2922 pr = true; /* fall through */
2923 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2924 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2925 if (kvm_pmu_is_valid_msr(vcpu, msr))
2926 return kvm_pmu_set_msr(vcpu, msr_info);
2927
2928 if (pr || data != 0)
2929 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2930 "0x%x data 0x%llx\n", msr, data);
2931 break;
2932 case MSR_K7_CLK_CTL:
2933 /*
2934 * Ignore all writes to this no longer documented MSR.
2935 * Writes are only relevant for old K7 processors,
2936 * all pre-dating SVM, but a recommended workaround from
2937 * AMD for these chips. It is possible to specify the
2938 * affected processor models on the command line, hence
2939 * the need to ignore the workaround.
2940 */
2941 break;
2942 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2943 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2944 case HV_X64_MSR_CRASH_CTL:
2945 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2946 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2947 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2948 case HV_X64_MSR_TSC_EMULATION_STATUS:
2949 return kvm_hv_set_msr_common(vcpu, msr, data,
2950 msr_info->host_initiated);
2951 case MSR_IA32_BBL_CR_CTL3:
2952 /* Drop writes to this legacy MSR -- see rdmsr
2953 * counterpart for further detail.
2954 */
2955 if (report_ignored_msrs)
2956 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2957 msr, data);
2958 break;
2959 case MSR_AMD64_OSVW_ID_LENGTH:
2960 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2961 return 1;
2962 vcpu->arch.osvw.length = data;
2963 break;
2964 case MSR_AMD64_OSVW_STATUS:
2965 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2966 return 1;
2967 vcpu->arch.osvw.status = data;
2968 break;
2969 case MSR_PLATFORM_INFO:
2970 if (!msr_info->host_initiated ||
2971 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2972 cpuid_fault_enabled(vcpu)))
2973 return 1;
2974 vcpu->arch.msr_platform_info = data;
2975 break;
2976 case MSR_MISC_FEATURES_ENABLES:
2977 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2978 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2979 !supports_cpuid_fault(vcpu)))
2980 return 1;
2981 vcpu->arch.msr_misc_features_enables = data;
2982 break;
2983 default:
2984 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2985 return xen_hvm_config(vcpu, data);
2986 if (kvm_pmu_is_valid_msr(vcpu, msr))
2987 return kvm_pmu_set_msr(vcpu, msr_info);
2988 if (!ignore_msrs) {
2989 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2990 msr, data);
2991 return 1;
2992 } else {
2993 if (report_ignored_msrs)
2994 vcpu_unimpl(vcpu,
2995 "ignored wrmsr: 0x%x data 0x%llx\n",
2996 msr, data);
2997 break;
2998 }
2999 }
3000 return 0;
3001 }
3002 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3003
3004 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3005 {
3006 u64 data;
3007 u64 mcg_cap = vcpu->arch.mcg_cap;
3008 unsigned bank_num = mcg_cap & 0xff;
3009
3010 switch (msr) {
3011 case MSR_IA32_P5_MC_ADDR:
3012 case MSR_IA32_P5_MC_TYPE:
3013 data = 0;
3014 break;
3015 case MSR_IA32_MCG_CAP:
3016 data = vcpu->arch.mcg_cap;
3017 break;
3018 case MSR_IA32_MCG_CTL:
3019 if (!(mcg_cap & MCG_CTL_P) && !host)
3020 return 1;
3021 data = vcpu->arch.mcg_ctl;
3022 break;
3023 case MSR_IA32_MCG_STATUS:
3024 data = vcpu->arch.mcg_status;
3025 break;
3026 default:
3027 if (msr >= MSR_IA32_MC0_CTL &&
3028 msr < MSR_IA32_MCx_CTL(bank_num)) {
3029 u32 offset = array_index_nospec(
3030 msr - MSR_IA32_MC0_CTL,
3031 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3032
3033 data = vcpu->arch.mce_banks[offset];
3034 break;
3035 }
3036 return 1;
3037 }
3038 *pdata = data;
3039 return 0;
3040 }
3041
3042 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3043 {
3044 switch (msr_info->index) {
3045 case MSR_IA32_PLATFORM_ID:
3046 case MSR_IA32_EBL_CR_POWERON:
3047 case MSR_IA32_DEBUGCTLMSR:
3048 case MSR_IA32_LASTBRANCHFROMIP:
3049 case MSR_IA32_LASTBRANCHTOIP:
3050 case MSR_IA32_LASTINTFROMIP:
3051 case MSR_IA32_LASTINTTOIP:
3052 case MSR_K8_SYSCFG:
3053 case MSR_K8_TSEG_ADDR:
3054 case MSR_K8_TSEG_MASK:
3055 case MSR_VM_HSAVE_PA:
3056 case MSR_K8_INT_PENDING_MSG:
3057 case MSR_AMD64_NB_CFG:
3058 case MSR_FAM10H_MMIO_CONF_BASE:
3059 case MSR_AMD64_BU_CFG2:
3060 case MSR_IA32_PERF_CTL:
3061 case MSR_AMD64_DC_CFG:
3062 case MSR_F15H_EX_CFG:
3063 /*
3064 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3065 * limit) MSRs. Just return 0, as we do not want to expose the host
3066 * data here. Do not conditionalize this on CPUID, as KVM does not do
3067 * so for existing CPU-specific MSRs.
3068 */
3069 case MSR_RAPL_POWER_UNIT:
3070 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3071 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3072 case MSR_PKG_ENERGY_STATUS: /* Total package */
3073 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3074 msr_info->data = 0;
3075 break;
3076 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3077 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3078 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3079 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3080 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3081 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3082 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3083 msr_info->data = 0;
3084 break;
3085 case MSR_IA32_UCODE_REV:
3086 msr_info->data = vcpu->arch.microcode_version;
3087 break;
3088 case MSR_IA32_ARCH_CAPABILITIES:
3089 if (!msr_info->host_initiated &&
3090 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3091 return 1;
3092 msr_info->data = vcpu->arch.arch_capabilities;
3093 break;
3094 case MSR_IA32_POWER_CTL:
3095 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3096 break;
3097 case MSR_IA32_TSC:
3098 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3099 break;
3100 case MSR_MTRRcap:
3101 case 0x200 ... 0x2ff:
3102 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3103 case 0xcd: /* fsb frequency */
3104 msr_info->data = 3;
3105 break;
3106 /*
3107 * MSR_EBC_FREQUENCY_ID
3108 * Conservative value valid for even the basic CPU models.
3109 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3110 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3111 * and 266MHz for model 3, or 4. Set Core Clock
3112 * Frequency to System Bus Frequency Ratio to 1 (bits
3113 * 31:24) even though these are only valid for CPU
3114 * models > 2, however guests may end up dividing or
3115 * multiplying by zero otherwise.
3116 */
3117 case MSR_EBC_FREQUENCY_ID:
3118 msr_info->data = 1 << 24;
3119 break;
3120 case MSR_IA32_APICBASE:
3121 msr_info->data = kvm_get_apic_base(vcpu);
3122 break;
3123 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3124 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3125 case MSR_IA32_TSCDEADLINE:
3126 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3127 break;
3128 case MSR_IA32_TSC_ADJUST:
3129 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3130 break;
3131 case MSR_IA32_MISC_ENABLE:
3132 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3133 break;
3134 case MSR_IA32_SMBASE:
3135 if (!msr_info->host_initiated)
3136 return 1;
3137 msr_info->data = vcpu->arch.smbase;
3138 break;
3139 case MSR_SMI_COUNT:
3140 msr_info->data = vcpu->arch.smi_count;
3141 break;
3142 case MSR_IA32_PERF_STATUS:
3143 /* TSC increment by tick */
3144 msr_info->data = 1000ULL;
3145 /* CPU multiplier */
3146 msr_info->data |= (((uint64_t)4ULL) << 40);
3147 break;
3148 case MSR_EFER:
3149 msr_info->data = vcpu->arch.efer;
3150 break;
3151 case MSR_KVM_WALL_CLOCK:
3152 case MSR_KVM_WALL_CLOCK_NEW:
3153 msr_info->data = vcpu->kvm->arch.wall_clock;
3154 break;
3155 case MSR_KVM_SYSTEM_TIME:
3156 case MSR_KVM_SYSTEM_TIME_NEW:
3157 msr_info->data = vcpu->arch.time;
3158 break;
3159 case MSR_KVM_ASYNC_PF_EN:
3160 msr_info->data = vcpu->arch.apf.msr_val;
3161 break;
3162 case MSR_KVM_STEAL_TIME:
3163 msr_info->data = vcpu->arch.st.msr_val;
3164 break;
3165 case MSR_KVM_PV_EOI_EN:
3166 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3167 break;
3168 case MSR_KVM_POLL_CONTROL:
3169 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3170 break;
3171 case MSR_IA32_P5_MC_ADDR:
3172 case MSR_IA32_P5_MC_TYPE:
3173 case MSR_IA32_MCG_CAP:
3174 case MSR_IA32_MCG_CTL:
3175 case MSR_IA32_MCG_STATUS:
3176 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3177 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3178 msr_info->host_initiated);
3179 case MSR_IA32_XSS:
3180 if (!msr_info->host_initiated &&
3181 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3182 return 1;
3183 msr_info->data = vcpu->arch.ia32_xss;
3184 break;
3185 case MSR_K7_CLK_CTL:
3186 /*
3187 * Provide expected ramp-up count for K7. All other
3188 * are set to zero, indicating minimum divisors for
3189 * every field.
3190 *
3191 * This prevents guest kernels on AMD host with CPU
3192 * type 6, model 8 and higher from exploding due to
3193 * the rdmsr failing.
3194 */
3195 msr_info->data = 0x20000000;
3196 break;
3197 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3198 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3199 case HV_X64_MSR_CRASH_CTL:
3200 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3201 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3202 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3203 case HV_X64_MSR_TSC_EMULATION_STATUS:
3204 return kvm_hv_get_msr_common(vcpu,
3205 msr_info->index, &msr_info->data,
3206 msr_info->host_initiated);
3207 case MSR_IA32_BBL_CR_CTL3:
3208 /* This legacy MSR exists but isn't fully documented in current
3209 * silicon. It is however accessed by winxp in very narrow
3210 * scenarios where it sets bit #19, itself documented as
3211 * a "reserved" bit. Best effort attempt to source coherent
3212 * read data here should the balance of the register be
3213 * interpreted by the guest:
3214 *
3215 * L2 cache control register 3: 64GB range, 256KB size,
3216 * enabled, latency 0x1, configured
3217 */
3218 msr_info->data = 0xbe702111;
3219 break;
3220 case MSR_AMD64_OSVW_ID_LENGTH:
3221 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3222 return 1;
3223 msr_info->data = vcpu->arch.osvw.length;
3224 break;
3225 case MSR_AMD64_OSVW_STATUS:
3226 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3227 return 1;
3228 msr_info->data = vcpu->arch.osvw.status;
3229 break;
3230 case MSR_PLATFORM_INFO:
3231 if (!msr_info->host_initiated &&
3232 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3233 return 1;
3234 msr_info->data = vcpu->arch.msr_platform_info;
3235 break;
3236 case MSR_MISC_FEATURES_ENABLES:
3237 msr_info->data = vcpu->arch.msr_misc_features_enables;
3238 break;
3239 case MSR_K7_HWCR:
3240 msr_info->data = vcpu->arch.msr_hwcr;
3241 break;
3242 default:
3243 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3244 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3245 if (!ignore_msrs) {
3246 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3247 msr_info->index);
3248 return 1;
3249 } else {
3250 if (report_ignored_msrs)
3251 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3252 msr_info->index);
3253 msr_info->data = 0;
3254 }
3255 break;
3256 }
3257 return 0;
3258 }
3259 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3260
3261 /*
3262 * Read or write a bunch of msrs. All parameters are kernel addresses.
3263 *
3264 * @return number of msrs set successfully.
3265 */
3266 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3267 struct kvm_msr_entry *entries,
3268 int (*do_msr)(struct kvm_vcpu *vcpu,
3269 unsigned index, u64 *data))
3270 {
3271 int i;
3272
3273 for (i = 0; i < msrs->nmsrs; ++i)
3274 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3275 break;
3276
3277 return i;
3278 }
3279
3280 /*
3281 * Read or write a bunch of msrs. Parameters are user addresses.
3282 *
3283 * @return number of msrs set successfully.
3284 */
3285 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3286 int (*do_msr)(struct kvm_vcpu *vcpu,
3287 unsigned index, u64 *data),
3288 int writeback)
3289 {
3290 struct kvm_msrs msrs;
3291 struct kvm_msr_entry *entries;
3292 int r, n;
3293 unsigned size;
3294
3295 r = -EFAULT;
3296 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3297 goto out;
3298
3299 r = -E2BIG;
3300 if (msrs.nmsrs >= MAX_IO_MSRS)
3301 goto out;
3302
3303 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3304 entries = memdup_user(user_msrs->entries, size);
3305 if (IS_ERR(entries)) {
3306 r = PTR_ERR(entries);
3307 goto out;
3308 }
3309
3310 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3311 if (r < 0)
3312 goto out_free;
3313
3314 r = -EFAULT;
3315 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3316 goto out_free;
3317
3318 r = n;
3319
3320 out_free:
3321 kfree(entries);
3322 out:
3323 return r;
3324 }
3325
3326 static inline bool kvm_can_mwait_in_guest(void)
3327 {
3328 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3329 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3330 boot_cpu_has(X86_FEATURE_ARAT);
3331 }
3332
3333 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3334 {
3335 int r = 0;
3336
3337 switch (ext) {
3338 case KVM_CAP_IRQCHIP:
3339 case KVM_CAP_HLT:
3340 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3341 case KVM_CAP_SET_TSS_ADDR:
3342 case KVM_CAP_EXT_CPUID:
3343 case KVM_CAP_EXT_EMUL_CPUID:
3344 case KVM_CAP_CLOCKSOURCE:
3345 case KVM_CAP_PIT:
3346 case KVM_CAP_NOP_IO_DELAY:
3347 case KVM_CAP_MP_STATE:
3348 case KVM_CAP_SYNC_MMU:
3349 case KVM_CAP_USER_NMI:
3350 case KVM_CAP_REINJECT_CONTROL:
3351 case KVM_CAP_IRQ_INJECT_STATUS:
3352 case KVM_CAP_IOEVENTFD:
3353 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3354 case KVM_CAP_PIT2:
3355 case KVM_CAP_PIT_STATE2:
3356 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3357 case KVM_CAP_XEN_HVM:
3358 case KVM_CAP_VCPU_EVENTS:
3359 case KVM_CAP_HYPERV:
3360 case KVM_CAP_HYPERV_VAPIC:
3361 case KVM_CAP_HYPERV_SPIN:
3362 case KVM_CAP_HYPERV_SYNIC:
3363 case KVM_CAP_HYPERV_SYNIC2:
3364 case KVM_CAP_HYPERV_VP_INDEX:
3365 case KVM_CAP_HYPERV_EVENTFD:
3366 case KVM_CAP_HYPERV_TLBFLUSH:
3367 case KVM_CAP_HYPERV_SEND_IPI:
3368 case KVM_CAP_HYPERV_CPUID:
3369 case KVM_CAP_PCI_SEGMENT:
3370 case KVM_CAP_DEBUGREGS:
3371 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3372 case KVM_CAP_XSAVE:
3373 case KVM_CAP_ASYNC_PF:
3374 case KVM_CAP_GET_TSC_KHZ:
3375 case KVM_CAP_KVMCLOCK_CTRL:
3376 case KVM_CAP_READONLY_MEM:
3377 case KVM_CAP_HYPERV_TIME:
3378 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3379 case KVM_CAP_TSC_DEADLINE_TIMER:
3380 case KVM_CAP_DISABLE_QUIRKS:
3381 case KVM_CAP_SET_BOOT_CPU_ID:
3382 case KVM_CAP_SPLIT_IRQCHIP:
3383 case KVM_CAP_IMMEDIATE_EXIT:
3384 case KVM_CAP_PMU_EVENT_FILTER:
3385 case KVM_CAP_GET_MSR_FEATURES:
3386 case KVM_CAP_MSR_PLATFORM_INFO:
3387 case KVM_CAP_EXCEPTION_PAYLOAD:
3388 r = 1;
3389 break;
3390 case KVM_CAP_SYNC_REGS:
3391 r = KVM_SYNC_X86_VALID_FIELDS;
3392 break;
3393 case KVM_CAP_ADJUST_CLOCK:
3394 r = KVM_CLOCK_TSC_STABLE;
3395 break;
3396 case KVM_CAP_X86_DISABLE_EXITS:
3397 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3398 KVM_X86_DISABLE_EXITS_CSTATE;
3399 if(kvm_can_mwait_in_guest())
3400 r |= KVM_X86_DISABLE_EXITS_MWAIT;
3401 break;
3402 case KVM_CAP_X86_SMM:
3403 /* SMBASE is usually relocated above 1M on modern chipsets,
3404 * and SMM handlers might indeed rely on 4G segment limits,
3405 * so do not report SMM to be available if real mode is
3406 * emulated via vm86 mode. Still, do not go to great lengths
3407 * to avoid userspace's usage of the feature, because it is a
3408 * fringe case that is not enabled except via specific settings
3409 * of the module parameters.
3410 */
3411 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3412 break;
3413 case KVM_CAP_VAPIC:
3414 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3415 break;
3416 case KVM_CAP_NR_VCPUS:
3417 r = KVM_SOFT_MAX_VCPUS;
3418 break;
3419 case KVM_CAP_MAX_VCPUS:
3420 r = KVM_MAX_VCPUS;
3421 break;
3422 case KVM_CAP_MAX_VCPU_ID:
3423 r = KVM_MAX_VCPU_ID;
3424 break;
3425 case KVM_CAP_PV_MMU: /* obsolete */
3426 r = 0;
3427 break;
3428 case KVM_CAP_MCE:
3429 r = KVM_MAX_MCE_BANKS;
3430 break;
3431 case KVM_CAP_XCRS:
3432 r = boot_cpu_has(X86_FEATURE_XSAVE);
3433 break;
3434 case KVM_CAP_TSC_CONTROL:
3435 r = kvm_has_tsc_control;
3436 break;
3437 case KVM_CAP_X2APIC_API:
3438 r = KVM_X2APIC_API_VALID_FLAGS;
3439 break;
3440 case KVM_CAP_NESTED_STATE:
3441 r = kvm_x86_ops.get_nested_state ?
3442 kvm_x86_ops.get_nested_state(NULL, NULL, 0) : 0;
3443 break;
3444 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3445 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3446 break;
3447 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3448 r = kvm_x86_ops.nested_enable_evmcs != NULL;
3449 break;
3450 default:
3451 break;
3452 }
3453 return r;
3454
3455 }
3456
3457 long kvm_arch_dev_ioctl(struct file *filp,
3458 unsigned int ioctl, unsigned long arg)
3459 {
3460 void __user *argp = (void __user *)arg;
3461 long r;
3462
3463 switch (ioctl) {
3464 case KVM_GET_MSR_INDEX_LIST: {
3465 struct kvm_msr_list __user *user_msr_list = argp;
3466 struct kvm_msr_list msr_list;
3467 unsigned n;
3468
3469 r = -EFAULT;
3470 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3471 goto out;
3472 n = msr_list.nmsrs;
3473 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3474 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3475 goto out;
3476 r = -E2BIG;
3477 if (n < msr_list.nmsrs)
3478 goto out;
3479 r = -EFAULT;
3480 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3481 num_msrs_to_save * sizeof(u32)))
3482 goto out;
3483 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3484 &emulated_msrs,
3485 num_emulated_msrs * sizeof(u32)))
3486 goto out;
3487 r = 0;
3488 break;
3489 }
3490 case KVM_GET_SUPPORTED_CPUID:
3491 case KVM_GET_EMULATED_CPUID: {
3492 struct kvm_cpuid2 __user *cpuid_arg = argp;
3493 struct kvm_cpuid2 cpuid;
3494
3495 r = -EFAULT;
3496 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3497 goto out;
3498
3499 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3500 ioctl);
3501 if (r)
3502 goto out;
3503
3504 r = -EFAULT;
3505 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3506 goto out;
3507 r = 0;
3508 break;
3509 }
3510 case KVM_X86_GET_MCE_CAP_SUPPORTED:
3511 r = -EFAULT;
3512 if (copy_to_user(argp, &kvm_mce_cap_supported,
3513 sizeof(kvm_mce_cap_supported)))
3514 goto out;
3515 r = 0;
3516 break;
3517 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3518 struct kvm_msr_list __user *user_msr_list = argp;
3519 struct kvm_msr_list msr_list;
3520 unsigned int n;
3521
3522 r = -EFAULT;
3523 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3524 goto out;
3525 n = msr_list.nmsrs;
3526 msr_list.nmsrs = num_msr_based_features;
3527 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3528 goto out;
3529 r = -E2BIG;
3530 if (n < msr_list.nmsrs)
3531 goto out;
3532 r = -EFAULT;
3533 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3534 num_msr_based_features * sizeof(u32)))
3535 goto out;
3536 r = 0;
3537 break;
3538 }
3539 case KVM_GET_MSRS:
3540 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3541 break;
3542 default:
3543 r = -EINVAL;
3544 break;
3545 }
3546 out:
3547 return r;
3548 }
3549
3550 static void wbinvd_ipi(void *garbage)
3551 {
3552 wbinvd();
3553 }
3554
3555 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3556 {
3557 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3558 }
3559
3560 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3561 {
3562 /* Address WBINVD may be executed by guest */
3563 if (need_emulate_wbinvd(vcpu)) {
3564 if (kvm_x86_ops.has_wbinvd_exit())
3565 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3566 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3567 smp_call_function_single(vcpu->cpu,
3568 wbinvd_ipi, NULL, 1);
3569 }
3570
3571 kvm_x86_ops.vcpu_load(vcpu, cpu);
3572
3573 /* Apply any externally detected TSC adjustments (due to suspend) */
3574 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3575 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3576 vcpu->arch.tsc_offset_adjustment = 0;
3577 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3578 }
3579
3580 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3581 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3582 rdtsc() - vcpu->arch.last_host_tsc;
3583 if (tsc_delta < 0)
3584 mark_tsc_unstable("KVM discovered backwards TSC");
3585
3586 if (kvm_check_tsc_unstable()) {
3587 u64 offset = kvm_compute_tsc_offset(vcpu,
3588 vcpu->arch.last_guest_tsc);
3589 kvm_vcpu_write_tsc_offset(vcpu, offset);
3590 vcpu->arch.tsc_catchup = 1;
3591 }
3592
3593 if (kvm_lapic_hv_timer_in_use(vcpu))
3594 kvm_lapic_restart_hv_timer(vcpu);
3595
3596 /*
3597 * On a host with synchronized TSC, there is no need to update
3598 * kvmclock on vcpu->cpu migration
3599 */
3600 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3601 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3602 if (vcpu->cpu != cpu)
3603 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3604 vcpu->cpu = cpu;
3605 }
3606
3607 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3608 }
3609
3610 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3611 {
3612 struct kvm_host_map map;
3613 struct kvm_steal_time *st;
3614
3615 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3616 return;
3617
3618 if (vcpu->arch.st.preempted)
3619 return;
3620
3621 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3622 &vcpu->arch.st.cache, true))
3623 return;
3624
3625 st = map.hva +
3626 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3627
3628 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3629
3630 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3631 }
3632
3633 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3634 {
3635 int idx;
3636
3637 if (vcpu->preempted)
3638 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
3639
3640 /*
3641 * Disable page faults because we're in atomic context here.
3642 * kvm_write_guest_offset_cached() would call might_fault()
3643 * that relies on pagefault_disable() to tell if there's a
3644 * bug. NOTE: the write to guest memory may not go through if
3645 * during postcopy live migration or if there's heavy guest
3646 * paging.
3647 */
3648 pagefault_disable();
3649 /*
3650 * kvm_memslots() will be called by
3651 * kvm_write_guest_offset_cached() so take the srcu lock.
3652 */
3653 idx = srcu_read_lock(&vcpu->kvm->srcu);
3654 kvm_steal_time_set_preempted(vcpu);
3655 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3656 pagefault_enable();
3657 kvm_x86_ops.vcpu_put(vcpu);
3658 vcpu->arch.last_host_tsc = rdtsc();
3659 /*
3660 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3661 * on every vmexit, but if not, we might have a stale dr6 from the
3662 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3663 */
3664 set_debugreg(0, 6);
3665 }
3666
3667 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3668 struct kvm_lapic_state *s)
3669 {
3670 if (vcpu->arch.apicv_active)
3671 kvm_x86_ops.sync_pir_to_irr(vcpu);
3672
3673 return kvm_apic_get_state(vcpu, s);
3674 }
3675
3676 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3677 struct kvm_lapic_state *s)
3678 {
3679 int r;
3680
3681 r = kvm_apic_set_state(vcpu, s);
3682 if (r)
3683 return r;
3684 update_cr8_intercept(vcpu);
3685
3686 return 0;
3687 }
3688
3689 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3690 {
3691 return (!lapic_in_kernel(vcpu) ||
3692 kvm_apic_accept_pic_intr(vcpu));
3693 }
3694
3695 /*
3696 * if userspace requested an interrupt window, check that the
3697 * interrupt window is open.
3698 *
3699 * No need to exit to userspace if we already have an interrupt queued.
3700 */
3701 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3702 {
3703 return kvm_arch_interrupt_allowed(vcpu) &&
3704 !kvm_cpu_has_interrupt(vcpu) &&
3705 !kvm_event_needs_reinjection(vcpu) &&
3706 kvm_cpu_accept_dm_intr(vcpu);
3707 }
3708
3709 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3710 struct kvm_interrupt *irq)
3711 {
3712 if (irq->irq >= KVM_NR_INTERRUPTS)
3713 return -EINVAL;
3714
3715 if (!irqchip_in_kernel(vcpu->kvm)) {
3716 kvm_queue_interrupt(vcpu, irq->irq, false);
3717 kvm_make_request(KVM_REQ_EVENT, vcpu);
3718 return 0;
3719 }
3720
3721 /*
3722 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3723 * fail for in-kernel 8259.
3724 */
3725 if (pic_in_kernel(vcpu->kvm))
3726 return -ENXIO;
3727
3728 if (vcpu->arch.pending_external_vector != -1)
3729 return -EEXIST;
3730
3731 vcpu->arch.pending_external_vector = irq->irq;
3732 kvm_make_request(KVM_REQ_EVENT, vcpu);
3733 return 0;
3734 }
3735
3736 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3737 {
3738 kvm_inject_nmi(vcpu);
3739
3740 return 0;
3741 }
3742
3743 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3744 {
3745 kvm_make_request(KVM_REQ_SMI, vcpu);
3746
3747 return 0;
3748 }
3749
3750 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3751 struct kvm_tpr_access_ctl *tac)
3752 {
3753 if (tac->flags)
3754 return -EINVAL;
3755 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3756 return 0;
3757 }
3758
3759 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3760 u64 mcg_cap)
3761 {
3762 int r;
3763 unsigned bank_num = mcg_cap & 0xff, bank;
3764
3765 r = -EINVAL;
3766 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3767 goto out;
3768 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3769 goto out;
3770 r = 0;
3771 vcpu->arch.mcg_cap = mcg_cap;
3772 /* Init IA32_MCG_CTL to all 1s */
3773 if (mcg_cap & MCG_CTL_P)
3774 vcpu->arch.mcg_ctl = ~(u64)0;
3775 /* Init IA32_MCi_CTL to all 1s */
3776 for (bank = 0; bank < bank_num; bank++)
3777 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3778
3779 kvm_x86_ops.setup_mce(vcpu);
3780 out:
3781 return r;
3782 }
3783
3784 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3785 struct kvm_x86_mce *mce)
3786 {
3787 u64 mcg_cap = vcpu->arch.mcg_cap;
3788 unsigned bank_num = mcg_cap & 0xff;
3789 u64 *banks = vcpu->arch.mce_banks;
3790
3791 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3792 return -EINVAL;
3793 /*
3794 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3795 * reporting is disabled
3796 */
3797 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3798 vcpu->arch.mcg_ctl != ~(u64)0)
3799 return 0;
3800 banks += 4 * mce->bank;
3801 /*
3802 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3803 * reporting is disabled for the bank
3804 */
3805 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3806 return 0;
3807 if (mce->status & MCI_STATUS_UC) {
3808 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3809 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3810 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3811 return 0;
3812 }
3813 if (banks[1] & MCI_STATUS_VAL)
3814 mce->status |= MCI_STATUS_OVER;
3815 banks[2] = mce->addr;
3816 banks[3] = mce->misc;
3817 vcpu->arch.mcg_status = mce->mcg_status;
3818 banks[1] = mce->status;
3819 kvm_queue_exception(vcpu, MC_VECTOR);
3820 } else if (!(banks[1] & MCI_STATUS_VAL)
3821 || !(banks[1] & MCI_STATUS_UC)) {
3822 if (banks[1] & MCI_STATUS_VAL)
3823 mce->status |= MCI_STATUS_OVER;
3824 banks[2] = mce->addr;
3825 banks[3] = mce->misc;
3826 banks[1] = mce->status;
3827 } else
3828 banks[1] |= MCI_STATUS_OVER;
3829 return 0;
3830 }
3831
3832 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3833 struct kvm_vcpu_events *events)
3834 {
3835 process_nmi(vcpu);
3836
3837 /*
3838 * In guest mode, payload delivery should be deferred,
3839 * so that the L1 hypervisor can intercept #PF before
3840 * CR2 is modified (or intercept #DB before DR6 is
3841 * modified under nVMX). Unless the per-VM capability,
3842 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3843 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3844 * opportunistically defer the exception payload, deliver it if the
3845 * capability hasn't been requested before processing a
3846 * KVM_GET_VCPU_EVENTS.
3847 */
3848 if (!vcpu->kvm->arch.exception_payload_enabled &&
3849 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
3850 kvm_deliver_exception_payload(vcpu);
3851
3852 /*
3853 * The API doesn't provide the instruction length for software
3854 * exceptions, so don't report them. As long as the guest RIP
3855 * isn't advanced, we should expect to encounter the exception
3856 * again.
3857 */
3858 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3859 events->exception.injected = 0;
3860 events->exception.pending = 0;
3861 } else {
3862 events->exception.injected = vcpu->arch.exception.injected;
3863 events->exception.pending = vcpu->arch.exception.pending;
3864 /*
3865 * For ABI compatibility, deliberately conflate
3866 * pending and injected exceptions when
3867 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3868 */
3869 if (!vcpu->kvm->arch.exception_payload_enabled)
3870 events->exception.injected |=
3871 vcpu->arch.exception.pending;
3872 }
3873 events->exception.nr = vcpu->arch.exception.nr;
3874 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3875 events->exception.error_code = vcpu->arch.exception.error_code;
3876 events->exception_has_payload = vcpu->arch.exception.has_payload;
3877 events->exception_payload = vcpu->arch.exception.payload;
3878
3879 events->interrupt.injected =
3880 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3881 events->interrupt.nr = vcpu->arch.interrupt.nr;
3882 events->interrupt.soft = 0;
3883 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
3884
3885 events->nmi.injected = vcpu->arch.nmi_injected;
3886 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3887 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
3888 events->nmi.pad = 0;
3889
3890 events->sipi_vector = 0; /* never valid when reporting to user space */
3891
3892 events->smi.smm = is_smm(vcpu);
3893 events->smi.pending = vcpu->arch.smi_pending;
3894 events->smi.smm_inside_nmi =
3895 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3896 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3897
3898 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3899 | KVM_VCPUEVENT_VALID_SHADOW
3900 | KVM_VCPUEVENT_VALID_SMM);
3901 if (vcpu->kvm->arch.exception_payload_enabled)
3902 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3903
3904 memset(&events->reserved, 0, sizeof(events->reserved));
3905 }
3906
3907 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3908
3909 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3910 struct kvm_vcpu_events *events)
3911 {
3912 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3913 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3914 | KVM_VCPUEVENT_VALID_SHADOW
3915 | KVM_VCPUEVENT_VALID_SMM
3916 | KVM_VCPUEVENT_VALID_PAYLOAD))
3917 return -EINVAL;
3918
3919 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3920 if (!vcpu->kvm->arch.exception_payload_enabled)
3921 return -EINVAL;
3922 if (events->exception.pending)
3923 events->exception.injected = 0;
3924 else
3925 events->exception_has_payload = 0;
3926 } else {
3927 events->exception.pending = 0;
3928 events->exception_has_payload = 0;
3929 }
3930
3931 if ((events->exception.injected || events->exception.pending) &&
3932 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3933 return -EINVAL;
3934
3935 /* INITs are latched while in SMM */
3936 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3937 (events->smi.smm || events->smi.pending) &&
3938 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3939 return -EINVAL;
3940
3941 process_nmi(vcpu);
3942 vcpu->arch.exception.injected = events->exception.injected;
3943 vcpu->arch.exception.pending = events->exception.pending;
3944 vcpu->arch.exception.nr = events->exception.nr;
3945 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3946 vcpu->arch.exception.error_code = events->exception.error_code;
3947 vcpu->arch.exception.has_payload = events->exception_has_payload;
3948 vcpu->arch.exception.payload = events->exception_payload;
3949
3950 vcpu->arch.interrupt.injected = events->interrupt.injected;
3951 vcpu->arch.interrupt.nr = events->interrupt.nr;
3952 vcpu->arch.interrupt.soft = events->interrupt.soft;
3953 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3954 kvm_x86_ops.set_interrupt_shadow(vcpu,
3955 events->interrupt.shadow);
3956
3957 vcpu->arch.nmi_injected = events->nmi.injected;
3958 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3959 vcpu->arch.nmi_pending = events->nmi.pending;
3960 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
3961
3962 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3963 lapic_in_kernel(vcpu))
3964 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3965
3966 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3967 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3968 if (events->smi.smm)
3969 vcpu->arch.hflags |= HF_SMM_MASK;
3970 else
3971 vcpu->arch.hflags &= ~HF_SMM_MASK;
3972 kvm_smm_changed(vcpu);
3973 }
3974
3975 vcpu->arch.smi_pending = events->smi.pending;
3976
3977 if (events->smi.smm) {
3978 if (events->smi.smm_inside_nmi)
3979 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3980 else
3981 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3982 }
3983
3984 if (lapic_in_kernel(vcpu)) {
3985 if (events->smi.latched_init)
3986 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3987 else
3988 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3989 }
3990 }
3991
3992 kvm_make_request(KVM_REQ_EVENT, vcpu);
3993
3994 return 0;
3995 }
3996
3997 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3998 struct kvm_debugregs *dbgregs)
3999 {
4000 unsigned long val;
4001
4002 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4003 kvm_get_dr(vcpu, 6, &val);
4004 dbgregs->dr6 = val;
4005 dbgregs->dr7 = vcpu->arch.dr7;
4006 dbgregs->flags = 0;
4007 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4008 }
4009
4010 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4011 struct kvm_debugregs *dbgregs)
4012 {
4013 if (dbgregs->flags)
4014 return -EINVAL;
4015
4016 if (dbgregs->dr6 & ~0xffffffffull)
4017 return -EINVAL;
4018 if (dbgregs->dr7 & ~0xffffffffull)
4019 return -EINVAL;
4020
4021 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4022 kvm_update_dr0123(vcpu);
4023 vcpu->arch.dr6 = dbgregs->dr6;
4024 kvm_update_dr6(vcpu);
4025 vcpu->arch.dr7 = dbgregs->dr7;
4026 kvm_update_dr7(vcpu);
4027
4028 return 0;
4029 }
4030
4031 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4032
4033 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4034 {
4035 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4036 u64 xstate_bv = xsave->header.xfeatures;
4037 u64 valid;
4038
4039 /*
4040 * Copy legacy XSAVE area, to avoid complications with CPUID
4041 * leaves 0 and 1 in the loop below.
4042 */
4043 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4044
4045 /* Set XSTATE_BV */
4046 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4047 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4048
4049 /*
4050 * Copy each region from the possibly compacted offset to the
4051 * non-compacted offset.
4052 */
4053 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4054 while (valid) {
4055 u64 xfeature_mask = valid & -valid;
4056 int xfeature_nr = fls64(xfeature_mask) - 1;
4057 void *src = get_xsave_addr(xsave, xfeature_nr);
4058
4059 if (src) {
4060 u32 size, offset, ecx, edx;
4061 cpuid_count(XSTATE_CPUID, xfeature_nr,
4062 &size, &offset, &ecx, &edx);
4063 if (xfeature_nr == XFEATURE_PKRU)
4064 memcpy(dest + offset, &vcpu->arch.pkru,
4065 sizeof(vcpu->arch.pkru));
4066 else
4067 memcpy(dest + offset, src, size);
4068
4069 }
4070
4071 valid -= xfeature_mask;
4072 }
4073 }
4074
4075 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4076 {
4077 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4078 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4079 u64 valid;
4080
4081 /*
4082 * Copy legacy XSAVE area, to avoid complications with CPUID
4083 * leaves 0 and 1 in the loop below.
4084 */
4085 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4086
4087 /* Set XSTATE_BV and possibly XCOMP_BV. */
4088 xsave->header.xfeatures = xstate_bv;
4089 if (boot_cpu_has(X86_FEATURE_XSAVES))
4090 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4091
4092 /*
4093 * Copy each region from the non-compacted offset to the
4094 * possibly compacted offset.
4095 */
4096 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4097 while (valid) {
4098 u64 xfeature_mask = valid & -valid;
4099 int xfeature_nr = fls64(xfeature_mask) - 1;
4100 void *dest = get_xsave_addr(xsave, xfeature_nr);
4101
4102 if (dest) {
4103 u32 size, offset, ecx, edx;
4104 cpuid_count(XSTATE_CPUID, xfeature_nr,
4105 &size, &offset, &ecx, &edx);
4106 if (xfeature_nr == XFEATURE_PKRU)
4107 memcpy(&vcpu->arch.pkru, src + offset,
4108 sizeof(vcpu->arch.pkru));
4109 else
4110 memcpy(dest, src + offset, size);
4111 }
4112
4113 valid -= xfeature_mask;
4114 }
4115 }
4116
4117 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4118 struct kvm_xsave *guest_xsave)
4119 {
4120 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4121 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4122 fill_xsave((u8 *) guest_xsave->region, vcpu);
4123 } else {
4124 memcpy(guest_xsave->region,
4125 &vcpu->arch.guest_fpu->state.fxsave,
4126 sizeof(struct fxregs_state));
4127 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4128 XFEATURE_MASK_FPSSE;
4129 }
4130 }
4131
4132 #define XSAVE_MXCSR_OFFSET 24
4133
4134 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4135 struct kvm_xsave *guest_xsave)
4136 {
4137 u64 xstate_bv =
4138 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4139 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4140
4141 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4142 /*
4143 * Here we allow setting states that are not present in
4144 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4145 * with old userspace.
4146 */
4147 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4148 return -EINVAL;
4149 load_xsave(vcpu, (u8 *)guest_xsave->region);
4150 } else {
4151 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4152 mxcsr & ~mxcsr_feature_mask)
4153 return -EINVAL;
4154 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4155 guest_xsave->region, sizeof(struct fxregs_state));
4156 }
4157 return 0;
4158 }
4159
4160 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4161 struct kvm_xcrs *guest_xcrs)
4162 {
4163 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4164 guest_xcrs->nr_xcrs = 0;
4165 return;
4166 }
4167
4168 guest_xcrs->nr_xcrs = 1;
4169 guest_xcrs->flags = 0;
4170 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4171 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4172 }
4173
4174 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4175 struct kvm_xcrs *guest_xcrs)
4176 {
4177 int i, r = 0;
4178
4179 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4180 return -EINVAL;
4181
4182 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4183 return -EINVAL;
4184
4185 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4186 /* Only support XCR0 currently */
4187 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4188 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4189 guest_xcrs->xcrs[i].value);
4190 break;
4191 }
4192 if (r)
4193 r = -EINVAL;
4194 return r;
4195 }
4196
4197 /*
4198 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4199 * stopped by the hypervisor. This function will be called from the host only.
4200 * EINVAL is returned when the host attempts to set the flag for a guest that
4201 * does not support pv clocks.
4202 */
4203 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4204 {
4205 if (!vcpu->arch.pv_time_enabled)
4206 return -EINVAL;
4207 vcpu->arch.pvclock_set_guest_stopped_request = true;
4208 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4209 return 0;
4210 }
4211
4212 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4213 struct kvm_enable_cap *cap)
4214 {
4215 int r;
4216 uint16_t vmcs_version;
4217 void __user *user_ptr;
4218
4219 if (cap->flags)
4220 return -EINVAL;
4221
4222 switch (cap->cap) {
4223 case KVM_CAP_HYPERV_SYNIC2:
4224 if (cap->args[0])
4225 return -EINVAL;
4226 /* fall through */
4227
4228 case KVM_CAP_HYPERV_SYNIC:
4229 if (!irqchip_in_kernel(vcpu->kvm))
4230 return -EINVAL;
4231 return kvm_hv_activate_synic(vcpu, cap->cap ==
4232 KVM_CAP_HYPERV_SYNIC2);
4233 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4234 if (!kvm_x86_ops.nested_enable_evmcs)
4235 return -ENOTTY;
4236 r = kvm_x86_ops.nested_enable_evmcs(vcpu, &vmcs_version);
4237 if (!r) {
4238 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4239 if (copy_to_user(user_ptr, &vmcs_version,
4240 sizeof(vmcs_version)))
4241 r = -EFAULT;
4242 }
4243 return r;
4244 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4245 if (!kvm_x86_ops.enable_direct_tlbflush)
4246 return -ENOTTY;
4247
4248 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4249
4250 default:
4251 return -EINVAL;
4252 }
4253 }
4254
4255 long kvm_arch_vcpu_ioctl(struct file *filp,
4256 unsigned int ioctl, unsigned long arg)
4257 {
4258 struct kvm_vcpu *vcpu = filp->private_data;
4259 void __user *argp = (void __user *)arg;
4260 int r;
4261 union {
4262 struct kvm_lapic_state *lapic;
4263 struct kvm_xsave *xsave;
4264 struct kvm_xcrs *xcrs;
4265 void *buffer;
4266 } u;
4267
4268 vcpu_load(vcpu);
4269
4270 u.buffer = NULL;
4271 switch (ioctl) {
4272 case KVM_GET_LAPIC: {
4273 r = -EINVAL;
4274 if (!lapic_in_kernel(vcpu))
4275 goto out;
4276 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4277 GFP_KERNEL_ACCOUNT);
4278
4279 r = -ENOMEM;
4280 if (!u.lapic)
4281 goto out;
4282 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4283 if (r)
4284 goto out;
4285 r = -EFAULT;
4286 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4287 goto out;
4288 r = 0;
4289 break;
4290 }
4291 case KVM_SET_LAPIC: {
4292 r = -EINVAL;
4293 if (!lapic_in_kernel(vcpu))
4294 goto out;
4295 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4296 if (IS_ERR(u.lapic)) {
4297 r = PTR_ERR(u.lapic);
4298 goto out_nofree;
4299 }
4300
4301 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4302 break;
4303 }
4304 case KVM_INTERRUPT: {
4305 struct kvm_interrupt irq;
4306
4307 r = -EFAULT;
4308 if (copy_from_user(&irq, argp, sizeof(irq)))
4309 goto out;
4310 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4311 break;
4312 }
4313 case KVM_NMI: {
4314 r = kvm_vcpu_ioctl_nmi(vcpu);
4315 break;
4316 }
4317 case KVM_SMI: {
4318 r = kvm_vcpu_ioctl_smi(vcpu);
4319 break;
4320 }
4321 case KVM_SET_CPUID: {
4322 struct kvm_cpuid __user *cpuid_arg = argp;
4323 struct kvm_cpuid cpuid;
4324
4325 r = -EFAULT;
4326 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4327 goto out;
4328 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4329 break;
4330 }
4331 case KVM_SET_CPUID2: {
4332 struct kvm_cpuid2 __user *cpuid_arg = argp;
4333 struct kvm_cpuid2 cpuid;
4334
4335 r = -EFAULT;
4336 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4337 goto out;
4338 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4339 cpuid_arg->entries);
4340 break;
4341 }
4342 case KVM_GET_CPUID2: {
4343 struct kvm_cpuid2 __user *cpuid_arg = argp;
4344 struct kvm_cpuid2 cpuid;
4345
4346 r = -EFAULT;
4347 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4348 goto out;
4349 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4350 cpuid_arg->entries);
4351 if (r)
4352 goto out;
4353 r = -EFAULT;
4354 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4355 goto out;
4356 r = 0;
4357 break;
4358 }
4359 case KVM_GET_MSRS: {
4360 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4361 r = msr_io(vcpu, argp, do_get_msr, 1);
4362 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4363 break;
4364 }
4365 case KVM_SET_MSRS: {
4366 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4367 r = msr_io(vcpu, argp, do_set_msr, 0);
4368 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4369 break;
4370 }
4371 case KVM_TPR_ACCESS_REPORTING: {
4372 struct kvm_tpr_access_ctl tac;
4373
4374 r = -EFAULT;
4375 if (copy_from_user(&tac, argp, sizeof(tac)))
4376 goto out;
4377 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4378 if (r)
4379 goto out;
4380 r = -EFAULT;
4381 if (copy_to_user(argp, &tac, sizeof(tac)))
4382 goto out;
4383 r = 0;
4384 break;
4385 };
4386 case KVM_SET_VAPIC_ADDR: {
4387 struct kvm_vapic_addr va;
4388 int idx;
4389
4390 r = -EINVAL;
4391 if (!lapic_in_kernel(vcpu))
4392 goto out;
4393 r = -EFAULT;
4394 if (copy_from_user(&va, argp, sizeof(va)))
4395 goto out;
4396 idx = srcu_read_lock(&vcpu->kvm->srcu);
4397 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4398 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4399 break;
4400 }
4401 case KVM_X86_SETUP_MCE: {
4402 u64 mcg_cap;
4403
4404 r = -EFAULT;
4405 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4406 goto out;
4407 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4408 break;
4409 }
4410 case KVM_X86_SET_MCE: {
4411 struct kvm_x86_mce mce;
4412
4413 r = -EFAULT;
4414 if (copy_from_user(&mce, argp, sizeof(mce)))
4415 goto out;
4416 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4417 break;
4418 }
4419 case KVM_GET_VCPU_EVENTS: {
4420 struct kvm_vcpu_events events;
4421
4422 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4423
4424 r = -EFAULT;
4425 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4426 break;
4427 r = 0;
4428 break;
4429 }
4430 case KVM_SET_VCPU_EVENTS: {
4431 struct kvm_vcpu_events events;
4432
4433 r = -EFAULT;
4434 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4435 break;
4436
4437 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4438 break;
4439 }
4440 case KVM_GET_DEBUGREGS: {
4441 struct kvm_debugregs dbgregs;
4442
4443 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4444
4445 r = -EFAULT;
4446 if (copy_to_user(argp, &dbgregs,
4447 sizeof(struct kvm_debugregs)))
4448 break;
4449 r = 0;
4450 break;
4451 }
4452 case KVM_SET_DEBUGREGS: {
4453 struct kvm_debugregs dbgregs;
4454
4455 r = -EFAULT;
4456 if (copy_from_user(&dbgregs, argp,
4457 sizeof(struct kvm_debugregs)))
4458 break;
4459
4460 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4461 break;
4462 }
4463 case KVM_GET_XSAVE: {
4464 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4465 r = -ENOMEM;
4466 if (!u.xsave)
4467 break;
4468
4469 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4470
4471 r = -EFAULT;
4472 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4473 break;
4474 r = 0;
4475 break;
4476 }
4477 case KVM_SET_XSAVE: {
4478 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4479 if (IS_ERR(u.xsave)) {
4480 r = PTR_ERR(u.xsave);
4481 goto out_nofree;
4482 }
4483
4484 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4485 break;
4486 }
4487 case KVM_GET_XCRS: {
4488 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4489 r = -ENOMEM;
4490 if (!u.xcrs)
4491 break;
4492
4493 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4494
4495 r = -EFAULT;
4496 if (copy_to_user(argp, u.xcrs,
4497 sizeof(struct kvm_xcrs)))
4498 break;
4499 r = 0;
4500 break;
4501 }
4502 case KVM_SET_XCRS: {
4503 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4504 if (IS_ERR(u.xcrs)) {
4505 r = PTR_ERR(u.xcrs);
4506 goto out_nofree;
4507 }
4508
4509 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4510 break;
4511 }
4512 case KVM_SET_TSC_KHZ: {
4513 u32 user_tsc_khz;
4514
4515 r = -EINVAL;
4516 user_tsc_khz = (u32)arg;
4517
4518 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4519 goto out;
4520
4521 if (user_tsc_khz == 0)
4522 user_tsc_khz = tsc_khz;
4523
4524 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4525 r = 0;
4526
4527 goto out;
4528 }
4529 case KVM_GET_TSC_KHZ: {
4530 r = vcpu->arch.virtual_tsc_khz;
4531 goto out;
4532 }
4533 case KVM_KVMCLOCK_CTRL: {
4534 r = kvm_set_guest_paused(vcpu);
4535 goto out;
4536 }
4537 case KVM_ENABLE_CAP: {
4538 struct kvm_enable_cap cap;
4539
4540 r = -EFAULT;
4541 if (copy_from_user(&cap, argp, sizeof(cap)))
4542 goto out;
4543 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4544 break;
4545 }
4546 case KVM_GET_NESTED_STATE: {
4547 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4548 u32 user_data_size;
4549
4550 r = -EINVAL;
4551 if (!kvm_x86_ops.get_nested_state)
4552 break;
4553
4554 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4555 r = -EFAULT;
4556 if (get_user(user_data_size, &user_kvm_nested_state->size))
4557 break;
4558
4559 r = kvm_x86_ops.get_nested_state(vcpu, user_kvm_nested_state,
4560 user_data_size);
4561 if (r < 0)
4562 break;
4563
4564 if (r > user_data_size) {
4565 if (put_user(r, &user_kvm_nested_state->size))
4566 r = -EFAULT;
4567 else
4568 r = -E2BIG;
4569 break;
4570 }
4571
4572 r = 0;
4573 break;
4574 }
4575 case KVM_SET_NESTED_STATE: {
4576 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4577 struct kvm_nested_state kvm_state;
4578 int idx;
4579
4580 r = -EINVAL;
4581 if (!kvm_x86_ops.set_nested_state)
4582 break;
4583
4584 r = -EFAULT;
4585 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4586 break;
4587
4588 r = -EINVAL;
4589 if (kvm_state.size < sizeof(kvm_state))
4590 break;
4591
4592 if (kvm_state.flags &
4593 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4594 | KVM_STATE_NESTED_EVMCS))
4595 break;
4596
4597 /* nested_run_pending implies guest_mode. */
4598 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4599 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4600 break;
4601
4602 idx = srcu_read_lock(&vcpu->kvm->srcu);
4603 r = kvm_x86_ops.set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4604 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4605 break;
4606 }
4607 case KVM_GET_SUPPORTED_HV_CPUID: {
4608 struct kvm_cpuid2 __user *cpuid_arg = argp;
4609 struct kvm_cpuid2 cpuid;
4610
4611 r = -EFAULT;
4612 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4613 goto out;
4614
4615 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4616 cpuid_arg->entries);
4617 if (r)
4618 goto out;
4619
4620 r = -EFAULT;
4621 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4622 goto out;
4623 r = 0;
4624 break;
4625 }
4626 default:
4627 r = -EINVAL;
4628 }
4629 out:
4630 kfree(u.buffer);
4631 out_nofree:
4632 vcpu_put(vcpu);
4633 return r;
4634 }
4635
4636 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4637 {
4638 return VM_FAULT_SIGBUS;
4639 }
4640
4641 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4642 {
4643 int ret;
4644
4645 if (addr > (unsigned int)(-3 * PAGE_SIZE))
4646 return -EINVAL;
4647 ret = kvm_x86_ops.set_tss_addr(kvm, addr);
4648 return ret;
4649 }
4650
4651 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4652 u64 ident_addr)
4653 {
4654 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
4655 }
4656
4657 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4658 unsigned long kvm_nr_mmu_pages)
4659 {
4660 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4661 return -EINVAL;
4662
4663 mutex_lock(&kvm->slots_lock);
4664
4665 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4666 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4667
4668 mutex_unlock(&kvm->slots_lock);
4669 return 0;
4670 }
4671
4672 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4673 {
4674 return kvm->arch.n_max_mmu_pages;
4675 }
4676
4677 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4678 {
4679 struct kvm_pic *pic = kvm->arch.vpic;
4680 int r;
4681
4682 r = 0;
4683 switch (chip->chip_id) {
4684 case KVM_IRQCHIP_PIC_MASTER:
4685 memcpy(&chip->chip.pic, &pic->pics[0],
4686 sizeof(struct kvm_pic_state));
4687 break;
4688 case KVM_IRQCHIP_PIC_SLAVE:
4689 memcpy(&chip->chip.pic, &pic->pics[1],
4690 sizeof(struct kvm_pic_state));
4691 break;
4692 case KVM_IRQCHIP_IOAPIC:
4693 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4694 break;
4695 default:
4696 r = -EINVAL;
4697 break;
4698 }
4699 return r;
4700 }
4701
4702 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4703 {
4704 struct kvm_pic *pic = kvm->arch.vpic;
4705 int r;
4706
4707 r = 0;
4708 switch (chip->chip_id) {
4709 case KVM_IRQCHIP_PIC_MASTER:
4710 spin_lock(&pic->lock);
4711 memcpy(&pic->pics[0], &chip->chip.pic,
4712 sizeof(struct kvm_pic_state));
4713 spin_unlock(&pic->lock);
4714 break;
4715 case KVM_IRQCHIP_PIC_SLAVE:
4716 spin_lock(&pic->lock);
4717 memcpy(&pic->pics[1], &chip->chip.pic,
4718 sizeof(struct kvm_pic_state));
4719 spin_unlock(&pic->lock);
4720 break;
4721 case KVM_IRQCHIP_IOAPIC:
4722 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4723 break;
4724 default:
4725 r = -EINVAL;
4726 break;
4727 }
4728 kvm_pic_update_irq(pic);
4729 return r;
4730 }
4731
4732 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4733 {
4734 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4735
4736 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4737
4738 mutex_lock(&kps->lock);
4739 memcpy(ps, &kps->channels, sizeof(*ps));
4740 mutex_unlock(&kps->lock);
4741 return 0;
4742 }
4743
4744 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4745 {
4746 int i;
4747 struct kvm_pit *pit = kvm->arch.vpit;
4748
4749 mutex_lock(&pit->pit_state.lock);
4750 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4751 for (i = 0; i < 3; i++)
4752 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4753 mutex_unlock(&pit->pit_state.lock);
4754 return 0;
4755 }
4756
4757 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4758 {
4759 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4760 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4761 sizeof(ps->channels));
4762 ps->flags = kvm->arch.vpit->pit_state.flags;
4763 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4764 memset(&ps->reserved, 0, sizeof(ps->reserved));
4765 return 0;
4766 }
4767
4768 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4769 {
4770 int start = 0;
4771 int i;
4772 u32 prev_legacy, cur_legacy;
4773 struct kvm_pit *pit = kvm->arch.vpit;
4774
4775 mutex_lock(&pit->pit_state.lock);
4776 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4777 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4778 if (!prev_legacy && cur_legacy)
4779 start = 1;
4780 memcpy(&pit->pit_state.channels, &ps->channels,
4781 sizeof(pit->pit_state.channels));
4782 pit->pit_state.flags = ps->flags;
4783 for (i = 0; i < 3; i++)
4784 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4785 start && i == 0);
4786 mutex_unlock(&pit->pit_state.lock);
4787 return 0;
4788 }
4789
4790 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4791 struct kvm_reinject_control *control)
4792 {
4793 struct kvm_pit *pit = kvm->arch.vpit;
4794
4795 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4796 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4797 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4798 */
4799 mutex_lock(&pit->pit_state.lock);
4800 kvm_pit_set_reinject(pit, control->pit_reinject);
4801 mutex_unlock(&pit->pit_state.lock);
4802
4803 return 0;
4804 }
4805
4806 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
4807 {
4808 /*
4809 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4810 */
4811 if (kvm_x86_ops.flush_log_dirty)
4812 kvm_x86_ops.flush_log_dirty(kvm);
4813 }
4814
4815 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4816 bool line_status)
4817 {
4818 if (!irqchip_in_kernel(kvm))
4819 return -ENXIO;
4820
4821 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4822 irq_event->irq, irq_event->level,
4823 line_status);
4824 return 0;
4825 }
4826
4827 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4828 struct kvm_enable_cap *cap)
4829 {
4830 int r;
4831
4832 if (cap->flags)
4833 return -EINVAL;
4834
4835 switch (cap->cap) {
4836 case KVM_CAP_DISABLE_QUIRKS:
4837 kvm->arch.disabled_quirks = cap->args[0];
4838 r = 0;
4839 break;
4840 case KVM_CAP_SPLIT_IRQCHIP: {
4841 mutex_lock(&kvm->lock);
4842 r = -EINVAL;
4843 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4844 goto split_irqchip_unlock;
4845 r = -EEXIST;
4846 if (irqchip_in_kernel(kvm))
4847 goto split_irqchip_unlock;
4848 if (kvm->created_vcpus)
4849 goto split_irqchip_unlock;
4850 r = kvm_setup_empty_irq_routing(kvm);
4851 if (r)
4852 goto split_irqchip_unlock;
4853 /* Pairs with irqchip_in_kernel. */
4854 smp_wmb();
4855 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4856 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4857 r = 0;
4858 split_irqchip_unlock:
4859 mutex_unlock(&kvm->lock);
4860 break;
4861 }
4862 case KVM_CAP_X2APIC_API:
4863 r = -EINVAL;
4864 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4865 break;
4866
4867 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4868 kvm->arch.x2apic_format = true;
4869 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4870 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4871
4872 r = 0;
4873 break;
4874 case KVM_CAP_X86_DISABLE_EXITS:
4875 r = -EINVAL;
4876 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4877 break;
4878
4879 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4880 kvm_can_mwait_in_guest())
4881 kvm->arch.mwait_in_guest = true;
4882 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4883 kvm->arch.hlt_in_guest = true;
4884 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4885 kvm->arch.pause_in_guest = true;
4886 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4887 kvm->arch.cstate_in_guest = true;
4888 r = 0;
4889 break;
4890 case KVM_CAP_MSR_PLATFORM_INFO:
4891 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4892 r = 0;
4893 break;
4894 case KVM_CAP_EXCEPTION_PAYLOAD:
4895 kvm->arch.exception_payload_enabled = cap->args[0];
4896 r = 0;
4897 break;
4898 default:
4899 r = -EINVAL;
4900 break;
4901 }
4902 return r;
4903 }
4904
4905 long kvm_arch_vm_ioctl(struct file *filp,
4906 unsigned int ioctl, unsigned long arg)
4907 {
4908 struct kvm *kvm = filp->private_data;
4909 void __user *argp = (void __user *)arg;
4910 int r = -ENOTTY;
4911 /*
4912 * This union makes it completely explicit to gcc-3.x
4913 * that these two variables' stack usage should be
4914 * combined, not added together.
4915 */
4916 union {
4917 struct kvm_pit_state ps;
4918 struct kvm_pit_state2 ps2;
4919 struct kvm_pit_config pit_config;
4920 } u;
4921
4922 switch (ioctl) {
4923 case KVM_SET_TSS_ADDR:
4924 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4925 break;
4926 case KVM_SET_IDENTITY_MAP_ADDR: {
4927 u64 ident_addr;
4928
4929 mutex_lock(&kvm->lock);
4930 r = -EINVAL;
4931 if (kvm->created_vcpus)
4932 goto set_identity_unlock;
4933 r = -EFAULT;
4934 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4935 goto set_identity_unlock;
4936 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4937 set_identity_unlock:
4938 mutex_unlock(&kvm->lock);
4939 break;
4940 }
4941 case KVM_SET_NR_MMU_PAGES:
4942 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4943 break;
4944 case KVM_GET_NR_MMU_PAGES:
4945 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4946 break;
4947 case KVM_CREATE_IRQCHIP: {
4948 mutex_lock(&kvm->lock);
4949
4950 r = -EEXIST;
4951 if (irqchip_in_kernel(kvm))
4952 goto create_irqchip_unlock;
4953
4954 r = -EINVAL;
4955 if (kvm->created_vcpus)
4956 goto create_irqchip_unlock;
4957
4958 r = kvm_pic_init(kvm);
4959 if (r)
4960 goto create_irqchip_unlock;
4961
4962 r = kvm_ioapic_init(kvm);
4963 if (r) {
4964 kvm_pic_destroy(kvm);
4965 goto create_irqchip_unlock;
4966 }
4967
4968 r = kvm_setup_default_irq_routing(kvm);
4969 if (r) {
4970 kvm_ioapic_destroy(kvm);
4971 kvm_pic_destroy(kvm);
4972 goto create_irqchip_unlock;
4973 }
4974 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4975 smp_wmb();
4976 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4977 create_irqchip_unlock:
4978 mutex_unlock(&kvm->lock);
4979 break;
4980 }
4981 case KVM_CREATE_PIT:
4982 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4983 goto create_pit;
4984 case KVM_CREATE_PIT2:
4985 r = -EFAULT;
4986 if (copy_from_user(&u.pit_config, argp,
4987 sizeof(struct kvm_pit_config)))
4988 goto out;
4989 create_pit:
4990 mutex_lock(&kvm->lock);
4991 r = -EEXIST;
4992 if (kvm->arch.vpit)
4993 goto create_pit_unlock;
4994 r = -ENOMEM;
4995 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4996 if (kvm->arch.vpit)
4997 r = 0;
4998 create_pit_unlock:
4999 mutex_unlock(&kvm->lock);
5000 break;
5001 case KVM_GET_IRQCHIP: {
5002 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5003 struct kvm_irqchip *chip;
5004
5005 chip = memdup_user(argp, sizeof(*chip));
5006 if (IS_ERR(chip)) {
5007 r = PTR_ERR(chip);
5008 goto out;
5009 }
5010
5011 r = -ENXIO;
5012 if (!irqchip_kernel(kvm))
5013 goto get_irqchip_out;
5014 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5015 if (r)
5016 goto get_irqchip_out;
5017 r = -EFAULT;
5018 if (copy_to_user(argp, chip, sizeof(*chip)))
5019 goto get_irqchip_out;
5020 r = 0;
5021 get_irqchip_out:
5022 kfree(chip);
5023 break;
5024 }
5025 case KVM_SET_IRQCHIP: {
5026 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5027 struct kvm_irqchip *chip;
5028
5029 chip = memdup_user(argp, sizeof(*chip));
5030 if (IS_ERR(chip)) {
5031 r = PTR_ERR(chip);
5032 goto out;
5033 }
5034
5035 r = -ENXIO;
5036 if (!irqchip_kernel(kvm))
5037 goto set_irqchip_out;
5038 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5039 set_irqchip_out:
5040 kfree(chip);
5041 break;
5042 }
5043 case KVM_GET_PIT: {
5044 r = -EFAULT;
5045 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5046 goto out;
5047 r = -ENXIO;
5048 if (!kvm->arch.vpit)
5049 goto out;
5050 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5051 if (r)
5052 goto out;
5053 r = -EFAULT;
5054 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5055 goto out;
5056 r = 0;
5057 break;
5058 }
5059 case KVM_SET_PIT: {
5060 r = -EFAULT;
5061 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5062 goto out;
5063 mutex_lock(&kvm->lock);
5064 r = -ENXIO;
5065 if (!kvm->arch.vpit)
5066 goto set_pit_out;
5067 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5068 set_pit_out:
5069 mutex_unlock(&kvm->lock);
5070 break;
5071 }
5072 case KVM_GET_PIT2: {
5073 r = -ENXIO;
5074 if (!kvm->arch.vpit)
5075 goto out;
5076 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5077 if (r)
5078 goto out;
5079 r = -EFAULT;
5080 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5081 goto out;
5082 r = 0;
5083 break;
5084 }
5085 case KVM_SET_PIT2: {
5086 r = -EFAULT;
5087 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5088 goto out;
5089 mutex_lock(&kvm->lock);
5090 r = -ENXIO;
5091 if (!kvm->arch.vpit)
5092 goto set_pit2_out;
5093 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5094 set_pit2_out:
5095 mutex_unlock(&kvm->lock);
5096 break;
5097 }
5098 case KVM_REINJECT_CONTROL: {
5099 struct kvm_reinject_control control;
5100 r = -EFAULT;
5101 if (copy_from_user(&control, argp, sizeof(control)))
5102 goto out;
5103 r = -ENXIO;
5104 if (!kvm->arch.vpit)
5105 goto out;
5106 r = kvm_vm_ioctl_reinject(kvm, &control);
5107 break;
5108 }
5109 case KVM_SET_BOOT_CPU_ID:
5110 r = 0;
5111 mutex_lock(&kvm->lock);
5112 if (kvm->created_vcpus)
5113 r = -EBUSY;
5114 else
5115 kvm->arch.bsp_vcpu_id = arg;
5116 mutex_unlock(&kvm->lock);
5117 break;
5118 case KVM_XEN_HVM_CONFIG: {
5119 struct kvm_xen_hvm_config xhc;
5120 r = -EFAULT;
5121 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5122 goto out;
5123 r = -EINVAL;
5124 if (xhc.flags)
5125 goto out;
5126 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5127 r = 0;
5128 break;
5129 }
5130 case KVM_SET_CLOCK: {
5131 struct kvm_clock_data user_ns;
5132 u64 now_ns;
5133
5134 r = -EFAULT;
5135 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5136 goto out;
5137
5138 r = -EINVAL;
5139 if (user_ns.flags)
5140 goto out;
5141
5142 r = 0;
5143 /*
5144 * TODO: userspace has to take care of races with VCPU_RUN, so
5145 * kvm_gen_update_masterclock() can be cut down to locked
5146 * pvclock_update_vm_gtod_copy().
5147 */
5148 kvm_gen_update_masterclock(kvm);
5149 now_ns = get_kvmclock_ns(kvm);
5150 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5151 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5152 break;
5153 }
5154 case KVM_GET_CLOCK: {
5155 struct kvm_clock_data user_ns;
5156 u64 now_ns;
5157
5158 now_ns = get_kvmclock_ns(kvm);
5159 user_ns.clock = now_ns;
5160 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5161 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5162
5163 r = -EFAULT;
5164 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5165 goto out;
5166 r = 0;
5167 break;
5168 }
5169 case KVM_MEMORY_ENCRYPT_OP: {
5170 r = -ENOTTY;
5171 if (kvm_x86_ops.mem_enc_op)
5172 r = kvm_x86_ops.mem_enc_op(kvm, argp);
5173 break;
5174 }
5175 case KVM_MEMORY_ENCRYPT_REG_REGION: {
5176 struct kvm_enc_region region;
5177
5178 r = -EFAULT;
5179 if (copy_from_user(&region, argp, sizeof(region)))
5180 goto out;
5181
5182 r = -ENOTTY;
5183 if (kvm_x86_ops.mem_enc_reg_region)
5184 r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5185 break;
5186 }
5187 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5188 struct kvm_enc_region region;
5189
5190 r = -EFAULT;
5191 if (copy_from_user(&region, argp, sizeof(region)))
5192 goto out;
5193
5194 r = -ENOTTY;
5195 if (kvm_x86_ops.mem_enc_unreg_region)
5196 r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5197 break;
5198 }
5199 case KVM_HYPERV_EVENTFD: {
5200 struct kvm_hyperv_eventfd hvevfd;
5201
5202 r = -EFAULT;
5203 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5204 goto out;
5205 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5206 break;
5207 }
5208 case KVM_SET_PMU_EVENT_FILTER:
5209 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5210 break;
5211 default:
5212 r = -ENOTTY;
5213 }
5214 out:
5215 return r;
5216 }
5217
5218 static void kvm_init_msr_list(void)
5219 {
5220 struct x86_pmu_capability x86_pmu;
5221 u32 dummy[2];
5222 unsigned i;
5223
5224 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5225 "Please update the fixed PMCs in msrs_to_saved_all[]");
5226
5227 perf_get_x86_pmu_capability(&x86_pmu);
5228
5229 num_msrs_to_save = 0;
5230 num_emulated_msrs = 0;
5231 num_msr_based_features = 0;
5232
5233 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5234 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5235 continue;
5236
5237 /*
5238 * Even MSRs that are valid in the host may not be exposed
5239 * to the guests in some cases.
5240 */
5241 switch (msrs_to_save_all[i]) {
5242 case MSR_IA32_BNDCFGS:
5243 if (!kvm_mpx_supported())
5244 continue;
5245 break;
5246 case MSR_TSC_AUX:
5247 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5248 continue;
5249 break;
5250 case MSR_IA32_RTIT_CTL:
5251 case MSR_IA32_RTIT_STATUS:
5252 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5253 continue;
5254 break;
5255 case MSR_IA32_RTIT_CR3_MATCH:
5256 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5257 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5258 continue;
5259 break;
5260 case MSR_IA32_RTIT_OUTPUT_BASE:
5261 case MSR_IA32_RTIT_OUTPUT_MASK:
5262 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5263 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5264 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5265 continue;
5266 break;
5267 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5268 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5269 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5270 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5271 continue;
5272 break;
5273 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5274 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5275 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5276 continue;
5277 break;
5278 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5279 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5280 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5281 continue;
5282 }
5283 default:
5284 break;
5285 }
5286
5287 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5288 }
5289
5290 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5291 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5292 continue;
5293
5294 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5295 }
5296
5297 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5298 struct kvm_msr_entry msr;
5299
5300 msr.index = msr_based_features_all[i];
5301 if (kvm_get_msr_feature(&msr))
5302 continue;
5303
5304 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5305 }
5306 }
5307
5308 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5309 const void *v)
5310 {
5311 int handled = 0;
5312 int n;
5313
5314 do {
5315 n = min(len, 8);
5316 if (!(lapic_in_kernel(vcpu) &&
5317 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5318 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5319 break;
5320 handled += n;
5321 addr += n;
5322 len -= n;
5323 v += n;
5324 } while (len);
5325
5326 return handled;
5327 }
5328
5329 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5330 {
5331 int handled = 0;
5332 int n;
5333
5334 do {
5335 n = min(len, 8);
5336 if (!(lapic_in_kernel(vcpu) &&
5337 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5338 addr, n, v))
5339 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5340 break;
5341 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5342 handled += n;
5343 addr += n;
5344 len -= n;
5345 v += n;
5346 } while (len);
5347
5348 return handled;
5349 }
5350
5351 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5352 struct kvm_segment *var, int seg)
5353 {
5354 kvm_x86_ops.set_segment(vcpu, var, seg);
5355 }
5356
5357 void kvm_get_segment(struct kvm_vcpu *vcpu,
5358 struct kvm_segment *var, int seg)
5359 {
5360 kvm_x86_ops.get_segment(vcpu, var, seg);
5361 }
5362
5363 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5364 struct x86_exception *exception)
5365 {
5366 gpa_t t_gpa;
5367
5368 BUG_ON(!mmu_is_nested(vcpu));
5369
5370 /* NPT walks are always user-walks */
5371 access |= PFERR_USER_MASK;
5372 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5373
5374 return t_gpa;
5375 }
5376
5377 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5378 struct x86_exception *exception)
5379 {
5380 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5381 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5382 }
5383
5384 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5385 struct x86_exception *exception)
5386 {
5387 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5388 access |= PFERR_FETCH_MASK;
5389 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5390 }
5391
5392 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5393 struct x86_exception *exception)
5394 {
5395 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5396 access |= PFERR_WRITE_MASK;
5397 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5398 }
5399
5400 /* uses this to access any guest's mapped memory without checking CPL */
5401 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5402 struct x86_exception *exception)
5403 {
5404 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5405 }
5406
5407 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5408 struct kvm_vcpu *vcpu, u32 access,
5409 struct x86_exception *exception)
5410 {
5411 void *data = val;
5412 int r = X86EMUL_CONTINUE;
5413
5414 while (bytes) {
5415 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5416 exception);
5417 unsigned offset = addr & (PAGE_SIZE-1);
5418 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5419 int ret;
5420
5421 if (gpa == UNMAPPED_GVA)
5422 return X86EMUL_PROPAGATE_FAULT;
5423 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5424 offset, toread);
5425 if (ret < 0) {
5426 r = X86EMUL_IO_NEEDED;
5427 goto out;
5428 }
5429
5430 bytes -= toread;
5431 data += toread;
5432 addr += toread;
5433 }
5434 out:
5435 return r;
5436 }
5437
5438 /* used for instruction fetching */
5439 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5440 gva_t addr, void *val, unsigned int bytes,
5441 struct x86_exception *exception)
5442 {
5443 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5444 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5445 unsigned offset;
5446 int ret;
5447
5448 /* Inline kvm_read_guest_virt_helper for speed. */
5449 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5450 exception);
5451 if (unlikely(gpa == UNMAPPED_GVA))
5452 return X86EMUL_PROPAGATE_FAULT;
5453
5454 offset = addr & (PAGE_SIZE-1);
5455 if (WARN_ON(offset + bytes > PAGE_SIZE))
5456 bytes = (unsigned)PAGE_SIZE - offset;
5457 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5458 offset, bytes);
5459 if (unlikely(ret < 0))
5460 return X86EMUL_IO_NEEDED;
5461
5462 return X86EMUL_CONTINUE;
5463 }
5464
5465 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5466 gva_t addr, void *val, unsigned int bytes,
5467 struct x86_exception *exception)
5468 {
5469 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5470
5471 /*
5472 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5473 * is returned, but our callers are not ready for that and they blindly
5474 * call kvm_inject_page_fault. Ensure that they at least do not leak
5475 * uninitialized kernel stack memory into cr2 and error code.
5476 */
5477 memset(exception, 0, sizeof(*exception));
5478 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5479 exception);
5480 }
5481 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5482
5483 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5484 gva_t addr, void *val, unsigned int bytes,
5485 struct x86_exception *exception, bool system)
5486 {
5487 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5488 u32 access = 0;
5489
5490 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5491 access |= PFERR_USER_MASK;
5492
5493 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5494 }
5495
5496 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5497 unsigned long addr, void *val, unsigned int bytes)
5498 {
5499 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5500 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5501
5502 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5503 }
5504
5505 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5506 struct kvm_vcpu *vcpu, u32 access,
5507 struct x86_exception *exception)
5508 {
5509 void *data = val;
5510 int r = X86EMUL_CONTINUE;
5511
5512 while (bytes) {
5513 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5514 access,
5515 exception);
5516 unsigned offset = addr & (PAGE_SIZE-1);
5517 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5518 int ret;
5519
5520 if (gpa == UNMAPPED_GVA)
5521 return X86EMUL_PROPAGATE_FAULT;
5522 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5523 if (ret < 0) {
5524 r = X86EMUL_IO_NEEDED;
5525 goto out;
5526 }
5527
5528 bytes -= towrite;
5529 data += towrite;
5530 addr += towrite;
5531 }
5532 out:
5533 return r;
5534 }
5535
5536 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5537 unsigned int bytes, struct x86_exception *exception,
5538 bool system)
5539 {
5540 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5541 u32 access = PFERR_WRITE_MASK;
5542
5543 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5544 access |= PFERR_USER_MASK;
5545
5546 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5547 access, exception);
5548 }
5549
5550 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5551 unsigned int bytes, struct x86_exception *exception)
5552 {
5553 /* kvm_write_guest_virt_system can pull in tons of pages. */
5554 vcpu->arch.l1tf_flush_l1d = true;
5555
5556 /*
5557 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5558 * is returned, but our callers are not ready for that and they blindly
5559 * call kvm_inject_page_fault. Ensure that they at least do not leak
5560 * uninitialized kernel stack memory into cr2 and error code.
5561 */
5562 memset(exception, 0, sizeof(*exception));
5563 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5564 PFERR_WRITE_MASK, exception);
5565 }
5566 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5567
5568 int handle_ud(struct kvm_vcpu *vcpu)
5569 {
5570 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5571 int emul_type = EMULTYPE_TRAP_UD;
5572 char sig[5]; /* ud2; .ascii "kvm" */
5573 struct x86_exception e;
5574
5575 if (force_emulation_prefix &&
5576 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5577 sig, sizeof(sig), &e) == 0 &&
5578 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5579 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5580 emul_type = EMULTYPE_TRAP_UD_FORCED;
5581 }
5582
5583 return kvm_emulate_instruction(vcpu, emul_type);
5584 }
5585 EXPORT_SYMBOL_GPL(handle_ud);
5586
5587 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5588 gpa_t gpa, bool write)
5589 {
5590 /* For APIC access vmexit */
5591 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5592 return 1;
5593
5594 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5595 trace_vcpu_match_mmio(gva, gpa, write, true);
5596 return 1;
5597 }
5598
5599 return 0;
5600 }
5601
5602 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5603 gpa_t *gpa, struct x86_exception *exception,
5604 bool write)
5605 {
5606 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5607 | (write ? PFERR_WRITE_MASK : 0);
5608
5609 /*
5610 * currently PKRU is only applied to ept enabled guest so
5611 * there is no pkey in EPT page table for L1 guest or EPT
5612 * shadow page table for L2 guest.
5613 */
5614 if (vcpu_match_mmio_gva(vcpu, gva)
5615 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5616 vcpu->arch.mmio_access, 0, access)) {
5617 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5618 (gva & (PAGE_SIZE - 1));
5619 trace_vcpu_match_mmio(gva, *gpa, write, false);
5620 return 1;
5621 }
5622
5623 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5624
5625 if (*gpa == UNMAPPED_GVA)
5626 return -1;
5627
5628 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5629 }
5630
5631 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5632 const void *val, int bytes)
5633 {
5634 int ret;
5635
5636 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5637 if (ret < 0)
5638 return 0;
5639 kvm_page_track_write(vcpu, gpa, val, bytes);
5640 return 1;
5641 }
5642
5643 struct read_write_emulator_ops {
5644 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5645 int bytes);
5646 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5647 void *val, int bytes);
5648 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5649 int bytes, void *val);
5650 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5651 void *val, int bytes);
5652 bool write;
5653 };
5654
5655 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5656 {
5657 if (vcpu->mmio_read_completed) {
5658 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5659 vcpu->mmio_fragments[0].gpa, val);
5660 vcpu->mmio_read_completed = 0;
5661 return 1;
5662 }
5663
5664 return 0;
5665 }
5666
5667 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5668 void *val, int bytes)
5669 {
5670 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5671 }
5672
5673 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5674 void *val, int bytes)
5675 {
5676 return emulator_write_phys(vcpu, gpa, val, bytes);
5677 }
5678
5679 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5680 {
5681 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5682 return vcpu_mmio_write(vcpu, gpa, bytes, val);
5683 }
5684
5685 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5686 void *val, int bytes)
5687 {
5688 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5689 return X86EMUL_IO_NEEDED;
5690 }
5691
5692 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5693 void *val, int bytes)
5694 {
5695 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5696
5697 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5698 return X86EMUL_CONTINUE;
5699 }
5700
5701 static const struct read_write_emulator_ops read_emultor = {
5702 .read_write_prepare = read_prepare,
5703 .read_write_emulate = read_emulate,
5704 .read_write_mmio = vcpu_mmio_read,
5705 .read_write_exit_mmio = read_exit_mmio,
5706 };
5707
5708 static const struct read_write_emulator_ops write_emultor = {
5709 .read_write_emulate = write_emulate,
5710 .read_write_mmio = write_mmio,
5711 .read_write_exit_mmio = write_exit_mmio,
5712 .write = true,
5713 };
5714
5715 static int emulator_read_write_onepage(unsigned long addr, void *val,
5716 unsigned int bytes,
5717 struct x86_exception *exception,
5718 struct kvm_vcpu *vcpu,
5719 const struct read_write_emulator_ops *ops)
5720 {
5721 gpa_t gpa;
5722 int handled, ret;
5723 bool write = ops->write;
5724 struct kvm_mmio_fragment *frag;
5725 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
5726
5727 /*
5728 * If the exit was due to a NPF we may already have a GPA.
5729 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5730 * Note, this cannot be used on string operations since string
5731 * operation using rep will only have the initial GPA from the NPF
5732 * occurred.
5733 */
5734 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
5735 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
5736 gpa = ctxt->gpa_val;
5737 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5738 } else {
5739 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5740 if (ret < 0)
5741 return X86EMUL_PROPAGATE_FAULT;
5742 }
5743
5744 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5745 return X86EMUL_CONTINUE;
5746
5747 /*
5748 * Is this MMIO handled locally?
5749 */
5750 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5751 if (handled == bytes)
5752 return X86EMUL_CONTINUE;
5753
5754 gpa += handled;
5755 bytes -= handled;
5756 val += handled;
5757
5758 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5759 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5760 frag->gpa = gpa;
5761 frag->data = val;
5762 frag->len = bytes;
5763 return X86EMUL_CONTINUE;
5764 }
5765
5766 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5767 unsigned long addr,
5768 void *val, unsigned int bytes,
5769 struct x86_exception *exception,
5770 const struct read_write_emulator_ops *ops)
5771 {
5772 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5773 gpa_t gpa;
5774 int rc;
5775
5776 if (ops->read_write_prepare &&
5777 ops->read_write_prepare(vcpu, val, bytes))
5778 return X86EMUL_CONTINUE;
5779
5780 vcpu->mmio_nr_fragments = 0;
5781
5782 /* Crossing a page boundary? */
5783 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5784 int now;
5785
5786 now = -addr & ~PAGE_MASK;
5787 rc = emulator_read_write_onepage(addr, val, now, exception,
5788 vcpu, ops);
5789
5790 if (rc != X86EMUL_CONTINUE)
5791 return rc;
5792 addr += now;
5793 if (ctxt->mode != X86EMUL_MODE_PROT64)
5794 addr = (u32)addr;
5795 val += now;
5796 bytes -= now;
5797 }
5798
5799 rc = emulator_read_write_onepage(addr, val, bytes, exception,
5800 vcpu, ops);
5801 if (rc != X86EMUL_CONTINUE)
5802 return rc;
5803
5804 if (!vcpu->mmio_nr_fragments)
5805 return rc;
5806
5807 gpa = vcpu->mmio_fragments[0].gpa;
5808
5809 vcpu->mmio_needed = 1;
5810 vcpu->mmio_cur_fragment = 0;
5811
5812 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5813 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5814 vcpu->run->exit_reason = KVM_EXIT_MMIO;
5815 vcpu->run->mmio.phys_addr = gpa;
5816
5817 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5818 }
5819
5820 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5821 unsigned long addr,
5822 void *val,
5823 unsigned int bytes,
5824 struct x86_exception *exception)
5825 {
5826 return emulator_read_write(ctxt, addr, val, bytes,
5827 exception, &read_emultor);
5828 }
5829
5830 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5831 unsigned long addr,
5832 const void *val,
5833 unsigned int bytes,
5834 struct x86_exception *exception)
5835 {
5836 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5837 exception, &write_emultor);
5838 }
5839
5840 #define CMPXCHG_TYPE(t, ptr, old, new) \
5841 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5842
5843 #ifdef CONFIG_X86_64
5844 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5845 #else
5846 # define CMPXCHG64(ptr, old, new) \
5847 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5848 #endif
5849
5850 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5851 unsigned long addr,
5852 const void *old,
5853 const void *new,
5854 unsigned int bytes,
5855 struct x86_exception *exception)
5856 {
5857 struct kvm_host_map map;
5858 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5859 u64 page_line_mask;
5860 gpa_t gpa;
5861 char *kaddr;
5862 bool exchanged;
5863
5864 /* guests cmpxchg8b have to be emulated atomically */
5865 if (bytes > 8 || (bytes & (bytes - 1)))
5866 goto emul_write;
5867
5868 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5869
5870 if (gpa == UNMAPPED_GVA ||
5871 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5872 goto emul_write;
5873
5874 /*
5875 * Emulate the atomic as a straight write to avoid #AC if SLD is
5876 * enabled in the host and the access splits a cache line.
5877 */
5878 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5879 page_line_mask = ~(cache_line_size() - 1);
5880 else
5881 page_line_mask = PAGE_MASK;
5882
5883 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
5884 goto emul_write;
5885
5886 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5887 goto emul_write;
5888
5889 kaddr = map.hva + offset_in_page(gpa);
5890
5891 switch (bytes) {
5892 case 1:
5893 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5894 break;
5895 case 2:
5896 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5897 break;
5898 case 4:
5899 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5900 break;
5901 case 8:
5902 exchanged = CMPXCHG64(kaddr, old, new);
5903 break;
5904 default:
5905 BUG();
5906 }
5907
5908 kvm_vcpu_unmap(vcpu, &map, true);
5909
5910 if (!exchanged)
5911 return X86EMUL_CMPXCHG_FAILED;
5912
5913 kvm_page_track_write(vcpu, gpa, new, bytes);
5914
5915 return X86EMUL_CONTINUE;
5916
5917 emul_write:
5918 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5919
5920 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5921 }
5922
5923 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5924 {
5925 int r = 0, i;
5926
5927 for (i = 0; i < vcpu->arch.pio.count; i++) {
5928 if (vcpu->arch.pio.in)
5929 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5930 vcpu->arch.pio.size, pd);
5931 else
5932 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5933 vcpu->arch.pio.port, vcpu->arch.pio.size,
5934 pd);
5935 if (r)
5936 break;
5937 pd += vcpu->arch.pio.size;
5938 }
5939 return r;
5940 }
5941
5942 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5943 unsigned short port, void *val,
5944 unsigned int count, bool in)
5945 {
5946 vcpu->arch.pio.port = port;
5947 vcpu->arch.pio.in = in;
5948 vcpu->arch.pio.count = count;
5949 vcpu->arch.pio.size = size;
5950
5951 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5952 vcpu->arch.pio.count = 0;
5953 return 1;
5954 }
5955
5956 vcpu->run->exit_reason = KVM_EXIT_IO;
5957 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5958 vcpu->run->io.size = size;
5959 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5960 vcpu->run->io.count = count;
5961 vcpu->run->io.port = port;
5962
5963 return 0;
5964 }
5965
5966 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
5967 unsigned short port, void *val, unsigned int count)
5968 {
5969 int ret;
5970
5971 if (vcpu->arch.pio.count)
5972 goto data_avail;
5973
5974 memset(vcpu->arch.pio_data, 0, size * count);
5975
5976 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5977 if (ret) {
5978 data_avail:
5979 memcpy(val, vcpu->arch.pio_data, size * count);
5980 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5981 vcpu->arch.pio.count = 0;
5982 return 1;
5983 }
5984
5985 return 0;
5986 }
5987
5988 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5989 int size, unsigned short port, void *val,
5990 unsigned int count)
5991 {
5992 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
5993
5994 }
5995
5996 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
5997 unsigned short port, const void *val,
5998 unsigned int count)
5999 {
6000 memcpy(vcpu->arch.pio_data, val, size * count);
6001 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6002 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6003 }
6004
6005 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6006 int size, unsigned short port,
6007 const void *val, unsigned int count)
6008 {
6009 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6010 }
6011
6012 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6013 {
6014 return kvm_x86_ops.get_segment_base(vcpu, seg);
6015 }
6016
6017 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6018 {
6019 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6020 }
6021
6022 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6023 {
6024 if (!need_emulate_wbinvd(vcpu))
6025 return X86EMUL_CONTINUE;
6026
6027 if (kvm_x86_ops.has_wbinvd_exit()) {
6028 int cpu = get_cpu();
6029
6030 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6031 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6032 wbinvd_ipi, NULL, 1);
6033 put_cpu();
6034 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6035 } else
6036 wbinvd();
6037 return X86EMUL_CONTINUE;
6038 }
6039
6040 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6041 {
6042 kvm_emulate_wbinvd_noskip(vcpu);
6043 return kvm_skip_emulated_instruction(vcpu);
6044 }
6045 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6046
6047
6048
6049 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6050 {
6051 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6052 }
6053
6054 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6055 unsigned long *dest)
6056 {
6057 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6058 }
6059
6060 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6061 unsigned long value)
6062 {
6063
6064 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6065 }
6066
6067 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6068 {
6069 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6070 }
6071
6072 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6073 {
6074 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6075 unsigned long value;
6076
6077 switch (cr) {
6078 case 0:
6079 value = kvm_read_cr0(vcpu);
6080 break;
6081 case 2:
6082 value = vcpu->arch.cr2;
6083 break;
6084 case 3:
6085 value = kvm_read_cr3(vcpu);
6086 break;
6087 case 4:
6088 value = kvm_read_cr4(vcpu);
6089 break;
6090 case 8:
6091 value = kvm_get_cr8(vcpu);
6092 break;
6093 default:
6094 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6095 return 0;
6096 }
6097
6098 return value;
6099 }
6100
6101 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6102 {
6103 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6104 int res = 0;
6105
6106 switch (cr) {
6107 case 0:
6108 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6109 break;
6110 case 2:
6111 vcpu->arch.cr2 = val;
6112 break;
6113 case 3:
6114 res = kvm_set_cr3(vcpu, val);
6115 break;
6116 case 4:
6117 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6118 break;
6119 case 8:
6120 res = kvm_set_cr8(vcpu, val);
6121 break;
6122 default:
6123 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6124 res = -1;
6125 }
6126
6127 return res;
6128 }
6129
6130 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6131 {
6132 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6133 }
6134
6135 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6136 {
6137 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6138 }
6139
6140 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6141 {
6142 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6143 }
6144
6145 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6146 {
6147 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6148 }
6149
6150 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6151 {
6152 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6153 }
6154
6155 static unsigned long emulator_get_cached_segment_base(
6156 struct x86_emulate_ctxt *ctxt, int seg)
6157 {
6158 return get_segment_base(emul_to_vcpu(ctxt), seg);
6159 }
6160
6161 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6162 struct desc_struct *desc, u32 *base3,
6163 int seg)
6164 {
6165 struct kvm_segment var;
6166
6167 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6168 *selector = var.selector;
6169
6170 if (var.unusable) {
6171 memset(desc, 0, sizeof(*desc));
6172 if (base3)
6173 *base3 = 0;
6174 return false;
6175 }
6176
6177 if (var.g)
6178 var.limit >>= 12;
6179 set_desc_limit(desc, var.limit);
6180 set_desc_base(desc, (unsigned long)var.base);
6181 #ifdef CONFIG_X86_64
6182 if (base3)
6183 *base3 = var.base >> 32;
6184 #endif
6185 desc->type = var.type;
6186 desc->s = var.s;
6187 desc->dpl = var.dpl;
6188 desc->p = var.present;
6189 desc->avl = var.avl;
6190 desc->l = var.l;
6191 desc->d = var.db;
6192 desc->g = var.g;
6193
6194 return true;
6195 }
6196
6197 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6198 struct desc_struct *desc, u32 base3,
6199 int seg)
6200 {
6201 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6202 struct kvm_segment var;
6203
6204 var.selector = selector;
6205 var.base = get_desc_base(desc);
6206 #ifdef CONFIG_X86_64
6207 var.base |= ((u64)base3) << 32;
6208 #endif
6209 var.limit = get_desc_limit(desc);
6210 if (desc->g)
6211 var.limit = (var.limit << 12) | 0xfff;
6212 var.type = desc->type;
6213 var.dpl = desc->dpl;
6214 var.db = desc->d;
6215 var.s = desc->s;
6216 var.l = desc->l;
6217 var.g = desc->g;
6218 var.avl = desc->avl;
6219 var.present = desc->p;
6220 var.unusable = !var.present;
6221 var.padding = 0;
6222
6223 kvm_set_segment(vcpu, &var, seg);
6224 return;
6225 }
6226
6227 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6228 u32 msr_index, u64 *pdata)
6229 {
6230 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6231 }
6232
6233 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6234 u32 msr_index, u64 data)
6235 {
6236 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6237 }
6238
6239 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6240 {
6241 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6242
6243 return vcpu->arch.smbase;
6244 }
6245
6246 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6247 {
6248 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6249
6250 vcpu->arch.smbase = smbase;
6251 }
6252
6253 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6254 u32 pmc)
6255 {
6256 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6257 }
6258
6259 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6260 u32 pmc, u64 *pdata)
6261 {
6262 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6263 }
6264
6265 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6266 {
6267 emul_to_vcpu(ctxt)->arch.halt_request = 1;
6268 }
6269
6270 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6271 struct x86_instruction_info *info,
6272 enum x86_intercept_stage stage)
6273 {
6274 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6275 &ctxt->exception);
6276 }
6277
6278 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6279 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6280 bool exact_only)
6281 {
6282 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6283 }
6284
6285 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6286 {
6287 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6288 }
6289
6290 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6291 {
6292 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6293 }
6294
6295 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6296 {
6297 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6298 }
6299
6300 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6301 {
6302 return kvm_register_read(emul_to_vcpu(ctxt), reg);
6303 }
6304
6305 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6306 {
6307 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6308 }
6309
6310 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6311 {
6312 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6313 }
6314
6315 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6316 {
6317 return emul_to_vcpu(ctxt)->arch.hflags;
6318 }
6319
6320 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6321 {
6322 emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6323 }
6324
6325 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6326 const char *smstate)
6327 {
6328 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6329 }
6330
6331 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6332 {
6333 kvm_smm_changed(emul_to_vcpu(ctxt));
6334 }
6335
6336 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6337 {
6338 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6339 }
6340
6341 static const struct x86_emulate_ops emulate_ops = {
6342 .read_gpr = emulator_read_gpr,
6343 .write_gpr = emulator_write_gpr,
6344 .read_std = emulator_read_std,
6345 .write_std = emulator_write_std,
6346 .read_phys = kvm_read_guest_phys_system,
6347 .fetch = kvm_fetch_guest_virt,
6348 .read_emulated = emulator_read_emulated,
6349 .write_emulated = emulator_write_emulated,
6350 .cmpxchg_emulated = emulator_cmpxchg_emulated,
6351 .invlpg = emulator_invlpg,
6352 .pio_in_emulated = emulator_pio_in_emulated,
6353 .pio_out_emulated = emulator_pio_out_emulated,
6354 .get_segment = emulator_get_segment,
6355 .set_segment = emulator_set_segment,
6356 .get_cached_segment_base = emulator_get_cached_segment_base,
6357 .get_gdt = emulator_get_gdt,
6358 .get_idt = emulator_get_idt,
6359 .set_gdt = emulator_set_gdt,
6360 .set_idt = emulator_set_idt,
6361 .get_cr = emulator_get_cr,
6362 .set_cr = emulator_set_cr,
6363 .cpl = emulator_get_cpl,
6364 .get_dr = emulator_get_dr,
6365 .set_dr = emulator_set_dr,
6366 .get_smbase = emulator_get_smbase,
6367 .set_smbase = emulator_set_smbase,
6368 .set_msr = emulator_set_msr,
6369 .get_msr = emulator_get_msr,
6370 .check_pmc = emulator_check_pmc,
6371 .read_pmc = emulator_read_pmc,
6372 .halt = emulator_halt,
6373 .wbinvd = emulator_wbinvd,
6374 .fix_hypercall = emulator_fix_hypercall,
6375 .intercept = emulator_intercept,
6376 .get_cpuid = emulator_get_cpuid,
6377 .guest_has_long_mode = emulator_guest_has_long_mode,
6378 .guest_has_movbe = emulator_guest_has_movbe,
6379 .guest_has_fxsr = emulator_guest_has_fxsr,
6380 .set_nmi_mask = emulator_set_nmi_mask,
6381 .get_hflags = emulator_get_hflags,
6382 .set_hflags = emulator_set_hflags,
6383 .pre_leave_smm = emulator_pre_leave_smm,
6384 .post_leave_smm = emulator_post_leave_smm,
6385 .set_xcr = emulator_set_xcr,
6386 };
6387
6388 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6389 {
6390 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6391 /*
6392 * an sti; sti; sequence only disable interrupts for the first
6393 * instruction. So, if the last instruction, be it emulated or
6394 * not, left the system with the INT_STI flag enabled, it
6395 * means that the last instruction is an sti. We should not
6396 * leave the flag on in this case. The same goes for mov ss
6397 */
6398 if (int_shadow & mask)
6399 mask = 0;
6400 if (unlikely(int_shadow || mask)) {
6401 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6402 if (!mask)
6403 kvm_make_request(KVM_REQ_EVENT, vcpu);
6404 }
6405 }
6406
6407 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6408 {
6409 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6410 if (ctxt->exception.vector == PF_VECTOR)
6411 return kvm_propagate_fault(vcpu, &ctxt->exception);
6412
6413 if (ctxt->exception.error_code_valid)
6414 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6415 ctxt->exception.error_code);
6416 else
6417 kvm_queue_exception(vcpu, ctxt->exception.vector);
6418 return false;
6419 }
6420
6421 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6422 {
6423 struct x86_emulate_ctxt *ctxt;
6424
6425 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6426 if (!ctxt) {
6427 pr_err("kvm: failed to allocate vcpu's emulator\n");
6428 return NULL;
6429 }
6430
6431 ctxt->vcpu = vcpu;
6432 ctxt->ops = &emulate_ops;
6433 vcpu->arch.emulate_ctxt = ctxt;
6434
6435 return ctxt;
6436 }
6437
6438 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6439 {
6440 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6441 int cs_db, cs_l;
6442
6443 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6444
6445 ctxt->gpa_available = false;
6446 ctxt->eflags = kvm_get_rflags(vcpu);
6447 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6448
6449 ctxt->eip = kvm_rip_read(vcpu);
6450 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
6451 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
6452 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
6453 cs_db ? X86EMUL_MODE_PROT32 :
6454 X86EMUL_MODE_PROT16;
6455 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6456 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6457 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6458
6459 init_decode_cache(ctxt);
6460 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6461 }
6462
6463 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6464 {
6465 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6466 int ret;
6467
6468 init_emulate_ctxt(vcpu);
6469
6470 ctxt->op_bytes = 2;
6471 ctxt->ad_bytes = 2;
6472 ctxt->_eip = ctxt->eip + inc_eip;
6473 ret = emulate_int_real(ctxt, irq);
6474
6475 if (ret != X86EMUL_CONTINUE) {
6476 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6477 } else {
6478 ctxt->eip = ctxt->_eip;
6479 kvm_rip_write(vcpu, ctxt->eip);
6480 kvm_set_rflags(vcpu, ctxt->eflags);
6481 }
6482 }
6483 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6484
6485 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6486 {
6487 ++vcpu->stat.insn_emulation_fail;
6488 trace_kvm_emulate_insn_failed(vcpu);
6489
6490 if (emulation_type & EMULTYPE_VMWARE_GP) {
6491 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6492 return 1;
6493 }
6494
6495 if (emulation_type & EMULTYPE_SKIP) {
6496 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6497 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6498 vcpu->run->internal.ndata = 0;
6499 return 0;
6500 }
6501
6502 kvm_queue_exception(vcpu, UD_VECTOR);
6503
6504 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
6505 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6506 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6507 vcpu->run->internal.ndata = 0;
6508 return 0;
6509 }
6510
6511 return 1;
6512 }
6513
6514 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6515 bool write_fault_to_shadow_pgtable,
6516 int emulation_type)
6517 {
6518 gpa_t gpa = cr2_or_gpa;
6519 kvm_pfn_t pfn;
6520
6521 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6522 return false;
6523
6524 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6525 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6526 return false;
6527
6528 if (!vcpu->arch.mmu->direct_map) {
6529 /*
6530 * Write permission should be allowed since only
6531 * write access need to be emulated.
6532 */
6533 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6534
6535 /*
6536 * If the mapping is invalid in guest, let cpu retry
6537 * it to generate fault.
6538 */
6539 if (gpa == UNMAPPED_GVA)
6540 return true;
6541 }
6542
6543 /*
6544 * Do not retry the unhandleable instruction if it faults on the
6545 * readonly host memory, otherwise it will goto a infinite loop:
6546 * retry instruction -> write #PF -> emulation fail -> retry
6547 * instruction -> ...
6548 */
6549 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6550
6551 /*
6552 * If the instruction failed on the error pfn, it can not be fixed,
6553 * report the error to userspace.
6554 */
6555 if (is_error_noslot_pfn(pfn))
6556 return false;
6557
6558 kvm_release_pfn_clean(pfn);
6559
6560 /* The instructions are well-emulated on direct mmu. */
6561 if (vcpu->arch.mmu->direct_map) {
6562 unsigned int indirect_shadow_pages;
6563
6564 spin_lock(&vcpu->kvm->mmu_lock);
6565 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6566 spin_unlock(&vcpu->kvm->mmu_lock);
6567
6568 if (indirect_shadow_pages)
6569 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6570
6571 return true;
6572 }
6573
6574 /*
6575 * if emulation was due to access to shadowed page table
6576 * and it failed try to unshadow page and re-enter the
6577 * guest to let CPU execute the instruction.
6578 */
6579 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6580
6581 /*
6582 * If the access faults on its page table, it can not
6583 * be fixed by unprotecting shadow page and it should
6584 * be reported to userspace.
6585 */
6586 return !write_fault_to_shadow_pgtable;
6587 }
6588
6589 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6590 gpa_t cr2_or_gpa, int emulation_type)
6591 {
6592 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6593 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6594
6595 last_retry_eip = vcpu->arch.last_retry_eip;
6596 last_retry_addr = vcpu->arch.last_retry_addr;
6597
6598 /*
6599 * If the emulation is caused by #PF and it is non-page_table
6600 * writing instruction, it means the VM-EXIT is caused by shadow
6601 * page protected, we can zap the shadow page and retry this
6602 * instruction directly.
6603 *
6604 * Note: if the guest uses a non-page-table modifying instruction
6605 * on the PDE that points to the instruction, then we will unmap
6606 * the instruction and go to an infinite loop. So, we cache the
6607 * last retried eip and the last fault address, if we meet the eip
6608 * and the address again, we can break out of the potential infinite
6609 * loop.
6610 */
6611 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6612
6613 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6614 return false;
6615
6616 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6617 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6618 return false;
6619
6620 if (x86_page_table_writing_insn(ctxt))
6621 return false;
6622
6623 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6624 return false;
6625
6626 vcpu->arch.last_retry_eip = ctxt->eip;
6627 vcpu->arch.last_retry_addr = cr2_or_gpa;
6628
6629 if (!vcpu->arch.mmu->direct_map)
6630 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6631
6632 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6633
6634 return true;
6635 }
6636
6637 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6638 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6639
6640 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6641 {
6642 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6643 /* This is a good place to trace that we are exiting SMM. */
6644 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6645
6646 /* Process a latched INIT or SMI, if any. */
6647 kvm_make_request(KVM_REQ_EVENT, vcpu);
6648 }
6649
6650 kvm_mmu_reset_context(vcpu);
6651 }
6652
6653 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6654 unsigned long *db)
6655 {
6656 u32 dr6 = 0;
6657 int i;
6658 u32 enable, rwlen;
6659
6660 enable = dr7;
6661 rwlen = dr7 >> 16;
6662 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6663 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6664 dr6 |= (1 << i);
6665 return dr6;
6666 }
6667
6668 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6669 {
6670 struct kvm_run *kvm_run = vcpu->run;
6671
6672 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6673 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6674 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6675 kvm_run->debug.arch.exception = DB_VECTOR;
6676 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6677 return 0;
6678 }
6679 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6680 return 1;
6681 }
6682
6683 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6684 {
6685 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6686 int r;
6687
6688 r = kvm_x86_ops.skip_emulated_instruction(vcpu);
6689 if (unlikely(!r))
6690 return 0;
6691
6692 /*
6693 * rflags is the old, "raw" value of the flags. The new value has
6694 * not been saved yet.
6695 *
6696 * This is correct even for TF set by the guest, because "the
6697 * processor will not generate this exception after the instruction
6698 * that sets the TF flag".
6699 */
6700 if (unlikely(rflags & X86_EFLAGS_TF))
6701 r = kvm_vcpu_do_singlestep(vcpu);
6702 return r;
6703 }
6704 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6705
6706 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6707 {
6708 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6709 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6710 struct kvm_run *kvm_run = vcpu->run;
6711 unsigned long eip = kvm_get_linear_rip(vcpu);
6712 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6713 vcpu->arch.guest_debug_dr7,
6714 vcpu->arch.eff_db);
6715
6716 if (dr6 != 0) {
6717 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6718 kvm_run->debug.arch.pc = eip;
6719 kvm_run->debug.arch.exception = DB_VECTOR;
6720 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6721 *r = 0;
6722 return true;
6723 }
6724 }
6725
6726 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6727 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6728 unsigned long eip = kvm_get_linear_rip(vcpu);
6729 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6730 vcpu->arch.dr7,
6731 vcpu->arch.db);
6732
6733 if (dr6 != 0) {
6734 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6735 vcpu->arch.dr6 |= dr6 | DR6_RTM;
6736 kvm_queue_exception(vcpu, DB_VECTOR);
6737 *r = 1;
6738 return true;
6739 }
6740 }
6741
6742 return false;
6743 }
6744
6745 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6746 {
6747 switch (ctxt->opcode_len) {
6748 case 1:
6749 switch (ctxt->b) {
6750 case 0xe4: /* IN */
6751 case 0xe5:
6752 case 0xec:
6753 case 0xed:
6754 case 0xe6: /* OUT */
6755 case 0xe7:
6756 case 0xee:
6757 case 0xef:
6758 case 0x6c: /* INS */
6759 case 0x6d:
6760 case 0x6e: /* OUTS */
6761 case 0x6f:
6762 return true;
6763 }
6764 break;
6765 case 2:
6766 switch (ctxt->b) {
6767 case 0x33: /* RDPMC */
6768 return true;
6769 }
6770 break;
6771 }
6772
6773 return false;
6774 }
6775
6776 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6777 int emulation_type, void *insn, int insn_len)
6778 {
6779 int r;
6780 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6781 bool writeback = true;
6782 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6783
6784 vcpu->arch.l1tf_flush_l1d = true;
6785
6786 /*
6787 * Clear write_fault_to_shadow_pgtable here to ensure it is
6788 * never reused.
6789 */
6790 vcpu->arch.write_fault_to_shadow_pgtable = false;
6791 kvm_clear_exception_queue(vcpu);
6792
6793 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6794 init_emulate_ctxt(vcpu);
6795
6796 /*
6797 * We will reenter on the same instruction since
6798 * we do not set complete_userspace_io. This does not
6799 * handle watchpoints yet, those would be handled in
6800 * the emulate_ops.
6801 */
6802 if (!(emulation_type & EMULTYPE_SKIP) &&
6803 kvm_vcpu_check_breakpoint(vcpu, &r))
6804 return r;
6805
6806 ctxt->interruptibility = 0;
6807 ctxt->have_exception = false;
6808 ctxt->exception.vector = -1;
6809 ctxt->perm_ok = false;
6810
6811 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6812
6813 r = x86_decode_insn(ctxt, insn, insn_len);
6814
6815 trace_kvm_emulate_insn_start(vcpu);
6816 ++vcpu->stat.insn_emulation;
6817 if (r != EMULATION_OK) {
6818 if ((emulation_type & EMULTYPE_TRAP_UD) ||
6819 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6820 kvm_queue_exception(vcpu, UD_VECTOR);
6821 return 1;
6822 }
6823 if (reexecute_instruction(vcpu, cr2_or_gpa,
6824 write_fault_to_spt,
6825 emulation_type))
6826 return 1;
6827 if (ctxt->have_exception) {
6828 /*
6829 * #UD should result in just EMULATION_FAILED, and trap-like
6830 * exception should not be encountered during decode.
6831 */
6832 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6833 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6834 inject_emulated_exception(vcpu);
6835 return 1;
6836 }
6837 return handle_emulation_failure(vcpu, emulation_type);
6838 }
6839 }
6840
6841 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6842 !is_vmware_backdoor_opcode(ctxt)) {
6843 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6844 return 1;
6845 }
6846
6847 /*
6848 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6849 * for kvm_skip_emulated_instruction(). The caller is responsible for
6850 * updating interruptibility state and injecting single-step #DBs.
6851 */
6852 if (emulation_type & EMULTYPE_SKIP) {
6853 kvm_rip_write(vcpu, ctxt->_eip);
6854 if (ctxt->eflags & X86_EFLAGS_RF)
6855 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6856 return 1;
6857 }
6858
6859 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6860 return 1;
6861
6862 /* this is needed for vmware backdoor interface to work since it
6863 changes registers values during IO operation */
6864 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6865 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6866 emulator_invalidate_register_cache(ctxt);
6867 }
6868
6869 restart:
6870 if (emulation_type & EMULTYPE_PF) {
6871 /* Save the faulting GPA (cr2) in the address field */
6872 ctxt->exception.address = cr2_or_gpa;
6873
6874 /* With shadow page tables, cr2 contains a GVA or nGPA. */
6875 if (vcpu->arch.mmu->direct_map) {
6876 ctxt->gpa_available = true;
6877 ctxt->gpa_val = cr2_or_gpa;
6878 }
6879 } else {
6880 /* Sanitize the address out of an abundance of paranoia. */
6881 ctxt->exception.address = 0;
6882 }
6883
6884 r = x86_emulate_insn(ctxt);
6885
6886 if (r == EMULATION_INTERCEPTED)
6887 return 1;
6888
6889 if (r == EMULATION_FAILED) {
6890 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6891 emulation_type))
6892 return 1;
6893
6894 return handle_emulation_failure(vcpu, emulation_type);
6895 }
6896
6897 if (ctxt->have_exception) {
6898 r = 1;
6899 if (inject_emulated_exception(vcpu))
6900 return r;
6901 } else if (vcpu->arch.pio.count) {
6902 if (!vcpu->arch.pio.in) {
6903 /* FIXME: return into emulator if single-stepping. */
6904 vcpu->arch.pio.count = 0;
6905 } else {
6906 writeback = false;
6907 vcpu->arch.complete_userspace_io = complete_emulated_pio;
6908 }
6909 r = 0;
6910 } else if (vcpu->mmio_needed) {
6911 ++vcpu->stat.mmio_exits;
6912
6913 if (!vcpu->mmio_is_write)
6914 writeback = false;
6915 r = 0;
6916 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6917 } else if (r == EMULATION_RESTART)
6918 goto restart;
6919 else
6920 r = 1;
6921
6922 if (writeback) {
6923 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6924 toggle_interruptibility(vcpu, ctxt->interruptibility);
6925 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6926 if (!ctxt->have_exception ||
6927 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6928 kvm_rip_write(vcpu, ctxt->eip);
6929 if (r && ctxt->tf)
6930 r = kvm_vcpu_do_singlestep(vcpu);
6931 if (kvm_x86_ops.update_emulated_instruction)
6932 kvm_x86_ops.update_emulated_instruction(vcpu);
6933 __kvm_set_rflags(vcpu, ctxt->eflags);
6934 }
6935
6936 /*
6937 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6938 * do nothing, and it will be requested again as soon as
6939 * the shadow expires. But we still need to check here,
6940 * because POPF has no interrupt shadow.
6941 */
6942 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6943 kvm_make_request(KVM_REQ_EVENT, vcpu);
6944 } else
6945 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6946
6947 return r;
6948 }
6949
6950 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6951 {
6952 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6953 }
6954 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6955
6956 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6957 void *insn, int insn_len)
6958 {
6959 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6960 }
6961 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6962
6963 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6964 {
6965 vcpu->arch.pio.count = 0;
6966 return 1;
6967 }
6968
6969 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6970 {
6971 vcpu->arch.pio.count = 0;
6972
6973 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6974 return 1;
6975
6976 return kvm_skip_emulated_instruction(vcpu);
6977 }
6978
6979 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6980 unsigned short port)
6981 {
6982 unsigned long val = kvm_rax_read(vcpu);
6983 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
6984
6985 if (ret)
6986 return ret;
6987
6988 /*
6989 * Workaround userspace that relies on old KVM behavior of %rip being
6990 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6991 */
6992 if (port == 0x7e &&
6993 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6994 vcpu->arch.complete_userspace_io =
6995 complete_fast_pio_out_port_0x7e;
6996 kvm_skip_emulated_instruction(vcpu);
6997 } else {
6998 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6999 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7000 }
7001 return 0;
7002 }
7003
7004 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7005 {
7006 unsigned long val;
7007
7008 /* We should only ever be called with arch.pio.count equal to 1 */
7009 BUG_ON(vcpu->arch.pio.count != 1);
7010
7011 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7012 vcpu->arch.pio.count = 0;
7013 return 1;
7014 }
7015
7016 /* For size less than 4 we merge, else we zero extend */
7017 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7018
7019 /*
7020 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7021 * the copy and tracing
7022 */
7023 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7024 kvm_rax_write(vcpu, val);
7025
7026 return kvm_skip_emulated_instruction(vcpu);
7027 }
7028
7029 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7030 unsigned short port)
7031 {
7032 unsigned long val;
7033 int ret;
7034
7035 /* For size less than 4 we merge, else we zero extend */
7036 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7037
7038 ret = emulator_pio_in(vcpu, size, port, &val, 1);
7039 if (ret) {
7040 kvm_rax_write(vcpu, val);
7041 return ret;
7042 }
7043
7044 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7045 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7046
7047 return 0;
7048 }
7049
7050 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7051 {
7052 int ret;
7053
7054 if (in)
7055 ret = kvm_fast_pio_in(vcpu, size, port);
7056 else
7057 ret = kvm_fast_pio_out(vcpu, size, port);
7058 return ret && kvm_skip_emulated_instruction(vcpu);
7059 }
7060 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7061
7062 static int kvmclock_cpu_down_prep(unsigned int cpu)
7063 {
7064 __this_cpu_write(cpu_tsc_khz, 0);
7065 return 0;
7066 }
7067
7068 static void tsc_khz_changed(void *data)
7069 {
7070 struct cpufreq_freqs *freq = data;
7071 unsigned long khz = 0;
7072
7073 if (data)
7074 khz = freq->new;
7075 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7076 khz = cpufreq_quick_get(raw_smp_processor_id());
7077 if (!khz)
7078 khz = tsc_khz;
7079 __this_cpu_write(cpu_tsc_khz, khz);
7080 }
7081
7082 #ifdef CONFIG_X86_64
7083 static void kvm_hyperv_tsc_notifier(void)
7084 {
7085 struct kvm *kvm;
7086 struct kvm_vcpu *vcpu;
7087 int cpu;
7088
7089 mutex_lock(&kvm_lock);
7090 list_for_each_entry(kvm, &vm_list, vm_list)
7091 kvm_make_mclock_inprogress_request(kvm);
7092
7093 hyperv_stop_tsc_emulation();
7094
7095 /* TSC frequency always matches when on Hyper-V */
7096 for_each_present_cpu(cpu)
7097 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7098 kvm_max_guest_tsc_khz = tsc_khz;
7099
7100 list_for_each_entry(kvm, &vm_list, vm_list) {
7101 struct kvm_arch *ka = &kvm->arch;
7102
7103 spin_lock(&ka->pvclock_gtod_sync_lock);
7104
7105 pvclock_update_vm_gtod_copy(kvm);
7106
7107 kvm_for_each_vcpu(cpu, vcpu, kvm)
7108 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7109
7110 kvm_for_each_vcpu(cpu, vcpu, kvm)
7111 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7112
7113 spin_unlock(&ka->pvclock_gtod_sync_lock);
7114 }
7115 mutex_unlock(&kvm_lock);
7116 }
7117 #endif
7118
7119 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7120 {
7121 struct kvm *kvm;
7122 struct kvm_vcpu *vcpu;
7123 int i, send_ipi = 0;
7124
7125 /*
7126 * We allow guests to temporarily run on slowing clocks,
7127 * provided we notify them after, or to run on accelerating
7128 * clocks, provided we notify them before. Thus time never
7129 * goes backwards.
7130 *
7131 * However, we have a problem. We can't atomically update
7132 * the frequency of a given CPU from this function; it is
7133 * merely a notifier, which can be called from any CPU.
7134 * Changing the TSC frequency at arbitrary points in time
7135 * requires a recomputation of local variables related to
7136 * the TSC for each VCPU. We must flag these local variables
7137 * to be updated and be sure the update takes place with the
7138 * new frequency before any guests proceed.
7139 *
7140 * Unfortunately, the combination of hotplug CPU and frequency
7141 * change creates an intractable locking scenario; the order
7142 * of when these callouts happen is undefined with respect to
7143 * CPU hotplug, and they can race with each other. As such,
7144 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7145 * undefined; you can actually have a CPU frequency change take
7146 * place in between the computation of X and the setting of the
7147 * variable. To protect against this problem, all updates of
7148 * the per_cpu tsc_khz variable are done in an interrupt
7149 * protected IPI, and all callers wishing to update the value
7150 * must wait for a synchronous IPI to complete (which is trivial
7151 * if the caller is on the CPU already). This establishes the
7152 * necessary total order on variable updates.
7153 *
7154 * Note that because a guest time update may take place
7155 * anytime after the setting of the VCPU's request bit, the
7156 * correct TSC value must be set before the request. However,
7157 * to ensure the update actually makes it to any guest which
7158 * starts running in hardware virtualization between the set
7159 * and the acquisition of the spinlock, we must also ping the
7160 * CPU after setting the request bit.
7161 *
7162 */
7163
7164 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7165
7166 mutex_lock(&kvm_lock);
7167 list_for_each_entry(kvm, &vm_list, vm_list) {
7168 kvm_for_each_vcpu(i, vcpu, kvm) {
7169 if (vcpu->cpu != cpu)
7170 continue;
7171 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7172 if (vcpu->cpu != raw_smp_processor_id())
7173 send_ipi = 1;
7174 }
7175 }
7176 mutex_unlock(&kvm_lock);
7177
7178 if (freq->old < freq->new && send_ipi) {
7179 /*
7180 * We upscale the frequency. Must make the guest
7181 * doesn't see old kvmclock values while running with
7182 * the new frequency, otherwise we risk the guest sees
7183 * time go backwards.
7184 *
7185 * In case we update the frequency for another cpu
7186 * (which might be in guest context) send an interrupt
7187 * to kick the cpu out of guest context. Next time
7188 * guest context is entered kvmclock will be updated,
7189 * so the guest will not see stale values.
7190 */
7191 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7192 }
7193 }
7194
7195 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7196 void *data)
7197 {
7198 struct cpufreq_freqs *freq = data;
7199 int cpu;
7200
7201 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7202 return 0;
7203 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7204 return 0;
7205
7206 for_each_cpu(cpu, freq->policy->cpus)
7207 __kvmclock_cpufreq_notifier(freq, cpu);
7208
7209 return 0;
7210 }
7211
7212 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7213 .notifier_call = kvmclock_cpufreq_notifier
7214 };
7215
7216 static int kvmclock_cpu_online(unsigned int cpu)
7217 {
7218 tsc_khz_changed(NULL);
7219 return 0;
7220 }
7221
7222 static void kvm_timer_init(void)
7223 {
7224 max_tsc_khz = tsc_khz;
7225
7226 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7227 #ifdef CONFIG_CPU_FREQ
7228 struct cpufreq_policy *policy;
7229 int cpu;
7230
7231 cpu = get_cpu();
7232 policy = cpufreq_cpu_get(cpu);
7233 if (policy) {
7234 if (policy->cpuinfo.max_freq)
7235 max_tsc_khz = policy->cpuinfo.max_freq;
7236 cpufreq_cpu_put(policy);
7237 }
7238 put_cpu();
7239 #endif
7240 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7241 CPUFREQ_TRANSITION_NOTIFIER);
7242 }
7243
7244 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7245 kvmclock_cpu_online, kvmclock_cpu_down_prep);
7246 }
7247
7248 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7249 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7250
7251 int kvm_is_in_guest(void)
7252 {
7253 return __this_cpu_read(current_vcpu) != NULL;
7254 }
7255
7256 static int kvm_is_user_mode(void)
7257 {
7258 int user_mode = 3;
7259
7260 if (__this_cpu_read(current_vcpu))
7261 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7262
7263 return user_mode != 0;
7264 }
7265
7266 static unsigned long kvm_get_guest_ip(void)
7267 {
7268 unsigned long ip = 0;
7269
7270 if (__this_cpu_read(current_vcpu))
7271 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7272
7273 return ip;
7274 }
7275
7276 static void kvm_handle_intel_pt_intr(void)
7277 {
7278 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7279
7280 kvm_make_request(KVM_REQ_PMI, vcpu);
7281 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7282 (unsigned long *)&vcpu->arch.pmu.global_status);
7283 }
7284
7285 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7286 .is_in_guest = kvm_is_in_guest,
7287 .is_user_mode = kvm_is_user_mode,
7288 .get_guest_ip = kvm_get_guest_ip,
7289 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
7290 };
7291
7292 #ifdef CONFIG_X86_64
7293 static void pvclock_gtod_update_fn(struct work_struct *work)
7294 {
7295 struct kvm *kvm;
7296
7297 struct kvm_vcpu *vcpu;
7298 int i;
7299
7300 mutex_lock(&kvm_lock);
7301 list_for_each_entry(kvm, &vm_list, vm_list)
7302 kvm_for_each_vcpu(i, vcpu, kvm)
7303 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7304 atomic_set(&kvm_guest_has_master_clock, 0);
7305 mutex_unlock(&kvm_lock);
7306 }
7307
7308 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7309
7310 /*
7311 * Notification about pvclock gtod data update.
7312 */
7313 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7314 void *priv)
7315 {
7316 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7317 struct timekeeper *tk = priv;
7318
7319 update_pvclock_gtod(tk);
7320
7321 /* disable master clock if host does not trust, or does not
7322 * use, TSC based clocksource.
7323 */
7324 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7325 atomic_read(&kvm_guest_has_master_clock) != 0)
7326 queue_work(system_long_wq, &pvclock_gtod_work);
7327
7328 return 0;
7329 }
7330
7331 static struct notifier_block pvclock_gtod_notifier = {
7332 .notifier_call = pvclock_gtod_notify,
7333 };
7334 #endif
7335
7336 int kvm_arch_init(void *opaque)
7337 {
7338 struct kvm_x86_init_ops *ops = opaque;
7339 int r;
7340
7341 if (kvm_x86_ops.hardware_enable) {
7342 printk(KERN_ERR "kvm: already loaded the other module\n");
7343 r = -EEXIST;
7344 goto out;
7345 }
7346
7347 if (!ops->cpu_has_kvm_support()) {
7348 pr_err_ratelimited("kvm: no hardware support\n");
7349 r = -EOPNOTSUPP;
7350 goto out;
7351 }
7352 if (ops->disabled_by_bios()) {
7353 pr_err_ratelimited("kvm: disabled by bios\n");
7354 r = -EOPNOTSUPP;
7355 goto out;
7356 }
7357
7358 /*
7359 * KVM explicitly assumes that the guest has an FPU and
7360 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7361 * vCPU's FPU state as a fxregs_state struct.
7362 */
7363 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7364 printk(KERN_ERR "kvm: inadequate fpu\n");
7365 r = -EOPNOTSUPP;
7366 goto out;
7367 }
7368
7369 r = -ENOMEM;
7370 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7371 __alignof__(struct fpu), SLAB_ACCOUNT,
7372 NULL);
7373 if (!x86_fpu_cache) {
7374 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7375 goto out;
7376 }
7377
7378 x86_emulator_cache = kvm_alloc_emulator_cache();
7379 if (!x86_emulator_cache) {
7380 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7381 goto out_free_x86_fpu_cache;
7382 }
7383
7384 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7385 if (!shared_msrs) {
7386 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7387 goto out_free_x86_emulator_cache;
7388 }
7389
7390 r = kvm_mmu_module_init();
7391 if (r)
7392 goto out_free_percpu;
7393
7394 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7395 PT_DIRTY_MASK, PT64_NX_MASK, 0,
7396 PT_PRESENT_MASK, 0, sme_me_mask);
7397 kvm_timer_init();
7398
7399 perf_register_guest_info_callbacks(&kvm_guest_cbs);
7400
7401 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7402 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7403 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7404 }
7405
7406 kvm_lapic_init();
7407 if (pi_inject_timer == -1)
7408 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7409 #ifdef CONFIG_X86_64
7410 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7411
7412 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7413 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7414 #endif
7415
7416 return 0;
7417
7418 out_free_percpu:
7419 free_percpu(shared_msrs);
7420 out_free_x86_emulator_cache:
7421 kmem_cache_destroy(x86_emulator_cache);
7422 out_free_x86_fpu_cache:
7423 kmem_cache_destroy(x86_fpu_cache);
7424 out:
7425 return r;
7426 }
7427
7428 void kvm_arch_exit(void)
7429 {
7430 #ifdef CONFIG_X86_64
7431 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7432 clear_hv_tscchange_cb();
7433 #endif
7434 kvm_lapic_exit();
7435 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7436
7437 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7438 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7439 CPUFREQ_TRANSITION_NOTIFIER);
7440 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7441 #ifdef CONFIG_X86_64
7442 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7443 #endif
7444 kvm_x86_ops.hardware_enable = NULL;
7445 kvm_mmu_module_exit();
7446 free_percpu(shared_msrs);
7447 kmem_cache_destroy(x86_fpu_cache);
7448 }
7449
7450 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7451 {
7452 ++vcpu->stat.halt_exits;
7453 if (lapic_in_kernel(vcpu)) {
7454 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7455 return 1;
7456 } else {
7457 vcpu->run->exit_reason = KVM_EXIT_HLT;
7458 return 0;
7459 }
7460 }
7461 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7462
7463 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7464 {
7465 int ret = kvm_skip_emulated_instruction(vcpu);
7466 /*
7467 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7468 * KVM_EXIT_DEBUG here.
7469 */
7470 return kvm_vcpu_halt(vcpu) && ret;
7471 }
7472 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7473
7474 #ifdef CONFIG_X86_64
7475 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7476 unsigned long clock_type)
7477 {
7478 struct kvm_clock_pairing clock_pairing;
7479 struct timespec64 ts;
7480 u64 cycle;
7481 int ret;
7482
7483 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7484 return -KVM_EOPNOTSUPP;
7485
7486 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7487 return -KVM_EOPNOTSUPP;
7488
7489 clock_pairing.sec = ts.tv_sec;
7490 clock_pairing.nsec = ts.tv_nsec;
7491 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7492 clock_pairing.flags = 0;
7493 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7494
7495 ret = 0;
7496 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7497 sizeof(struct kvm_clock_pairing)))
7498 ret = -KVM_EFAULT;
7499
7500 return ret;
7501 }
7502 #endif
7503
7504 /*
7505 * kvm_pv_kick_cpu_op: Kick a vcpu.
7506 *
7507 * @apicid - apicid of vcpu to be kicked.
7508 */
7509 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7510 {
7511 struct kvm_lapic_irq lapic_irq;
7512
7513 lapic_irq.shorthand = APIC_DEST_NOSHORT;
7514 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7515 lapic_irq.level = 0;
7516 lapic_irq.dest_id = apicid;
7517 lapic_irq.msi_redir_hint = false;
7518
7519 lapic_irq.delivery_mode = APIC_DM_REMRD;
7520 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7521 }
7522
7523 bool kvm_apicv_activated(struct kvm *kvm)
7524 {
7525 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7526 }
7527 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7528
7529 void kvm_apicv_init(struct kvm *kvm, bool enable)
7530 {
7531 if (enable)
7532 clear_bit(APICV_INHIBIT_REASON_DISABLE,
7533 &kvm->arch.apicv_inhibit_reasons);
7534 else
7535 set_bit(APICV_INHIBIT_REASON_DISABLE,
7536 &kvm->arch.apicv_inhibit_reasons);
7537 }
7538 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7539
7540 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7541 {
7542 struct kvm_vcpu *target = NULL;
7543 struct kvm_apic_map *map;
7544
7545 rcu_read_lock();
7546 map = rcu_dereference(kvm->arch.apic_map);
7547
7548 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7549 target = map->phys_map[dest_id]->vcpu;
7550
7551 rcu_read_unlock();
7552
7553 if (target && READ_ONCE(target->ready))
7554 kvm_vcpu_yield_to(target);
7555 }
7556
7557 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7558 {
7559 unsigned long nr, a0, a1, a2, a3, ret;
7560 int op_64_bit;
7561
7562 if (kvm_hv_hypercall_enabled(vcpu->kvm))
7563 return kvm_hv_hypercall(vcpu);
7564
7565 nr = kvm_rax_read(vcpu);
7566 a0 = kvm_rbx_read(vcpu);
7567 a1 = kvm_rcx_read(vcpu);
7568 a2 = kvm_rdx_read(vcpu);
7569 a3 = kvm_rsi_read(vcpu);
7570
7571 trace_kvm_hypercall(nr, a0, a1, a2, a3);
7572
7573 op_64_bit = is_64_bit_mode(vcpu);
7574 if (!op_64_bit) {
7575 nr &= 0xFFFFFFFF;
7576 a0 &= 0xFFFFFFFF;
7577 a1 &= 0xFFFFFFFF;
7578 a2 &= 0xFFFFFFFF;
7579 a3 &= 0xFFFFFFFF;
7580 }
7581
7582 if (kvm_x86_ops.get_cpl(vcpu) != 0) {
7583 ret = -KVM_EPERM;
7584 goto out;
7585 }
7586
7587 switch (nr) {
7588 case KVM_HC_VAPIC_POLL_IRQ:
7589 ret = 0;
7590 break;
7591 case KVM_HC_KICK_CPU:
7592 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7593 kvm_sched_yield(vcpu->kvm, a1);
7594 ret = 0;
7595 break;
7596 #ifdef CONFIG_X86_64
7597 case KVM_HC_CLOCK_PAIRING:
7598 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7599 break;
7600 #endif
7601 case KVM_HC_SEND_IPI:
7602 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7603 break;
7604 case KVM_HC_SCHED_YIELD:
7605 kvm_sched_yield(vcpu->kvm, a0);
7606 ret = 0;
7607 break;
7608 default:
7609 ret = -KVM_ENOSYS;
7610 break;
7611 }
7612 out:
7613 if (!op_64_bit)
7614 ret = (u32)ret;
7615 kvm_rax_write(vcpu, ret);
7616
7617 ++vcpu->stat.hypercalls;
7618 return kvm_skip_emulated_instruction(vcpu);
7619 }
7620 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7621
7622 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7623 {
7624 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7625 char instruction[3];
7626 unsigned long rip = kvm_rip_read(vcpu);
7627
7628 kvm_x86_ops.patch_hypercall(vcpu, instruction);
7629
7630 return emulator_write_emulated(ctxt, rip, instruction, 3,
7631 &ctxt->exception);
7632 }
7633
7634 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7635 {
7636 return vcpu->run->request_interrupt_window &&
7637 likely(!pic_in_kernel(vcpu->kvm));
7638 }
7639
7640 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7641 {
7642 struct kvm_run *kvm_run = vcpu->run;
7643
7644 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7645 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7646 kvm_run->cr8 = kvm_get_cr8(vcpu);
7647 kvm_run->apic_base = kvm_get_apic_base(vcpu);
7648 kvm_run->ready_for_interrupt_injection =
7649 pic_in_kernel(vcpu->kvm) ||
7650 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7651 }
7652
7653 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7654 {
7655 int max_irr, tpr;
7656
7657 if (!kvm_x86_ops.update_cr8_intercept)
7658 return;
7659
7660 if (!lapic_in_kernel(vcpu))
7661 return;
7662
7663 if (vcpu->arch.apicv_active)
7664 return;
7665
7666 if (!vcpu->arch.apic->vapic_addr)
7667 max_irr = kvm_lapic_find_highest_irr(vcpu);
7668 else
7669 max_irr = -1;
7670
7671 if (max_irr != -1)
7672 max_irr >>= 4;
7673
7674 tpr = kvm_lapic_get_cr8(vcpu);
7675
7676 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
7677 }
7678
7679 static int inject_pending_event(struct kvm_vcpu *vcpu)
7680 {
7681 int r;
7682
7683 /* try to reinject previous events if any */
7684
7685 if (vcpu->arch.exception.injected)
7686 kvm_x86_ops.queue_exception(vcpu);
7687 /*
7688 * Do not inject an NMI or interrupt if there is a pending
7689 * exception. Exceptions and interrupts are recognized at
7690 * instruction boundaries, i.e. the start of an instruction.
7691 * Trap-like exceptions, e.g. #DB, have higher priority than
7692 * NMIs and interrupts, i.e. traps are recognized before an
7693 * NMI/interrupt that's pending on the same instruction.
7694 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7695 * priority, but are only generated (pended) during instruction
7696 * execution, i.e. a pending fault-like exception means the
7697 * fault occurred on the *previous* instruction and must be
7698 * serviced prior to recognizing any new events in order to
7699 * fully complete the previous instruction.
7700 */
7701 else if (!vcpu->arch.exception.pending) {
7702 if (vcpu->arch.nmi_injected)
7703 kvm_x86_ops.set_nmi(vcpu);
7704 else if (vcpu->arch.interrupt.injected)
7705 kvm_x86_ops.set_irq(vcpu);
7706 }
7707
7708 /*
7709 * Call check_nested_events() even if we reinjected a previous event
7710 * in order for caller to determine if it should require immediate-exit
7711 * from L2 to L1 due to pending L1 events which require exit
7712 * from L2 to L1.
7713 */
7714 if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) {
7715 r = kvm_x86_ops.check_nested_events(vcpu);
7716 if (r != 0)
7717 return r;
7718 }
7719
7720 /* try to inject new event if pending */
7721 if (vcpu->arch.exception.pending) {
7722 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7723 vcpu->arch.exception.has_error_code,
7724 vcpu->arch.exception.error_code);
7725
7726 WARN_ON_ONCE(vcpu->arch.exception.injected);
7727 vcpu->arch.exception.pending = false;
7728 vcpu->arch.exception.injected = true;
7729
7730 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7731 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7732 X86_EFLAGS_RF);
7733
7734 if (vcpu->arch.exception.nr == DB_VECTOR) {
7735 /*
7736 * This code assumes that nSVM doesn't use
7737 * check_nested_events(). If it does, the
7738 * DR6/DR7 changes should happen before L1
7739 * gets a #VMEXIT for an intercepted #DB in
7740 * L2. (Under VMX, on the other hand, the
7741 * DR6/DR7 changes should not happen in the
7742 * event of a VM-exit to L1 for an intercepted
7743 * #DB in L2.)
7744 */
7745 kvm_deliver_exception_payload(vcpu);
7746 if (vcpu->arch.dr7 & DR7_GD) {
7747 vcpu->arch.dr7 &= ~DR7_GD;
7748 kvm_update_dr7(vcpu);
7749 }
7750 }
7751
7752 kvm_x86_ops.queue_exception(vcpu);
7753 }
7754
7755 /* Don't consider new event if we re-injected an event */
7756 if (kvm_event_needs_reinjection(vcpu))
7757 return 0;
7758
7759 if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7760 kvm_x86_ops.smi_allowed(vcpu)) {
7761 vcpu->arch.smi_pending = false;
7762 ++vcpu->arch.smi_count;
7763 enter_smm(vcpu);
7764 } else if (vcpu->arch.nmi_pending && kvm_x86_ops.nmi_allowed(vcpu)) {
7765 --vcpu->arch.nmi_pending;
7766 vcpu->arch.nmi_injected = true;
7767 kvm_x86_ops.set_nmi(vcpu);
7768 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7769 /*
7770 * Because interrupts can be injected asynchronously, we are
7771 * calling check_nested_events again here to avoid a race condition.
7772 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7773 * proposal and current concerns. Perhaps we should be setting
7774 * KVM_REQ_EVENT only on certain events and not unconditionally?
7775 */
7776 if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) {
7777 r = kvm_x86_ops.check_nested_events(vcpu);
7778 if (r != 0)
7779 return r;
7780 }
7781 if (kvm_x86_ops.interrupt_allowed(vcpu)) {
7782 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7783 false);
7784 kvm_x86_ops.set_irq(vcpu);
7785 }
7786 }
7787
7788 return 0;
7789 }
7790
7791 static void process_nmi(struct kvm_vcpu *vcpu)
7792 {
7793 unsigned limit = 2;
7794
7795 /*
7796 * x86 is limited to one NMI running, and one NMI pending after it.
7797 * If an NMI is already in progress, limit further NMIs to just one.
7798 * Otherwise, allow two (and we'll inject the first one immediately).
7799 */
7800 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7801 limit = 1;
7802
7803 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7804 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7805 kvm_make_request(KVM_REQ_EVENT, vcpu);
7806 }
7807
7808 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7809 {
7810 u32 flags = 0;
7811 flags |= seg->g << 23;
7812 flags |= seg->db << 22;
7813 flags |= seg->l << 21;
7814 flags |= seg->avl << 20;
7815 flags |= seg->present << 15;
7816 flags |= seg->dpl << 13;
7817 flags |= seg->s << 12;
7818 flags |= seg->type << 8;
7819 return flags;
7820 }
7821
7822 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7823 {
7824 struct kvm_segment seg;
7825 int offset;
7826
7827 kvm_get_segment(vcpu, &seg, n);
7828 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7829
7830 if (n < 3)
7831 offset = 0x7f84 + n * 12;
7832 else
7833 offset = 0x7f2c + (n - 3) * 12;
7834
7835 put_smstate(u32, buf, offset + 8, seg.base);
7836 put_smstate(u32, buf, offset + 4, seg.limit);
7837 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7838 }
7839
7840 #ifdef CONFIG_X86_64
7841 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7842 {
7843 struct kvm_segment seg;
7844 int offset;
7845 u16 flags;
7846
7847 kvm_get_segment(vcpu, &seg, n);
7848 offset = 0x7e00 + n * 16;
7849
7850 flags = enter_smm_get_segment_flags(&seg) >> 8;
7851 put_smstate(u16, buf, offset, seg.selector);
7852 put_smstate(u16, buf, offset + 2, flags);
7853 put_smstate(u32, buf, offset + 4, seg.limit);
7854 put_smstate(u64, buf, offset + 8, seg.base);
7855 }
7856 #endif
7857
7858 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7859 {
7860 struct desc_ptr dt;
7861 struct kvm_segment seg;
7862 unsigned long val;
7863 int i;
7864
7865 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7866 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7867 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7868 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7869
7870 for (i = 0; i < 8; i++)
7871 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7872
7873 kvm_get_dr(vcpu, 6, &val);
7874 put_smstate(u32, buf, 0x7fcc, (u32)val);
7875 kvm_get_dr(vcpu, 7, &val);
7876 put_smstate(u32, buf, 0x7fc8, (u32)val);
7877
7878 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7879 put_smstate(u32, buf, 0x7fc4, seg.selector);
7880 put_smstate(u32, buf, 0x7f64, seg.base);
7881 put_smstate(u32, buf, 0x7f60, seg.limit);
7882 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7883
7884 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7885 put_smstate(u32, buf, 0x7fc0, seg.selector);
7886 put_smstate(u32, buf, 0x7f80, seg.base);
7887 put_smstate(u32, buf, 0x7f7c, seg.limit);
7888 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7889
7890 kvm_x86_ops.get_gdt(vcpu, &dt);
7891 put_smstate(u32, buf, 0x7f74, dt.address);
7892 put_smstate(u32, buf, 0x7f70, dt.size);
7893
7894 kvm_x86_ops.get_idt(vcpu, &dt);
7895 put_smstate(u32, buf, 0x7f58, dt.address);
7896 put_smstate(u32, buf, 0x7f54, dt.size);
7897
7898 for (i = 0; i < 6; i++)
7899 enter_smm_save_seg_32(vcpu, buf, i);
7900
7901 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7902
7903 /* revision id */
7904 put_smstate(u32, buf, 0x7efc, 0x00020000);
7905 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7906 }
7907
7908 #ifdef CONFIG_X86_64
7909 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7910 {
7911 struct desc_ptr dt;
7912 struct kvm_segment seg;
7913 unsigned long val;
7914 int i;
7915
7916 for (i = 0; i < 16; i++)
7917 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7918
7919 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7920 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7921
7922 kvm_get_dr(vcpu, 6, &val);
7923 put_smstate(u64, buf, 0x7f68, val);
7924 kvm_get_dr(vcpu, 7, &val);
7925 put_smstate(u64, buf, 0x7f60, val);
7926
7927 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7928 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7929 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7930
7931 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7932
7933 /* revision id */
7934 put_smstate(u32, buf, 0x7efc, 0x00020064);
7935
7936 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7937
7938 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7939 put_smstate(u16, buf, 0x7e90, seg.selector);
7940 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7941 put_smstate(u32, buf, 0x7e94, seg.limit);
7942 put_smstate(u64, buf, 0x7e98, seg.base);
7943
7944 kvm_x86_ops.get_idt(vcpu, &dt);
7945 put_smstate(u32, buf, 0x7e84, dt.size);
7946 put_smstate(u64, buf, 0x7e88, dt.address);
7947
7948 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7949 put_smstate(u16, buf, 0x7e70, seg.selector);
7950 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7951 put_smstate(u32, buf, 0x7e74, seg.limit);
7952 put_smstate(u64, buf, 0x7e78, seg.base);
7953
7954 kvm_x86_ops.get_gdt(vcpu, &dt);
7955 put_smstate(u32, buf, 0x7e64, dt.size);
7956 put_smstate(u64, buf, 0x7e68, dt.address);
7957
7958 for (i = 0; i < 6; i++)
7959 enter_smm_save_seg_64(vcpu, buf, i);
7960 }
7961 #endif
7962
7963 static void enter_smm(struct kvm_vcpu *vcpu)
7964 {
7965 struct kvm_segment cs, ds;
7966 struct desc_ptr dt;
7967 char buf[512];
7968 u32 cr0;
7969
7970 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7971 memset(buf, 0, 512);
7972 #ifdef CONFIG_X86_64
7973 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7974 enter_smm_save_state_64(vcpu, buf);
7975 else
7976 #endif
7977 enter_smm_save_state_32(vcpu, buf);
7978
7979 /*
7980 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7981 * vCPU state (e.g. leave guest mode) after we've saved the state into
7982 * the SMM state-save area.
7983 */
7984 kvm_x86_ops.pre_enter_smm(vcpu, buf);
7985
7986 vcpu->arch.hflags |= HF_SMM_MASK;
7987 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7988
7989 if (kvm_x86_ops.get_nmi_mask(vcpu))
7990 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7991 else
7992 kvm_x86_ops.set_nmi_mask(vcpu, true);
7993
7994 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7995 kvm_rip_write(vcpu, 0x8000);
7996
7997 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7998 kvm_x86_ops.set_cr0(vcpu, cr0);
7999 vcpu->arch.cr0 = cr0;
8000
8001 kvm_x86_ops.set_cr4(vcpu, 0);
8002
8003 /* Undocumented: IDT limit is set to zero on entry to SMM. */
8004 dt.address = dt.size = 0;
8005 kvm_x86_ops.set_idt(vcpu, &dt);
8006
8007 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8008
8009 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8010 cs.base = vcpu->arch.smbase;
8011
8012 ds.selector = 0;
8013 ds.base = 0;
8014
8015 cs.limit = ds.limit = 0xffffffff;
8016 cs.type = ds.type = 0x3;
8017 cs.dpl = ds.dpl = 0;
8018 cs.db = ds.db = 0;
8019 cs.s = ds.s = 1;
8020 cs.l = ds.l = 0;
8021 cs.g = ds.g = 1;
8022 cs.avl = ds.avl = 0;
8023 cs.present = ds.present = 1;
8024 cs.unusable = ds.unusable = 0;
8025 cs.padding = ds.padding = 0;
8026
8027 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8028 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8029 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8030 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8031 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8032 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8033
8034 #ifdef CONFIG_X86_64
8035 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8036 kvm_x86_ops.set_efer(vcpu, 0);
8037 #endif
8038
8039 kvm_update_cpuid(vcpu);
8040 kvm_mmu_reset_context(vcpu);
8041 }
8042
8043 static void process_smi(struct kvm_vcpu *vcpu)
8044 {
8045 vcpu->arch.smi_pending = true;
8046 kvm_make_request(KVM_REQ_EVENT, vcpu);
8047 }
8048
8049 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8050 unsigned long *vcpu_bitmap)
8051 {
8052 cpumask_var_t cpus;
8053
8054 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8055
8056 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8057 vcpu_bitmap, cpus);
8058
8059 free_cpumask_var(cpus);
8060 }
8061
8062 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8063 {
8064 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8065 }
8066
8067 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8068 {
8069 if (!lapic_in_kernel(vcpu))
8070 return;
8071
8072 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8073 kvm_apic_update_apicv(vcpu);
8074 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8075 }
8076 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8077
8078 /*
8079 * NOTE: Do not hold any lock prior to calling this.
8080 *
8081 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8082 * locked, because it calls __x86_set_memory_region() which does
8083 * synchronize_srcu(&kvm->srcu).
8084 */
8085 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8086 {
8087 unsigned long old, new, expected;
8088
8089 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8090 !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8091 return;
8092
8093 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8094 do {
8095 expected = new = old;
8096 if (activate)
8097 __clear_bit(bit, &new);
8098 else
8099 __set_bit(bit, &new);
8100 if (new == old)
8101 break;
8102 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8103 } while (old != expected);
8104
8105 if (!!old == !!new)
8106 return;
8107
8108 trace_kvm_apicv_update_request(activate, bit);
8109 if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8110 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8111 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
8112 }
8113 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8114
8115 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8116 {
8117 if (!kvm_apic_present(vcpu))
8118 return;
8119
8120 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8121
8122 if (irqchip_split(vcpu->kvm))
8123 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8124 else {
8125 if (vcpu->arch.apicv_active)
8126 kvm_x86_ops.sync_pir_to_irr(vcpu);
8127 if (ioapic_in_kernel(vcpu->kvm))
8128 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8129 }
8130
8131 if (is_guest_mode(vcpu))
8132 vcpu->arch.load_eoi_exitmap_pending = true;
8133 else
8134 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8135 }
8136
8137 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8138 {
8139 u64 eoi_exit_bitmap[4];
8140
8141 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8142 return;
8143
8144 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8145 vcpu_to_synic(vcpu)->vec_bitmap, 256);
8146 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8147 }
8148
8149 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8150 unsigned long start, unsigned long end,
8151 bool blockable)
8152 {
8153 unsigned long apic_address;
8154
8155 /*
8156 * The physical address of apic access page is stored in the VMCS.
8157 * Update it when it becomes invalid.
8158 */
8159 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8160 if (start <= apic_address && apic_address < end)
8161 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8162
8163 return 0;
8164 }
8165
8166 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8167 {
8168 struct page *page = NULL;
8169
8170 if (!lapic_in_kernel(vcpu))
8171 return;
8172
8173 if (!kvm_x86_ops.set_apic_access_page_addr)
8174 return;
8175
8176 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8177 if (is_error_page(page))
8178 return;
8179 kvm_x86_ops.set_apic_access_page_addr(vcpu, page_to_phys(page));
8180
8181 /*
8182 * Do not pin apic access page in memory, the MMU notifier
8183 * will call us again if it is migrated or swapped out.
8184 */
8185 put_page(page);
8186 }
8187
8188 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8189 {
8190 smp_send_reschedule(vcpu->cpu);
8191 }
8192 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8193
8194 /*
8195 * Returns 1 to let vcpu_run() continue the guest execution loop without
8196 * exiting to the userspace. Otherwise, the value will be returned to the
8197 * userspace.
8198 */
8199 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8200 {
8201 int r;
8202 bool req_int_win =
8203 dm_request_for_irq_injection(vcpu) &&
8204 kvm_cpu_accept_dm_intr(vcpu);
8205 enum exit_fastpath_completion exit_fastpath = EXIT_FASTPATH_NONE;
8206
8207 bool req_immediate_exit = false;
8208
8209 if (kvm_request_pending(vcpu)) {
8210 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8211 if (unlikely(!kvm_x86_ops.get_vmcs12_pages(vcpu))) {
8212 r = 0;
8213 goto out;
8214 }
8215 }
8216 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8217 kvm_mmu_unload(vcpu);
8218 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8219 __kvm_migrate_timers(vcpu);
8220 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8221 kvm_gen_update_masterclock(vcpu->kvm);
8222 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8223 kvm_gen_kvmclock_update(vcpu);
8224 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8225 r = kvm_guest_time_update(vcpu);
8226 if (unlikely(r))
8227 goto out;
8228 }
8229 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8230 kvm_mmu_sync_roots(vcpu);
8231 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8232 kvm_mmu_load_pgd(vcpu);
8233 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8234 kvm_vcpu_flush_tlb(vcpu, true);
8235 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8236 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8237 r = 0;
8238 goto out;
8239 }
8240 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8241 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8242 vcpu->mmio_needed = 0;
8243 r = 0;
8244 goto out;
8245 }
8246 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8247 /* Page is swapped out. Do synthetic halt */
8248 vcpu->arch.apf.halted = true;
8249 r = 1;
8250 goto out;
8251 }
8252 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8253 record_steal_time(vcpu);
8254 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8255 process_smi(vcpu);
8256 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8257 process_nmi(vcpu);
8258 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8259 kvm_pmu_handle_event(vcpu);
8260 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8261 kvm_pmu_deliver_pmi(vcpu);
8262 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8263 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8264 if (test_bit(vcpu->arch.pending_ioapic_eoi,
8265 vcpu->arch.ioapic_handled_vectors)) {
8266 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8267 vcpu->run->eoi.vector =
8268 vcpu->arch.pending_ioapic_eoi;
8269 r = 0;
8270 goto out;
8271 }
8272 }
8273 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8274 vcpu_scan_ioapic(vcpu);
8275 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8276 vcpu_load_eoi_exitmap(vcpu);
8277 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8278 kvm_vcpu_reload_apic_access_page(vcpu);
8279 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8280 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8281 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8282 r = 0;
8283 goto out;
8284 }
8285 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8286 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8287 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8288 r = 0;
8289 goto out;
8290 }
8291 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8292 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8293 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8294 r = 0;
8295 goto out;
8296 }
8297
8298 /*
8299 * KVM_REQ_HV_STIMER has to be processed after
8300 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8301 * depend on the guest clock being up-to-date
8302 */
8303 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8304 kvm_hv_process_stimers(vcpu);
8305 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8306 kvm_vcpu_update_apicv(vcpu);
8307 }
8308
8309 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8310 ++vcpu->stat.req_event;
8311 kvm_apic_accept_events(vcpu);
8312 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8313 r = 1;
8314 goto out;
8315 }
8316
8317 if (inject_pending_event(vcpu) != 0)
8318 req_immediate_exit = true;
8319 else {
8320 /* Enable SMI/NMI/IRQ window open exits if needed.
8321 *
8322 * SMIs have three cases:
8323 * 1) They can be nested, and then there is nothing to
8324 * do here because RSM will cause a vmexit anyway.
8325 * 2) There is an ISA-specific reason why SMI cannot be
8326 * injected, and the moment when this changes can be
8327 * intercepted.
8328 * 3) Or the SMI can be pending because
8329 * inject_pending_event has completed the injection
8330 * of an IRQ or NMI from the previous vmexit, and
8331 * then we request an immediate exit to inject the
8332 * SMI.
8333 */
8334 if (vcpu->arch.smi_pending && !is_smm(vcpu))
8335 if (!kvm_x86_ops.enable_smi_window(vcpu))
8336 req_immediate_exit = true;
8337 if (vcpu->arch.nmi_pending)
8338 kvm_x86_ops.enable_nmi_window(vcpu);
8339 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8340 kvm_x86_ops.enable_irq_window(vcpu);
8341 WARN_ON(vcpu->arch.exception.pending);
8342 }
8343
8344 if (kvm_lapic_enabled(vcpu)) {
8345 update_cr8_intercept(vcpu);
8346 kvm_lapic_sync_to_vapic(vcpu);
8347 }
8348 }
8349
8350 r = kvm_mmu_reload(vcpu);
8351 if (unlikely(r)) {
8352 goto cancel_injection;
8353 }
8354
8355 preempt_disable();
8356
8357 kvm_x86_ops.prepare_guest_switch(vcpu);
8358
8359 /*
8360 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
8361 * IPI are then delayed after guest entry, which ensures that they
8362 * result in virtual interrupt delivery.
8363 */
8364 local_irq_disable();
8365 vcpu->mode = IN_GUEST_MODE;
8366
8367 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8368
8369 /*
8370 * 1) We should set ->mode before checking ->requests. Please see
8371 * the comment in kvm_vcpu_exiting_guest_mode().
8372 *
8373 * 2) For APICv, we should set ->mode before checking PID.ON. This
8374 * pairs with the memory barrier implicit in pi_test_and_set_on
8375 * (see vmx_deliver_posted_interrupt).
8376 *
8377 * 3) This also orders the write to mode from any reads to the page
8378 * tables done while the VCPU is running. Please see the comment
8379 * in kvm_flush_remote_tlbs.
8380 */
8381 smp_mb__after_srcu_read_unlock();
8382
8383 /*
8384 * This handles the case where a posted interrupt was
8385 * notified with kvm_vcpu_kick.
8386 */
8387 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8388 kvm_x86_ops.sync_pir_to_irr(vcpu);
8389
8390 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8391 || need_resched() || signal_pending(current)) {
8392 vcpu->mode = OUTSIDE_GUEST_MODE;
8393 smp_wmb();
8394 local_irq_enable();
8395 preempt_enable();
8396 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8397 r = 1;
8398 goto cancel_injection;
8399 }
8400
8401 if (req_immediate_exit) {
8402 kvm_make_request(KVM_REQ_EVENT, vcpu);
8403 kvm_x86_ops.request_immediate_exit(vcpu);
8404 }
8405
8406 trace_kvm_entry(vcpu->vcpu_id);
8407 guest_enter_irqoff();
8408
8409 fpregs_assert_state_consistent();
8410 if (test_thread_flag(TIF_NEED_FPU_LOAD))
8411 switch_fpu_return();
8412
8413 if (unlikely(vcpu->arch.switch_db_regs)) {
8414 set_debugreg(0, 7);
8415 set_debugreg(vcpu->arch.eff_db[0], 0);
8416 set_debugreg(vcpu->arch.eff_db[1], 1);
8417 set_debugreg(vcpu->arch.eff_db[2], 2);
8418 set_debugreg(vcpu->arch.eff_db[3], 3);
8419 set_debugreg(vcpu->arch.dr6, 6);
8420 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8421 }
8422
8423 kvm_x86_ops.run(vcpu);
8424
8425 /*
8426 * Do this here before restoring debug registers on the host. And
8427 * since we do this before handling the vmexit, a DR access vmexit
8428 * can (a) read the correct value of the debug registers, (b) set
8429 * KVM_DEBUGREG_WONT_EXIT again.
8430 */
8431 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8432 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8433 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8434 kvm_update_dr0123(vcpu);
8435 kvm_update_dr6(vcpu);
8436 kvm_update_dr7(vcpu);
8437 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8438 }
8439
8440 /*
8441 * If the guest has used debug registers, at least dr7
8442 * will be disabled while returning to the host.
8443 * If we don't have active breakpoints in the host, we don't
8444 * care about the messed up debug address registers. But if
8445 * we have some of them active, restore the old state.
8446 */
8447 if (hw_breakpoint_active())
8448 hw_breakpoint_restore();
8449
8450 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8451
8452 vcpu->mode = OUTSIDE_GUEST_MODE;
8453 smp_wmb();
8454
8455 kvm_x86_ops.handle_exit_irqoff(vcpu, &exit_fastpath);
8456
8457 /*
8458 * Consume any pending interrupts, including the possible source of
8459 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8460 * An instruction is required after local_irq_enable() to fully unblock
8461 * interrupts on processors that implement an interrupt shadow, the
8462 * stat.exits increment will do nicely.
8463 */
8464 kvm_before_interrupt(vcpu);
8465 local_irq_enable();
8466 ++vcpu->stat.exits;
8467 local_irq_disable();
8468 kvm_after_interrupt(vcpu);
8469
8470 guest_exit_irqoff();
8471 if (lapic_in_kernel(vcpu)) {
8472 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8473 if (delta != S64_MIN) {
8474 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8475 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8476 }
8477 }
8478
8479 local_irq_enable();
8480 preempt_enable();
8481
8482 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8483
8484 /*
8485 * Profile KVM exit RIPs:
8486 */
8487 if (unlikely(prof_on == KVM_PROFILING)) {
8488 unsigned long rip = kvm_rip_read(vcpu);
8489 profile_hit(KVM_PROFILING, (void *)rip);
8490 }
8491
8492 if (unlikely(vcpu->arch.tsc_always_catchup))
8493 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8494
8495 if (vcpu->arch.apic_attention)
8496 kvm_lapic_sync_from_vapic(vcpu);
8497
8498 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
8499 return r;
8500
8501 cancel_injection:
8502 kvm_x86_ops.cancel_injection(vcpu);
8503 if (unlikely(vcpu->arch.apic_attention))
8504 kvm_lapic_sync_from_vapic(vcpu);
8505 out:
8506 return r;
8507 }
8508
8509 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8510 {
8511 if (!kvm_arch_vcpu_runnable(vcpu) &&
8512 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
8513 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8514 kvm_vcpu_block(vcpu);
8515 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8516
8517 if (kvm_x86_ops.post_block)
8518 kvm_x86_ops.post_block(vcpu);
8519
8520 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8521 return 1;
8522 }
8523
8524 kvm_apic_accept_events(vcpu);
8525 switch(vcpu->arch.mp_state) {
8526 case KVM_MP_STATE_HALTED:
8527 vcpu->arch.pv.pv_unhalted = false;
8528 vcpu->arch.mp_state =
8529 KVM_MP_STATE_RUNNABLE;
8530 /* fall through */
8531 case KVM_MP_STATE_RUNNABLE:
8532 vcpu->arch.apf.halted = false;
8533 break;
8534 case KVM_MP_STATE_INIT_RECEIVED:
8535 break;
8536 default:
8537 return -EINTR;
8538 }
8539 return 1;
8540 }
8541
8542 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8543 {
8544 if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events)
8545 kvm_x86_ops.check_nested_events(vcpu);
8546
8547 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8548 !vcpu->arch.apf.halted);
8549 }
8550
8551 static int vcpu_run(struct kvm_vcpu *vcpu)
8552 {
8553 int r;
8554 struct kvm *kvm = vcpu->kvm;
8555
8556 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8557 vcpu->arch.l1tf_flush_l1d = true;
8558
8559 for (;;) {
8560 if (kvm_vcpu_running(vcpu)) {
8561 r = vcpu_enter_guest(vcpu);
8562 } else {
8563 r = vcpu_block(kvm, vcpu);
8564 }
8565
8566 if (r <= 0)
8567 break;
8568
8569 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8570 if (kvm_cpu_has_pending_timer(vcpu))
8571 kvm_inject_pending_timer_irqs(vcpu);
8572
8573 if (dm_request_for_irq_injection(vcpu) &&
8574 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8575 r = 0;
8576 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8577 ++vcpu->stat.request_irq_exits;
8578 break;
8579 }
8580
8581 kvm_check_async_pf_completion(vcpu);
8582
8583 if (signal_pending(current)) {
8584 r = -EINTR;
8585 vcpu->run->exit_reason = KVM_EXIT_INTR;
8586 ++vcpu->stat.signal_exits;
8587 break;
8588 }
8589 if (need_resched()) {
8590 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8591 cond_resched();
8592 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8593 }
8594 }
8595
8596 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8597
8598 return r;
8599 }
8600
8601 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8602 {
8603 int r;
8604
8605 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8606 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8607 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8608 return r;
8609 }
8610
8611 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8612 {
8613 BUG_ON(!vcpu->arch.pio.count);
8614
8615 return complete_emulated_io(vcpu);
8616 }
8617
8618 /*
8619 * Implements the following, as a state machine:
8620 *
8621 * read:
8622 * for each fragment
8623 * for each mmio piece in the fragment
8624 * write gpa, len
8625 * exit
8626 * copy data
8627 * execute insn
8628 *
8629 * write:
8630 * for each fragment
8631 * for each mmio piece in the fragment
8632 * write gpa, len
8633 * copy data
8634 * exit
8635 */
8636 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8637 {
8638 struct kvm_run *run = vcpu->run;
8639 struct kvm_mmio_fragment *frag;
8640 unsigned len;
8641
8642 BUG_ON(!vcpu->mmio_needed);
8643
8644 /* Complete previous fragment */
8645 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8646 len = min(8u, frag->len);
8647 if (!vcpu->mmio_is_write)
8648 memcpy(frag->data, run->mmio.data, len);
8649
8650 if (frag->len <= 8) {
8651 /* Switch to the next fragment. */
8652 frag++;
8653 vcpu->mmio_cur_fragment++;
8654 } else {
8655 /* Go forward to the next mmio piece. */
8656 frag->data += len;
8657 frag->gpa += len;
8658 frag->len -= len;
8659 }
8660
8661 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8662 vcpu->mmio_needed = 0;
8663
8664 /* FIXME: return into emulator if single-stepping. */
8665 if (vcpu->mmio_is_write)
8666 return 1;
8667 vcpu->mmio_read_completed = 1;
8668 return complete_emulated_io(vcpu);
8669 }
8670
8671 run->exit_reason = KVM_EXIT_MMIO;
8672 run->mmio.phys_addr = frag->gpa;
8673 if (vcpu->mmio_is_write)
8674 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8675 run->mmio.len = min(8u, frag->len);
8676 run->mmio.is_write = vcpu->mmio_is_write;
8677 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8678 return 0;
8679 }
8680
8681 static void kvm_save_current_fpu(struct fpu *fpu)
8682 {
8683 /*
8684 * If the target FPU state is not resident in the CPU registers, just
8685 * memcpy() from current, else save CPU state directly to the target.
8686 */
8687 if (test_thread_flag(TIF_NEED_FPU_LOAD))
8688 memcpy(&fpu->state, &current->thread.fpu.state,
8689 fpu_kernel_xstate_size);
8690 else
8691 copy_fpregs_to_fpstate(fpu);
8692 }
8693
8694 /* Swap (qemu) user FPU context for the guest FPU context. */
8695 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8696 {
8697 fpregs_lock();
8698
8699 kvm_save_current_fpu(vcpu->arch.user_fpu);
8700
8701 /* PKRU is separately restored in kvm_x86_ops.run. */
8702 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8703 ~XFEATURE_MASK_PKRU);
8704
8705 fpregs_mark_activate();
8706 fpregs_unlock();
8707
8708 trace_kvm_fpu(1);
8709 }
8710
8711 /* When vcpu_run ends, restore user space FPU context. */
8712 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8713 {
8714 fpregs_lock();
8715
8716 kvm_save_current_fpu(vcpu->arch.guest_fpu);
8717
8718 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8719
8720 fpregs_mark_activate();
8721 fpregs_unlock();
8722
8723 ++vcpu->stat.fpu_reload;
8724 trace_kvm_fpu(0);
8725 }
8726
8727 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8728 {
8729 int r;
8730
8731 vcpu_load(vcpu);
8732 kvm_sigset_activate(vcpu);
8733 kvm_load_guest_fpu(vcpu);
8734
8735 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8736 if (kvm_run->immediate_exit) {
8737 r = -EINTR;
8738 goto out;
8739 }
8740 kvm_vcpu_block(vcpu);
8741 kvm_apic_accept_events(vcpu);
8742 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8743 r = -EAGAIN;
8744 if (signal_pending(current)) {
8745 r = -EINTR;
8746 vcpu->run->exit_reason = KVM_EXIT_INTR;
8747 ++vcpu->stat.signal_exits;
8748 }
8749 goto out;
8750 }
8751
8752 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8753 r = -EINVAL;
8754 goto out;
8755 }
8756
8757 if (vcpu->run->kvm_dirty_regs) {
8758 r = sync_regs(vcpu);
8759 if (r != 0)
8760 goto out;
8761 }
8762
8763 /* re-sync apic's tpr */
8764 if (!lapic_in_kernel(vcpu)) {
8765 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8766 r = -EINVAL;
8767 goto out;
8768 }
8769 }
8770
8771 if (unlikely(vcpu->arch.complete_userspace_io)) {
8772 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8773 vcpu->arch.complete_userspace_io = NULL;
8774 r = cui(vcpu);
8775 if (r <= 0)
8776 goto out;
8777 } else
8778 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8779
8780 if (kvm_run->immediate_exit)
8781 r = -EINTR;
8782 else
8783 r = vcpu_run(vcpu);
8784
8785 out:
8786 kvm_put_guest_fpu(vcpu);
8787 if (vcpu->run->kvm_valid_regs)
8788 store_regs(vcpu);
8789 post_kvm_run_save(vcpu);
8790 kvm_sigset_deactivate(vcpu);
8791
8792 vcpu_put(vcpu);
8793 return r;
8794 }
8795
8796 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8797 {
8798 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8799 /*
8800 * We are here if userspace calls get_regs() in the middle of
8801 * instruction emulation. Registers state needs to be copied
8802 * back from emulation context to vcpu. Userspace shouldn't do
8803 * that usually, but some bad designed PV devices (vmware
8804 * backdoor interface) need this to work
8805 */
8806 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
8807 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8808 }
8809 regs->rax = kvm_rax_read(vcpu);
8810 regs->rbx = kvm_rbx_read(vcpu);
8811 regs->rcx = kvm_rcx_read(vcpu);
8812 regs->rdx = kvm_rdx_read(vcpu);
8813 regs->rsi = kvm_rsi_read(vcpu);
8814 regs->rdi = kvm_rdi_read(vcpu);
8815 regs->rsp = kvm_rsp_read(vcpu);
8816 regs->rbp = kvm_rbp_read(vcpu);
8817 #ifdef CONFIG_X86_64
8818 regs->r8 = kvm_r8_read(vcpu);
8819 regs->r9 = kvm_r9_read(vcpu);
8820 regs->r10 = kvm_r10_read(vcpu);
8821 regs->r11 = kvm_r11_read(vcpu);
8822 regs->r12 = kvm_r12_read(vcpu);
8823 regs->r13 = kvm_r13_read(vcpu);
8824 regs->r14 = kvm_r14_read(vcpu);
8825 regs->r15 = kvm_r15_read(vcpu);
8826 #endif
8827
8828 regs->rip = kvm_rip_read(vcpu);
8829 regs->rflags = kvm_get_rflags(vcpu);
8830 }
8831
8832 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8833 {
8834 vcpu_load(vcpu);
8835 __get_regs(vcpu, regs);
8836 vcpu_put(vcpu);
8837 return 0;
8838 }
8839
8840 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8841 {
8842 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8843 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8844
8845 kvm_rax_write(vcpu, regs->rax);
8846 kvm_rbx_write(vcpu, regs->rbx);
8847 kvm_rcx_write(vcpu, regs->rcx);
8848 kvm_rdx_write(vcpu, regs->rdx);
8849 kvm_rsi_write(vcpu, regs->rsi);
8850 kvm_rdi_write(vcpu, regs->rdi);
8851 kvm_rsp_write(vcpu, regs->rsp);
8852 kvm_rbp_write(vcpu, regs->rbp);
8853 #ifdef CONFIG_X86_64
8854 kvm_r8_write(vcpu, regs->r8);
8855 kvm_r9_write(vcpu, regs->r9);
8856 kvm_r10_write(vcpu, regs->r10);
8857 kvm_r11_write(vcpu, regs->r11);
8858 kvm_r12_write(vcpu, regs->r12);
8859 kvm_r13_write(vcpu, regs->r13);
8860 kvm_r14_write(vcpu, regs->r14);
8861 kvm_r15_write(vcpu, regs->r15);
8862 #endif
8863
8864 kvm_rip_write(vcpu, regs->rip);
8865 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8866
8867 vcpu->arch.exception.pending = false;
8868
8869 kvm_make_request(KVM_REQ_EVENT, vcpu);
8870 }
8871
8872 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8873 {
8874 vcpu_load(vcpu);
8875 __set_regs(vcpu, regs);
8876 vcpu_put(vcpu);
8877 return 0;
8878 }
8879
8880 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8881 {
8882 struct kvm_segment cs;
8883
8884 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8885 *db = cs.db;
8886 *l = cs.l;
8887 }
8888 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8889
8890 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8891 {
8892 struct desc_ptr dt;
8893
8894 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8895 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8896 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8897 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8898 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8899 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8900
8901 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8902 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8903
8904 kvm_x86_ops.get_idt(vcpu, &dt);
8905 sregs->idt.limit = dt.size;
8906 sregs->idt.base = dt.address;
8907 kvm_x86_ops.get_gdt(vcpu, &dt);
8908 sregs->gdt.limit = dt.size;
8909 sregs->gdt.base = dt.address;
8910
8911 sregs->cr0 = kvm_read_cr0(vcpu);
8912 sregs->cr2 = vcpu->arch.cr2;
8913 sregs->cr3 = kvm_read_cr3(vcpu);
8914 sregs->cr4 = kvm_read_cr4(vcpu);
8915 sregs->cr8 = kvm_get_cr8(vcpu);
8916 sregs->efer = vcpu->arch.efer;
8917 sregs->apic_base = kvm_get_apic_base(vcpu);
8918
8919 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8920
8921 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8922 set_bit(vcpu->arch.interrupt.nr,
8923 (unsigned long *)sregs->interrupt_bitmap);
8924 }
8925
8926 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8927 struct kvm_sregs *sregs)
8928 {
8929 vcpu_load(vcpu);
8930 __get_sregs(vcpu, sregs);
8931 vcpu_put(vcpu);
8932 return 0;
8933 }
8934
8935 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8936 struct kvm_mp_state *mp_state)
8937 {
8938 vcpu_load(vcpu);
8939 if (kvm_mpx_supported())
8940 kvm_load_guest_fpu(vcpu);
8941
8942 kvm_apic_accept_events(vcpu);
8943 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8944 vcpu->arch.pv.pv_unhalted)
8945 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8946 else
8947 mp_state->mp_state = vcpu->arch.mp_state;
8948
8949 if (kvm_mpx_supported())
8950 kvm_put_guest_fpu(vcpu);
8951 vcpu_put(vcpu);
8952 return 0;
8953 }
8954
8955 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8956 struct kvm_mp_state *mp_state)
8957 {
8958 int ret = -EINVAL;
8959
8960 vcpu_load(vcpu);
8961
8962 if (!lapic_in_kernel(vcpu) &&
8963 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8964 goto out;
8965
8966 /*
8967 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8968 * INIT state; latched init should be reported using
8969 * KVM_SET_VCPU_EVENTS, so reject it here.
8970 */
8971 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
8972 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8973 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8974 goto out;
8975
8976 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8977 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8978 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8979 } else
8980 vcpu->arch.mp_state = mp_state->mp_state;
8981 kvm_make_request(KVM_REQ_EVENT, vcpu);
8982
8983 ret = 0;
8984 out:
8985 vcpu_put(vcpu);
8986 return ret;
8987 }
8988
8989 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8990 int reason, bool has_error_code, u32 error_code)
8991 {
8992 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8993 int ret;
8994
8995 init_emulate_ctxt(vcpu);
8996
8997 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8998 has_error_code, error_code);
8999 if (ret) {
9000 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9001 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9002 vcpu->run->internal.ndata = 0;
9003 return 0;
9004 }
9005
9006 kvm_rip_write(vcpu, ctxt->eip);
9007 kvm_set_rflags(vcpu, ctxt->eflags);
9008 return 1;
9009 }
9010 EXPORT_SYMBOL_GPL(kvm_task_switch);
9011
9012 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9013 {
9014 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9015 /*
9016 * When EFER.LME and CR0.PG are set, the processor is in
9017 * 64-bit mode (though maybe in a 32-bit code segment).
9018 * CR4.PAE and EFER.LMA must be set.
9019 */
9020 if (!(sregs->cr4 & X86_CR4_PAE)
9021 || !(sregs->efer & EFER_LMA))
9022 return -EINVAL;
9023 } else {
9024 /*
9025 * Not in 64-bit mode: EFER.LMA is clear and the code
9026 * segment cannot be 64-bit.
9027 */
9028 if (sregs->efer & EFER_LMA || sregs->cs.l)
9029 return -EINVAL;
9030 }
9031
9032 return kvm_valid_cr4(vcpu, sregs->cr4);
9033 }
9034
9035 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9036 {
9037 struct msr_data apic_base_msr;
9038 int mmu_reset_needed = 0;
9039 int cpuid_update_needed = 0;
9040 int pending_vec, max_bits, idx;
9041 struct desc_ptr dt;
9042 int ret = -EINVAL;
9043
9044 if (kvm_valid_sregs(vcpu, sregs))
9045 goto out;
9046
9047 apic_base_msr.data = sregs->apic_base;
9048 apic_base_msr.host_initiated = true;
9049 if (kvm_set_apic_base(vcpu, &apic_base_msr))
9050 goto out;
9051
9052 dt.size = sregs->idt.limit;
9053 dt.address = sregs->idt.base;
9054 kvm_x86_ops.set_idt(vcpu, &dt);
9055 dt.size = sregs->gdt.limit;
9056 dt.address = sregs->gdt.base;
9057 kvm_x86_ops.set_gdt(vcpu, &dt);
9058
9059 vcpu->arch.cr2 = sregs->cr2;
9060 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9061 vcpu->arch.cr3 = sregs->cr3;
9062 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9063
9064 kvm_set_cr8(vcpu, sregs->cr8);
9065
9066 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9067 kvm_x86_ops.set_efer(vcpu, sregs->efer);
9068
9069 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9070 kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9071 vcpu->arch.cr0 = sregs->cr0;
9072
9073 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9074 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9075 (X86_CR4_OSXSAVE | X86_CR4_PKE));
9076 kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9077 if (cpuid_update_needed)
9078 kvm_update_cpuid(vcpu);
9079
9080 idx = srcu_read_lock(&vcpu->kvm->srcu);
9081 if (is_pae_paging(vcpu)) {
9082 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9083 mmu_reset_needed = 1;
9084 }
9085 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9086
9087 if (mmu_reset_needed)
9088 kvm_mmu_reset_context(vcpu);
9089
9090 max_bits = KVM_NR_INTERRUPTS;
9091 pending_vec = find_first_bit(
9092 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9093 if (pending_vec < max_bits) {
9094 kvm_queue_interrupt(vcpu, pending_vec, false);
9095 pr_debug("Set back pending irq %d\n", pending_vec);
9096 }
9097
9098 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9099 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9100 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9101 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9102 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9103 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9104
9105 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9106 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9107
9108 update_cr8_intercept(vcpu);
9109
9110 /* Older userspace won't unhalt the vcpu on reset. */
9111 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9112 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9113 !is_protmode(vcpu))
9114 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9115
9116 kvm_make_request(KVM_REQ_EVENT, vcpu);
9117
9118 ret = 0;
9119 out:
9120 return ret;
9121 }
9122
9123 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9124 struct kvm_sregs *sregs)
9125 {
9126 int ret;
9127
9128 vcpu_load(vcpu);
9129 ret = __set_sregs(vcpu, sregs);
9130 vcpu_put(vcpu);
9131 return ret;
9132 }
9133
9134 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9135 struct kvm_guest_debug *dbg)
9136 {
9137 unsigned long rflags;
9138 int i, r;
9139
9140 vcpu_load(vcpu);
9141
9142 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9143 r = -EBUSY;
9144 if (vcpu->arch.exception.pending)
9145 goto out;
9146 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9147 kvm_queue_exception(vcpu, DB_VECTOR);
9148 else
9149 kvm_queue_exception(vcpu, BP_VECTOR);
9150 }
9151
9152 /*
9153 * Read rflags as long as potentially injected trace flags are still
9154 * filtered out.
9155 */
9156 rflags = kvm_get_rflags(vcpu);
9157
9158 vcpu->guest_debug = dbg->control;
9159 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9160 vcpu->guest_debug = 0;
9161
9162 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9163 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9164 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9165 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9166 } else {
9167 for (i = 0; i < KVM_NR_DB_REGS; i++)
9168 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9169 }
9170 kvm_update_dr7(vcpu);
9171
9172 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9173 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9174 get_segment_base(vcpu, VCPU_SREG_CS);
9175
9176 /*
9177 * Trigger an rflags update that will inject or remove the trace
9178 * flags.
9179 */
9180 kvm_set_rflags(vcpu, rflags);
9181
9182 kvm_x86_ops.update_bp_intercept(vcpu);
9183
9184 r = 0;
9185
9186 out:
9187 vcpu_put(vcpu);
9188 return r;
9189 }
9190
9191 /*
9192 * Translate a guest virtual address to a guest physical address.
9193 */
9194 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9195 struct kvm_translation *tr)
9196 {
9197 unsigned long vaddr = tr->linear_address;
9198 gpa_t gpa;
9199 int idx;
9200
9201 vcpu_load(vcpu);
9202
9203 idx = srcu_read_lock(&vcpu->kvm->srcu);
9204 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9205 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9206 tr->physical_address = gpa;
9207 tr->valid = gpa != UNMAPPED_GVA;
9208 tr->writeable = 1;
9209 tr->usermode = 0;
9210
9211 vcpu_put(vcpu);
9212 return 0;
9213 }
9214
9215 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9216 {
9217 struct fxregs_state *fxsave;
9218
9219 vcpu_load(vcpu);
9220
9221 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9222 memcpy(fpu->fpr, fxsave->st_space, 128);
9223 fpu->fcw = fxsave->cwd;
9224 fpu->fsw = fxsave->swd;
9225 fpu->ftwx = fxsave->twd;
9226 fpu->last_opcode = fxsave->fop;
9227 fpu->last_ip = fxsave->rip;
9228 fpu->last_dp = fxsave->rdp;
9229 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9230
9231 vcpu_put(vcpu);
9232 return 0;
9233 }
9234
9235 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9236 {
9237 struct fxregs_state *fxsave;
9238
9239 vcpu_load(vcpu);
9240
9241 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9242
9243 memcpy(fxsave->st_space, fpu->fpr, 128);
9244 fxsave->cwd = fpu->fcw;
9245 fxsave->swd = fpu->fsw;
9246 fxsave->twd = fpu->ftwx;
9247 fxsave->fop = fpu->last_opcode;
9248 fxsave->rip = fpu->last_ip;
9249 fxsave->rdp = fpu->last_dp;
9250 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9251
9252 vcpu_put(vcpu);
9253 return 0;
9254 }
9255
9256 static void store_regs(struct kvm_vcpu *vcpu)
9257 {
9258 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9259
9260 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9261 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9262
9263 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9264 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9265
9266 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9267 kvm_vcpu_ioctl_x86_get_vcpu_events(
9268 vcpu, &vcpu->run->s.regs.events);
9269 }
9270
9271 static int sync_regs(struct kvm_vcpu *vcpu)
9272 {
9273 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9274 return -EINVAL;
9275
9276 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9277 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9278 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9279 }
9280 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9281 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9282 return -EINVAL;
9283 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9284 }
9285 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9286 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9287 vcpu, &vcpu->run->s.regs.events))
9288 return -EINVAL;
9289 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9290 }
9291
9292 return 0;
9293 }
9294
9295 static void fx_init(struct kvm_vcpu *vcpu)
9296 {
9297 fpstate_init(&vcpu->arch.guest_fpu->state);
9298 if (boot_cpu_has(X86_FEATURE_XSAVES))
9299 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9300 host_xcr0 | XSTATE_COMPACTION_ENABLED;
9301
9302 /*
9303 * Ensure guest xcr0 is valid for loading
9304 */
9305 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9306
9307 vcpu->arch.cr0 |= X86_CR0_ET;
9308 }
9309
9310 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9311 {
9312 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9313 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9314 "guest TSC will not be reliable\n");
9315
9316 return 0;
9317 }
9318
9319 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9320 {
9321 struct page *page;
9322 int r;
9323
9324 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9325 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9326 else
9327 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9328
9329 kvm_set_tsc_khz(vcpu, max_tsc_khz);
9330
9331 r = kvm_mmu_create(vcpu);
9332 if (r < 0)
9333 return r;
9334
9335 if (irqchip_in_kernel(vcpu->kvm)) {
9336 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9337 if (r < 0)
9338 goto fail_mmu_destroy;
9339 if (kvm_apicv_activated(vcpu->kvm))
9340 vcpu->arch.apicv_active = true;
9341 } else
9342 static_key_slow_inc(&kvm_no_apic_vcpu);
9343
9344 r = -ENOMEM;
9345
9346 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9347 if (!page)
9348 goto fail_free_lapic;
9349 vcpu->arch.pio_data = page_address(page);
9350
9351 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9352 GFP_KERNEL_ACCOUNT);
9353 if (!vcpu->arch.mce_banks)
9354 goto fail_free_pio_data;
9355 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9356
9357 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9358 GFP_KERNEL_ACCOUNT))
9359 goto fail_free_mce_banks;
9360
9361 if (!alloc_emulate_ctxt(vcpu))
9362 goto free_wbinvd_dirty_mask;
9363
9364 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9365 GFP_KERNEL_ACCOUNT);
9366 if (!vcpu->arch.user_fpu) {
9367 pr_err("kvm: failed to allocate userspace's fpu\n");
9368 goto free_emulate_ctxt;
9369 }
9370
9371 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9372 GFP_KERNEL_ACCOUNT);
9373 if (!vcpu->arch.guest_fpu) {
9374 pr_err("kvm: failed to allocate vcpu's fpu\n");
9375 goto free_user_fpu;
9376 }
9377 fx_init(vcpu);
9378
9379 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9380
9381 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9382
9383 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9384
9385 kvm_async_pf_hash_reset(vcpu);
9386 kvm_pmu_init(vcpu);
9387
9388 vcpu->arch.pending_external_vector = -1;
9389 vcpu->arch.preempted_in_kernel = false;
9390
9391 kvm_hv_vcpu_init(vcpu);
9392
9393 r = kvm_x86_ops.vcpu_create(vcpu);
9394 if (r)
9395 goto free_guest_fpu;
9396
9397 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9398 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9399 kvm_vcpu_mtrr_init(vcpu);
9400 vcpu_load(vcpu);
9401 kvm_vcpu_reset(vcpu, false);
9402 kvm_init_mmu(vcpu, false);
9403 vcpu_put(vcpu);
9404 return 0;
9405
9406 free_guest_fpu:
9407 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9408 free_user_fpu:
9409 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9410 free_emulate_ctxt:
9411 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9412 free_wbinvd_dirty_mask:
9413 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9414 fail_free_mce_banks:
9415 kfree(vcpu->arch.mce_banks);
9416 fail_free_pio_data:
9417 free_page((unsigned long)vcpu->arch.pio_data);
9418 fail_free_lapic:
9419 kvm_free_lapic(vcpu);
9420 fail_mmu_destroy:
9421 kvm_mmu_destroy(vcpu);
9422 return r;
9423 }
9424
9425 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9426 {
9427 struct msr_data msr;
9428 struct kvm *kvm = vcpu->kvm;
9429
9430 kvm_hv_vcpu_postcreate(vcpu);
9431
9432 if (mutex_lock_killable(&vcpu->mutex))
9433 return;
9434 vcpu_load(vcpu);
9435 msr.data = 0x0;
9436 msr.index = MSR_IA32_TSC;
9437 msr.host_initiated = true;
9438 kvm_write_tsc(vcpu, &msr);
9439 vcpu_put(vcpu);
9440
9441 /* poll control enabled by default */
9442 vcpu->arch.msr_kvm_poll_control = 1;
9443
9444 mutex_unlock(&vcpu->mutex);
9445
9446 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9447 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9448 KVMCLOCK_SYNC_PERIOD);
9449 }
9450
9451 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9452 {
9453 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9454 int idx;
9455
9456 kvm_release_pfn(cache->pfn, cache->dirty, cache);
9457
9458 kvmclock_reset(vcpu);
9459
9460 kvm_x86_ops.vcpu_free(vcpu);
9461
9462 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9463 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9464 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9465 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9466
9467 kvm_hv_vcpu_uninit(vcpu);
9468 kvm_pmu_destroy(vcpu);
9469 kfree(vcpu->arch.mce_banks);
9470 kvm_free_lapic(vcpu);
9471 idx = srcu_read_lock(&vcpu->kvm->srcu);
9472 kvm_mmu_destroy(vcpu);
9473 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9474 free_page((unsigned long)vcpu->arch.pio_data);
9475 if (!lapic_in_kernel(vcpu))
9476 static_key_slow_dec(&kvm_no_apic_vcpu);
9477 }
9478
9479 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9480 {
9481 kvm_lapic_reset(vcpu, init_event);
9482
9483 vcpu->arch.hflags = 0;
9484
9485 vcpu->arch.smi_pending = 0;
9486 vcpu->arch.smi_count = 0;
9487 atomic_set(&vcpu->arch.nmi_queued, 0);
9488 vcpu->arch.nmi_pending = 0;
9489 vcpu->arch.nmi_injected = false;
9490 kvm_clear_interrupt_queue(vcpu);
9491 kvm_clear_exception_queue(vcpu);
9492
9493 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9494 kvm_update_dr0123(vcpu);
9495 vcpu->arch.dr6 = DR6_INIT;
9496 kvm_update_dr6(vcpu);
9497 vcpu->arch.dr7 = DR7_FIXED_1;
9498 kvm_update_dr7(vcpu);
9499
9500 vcpu->arch.cr2 = 0;
9501
9502 kvm_make_request(KVM_REQ_EVENT, vcpu);
9503 vcpu->arch.apf.msr_val = 0;
9504 vcpu->arch.st.msr_val = 0;
9505
9506 kvmclock_reset(vcpu);
9507
9508 kvm_clear_async_pf_completion_queue(vcpu);
9509 kvm_async_pf_hash_reset(vcpu);
9510 vcpu->arch.apf.halted = false;
9511
9512 if (kvm_mpx_supported()) {
9513 void *mpx_state_buffer;
9514
9515 /*
9516 * To avoid have the INIT path from kvm_apic_has_events() that be
9517 * called with loaded FPU and does not let userspace fix the state.
9518 */
9519 if (init_event)
9520 kvm_put_guest_fpu(vcpu);
9521 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9522 XFEATURE_BNDREGS);
9523 if (mpx_state_buffer)
9524 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9525 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9526 XFEATURE_BNDCSR);
9527 if (mpx_state_buffer)
9528 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9529 if (init_event)
9530 kvm_load_guest_fpu(vcpu);
9531 }
9532
9533 if (!init_event) {
9534 kvm_pmu_reset(vcpu);
9535 vcpu->arch.smbase = 0x30000;
9536
9537 vcpu->arch.msr_misc_features_enables = 0;
9538
9539 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9540 }
9541
9542 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9543 vcpu->arch.regs_avail = ~0;
9544 vcpu->arch.regs_dirty = ~0;
9545
9546 vcpu->arch.ia32_xss = 0;
9547
9548 kvm_x86_ops.vcpu_reset(vcpu, init_event);
9549 }
9550
9551 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9552 {
9553 struct kvm_segment cs;
9554
9555 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9556 cs.selector = vector << 8;
9557 cs.base = vector << 12;
9558 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9559 kvm_rip_write(vcpu, 0);
9560 }
9561
9562 int kvm_arch_hardware_enable(void)
9563 {
9564 struct kvm *kvm;
9565 struct kvm_vcpu *vcpu;
9566 int i;
9567 int ret;
9568 u64 local_tsc;
9569 u64 max_tsc = 0;
9570 bool stable, backwards_tsc = false;
9571
9572 kvm_shared_msr_cpu_online();
9573 ret = kvm_x86_ops.hardware_enable();
9574 if (ret != 0)
9575 return ret;
9576
9577 local_tsc = rdtsc();
9578 stable = !kvm_check_tsc_unstable();
9579 list_for_each_entry(kvm, &vm_list, vm_list) {
9580 kvm_for_each_vcpu(i, vcpu, kvm) {
9581 if (!stable && vcpu->cpu == smp_processor_id())
9582 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9583 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9584 backwards_tsc = true;
9585 if (vcpu->arch.last_host_tsc > max_tsc)
9586 max_tsc = vcpu->arch.last_host_tsc;
9587 }
9588 }
9589 }
9590
9591 /*
9592 * Sometimes, even reliable TSCs go backwards. This happens on
9593 * platforms that reset TSC during suspend or hibernate actions, but
9594 * maintain synchronization. We must compensate. Fortunately, we can
9595 * detect that condition here, which happens early in CPU bringup,
9596 * before any KVM threads can be running. Unfortunately, we can't
9597 * bring the TSCs fully up to date with real time, as we aren't yet far
9598 * enough into CPU bringup that we know how much real time has actually
9599 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9600 * variables that haven't been updated yet.
9601 *
9602 * So we simply find the maximum observed TSC above, then record the
9603 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
9604 * the adjustment will be applied. Note that we accumulate
9605 * adjustments, in case multiple suspend cycles happen before some VCPU
9606 * gets a chance to run again. In the event that no KVM threads get a
9607 * chance to run, we will miss the entire elapsed period, as we'll have
9608 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9609 * loose cycle time. This isn't too big a deal, since the loss will be
9610 * uniform across all VCPUs (not to mention the scenario is extremely
9611 * unlikely). It is possible that a second hibernate recovery happens
9612 * much faster than a first, causing the observed TSC here to be
9613 * smaller; this would require additional padding adjustment, which is
9614 * why we set last_host_tsc to the local tsc observed here.
9615 *
9616 * N.B. - this code below runs only on platforms with reliable TSC,
9617 * as that is the only way backwards_tsc is set above. Also note
9618 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9619 * have the same delta_cyc adjustment applied if backwards_tsc
9620 * is detected. Note further, this adjustment is only done once,
9621 * as we reset last_host_tsc on all VCPUs to stop this from being
9622 * called multiple times (one for each physical CPU bringup).
9623 *
9624 * Platforms with unreliable TSCs don't have to deal with this, they
9625 * will be compensated by the logic in vcpu_load, which sets the TSC to
9626 * catchup mode. This will catchup all VCPUs to real time, but cannot
9627 * guarantee that they stay in perfect synchronization.
9628 */
9629 if (backwards_tsc) {
9630 u64 delta_cyc = max_tsc - local_tsc;
9631 list_for_each_entry(kvm, &vm_list, vm_list) {
9632 kvm->arch.backwards_tsc_observed = true;
9633 kvm_for_each_vcpu(i, vcpu, kvm) {
9634 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9635 vcpu->arch.last_host_tsc = local_tsc;
9636 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9637 }
9638
9639 /*
9640 * We have to disable TSC offset matching.. if you were
9641 * booting a VM while issuing an S4 host suspend....
9642 * you may have some problem. Solving this issue is
9643 * left as an exercise to the reader.
9644 */
9645 kvm->arch.last_tsc_nsec = 0;
9646 kvm->arch.last_tsc_write = 0;
9647 }
9648
9649 }
9650 return 0;
9651 }
9652
9653 void kvm_arch_hardware_disable(void)
9654 {
9655 kvm_x86_ops.hardware_disable();
9656 drop_user_return_notifiers();
9657 }
9658
9659 int kvm_arch_hardware_setup(void *opaque)
9660 {
9661 struct kvm_x86_init_ops *ops = opaque;
9662 int r;
9663
9664 rdmsrl_safe(MSR_EFER, &host_efer);
9665
9666 if (boot_cpu_has(X86_FEATURE_XSAVES))
9667 rdmsrl(MSR_IA32_XSS, host_xss);
9668
9669 r = ops->hardware_setup();
9670 if (r != 0)
9671 return r;
9672
9673 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9674
9675 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9676 supported_xss = 0;
9677
9678 cr4_reserved_bits = kvm_host_cr4_reserved_bits(&boot_cpu_data);
9679
9680 if (kvm_has_tsc_control) {
9681 /*
9682 * Make sure the user can only configure tsc_khz values that
9683 * fit into a signed integer.
9684 * A min value is not calculated because it will always
9685 * be 1 on all machines.
9686 */
9687 u64 max = min(0x7fffffffULL,
9688 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9689 kvm_max_guest_tsc_khz = max;
9690
9691 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9692 }
9693
9694 kvm_init_msr_list();
9695 return 0;
9696 }
9697
9698 void kvm_arch_hardware_unsetup(void)
9699 {
9700 kvm_x86_ops.hardware_unsetup();
9701 }
9702
9703 int kvm_arch_check_processor_compat(void *opaque)
9704 {
9705 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9706 struct kvm_x86_init_ops *ops = opaque;
9707
9708 WARN_ON(!irqs_disabled());
9709
9710 if (kvm_host_cr4_reserved_bits(c) != cr4_reserved_bits)
9711 return -EIO;
9712
9713 return ops->check_processor_compatibility();
9714 }
9715
9716 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9717 {
9718 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9719 }
9720 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9721
9722 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9723 {
9724 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9725 }
9726
9727 struct static_key kvm_no_apic_vcpu __read_mostly;
9728 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9729
9730 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9731 {
9732 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9733
9734 vcpu->arch.l1tf_flush_l1d = true;
9735 if (pmu->version && unlikely(pmu->event_count)) {
9736 pmu->need_cleanup = true;
9737 kvm_make_request(KVM_REQ_PMU, vcpu);
9738 }
9739 kvm_x86_ops.sched_in(vcpu, cpu);
9740 }
9741
9742 void kvm_arch_free_vm(struct kvm *kvm)
9743 {
9744 kfree(kvm->arch.hyperv.hv_pa_pg);
9745 vfree(kvm);
9746 }
9747
9748
9749 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9750 {
9751 if (type)
9752 return -EINVAL;
9753
9754 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9755 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9756 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9757 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9758 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9759 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9760
9761 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9762 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9763 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9764 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9765 &kvm->arch.irq_sources_bitmap);
9766
9767 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9768 mutex_init(&kvm->arch.apic_map_lock);
9769 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9770
9771 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9772 pvclock_update_vm_gtod_copy(kvm);
9773
9774 kvm->arch.guest_can_read_msr_platform_info = true;
9775
9776 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9777 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9778
9779 kvm_hv_init_vm(kvm);
9780 kvm_page_track_init(kvm);
9781 kvm_mmu_init_vm(kvm);
9782
9783 return kvm_x86_ops.vm_init(kvm);
9784 }
9785
9786 int kvm_arch_post_init_vm(struct kvm *kvm)
9787 {
9788 return kvm_mmu_post_init_vm(kvm);
9789 }
9790
9791 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9792 {
9793 vcpu_load(vcpu);
9794 kvm_mmu_unload(vcpu);
9795 vcpu_put(vcpu);
9796 }
9797
9798 static void kvm_free_vcpus(struct kvm *kvm)
9799 {
9800 unsigned int i;
9801 struct kvm_vcpu *vcpu;
9802
9803 /*
9804 * Unpin any mmu pages first.
9805 */
9806 kvm_for_each_vcpu(i, vcpu, kvm) {
9807 kvm_clear_async_pf_completion_queue(vcpu);
9808 kvm_unload_vcpu_mmu(vcpu);
9809 }
9810 kvm_for_each_vcpu(i, vcpu, kvm)
9811 kvm_vcpu_destroy(vcpu);
9812
9813 mutex_lock(&kvm->lock);
9814 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9815 kvm->vcpus[i] = NULL;
9816
9817 atomic_set(&kvm->online_vcpus, 0);
9818 mutex_unlock(&kvm->lock);
9819 }
9820
9821 void kvm_arch_sync_events(struct kvm *kvm)
9822 {
9823 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9824 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9825 kvm_free_pit(kvm);
9826 }
9827
9828 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9829 {
9830 int i, r;
9831 unsigned long hva, uninitialized_var(old_npages);
9832 struct kvm_memslots *slots = kvm_memslots(kvm);
9833 struct kvm_memory_slot *slot;
9834
9835 /* Called with kvm->slots_lock held. */
9836 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9837 return -EINVAL;
9838
9839 slot = id_to_memslot(slots, id);
9840 if (size) {
9841 if (slot && slot->npages)
9842 return -EEXIST;
9843
9844 /*
9845 * MAP_SHARED to prevent internal slot pages from being moved
9846 * by fork()/COW.
9847 */
9848 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9849 MAP_SHARED | MAP_ANONYMOUS, 0);
9850 if (IS_ERR((void *)hva))
9851 return PTR_ERR((void *)hva);
9852 } else {
9853 if (!slot || !slot->npages)
9854 return 0;
9855
9856 /*
9857 * Stuff a non-canonical value to catch use-after-delete. This
9858 * ends up being 0 on 32-bit KVM, but there's no better
9859 * alternative.
9860 */
9861 hva = (unsigned long)(0xdeadull << 48);
9862 old_npages = slot->npages;
9863 }
9864
9865 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9866 struct kvm_userspace_memory_region m;
9867
9868 m.slot = id | (i << 16);
9869 m.flags = 0;
9870 m.guest_phys_addr = gpa;
9871 m.userspace_addr = hva;
9872 m.memory_size = size;
9873 r = __kvm_set_memory_region(kvm, &m);
9874 if (r < 0)
9875 return r;
9876 }
9877
9878 if (!size)
9879 vm_munmap(hva, old_npages * PAGE_SIZE);
9880
9881 return 0;
9882 }
9883 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9884
9885 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9886 {
9887 kvm_mmu_pre_destroy_vm(kvm);
9888 }
9889
9890 void kvm_arch_destroy_vm(struct kvm *kvm)
9891 {
9892 if (current->mm == kvm->mm) {
9893 /*
9894 * Free memory regions allocated on behalf of userspace,
9895 * unless the the memory map has changed due to process exit
9896 * or fd copying.
9897 */
9898 mutex_lock(&kvm->slots_lock);
9899 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
9900 0, 0);
9901 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
9902 0, 0);
9903 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9904 mutex_unlock(&kvm->slots_lock);
9905 }
9906 if (kvm_x86_ops.vm_destroy)
9907 kvm_x86_ops.vm_destroy(kvm);
9908 kvm_pic_destroy(kvm);
9909 kvm_ioapic_destroy(kvm);
9910 kvm_free_vcpus(kvm);
9911 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9912 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9913 kvm_mmu_uninit_vm(kvm);
9914 kvm_page_track_cleanup(kvm);
9915 kvm_hv_destroy_vm(kvm);
9916 }
9917
9918 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
9919 {
9920 int i;
9921
9922 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9923 kvfree(slot->arch.rmap[i]);
9924 slot->arch.rmap[i] = NULL;
9925
9926 if (i == 0)
9927 continue;
9928
9929 kvfree(slot->arch.lpage_info[i - 1]);
9930 slot->arch.lpage_info[i - 1] = NULL;
9931 }
9932
9933 kvm_page_track_free_memslot(slot);
9934 }
9935
9936 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
9937 unsigned long npages)
9938 {
9939 int i;
9940
9941 /*
9942 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
9943 * old arrays will be freed by __kvm_set_memory_region() if installing
9944 * the new memslot is successful.
9945 */
9946 memset(&slot->arch, 0, sizeof(slot->arch));
9947
9948 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9949 struct kvm_lpage_info *linfo;
9950 unsigned long ugfn;
9951 int lpages;
9952 int level = i + 1;
9953
9954 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9955 slot->base_gfn, level) + 1;
9956
9957 slot->arch.rmap[i] =
9958 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9959 GFP_KERNEL_ACCOUNT);
9960 if (!slot->arch.rmap[i])
9961 goto out_free;
9962 if (i == 0)
9963 continue;
9964
9965 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9966 if (!linfo)
9967 goto out_free;
9968
9969 slot->arch.lpage_info[i - 1] = linfo;
9970
9971 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9972 linfo[0].disallow_lpage = 1;
9973 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9974 linfo[lpages - 1].disallow_lpage = 1;
9975 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9976 /*
9977 * If the gfn and userspace address are not aligned wrt each
9978 * other, disable large page support for this slot.
9979 */
9980 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
9981 unsigned long j;
9982
9983 for (j = 0; j < lpages; ++j)
9984 linfo[j].disallow_lpage = 1;
9985 }
9986 }
9987
9988 if (kvm_page_track_create_memslot(slot, npages))
9989 goto out_free;
9990
9991 return 0;
9992
9993 out_free:
9994 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9995 kvfree(slot->arch.rmap[i]);
9996 slot->arch.rmap[i] = NULL;
9997 if (i == 0)
9998 continue;
9999
10000 kvfree(slot->arch.lpage_info[i - 1]);
10001 slot->arch.lpage_info[i - 1] = NULL;
10002 }
10003 return -ENOMEM;
10004 }
10005
10006 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10007 {
10008 struct kvm_vcpu *vcpu;
10009 int i;
10010
10011 /*
10012 * memslots->generation has been incremented.
10013 * mmio generation may have reached its maximum value.
10014 */
10015 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10016
10017 /* Force re-initialization of steal_time cache */
10018 kvm_for_each_vcpu(i, vcpu, kvm)
10019 kvm_vcpu_kick(vcpu);
10020 }
10021
10022 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10023 struct kvm_memory_slot *memslot,
10024 const struct kvm_userspace_memory_region *mem,
10025 enum kvm_mr_change change)
10026 {
10027 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10028 return kvm_alloc_memslot_metadata(memslot,
10029 mem->memory_size >> PAGE_SHIFT);
10030 return 0;
10031 }
10032
10033 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10034 struct kvm_memory_slot *new)
10035 {
10036 /* Still write protect RO slot */
10037 if (new->flags & KVM_MEM_READONLY) {
10038 kvm_mmu_slot_remove_write_access(kvm, new, PT_PAGE_TABLE_LEVEL);
10039 return;
10040 }
10041
10042 /*
10043 * Call kvm_x86_ops dirty logging hooks when they are valid.
10044 *
10045 * kvm_x86_ops.slot_disable_log_dirty is called when:
10046 *
10047 * - KVM_MR_CREATE with dirty logging is disabled
10048 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
10049 *
10050 * The reason is, in case of PML, we need to set D-bit for any slots
10051 * with dirty logging disabled in order to eliminate unnecessary GPA
10052 * logging in PML buffer (and potential PML buffer full VMEXIT). This
10053 * guarantees leaving PML enabled during guest's lifetime won't have
10054 * any additional overhead from PML when guest is running with dirty
10055 * logging disabled for memory slots.
10056 *
10057 * kvm_x86_ops.slot_enable_log_dirty is called when switching new slot
10058 * to dirty logging mode.
10059 *
10060 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
10061 *
10062 * In case of write protect:
10063 *
10064 * Write protect all pages for dirty logging.
10065 *
10066 * All the sptes including the large sptes which point to this
10067 * slot are set to readonly. We can not create any new large
10068 * spte on this slot until the end of the logging.
10069 *
10070 * See the comments in fast_page_fault().
10071 */
10072 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10073 if (kvm_x86_ops.slot_enable_log_dirty) {
10074 kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10075 } else {
10076 int level =
10077 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10078 PT_DIRECTORY_LEVEL : PT_PAGE_TABLE_LEVEL;
10079
10080 /*
10081 * If we're with initial-all-set, we don't need
10082 * to write protect any small page because
10083 * they're reported as dirty already. However
10084 * we still need to write-protect huge pages
10085 * so that the page split can happen lazily on
10086 * the first write to the huge page.
10087 */
10088 kvm_mmu_slot_remove_write_access(kvm, new, level);
10089 }
10090 } else {
10091 if (kvm_x86_ops.slot_disable_log_dirty)
10092 kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10093 }
10094 }
10095
10096 void kvm_arch_commit_memory_region(struct kvm *kvm,
10097 const struct kvm_userspace_memory_region *mem,
10098 struct kvm_memory_slot *old,
10099 const struct kvm_memory_slot *new,
10100 enum kvm_mr_change change)
10101 {
10102 if (!kvm->arch.n_requested_mmu_pages)
10103 kvm_mmu_change_mmu_pages(kvm,
10104 kvm_mmu_calculate_default_mmu_pages(kvm));
10105
10106 /*
10107 * Dirty logging tracks sptes in 4k granularity, meaning that large
10108 * sptes have to be split. If live migration is successful, the guest
10109 * in the source machine will be destroyed and large sptes will be
10110 * created in the destination. However, if the guest continues to run
10111 * in the source machine (for example if live migration fails), small
10112 * sptes will remain around and cause bad performance.
10113 *
10114 * Scan sptes if dirty logging has been stopped, dropping those
10115 * which can be collapsed into a single large-page spte. Later
10116 * page faults will create the large-page sptes.
10117 *
10118 * There is no need to do this in any of the following cases:
10119 * CREATE: No dirty mappings will already exist.
10120 * MOVE/DELETE: The old mappings will already have been cleaned up by
10121 * kvm_arch_flush_shadow_memslot()
10122 */
10123 if (change == KVM_MR_FLAGS_ONLY &&
10124 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10125 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10126 kvm_mmu_zap_collapsible_sptes(kvm, new);
10127
10128 /*
10129 * Set up write protection and/or dirty logging for the new slot.
10130 *
10131 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
10132 * been zapped so no dirty logging staff is needed for old slot. For
10133 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
10134 * new and it's also covered when dealing with the new slot.
10135 *
10136 * FIXME: const-ify all uses of struct kvm_memory_slot.
10137 */
10138 if (change != KVM_MR_DELETE)
10139 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
10140
10141 /* Free the arrays associated with the old memslot. */
10142 if (change == KVM_MR_MOVE)
10143 kvm_arch_free_memslot(kvm, old);
10144 }
10145
10146 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10147 {
10148 kvm_mmu_zap_all(kvm);
10149 }
10150
10151 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10152 struct kvm_memory_slot *slot)
10153 {
10154 kvm_page_track_flush_slot(kvm, slot);
10155 }
10156
10157 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10158 {
10159 return (is_guest_mode(vcpu) &&
10160 kvm_x86_ops.guest_apic_has_interrupt &&
10161 kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10162 }
10163
10164 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10165 {
10166 if (!list_empty_careful(&vcpu->async_pf.done))
10167 return true;
10168
10169 if (kvm_apic_has_events(vcpu))
10170 return true;
10171
10172 if (vcpu->arch.pv.pv_unhalted)
10173 return true;
10174
10175 if (vcpu->arch.exception.pending)
10176 return true;
10177
10178 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10179 (vcpu->arch.nmi_pending &&
10180 kvm_x86_ops.nmi_allowed(vcpu)))
10181 return true;
10182
10183 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10184 (vcpu->arch.smi_pending && !is_smm(vcpu)))
10185 return true;
10186
10187 if (kvm_arch_interrupt_allowed(vcpu) &&
10188 (kvm_cpu_has_interrupt(vcpu) ||
10189 kvm_guest_apic_has_interrupt(vcpu)))
10190 return true;
10191
10192 if (kvm_hv_has_stimer_pending(vcpu))
10193 return true;
10194
10195 return false;
10196 }
10197
10198 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10199 {
10200 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10201 }
10202
10203 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10204 {
10205 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10206 return true;
10207
10208 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10209 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10210 kvm_test_request(KVM_REQ_EVENT, vcpu))
10211 return true;
10212
10213 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10214 return true;
10215
10216 return false;
10217 }
10218
10219 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10220 {
10221 return vcpu->arch.preempted_in_kernel;
10222 }
10223
10224 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10225 {
10226 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10227 }
10228
10229 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10230 {
10231 return kvm_x86_ops.interrupt_allowed(vcpu);
10232 }
10233
10234 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10235 {
10236 if (is_64_bit_mode(vcpu))
10237 return kvm_rip_read(vcpu);
10238 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10239 kvm_rip_read(vcpu));
10240 }
10241 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10242
10243 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10244 {
10245 return kvm_get_linear_rip(vcpu) == linear_rip;
10246 }
10247 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10248
10249 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10250 {
10251 unsigned long rflags;
10252
10253 rflags = kvm_x86_ops.get_rflags(vcpu);
10254 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10255 rflags &= ~X86_EFLAGS_TF;
10256 return rflags;
10257 }
10258 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10259
10260 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10261 {
10262 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10263 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10264 rflags |= X86_EFLAGS_TF;
10265 kvm_x86_ops.set_rflags(vcpu, rflags);
10266 }
10267
10268 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10269 {
10270 __kvm_set_rflags(vcpu, rflags);
10271 kvm_make_request(KVM_REQ_EVENT, vcpu);
10272 }
10273 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10274
10275 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10276 {
10277 int r;
10278
10279 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10280 work->wakeup_all)
10281 return;
10282
10283 r = kvm_mmu_reload(vcpu);
10284 if (unlikely(r))
10285 return;
10286
10287 if (!vcpu->arch.mmu->direct_map &&
10288 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10289 return;
10290
10291 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10292 }
10293
10294 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10295 {
10296 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10297 }
10298
10299 static inline u32 kvm_async_pf_next_probe(u32 key)
10300 {
10301 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10302 }
10303
10304 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10305 {
10306 u32 key = kvm_async_pf_hash_fn(gfn);
10307
10308 while (vcpu->arch.apf.gfns[key] != ~0)
10309 key = kvm_async_pf_next_probe(key);
10310
10311 vcpu->arch.apf.gfns[key] = gfn;
10312 }
10313
10314 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10315 {
10316 int i;
10317 u32 key = kvm_async_pf_hash_fn(gfn);
10318
10319 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10320 (vcpu->arch.apf.gfns[key] != gfn &&
10321 vcpu->arch.apf.gfns[key] != ~0); i++)
10322 key = kvm_async_pf_next_probe(key);
10323
10324 return key;
10325 }
10326
10327 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10328 {
10329 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10330 }
10331
10332 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10333 {
10334 u32 i, j, k;
10335
10336 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10337 while (true) {
10338 vcpu->arch.apf.gfns[i] = ~0;
10339 do {
10340 j = kvm_async_pf_next_probe(j);
10341 if (vcpu->arch.apf.gfns[j] == ~0)
10342 return;
10343 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10344 /*
10345 * k lies cyclically in ]i,j]
10346 * | i.k.j |
10347 * |....j i.k.| or |.k..j i...|
10348 */
10349 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10350 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10351 i = j;
10352 }
10353 }
10354
10355 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10356 {
10357
10358 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10359 sizeof(val));
10360 }
10361
10362 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10363 {
10364
10365 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10366 sizeof(u32));
10367 }
10368
10369 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10370 {
10371 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10372 return false;
10373
10374 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10375 (vcpu->arch.apf.send_user_only &&
10376 kvm_x86_ops.get_cpl(vcpu) == 0))
10377 return false;
10378
10379 return true;
10380 }
10381
10382 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10383 {
10384 if (unlikely(!lapic_in_kernel(vcpu) ||
10385 kvm_event_needs_reinjection(vcpu) ||
10386 vcpu->arch.exception.pending))
10387 return false;
10388
10389 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10390 return false;
10391
10392 /*
10393 * If interrupts are off we cannot even use an artificial
10394 * halt state.
10395 */
10396 return kvm_x86_ops.interrupt_allowed(vcpu);
10397 }
10398
10399 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10400 struct kvm_async_pf *work)
10401 {
10402 struct x86_exception fault;
10403
10404 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10405 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10406
10407 if (kvm_can_deliver_async_pf(vcpu) &&
10408 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10409 fault.vector = PF_VECTOR;
10410 fault.error_code_valid = true;
10411 fault.error_code = 0;
10412 fault.nested_page_fault = false;
10413 fault.address = work->arch.token;
10414 fault.async_page_fault = true;
10415 kvm_inject_page_fault(vcpu, &fault);
10416 } else {
10417 /*
10418 * It is not possible to deliver a paravirtualized asynchronous
10419 * page fault, but putting the guest in an artificial halt state
10420 * can be beneficial nevertheless: if an interrupt arrives, we
10421 * can deliver it timely and perhaps the guest will schedule
10422 * another process. When the instruction that triggered a page
10423 * fault is retried, hopefully the page will be ready in the host.
10424 */
10425 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10426 }
10427 }
10428
10429 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10430 struct kvm_async_pf *work)
10431 {
10432 struct x86_exception fault;
10433 u32 val;
10434
10435 if (work->wakeup_all)
10436 work->arch.token = ~0; /* broadcast wakeup */
10437 else
10438 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10439 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10440
10441 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10442 !apf_get_user(vcpu, &val)) {
10443 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10444 vcpu->arch.exception.pending &&
10445 vcpu->arch.exception.nr == PF_VECTOR &&
10446 !apf_put_user(vcpu, 0)) {
10447 vcpu->arch.exception.injected = false;
10448 vcpu->arch.exception.pending = false;
10449 vcpu->arch.exception.nr = 0;
10450 vcpu->arch.exception.has_error_code = false;
10451 vcpu->arch.exception.error_code = 0;
10452 vcpu->arch.exception.has_payload = false;
10453 vcpu->arch.exception.payload = 0;
10454 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10455 fault.vector = PF_VECTOR;
10456 fault.error_code_valid = true;
10457 fault.error_code = 0;
10458 fault.nested_page_fault = false;
10459 fault.address = work->arch.token;
10460 fault.async_page_fault = true;
10461 kvm_inject_page_fault(vcpu, &fault);
10462 }
10463 }
10464 vcpu->arch.apf.halted = false;
10465 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10466 }
10467
10468 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10469 {
10470 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10471 return true;
10472 else
10473 return kvm_can_do_async_pf(vcpu);
10474 }
10475
10476 void kvm_arch_start_assignment(struct kvm *kvm)
10477 {
10478 atomic_inc(&kvm->arch.assigned_device_count);
10479 }
10480 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10481
10482 void kvm_arch_end_assignment(struct kvm *kvm)
10483 {
10484 atomic_dec(&kvm->arch.assigned_device_count);
10485 }
10486 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10487
10488 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10489 {
10490 return atomic_read(&kvm->arch.assigned_device_count);
10491 }
10492 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10493
10494 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10495 {
10496 atomic_inc(&kvm->arch.noncoherent_dma_count);
10497 }
10498 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10499
10500 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10501 {
10502 atomic_dec(&kvm->arch.noncoherent_dma_count);
10503 }
10504 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10505
10506 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10507 {
10508 return atomic_read(&kvm->arch.noncoherent_dma_count);
10509 }
10510 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10511
10512 bool kvm_arch_has_irq_bypass(void)
10513 {
10514 return true;
10515 }
10516
10517 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10518 struct irq_bypass_producer *prod)
10519 {
10520 struct kvm_kernel_irqfd *irqfd =
10521 container_of(cons, struct kvm_kernel_irqfd, consumer);
10522
10523 irqfd->producer = prod;
10524
10525 return kvm_x86_ops.update_pi_irte(irqfd->kvm,
10526 prod->irq, irqfd->gsi, 1);
10527 }
10528
10529 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10530 struct irq_bypass_producer *prod)
10531 {
10532 int ret;
10533 struct kvm_kernel_irqfd *irqfd =
10534 container_of(cons, struct kvm_kernel_irqfd, consumer);
10535
10536 WARN_ON(irqfd->producer != prod);
10537 irqfd->producer = NULL;
10538
10539 /*
10540 * When producer of consumer is unregistered, we change back to
10541 * remapped mode, so we can re-use the current implementation
10542 * when the irq is masked/disabled or the consumer side (KVM
10543 * int this case doesn't want to receive the interrupts.
10544 */
10545 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10546 if (ret)
10547 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10548 " fails: %d\n", irqfd->consumer.token, ret);
10549 }
10550
10551 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10552 uint32_t guest_irq, bool set)
10553 {
10554 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
10555 }
10556
10557 bool kvm_vector_hashing_enabled(void)
10558 {
10559 return vector_hashing;
10560 }
10561
10562 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10563 {
10564 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10565 }
10566 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10567
10568 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu)
10569 {
10570 uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD;
10571
10572 /* The STIBP bit doesn't fault even if it's not advertised */
10573 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
10574 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
10575 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10576 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
10577 !boot_cpu_has(X86_FEATURE_AMD_IBRS))
10578 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10579
10580 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) &&
10581 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
10582 bits &= ~SPEC_CTRL_SSBD;
10583 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
10584 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
10585 bits &= ~SPEC_CTRL_SSBD;
10586
10587 return bits;
10588 }
10589 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits);
10590
10591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10599 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10600 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10601 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10602 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10603 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10604 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10605 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10606 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10607 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10608 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10609 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10610 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10611 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
10612 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);