]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/x86/lib/tsc_timer.c
x86: tsc: Add driver model timer support
[people/ms/u-boot.git] / arch / x86 / lib / tsc_timer.c
1 /*
2 * Copyright (c) 2012 The Chromium OS Authors.
3 *
4 * TSC calibration codes are adapted from Linux kernel
5 * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
6 *
7 * SPDX-License-Identifier: GPL-2.0+
8 */
9
10 #include <common.h>
11 #include <dm.h>
12 #include <malloc.h>
13 #include <timer.h>
14 #include <asm/io.h>
15 #include <asm/i8254.h>
16 #include <asm/ibmpc.h>
17 #include <asm/msr.h>
18 #include <asm/u-boot-x86.h>
19
20 /* CPU reference clock frequency: in KHz */
21 #define FREQ_83 83200
22 #define FREQ_100 99840
23 #define FREQ_133 133200
24 #define FREQ_166 166400
25
26 #define MAX_NUM_FREQS 8
27
28 DECLARE_GLOBAL_DATA_PTR;
29
30 /*
31 * According to Intel 64 and IA-32 System Programming Guide,
32 * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
33 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
34 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
35 * so we need manually differentiate SoC families. This is what the
36 * field msr_plat does.
37 */
38 struct freq_desc {
39 u8 x86_family; /* CPU family */
40 u8 x86_model; /* model */
41 /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
42 u8 msr_plat;
43 u32 freqs[MAX_NUM_FREQS];
44 };
45
46 static struct freq_desc freq_desc_tables[] = {
47 /* PNW */
48 { 6, 0x27, 0, { 0, 0, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
49 /* CLV+ */
50 { 6, 0x35, 0, { 0, FREQ_133, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
51 /* TNG */
52 { 6, 0x4a, 1, { 0, FREQ_100, FREQ_133, 0, 0, 0, 0, 0 } },
53 /* VLV2 */
54 { 6, 0x37, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_166, 0, 0, 0, 0 } },
55 /* Ivybridge */
56 { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0 } },
57 /* ANN */
58 { 6, 0x5a, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_100, 0, 0, 0, 0 } },
59 };
60
61 static int match_cpu(u8 family, u8 model)
62 {
63 int i;
64
65 for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
66 if ((family == freq_desc_tables[i].x86_family) &&
67 (model == freq_desc_tables[i].x86_model))
68 return i;
69 }
70
71 return -1;
72 }
73
74 /* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
75 #define id_to_freq(cpu_index, freq_id) \
76 (freq_desc_tables[cpu_index].freqs[freq_id])
77
78 /*
79 * Do MSR calibration only for known/supported CPUs.
80 *
81 * Returns the calibration value or 0 if MSR calibration failed.
82 */
83 static unsigned long __maybe_unused try_msr_calibrate_tsc(void)
84 {
85 u32 lo, hi, ratio, freq_id, freq;
86 unsigned long res;
87 int cpu_index;
88
89 cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
90 if (cpu_index < 0)
91 return 0;
92
93 if (freq_desc_tables[cpu_index].msr_plat) {
94 rdmsr(MSR_PLATFORM_INFO, lo, hi);
95 ratio = (lo >> 8) & 0x1f;
96 } else {
97 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
98 ratio = (hi >> 8) & 0x1f;
99 }
100 debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
101
102 if (!ratio)
103 goto fail;
104
105 if (freq_desc_tables[cpu_index].msr_plat == 2) {
106 /* TODO: Figure out how best to deal with this */
107 freq = FREQ_100;
108 debug("Using frequency: %u KHz\n", freq);
109 } else {
110 /* Get FSB FREQ ID */
111 rdmsr(MSR_FSB_FREQ, lo, hi);
112 freq_id = lo & 0x7;
113 freq = id_to_freq(cpu_index, freq_id);
114 debug("Resolved frequency ID: %u, frequency: %u KHz\n",
115 freq_id, freq);
116 }
117 if (!freq)
118 goto fail;
119
120 /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
121 res = freq * ratio / 1000;
122 debug("TSC runs at %lu MHz\n", res);
123
124 return res;
125
126 fail:
127 debug("Fast TSC calibration using MSR failed\n");
128 return 0;
129 }
130
131 /*
132 * This reads the current MSB of the PIT counter, and
133 * checks if we are running on sufficiently fast and
134 * non-virtualized hardware.
135 *
136 * Our expectations are:
137 *
138 * - the PIT is running at roughly 1.19MHz
139 *
140 * - each IO is going to take about 1us on real hardware,
141 * but we allow it to be much faster (by a factor of 10) or
142 * _slightly_ slower (ie we allow up to a 2us read+counter
143 * update - anything else implies a unacceptably slow CPU
144 * or PIT for the fast calibration to work.
145 *
146 * - with 256 PIT ticks to read the value, we have 214us to
147 * see the same MSB (and overhead like doing a single TSC
148 * read per MSB value etc).
149 *
150 * - We're doing 2 reads per loop (LSB, MSB), and we expect
151 * them each to take about a microsecond on real hardware.
152 * So we expect a count value of around 100. But we'll be
153 * generous, and accept anything over 50.
154 *
155 * - if the PIT is stuck, and we see *many* more reads, we
156 * return early (and the next caller of pit_expect_msb()
157 * then consider it a failure when they don't see the
158 * next expected value).
159 *
160 * These expectations mean that we know that we have seen the
161 * transition from one expected value to another with a fairly
162 * high accuracy, and we didn't miss any events. We can thus
163 * use the TSC value at the transitions to calculate a pretty
164 * good value for the TSC frequencty.
165 */
166 static inline int pit_verify_msb(unsigned char val)
167 {
168 /* Ignore LSB */
169 inb(0x42);
170 return inb(0x42) == val;
171 }
172
173 static inline int pit_expect_msb(unsigned char val, u64 *tscp,
174 unsigned long *deltap)
175 {
176 int count;
177 u64 tsc = 0, prev_tsc = 0;
178
179 for (count = 0; count < 50000; count++) {
180 if (!pit_verify_msb(val))
181 break;
182 prev_tsc = tsc;
183 tsc = rdtsc();
184 }
185 *deltap = rdtsc() - prev_tsc;
186 *tscp = tsc;
187
188 /*
189 * We require _some_ success, but the quality control
190 * will be based on the error terms on the TSC values.
191 */
192 return count > 5;
193 }
194
195 /*
196 * How many MSB values do we want to see? We aim for
197 * a maximum error rate of 500ppm (in practice the
198 * real error is much smaller), but refuse to spend
199 * more than 50ms on it.
200 */
201 #define MAX_QUICK_PIT_MS 50
202 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
203
204 static unsigned long __maybe_unused quick_pit_calibrate(void)
205 {
206 int i;
207 u64 tsc, delta;
208 unsigned long d1, d2;
209
210 /* Set the Gate high, disable speaker */
211 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
212
213 /*
214 * Counter 2, mode 0 (one-shot), binary count
215 *
216 * NOTE! Mode 2 decrements by two (and then the
217 * output is flipped each time, giving the same
218 * final output frequency as a decrement-by-one),
219 * so mode 0 is much better when looking at the
220 * individual counts.
221 */
222 outb(0xb0, 0x43);
223
224 /* Start at 0xffff */
225 outb(0xff, 0x42);
226 outb(0xff, 0x42);
227
228 /*
229 * The PIT starts counting at the next edge, so we
230 * need to delay for a microsecond. The easiest way
231 * to do that is to just read back the 16-bit counter
232 * once from the PIT.
233 */
234 pit_verify_msb(0);
235
236 if (pit_expect_msb(0xff, &tsc, &d1)) {
237 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
238 if (!pit_expect_msb(0xff-i, &delta, &d2))
239 break;
240
241 /*
242 * Iterate until the error is less than 500 ppm
243 */
244 delta -= tsc;
245 if (d1+d2 >= delta >> 11)
246 continue;
247
248 /*
249 * Check the PIT one more time to verify that
250 * all TSC reads were stable wrt the PIT.
251 *
252 * This also guarantees serialization of the
253 * last cycle read ('d2') in pit_expect_msb.
254 */
255 if (!pit_verify_msb(0xfe - i))
256 break;
257 goto success;
258 }
259 }
260 debug("Fast TSC calibration failed\n");
261 return 0;
262
263 success:
264 /*
265 * Ok, if we get here, then we've seen the
266 * MSB of the PIT decrement 'i' times, and the
267 * error has shrunk to less than 500 ppm.
268 *
269 * As a result, we can depend on there not being
270 * any odd delays anywhere, and the TSC reads are
271 * reliable (within the error).
272 *
273 * kHz = ticks / time-in-seconds / 1000;
274 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
275 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
276 */
277 delta *= PIT_TICK_RATE;
278 delta /= (i*256*1000);
279 debug("Fast TSC calibration using PIT\n");
280 return delta / 1000;
281 }
282
283 #ifndef CONFIG_TIMER
284 void timer_set_base(u64 base)
285 {
286 gd->arch.tsc_base = base;
287 }
288
289 /*
290 * Get the number of CPU time counter ticks since it was read first time after
291 * restart. This yields a free running counter guaranteed to take almost 6
292 * years to wrap around even at 100GHz clock rate.
293 */
294 u64 notrace get_ticks(void)
295 {
296 u64 now_tick = rdtsc();
297
298 /* We assume that 0 means the base hasn't been set yet */
299 if (!gd->arch.tsc_base)
300 panic("No tick base available");
301 return now_tick - gd->arch.tsc_base;
302 }
303 #endif /* CONFIG_TIMER */
304
305 /* Get the speed of the TSC timer in MHz */
306 unsigned notrace long get_tbclk_mhz(void)
307 {
308 #ifdef CONFIG_TIMER
309 return get_tbclk() / 1000000;
310 #else
311 unsigned long fast_calibrate;
312
313 if (gd->arch.tsc_mhz)
314 return gd->arch.tsc_mhz;
315
316 #ifdef CONFIG_TSC_CALIBRATION_BYPASS
317 fast_calibrate = CONFIG_TSC_FREQ_IN_MHZ;
318 #else
319 fast_calibrate = try_msr_calibrate_tsc();
320 if (!fast_calibrate) {
321
322 fast_calibrate = quick_pit_calibrate();
323 if (!fast_calibrate)
324 panic("TSC frequency is ZERO");
325 }
326 #endif
327
328 gd->arch.tsc_mhz = fast_calibrate;
329 return fast_calibrate;
330 #endif
331 }
332
333 #ifndef CONFIG_TIMER
334 unsigned long get_tbclk(void)
335 {
336 return get_tbclk_mhz() * 1000 * 1000;
337 }
338 #endif
339
340 static ulong get_ms_timer(void)
341 {
342 return (get_ticks() * 1000) / get_tbclk();
343 }
344
345 ulong get_timer(ulong base)
346 {
347 return get_ms_timer() - base;
348 }
349
350 ulong notrace timer_get_us(void)
351 {
352 return get_ticks() / get_tbclk_mhz();
353 }
354
355 ulong timer_get_boot_us(void)
356 {
357 return timer_get_us();
358 }
359
360 void __udelay(unsigned long usec)
361 {
362 u64 now = get_ticks();
363 u64 stop;
364
365 stop = now + usec * get_tbclk_mhz();
366
367 while ((int64_t)(stop - get_ticks()) > 0)
368 #if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
369 /*
370 * Add a 'pause' instruction on qemu target,
371 * to give other VCPUs a chance to run.
372 */
373 asm volatile("pause");
374 #else
375 ;
376 #endif
377 }
378
379 int timer_init(void)
380 {
381 #ifdef CONFIG_I8254_TIMER
382 /* Set up the i8254 timer if required */
383 i8254_init();
384 #endif
385
386 return 0;
387 }
388
389 #ifdef CONFIG_TIMER
390 static int tsc_timer_get_count(struct udevice *dev, u64 *count)
391 {
392 u64 now_tick = rdtsc();
393
394 *count = now_tick - gd->arch.tsc_base;
395
396 return 0;
397 }
398
399 static int tsc_timer_probe(struct udevice *dev)
400 {
401 struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
402
403 gd->arch.tsc_base = rdtsc();
404
405 /*
406 * If there is no clock frequency specified in the device tree,
407 * calibrate it by ourselves.
408 */
409 if (!uc_priv->clock_rate) {
410 unsigned long fast_calibrate;
411
412 fast_calibrate = try_msr_calibrate_tsc();
413 if (!fast_calibrate) {
414 fast_calibrate = quick_pit_calibrate();
415 if (!fast_calibrate)
416 panic("TSC frequency is ZERO");
417 }
418
419 uc_priv->clock_rate = fast_calibrate * 1000000;
420 }
421
422 return 0;
423 }
424
425 static const struct timer_ops tsc_timer_ops = {
426 .get_count = tsc_timer_get_count,
427 };
428
429 static const struct udevice_id tsc_timer_ids[] = {
430 { .compatible = "x86,tsc-timer", },
431 { }
432 };
433
434 U_BOOT_DRIVER(tsc_timer) = {
435 .name = "tsc_timer",
436 .id = UCLASS_TIMER,
437 .of_match = tsc_timer_ids,
438 .probe = tsc_timer_probe,
439 .ops = &tsc_timer_ops,
440 .flags = DM_FLAG_PRE_RELOC,
441 };
442 #endif /* CONFIG_TIMER */