]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/xen/enlighten_pv.c
KVM: x86/mmu: Remove unnecessary ‘NULL’ values from sptep
[thirdparty/kernel/stable.git] / arch / x86 / xen / enlighten_pv.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Core of Xen paravirt_ops implementation.
4 *
5 * This file contains the xen_paravirt_ops structure itself, and the
6 * implementations for:
7 * - privileged instructions
8 * - interrupt flags
9 * - segment operations
10 * - booting and setup
11 *
12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13 */
14
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/kstrtox.h>
27 #include <linux/memblock.h>
28 #include <linux/export.h>
29 #include <linux/mm.h>
30 #include <linux/page-flags.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/edd.h>
34 #include <linux/reboot.h>
35 #include <linux/virtio_anchor.h>
36 #include <linux/stackprotector.h>
37
38 #include <xen/xen.h>
39 #include <xen/events.h>
40 #include <xen/interface/xen.h>
41 #include <xen/interface/version.h>
42 #include <xen/interface/physdev.h>
43 #include <xen/interface/vcpu.h>
44 #include <xen/interface/memory.h>
45 #include <xen/interface/nmi.h>
46 #include <xen/interface/xen-mca.h>
47 #include <xen/features.h>
48 #include <xen/page.h>
49 #include <xen/hvc-console.h>
50 #include <xen/acpi.h>
51
52 #include <asm/paravirt.h>
53 #include <asm/apic.h>
54 #include <asm/page.h>
55 #include <asm/xen/pci.h>
56 #include <asm/xen/hypercall.h>
57 #include <asm/xen/hypervisor.h>
58 #include <asm/xen/cpuid.h>
59 #include <asm/fixmap.h>
60 #include <asm/processor.h>
61 #include <asm/proto.h>
62 #include <asm/msr-index.h>
63 #include <asm/traps.h>
64 #include <asm/setup.h>
65 #include <asm/desc.h>
66 #include <asm/pgalloc.h>
67 #include <asm/tlbflush.h>
68 #include <asm/reboot.h>
69 #include <asm/hypervisor.h>
70 #include <asm/mach_traps.h>
71 #include <asm/mtrr.h>
72 #include <asm/mwait.h>
73 #include <asm/pci_x86.h>
74 #include <asm/cpu.h>
75 #ifdef CONFIG_X86_IOPL_IOPERM
76 #include <asm/io_bitmap.h>
77 #endif
78
79 #ifdef CONFIG_ACPI
80 #include <linux/acpi.h>
81 #include <asm/acpi.h>
82 #include <acpi/proc_cap_intel.h>
83 #include <acpi/processor.h>
84 #include <xen/interface/platform.h>
85 #endif
86
87 #include "xen-ops.h"
88 #include "mmu.h"
89 #include "smp.h"
90 #include "multicalls.h"
91 #include "pmu.h"
92
93 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
94
95 void *xen_initial_gdt;
96
97 static int xen_cpu_up_prepare_pv(unsigned int cpu);
98 static int xen_cpu_dead_pv(unsigned int cpu);
99
100 struct tls_descs {
101 struct desc_struct desc[3];
102 };
103
104 /*
105 * Updating the 3 TLS descriptors in the GDT on every task switch is
106 * surprisingly expensive so we avoid updating them if they haven't
107 * changed. Since Xen writes different descriptors than the one
108 * passed in the update_descriptor hypercall we keep shadow copies to
109 * compare against.
110 */
111 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
112
113 static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
114
115 static int __init parse_xen_msr_safe(char *str)
116 {
117 if (str)
118 return kstrtobool(str, &xen_msr_safe);
119 return -EINVAL;
120 }
121 early_param("xen_msr_safe", parse_xen_msr_safe);
122
123 /* Get MTRR settings from Xen and put them into mtrr_state. */
124 static void __init xen_set_mtrr_data(void)
125 {
126 #ifdef CONFIG_MTRR
127 struct xen_platform_op op = {
128 .cmd = XENPF_read_memtype,
129 .interface_version = XENPF_INTERFACE_VERSION,
130 };
131 unsigned int reg;
132 unsigned long mask;
133 uint32_t eax, width;
134 static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata;
135
136 /* Get physical address width (only 64-bit cpus supported). */
137 width = 36;
138 eax = cpuid_eax(0x80000000);
139 if ((eax >> 16) == 0x8000 && eax >= 0x80000008) {
140 eax = cpuid_eax(0x80000008);
141 width = eax & 0xff;
142 }
143
144 for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) {
145 op.u.read_memtype.reg = reg;
146 if (HYPERVISOR_platform_op(&op))
147 break;
148
149 /*
150 * Only called in dom0, which has all RAM PFNs mapped at
151 * RAM MFNs, and all PCI space etc. is identity mapped.
152 * This means we can treat MFN == PFN regarding MTRR settings.
153 */
154 var[reg].base_lo = op.u.read_memtype.type;
155 var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT;
156 var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT);
157 mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1);
158 mask &= (1UL << width) - 1;
159 if (mask)
160 mask |= MTRR_PHYSMASK_V;
161 var[reg].mask_lo = mask;
162 var[reg].mask_hi = mask >> 32;
163 }
164
165 /* Only overwrite MTRR state if any MTRR could be got from Xen. */
166 if (reg)
167 mtrr_overwrite_state(var, reg, MTRR_TYPE_UNCACHABLE);
168 #endif
169 }
170
171 static void __init xen_pv_init_platform(void)
172 {
173 /* PV guests can't operate virtio devices without grants. */
174 if (IS_ENABLED(CONFIG_XEN_VIRTIO))
175 virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
176
177 populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
178
179 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
180 HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
181
182 /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
183 xen_vcpu_info_reset(0);
184
185 /* pvclock is in shared info area */
186 xen_init_time_ops();
187
188 if (xen_initial_domain())
189 xen_set_mtrr_data();
190 else
191 mtrr_overwrite_state(NULL, 0, MTRR_TYPE_WRBACK);
192 }
193
194 static void __init xen_pv_guest_late_init(void)
195 {
196 #ifndef CONFIG_SMP
197 /* Setup shared vcpu info for non-smp configurations */
198 xen_setup_vcpu_info_placement();
199 #endif
200 }
201
202 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
203 static __read_mostly unsigned int cpuid_leaf5_edx_val;
204
205 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
206 unsigned int *cx, unsigned int *dx)
207 {
208 unsigned maskebx = ~0;
209
210 /*
211 * Mask out inconvenient features, to try and disable as many
212 * unsupported kernel subsystems as possible.
213 */
214 switch (*ax) {
215 case CPUID_MWAIT_LEAF:
216 /* Synthesize the values.. */
217 *ax = 0;
218 *bx = 0;
219 *cx = cpuid_leaf5_ecx_val;
220 *dx = cpuid_leaf5_edx_val;
221 return;
222
223 case 0xb:
224 /* Suppress extended topology stuff */
225 maskebx = 0;
226 break;
227 }
228
229 asm(XEN_EMULATE_PREFIX "cpuid"
230 : "=a" (*ax),
231 "=b" (*bx),
232 "=c" (*cx),
233 "=d" (*dx)
234 : "0" (*ax), "2" (*cx));
235
236 *bx &= maskebx;
237 }
238
239 static bool __init xen_check_mwait(void)
240 {
241 #ifdef CONFIG_ACPI
242 struct xen_platform_op op = {
243 .cmd = XENPF_set_processor_pminfo,
244 .u.set_pminfo.id = -1,
245 .u.set_pminfo.type = XEN_PM_PDC,
246 };
247 uint32_t buf[3];
248 unsigned int ax, bx, cx, dx;
249 unsigned int mwait_mask;
250
251 /* We need to determine whether it is OK to expose the MWAIT
252 * capability to the kernel to harvest deeper than C3 states from ACPI
253 * _CST using the processor_harvest_xen.c module. For this to work, we
254 * need to gather the MWAIT_LEAF values (which the cstate.c code
255 * checks against). The hypervisor won't expose the MWAIT flag because
256 * it would break backwards compatibility; so we will find out directly
257 * from the hardware and hypercall.
258 */
259 if (!xen_initial_domain())
260 return false;
261
262 /*
263 * When running under platform earlier than Xen4.2, do not expose
264 * mwait, to avoid the risk of loading native acpi pad driver
265 */
266 if (!xen_running_on_version_or_later(4, 2))
267 return false;
268
269 ax = 1;
270 cx = 0;
271
272 native_cpuid(&ax, &bx, &cx, &dx);
273
274 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
275 (1 << (X86_FEATURE_MWAIT % 32));
276
277 if ((cx & mwait_mask) != mwait_mask)
278 return false;
279
280 /* We need to emulate the MWAIT_LEAF and for that we need both
281 * ecx and edx. The hypercall provides only partial information.
282 */
283
284 ax = CPUID_MWAIT_LEAF;
285 bx = 0;
286 cx = 0;
287 dx = 0;
288
289 native_cpuid(&ax, &bx, &cx, &dx);
290
291 /* Ask the Hypervisor whether to clear ACPI_PROC_CAP_C_C2C3_FFH. If so,
292 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
293 */
294 buf[0] = ACPI_PDC_REVISION_ID;
295 buf[1] = 1;
296 buf[2] = (ACPI_PROC_CAP_C_CAPABILITY_SMP | ACPI_PROC_CAP_EST_CAPABILITY_SWSMP);
297
298 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
299
300 if ((HYPERVISOR_platform_op(&op) == 0) &&
301 (buf[2] & (ACPI_PROC_CAP_C_C1_FFH | ACPI_PROC_CAP_C_C2C3_FFH))) {
302 cpuid_leaf5_ecx_val = cx;
303 cpuid_leaf5_edx_val = dx;
304 }
305 return true;
306 #else
307 return false;
308 #endif
309 }
310
311 static bool __init xen_check_xsave(void)
312 {
313 unsigned int cx, xsave_mask;
314
315 cx = cpuid_ecx(1);
316
317 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
318 (1 << (X86_FEATURE_OSXSAVE % 32));
319
320 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
321 return (cx & xsave_mask) == xsave_mask;
322 }
323
324 static void __init xen_init_capabilities(void)
325 {
326 setup_force_cpu_cap(X86_FEATURE_XENPV);
327 setup_clear_cpu_cap(X86_FEATURE_DCA);
328 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
329 setup_clear_cpu_cap(X86_FEATURE_MTRR);
330 setup_clear_cpu_cap(X86_FEATURE_ACC);
331 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
332 setup_clear_cpu_cap(X86_FEATURE_SME);
333 setup_clear_cpu_cap(X86_FEATURE_LKGS);
334
335 /*
336 * Xen PV would need some work to support PCID: CR3 handling as well
337 * as xen_flush_tlb_others() would need updating.
338 */
339 setup_clear_cpu_cap(X86_FEATURE_PCID);
340
341 if (!xen_initial_domain())
342 setup_clear_cpu_cap(X86_FEATURE_ACPI);
343
344 if (xen_check_mwait())
345 setup_force_cpu_cap(X86_FEATURE_MWAIT);
346 else
347 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
348
349 if (!xen_check_xsave()) {
350 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
351 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
352 }
353 }
354
355 static noinstr void xen_set_debugreg(int reg, unsigned long val)
356 {
357 HYPERVISOR_set_debugreg(reg, val);
358 }
359
360 static noinstr unsigned long xen_get_debugreg(int reg)
361 {
362 return HYPERVISOR_get_debugreg(reg);
363 }
364
365 static void xen_end_context_switch(struct task_struct *next)
366 {
367 xen_mc_flush();
368 paravirt_end_context_switch(next);
369 }
370
371 static unsigned long xen_store_tr(void)
372 {
373 return 0;
374 }
375
376 /*
377 * Set the page permissions for a particular virtual address. If the
378 * address is a vmalloc mapping (or other non-linear mapping), then
379 * find the linear mapping of the page and also set its protections to
380 * match.
381 */
382 static void set_aliased_prot(void *v, pgprot_t prot)
383 {
384 int level;
385 pte_t *ptep;
386 pte_t pte;
387 unsigned long pfn;
388 unsigned char dummy;
389 void *va;
390
391 ptep = lookup_address((unsigned long)v, &level);
392 BUG_ON(ptep == NULL);
393
394 pfn = pte_pfn(*ptep);
395 pte = pfn_pte(pfn, prot);
396
397 /*
398 * Careful: update_va_mapping() will fail if the virtual address
399 * we're poking isn't populated in the page tables. We don't
400 * need to worry about the direct map (that's always in the page
401 * tables), but we need to be careful about vmap space. In
402 * particular, the top level page table can lazily propagate
403 * entries between processes, so if we've switched mms since we
404 * vmapped the target in the first place, we might not have the
405 * top-level page table entry populated.
406 *
407 * We disable preemption because we want the same mm active when
408 * we probe the target and when we issue the hypercall. We'll
409 * have the same nominal mm, but if we're a kernel thread, lazy
410 * mm dropping could change our pgd.
411 *
412 * Out of an abundance of caution, this uses __get_user() to fault
413 * in the target address just in case there's some obscure case
414 * in which the target address isn't readable.
415 */
416
417 preempt_disable();
418
419 copy_from_kernel_nofault(&dummy, v, 1);
420
421 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
422 BUG();
423
424 va = __va(PFN_PHYS(pfn));
425
426 if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
427 BUG();
428
429 preempt_enable();
430 }
431
432 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
433 {
434 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
435 int i;
436
437 /*
438 * We need to mark the all aliases of the LDT pages RO. We
439 * don't need to call vm_flush_aliases(), though, since that's
440 * only responsible for flushing aliases out the TLBs, not the
441 * page tables, and Xen will flush the TLB for us if needed.
442 *
443 * To avoid confusing future readers: none of this is necessary
444 * to load the LDT. The hypervisor only checks this when the
445 * LDT is faulted in due to subsequent descriptor access.
446 */
447
448 for (i = 0; i < entries; i += entries_per_page)
449 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
450 }
451
452 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
453 {
454 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
455 int i;
456
457 for (i = 0; i < entries; i += entries_per_page)
458 set_aliased_prot(ldt + i, PAGE_KERNEL);
459 }
460
461 static void xen_set_ldt(const void *addr, unsigned entries)
462 {
463 struct mmuext_op *op;
464 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
465
466 trace_xen_cpu_set_ldt(addr, entries);
467
468 op = mcs.args;
469 op->cmd = MMUEXT_SET_LDT;
470 op->arg1.linear_addr = (unsigned long)addr;
471 op->arg2.nr_ents = entries;
472
473 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
474
475 xen_mc_issue(PARAVIRT_LAZY_CPU);
476 }
477
478 static void xen_load_gdt(const struct desc_ptr *dtr)
479 {
480 unsigned long va = dtr->address;
481 unsigned int size = dtr->size + 1;
482 unsigned long pfn, mfn;
483 int level;
484 pte_t *ptep;
485 void *virt;
486
487 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
488 BUG_ON(size > PAGE_SIZE);
489 BUG_ON(va & ~PAGE_MASK);
490
491 /*
492 * The GDT is per-cpu and is in the percpu data area.
493 * That can be virtually mapped, so we need to do a
494 * page-walk to get the underlying MFN for the
495 * hypercall. The page can also be in the kernel's
496 * linear range, so we need to RO that mapping too.
497 */
498 ptep = lookup_address(va, &level);
499 BUG_ON(ptep == NULL);
500
501 pfn = pte_pfn(*ptep);
502 mfn = pfn_to_mfn(pfn);
503 virt = __va(PFN_PHYS(pfn));
504
505 make_lowmem_page_readonly((void *)va);
506 make_lowmem_page_readonly(virt);
507
508 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
509 BUG();
510 }
511
512 /*
513 * load_gdt for early boot, when the gdt is only mapped once
514 */
515 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
516 {
517 unsigned long va = dtr->address;
518 unsigned int size = dtr->size + 1;
519 unsigned long pfn, mfn;
520 pte_t pte;
521
522 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
523 BUG_ON(size > PAGE_SIZE);
524 BUG_ON(va & ~PAGE_MASK);
525
526 pfn = virt_to_pfn((void *)va);
527 mfn = pfn_to_mfn(pfn);
528
529 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
530
531 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
532 BUG();
533
534 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
535 BUG();
536 }
537
538 static inline bool desc_equal(const struct desc_struct *d1,
539 const struct desc_struct *d2)
540 {
541 return !memcmp(d1, d2, sizeof(*d1));
542 }
543
544 static void load_TLS_descriptor(struct thread_struct *t,
545 unsigned int cpu, unsigned int i)
546 {
547 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
548 struct desc_struct *gdt;
549 xmaddr_t maddr;
550 struct multicall_space mc;
551
552 if (desc_equal(shadow, &t->tls_array[i]))
553 return;
554
555 *shadow = t->tls_array[i];
556
557 gdt = get_cpu_gdt_rw(cpu);
558 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
559 mc = __xen_mc_entry(0);
560
561 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
562 }
563
564 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
565 {
566 /*
567 * In lazy mode we need to zero %fs, otherwise we may get an
568 * exception between the new %fs descriptor being loaded and
569 * %fs being effectively cleared at __switch_to().
570 */
571 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
572 loadsegment(fs, 0);
573
574 xen_mc_batch();
575
576 load_TLS_descriptor(t, cpu, 0);
577 load_TLS_descriptor(t, cpu, 1);
578 load_TLS_descriptor(t, cpu, 2);
579
580 xen_mc_issue(PARAVIRT_LAZY_CPU);
581 }
582
583 static void xen_load_gs_index(unsigned int idx)
584 {
585 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
586 BUG();
587 }
588
589 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
590 const void *ptr)
591 {
592 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
593 u64 entry = *(u64 *)ptr;
594
595 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
596
597 preempt_disable();
598
599 xen_mc_flush();
600 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
601 BUG();
602
603 preempt_enable();
604 }
605
606 void noist_exc_debug(struct pt_regs *regs);
607
608 DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
609 {
610 /* On Xen PV, NMI doesn't use IST. The C part is the same as native. */
611 exc_nmi(regs);
612 }
613
614 DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
615 {
616 /* On Xen PV, DF doesn't use IST. The C part is the same as native. */
617 exc_double_fault(regs, error_code);
618 }
619
620 DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
621 {
622 /*
623 * There's no IST on Xen PV, but we still need to dispatch
624 * to the correct handler.
625 */
626 if (user_mode(regs))
627 noist_exc_debug(regs);
628 else
629 exc_debug(regs);
630 }
631
632 DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
633 {
634 /* This should never happen and there is no way to handle it. */
635 instrumentation_begin();
636 pr_err("Unknown trap in Xen PV mode.");
637 BUG();
638 instrumentation_end();
639 }
640
641 #ifdef CONFIG_X86_MCE
642 DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
643 {
644 /*
645 * There's no IST on Xen PV, but we still need to dispatch
646 * to the correct handler.
647 */
648 if (user_mode(regs))
649 noist_exc_machine_check(regs);
650 else
651 exc_machine_check(regs);
652 }
653 #endif
654
655 struct trap_array_entry {
656 void (*orig)(void);
657 void (*xen)(void);
658 bool ist_okay;
659 };
660
661 #define TRAP_ENTRY(func, ist_ok) { \
662 .orig = asm_##func, \
663 .xen = xen_asm_##func, \
664 .ist_okay = ist_ok }
665
666 #define TRAP_ENTRY_REDIR(func, ist_ok) { \
667 .orig = asm_##func, \
668 .xen = xen_asm_xenpv_##func, \
669 .ist_okay = ist_ok }
670
671 static struct trap_array_entry trap_array[] = {
672 TRAP_ENTRY_REDIR(exc_debug, true ),
673 TRAP_ENTRY_REDIR(exc_double_fault, true ),
674 #ifdef CONFIG_X86_MCE
675 TRAP_ENTRY_REDIR(exc_machine_check, true ),
676 #endif
677 TRAP_ENTRY_REDIR(exc_nmi, true ),
678 TRAP_ENTRY(exc_int3, false ),
679 TRAP_ENTRY(exc_overflow, false ),
680 #ifdef CONFIG_IA32_EMULATION
681 { entry_INT80_compat, xen_entry_INT80_compat, false },
682 #endif
683 TRAP_ENTRY(exc_page_fault, false ),
684 TRAP_ENTRY(exc_divide_error, false ),
685 TRAP_ENTRY(exc_bounds, false ),
686 TRAP_ENTRY(exc_invalid_op, false ),
687 TRAP_ENTRY(exc_device_not_available, false ),
688 TRAP_ENTRY(exc_coproc_segment_overrun, false ),
689 TRAP_ENTRY(exc_invalid_tss, false ),
690 TRAP_ENTRY(exc_segment_not_present, false ),
691 TRAP_ENTRY(exc_stack_segment, false ),
692 TRAP_ENTRY(exc_general_protection, false ),
693 TRAP_ENTRY(exc_spurious_interrupt_bug, false ),
694 TRAP_ENTRY(exc_coprocessor_error, false ),
695 TRAP_ENTRY(exc_alignment_check, false ),
696 TRAP_ENTRY(exc_simd_coprocessor_error, false ),
697 #ifdef CONFIG_X86_CET
698 TRAP_ENTRY(exc_control_protection, false ),
699 #endif
700 };
701
702 static bool __ref get_trap_addr(void **addr, unsigned int ist)
703 {
704 unsigned int nr;
705 bool ist_okay = false;
706 bool found = false;
707
708 /*
709 * Replace trap handler addresses by Xen specific ones.
710 * Check for known traps using IST and whitelist them.
711 * The debugger ones are the only ones we care about.
712 * Xen will handle faults like double_fault, so we should never see
713 * them. Warn if there's an unexpected IST-using fault handler.
714 */
715 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
716 struct trap_array_entry *entry = trap_array + nr;
717
718 if (*addr == entry->orig) {
719 *addr = entry->xen;
720 ist_okay = entry->ist_okay;
721 found = true;
722 break;
723 }
724 }
725
726 if (nr == ARRAY_SIZE(trap_array) &&
727 *addr >= (void *)early_idt_handler_array[0] &&
728 *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
729 nr = (*addr - (void *)early_idt_handler_array[0]) /
730 EARLY_IDT_HANDLER_SIZE;
731 *addr = (void *)xen_early_idt_handler_array[nr];
732 found = true;
733 }
734
735 if (!found)
736 *addr = (void *)xen_asm_exc_xen_unknown_trap;
737
738 if (WARN_ON(found && ist != 0 && !ist_okay))
739 return false;
740
741 return true;
742 }
743
744 static int cvt_gate_to_trap(int vector, const gate_desc *val,
745 struct trap_info *info)
746 {
747 unsigned long addr;
748
749 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
750 return 0;
751
752 info->vector = vector;
753
754 addr = gate_offset(val);
755 if (!get_trap_addr((void **)&addr, val->bits.ist))
756 return 0;
757 info->address = addr;
758
759 info->cs = gate_segment(val);
760 info->flags = val->bits.dpl;
761 /* interrupt gates clear IF */
762 if (val->bits.type == GATE_INTERRUPT)
763 info->flags |= 1 << 2;
764
765 return 1;
766 }
767
768 /* Locations of each CPU's IDT */
769 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
770
771 /* Set an IDT entry. If the entry is part of the current IDT, then
772 also update Xen. */
773 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
774 {
775 unsigned long p = (unsigned long)&dt[entrynum];
776 unsigned long start, end;
777
778 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
779
780 preempt_disable();
781
782 start = __this_cpu_read(idt_desc.address);
783 end = start + __this_cpu_read(idt_desc.size) + 1;
784
785 xen_mc_flush();
786
787 native_write_idt_entry(dt, entrynum, g);
788
789 if (p >= start && (p + 8) <= end) {
790 struct trap_info info[2];
791
792 info[1].address = 0;
793
794 if (cvt_gate_to_trap(entrynum, g, &info[0]))
795 if (HYPERVISOR_set_trap_table(info))
796 BUG();
797 }
798
799 preempt_enable();
800 }
801
802 static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
803 struct trap_info *traps, bool full)
804 {
805 unsigned in, out, count;
806
807 count = (desc->size+1) / sizeof(gate_desc);
808 BUG_ON(count > 256);
809
810 for (in = out = 0; in < count; in++) {
811 gate_desc *entry = (gate_desc *)(desc->address) + in;
812
813 if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
814 out++;
815 }
816
817 return out;
818 }
819
820 void xen_copy_trap_info(struct trap_info *traps)
821 {
822 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
823
824 xen_convert_trap_info(desc, traps, true);
825 }
826
827 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
828 hold a spinlock to protect the static traps[] array (static because
829 it avoids allocation, and saves stack space). */
830 static void xen_load_idt(const struct desc_ptr *desc)
831 {
832 static DEFINE_SPINLOCK(lock);
833 static struct trap_info traps[257];
834 static const struct trap_info zero = { };
835 unsigned out;
836
837 trace_xen_cpu_load_idt(desc);
838
839 spin_lock(&lock);
840
841 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
842
843 out = xen_convert_trap_info(desc, traps, false);
844 traps[out] = zero;
845
846 xen_mc_flush();
847 if (HYPERVISOR_set_trap_table(traps))
848 BUG();
849
850 spin_unlock(&lock);
851 }
852
853 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
854 they're handled differently. */
855 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
856 const void *desc, int type)
857 {
858 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
859
860 preempt_disable();
861
862 switch (type) {
863 case DESC_LDT:
864 case DESC_TSS:
865 /* ignore */
866 break;
867
868 default: {
869 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
870
871 xen_mc_flush();
872 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
873 BUG();
874 }
875
876 }
877
878 preempt_enable();
879 }
880
881 /*
882 * Version of write_gdt_entry for use at early boot-time needed to
883 * update an entry as simply as possible.
884 */
885 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
886 const void *desc, int type)
887 {
888 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
889
890 switch (type) {
891 case DESC_LDT:
892 case DESC_TSS:
893 /* ignore */
894 break;
895
896 default: {
897 xmaddr_t maddr = virt_to_machine(&dt[entry]);
898
899 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
900 dt[entry] = *(struct desc_struct *)desc;
901 }
902
903 }
904 }
905
906 static void xen_load_sp0(unsigned long sp0)
907 {
908 struct multicall_space mcs;
909
910 mcs = xen_mc_entry(0);
911 MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
912 xen_mc_issue(PARAVIRT_LAZY_CPU);
913 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
914 }
915
916 #ifdef CONFIG_X86_IOPL_IOPERM
917 static void xen_invalidate_io_bitmap(void)
918 {
919 struct physdev_set_iobitmap iobitmap = {
920 .bitmap = NULL,
921 .nr_ports = 0,
922 };
923
924 native_tss_invalidate_io_bitmap();
925 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
926 }
927
928 static void xen_update_io_bitmap(void)
929 {
930 struct physdev_set_iobitmap iobitmap;
931 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
932
933 native_tss_update_io_bitmap();
934
935 iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
936 tss->x86_tss.io_bitmap_base;
937 if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
938 iobitmap.nr_ports = 0;
939 else
940 iobitmap.nr_ports = IO_BITMAP_BITS;
941
942 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
943 }
944 #endif
945
946 static void xen_io_delay(void)
947 {
948 }
949
950 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
951
952 static unsigned long xen_read_cr0(void)
953 {
954 unsigned long cr0 = this_cpu_read(xen_cr0_value);
955
956 if (unlikely(cr0 == 0)) {
957 cr0 = native_read_cr0();
958 this_cpu_write(xen_cr0_value, cr0);
959 }
960
961 return cr0;
962 }
963
964 static void xen_write_cr0(unsigned long cr0)
965 {
966 struct multicall_space mcs;
967
968 this_cpu_write(xen_cr0_value, cr0);
969
970 /* Only pay attention to cr0.TS; everything else is
971 ignored. */
972 mcs = xen_mc_entry(0);
973
974 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
975
976 xen_mc_issue(PARAVIRT_LAZY_CPU);
977 }
978
979 static void xen_write_cr4(unsigned long cr4)
980 {
981 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
982
983 native_write_cr4(cr4);
984 }
985
986 static u64 xen_do_read_msr(unsigned int msr, int *err)
987 {
988 u64 val = 0; /* Avoid uninitialized value for safe variant. */
989
990 if (pmu_msr_read(msr, &val, err))
991 return val;
992
993 if (err)
994 val = native_read_msr_safe(msr, err);
995 else
996 val = native_read_msr(msr);
997
998 switch (msr) {
999 case MSR_IA32_APICBASE:
1000 val &= ~X2APIC_ENABLE;
1001 break;
1002 }
1003 return val;
1004 }
1005
1006 static void set_seg(unsigned int which, unsigned int low, unsigned int high,
1007 int *err)
1008 {
1009 u64 base = ((u64)high << 32) | low;
1010
1011 if (HYPERVISOR_set_segment_base(which, base) == 0)
1012 return;
1013
1014 if (err)
1015 *err = -EIO;
1016 else
1017 WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
1018 }
1019
1020 /*
1021 * Support write_msr_safe() and write_msr() semantics.
1022 * With err == NULL write_msr() semantics are selected.
1023 * Supplying an err pointer requires err to be pre-initialized with 0.
1024 */
1025 static void xen_do_write_msr(unsigned int msr, unsigned int low,
1026 unsigned int high, int *err)
1027 {
1028 switch (msr) {
1029 case MSR_FS_BASE:
1030 set_seg(SEGBASE_FS, low, high, err);
1031 break;
1032
1033 case MSR_KERNEL_GS_BASE:
1034 set_seg(SEGBASE_GS_USER, low, high, err);
1035 break;
1036
1037 case MSR_GS_BASE:
1038 set_seg(SEGBASE_GS_KERNEL, low, high, err);
1039 break;
1040
1041 case MSR_STAR:
1042 case MSR_CSTAR:
1043 case MSR_LSTAR:
1044 case MSR_SYSCALL_MASK:
1045 case MSR_IA32_SYSENTER_CS:
1046 case MSR_IA32_SYSENTER_ESP:
1047 case MSR_IA32_SYSENTER_EIP:
1048 /* Fast syscall setup is all done in hypercalls, so
1049 these are all ignored. Stub them out here to stop
1050 Xen console noise. */
1051 break;
1052
1053 default:
1054 if (!pmu_msr_write(msr, low, high, err)) {
1055 if (err)
1056 *err = native_write_msr_safe(msr, low, high);
1057 else
1058 native_write_msr(msr, low, high);
1059 }
1060 }
1061 }
1062
1063 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1064 {
1065 return xen_do_read_msr(msr, err);
1066 }
1067
1068 static int xen_write_msr_safe(unsigned int msr, unsigned int low,
1069 unsigned int high)
1070 {
1071 int err = 0;
1072
1073 xen_do_write_msr(msr, low, high, &err);
1074
1075 return err;
1076 }
1077
1078 static u64 xen_read_msr(unsigned int msr)
1079 {
1080 int err;
1081
1082 return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1083 }
1084
1085 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1086 {
1087 int err;
1088
1089 xen_do_write_msr(msr, low, high, xen_msr_safe ? &err : NULL);
1090 }
1091
1092 /* This is called once we have the cpu_possible_mask */
1093 void __init xen_setup_vcpu_info_placement(void)
1094 {
1095 int cpu;
1096
1097 for_each_possible_cpu(cpu) {
1098 /* Set up direct vCPU id mapping for PV guests. */
1099 per_cpu(xen_vcpu_id, cpu) = cpu;
1100 xen_vcpu_setup(cpu);
1101 }
1102
1103 pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1104 pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1105 pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1106 pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1107 }
1108
1109 static const struct pv_info xen_info __initconst = {
1110 .extra_user_64bit_cs = FLAT_USER_CS64,
1111 .name = "Xen",
1112 };
1113
1114 static const typeof(pv_ops) xen_cpu_ops __initconst = {
1115 .cpu = {
1116 .cpuid = xen_cpuid,
1117
1118 .set_debugreg = xen_set_debugreg,
1119 .get_debugreg = xen_get_debugreg,
1120
1121 .read_cr0 = xen_read_cr0,
1122 .write_cr0 = xen_write_cr0,
1123
1124 .write_cr4 = xen_write_cr4,
1125
1126 .wbinvd = pv_native_wbinvd,
1127
1128 .read_msr = xen_read_msr,
1129 .write_msr = xen_write_msr,
1130
1131 .read_msr_safe = xen_read_msr_safe,
1132 .write_msr_safe = xen_write_msr_safe,
1133
1134 .read_pmc = xen_read_pmc,
1135
1136 .load_tr_desc = paravirt_nop,
1137 .set_ldt = xen_set_ldt,
1138 .load_gdt = xen_load_gdt,
1139 .load_idt = xen_load_idt,
1140 .load_tls = xen_load_tls,
1141 .load_gs_index = xen_load_gs_index,
1142
1143 .alloc_ldt = xen_alloc_ldt,
1144 .free_ldt = xen_free_ldt,
1145
1146 .store_tr = xen_store_tr,
1147
1148 .write_ldt_entry = xen_write_ldt_entry,
1149 .write_gdt_entry = xen_write_gdt_entry,
1150 .write_idt_entry = xen_write_idt_entry,
1151 .load_sp0 = xen_load_sp0,
1152
1153 #ifdef CONFIG_X86_IOPL_IOPERM
1154 .invalidate_io_bitmap = xen_invalidate_io_bitmap,
1155 .update_io_bitmap = xen_update_io_bitmap,
1156 #endif
1157 .io_delay = xen_io_delay,
1158
1159 .start_context_switch = paravirt_start_context_switch,
1160 .end_context_switch = xen_end_context_switch,
1161 },
1162 };
1163
1164 static void xen_restart(char *msg)
1165 {
1166 xen_reboot(SHUTDOWN_reboot);
1167 }
1168
1169 static void xen_machine_halt(void)
1170 {
1171 xen_reboot(SHUTDOWN_poweroff);
1172 }
1173
1174 static void xen_machine_power_off(void)
1175 {
1176 do_kernel_power_off();
1177 xen_reboot(SHUTDOWN_poweroff);
1178 }
1179
1180 static void xen_crash_shutdown(struct pt_regs *regs)
1181 {
1182 xen_reboot(SHUTDOWN_crash);
1183 }
1184
1185 static const struct machine_ops xen_machine_ops __initconst = {
1186 .restart = xen_restart,
1187 .halt = xen_machine_halt,
1188 .power_off = xen_machine_power_off,
1189 .shutdown = xen_machine_halt,
1190 .crash_shutdown = xen_crash_shutdown,
1191 .emergency_restart = xen_emergency_restart,
1192 };
1193
1194 static unsigned char xen_get_nmi_reason(void)
1195 {
1196 unsigned char reason = 0;
1197
1198 /* Construct a value which looks like it came from port 0x61. */
1199 if (test_bit(_XEN_NMIREASON_io_error,
1200 &HYPERVISOR_shared_info->arch.nmi_reason))
1201 reason |= NMI_REASON_IOCHK;
1202 if (test_bit(_XEN_NMIREASON_pci_serr,
1203 &HYPERVISOR_shared_info->arch.nmi_reason))
1204 reason |= NMI_REASON_SERR;
1205
1206 return reason;
1207 }
1208
1209 static void __init xen_boot_params_init_edd(void)
1210 {
1211 #if IS_ENABLED(CONFIG_EDD)
1212 struct xen_platform_op op;
1213 struct edd_info *edd_info;
1214 u32 *mbr_signature;
1215 unsigned nr;
1216 int ret;
1217
1218 edd_info = boot_params.eddbuf;
1219 mbr_signature = boot_params.edd_mbr_sig_buffer;
1220
1221 op.cmd = XENPF_firmware_info;
1222
1223 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1224 for (nr = 0; nr < EDDMAXNR; nr++) {
1225 struct edd_info *info = edd_info + nr;
1226
1227 op.u.firmware_info.index = nr;
1228 info->params.length = sizeof(info->params);
1229 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1230 &info->params);
1231 ret = HYPERVISOR_platform_op(&op);
1232 if (ret)
1233 break;
1234
1235 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1236 C(device);
1237 C(version);
1238 C(interface_support);
1239 C(legacy_max_cylinder);
1240 C(legacy_max_head);
1241 C(legacy_sectors_per_track);
1242 #undef C
1243 }
1244 boot_params.eddbuf_entries = nr;
1245
1246 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1247 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1248 op.u.firmware_info.index = nr;
1249 ret = HYPERVISOR_platform_op(&op);
1250 if (ret)
1251 break;
1252 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1253 }
1254 boot_params.edd_mbr_sig_buf_entries = nr;
1255 #endif
1256 }
1257
1258 /*
1259 * Set up the GDT and segment registers for -fstack-protector. Until
1260 * we do this, we have to be careful not to call any stack-protected
1261 * function, which is most of the kernel.
1262 */
1263 static void __init xen_setup_gdt(int cpu)
1264 {
1265 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1266 pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1267
1268 switch_gdt_and_percpu_base(cpu);
1269
1270 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1271 pv_ops.cpu.load_gdt = xen_load_gdt;
1272 }
1273
1274 static void __init xen_dom0_set_legacy_features(void)
1275 {
1276 x86_platform.legacy.rtc = 1;
1277 }
1278
1279 static void __init xen_domu_set_legacy_features(void)
1280 {
1281 x86_platform.legacy.rtc = 0;
1282 }
1283
1284 extern void early_xen_iret_patch(void);
1285
1286 /* First C function to be called on Xen boot */
1287 asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1288 {
1289 struct physdev_set_iopl set_iopl;
1290 unsigned long initrd_start = 0;
1291 int rc;
1292
1293 if (!si)
1294 return;
1295
1296 clear_bss();
1297
1298 xen_start_info = si;
1299
1300 __text_gen_insn(&early_xen_iret_patch,
1301 JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1302 JMP32_INSN_SIZE);
1303
1304 xen_domain_type = XEN_PV_DOMAIN;
1305 xen_start_flags = xen_start_info->flags;
1306
1307 xen_setup_features();
1308
1309 /* Install Xen paravirt ops */
1310 pv_info = xen_info;
1311 pv_ops.cpu = xen_cpu_ops.cpu;
1312 xen_init_irq_ops();
1313
1314 /*
1315 * Setup xen_vcpu early because it is needed for
1316 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1317 *
1318 * Don't do the full vcpu_info placement stuff until we have
1319 * the cpu_possible_mask and a non-dummy shared_info.
1320 */
1321 xen_vcpu_info_reset(0);
1322
1323 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1324 x86_platform.realmode_reserve = x86_init_noop;
1325 x86_platform.realmode_init = x86_init_noop;
1326
1327 x86_init.resources.memory_setup = xen_memory_setup;
1328 x86_init.irqs.intr_mode_select = x86_init_noop;
1329 x86_init.irqs.intr_mode_init = x86_64_probe_apic;
1330 x86_init.oem.arch_setup = xen_arch_setup;
1331 x86_init.oem.banner = xen_banner;
1332 x86_init.hyper.init_platform = xen_pv_init_platform;
1333 x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1334
1335 /*
1336 * Set up some pagetable state before starting to set any ptes.
1337 */
1338
1339 xen_setup_machphys_mapping();
1340 xen_init_mmu_ops();
1341
1342 /* Prevent unwanted bits from being set in PTEs. */
1343 __supported_pte_mask &= ~_PAGE_GLOBAL;
1344 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1345
1346 /* Get mfn list */
1347 xen_build_dynamic_phys_to_machine();
1348
1349 /* Work out if we support NX */
1350 get_cpu_cap(&boot_cpu_data);
1351 x86_configure_nx();
1352
1353 /*
1354 * Set up kernel GDT and segment registers, mainly so that
1355 * -fstack-protector code can be executed.
1356 */
1357 xen_setup_gdt(0);
1358
1359 /* Determine virtual and physical address sizes */
1360 get_cpu_address_sizes(&boot_cpu_data);
1361
1362 /* Let's presume PV guests always boot on vCPU with id 0. */
1363 per_cpu(xen_vcpu_id, 0) = 0;
1364
1365 idt_setup_early_handler();
1366
1367 xen_init_capabilities();
1368
1369 /*
1370 * set up the basic apic ops.
1371 */
1372 xen_init_apic();
1373
1374 machine_ops = xen_machine_ops;
1375
1376 /*
1377 * The only reliable way to retain the initial address of the
1378 * percpu gdt_page is to remember it here, so we can go and
1379 * mark it RW later, when the initial percpu area is freed.
1380 */
1381 xen_initial_gdt = &per_cpu(gdt_page, 0);
1382
1383 xen_smp_init();
1384
1385 #ifdef CONFIG_ACPI_NUMA
1386 /*
1387 * The pages we from Xen are not related to machine pages, so
1388 * any NUMA information the kernel tries to get from ACPI will
1389 * be meaningless. Prevent it from trying.
1390 */
1391 disable_srat();
1392 #endif
1393 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1394
1395 local_irq_disable();
1396 early_boot_irqs_disabled = true;
1397
1398 xen_raw_console_write("mapping kernel into physical memory\n");
1399 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1400 xen_start_info->nr_pages);
1401 xen_reserve_special_pages();
1402
1403 /*
1404 * We used to do this in xen_arch_setup, but that is too late
1405 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1406 * early_amd_init which pokes 0xcf8 port.
1407 */
1408 set_iopl.iopl = 1;
1409 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1410 if (rc != 0)
1411 xen_raw_printk("physdev_op failed %d\n", rc);
1412
1413
1414 if (xen_start_info->mod_start) {
1415 if (xen_start_info->flags & SIF_MOD_START_PFN)
1416 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1417 else
1418 initrd_start = __pa(xen_start_info->mod_start);
1419 }
1420
1421 /* Poke various useful things into boot_params */
1422 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1423 boot_params.hdr.ramdisk_image = initrd_start;
1424 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1425 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1426 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1427
1428 if (!xen_initial_domain()) {
1429 if (pci_xen)
1430 x86_init.pci.arch_init = pci_xen_init;
1431 x86_platform.set_legacy_features =
1432 xen_domu_set_legacy_features;
1433 } else {
1434 const struct dom0_vga_console_info *info =
1435 (void *)((char *)xen_start_info +
1436 xen_start_info->console.dom0.info_off);
1437 struct xen_platform_op op = {
1438 .cmd = XENPF_firmware_info,
1439 .interface_version = XENPF_INTERFACE_VERSION,
1440 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1441 };
1442
1443 x86_platform.set_legacy_features =
1444 xen_dom0_set_legacy_features;
1445 xen_init_vga(info, xen_start_info->console.dom0.info_size,
1446 &boot_params.screen_info);
1447 xen_start_info->console.domU.mfn = 0;
1448 xen_start_info->console.domU.evtchn = 0;
1449
1450 if (HYPERVISOR_platform_op(&op) == 0)
1451 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1452
1453 /* Make sure ACS will be enabled */
1454 pci_request_acs();
1455
1456 xen_acpi_sleep_register();
1457
1458 xen_boot_params_init_edd();
1459
1460 #ifdef CONFIG_ACPI
1461 /*
1462 * Disable selecting "Firmware First mode" for correctable
1463 * memory errors, as this is the duty of the hypervisor to
1464 * decide.
1465 */
1466 acpi_disable_cmcff = 1;
1467 #endif
1468 }
1469
1470 xen_add_preferred_consoles();
1471
1472 #ifdef CONFIG_PCI
1473 /* PCI BIOS service won't work from a PV guest. */
1474 pci_probe &= ~PCI_PROBE_BIOS;
1475 #endif
1476 xen_raw_console_write("about to get started...\n");
1477
1478 /* We need this for printk timestamps */
1479 xen_setup_runstate_info(0);
1480
1481 xen_efi_init(&boot_params);
1482
1483 /* Start the world */
1484 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1485 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1486 }
1487
1488 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1489 {
1490 int rc;
1491
1492 if (per_cpu(xen_vcpu, cpu) == NULL)
1493 return -ENODEV;
1494
1495 xen_setup_timer(cpu);
1496
1497 rc = xen_smp_intr_init(cpu);
1498 if (rc) {
1499 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1500 cpu, rc);
1501 return rc;
1502 }
1503
1504 rc = xen_smp_intr_init_pv(cpu);
1505 if (rc) {
1506 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1507 cpu, rc);
1508 return rc;
1509 }
1510
1511 return 0;
1512 }
1513
1514 static int xen_cpu_dead_pv(unsigned int cpu)
1515 {
1516 xen_smp_intr_free(cpu);
1517 xen_smp_intr_free_pv(cpu);
1518
1519 xen_teardown_timer(cpu);
1520
1521 return 0;
1522 }
1523
1524 static uint32_t __init xen_platform_pv(void)
1525 {
1526 if (xen_pv_domain())
1527 return xen_cpuid_base();
1528
1529 return 0;
1530 }
1531
1532 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1533 .name = "Xen PV",
1534 .detect = xen_platform_pv,
1535 .type = X86_HYPER_XEN_PV,
1536 .runtime.pin_vcpu = xen_pin_vcpu,
1537 .ignore_nopv = true,
1538 };