]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/mm/mem_encrypt.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[thirdparty/kernel/stable.git] / arch / x86 / mm / mem_encrypt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD Memory Encryption Support
4 *
5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
6 *
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 */
9
10 #define DISABLE_BRANCH_PROFILING
11
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18
19 #include <asm/tlbflush.h>
20 #include <asm/fixmap.h>
21 #include <asm/setup.h>
22 #include <asm/bootparam.h>
23 #include <asm/set_memory.h>
24 #include <asm/cacheflush.h>
25 #include <asm/processor-flags.h>
26 #include <asm/msr.h>
27 #include <asm/cmdline.h>
28
29 #include "mm_internal.h"
30
31 /*
32 * Since SME related variables are set early in the boot process they must
33 * reside in the .data section so as not to be zeroed out when the .bss
34 * section is later cleared.
35 */
36 u64 sme_me_mask __section(.data) = 0;
37 EXPORT_SYMBOL(sme_me_mask);
38 DEFINE_STATIC_KEY_FALSE(sev_enable_key);
39 EXPORT_SYMBOL_GPL(sev_enable_key);
40
41 bool sev_enabled __section(.data);
42
43 /* Buffer used for early in-place encryption by BSP, no locking needed */
44 static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
45
46 /*
47 * This routine does not change the underlying encryption setting of the
48 * page(s) that map this memory. It assumes that eventually the memory is
49 * meant to be accessed as either encrypted or decrypted but the contents
50 * are currently not in the desired state.
51 *
52 * This routine follows the steps outlined in the AMD64 Architecture
53 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
54 */
55 static void __init __sme_early_enc_dec(resource_size_t paddr,
56 unsigned long size, bool enc)
57 {
58 void *src, *dst;
59 size_t len;
60
61 if (!sme_me_mask)
62 return;
63
64 wbinvd();
65
66 /*
67 * There are limited number of early mapping slots, so map (at most)
68 * one page at time.
69 */
70 while (size) {
71 len = min_t(size_t, sizeof(sme_early_buffer), size);
72
73 /*
74 * Create mappings for the current and desired format of
75 * the memory. Use a write-protected mapping for the source.
76 */
77 src = enc ? early_memremap_decrypted_wp(paddr, len) :
78 early_memremap_encrypted_wp(paddr, len);
79
80 dst = enc ? early_memremap_encrypted(paddr, len) :
81 early_memremap_decrypted(paddr, len);
82
83 /*
84 * If a mapping can't be obtained to perform the operation,
85 * then eventual access of that area in the desired mode
86 * will cause a crash.
87 */
88 BUG_ON(!src || !dst);
89
90 /*
91 * Use a temporary buffer, of cache-line multiple size, to
92 * avoid data corruption as documented in the APM.
93 */
94 memcpy(sme_early_buffer, src, len);
95 memcpy(dst, sme_early_buffer, len);
96
97 early_memunmap(dst, len);
98 early_memunmap(src, len);
99
100 paddr += len;
101 size -= len;
102 }
103 }
104
105 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
106 {
107 __sme_early_enc_dec(paddr, size, true);
108 }
109
110 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
111 {
112 __sme_early_enc_dec(paddr, size, false);
113 }
114
115 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
116 bool map)
117 {
118 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
119 pmdval_t pmd_flags, pmd;
120
121 /* Use early_pmd_flags but remove the encryption mask */
122 pmd_flags = __sme_clr(early_pmd_flags);
123
124 do {
125 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
126 __early_make_pgtable((unsigned long)vaddr, pmd);
127
128 vaddr += PMD_SIZE;
129 paddr += PMD_SIZE;
130 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
131 } while (size);
132
133 __native_flush_tlb();
134 }
135
136 void __init sme_unmap_bootdata(char *real_mode_data)
137 {
138 struct boot_params *boot_data;
139 unsigned long cmdline_paddr;
140
141 if (!sme_active())
142 return;
143
144 /* Get the command line address before unmapping the real_mode_data */
145 boot_data = (struct boot_params *)real_mode_data;
146 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
147
148 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
149
150 if (!cmdline_paddr)
151 return;
152
153 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
154 }
155
156 void __init sme_map_bootdata(char *real_mode_data)
157 {
158 struct boot_params *boot_data;
159 unsigned long cmdline_paddr;
160
161 if (!sme_active())
162 return;
163
164 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
165
166 /* Get the command line address after mapping the real_mode_data */
167 boot_data = (struct boot_params *)real_mode_data;
168 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
169
170 if (!cmdline_paddr)
171 return;
172
173 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
174 }
175
176 void __init sme_early_init(void)
177 {
178 unsigned int i;
179
180 if (!sme_me_mask)
181 return;
182
183 early_pmd_flags = __sme_set(early_pmd_flags);
184
185 __supported_pte_mask = __sme_set(__supported_pte_mask);
186
187 /* Update the protection map with memory encryption mask */
188 for (i = 0; i < ARRAY_SIZE(protection_map); i++)
189 protection_map[i] = pgprot_encrypted(protection_map[i]);
190
191 if (sev_active())
192 swiotlb_force = SWIOTLB_FORCE;
193 }
194
195 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
196 {
197 pgprot_t old_prot, new_prot;
198 unsigned long pfn, pa, size;
199 pte_t new_pte;
200
201 switch (level) {
202 case PG_LEVEL_4K:
203 pfn = pte_pfn(*kpte);
204 old_prot = pte_pgprot(*kpte);
205 break;
206 case PG_LEVEL_2M:
207 pfn = pmd_pfn(*(pmd_t *)kpte);
208 old_prot = pmd_pgprot(*(pmd_t *)kpte);
209 break;
210 case PG_LEVEL_1G:
211 pfn = pud_pfn(*(pud_t *)kpte);
212 old_prot = pud_pgprot(*(pud_t *)kpte);
213 break;
214 default:
215 return;
216 }
217
218 new_prot = old_prot;
219 if (enc)
220 pgprot_val(new_prot) |= _PAGE_ENC;
221 else
222 pgprot_val(new_prot) &= ~_PAGE_ENC;
223
224 /* If prot is same then do nothing. */
225 if (pgprot_val(old_prot) == pgprot_val(new_prot))
226 return;
227
228 pa = pfn << page_level_shift(level);
229 size = page_level_size(level);
230
231 /*
232 * We are going to perform in-place en-/decryption and change the
233 * physical page attribute from C=1 to C=0 or vice versa. Flush the
234 * caches to ensure that data gets accessed with the correct C-bit.
235 */
236 clflush_cache_range(__va(pa), size);
237
238 /* Encrypt/decrypt the contents in-place */
239 if (enc)
240 sme_early_encrypt(pa, size);
241 else
242 sme_early_decrypt(pa, size);
243
244 /* Change the page encryption mask. */
245 new_pte = pfn_pte(pfn, new_prot);
246 set_pte_atomic(kpte, new_pte);
247 }
248
249 static int __init early_set_memory_enc_dec(unsigned long vaddr,
250 unsigned long size, bool enc)
251 {
252 unsigned long vaddr_end, vaddr_next;
253 unsigned long psize, pmask;
254 int split_page_size_mask;
255 int level, ret;
256 pte_t *kpte;
257
258 vaddr_next = vaddr;
259 vaddr_end = vaddr + size;
260
261 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
262 kpte = lookup_address(vaddr, &level);
263 if (!kpte || pte_none(*kpte)) {
264 ret = 1;
265 goto out;
266 }
267
268 if (level == PG_LEVEL_4K) {
269 __set_clr_pte_enc(kpte, level, enc);
270 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
271 continue;
272 }
273
274 psize = page_level_size(level);
275 pmask = page_level_mask(level);
276
277 /*
278 * Check whether we can change the large page in one go.
279 * We request a split when the address is not aligned and
280 * the number of pages to set/clear encryption bit is smaller
281 * than the number of pages in the large page.
282 */
283 if (vaddr == (vaddr & pmask) &&
284 ((vaddr_end - vaddr) >= psize)) {
285 __set_clr_pte_enc(kpte, level, enc);
286 vaddr_next = (vaddr & pmask) + psize;
287 continue;
288 }
289
290 /*
291 * The virtual address is part of a larger page, create the next
292 * level page table mapping (4K or 2M). If it is part of a 2M
293 * page then we request a split of the large page into 4K
294 * chunks. A 1GB large page is split into 2M pages, resp.
295 */
296 if (level == PG_LEVEL_2M)
297 split_page_size_mask = 0;
298 else
299 split_page_size_mask = 1 << PG_LEVEL_2M;
300
301 /*
302 * kernel_physical_mapping_change() does not flush the TLBs, so
303 * a TLB flush is required after we exit from the for loop.
304 */
305 kernel_physical_mapping_change(__pa(vaddr & pmask),
306 __pa((vaddr_end & pmask) + psize),
307 split_page_size_mask);
308 }
309
310 ret = 0;
311
312 out:
313 __flush_tlb_all();
314 return ret;
315 }
316
317 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
318 {
319 return early_set_memory_enc_dec(vaddr, size, false);
320 }
321
322 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
323 {
324 return early_set_memory_enc_dec(vaddr, size, true);
325 }
326
327 /*
328 * SME and SEV are very similar but they are not the same, so there are
329 * times that the kernel will need to distinguish between SME and SEV. The
330 * sme_active() and sev_active() functions are used for this. When a
331 * distinction isn't needed, the mem_encrypt_active() function can be used.
332 *
333 * The trampoline code is a good example for this requirement. Before
334 * paging is activated, SME will access all memory as decrypted, but SEV
335 * will access all memory as encrypted. So, when APs are being brought
336 * up under SME the trampoline area cannot be encrypted, whereas under SEV
337 * the trampoline area must be encrypted.
338 */
339 bool sme_active(void)
340 {
341 return sme_me_mask && !sev_enabled;
342 }
343 EXPORT_SYMBOL(sme_active);
344
345 bool sev_active(void)
346 {
347 return sme_me_mask && sev_enabled;
348 }
349 EXPORT_SYMBOL(sev_active);
350
351 /* Architecture __weak replacement functions */
352 void __init mem_encrypt_free_decrypted_mem(void)
353 {
354 unsigned long vaddr, vaddr_end, npages;
355 int r;
356
357 vaddr = (unsigned long)__start_bss_decrypted_unused;
358 vaddr_end = (unsigned long)__end_bss_decrypted;
359 npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
360
361 /*
362 * The unused memory range was mapped decrypted, change the encryption
363 * attribute from decrypted to encrypted before freeing it.
364 */
365 if (mem_encrypt_active()) {
366 r = set_memory_encrypted(vaddr, npages);
367 if (r) {
368 pr_warn("failed to free unused decrypted pages\n");
369 return;
370 }
371 }
372
373 free_init_pages("unused decrypted", vaddr, vaddr_end);
374 }
375
376 void __init mem_encrypt_init(void)
377 {
378 if (!sme_me_mask)
379 return;
380
381 /* Call into SWIOTLB to update the SWIOTLB DMA buffers */
382 swiotlb_update_mem_attributes();
383
384 /*
385 * With SEV, we need to unroll the rep string I/O instructions.
386 */
387 if (sev_active())
388 static_branch_enable(&sev_enable_key);
389
390 pr_info("AMD %s active\n",
391 sev_active() ? "Secure Encrypted Virtualization (SEV)"
392 : "Secure Memory Encryption (SME)");
393 }
394