]> git.ipfire.org Git - people/arne_f/kernel.git/blob - arch/x86/mm/tlb.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[people/arne_f/kernel.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 /*
18 * TLB flushing, formerly SMP-only
19 * c/o Linus Torvalds.
20 *
21 * These mean you can really definitely utterly forget about
22 * writing to user space from interrupts. (Its not allowed anyway).
23 *
24 * Optimizations Manfred Spraul <manfred@colorfullife.com>
25 *
26 * More scalable flush, from Andi Kleen
27 *
28 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29 */
30
31 void leave_mm(int cpu)
32 {
33 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
34
35 /*
36 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
37 * If so, our callers still expect us to flush the TLB, but there
38 * aren't any user TLB entries in init_mm to worry about.
39 *
40 * This needs to happen before any other sanity checks due to
41 * intel_idle's shenanigans.
42 */
43 if (loaded_mm == &init_mm)
44 return;
45
46 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
47 BUG();
48
49 switch_mm(NULL, &init_mm, NULL);
50 }
51 EXPORT_SYMBOL_GPL(leave_mm);
52
53 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
54 struct task_struct *tsk)
55 {
56 unsigned long flags;
57
58 local_irq_save(flags);
59 switch_mm_irqs_off(prev, next, tsk);
60 local_irq_restore(flags);
61 }
62
63 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
64 struct task_struct *tsk)
65 {
66 unsigned cpu = smp_processor_id();
67 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
68
69 /*
70 * NB: The scheduler will call us with prev == next when
71 * switching from lazy TLB mode to normal mode if active_mm
72 * isn't changing. When this happens, there is no guarantee
73 * that CR3 (and hence cpu_tlbstate.loaded_mm) matches next.
74 *
75 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
76 */
77
78 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
79
80 if (real_prev == next) {
81 /*
82 * There's nothing to do: we always keep the per-mm control
83 * regs in sync with cpu_tlbstate.loaded_mm. Just
84 * sanity-check mm_cpumask.
85 */
86 if (WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(next))))
87 cpumask_set_cpu(cpu, mm_cpumask(next));
88 return;
89 }
90
91 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
92 /*
93 * If our current stack is in vmalloc space and isn't
94 * mapped in the new pgd, we'll double-fault. Forcibly
95 * map it.
96 */
97 unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
98
99 pgd_t *pgd = next->pgd + stack_pgd_index;
100
101 if (unlikely(pgd_none(*pgd)))
102 set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
103 }
104
105 this_cpu_write(cpu_tlbstate.loaded_mm, next);
106
107 WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));
108 cpumask_set_cpu(cpu, mm_cpumask(next));
109
110 /*
111 * Re-load page tables.
112 *
113 * This logic has an ordering constraint:
114 *
115 * CPU 0: Write to a PTE for 'next'
116 * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI.
117 * CPU 1: set bit 1 in next's mm_cpumask
118 * CPU 1: load from the PTE that CPU 0 writes (implicit)
119 *
120 * We need to prevent an outcome in which CPU 1 observes
121 * the new PTE value and CPU 0 observes bit 1 clear in
122 * mm_cpumask. (If that occurs, then the IPI will never
123 * be sent, and CPU 0's TLB will contain a stale entry.)
124 *
125 * The bad outcome can occur if either CPU's load is
126 * reordered before that CPU's store, so both CPUs must
127 * execute full barriers to prevent this from happening.
128 *
129 * Thus, switch_mm needs a full barrier between the
130 * store to mm_cpumask and any operation that could load
131 * from next->pgd. TLB fills are special and can happen
132 * due to instruction fetches or for no reason at all,
133 * and neither LOCK nor MFENCE orders them.
134 * Fortunately, load_cr3() is serializing and gives the
135 * ordering guarantee we need.
136 */
137 load_cr3(next->pgd);
138
139 /*
140 * This gets called via leave_mm() in the idle path where RCU
141 * functions differently. Tracing normally uses RCU, so we have to
142 * call the tracepoint specially here.
143 */
144 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
145
146 /* Stop flush ipis for the previous mm */
147 WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
148 real_prev != &init_mm);
149 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
150
151 /* Load per-mm CR4 and LDTR state */
152 load_mm_cr4(next);
153 switch_ldt(real_prev, next);
154 }
155
156 static void flush_tlb_func_common(const struct flush_tlb_info *f,
157 bool local, enum tlb_flush_reason reason)
158 {
159 /* This code cannot presently handle being reentered. */
160 VM_WARN_ON(!irqs_disabled());
161
162 if (this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) {
163 leave_mm(smp_processor_id());
164 return;
165 }
166
167 if (f->end == TLB_FLUSH_ALL) {
168 local_flush_tlb();
169 if (local)
170 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
171 trace_tlb_flush(reason, TLB_FLUSH_ALL);
172 } else {
173 unsigned long addr;
174 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
175 addr = f->start;
176 while (addr < f->end) {
177 __flush_tlb_single(addr);
178 addr += PAGE_SIZE;
179 }
180 if (local)
181 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
182 trace_tlb_flush(reason, nr_pages);
183 }
184 }
185
186 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
187 {
188 const struct flush_tlb_info *f = info;
189
190 flush_tlb_func_common(f, true, reason);
191 }
192
193 static void flush_tlb_func_remote(void *info)
194 {
195 const struct flush_tlb_info *f = info;
196
197 inc_irq_stat(irq_tlb_count);
198
199 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
200 return;
201
202 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
203 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
204 }
205
206 void native_flush_tlb_others(const struct cpumask *cpumask,
207 const struct flush_tlb_info *info)
208 {
209 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
210 if (info->end == TLB_FLUSH_ALL)
211 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
212 else
213 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
214 (info->end - info->start) >> PAGE_SHIFT);
215
216 if (is_uv_system()) {
217 unsigned int cpu;
218
219 cpu = smp_processor_id();
220 cpumask = uv_flush_tlb_others(cpumask, info);
221 if (cpumask)
222 smp_call_function_many(cpumask, flush_tlb_func_remote,
223 (void *)info, 1);
224 return;
225 }
226 smp_call_function_many(cpumask, flush_tlb_func_remote,
227 (void *)info, 1);
228 }
229
230 /*
231 * See Documentation/x86/tlb.txt for details. We choose 33
232 * because it is large enough to cover the vast majority (at
233 * least 95%) of allocations, and is small enough that we are
234 * confident it will not cause too much overhead. Each single
235 * flush is about 100 ns, so this caps the maximum overhead at
236 * _about_ 3,000 ns.
237 *
238 * This is in units of pages.
239 */
240 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
241
242 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
243 unsigned long end, unsigned long vmflag)
244 {
245 int cpu;
246
247 struct flush_tlb_info info = {
248 .mm = mm,
249 };
250
251 cpu = get_cpu();
252
253 /* Synchronize with switch_mm. */
254 smp_mb();
255
256 /* Should we flush just the requested range? */
257 if ((end != TLB_FLUSH_ALL) &&
258 !(vmflag & VM_HUGETLB) &&
259 ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
260 info.start = start;
261 info.end = end;
262 } else {
263 info.start = 0UL;
264 info.end = TLB_FLUSH_ALL;
265 }
266
267 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
268 VM_WARN_ON(irqs_disabled());
269 local_irq_disable();
270 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
271 local_irq_enable();
272 }
273
274 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
275 flush_tlb_others(mm_cpumask(mm), &info);
276 put_cpu();
277 }
278
279
280 static void do_flush_tlb_all(void *info)
281 {
282 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
283 __flush_tlb_all();
284 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
285 leave_mm(smp_processor_id());
286 }
287
288 void flush_tlb_all(void)
289 {
290 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
291 on_each_cpu(do_flush_tlb_all, NULL, 1);
292 }
293
294 static void do_kernel_range_flush(void *info)
295 {
296 struct flush_tlb_info *f = info;
297 unsigned long addr;
298
299 /* flush range by one by one 'invlpg' */
300 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
301 __flush_tlb_single(addr);
302 }
303
304 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
305 {
306
307 /* Balance as user space task's flush, a bit conservative */
308 if (end == TLB_FLUSH_ALL ||
309 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
310 on_each_cpu(do_flush_tlb_all, NULL, 1);
311 } else {
312 struct flush_tlb_info info;
313 info.start = start;
314 info.end = end;
315 on_each_cpu(do_kernel_range_flush, &info, 1);
316 }
317 }
318
319 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
320 {
321 struct flush_tlb_info info = {
322 .mm = NULL,
323 .start = 0UL,
324 .end = TLB_FLUSH_ALL,
325 };
326
327 int cpu = get_cpu();
328
329 if (cpumask_test_cpu(cpu, &batch->cpumask)) {
330 VM_WARN_ON(irqs_disabled());
331 local_irq_disable();
332 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
333 local_irq_enable();
334 }
335
336 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
337 flush_tlb_others(&batch->cpumask, &info);
338 cpumask_clear(&batch->cpumask);
339
340 put_cpu();
341 }
342
343 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
344 size_t count, loff_t *ppos)
345 {
346 char buf[32];
347 unsigned int len;
348
349 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
350 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
351 }
352
353 static ssize_t tlbflush_write_file(struct file *file,
354 const char __user *user_buf, size_t count, loff_t *ppos)
355 {
356 char buf[32];
357 ssize_t len;
358 int ceiling;
359
360 len = min(count, sizeof(buf) - 1);
361 if (copy_from_user(buf, user_buf, len))
362 return -EFAULT;
363
364 buf[len] = '\0';
365 if (kstrtoint(buf, 0, &ceiling))
366 return -EINVAL;
367
368 if (ceiling < 0)
369 return -EINVAL;
370
371 tlb_single_page_flush_ceiling = ceiling;
372 return count;
373 }
374
375 static const struct file_operations fops_tlbflush = {
376 .read = tlbflush_read_file,
377 .write = tlbflush_write_file,
378 .llseek = default_llseek,
379 };
380
381 static int __init create_tlb_single_page_flush_ceiling(void)
382 {
383 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
384 arch_debugfs_dir, NULL, &fops_tlbflush);
385 return 0;
386 }
387 late_initcall(create_tlb_single_page_flush_ceiling);