]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - arch/x86/mm/pageattr.c
Merge branch 'linus' into sched/core, to pick up fixes
[thirdparty/kernel/linux.git] / arch / x86 / mm / pageattr.c
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29 * The current flushing context - we pass it instead of 5 arguments:
30 */
31 struct cpa_data {
32 unsigned long *vaddr;
33 pgd_t *pgd;
34 pgprot_t mask_set;
35 pgprot_t mask_clr;
36 unsigned long numpages;
37 int flags;
38 unsigned long pfn;
39 unsigned force_split : 1;
40 int curpage;
41 struct page **pages;
42 };
43
44 /*
45 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47 * entries change the page attribute in parallel to some other cpu
48 * splitting a large page entry along with changing the attribute.
49 */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59 void update_page_count(int level, unsigned long pages)
60 {
61 /* Protect against CPA */
62 spin_lock(&pgd_lock);
63 direct_pages_count[level] += pages;
64 spin_unlock(&pgd_lock);
65 }
66
67 static void split_page_count(int level)
68 {
69 if (direct_pages_count[level] == 0)
70 return;
71
72 direct_pages_count[level]--;
73 direct_pages_count[level - 1] += PTRS_PER_PTE;
74 }
75
76 void arch_report_meminfo(struct seq_file *m)
77 {
78 seq_printf(m, "DirectMap4k: %8lu kB\n",
79 direct_pages_count[PG_LEVEL_4K] << 2);
80 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
81 seq_printf(m, "DirectMap2M: %8lu kB\n",
82 direct_pages_count[PG_LEVEL_2M] << 11);
83 #else
84 seq_printf(m, "DirectMap4M: %8lu kB\n",
85 direct_pages_count[PG_LEVEL_2M] << 12);
86 #endif
87 if (direct_gbpages)
88 seq_printf(m, "DirectMap1G: %8lu kB\n",
89 direct_pages_count[PG_LEVEL_1G] << 20);
90 }
91 #else
92 static inline void split_page_count(int level) { }
93 #endif
94
95 #ifdef CONFIG_X86_64
96
97 static inline unsigned long highmap_start_pfn(void)
98 {
99 return __pa_symbol(_text) >> PAGE_SHIFT;
100 }
101
102 static inline unsigned long highmap_end_pfn(void)
103 {
104 /* Do not reference physical address outside the kernel. */
105 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
106 }
107
108 #endif
109
110 static inline int
111 within(unsigned long addr, unsigned long start, unsigned long end)
112 {
113 return addr >= start && addr < end;
114 }
115
116 static inline int
117 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
118 {
119 return addr >= start && addr <= end;
120 }
121
122 /*
123 * Flushing functions
124 */
125
126 /**
127 * clflush_cache_range - flush a cache range with clflush
128 * @vaddr: virtual start address
129 * @size: number of bytes to flush
130 *
131 * clflushopt is an unordered instruction which needs fencing with mfence or
132 * sfence to avoid ordering issues.
133 */
134 void clflush_cache_range(void *vaddr, unsigned int size)
135 {
136 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
137 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
138 void *vend = vaddr + size;
139
140 if (p >= vend)
141 return;
142
143 mb();
144
145 for (; p < vend; p += clflush_size)
146 clflushopt(p);
147
148 mb();
149 }
150 EXPORT_SYMBOL_GPL(clflush_cache_range);
151
152 static void __cpa_flush_all(void *arg)
153 {
154 unsigned long cache = (unsigned long)arg;
155
156 /*
157 * Flush all to work around Errata in early athlons regarding
158 * large page flushing.
159 */
160 __flush_tlb_all();
161
162 if (cache && boot_cpu_data.x86 >= 4)
163 wbinvd();
164 }
165
166 static void cpa_flush_all(unsigned long cache)
167 {
168 BUG_ON(irqs_disabled());
169
170 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
171 }
172
173 static void __cpa_flush_range(void *arg)
174 {
175 /*
176 * We could optimize that further and do individual per page
177 * tlb invalidates for a low number of pages. Caveat: we must
178 * flush the high aliases on 64bit as well.
179 */
180 __flush_tlb_all();
181 }
182
183 static void cpa_flush_range(unsigned long start, int numpages, int cache)
184 {
185 unsigned int i, level;
186 unsigned long addr;
187
188 BUG_ON(irqs_disabled());
189 WARN_ON(PAGE_ALIGN(start) != start);
190
191 on_each_cpu(__cpa_flush_range, NULL, 1);
192
193 if (!cache)
194 return;
195
196 /*
197 * We only need to flush on one CPU,
198 * clflush is a MESI-coherent instruction that
199 * will cause all other CPUs to flush the same
200 * cachelines:
201 */
202 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
203 pte_t *pte = lookup_address(addr, &level);
204
205 /*
206 * Only flush present addresses:
207 */
208 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
209 clflush_cache_range((void *) addr, PAGE_SIZE);
210 }
211 }
212
213 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
214 int in_flags, struct page **pages)
215 {
216 unsigned int i, level;
217 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
218
219 BUG_ON(irqs_disabled());
220
221 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
222
223 if (!cache || do_wbinvd)
224 return;
225
226 /*
227 * We only need to flush on one CPU,
228 * clflush is a MESI-coherent instruction that
229 * will cause all other CPUs to flush the same
230 * cachelines:
231 */
232 for (i = 0; i < numpages; i++) {
233 unsigned long addr;
234 pte_t *pte;
235
236 if (in_flags & CPA_PAGES_ARRAY)
237 addr = (unsigned long)page_address(pages[i]);
238 else
239 addr = start[i];
240
241 pte = lookup_address(addr, &level);
242
243 /*
244 * Only flush present addresses:
245 */
246 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
247 clflush_cache_range((void *)addr, PAGE_SIZE);
248 }
249 }
250
251 /*
252 * Certain areas of memory on x86 require very specific protection flags,
253 * for example the BIOS area or kernel text. Callers don't always get this
254 * right (again, ioremap() on BIOS memory is not uncommon) so this function
255 * checks and fixes these known static required protection bits.
256 */
257 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
258 unsigned long pfn)
259 {
260 pgprot_t forbidden = __pgprot(0);
261
262 /*
263 * The BIOS area between 640k and 1Mb needs to be executable for
264 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
265 */
266 #ifdef CONFIG_PCI_BIOS
267 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
268 pgprot_val(forbidden) |= _PAGE_NX;
269 #endif
270
271 /*
272 * The kernel text needs to be executable for obvious reasons
273 * Does not cover __inittext since that is gone later on. On
274 * 64bit we do not enforce !NX on the low mapping
275 */
276 if (within(address, (unsigned long)_text, (unsigned long)_etext))
277 pgprot_val(forbidden) |= _PAGE_NX;
278
279 /*
280 * The .rodata section needs to be read-only. Using the pfn
281 * catches all aliases.
282 */
283 if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
284 __pa_symbol(__end_rodata) >> PAGE_SHIFT))
285 pgprot_val(forbidden) |= _PAGE_RW;
286
287 #if defined(CONFIG_X86_64)
288 /*
289 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
290 * kernel text mappings for the large page aligned text, rodata sections
291 * will be always read-only. For the kernel identity mappings covering
292 * the holes caused by this alignment can be anything that user asks.
293 *
294 * This will preserve the large page mappings for kernel text/data
295 * at no extra cost.
296 */
297 if (kernel_set_to_readonly &&
298 within(address, (unsigned long)_text,
299 (unsigned long)__end_rodata_hpage_align)) {
300 unsigned int level;
301
302 /*
303 * Don't enforce the !RW mapping for the kernel text mapping,
304 * if the current mapping is already using small page mapping.
305 * No need to work hard to preserve large page mappings in this
306 * case.
307 *
308 * This also fixes the Linux Xen paravirt guest boot failure
309 * (because of unexpected read-only mappings for kernel identity
310 * mappings). In this paravirt guest case, the kernel text
311 * mapping and the kernel identity mapping share the same
312 * page-table pages. Thus we can't really use different
313 * protections for the kernel text and identity mappings. Also,
314 * these shared mappings are made of small page mappings.
315 * Thus this don't enforce !RW mapping for small page kernel
316 * text mapping logic will help Linux Xen parvirt guest boot
317 * as well.
318 */
319 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
320 pgprot_val(forbidden) |= _PAGE_RW;
321 }
322 #endif
323
324 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
325
326 return prot;
327 }
328
329 /*
330 * Lookup the page table entry for a virtual address in a specific pgd.
331 * Return a pointer to the entry and the level of the mapping.
332 */
333 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
334 unsigned int *level)
335 {
336 pud_t *pud;
337 pmd_t *pmd;
338
339 *level = PG_LEVEL_NONE;
340
341 if (pgd_none(*pgd))
342 return NULL;
343
344 pud = pud_offset(pgd, address);
345 if (pud_none(*pud))
346 return NULL;
347
348 *level = PG_LEVEL_1G;
349 if (pud_large(*pud) || !pud_present(*pud))
350 return (pte_t *)pud;
351
352 pmd = pmd_offset(pud, address);
353 if (pmd_none(*pmd))
354 return NULL;
355
356 *level = PG_LEVEL_2M;
357 if (pmd_large(*pmd) || !pmd_present(*pmd))
358 return (pte_t *)pmd;
359
360 *level = PG_LEVEL_4K;
361
362 return pte_offset_kernel(pmd, address);
363 }
364
365 /*
366 * Lookup the page table entry for a virtual address. Return a pointer
367 * to the entry and the level of the mapping.
368 *
369 * Note: We return pud and pmd either when the entry is marked large
370 * or when the present bit is not set. Otherwise we would return a
371 * pointer to a nonexisting mapping.
372 */
373 pte_t *lookup_address(unsigned long address, unsigned int *level)
374 {
375 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
376 }
377 EXPORT_SYMBOL_GPL(lookup_address);
378
379 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
380 unsigned int *level)
381 {
382 if (cpa->pgd)
383 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
384 address, level);
385
386 return lookup_address(address, level);
387 }
388
389 /*
390 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
391 * or NULL if not present.
392 */
393 pmd_t *lookup_pmd_address(unsigned long address)
394 {
395 pgd_t *pgd;
396 pud_t *pud;
397
398 pgd = pgd_offset_k(address);
399 if (pgd_none(*pgd))
400 return NULL;
401
402 pud = pud_offset(pgd, address);
403 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
404 return NULL;
405
406 return pmd_offset(pud, address);
407 }
408
409 /*
410 * This is necessary because __pa() does not work on some
411 * kinds of memory, like vmalloc() or the alloc_remap()
412 * areas on 32-bit NUMA systems. The percpu areas can
413 * end up in this kind of memory, for instance.
414 *
415 * This could be optimized, but it is only intended to be
416 * used at inititalization time, and keeping it
417 * unoptimized should increase the testing coverage for
418 * the more obscure platforms.
419 */
420 phys_addr_t slow_virt_to_phys(void *__virt_addr)
421 {
422 unsigned long virt_addr = (unsigned long)__virt_addr;
423 phys_addr_t phys_addr;
424 unsigned long offset;
425 enum pg_level level;
426 pte_t *pte;
427
428 pte = lookup_address(virt_addr, &level);
429 BUG_ON(!pte);
430
431 /*
432 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
433 * before being left-shifted PAGE_SHIFT bits -- this trick is to
434 * make 32-PAE kernel work correctly.
435 */
436 switch (level) {
437 case PG_LEVEL_1G:
438 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
439 offset = virt_addr & ~PUD_PAGE_MASK;
440 break;
441 case PG_LEVEL_2M:
442 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
443 offset = virt_addr & ~PMD_PAGE_MASK;
444 break;
445 default:
446 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
447 offset = virt_addr & ~PAGE_MASK;
448 }
449
450 return (phys_addr_t)(phys_addr | offset);
451 }
452 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
453
454 /*
455 * Set the new pmd in all the pgds we know about:
456 */
457 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
458 {
459 /* change init_mm */
460 set_pte_atomic(kpte, pte);
461 #ifdef CONFIG_X86_32
462 if (!SHARED_KERNEL_PMD) {
463 struct page *page;
464
465 list_for_each_entry(page, &pgd_list, lru) {
466 pgd_t *pgd;
467 pud_t *pud;
468 pmd_t *pmd;
469
470 pgd = (pgd_t *)page_address(page) + pgd_index(address);
471 pud = pud_offset(pgd, address);
472 pmd = pmd_offset(pud, address);
473 set_pte_atomic((pte_t *)pmd, pte);
474 }
475 }
476 #endif
477 }
478
479 static int
480 try_preserve_large_page(pte_t *kpte, unsigned long address,
481 struct cpa_data *cpa)
482 {
483 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
484 pte_t new_pte, old_pte, *tmp;
485 pgprot_t old_prot, new_prot, req_prot;
486 int i, do_split = 1;
487 enum pg_level level;
488
489 if (cpa->force_split)
490 return 1;
491
492 spin_lock(&pgd_lock);
493 /*
494 * Check for races, another CPU might have split this page
495 * up already:
496 */
497 tmp = _lookup_address_cpa(cpa, address, &level);
498 if (tmp != kpte)
499 goto out_unlock;
500
501 switch (level) {
502 case PG_LEVEL_2M:
503 old_prot = pmd_pgprot(*(pmd_t *)kpte);
504 old_pfn = pmd_pfn(*(pmd_t *)kpte);
505 break;
506 case PG_LEVEL_1G:
507 old_prot = pud_pgprot(*(pud_t *)kpte);
508 old_pfn = pud_pfn(*(pud_t *)kpte);
509 break;
510 default:
511 do_split = -EINVAL;
512 goto out_unlock;
513 }
514
515 psize = page_level_size(level);
516 pmask = page_level_mask(level);
517
518 /*
519 * Calculate the number of pages, which fit into this large
520 * page starting at address:
521 */
522 nextpage_addr = (address + psize) & pmask;
523 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
524 if (numpages < cpa->numpages)
525 cpa->numpages = numpages;
526
527 /*
528 * We are safe now. Check whether the new pgprot is the same:
529 * Convert protection attributes to 4k-format, as cpa->mask* are set
530 * up accordingly.
531 */
532 old_pte = *kpte;
533 req_prot = pgprot_large_2_4k(old_prot);
534
535 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
536 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
537
538 /*
539 * req_prot is in format of 4k pages. It must be converted to large
540 * page format: the caching mode includes the PAT bit located at
541 * different bit positions in the two formats.
542 */
543 req_prot = pgprot_4k_2_large(req_prot);
544
545 /*
546 * Set the PSE and GLOBAL flags only if the PRESENT flag is
547 * set otherwise pmd_present/pmd_huge will return true even on
548 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
549 * for the ancient hardware that doesn't support it.
550 */
551 if (pgprot_val(req_prot) & _PAGE_PRESENT)
552 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
553 else
554 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
555
556 req_prot = canon_pgprot(req_prot);
557
558 /*
559 * old_pfn points to the large page base pfn. So we need
560 * to add the offset of the virtual address:
561 */
562 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
563 cpa->pfn = pfn;
564
565 new_prot = static_protections(req_prot, address, pfn);
566
567 /*
568 * We need to check the full range, whether
569 * static_protection() requires a different pgprot for one of
570 * the pages in the range we try to preserve:
571 */
572 addr = address & pmask;
573 pfn = old_pfn;
574 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
575 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
576
577 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
578 goto out_unlock;
579 }
580
581 /*
582 * If there are no changes, return. maxpages has been updated
583 * above:
584 */
585 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
586 do_split = 0;
587 goto out_unlock;
588 }
589
590 /*
591 * We need to change the attributes. Check, whether we can
592 * change the large page in one go. We request a split, when
593 * the address is not aligned and the number of pages is
594 * smaller than the number of pages in the large page. Note
595 * that we limited the number of possible pages already to
596 * the number of pages in the large page.
597 */
598 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
599 /*
600 * The address is aligned and the number of pages
601 * covers the full page.
602 */
603 new_pte = pfn_pte(old_pfn, new_prot);
604 __set_pmd_pte(kpte, address, new_pte);
605 cpa->flags |= CPA_FLUSHTLB;
606 do_split = 0;
607 }
608
609 out_unlock:
610 spin_unlock(&pgd_lock);
611
612 return do_split;
613 }
614
615 static int
616 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
617 struct page *base)
618 {
619 pte_t *pbase = (pte_t *)page_address(base);
620 unsigned long ref_pfn, pfn, pfninc = 1;
621 unsigned int i, level;
622 pte_t *tmp;
623 pgprot_t ref_prot;
624
625 spin_lock(&pgd_lock);
626 /*
627 * Check for races, another CPU might have split this page
628 * up for us already:
629 */
630 tmp = _lookup_address_cpa(cpa, address, &level);
631 if (tmp != kpte) {
632 spin_unlock(&pgd_lock);
633 return 1;
634 }
635
636 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
637
638 switch (level) {
639 case PG_LEVEL_2M:
640 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
641 /* clear PSE and promote PAT bit to correct position */
642 ref_prot = pgprot_large_2_4k(ref_prot);
643 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
644 break;
645
646 case PG_LEVEL_1G:
647 ref_prot = pud_pgprot(*(pud_t *)kpte);
648 ref_pfn = pud_pfn(*(pud_t *)kpte);
649 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
650
651 /*
652 * Clear the PSE flags if the PRESENT flag is not set
653 * otherwise pmd_present/pmd_huge will return true
654 * even on a non present pmd.
655 */
656 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
657 pgprot_val(ref_prot) &= ~_PAGE_PSE;
658 break;
659
660 default:
661 spin_unlock(&pgd_lock);
662 return 1;
663 }
664
665 /*
666 * Set the GLOBAL flags only if the PRESENT flag is set
667 * otherwise pmd/pte_present will return true even on a non
668 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
669 * for the ancient hardware that doesn't support it.
670 */
671 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
672 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
673 else
674 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
675
676 /*
677 * Get the target pfn from the original entry:
678 */
679 pfn = ref_pfn;
680 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
681 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
682
683 if (virt_addr_valid(address)) {
684 unsigned long pfn = PFN_DOWN(__pa(address));
685
686 if (pfn_range_is_mapped(pfn, pfn + 1))
687 split_page_count(level);
688 }
689
690 /*
691 * Install the new, split up pagetable.
692 *
693 * We use the standard kernel pagetable protections for the new
694 * pagetable protections, the actual ptes set above control the
695 * primary protection behavior:
696 */
697 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
698
699 /*
700 * Intel Atom errata AAH41 workaround.
701 *
702 * The real fix should be in hw or in a microcode update, but
703 * we also probabilistically try to reduce the window of having
704 * a large TLB mixed with 4K TLBs while instruction fetches are
705 * going on.
706 */
707 __flush_tlb_all();
708 spin_unlock(&pgd_lock);
709
710 return 0;
711 }
712
713 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
714 unsigned long address)
715 {
716 struct page *base;
717
718 if (!debug_pagealloc_enabled())
719 spin_unlock(&cpa_lock);
720 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
721 if (!debug_pagealloc_enabled())
722 spin_lock(&cpa_lock);
723 if (!base)
724 return -ENOMEM;
725
726 if (__split_large_page(cpa, kpte, address, base))
727 __free_page(base);
728
729 return 0;
730 }
731
732 static bool try_to_free_pte_page(pte_t *pte)
733 {
734 int i;
735
736 for (i = 0; i < PTRS_PER_PTE; i++)
737 if (!pte_none(pte[i]))
738 return false;
739
740 free_page((unsigned long)pte);
741 return true;
742 }
743
744 static bool try_to_free_pmd_page(pmd_t *pmd)
745 {
746 int i;
747
748 for (i = 0; i < PTRS_PER_PMD; i++)
749 if (!pmd_none(pmd[i]))
750 return false;
751
752 free_page((unsigned long)pmd);
753 return true;
754 }
755
756 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
757 {
758 pte_t *pte = pte_offset_kernel(pmd, start);
759
760 while (start < end) {
761 set_pte(pte, __pte(0));
762
763 start += PAGE_SIZE;
764 pte++;
765 }
766
767 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
768 pmd_clear(pmd);
769 return true;
770 }
771 return false;
772 }
773
774 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
775 unsigned long start, unsigned long end)
776 {
777 if (unmap_pte_range(pmd, start, end))
778 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
779 pud_clear(pud);
780 }
781
782 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
783 {
784 pmd_t *pmd = pmd_offset(pud, start);
785
786 /*
787 * Not on a 2MB page boundary?
788 */
789 if (start & (PMD_SIZE - 1)) {
790 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
791 unsigned long pre_end = min_t(unsigned long, end, next_page);
792
793 __unmap_pmd_range(pud, pmd, start, pre_end);
794
795 start = pre_end;
796 pmd++;
797 }
798
799 /*
800 * Try to unmap in 2M chunks.
801 */
802 while (end - start >= PMD_SIZE) {
803 if (pmd_large(*pmd))
804 pmd_clear(pmd);
805 else
806 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
807
808 start += PMD_SIZE;
809 pmd++;
810 }
811
812 /*
813 * 4K leftovers?
814 */
815 if (start < end)
816 return __unmap_pmd_range(pud, pmd, start, end);
817
818 /*
819 * Try again to free the PMD page if haven't succeeded above.
820 */
821 if (!pud_none(*pud))
822 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
823 pud_clear(pud);
824 }
825
826 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
827 {
828 pud_t *pud = pud_offset(pgd, start);
829
830 /*
831 * Not on a GB page boundary?
832 */
833 if (start & (PUD_SIZE - 1)) {
834 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
835 unsigned long pre_end = min_t(unsigned long, end, next_page);
836
837 unmap_pmd_range(pud, start, pre_end);
838
839 start = pre_end;
840 pud++;
841 }
842
843 /*
844 * Try to unmap in 1G chunks?
845 */
846 while (end - start >= PUD_SIZE) {
847
848 if (pud_large(*pud))
849 pud_clear(pud);
850 else
851 unmap_pmd_range(pud, start, start + PUD_SIZE);
852
853 start += PUD_SIZE;
854 pud++;
855 }
856
857 /*
858 * 2M leftovers?
859 */
860 if (start < end)
861 unmap_pmd_range(pud, start, end);
862
863 /*
864 * No need to try to free the PUD page because we'll free it in
865 * populate_pgd's error path
866 */
867 }
868
869 static int alloc_pte_page(pmd_t *pmd)
870 {
871 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
872 if (!pte)
873 return -1;
874
875 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
876 return 0;
877 }
878
879 static int alloc_pmd_page(pud_t *pud)
880 {
881 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
882 if (!pmd)
883 return -1;
884
885 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
886 return 0;
887 }
888
889 static void populate_pte(struct cpa_data *cpa,
890 unsigned long start, unsigned long end,
891 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
892 {
893 pte_t *pte;
894
895 pte = pte_offset_kernel(pmd, start);
896
897 /*
898 * Set the GLOBAL flags only if the PRESENT flag is
899 * set otherwise pte_present will return true even on
900 * a non present pte. The canon_pgprot will clear
901 * _PAGE_GLOBAL for the ancient hardware that doesn't
902 * support it.
903 */
904 if (pgprot_val(pgprot) & _PAGE_PRESENT)
905 pgprot_val(pgprot) |= _PAGE_GLOBAL;
906 else
907 pgprot_val(pgprot) &= ~_PAGE_GLOBAL;
908
909 pgprot = canon_pgprot(pgprot);
910
911 while (num_pages-- && start < end) {
912 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
913
914 start += PAGE_SIZE;
915 cpa->pfn++;
916 pte++;
917 }
918 }
919
920 static long populate_pmd(struct cpa_data *cpa,
921 unsigned long start, unsigned long end,
922 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
923 {
924 long cur_pages = 0;
925 pmd_t *pmd;
926 pgprot_t pmd_pgprot;
927
928 /*
929 * Not on a 2M boundary?
930 */
931 if (start & (PMD_SIZE - 1)) {
932 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
933 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
934
935 pre_end = min_t(unsigned long, pre_end, next_page);
936 cur_pages = (pre_end - start) >> PAGE_SHIFT;
937 cur_pages = min_t(unsigned int, num_pages, cur_pages);
938
939 /*
940 * Need a PTE page?
941 */
942 pmd = pmd_offset(pud, start);
943 if (pmd_none(*pmd))
944 if (alloc_pte_page(pmd))
945 return -1;
946
947 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
948
949 start = pre_end;
950 }
951
952 /*
953 * We mapped them all?
954 */
955 if (num_pages == cur_pages)
956 return cur_pages;
957
958 pmd_pgprot = pgprot_4k_2_large(pgprot);
959
960 while (end - start >= PMD_SIZE) {
961
962 /*
963 * We cannot use a 1G page so allocate a PMD page if needed.
964 */
965 if (pud_none(*pud))
966 if (alloc_pmd_page(pud))
967 return -1;
968
969 pmd = pmd_offset(pud, start);
970
971 set_pmd(pmd, __pmd(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
972 massage_pgprot(pmd_pgprot)));
973
974 start += PMD_SIZE;
975 cpa->pfn += PMD_SIZE >> PAGE_SHIFT;
976 cur_pages += PMD_SIZE >> PAGE_SHIFT;
977 }
978
979 /*
980 * Map trailing 4K pages.
981 */
982 if (start < end) {
983 pmd = pmd_offset(pud, start);
984 if (pmd_none(*pmd))
985 if (alloc_pte_page(pmd))
986 return -1;
987
988 populate_pte(cpa, start, end, num_pages - cur_pages,
989 pmd, pgprot);
990 }
991 return num_pages;
992 }
993
994 static long populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
995 pgprot_t pgprot)
996 {
997 pud_t *pud;
998 unsigned long end;
999 long cur_pages = 0;
1000 pgprot_t pud_pgprot;
1001
1002 end = start + (cpa->numpages << PAGE_SHIFT);
1003
1004 /*
1005 * Not on a Gb page boundary? => map everything up to it with
1006 * smaller pages.
1007 */
1008 if (start & (PUD_SIZE - 1)) {
1009 unsigned long pre_end;
1010 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1011
1012 pre_end = min_t(unsigned long, end, next_page);
1013 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1014 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1015
1016 pud = pud_offset(pgd, start);
1017
1018 /*
1019 * Need a PMD page?
1020 */
1021 if (pud_none(*pud))
1022 if (alloc_pmd_page(pud))
1023 return -1;
1024
1025 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1026 pud, pgprot);
1027 if (cur_pages < 0)
1028 return cur_pages;
1029
1030 start = pre_end;
1031 }
1032
1033 /* We mapped them all? */
1034 if (cpa->numpages == cur_pages)
1035 return cur_pages;
1036
1037 pud = pud_offset(pgd, start);
1038 pud_pgprot = pgprot_4k_2_large(pgprot);
1039
1040 /*
1041 * Map everything starting from the Gb boundary, possibly with 1G pages
1042 */
1043 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1044 set_pud(pud, __pud(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1045 massage_pgprot(pud_pgprot)));
1046
1047 start += PUD_SIZE;
1048 cpa->pfn += PUD_SIZE >> PAGE_SHIFT;
1049 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1050 pud++;
1051 }
1052
1053 /* Map trailing leftover */
1054 if (start < end) {
1055 long tmp;
1056
1057 pud = pud_offset(pgd, start);
1058 if (pud_none(*pud))
1059 if (alloc_pmd_page(pud))
1060 return -1;
1061
1062 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1063 pud, pgprot);
1064 if (tmp < 0)
1065 return cur_pages;
1066
1067 cur_pages += tmp;
1068 }
1069 return cur_pages;
1070 }
1071
1072 /*
1073 * Restrictions for kernel page table do not necessarily apply when mapping in
1074 * an alternate PGD.
1075 */
1076 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1077 {
1078 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1079 pud_t *pud = NULL; /* shut up gcc */
1080 pgd_t *pgd_entry;
1081 long ret;
1082
1083 pgd_entry = cpa->pgd + pgd_index(addr);
1084
1085 /*
1086 * Allocate a PUD page and hand it down for mapping.
1087 */
1088 if (pgd_none(*pgd_entry)) {
1089 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1090 if (!pud)
1091 return -1;
1092
1093 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1094 }
1095
1096 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1097 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1098
1099 ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1100 if (ret < 0) {
1101 /*
1102 * Leave the PUD page in place in case some other CPU or thread
1103 * already found it, but remove any useless entries we just
1104 * added to it.
1105 */
1106 unmap_pud_range(pgd_entry, addr,
1107 addr + (cpa->numpages << PAGE_SHIFT));
1108 return ret;
1109 }
1110
1111 cpa->numpages = ret;
1112 return 0;
1113 }
1114
1115 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1116 int primary)
1117 {
1118 if (cpa->pgd) {
1119 /*
1120 * Right now, we only execute this code path when mapping
1121 * the EFI virtual memory map regions, no other users
1122 * provide a ->pgd value. This may change in the future.
1123 */
1124 return populate_pgd(cpa, vaddr);
1125 }
1126
1127 /*
1128 * Ignore all non primary paths.
1129 */
1130 if (!primary) {
1131 cpa->numpages = 1;
1132 return 0;
1133 }
1134
1135 /*
1136 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1137 * to have holes.
1138 * Also set numpages to '1' indicating that we processed cpa req for
1139 * one virtual address page and its pfn. TBD: numpages can be set based
1140 * on the initial value and the level returned by lookup_address().
1141 */
1142 if (within(vaddr, PAGE_OFFSET,
1143 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1144 cpa->numpages = 1;
1145 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1146 return 0;
1147 } else {
1148 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1149 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1150 *cpa->vaddr);
1151
1152 return -EFAULT;
1153 }
1154 }
1155
1156 static int __change_page_attr(struct cpa_data *cpa, int primary)
1157 {
1158 unsigned long address;
1159 int do_split, err;
1160 unsigned int level;
1161 pte_t *kpte, old_pte;
1162
1163 if (cpa->flags & CPA_PAGES_ARRAY) {
1164 struct page *page = cpa->pages[cpa->curpage];
1165 if (unlikely(PageHighMem(page)))
1166 return 0;
1167 address = (unsigned long)page_address(page);
1168 } else if (cpa->flags & CPA_ARRAY)
1169 address = cpa->vaddr[cpa->curpage];
1170 else
1171 address = *cpa->vaddr;
1172 repeat:
1173 kpte = _lookup_address_cpa(cpa, address, &level);
1174 if (!kpte)
1175 return __cpa_process_fault(cpa, address, primary);
1176
1177 old_pte = *kpte;
1178 if (pte_none(old_pte))
1179 return __cpa_process_fault(cpa, address, primary);
1180
1181 if (level == PG_LEVEL_4K) {
1182 pte_t new_pte;
1183 pgprot_t new_prot = pte_pgprot(old_pte);
1184 unsigned long pfn = pte_pfn(old_pte);
1185
1186 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1187 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1188
1189 new_prot = static_protections(new_prot, address, pfn);
1190
1191 /*
1192 * Set the GLOBAL flags only if the PRESENT flag is
1193 * set otherwise pte_present will return true even on
1194 * a non present pte. The canon_pgprot will clear
1195 * _PAGE_GLOBAL for the ancient hardware that doesn't
1196 * support it.
1197 */
1198 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1199 pgprot_val(new_prot) |= _PAGE_GLOBAL;
1200 else
1201 pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1202
1203 /*
1204 * We need to keep the pfn from the existing PTE,
1205 * after all we're only going to change it's attributes
1206 * not the memory it points to
1207 */
1208 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1209 cpa->pfn = pfn;
1210 /*
1211 * Do we really change anything ?
1212 */
1213 if (pte_val(old_pte) != pte_val(new_pte)) {
1214 set_pte_atomic(kpte, new_pte);
1215 cpa->flags |= CPA_FLUSHTLB;
1216 }
1217 cpa->numpages = 1;
1218 return 0;
1219 }
1220
1221 /*
1222 * Check, whether we can keep the large page intact
1223 * and just change the pte:
1224 */
1225 do_split = try_preserve_large_page(kpte, address, cpa);
1226 /*
1227 * When the range fits into the existing large page,
1228 * return. cp->numpages and cpa->tlbflush have been updated in
1229 * try_large_page:
1230 */
1231 if (do_split <= 0)
1232 return do_split;
1233
1234 /*
1235 * We have to split the large page:
1236 */
1237 err = split_large_page(cpa, kpte, address);
1238 if (!err) {
1239 /*
1240 * Do a global flush tlb after splitting the large page
1241 * and before we do the actual change page attribute in the PTE.
1242 *
1243 * With out this, we violate the TLB application note, that says
1244 * "The TLBs may contain both ordinary and large-page
1245 * translations for a 4-KByte range of linear addresses. This
1246 * may occur if software modifies the paging structures so that
1247 * the page size used for the address range changes. If the two
1248 * translations differ with respect to page frame or attributes
1249 * (e.g., permissions), processor behavior is undefined and may
1250 * be implementation-specific."
1251 *
1252 * We do this global tlb flush inside the cpa_lock, so that we
1253 * don't allow any other cpu, with stale tlb entries change the
1254 * page attribute in parallel, that also falls into the
1255 * just split large page entry.
1256 */
1257 flush_tlb_all();
1258 goto repeat;
1259 }
1260
1261 return err;
1262 }
1263
1264 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1265
1266 static int cpa_process_alias(struct cpa_data *cpa)
1267 {
1268 struct cpa_data alias_cpa;
1269 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1270 unsigned long vaddr;
1271 int ret;
1272
1273 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1274 return 0;
1275
1276 /*
1277 * No need to redo, when the primary call touched the direct
1278 * mapping already:
1279 */
1280 if (cpa->flags & CPA_PAGES_ARRAY) {
1281 struct page *page = cpa->pages[cpa->curpage];
1282 if (unlikely(PageHighMem(page)))
1283 return 0;
1284 vaddr = (unsigned long)page_address(page);
1285 } else if (cpa->flags & CPA_ARRAY)
1286 vaddr = cpa->vaddr[cpa->curpage];
1287 else
1288 vaddr = *cpa->vaddr;
1289
1290 if (!(within(vaddr, PAGE_OFFSET,
1291 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1292
1293 alias_cpa = *cpa;
1294 alias_cpa.vaddr = &laddr;
1295 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1296
1297 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1298 if (ret)
1299 return ret;
1300 }
1301
1302 #ifdef CONFIG_X86_64
1303 /*
1304 * If the primary call didn't touch the high mapping already
1305 * and the physical address is inside the kernel map, we need
1306 * to touch the high mapped kernel as well:
1307 */
1308 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1309 within_inclusive(cpa->pfn, highmap_start_pfn(),
1310 highmap_end_pfn())) {
1311 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1312 __START_KERNEL_map - phys_base;
1313 alias_cpa = *cpa;
1314 alias_cpa.vaddr = &temp_cpa_vaddr;
1315 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1316
1317 /*
1318 * The high mapping range is imprecise, so ignore the
1319 * return value.
1320 */
1321 __change_page_attr_set_clr(&alias_cpa, 0);
1322 }
1323 #endif
1324
1325 return 0;
1326 }
1327
1328 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1329 {
1330 unsigned long numpages = cpa->numpages;
1331 int ret;
1332
1333 while (numpages) {
1334 /*
1335 * Store the remaining nr of pages for the large page
1336 * preservation check.
1337 */
1338 cpa->numpages = numpages;
1339 /* for array changes, we can't use large page */
1340 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1341 cpa->numpages = 1;
1342
1343 if (!debug_pagealloc_enabled())
1344 spin_lock(&cpa_lock);
1345 ret = __change_page_attr(cpa, checkalias);
1346 if (!debug_pagealloc_enabled())
1347 spin_unlock(&cpa_lock);
1348 if (ret)
1349 return ret;
1350
1351 if (checkalias) {
1352 ret = cpa_process_alias(cpa);
1353 if (ret)
1354 return ret;
1355 }
1356
1357 /*
1358 * Adjust the number of pages with the result of the
1359 * CPA operation. Either a large page has been
1360 * preserved or a single page update happened.
1361 */
1362 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1363 numpages -= cpa->numpages;
1364 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1365 cpa->curpage++;
1366 else
1367 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1368
1369 }
1370 return 0;
1371 }
1372
1373 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1374 pgprot_t mask_set, pgprot_t mask_clr,
1375 int force_split, int in_flag,
1376 struct page **pages)
1377 {
1378 struct cpa_data cpa;
1379 int ret, cache, checkalias;
1380 unsigned long baddr = 0;
1381
1382 memset(&cpa, 0, sizeof(cpa));
1383
1384 /*
1385 * Check, if we are requested to change a not supported
1386 * feature:
1387 */
1388 mask_set = canon_pgprot(mask_set);
1389 mask_clr = canon_pgprot(mask_clr);
1390 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1391 return 0;
1392
1393 /* Ensure we are PAGE_SIZE aligned */
1394 if (in_flag & CPA_ARRAY) {
1395 int i;
1396 for (i = 0; i < numpages; i++) {
1397 if (addr[i] & ~PAGE_MASK) {
1398 addr[i] &= PAGE_MASK;
1399 WARN_ON_ONCE(1);
1400 }
1401 }
1402 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1403 /*
1404 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1405 * No need to cehck in that case
1406 */
1407 if (*addr & ~PAGE_MASK) {
1408 *addr &= PAGE_MASK;
1409 /*
1410 * People should not be passing in unaligned addresses:
1411 */
1412 WARN_ON_ONCE(1);
1413 }
1414 /*
1415 * Save address for cache flush. *addr is modified in the call
1416 * to __change_page_attr_set_clr() below.
1417 */
1418 baddr = *addr;
1419 }
1420
1421 /* Must avoid aliasing mappings in the highmem code */
1422 kmap_flush_unused();
1423
1424 vm_unmap_aliases();
1425
1426 cpa.vaddr = addr;
1427 cpa.pages = pages;
1428 cpa.numpages = numpages;
1429 cpa.mask_set = mask_set;
1430 cpa.mask_clr = mask_clr;
1431 cpa.flags = 0;
1432 cpa.curpage = 0;
1433 cpa.force_split = force_split;
1434
1435 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1436 cpa.flags |= in_flag;
1437
1438 /* No alias checking for _NX bit modifications */
1439 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1440
1441 ret = __change_page_attr_set_clr(&cpa, checkalias);
1442
1443 /*
1444 * Check whether we really changed something:
1445 */
1446 if (!(cpa.flags & CPA_FLUSHTLB))
1447 goto out;
1448
1449 /*
1450 * No need to flush, when we did not set any of the caching
1451 * attributes:
1452 */
1453 cache = !!pgprot2cachemode(mask_set);
1454
1455 /*
1456 * On success we use CLFLUSH, when the CPU supports it to
1457 * avoid the WBINVD. If the CPU does not support it and in the
1458 * error case we fall back to cpa_flush_all (which uses
1459 * WBINVD):
1460 */
1461 if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1462 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1463 cpa_flush_array(addr, numpages, cache,
1464 cpa.flags, pages);
1465 } else
1466 cpa_flush_range(baddr, numpages, cache);
1467 } else
1468 cpa_flush_all(cache);
1469
1470 out:
1471 return ret;
1472 }
1473
1474 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1475 pgprot_t mask, int array)
1476 {
1477 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1478 (array ? CPA_ARRAY : 0), NULL);
1479 }
1480
1481 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1482 pgprot_t mask, int array)
1483 {
1484 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1485 (array ? CPA_ARRAY : 0), NULL);
1486 }
1487
1488 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1489 pgprot_t mask)
1490 {
1491 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1492 CPA_PAGES_ARRAY, pages);
1493 }
1494
1495 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1496 pgprot_t mask)
1497 {
1498 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1499 CPA_PAGES_ARRAY, pages);
1500 }
1501
1502 int _set_memory_uc(unsigned long addr, int numpages)
1503 {
1504 /*
1505 * for now UC MINUS. see comments in ioremap_nocache()
1506 * If you really need strong UC use ioremap_uc(), but note
1507 * that you cannot override IO areas with set_memory_*() as
1508 * these helpers cannot work with IO memory.
1509 */
1510 return change_page_attr_set(&addr, numpages,
1511 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1512 0);
1513 }
1514
1515 int set_memory_uc(unsigned long addr, int numpages)
1516 {
1517 int ret;
1518
1519 /*
1520 * for now UC MINUS. see comments in ioremap_nocache()
1521 */
1522 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1523 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1524 if (ret)
1525 goto out_err;
1526
1527 ret = _set_memory_uc(addr, numpages);
1528 if (ret)
1529 goto out_free;
1530
1531 return 0;
1532
1533 out_free:
1534 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1535 out_err:
1536 return ret;
1537 }
1538 EXPORT_SYMBOL(set_memory_uc);
1539
1540 static int _set_memory_array(unsigned long *addr, int addrinarray,
1541 enum page_cache_mode new_type)
1542 {
1543 enum page_cache_mode set_type;
1544 int i, j;
1545 int ret;
1546
1547 for (i = 0; i < addrinarray; i++) {
1548 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1549 new_type, NULL);
1550 if (ret)
1551 goto out_free;
1552 }
1553
1554 /* If WC, set to UC- first and then WC */
1555 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1556 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1557
1558 ret = change_page_attr_set(addr, addrinarray,
1559 cachemode2pgprot(set_type), 1);
1560
1561 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1562 ret = change_page_attr_set_clr(addr, addrinarray,
1563 cachemode2pgprot(
1564 _PAGE_CACHE_MODE_WC),
1565 __pgprot(_PAGE_CACHE_MASK),
1566 0, CPA_ARRAY, NULL);
1567 if (ret)
1568 goto out_free;
1569
1570 return 0;
1571
1572 out_free:
1573 for (j = 0; j < i; j++)
1574 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1575
1576 return ret;
1577 }
1578
1579 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1580 {
1581 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1582 }
1583 EXPORT_SYMBOL(set_memory_array_uc);
1584
1585 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1586 {
1587 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1588 }
1589 EXPORT_SYMBOL(set_memory_array_wc);
1590
1591 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1592 {
1593 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1594 }
1595 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1596
1597 int _set_memory_wc(unsigned long addr, int numpages)
1598 {
1599 int ret;
1600 unsigned long addr_copy = addr;
1601
1602 ret = change_page_attr_set(&addr, numpages,
1603 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1604 0);
1605 if (!ret) {
1606 ret = change_page_attr_set_clr(&addr_copy, numpages,
1607 cachemode2pgprot(
1608 _PAGE_CACHE_MODE_WC),
1609 __pgprot(_PAGE_CACHE_MASK),
1610 0, 0, NULL);
1611 }
1612 return ret;
1613 }
1614
1615 int set_memory_wc(unsigned long addr, int numpages)
1616 {
1617 int ret;
1618
1619 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1620 _PAGE_CACHE_MODE_WC, NULL);
1621 if (ret)
1622 return ret;
1623
1624 ret = _set_memory_wc(addr, numpages);
1625 if (ret)
1626 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1627
1628 return ret;
1629 }
1630 EXPORT_SYMBOL(set_memory_wc);
1631
1632 int _set_memory_wt(unsigned long addr, int numpages)
1633 {
1634 return change_page_attr_set(&addr, numpages,
1635 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1636 }
1637
1638 int set_memory_wt(unsigned long addr, int numpages)
1639 {
1640 int ret;
1641
1642 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1643 _PAGE_CACHE_MODE_WT, NULL);
1644 if (ret)
1645 return ret;
1646
1647 ret = _set_memory_wt(addr, numpages);
1648 if (ret)
1649 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1650
1651 return ret;
1652 }
1653 EXPORT_SYMBOL_GPL(set_memory_wt);
1654
1655 int _set_memory_wb(unsigned long addr, int numpages)
1656 {
1657 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1658 return change_page_attr_clear(&addr, numpages,
1659 __pgprot(_PAGE_CACHE_MASK), 0);
1660 }
1661
1662 int set_memory_wb(unsigned long addr, int numpages)
1663 {
1664 int ret;
1665
1666 ret = _set_memory_wb(addr, numpages);
1667 if (ret)
1668 return ret;
1669
1670 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1671 return 0;
1672 }
1673 EXPORT_SYMBOL(set_memory_wb);
1674
1675 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1676 {
1677 int i;
1678 int ret;
1679
1680 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1681 ret = change_page_attr_clear(addr, addrinarray,
1682 __pgprot(_PAGE_CACHE_MASK), 1);
1683 if (ret)
1684 return ret;
1685
1686 for (i = 0; i < addrinarray; i++)
1687 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1688
1689 return 0;
1690 }
1691 EXPORT_SYMBOL(set_memory_array_wb);
1692
1693 int set_memory_x(unsigned long addr, int numpages)
1694 {
1695 if (!(__supported_pte_mask & _PAGE_NX))
1696 return 0;
1697
1698 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1699 }
1700 EXPORT_SYMBOL(set_memory_x);
1701
1702 int set_memory_nx(unsigned long addr, int numpages)
1703 {
1704 if (!(__supported_pte_mask & _PAGE_NX))
1705 return 0;
1706
1707 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1708 }
1709 EXPORT_SYMBOL(set_memory_nx);
1710
1711 int set_memory_ro(unsigned long addr, int numpages)
1712 {
1713 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1714 }
1715
1716 int set_memory_rw(unsigned long addr, int numpages)
1717 {
1718 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1719 }
1720
1721 int set_memory_np(unsigned long addr, int numpages)
1722 {
1723 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1724 }
1725
1726 int set_memory_4k(unsigned long addr, int numpages)
1727 {
1728 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1729 __pgprot(0), 1, 0, NULL);
1730 }
1731
1732 int set_pages_uc(struct page *page, int numpages)
1733 {
1734 unsigned long addr = (unsigned long)page_address(page);
1735
1736 return set_memory_uc(addr, numpages);
1737 }
1738 EXPORT_SYMBOL(set_pages_uc);
1739
1740 static int _set_pages_array(struct page **pages, int addrinarray,
1741 enum page_cache_mode new_type)
1742 {
1743 unsigned long start;
1744 unsigned long end;
1745 enum page_cache_mode set_type;
1746 int i;
1747 int free_idx;
1748 int ret;
1749
1750 for (i = 0; i < addrinarray; i++) {
1751 if (PageHighMem(pages[i]))
1752 continue;
1753 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1754 end = start + PAGE_SIZE;
1755 if (reserve_memtype(start, end, new_type, NULL))
1756 goto err_out;
1757 }
1758
1759 /* If WC, set to UC- first and then WC */
1760 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1761 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1762
1763 ret = cpa_set_pages_array(pages, addrinarray,
1764 cachemode2pgprot(set_type));
1765 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1766 ret = change_page_attr_set_clr(NULL, addrinarray,
1767 cachemode2pgprot(
1768 _PAGE_CACHE_MODE_WC),
1769 __pgprot(_PAGE_CACHE_MASK),
1770 0, CPA_PAGES_ARRAY, pages);
1771 if (ret)
1772 goto err_out;
1773 return 0; /* Success */
1774 err_out:
1775 free_idx = i;
1776 for (i = 0; i < free_idx; i++) {
1777 if (PageHighMem(pages[i]))
1778 continue;
1779 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1780 end = start + PAGE_SIZE;
1781 free_memtype(start, end);
1782 }
1783 return -EINVAL;
1784 }
1785
1786 int set_pages_array_uc(struct page **pages, int addrinarray)
1787 {
1788 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1789 }
1790 EXPORT_SYMBOL(set_pages_array_uc);
1791
1792 int set_pages_array_wc(struct page **pages, int addrinarray)
1793 {
1794 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1795 }
1796 EXPORT_SYMBOL(set_pages_array_wc);
1797
1798 int set_pages_array_wt(struct page **pages, int addrinarray)
1799 {
1800 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1801 }
1802 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1803
1804 int set_pages_wb(struct page *page, int numpages)
1805 {
1806 unsigned long addr = (unsigned long)page_address(page);
1807
1808 return set_memory_wb(addr, numpages);
1809 }
1810 EXPORT_SYMBOL(set_pages_wb);
1811
1812 int set_pages_array_wb(struct page **pages, int addrinarray)
1813 {
1814 int retval;
1815 unsigned long start;
1816 unsigned long end;
1817 int i;
1818
1819 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1820 retval = cpa_clear_pages_array(pages, addrinarray,
1821 __pgprot(_PAGE_CACHE_MASK));
1822 if (retval)
1823 return retval;
1824
1825 for (i = 0; i < addrinarray; i++) {
1826 if (PageHighMem(pages[i]))
1827 continue;
1828 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1829 end = start + PAGE_SIZE;
1830 free_memtype(start, end);
1831 }
1832
1833 return 0;
1834 }
1835 EXPORT_SYMBOL(set_pages_array_wb);
1836
1837 int set_pages_x(struct page *page, int numpages)
1838 {
1839 unsigned long addr = (unsigned long)page_address(page);
1840
1841 return set_memory_x(addr, numpages);
1842 }
1843 EXPORT_SYMBOL(set_pages_x);
1844
1845 int set_pages_nx(struct page *page, int numpages)
1846 {
1847 unsigned long addr = (unsigned long)page_address(page);
1848
1849 return set_memory_nx(addr, numpages);
1850 }
1851 EXPORT_SYMBOL(set_pages_nx);
1852
1853 int set_pages_ro(struct page *page, int numpages)
1854 {
1855 unsigned long addr = (unsigned long)page_address(page);
1856
1857 return set_memory_ro(addr, numpages);
1858 }
1859
1860 int set_pages_rw(struct page *page, int numpages)
1861 {
1862 unsigned long addr = (unsigned long)page_address(page);
1863
1864 return set_memory_rw(addr, numpages);
1865 }
1866
1867 #ifdef CONFIG_DEBUG_PAGEALLOC
1868
1869 static int __set_pages_p(struct page *page, int numpages)
1870 {
1871 unsigned long tempaddr = (unsigned long) page_address(page);
1872 struct cpa_data cpa = { .vaddr = &tempaddr,
1873 .pgd = NULL,
1874 .numpages = numpages,
1875 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1876 .mask_clr = __pgprot(0),
1877 .flags = 0};
1878
1879 /*
1880 * No alias checking needed for setting present flag. otherwise,
1881 * we may need to break large pages for 64-bit kernel text
1882 * mappings (this adds to complexity if we want to do this from
1883 * atomic context especially). Let's keep it simple!
1884 */
1885 return __change_page_attr_set_clr(&cpa, 0);
1886 }
1887
1888 static int __set_pages_np(struct page *page, int numpages)
1889 {
1890 unsigned long tempaddr = (unsigned long) page_address(page);
1891 struct cpa_data cpa = { .vaddr = &tempaddr,
1892 .pgd = NULL,
1893 .numpages = numpages,
1894 .mask_set = __pgprot(0),
1895 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1896 .flags = 0};
1897
1898 /*
1899 * No alias checking needed for setting not present flag. otherwise,
1900 * we may need to break large pages for 64-bit kernel text
1901 * mappings (this adds to complexity if we want to do this from
1902 * atomic context especially). Let's keep it simple!
1903 */
1904 return __change_page_attr_set_clr(&cpa, 0);
1905 }
1906
1907 void __kernel_map_pages(struct page *page, int numpages, int enable)
1908 {
1909 if (PageHighMem(page))
1910 return;
1911 if (!enable) {
1912 debug_check_no_locks_freed(page_address(page),
1913 numpages * PAGE_SIZE);
1914 }
1915
1916 /*
1917 * The return value is ignored as the calls cannot fail.
1918 * Large pages for identity mappings are not used at boot time
1919 * and hence no memory allocations during large page split.
1920 */
1921 if (enable)
1922 __set_pages_p(page, numpages);
1923 else
1924 __set_pages_np(page, numpages);
1925
1926 /*
1927 * We should perform an IPI and flush all tlbs,
1928 * but that can deadlock->flush only current cpu:
1929 */
1930 __flush_tlb_all();
1931
1932 arch_flush_lazy_mmu_mode();
1933 }
1934
1935 #ifdef CONFIG_HIBERNATION
1936
1937 bool kernel_page_present(struct page *page)
1938 {
1939 unsigned int level;
1940 pte_t *pte;
1941
1942 if (PageHighMem(page))
1943 return false;
1944
1945 pte = lookup_address((unsigned long)page_address(page), &level);
1946 return (pte_val(*pte) & _PAGE_PRESENT);
1947 }
1948
1949 #endif /* CONFIG_HIBERNATION */
1950
1951 #endif /* CONFIG_DEBUG_PAGEALLOC */
1952
1953 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1954 unsigned numpages, unsigned long page_flags)
1955 {
1956 int retval = -EINVAL;
1957
1958 struct cpa_data cpa = {
1959 .vaddr = &address,
1960 .pfn = pfn,
1961 .pgd = pgd,
1962 .numpages = numpages,
1963 .mask_set = __pgprot(0),
1964 .mask_clr = __pgprot(0),
1965 .flags = 0,
1966 };
1967
1968 if (!(__supported_pte_mask & _PAGE_NX))
1969 goto out;
1970
1971 if (!(page_flags & _PAGE_NX))
1972 cpa.mask_clr = __pgprot(_PAGE_NX);
1973
1974 if (!(page_flags & _PAGE_RW))
1975 cpa.mask_clr = __pgprot(_PAGE_RW);
1976
1977 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1978
1979 retval = __change_page_attr_set_clr(&cpa, 0);
1980 __flush_tlb_all();
1981
1982 out:
1983 return retval;
1984 }
1985
1986 /*
1987 * The testcases use internal knowledge of the implementation that shouldn't
1988 * be exposed to the rest of the kernel. Include these directly here.
1989 */
1990 #ifdef CONFIG_CPA_DEBUG
1991 #include "pageattr-test.c"
1992 #endif