]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/net/bpf_jit_comp.c
Merge branch 'x86/bugs' into x86/core, to pick up pending changes before dependent...
[thirdparty/linux.git] / arch / x86 / net / bpf_jit_comp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * BPF JIT compiler
4 *
5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/ftrace.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/text-patching.h>
19 #include <asm/unwind.h>
20 #include <asm/cfi.h>
21
22 static bool all_callee_regs_used[4] = {true, true, true, true};
23
24 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
25 {
26 if (len == 1)
27 *ptr = bytes;
28 else if (len == 2)
29 *(u16 *)ptr = bytes;
30 else {
31 *(u32 *)ptr = bytes;
32 barrier();
33 }
34 return ptr + len;
35 }
36
37 #define EMIT(bytes, len) \
38 do { prog = emit_code(prog, bytes, len); } while (0)
39
40 #define EMIT1(b1) EMIT(b1, 1)
41 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
42 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
43 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
44
45 #define EMIT1_off32(b1, off) \
46 do { EMIT1(b1); EMIT(off, 4); } while (0)
47 #define EMIT2_off32(b1, b2, off) \
48 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
49 #define EMIT3_off32(b1, b2, b3, off) \
50 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
51 #define EMIT4_off32(b1, b2, b3, b4, off) \
52 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
53
54 #ifdef CONFIG_X86_KERNEL_IBT
55 #define EMIT_ENDBR() EMIT(gen_endbr(), 4)
56 #define EMIT_ENDBR_POISON() EMIT(gen_endbr_poison(), 4)
57 #else
58 #define EMIT_ENDBR()
59 #define EMIT_ENDBR_POISON()
60 #endif
61
62 static bool is_imm8(int value)
63 {
64 return value <= 127 && value >= -128;
65 }
66
67 static bool is_simm32(s64 value)
68 {
69 return value == (s64)(s32)value;
70 }
71
72 static bool is_uimm32(u64 value)
73 {
74 return value == (u64)(u32)value;
75 }
76
77 /* mov dst, src */
78 #define EMIT_mov(DST, SRC) \
79 do { \
80 if (DST != SRC) \
81 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
82 } while (0)
83
84 static int bpf_size_to_x86_bytes(int bpf_size)
85 {
86 if (bpf_size == BPF_W)
87 return 4;
88 else if (bpf_size == BPF_H)
89 return 2;
90 else if (bpf_size == BPF_B)
91 return 1;
92 else if (bpf_size == BPF_DW)
93 return 4; /* imm32 */
94 else
95 return 0;
96 }
97
98 /*
99 * List of x86 cond jumps opcodes (. + s8)
100 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
101 */
102 #define X86_JB 0x72
103 #define X86_JAE 0x73
104 #define X86_JE 0x74
105 #define X86_JNE 0x75
106 #define X86_JBE 0x76
107 #define X86_JA 0x77
108 #define X86_JL 0x7C
109 #define X86_JGE 0x7D
110 #define X86_JLE 0x7E
111 #define X86_JG 0x7F
112
113 /* Pick a register outside of BPF range for JIT internal work */
114 #define AUX_REG (MAX_BPF_JIT_REG + 1)
115 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
116
117 /*
118 * The following table maps BPF registers to x86-64 registers.
119 *
120 * x86-64 register R12 is unused, since if used as base address
121 * register in load/store instructions, it always needs an
122 * extra byte of encoding and is callee saved.
123 *
124 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
125 * trampoline. x86-64 register R10 is used for blinding (if enabled).
126 */
127 static const int reg2hex[] = {
128 [BPF_REG_0] = 0, /* RAX */
129 [BPF_REG_1] = 7, /* RDI */
130 [BPF_REG_2] = 6, /* RSI */
131 [BPF_REG_3] = 2, /* RDX */
132 [BPF_REG_4] = 1, /* RCX */
133 [BPF_REG_5] = 0, /* R8 */
134 [BPF_REG_6] = 3, /* RBX callee saved */
135 [BPF_REG_7] = 5, /* R13 callee saved */
136 [BPF_REG_8] = 6, /* R14 callee saved */
137 [BPF_REG_9] = 7, /* R15 callee saved */
138 [BPF_REG_FP] = 5, /* RBP readonly */
139 [BPF_REG_AX] = 2, /* R10 temp register */
140 [AUX_REG] = 3, /* R11 temp register */
141 [X86_REG_R9] = 1, /* R9 register, 6th function argument */
142 };
143
144 static const int reg2pt_regs[] = {
145 [BPF_REG_0] = offsetof(struct pt_regs, ax),
146 [BPF_REG_1] = offsetof(struct pt_regs, di),
147 [BPF_REG_2] = offsetof(struct pt_regs, si),
148 [BPF_REG_3] = offsetof(struct pt_regs, dx),
149 [BPF_REG_4] = offsetof(struct pt_regs, cx),
150 [BPF_REG_5] = offsetof(struct pt_regs, r8),
151 [BPF_REG_6] = offsetof(struct pt_regs, bx),
152 [BPF_REG_7] = offsetof(struct pt_regs, r13),
153 [BPF_REG_8] = offsetof(struct pt_regs, r14),
154 [BPF_REG_9] = offsetof(struct pt_regs, r15),
155 };
156
157 /*
158 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
159 * which need extra byte of encoding.
160 * rax,rcx,...,rbp have simpler encoding
161 */
162 static bool is_ereg(u32 reg)
163 {
164 return (1 << reg) & (BIT(BPF_REG_5) |
165 BIT(AUX_REG) |
166 BIT(BPF_REG_7) |
167 BIT(BPF_REG_8) |
168 BIT(BPF_REG_9) |
169 BIT(X86_REG_R9) |
170 BIT(BPF_REG_AX));
171 }
172
173 /*
174 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
175 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
176 * of encoding. al,cl,dl,bl have simpler encoding.
177 */
178 static bool is_ereg_8l(u32 reg)
179 {
180 return is_ereg(reg) ||
181 (1 << reg) & (BIT(BPF_REG_1) |
182 BIT(BPF_REG_2) |
183 BIT(BPF_REG_FP));
184 }
185
186 static bool is_axreg(u32 reg)
187 {
188 return reg == BPF_REG_0;
189 }
190
191 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
192 static u8 add_1mod(u8 byte, u32 reg)
193 {
194 if (is_ereg(reg))
195 byte |= 1;
196 return byte;
197 }
198
199 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
200 {
201 if (is_ereg(r1))
202 byte |= 1;
203 if (is_ereg(r2))
204 byte |= 4;
205 return byte;
206 }
207
208 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
209 static u8 add_1reg(u8 byte, u32 dst_reg)
210 {
211 return byte + reg2hex[dst_reg];
212 }
213
214 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
215 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
216 {
217 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
218 }
219
220 /* Some 1-byte opcodes for binary ALU operations */
221 static u8 simple_alu_opcodes[] = {
222 [BPF_ADD] = 0x01,
223 [BPF_SUB] = 0x29,
224 [BPF_AND] = 0x21,
225 [BPF_OR] = 0x09,
226 [BPF_XOR] = 0x31,
227 [BPF_LSH] = 0xE0,
228 [BPF_RSH] = 0xE8,
229 [BPF_ARSH] = 0xF8,
230 };
231
232 static void jit_fill_hole(void *area, unsigned int size)
233 {
234 /* Fill whole space with INT3 instructions */
235 memset(area, 0xcc, size);
236 }
237
238 int bpf_arch_text_invalidate(void *dst, size_t len)
239 {
240 return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
241 }
242
243 struct jit_context {
244 int cleanup_addr; /* Epilogue code offset */
245
246 /*
247 * Program specific offsets of labels in the code; these rely on the
248 * JIT doing at least 2 passes, recording the position on the first
249 * pass, only to generate the correct offset on the second pass.
250 */
251 int tail_call_direct_label;
252 int tail_call_indirect_label;
253 };
254
255 /* Maximum number of bytes emitted while JITing one eBPF insn */
256 #define BPF_MAX_INSN_SIZE 128
257 #define BPF_INSN_SAFETY 64
258
259 /* Number of bytes emit_patch() needs to generate instructions */
260 #define X86_PATCH_SIZE 5
261 /* Number of bytes that will be skipped on tailcall */
262 #define X86_TAIL_CALL_OFFSET (11 + ENDBR_INSN_SIZE)
263
264 static void push_r12(u8 **pprog)
265 {
266 u8 *prog = *pprog;
267
268 EMIT2(0x41, 0x54); /* push r12 */
269 *pprog = prog;
270 }
271
272 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
273 {
274 u8 *prog = *pprog;
275
276 if (callee_regs_used[0])
277 EMIT1(0x53); /* push rbx */
278 if (callee_regs_used[1])
279 EMIT2(0x41, 0x55); /* push r13 */
280 if (callee_regs_used[2])
281 EMIT2(0x41, 0x56); /* push r14 */
282 if (callee_regs_used[3])
283 EMIT2(0x41, 0x57); /* push r15 */
284 *pprog = prog;
285 }
286
287 static void pop_r12(u8 **pprog)
288 {
289 u8 *prog = *pprog;
290
291 EMIT2(0x41, 0x5C); /* pop r12 */
292 *pprog = prog;
293 }
294
295 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
296 {
297 u8 *prog = *pprog;
298
299 if (callee_regs_used[3])
300 EMIT2(0x41, 0x5F); /* pop r15 */
301 if (callee_regs_used[2])
302 EMIT2(0x41, 0x5E); /* pop r14 */
303 if (callee_regs_used[1])
304 EMIT2(0x41, 0x5D); /* pop r13 */
305 if (callee_regs_used[0])
306 EMIT1(0x5B); /* pop rbx */
307 *pprog = prog;
308 }
309
310 static void emit_nops(u8 **pprog, int len)
311 {
312 u8 *prog = *pprog;
313 int i, noplen;
314
315 while (len > 0) {
316 noplen = len;
317
318 if (noplen > ASM_NOP_MAX)
319 noplen = ASM_NOP_MAX;
320
321 for (i = 0; i < noplen; i++)
322 EMIT1(x86_nops[noplen][i]);
323 len -= noplen;
324 }
325
326 *pprog = prog;
327 }
328
329 /*
330 * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
331 * in arch/x86/kernel/alternative.c
332 */
333
334 static void emit_fineibt(u8 **pprog, u32 hash)
335 {
336 u8 *prog = *pprog;
337
338 EMIT_ENDBR();
339 EMIT3_off32(0x41, 0x81, 0xea, hash); /* subl $hash, %r10d */
340 EMIT2(0x74, 0x07); /* jz.d8 +7 */
341 EMIT2(0x0f, 0x0b); /* ud2 */
342 EMIT1(0x90); /* nop */
343 EMIT_ENDBR_POISON();
344
345 *pprog = prog;
346 }
347
348 static void emit_kcfi(u8 **pprog, u32 hash)
349 {
350 u8 *prog = *pprog;
351
352 EMIT1_off32(0xb8, hash); /* movl $hash, %eax */
353 #ifdef CONFIG_CALL_PADDING
354 EMIT1(0x90);
355 EMIT1(0x90);
356 EMIT1(0x90);
357 EMIT1(0x90);
358 EMIT1(0x90);
359 EMIT1(0x90);
360 EMIT1(0x90);
361 EMIT1(0x90);
362 EMIT1(0x90);
363 EMIT1(0x90);
364 EMIT1(0x90);
365 #endif
366 EMIT_ENDBR();
367
368 *pprog = prog;
369 }
370
371 static void emit_cfi(u8 **pprog, u32 hash)
372 {
373 u8 *prog = *pprog;
374
375 switch (cfi_mode) {
376 case CFI_FINEIBT:
377 emit_fineibt(&prog, hash);
378 break;
379
380 case CFI_KCFI:
381 emit_kcfi(&prog, hash);
382 break;
383
384 default:
385 EMIT_ENDBR();
386 break;
387 }
388
389 *pprog = prog;
390 }
391
392 /*
393 * Emit x86-64 prologue code for BPF program.
394 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
395 * while jumping to another program
396 */
397 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
398 bool tail_call_reachable, bool is_subprog,
399 bool is_exception_cb)
400 {
401 u8 *prog = *pprog;
402
403 emit_cfi(&prog, is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash);
404 /* BPF trampoline can be made to work without these nops,
405 * but let's waste 5 bytes for now and optimize later
406 */
407 emit_nops(&prog, X86_PATCH_SIZE);
408 if (!ebpf_from_cbpf) {
409 if (tail_call_reachable && !is_subprog)
410 /* When it's the entry of the whole tailcall context,
411 * zeroing rax means initialising tail_call_cnt.
412 */
413 EMIT2(0x31, 0xC0); /* xor eax, eax */
414 else
415 /* Keep the same instruction layout. */
416 EMIT2(0x66, 0x90); /* nop2 */
417 }
418 /* Exception callback receives FP as third parameter */
419 if (is_exception_cb) {
420 EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
421 EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
422 /* The main frame must have exception_boundary as true, so we
423 * first restore those callee-saved regs from stack, before
424 * reusing the stack frame.
425 */
426 pop_callee_regs(&prog, all_callee_regs_used);
427 pop_r12(&prog);
428 /* Reset the stack frame. */
429 EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
430 } else {
431 EMIT1(0x55); /* push rbp */
432 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
433 }
434
435 /* X86_TAIL_CALL_OFFSET is here */
436 EMIT_ENDBR();
437
438 /* sub rsp, rounded_stack_depth */
439 if (stack_depth)
440 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
441 if (tail_call_reachable)
442 EMIT1(0x50); /* push rax */
443 *pprog = prog;
444 }
445
446 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
447 {
448 u8 *prog = *pprog;
449 s64 offset;
450
451 offset = func - (ip + X86_PATCH_SIZE);
452 if (!is_simm32(offset)) {
453 pr_err("Target call %p is out of range\n", func);
454 return -ERANGE;
455 }
456 EMIT1_off32(opcode, offset);
457 *pprog = prog;
458 return 0;
459 }
460
461 static int emit_call(u8 **pprog, void *func, void *ip)
462 {
463 return emit_patch(pprog, func, ip, 0xE8);
464 }
465
466 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
467 {
468 OPTIMIZER_HIDE_VAR(func);
469 x86_call_depth_emit_accounting(pprog, func);
470 return emit_patch(pprog, func, ip, 0xE8);
471 }
472
473 static int emit_jump(u8 **pprog, void *func, void *ip)
474 {
475 return emit_patch(pprog, func, ip, 0xE9);
476 }
477
478 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
479 void *old_addr, void *new_addr)
480 {
481 const u8 *nop_insn = x86_nops[5];
482 u8 old_insn[X86_PATCH_SIZE];
483 u8 new_insn[X86_PATCH_SIZE];
484 u8 *prog;
485 int ret;
486
487 memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
488 if (old_addr) {
489 prog = old_insn;
490 ret = t == BPF_MOD_CALL ?
491 emit_call(&prog, old_addr, ip) :
492 emit_jump(&prog, old_addr, ip);
493 if (ret)
494 return ret;
495 }
496
497 memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
498 if (new_addr) {
499 prog = new_insn;
500 ret = t == BPF_MOD_CALL ?
501 emit_call(&prog, new_addr, ip) :
502 emit_jump(&prog, new_addr, ip);
503 if (ret)
504 return ret;
505 }
506
507 ret = -EBUSY;
508 mutex_lock(&text_mutex);
509 if (memcmp(ip, old_insn, X86_PATCH_SIZE))
510 goto out;
511 ret = 1;
512 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
513 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
514 ret = 0;
515 }
516 out:
517 mutex_unlock(&text_mutex);
518 return ret;
519 }
520
521 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
522 void *old_addr, void *new_addr)
523 {
524 if (!is_kernel_text((long)ip) &&
525 !is_bpf_text_address((long)ip))
526 /* BPF poking in modules is not supported */
527 return -EINVAL;
528
529 /*
530 * See emit_prologue(), for IBT builds the trampoline hook is preceded
531 * with an ENDBR instruction.
532 */
533 if (is_endbr(*(u32 *)ip))
534 ip += ENDBR_INSN_SIZE;
535
536 return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
537 }
538
539 #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8)
540
541 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
542 {
543 u8 *prog = *pprog;
544
545 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
546 EMIT_LFENCE();
547 EMIT2(0xFF, 0xE0 + reg);
548 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
549 OPTIMIZER_HIDE_VAR(reg);
550 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
551 emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
552 else
553 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
554 } else {
555 EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */
556 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS))
557 EMIT1(0xCC); /* int3 */
558 }
559
560 *pprog = prog;
561 }
562
563 static void emit_return(u8 **pprog, u8 *ip)
564 {
565 u8 *prog = *pprog;
566
567 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
568 emit_jump(&prog, x86_return_thunk, ip);
569 } else {
570 EMIT1(0xC3); /* ret */
571 if (IS_ENABLED(CONFIG_MITIGATION_SLS))
572 EMIT1(0xCC); /* int3 */
573 }
574
575 *pprog = prog;
576 }
577
578 /*
579 * Generate the following code:
580 *
581 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
582 * if (index >= array->map.max_entries)
583 * goto out;
584 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
585 * goto out;
586 * prog = array->ptrs[index];
587 * if (prog == NULL)
588 * goto out;
589 * goto *(prog->bpf_func + prologue_size);
590 * out:
591 */
592 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
593 u8 **pprog, bool *callee_regs_used,
594 u32 stack_depth, u8 *ip,
595 struct jit_context *ctx)
596 {
597 int tcc_off = -4 - round_up(stack_depth, 8);
598 u8 *prog = *pprog, *start = *pprog;
599 int offset;
600
601 /*
602 * rdi - pointer to ctx
603 * rsi - pointer to bpf_array
604 * rdx - index in bpf_array
605 */
606
607 /*
608 * if (index >= array->map.max_entries)
609 * goto out;
610 */
611 EMIT2(0x89, 0xD2); /* mov edx, edx */
612 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
613 offsetof(struct bpf_array, map.max_entries));
614
615 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
616 EMIT2(X86_JBE, offset); /* jbe out */
617
618 /*
619 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
620 * goto out;
621 */
622 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
623 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
624
625 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
626 EMIT2(X86_JAE, offset); /* jae out */
627 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
628 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
629
630 /* prog = array->ptrs[index]; */
631 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
632 offsetof(struct bpf_array, ptrs));
633
634 /*
635 * if (prog == NULL)
636 * goto out;
637 */
638 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */
639
640 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
641 EMIT2(X86_JE, offset); /* je out */
642
643 if (bpf_prog->aux->exception_boundary) {
644 pop_callee_regs(&prog, all_callee_regs_used);
645 pop_r12(&prog);
646 } else {
647 pop_callee_regs(&prog, callee_regs_used);
648 }
649
650 EMIT1(0x58); /* pop rax */
651 if (stack_depth)
652 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */
653 round_up(stack_depth, 8));
654
655 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
656 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */
657 offsetof(struct bpf_prog, bpf_func));
658 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */
659 X86_TAIL_CALL_OFFSET);
660 /*
661 * Now we're ready to jump into next BPF program
662 * rdi == ctx (1st arg)
663 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
664 */
665 emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
666
667 /* out: */
668 ctx->tail_call_indirect_label = prog - start;
669 *pprog = prog;
670 }
671
672 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
673 struct bpf_jit_poke_descriptor *poke,
674 u8 **pprog, u8 *ip,
675 bool *callee_regs_used, u32 stack_depth,
676 struct jit_context *ctx)
677 {
678 int tcc_off = -4 - round_up(stack_depth, 8);
679 u8 *prog = *pprog, *start = *pprog;
680 int offset;
681
682 /*
683 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
684 * goto out;
685 */
686 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
687 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
688
689 offset = ctx->tail_call_direct_label - (prog + 2 - start);
690 EMIT2(X86_JAE, offset); /* jae out */
691 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
692 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
693
694 poke->tailcall_bypass = ip + (prog - start);
695 poke->adj_off = X86_TAIL_CALL_OFFSET;
696 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
697 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
698
699 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
700 poke->tailcall_bypass);
701
702 if (bpf_prog->aux->exception_boundary) {
703 pop_callee_regs(&prog, all_callee_regs_used);
704 pop_r12(&prog);
705 } else {
706 pop_callee_regs(&prog, callee_regs_used);
707 }
708
709 EMIT1(0x58); /* pop rax */
710 if (stack_depth)
711 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
712
713 emit_nops(&prog, X86_PATCH_SIZE);
714
715 /* out: */
716 ctx->tail_call_direct_label = prog - start;
717
718 *pprog = prog;
719 }
720
721 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
722 {
723 struct bpf_jit_poke_descriptor *poke;
724 struct bpf_array *array;
725 struct bpf_prog *target;
726 int i, ret;
727
728 for (i = 0; i < prog->aux->size_poke_tab; i++) {
729 poke = &prog->aux->poke_tab[i];
730 if (poke->aux && poke->aux != prog->aux)
731 continue;
732
733 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
734
735 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
736 continue;
737
738 array = container_of(poke->tail_call.map, struct bpf_array, map);
739 mutex_lock(&array->aux->poke_mutex);
740 target = array->ptrs[poke->tail_call.key];
741 if (target) {
742 ret = __bpf_arch_text_poke(poke->tailcall_target,
743 BPF_MOD_JUMP, NULL,
744 (u8 *)target->bpf_func +
745 poke->adj_off);
746 BUG_ON(ret < 0);
747 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
748 BPF_MOD_JUMP,
749 (u8 *)poke->tailcall_target +
750 X86_PATCH_SIZE, NULL);
751 BUG_ON(ret < 0);
752 }
753 WRITE_ONCE(poke->tailcall_target_stable, true);
754 mutex_unlock(&array->aux->poke_mutex);
755 }
756 }
757
758 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
759 u32 dst_reg, const u32 imm32)
760 {
761 u8 *prog = *pprog;
762 u8 b1, b2, b3;
763
764 /*
765 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
766 * (which zero-extends imm32) to save 2 bytes.
767 */
768 if (sign_propagate && (s32)imm32 < 0) {
769 /* 'mov %rax, imm32' sign extends imm32 */
770 b1 = add_1mod(0x48, dst_reg);
771 b2 = 0xC7;
772 b3 = 0xC0;
773 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
774 goto done;
775 }
776
777 /*
778 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
779 * to save 3 bytes.
780 */
781 if (imm32 == 0) {
782 if (is_ereg(dst_reg))
783 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
784 b2 = 0x31; /* xor */
785 b3 = 0xC0;
786 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
787 goto done;
788 }
789
790 /* mov %eax, imm32 */
791 if (is_ereg(dst_reg))
792 EMIT1(add_1mod(0x40, dst_reg));
793 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
794 done:
795 *pprog = prog;
796 }
797
798 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
799 const u32 imm32_hi, const u32 imm32_lo)
800 {
801 u8 *prog = *pprog;
802
803 if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
804 /*
805 * For emitting plain u32, where sign bit must not be
806 * propagated LLVM tends to load imm64 over mov32
807 * directly, so save couple of bytes by just doing
808 * 'mov %eax, imm32' instead.
809 */
810 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
811 } else {
812 /* movabsq rax, imm64 */
813 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
814 EMIT(imm32_lo, 4);
815 EMIT(imm32_hi, 4);
816 }
817
818 *pprog = prog;
819 }
820
821 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
822 {
823 u8 *prog = *pprog;
824
825 if (is64) {
826 /* mov dst, src */
827 EMIT_mov(dst_reg, src_reg);
828 } else {
829 /* mov32 dst, src */
830 if (is_ereg(dst_reg) || is_ereg(src_reg))
831 EMIT1(add_2mod(0x40, dst_reg, src_reg));
832 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
833 }
834
835 *pprog = prog;
836 }
837
838 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
839 u32 src_reg)
840 {
841 u8 *prog = *pprog;
842
843 if (is64) {
844 /* movs[b,w,l]q dst, src */
845 if (num_bits == 8)
846 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
847 add_2reg(0xC0, src_reg, dst_reg));
848 else if (num_bits == 16)
849 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
850 add_2reg(0xC0, src_reg, dst_reg));
851 else if (num_bits == 32)
852 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
853 add_2reg(0xC0, src_reg, dst_reg));
854 } else {
855 /* movs[b,w]l dst, src */
856 if (num_bits == 8) {
857 EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
858 add_2reg(0xC0, src_reg, dst_reg));
859 } else if (num_bits == 16) {
860 if (is_ereg(dst_reg) || is_ereg(src_reg))
861 EMIT1(add_2mod(0x40, src_reg, dst_reg));
862 EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
863 add_2reg(0xC0, src_reg, dst_reg));
864 }
865 }
866
867 *pprog = prog;
868 }
869
870 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
871 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
872 {
873 u8 *prog = *pprog;
874
875 if (is_imm8(off)) {
876 /* 1-byte signed displacement.
877 *
878 * If off == 0 we could skip this and save one extra byte, but
879 * special case of x86 R13 which always needs an offset is not
880 * worth the hassle
881 */
882 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
883 } else {
884 /* 4-byte signed displacement */
885 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
886 }
887 *pprog = prog;
888 }
889
890 /*
891 * Emit a REX byte if it will be necessary to address these registers
892 */
893 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
894 {
895 u8 *prog = *pprog;
896
897 if (is64)
898 EMIT1(add_2mod(0x48, dst_reg, src_reg));
899 else if (is_ereg(dst_reg) || is_ereg(src_reg))
900 EMIT1(add_2mod(0x40, dst_reg, src_reg));
901 *pprog = prog;
902 }
903
904 /*
905 * Similar version of maybe_emit_mod() for a single register
906 */
907 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
908 {
909 u8 *prog = *pprog;
910
911 if (is64)
912 EMIT1(add_1mod(0x48, reg));
913 else if (is_ereg(reg))
914 EMIT1(add_1mod(0x40, reg));
915 *pprog = prog;
916 }
917
918 /* LDX: dst_reg = *(u8*)(src_reg + off) */
919 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
920 {
921 u8 *prog = *pprog;
922
923 switch (size) {
924 case BPF_B:
925 /* Emit 'movzx rax, byte ptr [rax + off]' */
926 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
927 break;
928 case BPF_H:
929 /* Emit 'movzx rax, word ptr [rax + off]' */
930 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
931 break;
932 case BPF_W:
933 /* Emit 'mov eax, dword ptr [rax+0x14]' */
934 if (is_ereg(dst_reg) || is_ereg(src_reg))
935 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
936 else
937 EMIT1(0x8B);
938 break;
939 case BPF_DW:
940 /* Emit 'mov rax, qword ptr [rax+0x14]' */
941 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
942 break;
943 }
944 emit_insn_suffix(&prog, src_reg, dst_reg, off);
945 *pprog = prog;
946 }
947
948 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
949 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
950 {
951 u8 *prog = *pprog;
952
953 switch (size) {
954 case BPF_B:
955 /* Emit 'movsx rax, byte ptr [rax + off]' */
956 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
957 break;
958 case BPF_H:
959 /* Emit 'movsx rax, word ptr [rax + off]' */
960 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
961 break;
962 case BPF_W:
963 /* Emit 'movsx rax, dword ptr [rax+0x14]' */
964 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
965 break;
966 }
967 emit_insn_suffix(&prog, src_reg, dst_reg, off);
968 *pprog = prog;
969 }
970
971 /* STX: *(u8*)(dst_reg + off) = src_reg */
972 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
973 {
974 u8 *prog = *pprog;
975
976 switch (size) {
977 case BPF_B:
978 /* Emit 'mov byte ptr [rax + off], al' */
979 if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
980 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
981 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
982 else
983 EMIT1(0x88);
984 break;
985 case BPF_H:
986 if (is_ereg(dst_reg) || is_ereg(src_reg))
987 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
988 else
989 EMIT2(0x66, 0x89);
990 break;
991 case BPF_W:
992 if (is_ereg(dst_reg) || is_ereg(src_reg))
993 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
994 else
995 EMIT1(0x89);
996 break;
997 case BPF_DW:
998 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
999 break;
1000 }
1001 emit_insn_suffix(&prog, dst_reg, src_reg, off);
1002 *pprog = prog;
1003 }
1004
1005 static int emit_atomic(u8 **pprog, u8 atomic_op,
1006 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
1007 {
1008 u8 *prog = *pprog;
1009
1010 EMIT1(0xF0); /* lock prefix */
1011
1012 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
1013
1014 /* emit opcode */
1015 switch (atomic_op) {
1016 case BPF_ADD:
1017 case BPF_AND:
1018 case BPF_OR:
1019 case BPF_XOR:
1020 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
1021 EMIT1(simple_alu_opcodes[atomic_op]);
1022 break;
1023 case BPF_ADD | BPF_FETCH:
1024 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
1025 EMIT2(0x0F, 0xC1);
1026 break;
1027 case BPF_XCHG:
1028 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
1029 EMIT1(0x87);
1030 break;
1031 case BPF_CMPXCHG:
1032 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
1033 EMIT2(0x0F, 0xB1);
1034 break;
1035 default:
1036 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1037 return -EFAULT;
1038 }
1039
1040 emit_insn_suffix(&prog, dst_reg, src_reg, off);
1041
1042 *pprog = prog;
1043 return 0;
1044 }
1045
1046 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
1047 {
1048 u32 reg = x->fixup >> 8;
1049
1050 /* jump over faulting load and clear dest register */
1051 *(unsigned long *)((void *)regs + reg) = 0;
1052 regs->ip += x->fixup & 0xff;
1053 return true;
1054 }
1055
1056 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
1057 bool *regs_used, bool *tail_call_seen)
1058 {
1059 int i;
1060
1061 for (i = 1; i <= insn_cnt; i++, insn++) {
1062 if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
1063 *tail_call_seen = true;
1064 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
1065 regs_used[0] = true;
1066 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
1067 regs_used[1] = true;
1068 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
1069 regs_used[2] = true;
1070 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
1071 regs_used[3] = true;
1072 }
1073 }
1074
1075 /* emit the 3-byte VEX prefix
1076 *
1077 * r: same as rex.r, extra bit for ModRM reg field
1078 * x: same as rex.x, extra bit for SIB index field
1079 * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1080 * m: opcode map select, encoding escape bytes e.g. 0x0f38
1081 * w: same as rex.w (32 bit or 64 bit) or opcode specific
1082 * src_reg2: additional source reg (encoded as BPF reg)
1083 * l: vector length (128 bit or 256 bit) or reserved
1084 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1085 */
1086 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1087 bool w, u8 src_reg2, bool l, u8 pp)
1088 {
1089 u8 *prog = *pprog;
1090 const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1091 u8 b1, b2;
1092 u8 vvvv = reg2hex[src_reg2];
1093
1094 /* reg2hex gives only the lower 3 bit of vvvv */
1095 if (is_ereg(src_reg2))
1096 vvvv |= 1 << 3;
1097
1098 /*
1099 * 2nd byte of 3-byte VEX prefix
1100 * ~ means bit inverted encoding
1101 *
1102 * 7 0
1103 * +---+---+---+---+---+---+---+---+
1104 * |~R |~X |~B | m |
1105 * +---+---+---+---+---+---+---+---+
1106 */
1107 b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1108 /*
1109 * 3rd byte of 3-byte VEX prefix
1110 *
1111 * 7 0
1112 * +---+---+---+---+---+---+---+---+
1113 * | W | ~vvvv | L | pp |
1114 * +---+---+---+---+---+---+---+---+
1115 */
1116 b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1117
1118 EMIT3(b0, b1, b2);
1119 *pprog = prog;
1120 }
1121
1122 /* emit BMI2 shift instruction */
1123 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1124 {
1125 u8 *prog = *pprog;
1126 bool r = is_ereg(dst_reg);
1127 u8 m = 2; /* escape code 0f38 */
1128
1129 emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1130 EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1131 *pprog = prog;
1132 }
1133
1134 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1135
1136 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1137 #define RESTORE_TAIL_CALL_CNT(stack) \
1138 EMIT3_off32(0x48, 0x8B, 0x85, -round_up(stack, 8) - 8)
1139
1140 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1141 int oldproglen, struct jit_context *ctx, bool jmp_padding)
1142 {
1143 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1144 struct bpf_insn *insn = bpf_prog->insnsi;
1145 bool callee_regs_used[4] = {};
1146 int insn_cnt = bpf_prog->len;
1147 bool tail_call_seen = false;
1148 bool seen_exit = false;
1149 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1150 int i, excnt = 0;
1151 int ilen, proglen = 0;
1152 u8 *prog = temp;
1153 int err;
1154
1155 detect_reg_usage(insn, insn_cnt, callee_regs_used,
1156 &tail_call_seen);
1157
1158 /* tail call's presence in current prog implies it is reachable */
1159 tail_call_reachable |= tail_call_seen;
1160
1161 emit_prologue(&prog, bpf_prog->aux->stack_depth,
1162 bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1163 bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
1164 /* Exception callback will clobber callee regs for its own use, and
1165 * restore the original callee regs from main prog's stack frame.
1166 */
1167 if (bpf_prog->aux->exception_boundary) {
1168 /* We also need to save r12, which is not mapped to any BPF
1169 * register, as we throw after entry into the kernel, which may
1170 * overwrite r12.
1171 */
1172 push_r12(&prog);
1173 push_callee_regs(&prog, all_callee_regs_used);
1174 } else {
1175 push_callee_regs(&prog, callee_regs_used);
1176 }
1177
1178 ilen = prog - temp;
1179 if (rw_image)
1180 memcpy(rw_image + proglen, temp, ilen);
1181 proglen += ilen;
1182 addrs[0] = proglen;
1183 prog = temp;
1184
1185 for (i = 1; i <= insn_cnt; i++, insn++) {
1186 const s32 imm32 = insn->imm;
1187 u32 dst_reg = insn->dst_reg;
1188 u32 src_reg = insn->src_reg;
1189 u8 b2 = 0, b3 = 0;
1190 u8 *start_of_ldx;
1191 s64 jmp_offset;
1192 s16 insn_off;
1193 u8 jmp_cond;
1194 u8 *func;
1195 int nops;
1196
1197 switch (insn->code) {
1198 /* ALU */
1199 case BPF_ALU | BPF_ADD | BPF_X:
1200 case BPF_ALU | BPF_SUB | BPF_X:
1201 case BPF_ALU | BPF_AND | BPF_X:
1202 case BPF_ALU | BPF_OR | BPF_X:
1203 case BPF_ALU | BPF_XOR | BPF_X:
1204 case BPF_ALU64 | BPF_ADD | BPF_X:
1205 case BPF_ALU64 | BPF_SUB | BPF_X:
1206 case BPF_ALU64 | BPF_AND | BPF_X:
1207 case BPF_ALU64 | BPF_OR | BPF_X:
1208 case BPF_ALU64 | BPF_XOR | BPF_X:
1209 maybe_emit_mod(&prog, dst_reg, src_reg,
1210 BPF_CLASS(insn->code) == BPF_ALU64);
1211 b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1212 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1213 break;
1214
1215 case BPF_ALU64 | BPF_MOV | BPF_X:
1216 case BPF_ALU | BPF_MOV | BPF_X:
1217 if (insn->off == 0)
1218 emit_mov_reg(&prog,
1219 BPF_CLASS(insn->code) == BPF_ALU64,
1220 dst_reg, src_reg);
1221 else
1222 emit_movsx_reg(&prog, insn->off,
1223 BPF_CLASS(insn->code) == BPF_ALU64,
1224 dst_reg, src_reg);
1225 break;
1226
1227 /* neg dst */
1228 case BPF_ALU | BPF_NEG:
1229 case BPF_ALU64 | BPF_NEG:
1230 maybe_emit_1mod(&prog, dst_reg,
1231 BPF_CLASS(insn->code) == BPF_ALU64);
1232 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1233 break;
1234
1235 case BPF_ALU | BPF_ADD | BPF_K:
1236 case BPF_ALU | BPF_SUB | BPF_K:
1237 case BPF_ALU | BPF_AND | BPF_K:
1238 case BPF_ALU | BPF_OR | BPF_K:
1239 case BPF_ALU | BPF_XOR | BPF_K:
1240 case BPF_ALU64 | BPF_ADD | BPF_K:
1241 case BPF_ALU64 | BPF_SUB | BPF_K:
1242 case BPF_ALU64 | BPF_AND | BPF_K:
1243 case BPF_ALU64 | BPF_OR | BPF_K:
1244 case BPF_ALU64 | BPF_XOR | BPF_K:
1245 maybe_emit_1mod(&prog, dst_reg,
1246 BPF_CLASS(insn->code) == BPF_ALU64);
1247
1248 /*
1249 * b3 holds 'normal' opcode, b2 short form only valid
1250 * in case dst is eax/rax.
1251 */
1252 switch (BPF_OP(insn->code)) {
1253 case BPF_ADD:
1254 b3 = 0xC0;
1255 b2 = 0x05;
1256 break;
1257 case BPF_SUB:
1258 b3 = 0xE8;
1259 b2 = 0x2D;
1260 break;
1261 case BPF_AND:
1262 b3 = 0xE0;
1263 b2 = 0x25;
1264 break;
1265 case BPF_OR:
1266 b3 = 0xC8;
1267 b2 = 0x0D;
1268 break;
1269 case BPF_XOR:
1270 b3 = 0xF0;
1271 b2 = 0x35;
1272 break;
1273 }
1274
1275 if (is_imm8(imm32))
1276 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1277 else if (is_axreg(dst_reg))
1278 EMIT1_off32(b2, imm32);
1279 else
1280 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1281 break;
1282
1283 case BPF_ALU64 | BPF_MOV | BPF_K:
1284 case BPF_ALU | BPF_MOV | BPF_K:
1285 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1286 dst_reg, imm32);
1287 break;
1288
1289 case BPF_LD | BPF_IMM | BPF_DW:
1290 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1291 insn++;
1292 i++;
1293 break;
1294
1295 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1296 case BPF_ALU | BPF_MOD | BPF_X:
1297 case BPF_ALU | BPF_DIV | BPF_X:
1298 case BPF_ALU | BPF_MOD | BPF_K:
1299 case BPF_ALU | BPF_DIV | BPF_K:
1300 case BPF_ALU64 | BPF_MOD | BPF_X:
1301 case BPF_ALU64 | BPF_DIV | BPF_X:
1302 case BPF_ALU64 | BPF_MOD | BPF_K:
1303 case BPF_ALU64 | BPF_DIV | BPF_K: {
1304 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1305
1306 if (dst_reg != BPF_REG_0)
1307 EMIT1(0x50); /* push rax */
1308 if (dst_reg != BPF_REG_3)
1309 EMIT1(0x52); /* push rdx */
1310
1311 if (BPF_SRC(insn->code) == BPF_X) {
1312 if (src_reg == BPF_REG_0 ||
1313 src_reg == BPF_REG_3) {
1314 /* mov r11, src_reg */
1315 EMIT_mov(AUX_REG, src_reg);
1316 src_reg = AUX_REG;
1317 }
1318 } else {
1319 /* mov r11, imm32 */
1320 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1321 src_reg = AUX_REG;
1322 }
1323
1324 if (dst_reg != BPF_REG_0)
1325 /* mov rax, dst_reg */
1326 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1327
1328 if (insn->off == 0) {
1329 /*
1330 * xor edx, edx
1331 * equivalent to 'xor rdx, rdx', but one byte less
1332 */
1333 EMIT2(0x31, 0xd2);
1334
1335 /* div src_reg */
1336 maybe_emit_1mod(&prog, src_reg, is64);
1337 EMIT2(0xF7, add_1reg(0xF0, src_reg));
1338 } else {
1339 if (BPF_CLASS(insn->code) == BPF_ALU)
1340 EMIT1(0x99); /* cdq */
1341 else
1342 EMIT2(0x48, 0x99); /* cqo */
1343
1344 /* idiv src_reg */
1345 maybe_emit_1mod(&prog, src_reg, is64);
1346 EMIT2(0xF7, add_1reg(0xF8, src_reg));
1347 }
1348
1349 if (BPF_OP(insn->code) == BPF_MOD &&
1350 dst_reg != BPF_REG_3)
1351 /* mov dst_reg, rdx */
1352 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1353 else if (BPF_OP(insn->code) == BPF_DIV &&
1354 dst_reg != BPF_REG_0)
1355 /* mov dst_reg, rax */
1356 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1357
1358 if (dst_reg != BPF_REG_3)
1359 EMIT1(0x5A); /* pop rdx */
1360 if (dst_reg != BPF_REG_0)
1361 EMIT1(0x58); /* pop rax */
1362 break;
1363 }
1364
1365 case BPF_ALU | BPF_MUL | BPF_K:
1366 case BPF_ALU64 | BPF_MUL | BPF_K:
1367 maybe_emit_mod(&prog, dst_reg, dst_reg,
1368 BPF_CLASS(insn->code) == BPF_ALU64);
1369
1370 if (is_imm8(imm32))
1371 /* imul dst_reg, dst_reg, imm8 */
1372 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1373 imm32);
1374 else
1375 /* imul dst_reg, dst_reg, imm32 */
1376 EMIT2_off32(0x69,
1377 add_2reg(0xC0, dst_reg, dst_reg),
1378 imm32);
1379 break;
1380
1381 case BPF_ALU | BPF_MUL | BPF_X:
1382 case BPF_ALU64 | BPF_MUL | BPF_X:
1383 maybe_emit_mod(&prog, src_reg, dst_reg,
1384 BPF_CLASS(insn->code) == BPF_ALU64);
1385
1386 /* imul dst_reg, src_reg */
1387 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1388 break;
1389
1390 /* Shifts */
1391 case BPF_ALU | BPF_LSH | BPF_K:
1392 case BPF_ALU | BPF_RSH | BPF_K:
1393 case BPF_ALU | BPF_ARSH | BPF_K:
1394 case BPF_ALU64 | BPF_LSH | BPF_K:
1395 case BPF_ALU64 | BPF_RSH | BPF_K:
1396 case BPF_ALU64 | BPF_ARSH | BPF_K:
1397 maybe_emit_1mod(&prog, dst_reg,
1398 BPF_CLASS(insn->code) == BPF_ALU64);
1399
1400 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1401 if (imm32 == 1)
1402 EMIT2(0xD1, add_1reg(b3, dst_reg));
1403 else
1404 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1405 break;
1406
1407 case BPF_ALU | BPF_LSH | BPF_X:
1408 case BPF_ALU | BPF_RSH | BPF_X:
1409 case BPF_ALU | BPF_ARSH | BPF_X:
1410 case BPF_ALU64 | BPF_LSH | BPF_X:
1411 case BPF_ALU64 | BPF_RSH | BPF_X:
1412 case BPF_ALU64 | BPF_ARSH | BPF_X:
1413 /* BMI2 shifts aren't better when shift count is already in rcx */
1414 if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1415 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1416 bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1417 u8 op;
1418
1419 switch (BPF_OP(insn->code)) {
1420 case BPF_LSH:
1421 op = 1; /* prefix 0x66 */
1422 break;
1423 case BPF_RSH:
1424 op = 3; /* prefix 0xf2 */
1425 break;
1426 case BPF_ARSH:
1427 op = 2; /* prefix 0xf3 */
1428 break;
1429 }
1430
1431 emit_shiftx(&prog, dst_reg, src_reg, w, op);
1432
1433 break;
1434 }
1435
1436 if (src_reg != BPF_REG_4) { /* common case */
1437 /* Check for bad case when dst_reg == rcx */
1438 if (dst_reg == BPF_REG_4) {
1439 /* mov r11, dst_reg */
1440 EMIT_mov(AUX_REG, dst_reg);
1441 dst_reg = AUX_REG;
1442 } else {
1443 EMIT1(0x51); /* push rcx */
1444 }
1445 /* mov rcx, src_reg */
1446 EMIT_mov(BPF_REG_4, src_reg);
1447 }
1448
1449 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1450 maybe_emit_1mod(&prog, dst_reg,
1451 BPF_CLASS(insn->code) == BPF_ALU64);
1452
1453 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1454 EMIT2(0xD3, add_1reg(b3, dst_reg));
1455
1456 if (src_reg != BPF_REG_4) {
1457 if (insn->dst_reg == BPF_REG_4)
1458 /* mov dst_reg, r11 */
1459 EMIT_mov(insn->dst_reg, AUX_REG);
1460 else
1461 EMIT1(0x59); /* pop rcx */
1462 }
1463
1464 break;
1465
1466 case BPF_ALU | BPF_END | BPF_FROM_BE:
1467 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1468 switch (imm32) {
1469 case 16:
1470 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
1471 EMIT1(0x66);
1472 if (is_ereg(dst_reg))
1473 EMIT1(0x41);
1474 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1475
1476 /* Emit 'movzwl eax, ax' */
1477 if (is_ereg(dst_reg))
1478 EMIT3(0x45, 0x0F, 0xB7);
1479 else
1480 EMIT2(0x0F, 0xB7);
1481 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1482 break;
1483 case 32:
1484 /* Emit 'bswap eax' to swap lower 4 bytes */
1485 if (is_ereg(dst_reg))
1486 EMIT2(0x41, 0x0F);
1487 else
1488 EMIT1(0x0F);
1489 EMIT1(add_1reg(0xC8, dst_reg));
1490 break;
1491 case 64:
1492 /* Emit 'bswap rax' to swap 8 bytes */
1493 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1494 add_1reg(0xC8, dst_reg));
1495 break;
1496 }
1497 break;
1498
1499 case BPF_ALU | BPF_END | BPF_FROM_LE:
1500 switch (imm32) {
1501 case 16:
1502 /*
1503 * Emit 'movzwl eax, ax' to zero extend 16-bit
1504 * into 64 bit
1505 */
1506 if (is_ereg(dst_reg))
1507 EMIT3(0x45, 0x0F, 0xB7);
1508 else
1509 EMIT2(0x0F, 0xB7);
1510 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1511 break;
1512 case 32:
1513 /* Emit 'mov eax, eax' to clear upper 32-bits */
1514 if (is_ereg(dst_reg))
1515 EMIT1(0x45);
1516 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1517 break;
1518 case 64:
1519 /* nop */
1520 break;
1521 }
1522 break;
1523
1524 /* speculation barrier */
1525 case BPF_ST | BPF_NOSPEC:
1526 EMIT_LFENCE();
1527 break;
1528
1529 /* ST: *(u8*)(dst_reg + off) = imm */
1530 case BPF_ST | BPF_MEM | BPF_B:
1531 if (is_ereg(dst_reg))
1532 EMIT2(0x41, 0xC6);
1533 else
1534 EMIT1(0xC6);
1535 goto st;
1536 case BPF_ST | BPF_MEM | BPF_H:
1537 if (is_ereg(dst_reg))
1538 EMIT3(0x66, 0x41, 0xC7);
1539 else
1540 EMIT2(0x66, 0xC7);
1541 goto st;
1542 case BPF_ST | BPF_MEM | BPF_W:
1543 if (is_ereg(dst_reg))
1544 EMIT2(0x41, 0xC7);
1545 else
1546 EMIT1(0xC7);
1547 goto st;
1548 case BPF_ST | BPF_MEM | BPF_DW:
1549 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1550
1551 st: if (is_imm8(insn->off))
1552 EMIT2(add_1reg(0x40, dst_reg), insn->off);
1553 else
1554 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1555
1556 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1557 break;
1558
1559 /* STX: *(u8*)(dst_reg + off) = src_reg */
1560 case BPF_STX | BPF_MEM | BPF_B:
1561 case BPF_STX | BPF_MEM | BPF_H:
1562 case BPF_STX | BPF_MEM | BPF_W:
1563 case BPF_STX | BPF_MEM | BPF_DW:
1564 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1565 break;
1566
1567 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1568 case BPF_LDX | BPF_MEM | BPF_B:
1569 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1570 case BPF_LDX | BPF_MEM | BPF_H:
1571 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1572 case BPF_LDX | BPF_MEM | BPF_W:
1573 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1574 case BPF_LDX | BPF_MEM | BPF_DW:
1575 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1576 /* LDXS: dst_reg = *(s8*)(src_reg + off) */
1577 case BPF_LDX | BPF_MEMSX | BPF_B:
1578 case BPF_LDX | BPF_MEMSX | BPF_H:
1579 case BPF_LDX | BPF_MEMSX | BPF_W:
1580 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1581 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1582 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1583 insn_off = insn->off;
1584
1585 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1586 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1587 /* Conservatively check that src_reg + insn->off is a kernel address:
1588 * src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE
1589 * src_reg is used as scratch for src_reg += insn->off and restored
1590 * after emit_ldx if necessary
1591 */
1592
1593 u64 limit = TASK_SIZE_MAX + PAGE_SIZE;
1594 u8 *end_of_jmp;
1595
1596 /* At end of these emitted checks, insn->off will have been added
1597 * to src_reg, so no need to do relative load with insn->off offset
1598 */
1599 insn_off = 0;
1600
1601 /* movabsq r11, limit */
1602 EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1603 EMIT((u32)limit, 4);
1604 EMIT(limit >> 32, 4);
1605
1606 if (insn->off) {
1607 /* add src_reg, insn->off */
1608 maybe_emit_1mod(&prog, src_reg, true);
1609 EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off);
1610 }
1611
1612 /* cmp src_reg, r11 */
1613 maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1614 EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1615
1616 /* if unsigned '>=', goto load */
1617 EMIT2(X86_JAE, 0);
1618 end_of_jmp = prog;
1619
1620 /* xor dst_reg, dst_reg */
1621 emit_mov_imm32(&prog, false, dst_reg, 0);
1622 /* jmp byte_after_ldx */
1623 EMIT2(0xEB, 0);
1624
1625 /* populate jmp_offset for JAE above to jump to start_of_ldx */
1626 start_of_ldx = prog;
1627 end_of_jmp[-1] = start_of_ldx - end_of_jmp;
1628 }
1629 if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
1630 BPF_MODE(insn->code) == BPF_MEMSX)
1631 emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1632 else
1633 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1634 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1635 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1636 struct exception_table_entry *ex;
1637 u8 *_insn = image + proglen + (start_of_ldx - temp);
1638 s64 delta;
1639
1640 /* populate jmp_offset for JMP above */
1641 start_of_ldx[-1] = prog - start_of_ldx;
1642
1643 if (insn->off && src_reg != dst_reg) {
1644 /* sub src_reg, insn->off
1645 * Restore src_reg after "add src_reg, insn->off" in prev
1646 * if statement. But if src_reg == dst_reg, emit_ldx
1647 * above already clobbered src_reg, so no need to restore.
1648 * If add src_reg, insn->off was unnecessary, no need to
1649 * restore either.
1650 */
1651 maybe_emit_1mod(&prog, src_reg, true);
1652 EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off);
1653 }
1654
1655 if (!bpf_prog->aux->extable)
1656 break;
1657
1658 if (excnt >= bpf_prog->aux->num_exentries) {
1659 pr_err("ex gen bug\n");
1660 return -EFAULT;
1661 }
1662 ex = &bpf_prog->aux->extable[excnt++];
1663
1664 delta = _insn - (u8 *)&ex->insn;
1665 if (!is_simm32(delta)) {
1666 pr_err("extable->insn doesn't fit into 32-bit\n");
1667 return -EFAULT;
1668 }
1669 /* switch ex to rw buffer for writes */
1670 ex = (void *)rw_image + ((void *)ex - (void *)image);
1671
1672 ex->insn = delta;
1673
1674 ex->data = EX_TYPE_BPF;
1675
1676 if (dst_reg > BPF_REG_9) {
1677 pr_err("verifier error\n");
1678 return -EFAULT;
1679 }
1680 /*
1681 * Compute size of x86 insn and its target dest x86 register.
1682 * ex_handler_bpf() will use lower 8 bits to adjust
1683 * pt_regs->ip to jump over this x86 instruction
1684 * and upper bits to figure out which pt_regs to zero out.
1685 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1686 * of 4 bytes will be ignored and rbx will be zero inited.
1687 */
1688 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1689 }
1690 break;
1691
1692 case BPF_STX | BPF_ATOMIC | BPF_W:
1693 case BPF_STX | BPF_ATOMIC | BPF_DW:
1694 if (insn->imm == (BPF_AND | BPF_FETCH) ||
1695 insn->imm == (BPF_OR | BPF_FETCH) ||
1696 insn->imm == (BPF_XOR | BPF_FETCH)) {
1697 bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1698 u32 real_src_reg = src_reg;
1699 u32 real_dst_reg = dst_reg;
1700 u8 *branch_target;
1701
1702 /*
1703 * Can't be implemented with a single x86 insn.
1704 * Need to do a CMPXCHG loop.
1705 */
1706
1707 /* Will need RAX as a CMPXCHG operand so save R0 */
1708 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1709 if (src_reg == BPF_REG_0)
1710 real_src_reg = BPF_REG_AX;
1711 if (dst_reg == BPF_REG_0)
1712 real_dst_reg = BPF_REG_AX;
1713
1714 branch_target = prog;
1715 /* Load old value */
1716 emit_ldx(&prog, BPF_SIZE(insn->code),
1717 BPF_REG_0, real_dst_reg, insn->off);
1718 /*
1719 * Perform the (commutative) operation locally,
1720 * put the result in the AUX_REG.
1721 */
1722 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1723 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1724 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1725 add_2reg(0xC0, AUX_REG, real_src_reg));
1726 /* Attempt to swap in new value */
1727 err = emit_atomic(&prog, BPF_CMPXCHG,
1728 real_dst_reg, AUX_REG,
1729 insn->off,
1730 BPF_SIZE(insn->code));
1731 if (WARN_ON(err))
1732 return err;
1733 /*
1734 * ZF tells us whether we won the race. If it's
1735 * cleared we need to try again.
1736 */
1737 EMIT2(X86_JNE, -(prog - branch_target) - 2);
1738 /* Return the pre-modification value */
1739 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1740 /* Restore R0 after clobbering RAX */
1741 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1742 break;
1743 }
1744
1745 err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1746 insn->off, BPF_SIZE(insn->code));
1747 if (err)
1748 return err;
1749 break;
1750
1751 /* call */
1752 case BPF_JMP | BPF_CALL: {
1753 int offs;
1754
1755 func = (u8 *) __bpf_call_base + imm32;
1756 if (tail_call_reachable) {
1757 RESTORE_TAIL_CALL_CNT(bpf_prog->aux->stack_depth);
1758 if (!imm32)
1759 return -EINVAL;
1760 offs = 7 + x86_call_depth_emit_accounting(&prog, func);
1761 } else {
1762 if (!imm32)
1763 return -EINVAL;
1764 offs = x86_call_depth_emit_accounting(&prog, func);
1765 }
1766 if (emit_call(&prog, func, image + addrs[i - 1] + offs))
1767 return -EINVAL;
1768 break;
1769 }
1770
1771 case BPF_JMP | BPF_TAIL_CALL:
1772 if (imm32)
1773 emit_bpf_tail_call_direct(bpf_prog,
1774 &bpf_prog->aux->poke_tab[imm32 - 1],
1775 &prog, image + addrs[i - 1],
1776 callee_regs_used,
1777 bpf_prog->aux->stack_depth,
1778 ctx);
1779 else
1780 emit_bpf_tail_call_indirect(bpf_prog,
1781 &prog,
1782 callee_regs_used,
1783 bpf_prog->aux->stack_depth,
1784 image + addrs[i - 1],
1785 ctx);
1786 break;
1787
1788 /* cond jump */
1789 case BPF_JMP | BPF_JEQ | BPF_X:
1790 case BPF_JMP | BPF_JNE | BPF_X:
1791 case BPF_JMP | BPF_JGT | BPF_X:
1792 case BPF_JMP | BPF_JLT | BPF_X:
1793 case BPF_JMP | BPF_JGE | BPF_X:
1794 case BPF_JMP | BPF_JLE | BPF_X:
1795 case BPF_JMP | BPF_JSGT | BPF_X:
1796 case BPF_JMP | BPF_JSLT | BPF_X:
1797 case BPF_JMP | BPF_JSGE | BPF_X:
1798 case BPF_JMP | BPF_JSLE | BPF_X:
1799 case BPF_JMP32 | BPF_JEQ | BPF_X:
1800 case BPF_JMP32 | BPF_JNE | BPF_X:
1801 case BPF_JMP32 | BPF_JGT | BPF_X:
1802 case BPF_JMP32 | BPF_JLT | BPF_X:
1803 case BPF_JMP32 | BPF_JGE | BPF_X:
1804 case BPF_JMP32 | BPF_JLE | BPF_X:
1805 case BPF_JMP32 | BPF_JSGT | BPF_X:
1806 case BPF_JMP32 | BPF_JSLT | BPF_X:
1807 case BPF_JMP32 | BPF_JSGE | BPF_X:
1808 case BPF_JMP32 | BPF_JSLE | BPF_X:
1809 /* cmp dst_reg, src_reg */
1810 maybe_emit_mod(&prog, dst_reg, src_reg,
1811 BPF_CLASS(insn->code) == BPF_JMP);
1812 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1813 goto emit_cond_jmp;
1814
1815 case BPF_JMP | BPF_JSET | BPF_X:
1816 case BPF_JMP32 | BPF_JSET | BPF_X:
1817 /* test dst_reg, src_reg */
1818 maybe_emit_mod(&prog, dst_reg, src_reg,
1819 BPF_CLASS(insn->code) == BPF_JMP);
1820 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1821 goto emit_cond_jmp;
1822
1823 case BPF_JMP | BPF_JSET | BPF_K:
1824 case BPF_JMP32 | BPF_JSET | BPF_K:
1825 /* test dst_reg, imm32 */
1826 maybe_emit_1mod(&prog, dst_reg,
1827 BPF_CLASS(insn->code) == BPF_JMP);
1828 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1829 goto emit_cond_jmp;
1830
1831 case BPF_JMP | BPF_JEQ | BPF_K:
1832 case BPF_JMP | BPF_JNE | BPF_K:
1833 case BPF_JMP | BPF_JGT | BPF_K:
1834 case BPF_JMP | BPF_JLT | BPF_K:
1835 case BPF_JMP | BPF_JGE | BPF_K:
1836 case BPF_JMP | BPF_JLE | BPF_K:
1837 case BPF_JMP | BPF_JSGT | BPF_K:
1838 case BPF_JMP | BPF_JSLT | BPF_K:
1839 case BPF_JMP | BPF_JSGE | BPF_K:
1840 case BPF_JMP | BPF_JSLE | BPF_K:
1841 case BPF_JMP32 | BPF_JEQ | BPF_K:
1842 case BPF_JMP32 | BPF_JNE | BPF_K:
1843 case BPF_JMP32 | BPF_JGT | BPF_K:
1844 case BPF_JMP32 | BPF_JLT | BPF_K:
1845 case BPF_JMP32 | BPF_JGE | BPF_K:
1846 case BPF_JMP32 | BPF_JLE | BPF_K:
1847 case BPF_JMP32 | BPF_JSGT | BPF_K:
1848 case BPF_JMP32 | BPF_JSLT | BPF_K:
1849 case BPF_JMP32 | BPF_JSGE | BPF_K:
1850 case BPF_JMP32 | BPF_JSLE | BPF_K:
1851 /* test dst_reg, dst_reg to save one extra byte */
1852 if (imm32 == 0) {
1853 maybe_emit_mod(&prog, dst_reg, dst_reg,
1854 BPF_CLASS(insn->code) == BPF_JMP);
1855 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1856 goto emit_cond_jmp;
1857 }
1858
1859 /* cmp dst_reg, imm8/32 */
1860 maybe_emit_1mod(&prog, dst_reg,
1861 BPF_CLASS(insn->code) == BPF_JMP);
1862
1863 if (is_imm8(imm32))
1864 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1865 else
1866 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1867
1868 emit_cond_jmp: /* Convert BPF opcode to x86 */
1869 switch (BPF_OP(insn->code)) {
1870 case BPF_JEQ:
1871 jmp_cond = X86_JE;
1872 break;
1873 case BPF_JSET:
1874 case BPF_JNE:
1875 jmp_cond = X86_JNE;
1876 break;
1877 case BPF_JGT:
1878 /* GT is unsigned '>', JA in x86 */
1879 jmp_cond = X86_JA;
1880 break;
1881 case BPF_JLT:
1882 /* LT is unsigned '<', JB in x86 */
1883 jmp_cond = X86_JB;
1884 break;
1885 case BPF_JGE:
1886 /* GE is unsigned '>=', JAE in x86 */
1887 jmp_cond = X86_JAE;
1888 break;
1889 case BPF_JLE:
1890 /* LE is unsigned '<=', JBE in x86 */
1891 jmp_cond = X86_JBE;
1892 break;
1893 case BPF_JSGT:
1894 /* Signed '>', GT in x86 */
1895 jmp_cond = X86_JG;
1896 break;
1897 case BPF_JSLT:
1898 /* Signed '<', LT in x86 */
1899 jmp_cond = X86_JL;
1900 break;
1901 case BPF_JSGE:
1902 /* Signed '>=', GE in x86 */
1903 jmp_cond = X86_JGE;
1904 break;
1905 case BPF_JSLE:
1906 /* Signed '<=', LE in x86 */
1907 jmp_cond = X86_JLE;
1908 break;
1909 default: /* to silence GCC warning */
1910 return -EFAULT;
1911 }
1912 jmp_offset = addrs[i + insn->off] - addrs[i];
1913 if (is_imm8(jmp_offset)) {
1914 if (jmp_padding) {
1915 /* To keep the jmp_offset valid, the extra bytes are
1916 * padded before the jump insn, so we subtract the
1917 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1918 *
1919 * If the previous pass already emits an imm8
1920 * jmp_cond, then this BPF insn won't shrink, so
1921 * "nops" is 0.
1922 *
1923 * On the other hand, if the previous pass emits an
1924 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1925 * keep the image from shrinking further.
1926 *
1927 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1928 * is 2 bytes, so the size difference is 4 bytes.
1929 */
1930 nops = INSN_SZ_DIFF - 2;
1931 if (nops != 0 && nops != 4) {
1932 pr_err("unexpected jmp_cond padding: %d bytes\n",
1933 nops);
1934 return -EFAULT;
1935 }
1936 emit_nops(&prog, nops);
1937 }
1938 EMIT2(jmp_cond, jmp_offset);
1939 } else if (is_simm32(jmp_offset)) {
1940 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1941 } else {
1942 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1943 return -EFAULT;
1944 }
1945
1946 break;
1947
1948 case BPF_JMP | BPF_JA:
1949 case BPF_JMP32 | BPF_JA:
1950 if (BPF_CLASS(insn->code) == BPF_JMP) {
1951 if (insn->off == -1)
1952 /* -1 jmp instructions will always jump
1953 * backwards two bytes. Explicitly handling
1954 * this case avoids wasting too many passes
1955 * when there are long sequences of replaced
1956 * dead code.
1957 */
1958 jmp_offset = -2;
1959 else
1960 jmp_offset = addrs[i + insn->off] - addrs[i];
1961 } else {
1962 if (insn->imm == -1)
1963 jmp_offset = -2;
1964 else
1965 jmp_offset = addrs[i + insn->imm] - addrs[i];
1966 }
1967
1968 if (!jmp_offset) {
1969 /*
1970 * If jmp_padding is enabled, the extra nops will
1971 * be inserted. Otherwise, optimize out nop jumps.
1972 */
1973 if (jmp_padding) {
1974 /* There are 3 possible conditions.
1975 * (1) This BPF_JA is already optimized out in
1976 * the previous run, so there is no need
1977 * to pad any extra byte (0 byte).
1978 * (2) The previous pass emits an imm8 jmp,
1979 * so we pad 2 bytes to match the previous
1980 * insn size.
1981 * (3) Similarly, the previous pass emits an
1982 * imm32 jmp, and 5 bytes is padded.
1983 */
1984 nops = INSN_SZ_DIFF;
1985 if (nops != 0 && nops != 2 && nops != 5) {
1986 pr_err("unexpected nop jump padding: %d bytes\n",
1987 nops);
1988 return -EFAULT;
1989 }
1990 emit_nops(&prog, nops);
1991 }
1992 break;
1993 }
1994 emit_jmp:
1995 if (is_imm8(jmp_offset)) {
1996 if (jmp_padding) {
1997 /* To avoid breaking jmp_offset, the extra bytes
1998 * are padded before the actual jmp insn, so
1999 * 2 bytes is subtracted from INSN_SZ_DIFF.
2000 *
2001 * If the previous pass already emits an imm8
2002 * jmp, there is nothing to pad (0 byte).
2003 *
2004 * If it emits an imm32 jmp (5 bytes) previously
2005 * and now an imm8 jmp (2 bytes), then we pad
2006 * (5 - 2 = 3) bytes to stop the image from
2007 * shrinking further.
2008 */
2009 nops = INSN_SZ_DIFF - 2;
2010 if (nops != 0 && nops != 3) {
2011 pr_err("unexpected jump padding: %d bytes\n",
2012 nops);
2013 return -EFAULT;
2014 }
2015 emit_nops(&prog, INSN_SZ_DIFF - 2);
2016 }
2017 EMIT2(0xEB, jmp_offset);
2018 } else if (is_simm32(jmp_offset)) {
2019 EMIT1_off32(0xE9, jmp_offset);
2020 } else {
2021 pr_err("jmp gen bug %llx\n", jmp_offset);
2022 return -EFAULT;
2023 }
2024 break;
2025
2026 case BPF_JMP | BPF_EXIT:
2027 if (seen_exit) {
2028 jmp_offset = ctx->cleanup_addr - addrs[i];
2029 goto emit_jmp;
2030 }
2031 seen_exit = true;
2032 /* Update cleanup_addr */
2033 ctx->cleanup_addr = proglen;
2034 if (bpf_prog->aux->exception_boundary) {
2035 pop_callee_regs(&prog, all_callee_regs_used);
2036 pop_r12(&prog);
2037 } else {
2038 pop_callee_regs(&prog, callee_regs_used);
2039 }
2040 EMIT1(0xC9); /* leave */
2041 emit_return(&prog, image + addrs[i - 1] + (prog - temp));
2042 break;
2043
2044 default:
2045 /*
2046 * By design x86-64 JIT should support all BPF instructions.
2047 * This error will be seen if new instruction was added
2048 * to the interpreter, but not to the JIT, or if there is
2049 * junk in bpf_prog.
2050 */
2051 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
2052 return -EINVAL;
2053 }
2054
2055 ilen = prog - temp;
2056 if (ilen > BPF_MAX_INSN_SIZE) {
2057 pr_err("bpf_jit: fatal insn size error\n");
2058 return -EFAULT;
2059 }
2060
2061 if (image) {
2062 /*
2063 * When populating the image, assert that:
2064 *
2065 * i) We do not write beyond the allocated space, and
2066 * ii) addrs[i] did not change from the prior run, in order
2067 * to validate assumptions made for computing branch
2068 * displacements.
2069 */
2070 if (unlikely(proglen + ilen > oldproglen ||
2071 proglen + ilen != addrs[i])) {
2072 pr_err("bpf_jit: fatal error\n");
2073 return -EFAULT;
2074 }
2075 memcpy(rw_image + proglen, temp, ilen);
2076 }
2077 proglen += ilen;
2078 addrs[i] = proglen;
2079 prog = temp;
2080 }
2081
2082 if (image && excnt != bpf_prog->aux->num_exentries) {
2083 pr_err("extable is not populated\n");
2084 return -EFAULT;
2085 }
2086 return proglen;
2087 }
2088
2089 static void clean_stack_garbage(const struct btf_func_model *m,
2090 u8 **pprog, int nr_stack_slots,
2091 int stack_size)
2092 {
2093 int arg_size, off;
2094 u8 *prog;
2095
2096 /* Generally speaking, the compiler will pass the arguments
2097 * on-stack with "push" instruction, which will take 8-byte
2098 * on the stack. In this case, there won't be garbage values
2099 * while we copy the arguments from origin stack frame to current
2100 * in BPF_DW.
2101 *
2102 * However, sometimes the compiler will only allocate 4-byte on
2103 * the stack for the arguments. For now, this case will only
2104 * happen if there is only one argument on-stack and its size
2105 * not more than 4 byte. In this case, there will be garbage
2106 * values on the upper 4-byte where we store the argument on
2107 * current stack frame.
2108 *
2109 * arguments on origin stack:
2110 *
2111 * stack_arg_1(4-byte) xxx(4-byte)
2112 *
2113 * what we copy:
2114 *
2115 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2116 *
2117 * and the xxx is the garbage values which we should clean here.
2118 */
2119 if (nr_stack_slots != 1)
2120 return;
2121
2122 /* the size of the last argument */
2123 arg_size = m->arg_size[m->nr_args - 1];
2124 if (arg_size <= 4) {
2125 off = -(stack_size - 4);
2126 prog = *pprog;
2127 /* mov DWORD PTR [rbp + off], 0 */
2128 if (!is_imm8(off))
2129 EMIT2_off32(0xC7, 0x85, off);
2130 else
2131 EMIT3(0xC7, 0x45, off);
2132 EMIT(0, 4);
2133 *pprog = prog;
2134 }
2135 }
2136
2137 /* get the count of the regs that are used to pass arguments */
2138 static int get_nr_used_regs(const struct btf_func_model *m)
2139 {
2140 int i, arg_regs, nr_used_regs = 0;
2141
2142 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2143 arg_regs = (m->arg_size[i] + 7) / 8;
2144 if (nr_used_regs + arg_regs <= 6)
2145 nr_used_regs += arg_regs;
2146
2147 if (nr_used_regs >= 6)
2148 break;
2149 }
2150
2151 return nr_used_regs;
2152 }
2153
2154 static void save_args(const struct btf_func_model *m, u8 **prog,
2155 int stack_size, bool for_call_origin)
2156 {
2157 int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2158 int i, j;
2159
2160 /* Store function arguments to stack.
2161 * For a function that accepts two pointers the sequence will be:
2162 * mov QWORD PTR [rbp-0x10],rdi
2163 * mov QWORD PTR [rbp-0x8],rsi
2164 */
2165 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2166 arg_regs = (m->arg_size[i] + 7) / 8;
2167
2168 /* According to the research of Yonghong, struct members
2169 * should be all in register or all on the stack.
2170 * Meanwhile, the compiler will pass the argument on regs
2171 * if the remaining regs can hold the argument.
2172 *
2173 * Disorder of the args can happen. For example:
2174 *
2175 * struct foo_struct {
2176 * long a;
2177 * int b;
2178 * };
2179 * int foo(char, char, char, char, char, struct foo_struct,
2180 * char);
2181 *
2182 * the arg1-5,arg7 will be passed by regs, and arg6 will
2183 * by stack.
2184 */
2185 if (nr_regs + arg_regs > 6) {
2186 /* copy function arguments from origin stack frame
2187 * into current stack frame.
2188 *
2189 * The starting address of the arguments on-stack
2190 * is:
2191 * rbp + 8(push rbp) +
2192 * 8(return addr of origin call) +
2193 * 8(return addr of the caller)
2194 * which means: rbp + 24
2195 */
2196 for (j = 0; j < arg_regs; j++) {
2197 emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2198 nr_stack_slots * 8 + 0x18);
2199 emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2200 -stack_size);
2201
2202 if (!nr_stack_slots)
2203 first_off = stack_size;
2204 stack_size -= 8;
2205 nr_stack_slots++;
2206 }
2207 } else {
2208 /* Only copy the arguments on-stack to current
2209 * 'stack_size' and ignore the regs, used to
2210 * prepare the arguments on-stack for origin call.
2211 */
2212 if (for_call_origin) {
2213 nr_regs += arg_regs;
2214 continue;
2215 }
2216
2217 /* copy the arguments from regs into stack */
2218 for (j = 0; j < arg_regs; j++) {
2219 emit_stx(prog, BPF_DW, BPF_REG_FP,
2220 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2221 -stack_size);
2222 stack_size -= 8;
2223 nr_regs++;
2224 }
2225 }
2226 }
2227
2228 clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2229 }
2230
2231 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2232 int stack_size)
2233 {
2234 int i, j, arg_regs, nr_regs = 0;
2235
2236 /* Restore function arguments from stack.
2237 * For a function that accepts two pointers the sequence will be:
2238 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2239 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2240 *
2241 * The logic here is similar to what we do in save_args()
2242 */
2243 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2244 arg_regs = (m->arg_size[i] + 7) / 8;
2245 if (nr_regs + arg_regs <= 6) {
2246 for (j = 0; j < arg_regs; j++) {
2247 emit_ldx(prog, BPF_DW,
2248 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2249 BPF_REG_FP,
2250 -stack_size);
2251 stack_size -= 8;
2252 nr_regs++;
2253 }
2254 } else {
2255 stack_size -= 8 * arg_regs;
2256 }
2257
2258 if (nr_regs >= 6)
2259 break;
2260 }
2261 }
2262
2263 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2264 struct bpf_tramp_link *l, int stack_size,
2265 int run_ctx_off, bool save_ret,
2266 void *image, void *rw_image)
2267 {
2268 u8 *prog = *pprog;
2269 u8 *jmp_insn;
2270 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2271 struct bpf_prog *p = l->link.prog;
2272 u64 cookie = l->cookie;
2273
2274 /* mov rdi, cookie */
2275 emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2276
2277 /* Prepare struct bpf_tramp_run_ctx.
2278 *
2279 * bpf_tramp_run_ctx is already preserved by
2280 * arch_prepare_bpf_trampoline().
2281 *
2282 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2283 */
2284 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2285
2286 /* arg1: mov rdi, progs[i] */
2287 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2288 /* arg2: lea rsi, [rbp - ctx_cookie_off] */
2289 if (!is_imm8(-run_ctx_off))
2290 EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2291 else
2292 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2293
2294 if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
2295 return -EINVAL;
2296 /* remember prog start time returned by __bpf_prog_enter */
2297 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2298
2299 /* if (__bpf_prog_enter*(prog) == 0)
2300 * goto skip_exec_of_prog;
2301 */
2302 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
2303 /* emit 2 nops that will be replaced with JE insn */
2304 jmp_insn = prog;
2305 emit_nops(&prog, 2);
2306
2307 /* arg1: lea rdi, [rbp - stack_size] */
2308 if (!is_imm8(-stack_size))
2309 EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2310 else
2311 EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2312 /* arg2: progs[i]->insnsi for interpreter */
2313 if (!p->jited)
2314 emit_mov_imm64(&prog, BPF_REG_2,
2315 (long) p->insnsi >> 32,
2316 (u32) (long) p->insnsi);
2317 /* call JITed bpf program or interpreter */
2318 if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
2319 return -EINVAL;
2320
2321 /*
2322 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2323 * of the previous call which is then passed on the stack to
2324 * the next BPF program.
2325 *
2326 * BPF_TRAMP_FENTRY trampoline may need to return the return
2327 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2328 */
2329 if (save_ret)
2330 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2331
2332 /* replace 2 nops with JE insn, since jmp target is known */
2333 jmp_insn[0] = X86_JE;
2334 jmp_insn[1] = prog - jmp_insn - 2;
2335
2336 /* arg1: mov rdi, progs[i] */
2337 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2338 /* arg2: mov rsi, rbx <- start time in nsec */
2339 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2340 /* arg3: lea rdx, [rbp - run_ctx_off] */
2341 if (!is_imm8(-run_ctx_off))
2342 EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2343 else
2344 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2345 if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
2346 return -EINVAL;
2347
2348 *pprog = prog;
2349 return 0;
2350 }
2351
2352 static void emit_align(u8 **pprog, u32 align)
2353 {
2354 u8 *target, *prog = *pprog;
2355
2356 target = PTR_ALIGN(prog, align);
2357 if (target != prog)
2358 emit_nops(&prog, target - prog);
2359
2360 *pprog = prog;
2361 }
2362
2363 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2364 {
2365 u8 *prog = *pprog;
2366 s64 offset;
2367
2368 offset = func - (ip + 2 + 4);
2369 if (!is_simm32(offset)) {
2370 pr_err("Target %p is out of range\n", func);
2371 return -EINVAL;
2372 }
2373 EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2374 *pprog = prog;
2375 return 0;
2376 }
2377
2378 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2379 struct bpf_tramp_links *tl, int stack_size,
2380 int run_ctx_off, bool save_ret,
2381 void *image, void *rw_image)
2382 {
2383 int i;
2384 u8 *prog = *pprog;
2385
2386 for (i = 0; i < tl->nr_links; i++) {
2387 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2388 run_ctx_off, save_ret, image, rw_image))
2389 return -EINVAL;
2390 }
2391 *pprog = prog;
2392 return 0;
2393 }
2394
2395 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2396 struct bpf_tramp_links *tl, int stack_size,
2397 int run_ctx_off, u8 **branches,
2398 void *image, void *rw_image)
2399 {
2400 u8 *prog = *pprog;
2401 int i;
2402
2403 /* The first fmod_ret program will receive a garbage return value.
2404 * Set this to 0 to avoid confusing the program.
2405 */
2406 emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2407 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2408 for (i = 0; i < tl->nr_links; i++) {
2409 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
2410 image, rw_image))
2411 return -EINVAL;
2412
2413 /* mod_ret prog stored return value into [rbp - 8]. Emit:
2414 * if (*(u64 *)(rbp - 8) != 0)
2415 * goto do_fexit;
2416 */
2417 /* cmp QWORD PTR [rbp - 0x8], 0x0 */
2418 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2419
2420 /* Save the location of the branch and Generate 6 nops
2421 * (4 bytes for an offset and 2 bytes for the jump) These nops
2422 * are replaced with a conditional jump once do_fexit (i.e. the
2423 * start of the fexit invocation) is finalized.
2424 */
2425 branches[i] = prog;
2426 emit_nops(&prog, 4 + 2);
2427 }
2428
2429 *pprog = prog;
2430 return 0;
2431 }
2432
2433 /* Example:
2434 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2435 * its 'struct btf_func_model' will be nr_args=2
2436 * The assembly code when eth_type_trans is executing after trampoline:
2437 *
2438 * push rbp
2439 * mov rbp, rsp
2440 * sub rsp, 16 // space for skb and dev
2441 * push rbx // temp regs to pass start time
2442 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack
2443 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack
2444 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2445 * mov rbx, rax // remember start time in bpf stats are enabled
2446 * lea rdi, [rbp - 16] // R1==ctx of bpf prog
2447 * call addr_of_jited_FENTRY_prog
2448 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2449 * mov rsi, rbx // prog start time
2450 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2451 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
2452 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
2453 * pop rbx
2454 * leave
2455 * ret
2456 *
2457 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2458 * replaced with 'call generated_bpf_trampoline'. When it returns
2459 * eth_type_trans will continue executing with original skb and dev pointers.
2460 *
2461 * The assembly code when eth_type_trans is called from trampoline:
2462 *
2463 * push rbp
2464 * mov rbp, rsp
2465 * sub rsp, 24 // space for skb, dev, return value
2466 * push rbx // temp regs to pass start time
2467 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack
2468 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack
2469 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2470 * mov rbx, rax // remember start time if bpf stats are enabled
2471 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2472 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
2473 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2474 * mov rsi, rbx // prog start time
2475 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2476 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
2477 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
2478 * call eth_type_trans+5 // execute body of eth_type_trans
2479 * mov qword ptr [rbp - 8], rax // save return value
2480 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2481 * mov rbx, rax // remember start time in bpf stats are enabled
2482 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2483 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
2484 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2485 * mov rsi, rbx // prog start time
2486 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2487 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
2488 * pop rbx
2489 * leave
2490 * add rsp, 8 // skip eth_type_trans's frame
2491 * ret // return to its caller
2492 */
2493 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
2494 void *rw_image_end, void *image,
2495 const struct btf_func_model *m, u32 flags,
2496 struct bpf_tramp_links *tlinks,
2497 void *func_addr)
2498 {
2499 int i, ret, nr_regs = m->nr_args, stack_size = 0;
2500 int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
2501 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2502 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2503 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2504 void *orig_call = func_addr;
2505 u8 **branches = NULL;
2506 u8 *prog;
2507 bool save_ret;
2508
2509 /*
2510 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
2511 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
2512 * because @func_addr.
2513 */
2514 WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
2515 (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
2516
2517 /* extra registers for struct arguments */
2518 for (i = 0; i < m->nr_args; i++) {
2519 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2520 nr_regs += (m->arg_size[i] + 7) / 8 - 1;
2521 }
2522
2523 /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
2524 * are passed through regs, the remains are through stack.
2525 */
2526 if (nr_regs > MAX_BPF_FUNC_ARGS)
2527 return -ENOTSUPP;
2528
2529 /* Generated trampoline stack layout:
2530 *
2531 * RBP + 8 [ return address ]
2532 * RBP + 0 [ RBP ]
2533 *
2534 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or
2535 * BPF_TRAMP_F_RET_FENTRY_RET flags
2536 *
2537 * [ reg_argN ] always
2538 * [ ... ]
2539 * RBP - regs_off [ reg_arg1 ] program's ctx pointer
2540 *
2541 * RBP - nregs_off [ regs count ] always
2542 *
2543 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
2544 *
2545 * RBP - rbx_off [ rbx value ] always
2546 *
2547 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2548 *
2549 * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG
2550 * [ ... ]
2551 * [ stack_arg2 ]
2552 * RBP - arg_stack_off [ stack_arg1 ]
2553 * RSP [ tail_call_cnt ] BPF_TRAMP_F_TAIL_CALL_CTX
2554 */
2555
2556 /* room for return value of orig_call or fentry prog */
2557 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2558 if (save_ret)
2559 stack_size += 8;
2560
2561 stack_size += nr_regs * 8;
2562 regs_off = stack_size;
2563
2564 /* regs count */
2565 stack_size += 8;
2566 nregs_off = stack_size;
2567
2568 if (flags & BPF_TRAMP_F_IP_ARG)
2569 stack_size += 8; /* room for IP address argument */
2570
2571 ip_off = stack_size;
2572
2573 stack_size += 8;
2574 rbx_off = stack_size;
2575
2576 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2577 run_ctx_off = stack_size;
2578
2579 if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
2580 /* the space that used to pass arguments on-stack */
2581 stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
2582 /* make sure the stack pointer is 16-byte aligned if we
2583 * need pass arguments on stack, which means
2584 * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
2585 * should be 16-byte aligned. Following code depend on
2586 * that stack_size is already 8-byte aligned.
2587 */
2588 stack_size += (stack_size % 16) ? 0 : 8;
2589 }
2590
2591 arg_stack_off = stack_size;
2592
2593 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2594 /* skip patched call instruction and point orig_call to actual
2595 * body of the kernel function.
2596 */
2597 if (is_endbr(*(u32 *)orig_call))
2598 orig_call += ENDBR_INSN_SIZE;
2599 orig_call += X86_PATCH_SIZE;
2600 }
2601
2602 prog = rw_image;
2603
2604 if (flags & BPF_TRAMP_F_INDIRECT) {
2605 /*
2606 * Indirect call for bpf_struct_ops
2607 */
2608 emit_cfi(&prog, cfi_get_func_hash(func_addr));
2609 } else {
2610 /*
2611 * Direct-call fentry stub, as such it needs accounting for the
2612 * __fentry__ call.
2613 */
2614 x86_call_depth_emit_accounting(&prog, NULL);
2615 }
2616 EMIT1(0x55); /* push rbp */
2617 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2618 if (!is_imm8(stack_size)) {
2619 /* sub rsp, stack_size */
2620 EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
2621 } else {
2622 /* sub rsp, stack_size */
2623 EMIT4(0x48, 0x83, 0xEC, stack_size);
2624 }
2625 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2626 EMIT1(0x50); /* push rax */
2627 /* mov QWORD PTR [rbp - rbx_off], rbx */
2628 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
2629
2630 /* Store number of argument registers of the traced function:
2631 * mov rax, nr_regs
2632 * mov QWORD PTR [rbp - nregs_off], rax
2633 */
2634 emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
2635 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
2636
2637 if (flags & BPF_TRAMP_F_IP_ARG) {
2638 /* Store IP address of the traced function:
2639 * movabsq rax, func_addr
2640 * mov QWORD PTR [rbp - ip_off], rax
2641 */
2642 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2643 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2644 }
2645
2646 save_args(m, &prog, regs_off, false);
2647
2648 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2649 /* arg1: mov rdi, im */
2650 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2651 if (emit_rsb_call(&prog, __bpf_tramp_enter,
2652 image + (prog - (u8 *)rw_image))) {
2653 ret = -EINVAL;
2654 goto cleanup;
2655 }
2656 }
2657
2658 if (fentry->nr_links) {
2659 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2660 flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image))
2661 return -EINVAL;
2662 }
2663
2664 if (fmod_ret->nr_links) {
2665 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2666 GFP_KERNEL);
2667 if (!branches)
2668 return -ENOMEM;
2669
2670 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2671 run_ctx_off, branches, image, rw_image)) {
2672 ret = -EINVAL;
2673 goto cleanup;
2674 }
2675 }
2676
2677 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2678 restore_regs(m, &prog, regs_off);
2679 save_args(m, &prog, arg_stack_off, true);
2680
2681 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
2682 /* Before calling the original function, restore the
2683 * tail_call_cnt from stack to rax.
2684 */
2685 RESTORE_TAIL_CALL_CNT(stack_size);
2686 }
2687
2688 if (flags & BPF_TRAMP_F_ORIG_STACK) {
2689 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
2690 EMIT2(0xff, 0xd3); /* call *rbx */
2691 } else {
2692 /* call original function */
2693 if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
2694 ret = -EINVAL;
2695 goto cleanup;
2696 }
2697 }
2698 /* remember return value in a stack for bpf prog to access */
2699 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2700 im->ip_after_call = image + (prog - (u8 *)rw_image);
2701 emit_nops(&prog, X86_PATCH_SIZE);
2702 }
2703
2704 if (fmod_ret->nr_links) {
2705 /* From Intel 64 and IA-32 Architectures Optimization
2706 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2707 * Coding Rule 11: All branch targets should be 16-byte
2708 * aligned.
2709 */
2710 emit_align(&prog, 16);
2711 /* Update the branches saved in invoke_bpf_mod_ret with the
2712 * aligned address of do_fexit.
2713 */
2714 for (i = 0; i < fmod_ret->nr_links; i++) {
2715 emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
2716 image + (branches[i] - (u8 *)rw_image), X86_JNE);
2717 }
2718 }
2719
2720 if (fexit->nr_links) {
2721 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off,
2722 false, image, rw_image)) {
2723 ret = -EINVAL;
2724 goto cleanup;
2725 }
2726 }
2727
2728 if (flags & BPF_TRAMP_F_RESTORE_REGS)
2729 restore_regs(m, &prog, regs_off);
2730
2731 /* This needs to be done regardless. If there were fmod_ret programs,
2732 * the return value is only updated on the stack and still needs to be
2733 * restored to R0.
2734 */
2735 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2736 im->ip_epilogue = image + (prog - (u8 *)rw_image);
2737 /* arg1: mov rdi, im */
2738 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2739 if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
2740 ret = -EINVAL;
2741 goto cleanup;
2742 }
2743 } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
2744 /* Before running the original function, restore the
2745 * tail_call_cnt from stack to rax.
2746 */
2747 RESTORE_TAIL_CALL_CNT(stack_size);
2748 }
2749
2750 /* restore return value of orig_call or fentry prog back into RAX */
2751 if (save_ret)
2752 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2753
2754 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
2755 EMIT1(0xC9); /* leave */
2756 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2757 /* skip our return address and return to parent */
2758 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2759 }
2760 emit_return(&prog, image + (prog - (u8 *)rw_image));
2761 /* Make sure the trampoline generation logic doesn't overflow */
2762 if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
2763 ret = -EFAULT;
2764 goto cleanup;
2765 }
2766 ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
2767
2768 cleanup:
2769 kfree(branches);
2770 return ret;
2771 }
2772
2773 void *arch_alloc_bpf_trampoline(unsigned int size)
2774 {
2775 return bpf_prog_pack_alloc(size, jit_fill_hole);
2776 }
2777
2778 void arch_free_bpf_trampoline(void *image, unsigned int size)
2779 {
2780 bpf_prog_pack_free(image, size);
2781 }
2782
2783 void arch_protect_bpf_trampoline(void *image, unsigned int size)
2784 {
2785 }
2786
2787 void arch_unprotect_bpf_trampoline(void *image, unsigned int size)
2788 {
2789 }
2790
2791 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2792 const struct btf_func_model *m, u32 flags,
2793 struct bpf_tramp_links *tlinks,
2794 void *func_addr)
2795 {
2796 void *rw_image, *tmp;
2797 int ret;
2798 u32 size = image_end - image;
2799
2800 /* rw_image doesn't need to be in module memory range, so we can
2801 * use kvmalloc.
2802 */
2803 rw_image = kvmalloc(size, GFP_KERNEL);
2804 if (!rw_image)
2805 return -ENOMEM;
2806
2807 ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
2808 flags, tlinks, func_addr);
2809 if (ret < 0)
2810 goto out;
2811
2812 tmp = bpf_arch_text_copy(image, rw_image, size);
2813 if (IS_ERR(tmp))
2814 ret = PTR_ERR(tmp);
2815 out:
2816 kvfree(rw_image);
2817 return ret;
2818 }
2819
2820 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2821 struct bpf_tramp_links *tlinks, void *func_addr)
2822 {
2823 struct bpf_tramp_image im;
2824 void *image;
2825 int ret;
2826
2827 /* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
2828 * This will NOT cause fragmentation in direct map, as we do not
2829 * call set_memory_*() on this buffer.
2830 *
2831 * We cannot use kvmalloc here, because we need image to be in
2832 * module memory range.
2833 */
2834 image = bpf_jit_alloc_exec(PAGE_SIZE);
2835 if (!image)
2836 return -ENOMEM;
2837
2838 ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
2839 m, flags, tlinks, func_addr);
2840 bpf_jit_free_exec(image);
2841 return ret;
2842 }
2843
2844 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2845 {
2846 u8 *jg_reloc, *prog = *pprog;
2847 int pivot, err, jg_bytes = 1;
2848 s64 jg_offset;
2849
2850 if (a == b) {
2851 /* Leaf node of recursion, i.e. not a range of indices
2852 * anymore.
2853 */
2854 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
2855 if (!is_simm32(progs[a]))
2856 return -1;
2857 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2858 progs[a]);
2859 err = emit_cond_near_jump(&prog, /* je func */
2860 (void *)progs[a], image + (prog - buf),
2861 X86_JE);
2862 if (err)
2863 return err;
2864
2865 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2866
2867 *pprog = prog;
2868 return 0;
2869 }
2870
2871 /* Not a leaf node, so we pivot, and recursively descend into
2872 * the lower and upper ranges.
2873 */
2874 pivot = (b - a) / 2;
2875 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
2876 if (!is_simm32(progs[a + pivot]))
2877 return -1;
2878 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2879
2880 if (pivot > 2) { /* jg upper_part */
2881 /* Require near jump. */
2882 jg_bytes = 4;
2883 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2884 } else {
2885 EMIT2(X86_JG, 0);
2886 }
2887 jg_reloc = prog;
2888
2889 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */
2890 progs, image, buf);
2891 if (err)
2892 return err;
2893
2894 /* From Intel 64 and IA-32 Architectures Optimization
2895 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2896 * Coding Rule 11: All branch targets should be 16-byte
2897 * aligned.
2898 */
2899 emit_align(&prog, 16);
2900 jg_offset = prog - jg_reloc;
2901 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2902
2903 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
2904 b, progs, image, buf);
2905 if (err)
2906 return err;
2907
2908 *pprog = prog;
2909 return 0;
2910 }
2911
2912 static int cmp_ips(const void *a, const void *b)
2913 {
2914 const s64 *ipa = a;
2915 const s64 *ipb = b;
2916
2917 if (*ipa > *ipb)
2918 return 1;
2919 if (*ipa < *ipb)
2920 return -1;
2921 return 0;
2922 }
2923
2924 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2925 {
2926 u8 *prog = buf;
2927
2928 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2929 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2930 }
2931
2932 struct x64_jit_data {
2933 struct bpf_binary_header *rw_header;
2934 struct bpf_binary_header *header;
2935 int *addrs;
2936 u8 *image;
2937 int proglen;
2938 struct jit_context ctx;
2939 };
2940
2941 #define MAX_PASSES 20
2942 #define PADDING_PASSES (MAX_PASSES - 5)
2943
2944 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2945 {
2946 struct bpf_binary_header *rw_header = NULL;
2947 struct bpf_binary_header *header = NULL;
2948 struct bpf_prog *tmp, *orig_prog = prog;
2949 struct x64_jit_data *jit_data;
2950 int proglen, oldproglen = 0;
2951 struct jit_context ctx = {};
2952 bool tmp_blinded = false;
2953 bool extra_pass = false;
2954 bool padding = false;
2955 u8 *rw_image = NULL;
2956 u8 *image = NULL;
2957 int *addrs;
2958 int pass;
2959 int i;
2960
2961 if (!prog->jit_requested)
2962 return orig_prog;
2963
2964 tmp = bpf_jit_blind_constants(prog);
2965 /*
2966 * If blinding was requested and we failed during blinding,
2967 * we must fall back to the interpreter.
2968 */
2969 if (IS_ERR(tmp))
2970 return orig_prog;
2971 if (tmp != prog) {
2972 tmp_blinded = true;
2973 prog = tmp;
2974 }
2975
2976 jit_data = prog->aux->jit_data;
2977 if (!jit_data) {
2978 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2979 if (!jit_data) {
2980 prog = orig_prog;
2981 goto out;
2982 }
2983 prog->aux->jit_data = jit_data;
2984 }
2985 addrs = jit_data->addrs;
2986 if (addrs) {
2987 ctx = jit_data->ctx;
2988 oldproglen = jit_data->proglen;
2989 image = jit_data->image;
2990 header = jit_data->header;
2991 rw_header = jit_data->rw_header;
2992 rw_image = (void *)rw_header + ((void *)image - (void *)header);
2993 extra_pass = true;
2994 padding = true;
2995 goto skip_init_addrs;
2996 }
2997 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2998 if (!addrs) {
2999 prog = orig_prog;
3000 goto out_addrs;
3001 }
3002
3003 /*
3004 * Before first pass, make a rough estimation of addrs[]
3005 * each BPF instruction is translated to less than 64 bytes
3006 */
3007 for (proglen = 0, i = 0; i <= prog->len; i++) {
3008 proglen += 64;
3009 addrs[i] = proglen;
3010 }
3011 ctx.cleanup_addr = proglen;
3012 skip_init_addrs:
3013
3014 /*
3015 * JITed image shrinks with every pass and the loop iterates
3016 * until the image stops shrinking. Very large BPF programs
3017 * may converge on the last pass. In such case do one more
3018 * pass to emit the final image.
3019 */
3020 for (pass = 0; pass < MAX_PASSES || image; pass++) {
3021 if (!padding && pass >= PADDING_PASSES)
3022 padding = true;
3023 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
3024 if (proglen <= 0) {
3025 out_image:
3026 image = NULL;
3027 if (header) {
3028 bpf_arch_text_copy(&header->size, &rw_header->size,
3029 sizeof(rw_header->size));
3030 bpf_jit_binary_pack_free(header, rw_header);
3031 }
3032 /* Fall back to interpreter mode */
3033 prog = orig_prog;
3034 if (extra_pass) {
3035 prog->bpf_func = NULL;
3036 prog->jited = 0;
3037 prog->jited_len = 0;
3038 }
3039 goto out_addrs;
3040 }
3041 if (image) {
3042 if (proglen != oldproglen) {
3043 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
3044 proglen, oldproglen);
3045 goto out_image;
3046 }
3047 break;
3048 }
3049 if (proglen == oldproglen) {
3050 /*
3051 * The number of entries in extable is the number of BPF_LDX
3052 * insns that access kernel memory via "pointer to BTF type".
3053 * The verifier changed their opcode from LDX|MEM|size
3054 * to LDX|PROBE_MEM|size to make JITing easier.
3055 */
3056 u32 align = __alignof__(struct exception_table_entry);
3057 u32 extable_size = prog->aux->num_exentries *
3058 sizeof(struct exception_table_entry);
3059
3060 /* allocate module memory for x86 insns and extable */
3061 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
3062 &image, align, &rw_header, &rw_image,
3063 jit_fill_hole);
3064 if (!header) {
3065 prog = orig_prog;
3066 goto out_addrs;
3067 }
3068 prog->aux->extable = (void *) image + roundup(proglen, align);
3069 }
3070 oldproglen = proglen;
3071 cond_resched();
3072 }
3073
3074 if (bpf_jit_enable > 1)
3075 bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
3076
3077 if (image) {
3078 if (!prog->is_func || extra_pass) {
3079 /*
3080 * bpf_jit_binary_pack_finalize fails in two scenarios:
3081 * 1) header is not pointing to proper module memory;
3082 * 2) the arch doesn't support bpf_arch_text_copy().
3083 *
3084 * Both cases are serious bugs and justify WARN_ON.
3085 */
3086 if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
3087 /* header has been freed */
3088 header = NULL;
3089 goto out_image;
3090 }
3091
3092 bpf_tail_call_direct_fixup(prog);
3093 } else {
3094 jit_data->addrs = addrs;
3095 jit_data->ctx = ctx;
3096 jit_data->proglen = proglen;
3097 jit_data->image = image;
3098 jit_data->header = header;
3099 jit_data->rw_header = rw_header;
3100 }
3101 /*
3102 * ctx.prog_offset is used when CFI preambles put code *before*
3103 * the function. See emit_cfi(). For FineIBT specifically this code
3104 * can also be executed and bpf_prog_kallsyms_add() will
3105 * generate an additional symbol to cover this, hence also
3106 * decrement proglen.
3107 */
3108 prog->bpf_func = (void *)image + cfi_get_offset();
3109 prog->jited = 1;
3110 prog->jited_len = proglen - cfi_get_offset();
3111 } else {
3112 prog = orig_prog;
3113 }
3114
3115 if (!image || !prog->is_func || extra_pass) {
3116 if (image)
3117 bpf_prog_fill_jited_linfo(prog, addrs + 1);
3118 out_addrs:
3119 kvfree(addrs);
3120 kfree(jit_data);
3121 prog->aux->jit_data = NULL;
3122 }
3123 out:
3124 if (tmp_blinded)
3125 bpf_jit_prog_release_other(prog, prog == orig_prog ?
3126 tmp : orig_prog);
3127 return prog;
3128 }
3129
3130 bool bpf_jit_supports_kfunc_call(void)
3131 {
3132 return true;
3133 }
3134
3135 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
3136 {
3137 if (text_poke_copy(dst, src, len) == NULL)
3138 return ERR_PTR(-EINVAL);
3139 return dst;
3140 }
3141
3142 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
3143 bool bpf_jit_supports_subprog_tailcalls(void)
3144 {
3145 return true;
3146 }
3147
3148 void bpf_jit_free(struct bpf_prog *prog)
3149 {
3150 if (prog->jited) {
3151 struct x64_jit_data *jit_data = prog->aux->jit_data;
3152 struct bpf_binary_header *hdr;
3153
3154 /*
3155 * If we fail the final pass of JIT (from jit_subprogs),
3156 * the program may not be finalized yet. Call finalize here
3157 * before freeing it.
3158 */
3159 if (jit_data) {
3160 bpf_jit_binary_pack_finalize(prog, jit_data->header,
3161 jit_data->rw_header);
3162 kvfree(jit_data->addrs);
3163 kfree(jit_data);
3164 }
3165 prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3166 hdr = bpf_jit_binary_pack_hdr(prog);
3167 bpf_jit_binary_pack_free(hdr, NULL);
3168 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3169 }
3170
3171 bpf_prog_unlock_free(prog);
3172 }
3173
3174 bool bpf_jit_supports_exceptions(void)
3175 {
3176 /* We unwind through both kernel frames (starting from within bpf_throw
3177 * call) and BPF frames. Therefore we require ORC unwinder to be enabled
3178 * to walk kernel frames and reach BPF frames in the stack trace.
3179 */
3180 return IS_ENABLED(CONFIG_UNWINDER_ORC);
3181 }
3182
3183 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3184 {
3185 #if defined(CONFIG_UNWINDER_ORC)
3186 struct unwind_state state;
3187 unsigned long addr;
3188
3189 for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
3190 unwind_next_frame(&state)) {
3191 addr = unwind_get_return_address(&state);
3192 if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
3193 break;
3194 }
3195 return;
3196 #endif
3197 WARN(1, "verification of programs using bpf_throw should have failed\n");
3198 }
3199
3200 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3201 struct bpf_prog *new, struct bpf_prog *old)
3202 {
3203 u8 *old_addr, *new_addr, *old_bypass_addr;
3204 int ret;
3205
3206 old_bypass_addr = old ? NULL : poke->bypass_addr;
3207 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
3208 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
3209
3210 /*
3211 * On program loading or teardown, the program's kallsym entry
3212 * might not be in place, so we use __bpf_arch_text_poke to skip
3213 * the kallsyms check.
3214 */
3215 if (new) {
3216 ret = __bpf_arch_text_poke(poke->tailcall_target,
3217 BPF_MOD_JUMP,
3218 old_addr, new_addr);
3219 BUG_ON(ret < 0);
3220 if (!old) {
3221 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3222 BPF_MOD_JUMP,
3223 poke->bypass_addr,
3224 NULL);
3225 BUG_ON(ret < 0);
3226 }
3227 } else {
3228 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3229 BPF_MOD_JUMP,
3230 old_bypass_addr,
3231 poke->bypass_addr);
3232 BUG_ON(ret < 0);
3233 /* let other CPUs finish the execution of program
3234 * so that it will not possible to expose them
3235 * to invalid nop, stack unwind, nop state
3236 */
3237 if (!ret)
3238 synchronize_rcu();
3239 ret = __bpf_arch_text_poke(poke->tailcall_target,
3240 BPF_MOD_JUMP,
3241 old_addr, NULL);
3242 BUG_ON(ret < 0);
3243 }
3244 }