1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2002 Andi Kleen, SuSE Labs.
4 * Thanks to Ben LaHaise for precious feedback.
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18 #include <linux/libnvdimm.h>
20 #include <asm/e820/api.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/sections.h>
24 #include <asm/setup.h>
25 #include <linux/uaccess.h>
26 #include <asm/pgalloc.h>
27 #include <asm/proto.h>
28 #include <asm/memtype.h>
29 #include <asm/set_memory.h>
31 #include "../mm_internal.h"
34 * The current flushing context - we pass it instead of 5 arguments:
41 unsigned long numpages
;
42 unsigned long curpage
;
45 unsigned int force_split
: 1,
46 force_static_prot
: 1,
57 static const int cpa_warn_level
= CPA_PROTECT
;
60 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
61 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
62 * entries change the page attribute in parallel to some other cpu
63 * splitting a large page entry along with changing the attribute.
65 static DEFINE_SPINLOCK(cpa_lock
);
67 #define CPA_FLUSHTLB 1
69 #define CPA_PAGES_ARRAY 4
70 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
73 static unsigned long direct_pages_count
[PG_LEVEL_NUM
];
75 void update_page_count(int level
, unsigned long pages
)
77 /* Protect against CPA */
79 direct_pages_count
[level
] += pages
;
80 spin_unlock(&pgd_lock
);
83 static void split_page_count(int level
)
85 if (direct_pages_count
[level
] == 0)
88 direct_pages_count
[level
]--;
89 direct_pages_count
[level
- 1] += PTRS_PER_PTE
;
92 void arch_report_meminfo(struct seq_file
*m
)
94 seq_printf(m
, "DirectMap4k: %8lu kB\n",
95 direct_pages_count
[PG_LEVEL_4K
] << 2);
96 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
97 seq_printf(m
, "DirectMap2M: %8lu kB\n",
98 direct_pages_count
[PG_LEVEL_2M
] << 11);
100 seq_printf(m
, "DirectMap4M: %8lu kB\n",
101 direct_pages_count
[PG_LEVEL_2M
] << 12);
104 seq_printf(m
, "DirectMap1G: %8lu kB\n",
105 direct_pages_count
[PG_LEVEL_1G
] << 20);
108 static inline void split_page_count(int level
) { }
111 #ifdef CONFIG_X86_CPA_STATISTICS
113 static unsigned long cpa_1g_checked
;
114 static unsigned long cpa_1g_sameprot
;
115 static unsigned long cpa_1g_preserved
;
116 static unsigned long cpa_2m_checked
;
117 static unsigned long cpa_2m_sameprot
;
118 static unsigned long cpa_2m_preserved
;
119 static unsigned long cpa_4k_install
;
121 static inline void cpa_inc_1g_checked(void)
126 static inline void cpa_inc_2m_checked(void)
131 static inline void cpa_inc_4k_install(void)
136 static inline void cpa_inc_lp_sameprot(int level
)
138 if (level
== PG_LEVEL_1G
)
144 static inline void cpa_inc_lp_preserved(int level
)
146 if (level
== PG_LEVEL_1G
)
152 static int cpastats_show(struct seq_file
*m
, void *p
)
154 seq_printf(m
, "1G pages checked: %16lu\n", cpa_1g_checked
);
155 seq_printf(m
, "1G pages sameprot: %16lu\n", cpa_1g_sameprot
);
156 seq_printf(m
, "1G pages preserved: %16lu\n", cpa_1g_preserved
);
157 seq_printf(m
, "2M pages checked: %16lu\n", cpa_2m_checked
);
158 seq_printf(m
, "2M pages sameprot: %16lu\n", cpa_2m_sameprot
);
159 seq_printf(m
, "2M pages preserved: %16lu\n", cpa_2m_preserved
);
160 seq_printf(m
, "4K pages set-checked: %16lu\n", cpa_4k_install
);
164 static int cpastats_open(struct inode
*inode
, struct file
*file
)
166 return single_open(file
, cpastats_show
, NULL
);
169 static const struct file_operations cpastats_fops
= {
170 .open
= cpastats_open
,
173 .release
= single_release
,
176 static int __init
cpa_stats_init(void)
178 debugfs_create_file("cpa_stats", S_IRUSR
, arch_debugfs_dir
, NULL
,
182 late_initcall(cpa_stats_init
);
184 static inline void cpa_inc_1g_checked(void) { }
185 static inline void cpa_inc_2m_checked(void) { }
186 static inline void cpa_inc_4k_install(void) { }
187 static inline void cpa_inc_lp_sameprot(int level
) { }
188 static inline void cpa_inc_lp_preserved(int level
) { }
193 within(unsigned long addr
, unsigned long start
, unsigned long end
)
195 return addr
>= start
&& addr
< end
;
199 within_inclusive(unsigned long addr
, unsigned long start
, unsigned long end
)
201 return addr
>= start
&& addr
<= end
;
206 static inline unsigned long highmap_start_pfn(void)
208 return __pa_symbol(_text
) >> PAGE_SHIFT
;
211 static inline unsigned long highmap_end_pfn(void)
213 /* Do not reference physical address outside the kernel. */
214 return __pa_symbol(roundup(_brk_end
, PMD_SIZE
) - 1) >> PAGE_SHIFT
;
217 static bool __cpa_pfn_in_highmap(unsigned long pfn
)
220 * Kernel text has an alias mapping at a high address, known
223 return within_inclusive(pfn
, highmap_start_pfn(), highmap_end_pfn());
228 static bool __cpa_pfn_in_highmap(unsigned long pfn
)
230 /* There is no highmap on 32-bit */
237 * See set_mce_nospec().
239 * Machine check recovery code needs to change cache mode of poisoned pages to
240 * UC to avoid speculative access logging another error. But passing the
241 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
242 * speculative access. So we cheat and flip the top bit of the address. This
243 * works fine for the code that updates the page tables. But at the end of the
244 * process we need to flush the TLB and cache and the non-canonical address
245 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
247 * But in the common case we already have a canonical address. This code
248 * will fix the top bit if needed and is a no-op otherwise.
250 static inline unsigned long fix_addr(unsigned long addr
)
253 return (long)(addr
<< 1) >> 1;
259 static unsigned long __cpa_addr(struct cpa_data
*cpa
, unsigned long idx
)
261 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
262 struct page
*page
= cpa
->pages
[idx
];
264 if (unlikely(PageHighMem(page
)))
267 return (unsigned long)page_address(page
);
270 if (cpa
->flags
& CPA_ARRAY
)
271 return cpa
->vaddr
[idx
];
273 return *cpa
->vaddr
+ idx
* PAGE_SIZE
;
280 static void clflush_cache_range_opt(void *vaddr
, unsigned int size
)
282 const unsigned long clflush_size
= boot_cpu_data
.x86_clflush_size
;
283 void *p
= (void *)((unsigned long)vaddr
& ~(clflush_size
- 1));
284 void *vend
= vaddr
+ size
;
289 for (; p
< vend
; p
+= clflush_size
)
294 * clflush_cache_range - flush a cache range with clflush
295 * @vaddr: virtual start address
296 * @size: number of bytes to flush
298 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
299 * SFENCE to avoid ordering issues.
301 void clflush_cache_range(void *vaddr
, unsigned int size
)
304 clflush_cache_range_opt(vaddr
, size
);
307 EXPORT_SYMBOL_GPL(clflush_cache_range
);
309 #ifdef CONFIG_ARCH_HAS_PMEM_API
310 void arch_invalidate_pmem(void *addr
, size_t size
)
312 clflush_cache_range(addr
, size
);
314 EXPORT_SYMBOL_GPL(arch_invalidate_pmem
);
317 static void __cpa_flush_all(void *arg
)
319 unsigned long cache
= (unsigned long)arg
;
322 * Flush all to work around Errata in early athlons regarding
323 * large page flushing.
327 if (cache
&& boot_cpu_data
.x86
>= 4)
331 static void cpa_flush_all(unsigned long cache
)
333 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled
);
335 on_each_cpu(__cpa_flush_all
, (void *) cache
, 1);
338 static void __cpa_flush_tlb(void *data
)
340 struct cpa_data
*cpa
= data
;
343 for (i
= 0; i
< cpa
->numpages
; i
++)
344 __flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa
, i
)));
347 static void cpa_flush(struct cpa_data
*data
, int cache
)
349 struct cpa_data
*cpa
= data
;
352 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled
);
354 if (cache
&& !static_cpu_has(X86_FEATURE_CLFLUSH
)) {
355 cpa_flush_all(cache
);
359 if (cpa
->force_flush_all
|| cpa
->numpages
> tlb_single_page_flush_ceiling
)
362 on_each_cpu(__cpa_flush_tlb
, cpa
, 1);
368 for (i
= 0; i
< cpa
->numpages
; i
++) {
369 unsigned long addr
= __cpa_addr(cpa
, i
);
372 pte_t
*pte
= lookup_address(addr
, &level
);
375 * Only flush present addresses:
377 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
378 clflush_cache_range_opt((void *)fix_addr(addr
), PAGE_SIZE
);
383 static bool overlaps(unsigned long r1_start
, unsigned long r1_end
,
384 unsigned long r2_start
, unsigned long r2_end
)
386 return (r1_start
<= r2_end
&& r1_end
>= r2_start
) ||
387 (r2_start
<= r1_end
&& r2_end
>= r1_start
);
390 #ifdef CONFIG_PCI_BIOS
392 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
393 * based config access (CONFIG_PCI_GOBIOS) support.
395 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN)
396 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1)
398 static pgprotval_t
protect_pci_bios(unsigned long spfn
, unsigned long epfn
)
400 if (pcibios_enabled
&& overlaps(spfn
, epfn
, BIOS_PFN
, BIOS_PFN_END
))
405 static pgprotval_t
protect_pci_bios(unsigned long spfn
, unsigned long epfn
)
412 * The .rodata section needs to be read-only. Using the pfn catches all
413 * aliases. This also includes __ro_after_init, so do not enforce until
414 * kernel_set_to_readonly is true.
416 static pgprotval_t
protect_rodata(unsigned long spfn
, unsigned long epfn
)
418 unsigned long epfn_ro
, spfn_ro
= PFN_DOWN(__pa_symbol(__start_rodata
));
421 * Note: __end_rodata is at page aligned and not inclusive, so
422 * subtract 1 to get the last enforced PFN in the rodata area.
424 epfn_ro
= PFN_DOWN(__pa_symbol(__end_rodata
)) - 1;
426 if (kernel_set_to_readonly
&& overlaps(spfn
, epfn
, spfn_ro
, epfn_ro
))
432 * Protect kernel text against becoming non executable by forbidding
433 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext)
434 * out of which the kernel actually executes. Do not protect the low
437 * This does not cover __inittext since that is gone after boot.
439 static pgprotval_t
protect_kernel_text(unsigned long start
, unsigned long end
)
441 unsigned long t_end
= (unsigned long)_etext
- 1;
442 unsigned long t_start
= (unsigned long)_text
;
444 if (overlaps(start
, end
, t_start
, t_end
))
449 #if defined(CONFIG_X86_64)
451 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
452 * kernel text mappings for the large page aligned text, rodata sections
453 * will be always read-only. For the kernel identity mappings covering the
454 * holes caused by this alignment can be anything that user asks.
456 * This will preserve the large page mappings for kernel text/data at no
459 static pgprotval_t
protect_kernel_text_ro(unsigned long start
,
462 unsigned long t_end
= (unsigned long)__end_rodata_hpage_align
- 1;
463 unsigned long t_start
= (unsigned long)_text
;
466 if (!kernel_set_to_readonly
|| !overlaps(start
, end
, t_start
, t_end
))
469 * Don't enforce the !RW mapping for the kernel text mapping, if
470 * the current mapping is already using small page mapping. No
471 * need to work hard to preserve large page mappings in this case.
473 * This also fixes the Linux Xen paravirt guest boot failure caused
474 * by unexpected read-only mappings for kernel identity
475 * mappings. In this paravirt guest case, the kernel text mapping
476 * and the kernel identity mapping share the same page-table pages,
477 * so the protections for kernel text and identity mappings have to
480 if (lookup_address(start
, &level
) && (level
!= PG_LEVEL_4K
))
485 static pgprotval_t
protect_kernel_text_ro(unsigned long start
,
492 static inline bool conflicts(pgprot_t prot
, pgprotval_t val
)
494 return (pgprot_val(prot
) & ~val
) != pgprot_val(prot
);
497 static inline void check_conflict(int warnlvl
, pgprot_t prot
, pgprotval_t val
,
498 unsigned long start
, unsigned long end
,
499 unsigned long pfn
, const char *txt
)
501 static const char *lvltxt
[] = {
502 [CPA_CONFLICT
] = "conflict",
503 [CPA_PROTECT
] = "protect",
504 [CPA_DETECT
] = "detect",
507 if (warnlvl
> cpa_warn_level
|| !conflicts(prot
, val
))
510 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
511 lvltxt
[warnlvl
], txt
, start
, end
, pfn
, (unsigned long long)pgprot_val(prot
),
512 (unsigned long long)val
);
516 * Certain areas of memory on x86 require very specific protection flags,
517 * for example the BIOS area or kernel text. Callers don't always get this
518 * right (again, ioremap() on BIOS memory is not uncommon) so this function
519 * checks and fixes these known static required protection bits.
521 static inline pgprot_t
static_protections(pgprot_t prot
, unsigned long start
,
522 unsigned long pfn
, unsigned long npg
,
523 unsigned long lpsize
, int warnlvl
)
525 pgprotval_t forbidden
, res
;
529 * There is no point in checking RW/NX conflicts when the requested
530 * mapping is setting the page !PRESENT.
532 if (!(pgprot_val(prot
) & _PAGE_PRESENT
))
535 /* Operate on the virtual address */
536 end
= start
+ npg
* PAGE_SIZE
- 1;
538 res
= protect_kernel_text(start
, end
);
539 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "Text NX");
543 * Special case to preserve a large page. If the change spawns the
544 * full large page mapping then there is no point to split it
545 * up. Happens with ftrace and is going to be removed once ftrace
546 * switched to text_poke().
548 if (lpsize
!= (npg
* PAGE_SIZE
) || (start
& (lpsize
- 1))) {
549 res
= protect_kernel_text_ro(start
, end
);
550 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "Text RO");
554 /* Check the PFN directly */
555 res
= protect_pci_bios(pfn
, pfn
+ npg
- 1);
556 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "PCIBIOS NX");
559 res
= protect_rodata(pfn
, pfn
+ npg
- 1);
560 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "Rodata RO");
563 return __pgprot(pgprot_val(prot
) & ~forbidden
);
567 * Lookup the page table entry for a virtual address in a specific pgd.
568 * Return a pointer to the entry and the level of the mapping.
570 pte_t
*lookup_address_in_pgd(pgd_t
*pgd
, unsigned long address
,
577 *level
= PG_LEVEL_NONE
;
582 p4d
= p4d_offset(pgd
, address
);
586 *level
= PG_LEVEL_512G
;
587 if (p4d_large(*p4d
) || !p4d_present(*p4d
))
590 pud
= pud_offset(p4d
, address
);
594 *level
= PG_LEVEL_1G
;
595 if (pud_large(*pud
) || !pud_present(*pud
))
598 pmd
= pmd_offset(pud
, address
);
602 *level
= PG_LEVEL_2M
;
603 if (pmd_large(*pmd
) || !pmd_present(*pmd
))
606 *level
= PG_LEVEL_4K
;
608 return pte_offset_kernel(pmd
, address
);
612 * Lookup the page table entry for a virtual address. Return a pointer
613 * to the entry and the level of the mapping.
615 * Note: We return pud and pmd either when the entry is marked large
616 * or when the present bit is not set. Otherwise we would return a
617 * pointer to a nonexisting mapping.
619 pte_t
*lookup_address(unsigned long address
, unsigned int *level
)
621 return lookup_address_in_pgd(pgd_offset_k(address
), address
, level
);
623 EXPORT_SYMBOL_GPL(lookup_address
);
626 * Lookup the page table entry for a virtual address in a given mm. Return a
627 * pointer to the entry and the level of the mapping.
629 pte_t
*lookup_address_in_mm(struct mm_struct
*mm
, unsigned long address
,
632 return lookup_address_in_pgd(pgd_offset(mm
, address
), address
, level
);
634 EXPORT_SYMBOL_GPL(lookup_address_in_mm
);
636 static pte_t
*_lookup_address_cpa(struct cpa_data
*cpa
, unsigned long address
,
640 return lookup_address_in_pgd(cpa
->pgd
+ pgd_index(address
),
643 return lookup_address(address
, level
);
647 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
648 * or NULL if not present.
650 pmd_t
*lookup_pmd_address(unsigned long address
)
656 pgd
= pgd_offset_k(address
);
660 p4d
= p4d_offset(pgd
, address
);
661 if (p4d_none(*p4d
) || p4d_large(*p4d
) || !p4d_present(*p4d
))
664 pud
= pud_offset(p4d
, address
);
665 if (pud_none(*pud
) || pud_large(*pud
) || !pud_present(*pud
))
668 return pmd_offset(pud
, address
);
672 * This is necessary because __pa() does not work on some
673 * kinds of memory, like vmalloc() or the alloc_remap()
674 * areas on 32-bit NUMA systems. The percpu areas can
675 * end up in this kind of memory, for instance.
677 * This could be optimized, but it is only intended to be
678 * used at inititalization time, and keeping it
679 * unoptimized should increase the testing coverage for
680 * the more obscure platforms.
682 phys_addr_t
slow_virt_to_phys(void *__virt_addr
)
684 unsigned long virt_addr
= (unsigned long)__virt_addr
;
685 phys_addr_t phys_addr
;
686 unsigned long offset
;
690 pte
= lookup_address(virt_addr
, &level
);
694 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
695 * before being left-shifted PAGE_SHIFT bits -- this trick is to
696 * make 32-PAE kernel work correctly.
700 phys_addr
= (phys_addr_t
)pud_pfn(*(pud_t
*)pte
) << PAGE_SHIFT
;
701 offset
= virt_addr
& ~PUD_PAGE_MASK
;
704 phys_addr
= (phys_addr_t
)pmd_pfn(*(pmd_t
*)pte
) << PAGE_SHIFT
;
705 offset
= virt_addr
& ~PMD_PAGE_MASK
;
708 phys_addr
= (phys_addr_t
)pte_pfn(*pte
) << PAGE_SHIFT
;
709 offset
= virt_addr
& ~PAGE_MASK
;
712 return (phys_addr_t
)(phys_addr
| offset
);
714 EXPORT_SYMBOL_GPL(slow_virt_to_phys
);
717 * Set the new pmd in all the pgds we know about:
719 static void __set_pmd_pte(pte_t
*kpte
, unsigned long address
, pte_t pte
)
722 set_pte_atomic(kpte
, pte
);
724 if (!SHARED_KERNEL_PMD
) {
727 list_for_each_entry(page
, &pgd_list
, lru
) {
733 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
734 p4d
= p4d_offset(pgd
, address
);
735 pud
= pud_offset(p4d
, address
);
736 pmd
= pmd_offset(pud
, address
);
737 set_pte_atomic((pte_t
*)pmd
, pte
);
743 static pgprot_t
pgprot_clear_protnone_bits(pgprot_t prot
)
746 * _PAGE_GLOBAL means "global page" for present PTEs.
747 * But, it is also used to indicate _PAGE_PROTNONE
748 * for non-present PTEs.
750 * This ensures that a _PAGE_GLOBAL PTE going from
751 * present to non-present is not confused as
754 if (!(pgprot_val(prot
) & _PAGE_PRESENT
))
755 pgprot_val(prot
) &= ~_PAGE_GLOBAL
;
760 static int __should_split_large_page(pte_t
*kpte
, unsigned long address
,
761 struct cpa_data
*cpa
)
763 unsigned long numpages
, pmask
, psize
, lpaddr
, pfn
, old_pfn
;
764 pgprot_t old_prot
, new_prot
, req_prot
, chk_prot
;
769 * Check for races, another CPU might have split this page
772 tmp
= _lookup_address_cpa(cpa
, address
, &level
);
778 old_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
779 old_pfn
= pmd_pfn(*(pmd_t
*)kpte
);
780 cpa_inc_2m_checked();
783 old_prot
= pud_pgprot(*(pud_t
*)kpte
);
784 old_pfn
= pud_pfn(*(pud_t
*)kpte
);
785 cpa_inc_1g_checked();
791 psize
= page_level_size(level
);
792 pmask
= page_level_mask(level
);
795 * Calculate the number of pages, which fit into this large
796 * page starting at address:
798 lpaddr
= (address
+ psize
) & pmask
;
799 numpages
= (lpaddr
- address
) >> PAGE_SHIFT
;
800 if (numpages
< cpa
->numpages
)
801 cpa
->numpages
= numpages
;
804 * We are safe now. Check whether the new pgprot is the same:
805 * Convert protection attributes to 4k-format, as cpa->mask* are set
809 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
810 req_prot
= pgprot_large_2_4k(old_prot
);
812 pgprot_val(req_prot
) &= ~pgprot_val(cpa
->mask_clr
);
813 pgprot_val(req_prot
) |= pgprot_val(cpa
->mask_set
);
816 * req_prot is in format of 4k pages. It must be converted to large
817 * page format: the caching mode includes the PAT bit located at
818 * different bit positions in the two formats.
820 req_prot
= pgprot_4k_2_large(req_prot
);
821 req_prot
= pgprot_clear_protnone_bits(req_prot
);
822 if (pgprot_val(req_prot
) & _PAGE_PRESENT
)
823 pgprot_val(req_prot
) |= _PAGE_PSE
;
826 * old_pfn points to the large page base pfn. So we need to add the
827 * offset of the virtual address:
829 pfn
= old_pfn
+ ((address
& (psize
- 1)) >> PAGE_SHIFT
);
833 * Calculate the large page base address and the number of 4K pages
836 lpaddr
= address
& pmask
;
837 numpages
= psize
>> PAGE_SHIFT
;
840 * Sanity check that the existing mapping is correct versus the static
841 * protections. static_protections() guards against !PRESENT, so no
842 * extra conditional required here.
844 chk_prot
= static_protections(old_prot
, lpaddr
, old_pfn
, numpages
,
845 psize
, CPA_CONFLICT
);
847 if (WARN_ON_ONCE(pgprot_val(chk_prot
) != pgprot_val(old_prot
))) {
849 * Split the large page and tell the split code to
850 * enforce static protections.
852 cpa
->force_static_prot
= 1;
857 * Optimization: If the requested pgprot is the same as the current
858 * pgprot, then the large page can be preserved and no updates are
859 * required independent of alignment and length of the requested
860 * range. The above already established that the current pgprot is
861 * correct, which in consequence makes the requested pgprot correct
862 * as well if it is the same. The static protection scan below will
863 * not come to a different conclusion.
865 if (pgprot_val(req_prot
) == pgprot_val(old_prot
)) {
866 cpa_inc_lp_sameprot(level
);
871 * If the requested range does not cover the full page, split it up
873 if (address
!= lpaddr
|| cpa
->numpages
!= numpages
)
877 * Check whether the requested pgprot is conflicting with a static
878 * protection requirement in the large page.
880 new_prot
= static_protections(req_prot
, lpaddr
, old_pfn
, numpages
,
884 * If there is a conflict, split the large page.
886 * There used to be a 4k wise evaluation trying really hard to
887 * preserve the large pages, but experimentation has shown, that this
888 * does not help at all. There might be corner cases which would
889 * preserve one large page occasionally, but it's really not worth the
890 * extra code and cycles for the common case.
892 if (pgprot_val(req_prot
) != pgprot_val(new_prot
))
895 /* All checks passed. Update the large page mapping. */
896 new_pte
= pfn_pte(old_pfn
, new_prot
);
897 __set_pmd_pte(kpte
, address
, new_pte
);
898 cpa
->flags
|= CPA_FLUSHTLB
;
899 cpa_inc_lp_preserved(level
);
903 static int should_split_large_page(pte_t
*kpte
, unsigned long address
,
904 struct cpa_data
*cpa
)
908 if (cpa
->force_split
)
911 spin_lock(&pgd_lock
);
912 do_split
= __should_split_large_page(kpte
, address
, cpa
);
913 spin_unlock(&pgd_lock
);
918 static void split_set_pte(struct cpa_data
*cpa
, pte_t
*pte
, unsigned long pfn
,
919 pgprot_t ref_prot
, unsigned long address
,
922 unsigned int npg
= PFN_DOWN(size
);
926 * If should_split_large_page() discovered an inconsistent mapping,
927 * remove the invalid protection in the split mapping.
929 if (!cpa
->force_static_prot
)
932 /* Hand in lpsize = 0 to enforce the protection mechanism */
933 prot
= static_protections(ref_prot
, address
, pfn
, npg
, 0, CPA_PROTECT
);
935 if (pgprot_val(prot
) == pgprot_val(ref_prot
))
939 * If this is splitting a PMD, fix it up. PUD splits cannot be
940 * fixed trivially as that would require to rescan the newly
941 * installed PMD mappings after returning from split_large_page()
942 * so an eventual further split can allocate the necessary PTE
943 * pages. Warn for now and revisit it in case this actually
946 if (size
== PAGE_SIZE
)
949 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
951 set_pte(pte
, pfn_pte(pfn
, ref_prot
));
955 __split_large_page(struct cpa_data
*cpa
, pte_t
*kpte
, unsigned long address
,
958 unsigned long lpaddr
, lpinc
, ref_pfn
, pfn
, pfninc
= 1;
959 pte_t
*pbase
= (pte_t
*)page_address(base
);
960 unsigned int i
, level
;
964 spin_lock(&pgd_lock
);
966 * Check for races, another CPU might have split this page
969 tmp
= _lookup_address_cpa(cpa
, address
, &level
);
971 spin_unlock(&pgd_lock
);
975 paravirt_alloc_pte(&init_mm
, page_to_pfn(base
));
979 ref_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
981 * Clear PSE (aka _PAGE_PAT) and move
982 * PAT bit to correct position.
984 ref_prot
= pgprot_large_2_4k(ref_prot
);
985 ref_pfn
= pmd_pfn(*(pmd_t
*)kpte
);
986 lpaddr
= address
& PMD_MASK
;
991 ref_prot
= pud_pgprot(*(pud_t
*)kpte
);
992 ref_pfn
= pud_pfn(*(pud_t
*)kpte
);
993 pfninc
= PMD_PAGE_SIZE
>> PAGE_SHIFT
;
994 lpaddr
= address
& PUD_MASK
;
997 * Clear the PSE flags if the PRESENT flag is not set
998 * otherwise pmd_present/pmd_huge will return true
999 * even on a non present pmd.
1001 if (!(pgprot_val(ref_prot
) & _PAGE_PRESENT
))
1002 pgprot_val(ref_prot
) &= ~_PAGE_PSE
;
1006 spin_unlock(&pgd_lock
);
1010 ref_prot
= pgprot_clear_protnone_bits(ref_prot
);
1013 * Get the target pfn from the original entry:
1016 for (i
= 0; i
< PTRS_PER_PTE
; i
++, pfn
+= pfninc
, lpaddr
+= lpinc
)
1017 split_set_pte(cpa
, pbase
+ i
, pfn
, ref_prot
, lpaddr
, lpinc
);
1019 if (virt_addr_valid(address
)) {
1020 unsigned long pfn
= PFN_DOWN(__pa(address
));
1022 if (pfn_range_is_mapped(pfn
, pfn
+ 1))
1023 split_page_count(level
);
1027 * Install the new, split up pagetable.
1029 * We use the standard kernel pagetable protections for the new
1030 * pagetable protections, the actual ptes set above control the
1031 * primary protection behavior:
1033 __set_pmd_pte(kpte
, address
, mk_pte(base
, __pgprot(_KERNPG_TABLE
)));
1036 * Do a global flush tlb after splitting the large page
1037 * and before we do the actual change page attribute in the PTE.
1039 * Without this, we violate the TLB application note, that says:
1040 * "The TLBs may contain both ordinary and large-page
1041 * translations for a 4-KByte range of linear addresses. This
1042 * may occur if software modifies the paging structures so that
1043 * the page size used for the address range changes. If the two
1044 * translations differ with respect to page frame or attributes
1045 * (e.g., permissions), processor behavior is undefined and may
1046 * be implementation-specific."
1048 * We do this global tlb flush inside the cpa_lock, so that we
1049 * don't allow any other cpu, with stale tlb entries change the
1050 * page attribute in parallel, that also falls into the
1051 * just split large page entry.
1054 spin_unlock(&pgd_lock
);
1059 static int split_large_page(struct cpa_data
*cpa
, pte_t
*kpte
,
1060 unsigned long address
)
1064 if (!debug_pagealloc_enabled())
1065 spin_unlock(&cpa_lock
);
1066 base
= alloc_pages(GFP_KERNEL
, 0);
1067 if (!debug_pagealloc_enabled())
1068 spin_lock(&cpa_lock
);
1072 if (__split_large_page(cpa
, kpte
, address
, base
))
1078 static bool try_to_free_pte_page(pte_t
*pte
)
1082 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
1083 if (!pte_none(pte
[i
]))
1086 free_page((unsigned long)pte
);
1090 static bool try_to_free_pmd_page(pmd_t
*pmd
)
1094 for (i
= 0; i
< PTRS_PER_PMD
; i
++)
1095 if (!pmd_none(pmd
[i
]))
1098 free_page((unsigned long)pmd
);
1102 static bool unmap_pte_range(pmd_t
*pmd
, unsigned long start
, unsigned long end
)
1104 pte_t
*pte
= pte_offset_kernel(pmd
, start
);
1106 while (start
< end
) {
1107 set_pte(pte
, __pte(0));
1113 if (try_to_free_pte_page((pte_t
*)pmd_page_vaddr(*pmd
))) {
1120 static void __unmap_pmd_range(pud_t
*pud
, pmd_t
*pmd
,
1121 unsigned long start
, unsigned long end
)
1123 if (unmap_pte_range(pmd
, start
, end
))
1124 if (try_to_free_pmd_page((pmd_t
*)pud_page_vaddr(*pud
)))
1128 static void unmap_pmd_range(pud_t
*pud
, unsigned long start
, unsigned long end
)
1130 pmd_t
*pmd
= pmd_offset(pud
, start
);
1133 * Not on a 2MB page boundary?
1135 if (start
& (PMD_SIZE
- 1)) {
1136 unsigned long next_page
= (start
+ PMD_SIZE
) & PMD_MASK
;
1137 unsigned long pre_end
= min_t(unsigned long, end
, next_page
);
1139 __unmap_pmd_range(pud
, pmd
, start
, pre_end
);
1146 * Try to unmap in 2M chunks.
1148 while (end
- start
>= PMD_SIZE
) {
1149 if (pmd_large(*pmd
))
1152 __unmap_pmd_range(pud
, pmd
, start
, start
+ PMD_SIZE
);
1162 return __unmap_pmd_range(pud
, pmd
, start
, end
);
1165 * Try again to free the PMD page if haven't succeeded above.
1167 if (!pud_none(*pud
))
1168 if (try_to_free_pmd_page((pmd_t
*)pud_page_vaddr(*pud
)))
1172 static void unmap_pud_range(p4d_t
*p4d
, unsigned long start
, unsigned long end
)
1174 pud_t
*pud
= pud_offset(p4d
, start
);
1177 * Not on a GB page boundary?
1179 if (start
& (PUD_SIZE
- 1)) {
1180 unsigned long next_page
= (start
+ PUD_SIZE
) & PUD_MASK
;
1181 unsigned long pre_end
= min_t(unsigned long, end
, next_page
);
1183 unmap_pmd_range(pud
, start
, pre_end
);
1190 * Try to unmap in 1G chunks?
1192 while (end
- start
>= PUD_SIZE
) {
1194 if (pud_large(*pud
))
1197 unmap_pmd_range(pud
, start
, start
+ PUD_SIZE
);
1207 unmap_pmd_range(pud
, start
, end
);
1210 * No need to try to free the PUD page because we'll free it in
1211 * populate_pgd's error path
1215 static int alloc_pte_page(pmd_t
*pmd
)
1217 pte_t
*pte
= (pte_t
*)get_zeroed_page(GFP_KERNEL
);
1221 set_pmd(pmd
, __pmd(__pa(pte
) | _KERNPG_TABLE
));
1225 static int alloc_pmd_page(pud_t
*pud
)
1227 pmd_t
*pmd
= (pmd_t
*)get_zeroed_page(GFP_KERNEL
);
1231 set_pud(pud
, __pud(__pa(pmd
) | _KERNPG_TABLE
));
1235 static void populate_pte(struct cpa_data
*cpa
,
1236 unsigned long start
, unsigned long end
,
1237 unsigned num_pages
, pmd_t
*pmd
, pgprot_t pgprot
)
1241 pte
= pte_offset_kernel(pmd
, start
);
1243 pgprot
= pgprot_clear_protnone_bits(pgprot
);
1245 while (num_pages
-- && start
< end
) {
1246 set_pte(pte
, pfn_pte(cpa
->pfn
, pgprot
));
1254 static long populate_pmd(struct cpa_data
*cpa
,
1255 unsigned long start
, unsigned long end
,
1256 unsigned num_pages
, pud_t
*pud
, pgprot_t pgprot
)
1260 pgprot_t pmd_pgprot
;
1263 * Not on a 2M boundary?
1265 if (start
& (PMD_SIZE
- 1)) {
1266 unsigned long pre_end
= start
+ (num_pages
<< PAGE_SHIFT
);
1267 unsigned long next_page
= (start
+ PMD_SIZE
) & PMD_MASK
;
1269 pre_end
= min_t(unsigned long, pre_end
, next_page
);
1270 cur_pages
= (pre_end
- start
) >> PAGE_SHIFT
;
1271 cur_pages
= min_t(unsigned int, num_pages
, cur_pages
);
1276 pmd
= pmd_offset(pud
, start
);
1278 if (alloc_pte_page(pmd
))
1281 populate_pte(cpa
, start
, pre_end
, cur_pages
, pmd
, pgprot
);
1287 * We mapped them all?
1289 if (num_pages
== cur_pages
)
1292 pmd_pgprot
= pgprot_4k_2_large(pgprot
);
1294 while (end
- start
>= PMD_SIZE
) {
1297 * We cannot use a 1G page so allocate a PMD page if needed.
1300 if (alloc_pmd_page(pud
))
1303 pmd
= pmd_offset(pud
, start
);
1305 set_pmd(pmd
, pmd_mkhuge(pfn_pmd(cpa
->pfn
,
1306 canon_pgprot(pmd_pgprot
))));
1309 cpa
->pfn
+= PMD_SIZE
>> PAGE_SHIFT
;
1310 cur_pages
+= PMD_SIZE
>> PAGE_SHIFT
;
1314 * Map trailing 4K pages.
1317 pmd
= pmd_offset(pud
, start
);
1319 if (alloc_pte_page(pmd
))
1322 populate_pte(cpa
, start
, end
, num_pages
- cur_pages
,
1328 static int populate_pud(struct cpa_data
*cpa
, unsigned long start
, p4d_t
*p4d
,
1334 pgprot_t pud_pgprot
;
1336 end
= start
+ (cpa
->numpages
<< PAGE_SHIFT
);
1339 * Not on a Gb page boundary? => map everything up to it with
1342 if (start
& (PUD_SIZE
- 1)) {
1343 unsigned long pre_end
;
1344 unsigned long next_page
= (start
+ PUD_SIZE
) & PUD_MASK
;
1346 pre_end
= min_t(unsigned long, end
, next_page
);
1347 cur_pages
= (pre_end
- start
) >> PAGE_SHIFT
;
1348 cur_pages
= min_t(int, (int)cpa
->numpages
, cur_pages
);
1350 pud
= pud_offset(p4d
, start
);
1356 if (alloc_pmd_page(pud
))
1359 cur_pages
= populate_pmd(cpa
, start
, pre_end
, cur_pages
,
1367 /* We mapped them all? */
1368 if (cpa
->numpages
== cur_pages
)
1371 pud
= pud_offset(p4d
, start
);
1372 pud_pgprot
= pgprot_4k_2_large(pgprot
);
1375 * Map everything starting from the Gb boundary, possibly with 1G pages
1377 while (boot_cpu_has(X86_FEATURE_GBPAGES
) && end
- start
>= PUD_SIZE
) {
1378 set_pud(pud
, pud_mkhuge(pfn_pud(cpa
->pfn
,
1379 canon_pgprot(pud_pgprot
))));
1382 cpa
->pfn
+= PUD_SIZE
>> PAGE_SHIFT
;
1383 cur_pages
+= PUD_SIZE
>> PAGE_SHIFT
;
1387 /* Map trailing leftover */
1391 pud
= pud_offset(p4d
, start
);
1393 if (alloc_pmd_page(pud
))
1396 tmp
= populate_pmd(cpa
, start
, end
, cpa
->numpages
- cur_pages
,
1407 * Restrictions for kernel page table do not necessarily apply when mapping in
1410 static int populate_pgd(struct cpa_data
*cpa
, unsigned long addr
)
1412 pgprot_t pgprot
= __pgprot(_KERNPG_TABLE
);
1413 pud_t
*pud
= NULL
; /* shut up gcc */
1418 pgd_entry
= cpa
->pgd
+ pgd_index(addr
);
1420 if (pgd_none(*pgd_entry
)) {
1421 p4d
= (p4d_t
*)get_zeroed_page(GFP_KERNEL
);
1425 set_pgd(pgd_entry
, __pgd(__pa(p4d
) | _KERNPG_TABLE
));
1429 * Allocate a PUD page and hand it down for mapping.
1431 p4d
= p4d_offset(pgd_entry
, addr
);
1432 if (p4d_none(*p4d
)) {
1433 pud
= (pud_t
*)get_zeroed_page(GFP_KERNEL
);
1437 set_p4d(p4d
, __p4d(__pa(pud
) | _KERNPG_TABLE
));
1440 pgprot_val(pgprot
) &= ~pgprot_val(cpa
->mask_clr
);
1441 pgprot_val(pgprot
) |= pgprot_val(cpa
->mask_set
);
1443 ret
= populate_pud(cpa
, addr
, p4d
, pgprot
);
1446 * Leave the PUD page in place in case some other CPU or thread
1447 * already found it, but remove any useless entries we just
1450 unmap_pud_range(p4d
, addr
,
1451 addr
+ (cpa
->numpages
<< PAGE_SHIFT
));
1455 cpa
->numpages
= ret
;
1459 static int __cpa_process_fault(struct cpa_data
*cpa
, unsigned long vaddr
,
1464 * Right now, we only execute this code path when mapping
1465 * the EFI virtual memory map regions, no other users
1466 * provide a ->pgd value. This may change in the future.
1468 return populate_pgd(cpa
, vaddr
);
1472 * Ignore all non primary paths.
1480 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1482 * Also set numpages to '1' indicating that we processed cpa req for
1483 * one virtual address page and its pfn. TBD: numpages can be set based
1484 * on the initial value and the level returned by lookup_address().
1486 if (within(vaddr
, PAGE_OFFSET
,
1487 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
))) {
1489 cpa
->pfn
= __pa(vaddr
) >> PAGE_SHIFT
;
1492 } else if (__cpa_pfn_in_highmap(cpa
->pfn
)) {
1493 /* Faults in the highmap are OK, so do not warn: */
1496 WARN(1, KERN_WARNING
"CPA: called for zero pte. "
1497 "vaddr = %lx cpa->vaddr = %lx\n", vaddr
,
1504 static int __change_page_attr(struct cpa_data
*cpa
, int primary
)
1506 unsigned long address
;
1509 pte_t
*kpte
, old_pte
;
1511 address
= __cpa_addr(cpa
, cpa
->curpage
);
1513 kpte
= _lookup_address_cpa(cpa
, address
, &level
);
1515 return __cpa_process_fault(cpa
, address
, primary
);
1518 if (pte_none(old_pte
))
1519 return __cpa_process_fault(cpa
, address
, primary
);
1521 if (level
== PG_LEVEL_4K
) {
1523 pgprot_t new_prot
= pte_pgprot(old_pte
);
1524 unsigned long pfn
= pte_pfn(old_pte
);
1526 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
1527 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
1529 cpa_inc_4k_install();
1530 /* Hand in lpsize = 0 to enforce the protection mechanism */
1531 new_prot
= static_protections(new_prot
, address
, pfn
, 1, 0,
1534 new_prot
= pgprot_clear_protnone_bits(new_prot
);
1537 * We need to keep the pfn from the existing PTE,
1538 * after all we're only going to change it's attributes
1539 * not the memory it points to
1541 new_pte
= pfn_pte(pfn
, new_prot
);
1544 * Do we really change anything ?
1546 if (pte_val(old_pte
) != pte_val(new_pte
)) {
1547 set_pte_atomic(kpte
, new_pte
);
1548 cpa
->flags
|= CPA_FLUSHTLB
;
1555 * Check, whether we can keep the large page intact
1556 * and just change the pte:
1558 do_split
= should_split_large_page(kpte
, address
, cpa
);
1560 * When the range fits into the existing large page,
1561 * return. cp->numpages and cpa->tlbflush have been updated in
1568 * We have to split the large page:
1570 err
= split_large_page(cpa
, kpte
, address
);
1577 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
);
1579 static int cpa_process_alias(struct cpa_data
*cpa
)
1581 struct cpa_data alias_cpa
;
1582 unsigned long laddr
= (unsigned long)__va(cpa
->pfn
<< PAGE_SHIFT
);
1583 unsigned long vaddr
;
1586 if (!pfn_range_is_mapped(cpa
->pfn
, cpa
->pfn
+ 1))
1590 * No need to redo, when the primary call touched the direct
1593 vaddr
= __cpa_addr(cpa
, cpa
->curpage
);
1594 if (!(within(vaddr
, PAGE_OFFSET
,
1595 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
)))) {
1598 alias_cpa
.vaddr
= &laddr
;
1599 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
1600 alias_cpa
.curpage
= 0;
1602 cpa
->force_flush_all
= 1;
1604 ret
= __change_page_attr_set_clr(&alias_cpa
, 0);
1609 #ifdef CONFIG_X86_64
1611 * If the primary call didn't touch the high mapping already
1612 * and the physical address is inside the kernel map, we need
1613 * to touch the high mapped kernel as well:
1615 if (!within(vaddr
, (unsigned long)_text
, _brk_end
) &&
1616 __cpa_pfn_in_highmap(cpa
->pfn
)) {
1617 unsigned long temp_cpa_vaddr
= (cpa
->pfn
<< PAGE_SHIFT
) +
1618 __START_KERNEL_map
- phys_base
;
1620 alias_cpa
.vaddr
= &temp_cpa_vaddr
;
1621 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
1622 alias_cpa
.curpage
= 0;
1624 cpa
->force_flush_all
= 1;
1626 * The high mapping range is imprecise, so ignore the
1629 __change_page_attr_set_clr(&alias_cpa
, 0);
1636 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
)
1638 unsigned long numpages
= cpa
->numpages
;
1639 unsigned long rempages
= numpages
;
1644 * Store the remaining nr of pages for the large page
1645 * preservation check.
1647 cpa
->numpages
= rempages
;
1648 /* for array changes, we can't use large page */
1649 if (cpa
->flags
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
1652 if (!debug_pagealloc_enabled())
1653 spin_lock(&cpa_lock
);
1654 ret
= __change_page_attr(cpa
, checkalias
);
1655 if (!debug_pagealloc_enabled())
1656 spin_unlock(&cpa_lock
);
1661 ret
= cpa_process_alias(cpa
);
1667 * Adjust the number of pages with the result of the
1668 * CPA operation. Either a large page has been
1669 * preserved or a single page update happened.
1671 BUG_ON(cpa
->numpages
> rempages
|| !cpa
->numpages
);
1672 rempages
-= cpa
->numpages
;
1673 cpa
->curpage
+= cpa
->numpages
;
1677 /* Restore the original numpages */
1678 cpa
->numpages
= numpages
;
1682 static int change_page_attr_set_clr(unsigned long *addr
, int numpages
,
1683 pgprot_t mask_set
, pgprot_t mask_clr
,
1684 int force_split
, int in_flag
,
1685 struct page
**pages
)
1687 struct cpa_data cpa
;
1688 int ret
, cache
, checkalias
;
1690 memset(&cpa
, 0, sizeof(cpa
));
1693 * Check, if we are requested to set a not supported
1694 * feature. Clearing non-supported features is OK.
1696 mask_set
= canon_pgprot(mask_set
);
1698 if (!pgprot_val(mask_set
) && !pgprot_val(mask_clr
) && !force_split
)
1701 /* Ensure we are PAGE_SIZE aligned */
1702 if (in_flag
& CPA_ARRAY
) {
1704 for (i
= 0; i
< numpages
; i
++) {
1705 if (addr
[i
] & ~PAGE_MASK
) {
1706 addr
[i
] &= PAGE_MASK
;
1710 } else if (!(in_flag
& CPA_PAGES_ARRAY
)) {
1712 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1713 * No need to check in that case
1715 if (*addr
& ~PAGE_MASK
) {
1718 * People should not be passing in unaligned addresses:
1724 /* Must avoid aliasing mappings in the highmem code */
1725 kmap_flush_unused();
1731 cpa
.numpages
= numpages
;
1732 cpa
.mask_set
= mask_set
;
1733 cpa
.mask_clr
= mask_clr
;
1736 cpa
.force_split
= force_split
;
1738 if (in_flag
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
1739 cpa
.flags
|= in_flag
;
1741 /* No alias checking for _NX bit modifications */
1742 checkalias
= (pgprot_val(mask_set
) | pgprot_val(mask_clr
)) != _PAGE_NX
;
1743 /* Has caller explicitly disabled alias checking? */
1744 if (in_flag
& CPA_NO_CHECK_ALIAS
)
1747 ret
= __change_page_attr_set_clr(&cpa
, checkalias
);
1750 * Check whether we really changed something:
1752 if (!(cpa
.flags
& CPA_FLUSHTLB
))
1756 * No need to flush, when we did not set any of the caching
1759 cache
= !!pgprot2cachemode(mask_set
);
1762 * On error; flush everything to be sure.
1765 cpa_flush_all(cache
);
1769 cpa_flush(&cpa
, cache
);
1774 static inline int change_page_attr_set(unsigned long *addr
, int numpages
,
1775 pgprot_t mask
, int array
)
1777 return change_page_attr_set_clr(addr
, numpages
, mask
, __pgprot(0), 0,
1778 (array
? CPA_ARRAY
: 0), NULL
);
1781 static inline int change_page_attr_clear(unsigned long *addr
, int numpages
,
1782 pgprot_t mask
, int array
)
1784 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0), mask
, 0,
1785 (array
? CPA_ARRAY
: 0), NULL
);
1788 static inline int cpa_set_pages_array(struct page
**pages
, int numpages
,
1791 return change_page_attr_set_clr(NULL
, numpages
, mask
, __pgprot(0), 0,
1792 CPA_PAGES_ARRAY
, pages
);
1795 static inline int cpa_clear_pages_array(struct page
**pages
, int numpages
,
1798 return change_page_attr_set_clr(NULL
, numpages
, __pgprot(0), mask
, 0,
1799 CPA_PAGES_ARRAY
, pages
);
1803 * _set_memory_prot is an internal helper for callers that have been passed
1804 * a pgprot_t value from upper layers and a reservation has already been taken.
1805 * If you want to set the pgprot to a specific page protocol, use the
1806 * set_memory_xx() functions.
1808 int __set_memory_prot(unsigned long addr
, int numpages
, pgprot_t prot
)
1810 return change_page_attr_set_clr(&addr
, numpages
, prot
,
1811 __pgprot(~pgprot_val(prot
)), 0, 0,
1815 int _set_memory_uc(unsigned long addr
, int numpages
)
1818 * for now UC MINUS. see comments in ioremap()
1819 * If you really need strong UC use ioremap_uc(), but note
1820 * that you cannot override IO areas with set_memory_*() as
1821 * these helpers cannot work with IO memory.
1823 return change_page_attr_set(&addr
, numpages
,
1824 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS
),
1828 int set_memory_uc(unsigned long addr
, int numpages
)
1833 * for now UC MINUS. see comments in ioremap()
1835 ret
= memtype_reserve(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1836 _PAGE_CACHE_MODE_UC_MINUS
, NULL
);
1840 ret
= _set_memory_uc(addr
, numpages
);
1847 memtype_free(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1851 EXPORT_SYMBOL(set_memory_uc
);
1853 int _set_memory_wc(unsigned long addr
, int numpages
)
1857 ret
= change_page_attr_set(&addr
, numpages
,
1858 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS
),
1861 ret
= change_page_attr_set_clr(&addr
, numpages
,
1862 cachemode2pgprot(_PAGE_CACHE_MODE_WC
),
1863 __pgprot(_PAGE_CACHE_MASK
),
1869 int set_memory_wc(unsigned long addr
, int numpages
)
1873 ret
= memtype_reserve(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1874 _PAGE_CACHE_MODE_WC
, NULL
);
1878 ret
= _set_memory_wc(addr
, numpages
);
1880 memtype_free(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1884 EXPORT_SYMBOL(set_memory_wc
);
1886 int _set_memory_wt(unsigned long addr
, int numpages
)
1888 return change_page_attr_set(&addr
, numpages
,
1889 cachemode2pgprot(_PAGE_CACHE_MODE_WT
), 0);
1892 int _set_memory_wb(unsigned long addr
, int numpages
)
1894 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1895 return change_page_attr_clear(&addr
, numpages
,
1896 __pgprot(_PAGE_CACHE_MASK
), 0);
1899 int set_memory_wb(unsigned long addr
, int numpages
)
1903 ret
= _set_memory_wb(addr
, numpages
);
1907 memtype_free(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1910 EXPORT_SYMBOL(set_memory_wb
);
1912 int set_memory_x(unsigned long addr
, int numpages
)
1914 if (!(__supported_pte_mask
& _PAGE_NX
))
1917 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1920 int set_memory_nx(unsigned long addr
, int numpages
)
1922 if (!(__supported_pte_mask
& _PAGE_NX
))
1925 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1928 int set_memory_ro(unsigned long addr
, int numpages
)
1930 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1933 int set_memory_rw(unsigned long addr
, int numpages
)
1935 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1938 int set_memory_np(unsigned long addr
, int numpages
)
1940 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_PRESENT
), 0);
1943 int set_memory_np_noalias(unsigned long addr
, int numpages
)
1945 int cpa_flags
= CPA_NO_CHECK_ALIAS
;
1947 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
1948 __pgprot(_PAGE_PRESENT
), 0,
1952 int set_memory_4k(unsigned long addr
, int numpages
)
1954 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
1955 __pgprot(0), 1, 0, NULL
);
1958 int set_memory_nonglobal(unsigned long addr
, int numpages
)
1960 return change_page_attr_clear(&addr
, numpages
,
1961 __pgprot(_PAGE_GLOBAL
), 0);
1964 int set_memory_global(unsigned long addr
, int numpages
)
1966 return change_page_attr_set(&addr
, numpages
,
1967 __pgprot(_PAGE_GLOBAL
), 0);
1970 static int __set_memory_enc_dec(unsigned long addr
, int numpages
, bool enc
)
1972 struct cpa_data cpa
;
1975 /* Nothing to do if memory encryption is not active */
1976 if (!mem_encrypt_active())
1979 /* Should not be working on unaligned addresses */
1980 if (WARN_ONCE(addr
& ~PAGE_MASK
, "misaligned address: %#lx\n", addr
))
1983 memset(&cpa
, 0, sizeof(cpa
));
1985 cpa
.numpages
= numpages
;
1986 cpa
.mask_set
= enc
? __pgprot(_PAGE_ENC
) : __pgprot(0);
1987 cpa
.mask_clr
= enc
? __pgprot(0) : __pgprot(_PAGE_ENC
);
1988 cpa
.pgd
= init_mm
.pgd
;
1990 /* Must avoid aliasing mappings in the highmem code */
1991 kmap_flush_unused();
1995 * Before changing the encryption attribute, we need to flush caches.
1999 ret
= __change_page_attr_set_clr(&cpa
, 1);
2002 * After changing the encryption attribute, we need to flush TLBs again
2003 * in case any speculative TLB caching occurred (but no need to flush
2004 * caches again). We could just use cpa_flush_all(), but in case TLB
2005 * flushing gets optimized in the cpa_flush() path use the same logic
2013 int set_memory_encrypted(unsigned long addr
, int numpages
)
2015 return __set_memory_enc_dec(addr
, numpages
, true);
2017 EXPORT_SYMBOL_GPL(set_memory_encrypted
);
2019 int set_memory_decrypted(unsigned long addr
, int numpages
)
2021 return __set_memory_enc_dec(addr
, numpages
, false);
2023 EXPORT_SYMBOL_GPL(set_memory_decrypted
);
2025 int set_pages_uc(struct page
*page
, int numpages
)
2027 unsigned long addr
= (unsigned long)page_address(page
);
2029 return set_memory_uc(addr
, numpages
);
2031 EXPORT_SYMBOL(set_pages_uc
);
2033 static int _set_pages_array(struct page
**pages
, int numpages
,
2034 enum page_cache_mode new_type
)
2036 unsigned long start
;
2038 enum page_cache_mode set_type
;
2043 for (i
= 0; i
< numpages
; i
++) {
2044 if (PageHighMem(pages
[i
]))
2046 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
2047 end
= start
+ PAGE_SIZE
;
2048 if (memtype_reserve(start
, end
, new_type
, NULL
))
2052 /* If WC, set to UC- first and then WC */
2053 set_type
= (new_type
== _PAGE_CACHE_MODE_WC
) ?
2054 _PAGE_CACHE_MODE_UC_MINUS
: new_type
;
2056 ret
= cpa_set_pages_array(pages
, numpages
,
2057 cachemode2pgprot(set_type
));
2058 if (!ret
&& new_type
== _PAGE_CACHE_MODE_WC
)
2059 ret
= change_page_attr_set_clr(NULL
, numpages
,
2061 _PAGE_CACHE_MODE_WC
),
2062 __pgprot(_PAGE_CACHE_MASK
),
2063 0, CPA_PAGES_ARRAY
, pages
);
2066 return 0; /* Success */
2069 for (i
= 0; i
< free_idx
; i
++) {
2070 if (PageHighMem(pages
[i
]))
2072 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
2073 end
= start
+ PAGE_SIZE
;
2074 memtype_free(start
, end
);
2079 int set_pages_array_uc(struct page
**pages
, int numpages
)
2081 return _set_pages_array(pages
, numpages
, _PAGE_CACHE_MODE_UC_MINUS
);
2083 EXPORT_SYMBOL(set_pages_array_uc
);
2085 int set_pages_array_wc(struct page
**pages
, int numpages
)
2087 return _set_pages_array(pages
, numpages
, _PAGE_CACHE_MODE_WC
);
2089 EXPORT_SYMBOL(set_pages_array_wc
);
2091 int set_pages_array_wt(struct page
**pages
, int numpages
)
2093 return _set_pages_array(pages
, numpages
, _PAGE_CACHE_MODE_WT
);
2095 EXPORT_SYMBOL_GPL(set_pages_array_wt
);
2097 int set_pages_wb(struct page
*page
, int numpages
)
2099 unsigned long addr
= (unsigned long)page_address(page
);
2101 return set_memory_wb(addr
, numpages
);
2103 EXPORT_SYMBOL(set_pages_wb
);
2105 int set_pages_array_wb(struct page
**pages
, int numpages
)
2108 unsigned long start
;
2112 /* WB cache mode is hard wired to all cache attribute bits being 0 */
2113 retval
= cpa_clear_pages_array(pages
, numpages
,
2114 __pgprot(_PAGE_CACHE_MASK
));
2118 for (i
= 0; i
< numpages
; i
++) {
2119 if (PageHighMem(pages
[i
]))
2121 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
2122 end
= start
+ PAGE_SIZE
;
2123 memtype_free(start
, end
);
2128 EXPORT_SYMBOL(set_pages_array_wb
);
2130 int set_pages_ro(struct page
*page
, int numpages
)
2132 unsigned long addr
= (unsigned long)page_address(page
);
2134 return set_memory_ro(addr
, numpages
);
2137 int set_pages_rw(struct page
*page
, int numpages
)
2139 unsigned long addr
= (unsigned long)page_address(page
);
2141 return set_memory_rw(addr
, numpages
);
2144 static int __set_pages_p(struct page
*page
, int numpages
)
2146 unsigned long tempaddr
= (unsigned long) page_address(page
);
2147 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
2149 .numpages
= numpages
,
2150 .mask_set
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
2151 .mask_clr
= __pgprot(0),
2155 * No alias checking needed for setting present flag. otherwise,
2156 * we may need to break large pages for 64-bit kernel text
2157 * mappings (this adds to complexity if we want to do this from
2158 * atomic context especially). Let's keep it simple!
2160 return __change_page_attr_set_clr(&cpa
, 0);
2163 static int __set_pages_np(struct page
*page
, int numpages
)
2165 unsigned long tempaddr
= (unsigned long) page_address(page
);
2166 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
2168 .numpages
= numpages
,
2169 .mask_set
= __pgprot(0),
2170 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
2174 * No alias checking needed for setting not present flag. otherwise,
2175 * we may need to break large pages for 64-bit kernel text
2176 * mappings (this adds to complexity if we want to do this from
2177 * atomic context especially). Let's keep it simple!
2179 return __change_page_attr_set_clr(&cpa
, 0);
2182 int set_direct_map_invalid_noflush(struct page
*page
)
2184 return __set_pages_np(page
, 1);
2187 int set_direct_map_default_noflush(struct page
*page
)
2189 return __set_pages_p(page
, 1);
2192 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
2194 if (PageHighMem(page
))
2197 debug_check_no_locks_freed(page_address(page
),
2198 numpages
* PAGE_SIZE
);
2202 * The return value is ignored as the calls cannot fail.
2203 * Large pages for identity mappings are not used at boot time
2204 * and hence no memory allocations during large page split.
2207 __set_pages_p(page
, numpages
);
2209 __set_pages_np(page
, numpages
);
2212 * We should perform an IPI and flush all tlbs,
2213 * but that can deadlock->flush only current cpu.
2214 * Preemption needs to be disabled around __flush_tlb_all() due to
2215 * CR3 reload in __native_flush_tlb().
2221 arch_flush_lazy_mmu_mode();
2224 #ifdef CONFIG_HIBERNATION
2225 bool kernel_page_present(struct page
*page
)
2230 if (PageHighMem(page
))
2233 pte
= lookup_address((unsigned long)page_address(page
), &level
);
2234 return (pte_val(*pte
) & _PAGE_PRESENT
);
2236 #endif /* CONFIG_HIBERNATION */
2238 int __init
kernel_map_pages_in_pgd(pgd_t
*pgd
, u64 pfn
, unsigned long address
,
2239 unsigned numpages
, unsigned long page_flags
)
2241 int retval
= -EINVAL
;
2243 struct cpa_data cpa
= {
2247 .numpages
= numpages
,
2248 .mask_set
= __pgprot(0),
2249 .mask_clr
= __pgprot(~page_flags
& (_PAGE_NX
|_PAGE_RW
)),
2253 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2255 if (!(__supported_pte_mask
& _PAGE_NX
))
2258 if (!(page_flags
& _PAGE_ENC
))
2259 cpa
.mask_clr
= pgprot_encrypted(cpa
.mask_clr
);
2261 cpa
.mask_set
= __pgprot(_PAGE_PRESENT
| page_flags
);
2263 retval
= __change_page_attr_set_clr(&cpa
, 0);
2271 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2272 * function shouldn't be used in an SMP environment. Presently, it's used only
2273 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2275 int __init
kernel_unmap_pages_in_pgd(pgd_t
*pgd
, unsigned long address
,
2276 unsigned long numpages
)
2281 * The typical sequence for unmapping is to find a pte through
2282 * lookup_address_in_pgd() (ideally, it should never return NULL because
2283 * the address is already mapped) and change it's protections. As pfn is
2284 * the *target* of a mapping, it's not useful while unmapping.
2286 struct cpa_data cpa
= {
2290 .numpages
= numpages
,
2291 .mask_set
= __pgprot(0),
2292 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
2296 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2298 retval
= __change_page_attr_set_clr(&cpa
, 0);
2305 * The testcases use internal knowledge of the implementation that shouldn't
2306 * be exposed to the rest of the kernel. Include these directly here.
2308 #ifdef CONFIG_CPA_DEBUG
2309 #include "cpa-test.c"