]> git.ipfire.org Git - thirdparty/qemu.git/blob - arch_init.c
target-ppc: enable virtio endian ambivalent support
[thirdparty/qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52 #include "exec/ram_addr.h"
53 #include "hw/acpi/acpi.h"
54 #include "qemu/host-utils.h"
55
56 #ifdef DEBUG_ARCH_INIT
57 #define DPRINTF(fmt, ...) \
58 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61 do { } while (0)
62 #endif
63
64 #ifdef TARGET_SPARC
65 int graphic_width = 1024;
66 int graphic_height = 768;
67 int graphic_depth = 8;
68 #else
69 int graphic_width = 800;
70 int graphic_height = 600;
71 int graphic_depth = 32;
72 #endif
73
74
75 #if defined(TARGET_ALPHA)
76 #define QEMU_ARCH QEMU_ARCH_ALPHA
77 #elif defined(TARGET_ARM)
78 #define QEMU_ARCH QEMU_ARCH_ARM
79 #elif defined(TARGET_CRIS)
80 #define QEMU_ARCH QEMU_ARCH_CRIS
81 #elif defined(TARGET_I386)
82 #define QEMU_ARCH QEMU_ARCH_I386
83 #elif defined(TARGET_M68K)
84 #define QEMU_ARCH QEMU_ARCH_M68K
85 #elif defined(TARGET_LM32)
86 #define QEMU_ARCH QEMU_ARCH_LM32
87 #elif defined(TARGET_MICROBLAZE)
88 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
89 #elif defined(TARGET_MIPS)
90 #define QEMU_ARCH QEMU_ARCH_MIPS
91 #elif defined(TARGET_MOXIE)
92 #define QEMU_ARCH QEMU_ARCH_MOXIE
93 #elif defined(TARGET_OPENRISC)
94 #define QEMU_ARCH QEMU_ARCH_OPENRISC
95 #elif defined(TARGET_PPC)
96 #define QEMU_ARCH QEMU_ARCH_PPC
97 #elif defined(TARGET_S390X)
98 #define QEMU_ARCH QEMU_ARCH_S390X
99 #elif defined(TARGET_SH4)
100 #define QEMU_ARCH QEMU_ARCH_SH4
101 #elif defined(TARGET_SPARC)
102 #define QEMU_ARCH QEMU_ARCH_SPARC
103 #elif defined(TARGET_XTENSA)
104 #define QEMU_ARCH QEMU_ARCH_XTENSA
105 #elif defined(TARGET_UNICORE32)
106 #define QEMU_ARCH QEMU_ARCH_UNICORE32
107 #endif
108
109 const uint32_t arch_type = QEMU_ARCH;
110 static bool mig_throttle_on;
111 static int dirty_rate_high_cnt;
112 static void check_guest_throttling(void);
113
114 static uint64_t bitmap_sync_count;
115
116 /***********************************************************/
117 /* ram save/restore */
118
119 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
120 #define RAM_SAVE_FLAG_COMPRESS 0x02
121 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
122 #define RAM_SAVE_FLAG_PAGE 0x08
123 #define RAM_SAVE_FLAG_EOS 0x10
124 #define RAM_SAVE_FLAG_CONTINUE 0x20
125 #define RAM_SAVE_FLAG_XBZRLE 0x40
126 /* 0x80 is reserved in migration.h start with 0x100 next */
127
128 static struct defconfig_file {
129 const char *filename;
130 /* Indicates it is an user config file (disabled by -no-user-config) */
131 bool userconfig;
132 } default_config_files[] = {
133 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
134 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
135 { NULL }, /* end of list */
136 };
137
138 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
139
140 int qemu_read_default_config_files(bool userconfig)
141 {
142 int ret;
143 struct defconfig_file *f;
144
145 for (f = default_config_files; f->filename; f++) {
146 if (!userconfig && f->userconfig) {
147 continue;
148 }
149 ret = qemu_read_config_file(f->filename);
150 if (ret < 0 && ret != -ENOENT) {
151 return ret;
152 }
153 }
154
155 return 0;
156 }
157
158 static inline bool is_zero_range(uint8_t *p, uint64_t size)
159 {
160 return buffer_find_nonzero_offset(p, size) == size;
161 }
162
163 /* struct contains XBZRLE cache and a static page
164 used by the compression */
165 static struct {
166 /* buffer used for XBZRLE encoding */
167 uint8_t *encoded_buf;
168 /* buffer for storing page content */
169 uint8_t *current_buf;
170 /* Cache for XBZRLE, Protected by lock. */
171 PageCache *cache;
172 QemuMutex lock;
173 } XBZRLE;
174
175 /* buffer used for XBZRLE decoding */
176 static uint8_t *xbzrle_decoded_buf;
177
178 static void XBZRLE_cache_lock(void)
179 {
180 if (migrate_use_xbzrle())
181 qemu_mutex_lock(&XBZRLE.lock);
182 }
183
184 static void XBZRLE_cache_unlock(void)
185 {
186 if (migrate_use_xbzrle())
187 qemu_mutex_unlock(&XBZRLE.lock);
188 }
189
190 /*
191 * called from qmp_migrate_set_cache_size in main thread, possibly while
192 * a migration is in progress.
193 * A running migration maybe using the cache and might finish during this
194 * call, hence changes to the cache are protected by XBZRLE.lock().
195 */
196 int64_t xbzrle_cache_resize(int64_t new_size)
197 {
198 PageCache *new_cache;
199 int64_t ret;
200
201 if (new_size < TARGET_PAGE_SIZE) {
202 return -1;
203 }
204
205 XBZRLE_cache_lock();
206
207 if (XBZRLE.cache != NULL) {
208 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
209 goto out_new_size;
210 }
211 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
212 TARGET_PAGE_SIZE);
213 if (!new_cache) {
214 error_report("Error creating cache");
215 ret = -1;
216 goto out;
217 }
218
219 cache_fini(XBZRLE.cache);
220 XBZRLE.cache = new_cache;
221 }
222
223 out_new_size:
224 ret = pow2floor(new_size);
225 out:
226 XBZRLE_cache_unlock();
227 return ret;
228 }
229
230 /* accounting for migration statistics */
231 typedef struct AccountingInfo {
232 uint64_t dup_pages;
233 uint64_t skipped_pages;
234 uint64_t norm_pages;
235 uint64_t iterations;
236 uint64_t xbzrle_bytes;
237 uint64_t xbzrle_pages;
238 uint64_t xbzrle_cache_miss;
239 double xbzrle_cache_miss_rate;
240 uint64_t xbzrle_overflows;
241 } AccountingInfo;
242
243 static AccountingInfo acct_info;
244
245 static void acct_clear(void)
246 {
247 memset(&acct_info, 0, sizeof(acct_info));
248 }
249
250 uint64_t dup_mig_bytes_transferred(void)
251 {
252 return acct_info.dup_pages * TARGET_PAGE_SIZE;
253 }
254
255 uint64_t dup_mig_pages_transferred(void)
256 {
257 return acct_info.dup_pages;
258 }
259
260 uint64_t skipped_mig_bytes_transferred(void)
261 {
262 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
263 }
264
265 uint64_t skipped_mig_pages_transferred(void)
266 {
267 return acct_info.skipped_pages;
268 }
269
270 uint64_t norm_mig_bytes_transferred(void)
271 {
272 return acct_info.norm_pages * TARGET_PAGE_SIZE;
273 }
274
275 uint64_t norm_mig_pages_transferred(void)
276 {
277 return acct_info.norm_pages;
278 }
279
280 uint64_t xbzrle_mig_bytes_transferred(void)
281 {
282 return acct_info.xbzrle_bytes;
283 }
284
285 uint64_t xbzrle_mig_pages_transferred(void)
286 {
287 return acct_info.xbzrle_pages;
288 }
289
290 uint64_t xbzrle_mig_pages_cache_miss(void)
291 {
292 return acct_info.xbzrle_cache_miss;
293 }
294
295 double xbzrle_mig_cache_miss_rate(void)
296 {
297 return acct_info.xbzrle_cache_miss_rate;
298 }
299
300 uint64_t xbzrle_mig_pages_overflow(void)
301 {
302 return acct_info.xbzrle_overflows;
303 }
304
305 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
306 int cont, int flag)
307 {
308 size_t size;
309
310 qemu_put_be64(f, offset | cont | flag);
311 size = 8;
312
313 if (!cont) {
314 qemu_put_byte(f, strlen(block->idstr));
315 qemu_put_buffer(f, (uint8_t *)block->idstr,
316 strlen(block->idstr));
317 size += 1 + strlen(block->idstr);
318 }
319 return size;
320 }
321
322 /* This is the last block that we have visited serching for dirty pages
323 */
324 static RAMBlock *last_seen_block;
325 /* This is the last block from where we have sent data */
326 static RAMBlock *last_sent_block;
327 static ram_addr_t last_offset;
328 static unsigned long *migration_bitmap;
329 static uint64_t migration_dirty_pages;
330 static uint32_t last_version;
331 static bool ram_bulk_stage;
332
333 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
334 * The important thing is that a stale (not-yet-0'd) page be replaced
335 * by the new data.
336 * As a bonus, if the page wasn't in the cache it gets added so that
337 * when a small write is made into the 0'd page it gets XBZRLE sent
338 */
339 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
340 {
341 if (ram_bulk_stage || !migrate_use_xbzrle()) {
342 return;
343 }
344
345 /* We don't care if this fails to allocate a new cache page
346 * as long as it updated an old one */
347 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE);
348 }
349
350 #define ENCODING_FLAG_XBZRLE 0x1
351
352 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
353 ram_addr_t current_addr, RAMBlock *block,
354 ram_addr_t offset, int cont, bool last_stage)
355 {
356 int encoded_len = 0, bytes_sent = -1;
357 uint8_t *prev_cached_page;
358
359 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
360 acct_info.xbzrle_cache_miss++;
361 if (!last_stage) {
362 if (cache_insert(XBZRLE.cache, current_addr, *current_data) == -1) {
363 return -1;
364 } else {
365 /* update *current_data when the page has been
366 inserted into cache */
367 *current_data = get_cached_data(XBZRLE.cache, current_addr);
368 }
369 }
370 return -1;
371 }
372
373 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
374
375 /* save current buffer into memory */
376 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
377
378 /* XBZRLE encoding (if there is no overflow) */
379 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
380 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
381 TARGET_PAGE_SIZE);
382 if (encoded_len == 0) {
383 DPRINTF("Skipping unmodified page\n");
384 return 0;
385 } else if (encoded_len == -1) {
386 DPRINTF("Overflow\n");
387 acct_info.xbzrle_overflows++;
388 /* update data in the cache */
389 if (!last_stage) {
390 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
391 *current_data = prev_cached_page;
392 }
393 return -1;
394 }
395
396 /* we need to update the data in the cache, in order to get the same data */
397 if (!last_stage) {
398 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
399 }
400
401 /* Send XBZRLE based compressed page */
402 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
403 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
404 qemu_put_be16(f, encoded_len);
405 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
406 bytes_sent += encoded_len + 1 + 2;
407 acct_info.xbzrle_pages++;
408 acct_info.xbzrle_bytes += bytes_sent;
409
410 return bytes_sent;
411 }
412
413 static inline
414 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
415 ram_addr_t start)
416 {
417 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
418 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
419 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
420 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
421
422 unsigned long next;
423
424 if (ram_bulk_stage && nr > base) {
425 next = nr + 1;
426 } else {
427 next = find_next_bit(migration_bitmap, size, nr);
428 }
429
430 if (next < size) {
431 clear_bit(next, migration_bitmap);
432 migration_dirty_pages--;
433 }
434 return (next - base) << TARGET_PAGE_BITS;
435 }
436
437 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
438 {
439 bool ret;
440 int nr = addr >> TARGET_PAGE_BITS;
441
442 ret = test_and_set_bit(nr, migration_bitmap);
443
444 if (!ret) {
445 migration_dirty_pages++;
446 }
447 return ret;
448 }
449
450 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
451 {
452 ram_addr_t addr;
453 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
454
455 /* start address is aligned at the start of a word? */
456 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
457 int k;
458 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
459 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
460
461 for (k = page; k < page + nr; k++) {
462 if (src[k]) {
463 unsigned long new_dirty;
464 new_dirty = ~migration_bitmap[k];
465 migration_bitmap[k] |= src[k];
466 new_dirty &= src[k];
467 migration_dirty_pages += ctpopl(new_dirty);
468 src[k] = 0;
469 }
470 }
471 } else {
472 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
473 if (cpu_physical_memory_get_dirty(start + addr,
474 TARGET_PAGE_SIZE,
475 DIRTY_MEMORY_MIGRATION)) {
476 cpu_physical_memory_reset_dirty(start + addr,
477 TARGET_PAGE_SIZE,
478 DIRTY_MEMORY_MIGRATION);
479 migration_bitmap_set_dirty(start + addr);
480 }
481 }
482 }
483 }
484
485
486 /* Needs iothread lock! */
487
488 static void migration_bitmap_sync(void)
489 {
490 RAMBlock *block;
491 uint64_t num_dirty_pages_init = migration_dirty_pages;
492 MigrationState *s = migrate_get_current();
493 static int64_t start_time;
494 static int64_t bytes_xfer_prev;
495 static int64_t num_dirty_pages_period;
496 int64_t end_time;
497 int64_t bytes_xfer_now;
498 static uint64_t xbzrle_cache_miss_prev;
499 static uint64_t iterations_prev;
500
501 bitmap_sync_count++;
502
503 if (!bytes_xfer_prev) {
504 bytes_xfer_prev = ram_bytes_transferred();
505 }
506
507 if (!start_time) {
508 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
509 }
510
511 trace_migration_bitmap_sync_start();
512 address_space_sync_dirty_bitmap(&address_space_memory);
513
514 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
515 migration_bitmap_sync_range(block->mr->ram_addr, block->length);
516 }
517 trace_migration_bitmap_sync_end(migration_dirty_pages
518 - num_dirty_pages_init);
519 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
520 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
521
522 /* more than 1 second = 1000 millisecons */
523 if (end_time > start_time + 1000) {
524 if (migrate_auto_converge()) {
525 /* The following detection logic can be refined later. For now:
526 Check to see if the dirtied bytes is 50% more than the approx.
527 amount of bytes that just got transferred since the last time we
528 were in this routine. If that happens >N times (for now N==4)
529 we turn on the throttle down logic */
530 bytes_xfer_now = ram_bytes_transferred();
531 if (s->dirty_pages_rate &&
532 (num_dirty_pages_period * TARGET_PAGE_SIZE >
533 (bytes_xfer_now - bytes_xfer_prev)/2) &&
534 (dirty_rate_high_cnt++ > 4)) {
535 trace_migration_throttle();
536 mig_throttle_on = true;
537 dirty_rate_high_cnt = 0;
538 }
539 bytes_xfer_prev = bytes_xfer_now;
540 } else {
541 mig_throttle_on = false;
542 }
543 if (migrate_use_xbzrle()) {
544 if (iterations_prev != 0) {
545 acct_info.xbzrle_cache_miss_rate =
546 (double)(acct_info.xbzrle_cache_miss -
547 xbzrle_cache_miss_prev) /
548 (acct_info.iterations - iterations_prev);
549 }
550 iterations_prev = acct_info.iterations;
551 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
552 }
553 s->dirty_pages_rate = num_dirty_pages_period * 1000
554 / (end_time - start_time);
555 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
556 start_time = end_time;
557 num_dirty_pages_period = 0;
558 s->dirty_sync_count = bitmap_sync_count;
559 }
560 }
561
562 /*
563 * ram_save_page: Send the given page to the stream
564 *
565 * Returns: Number of bytes written.
566 */
567 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
568 bool last_stage)
569 {
570 int bytes_sent;
571 int cont;
572 ram_addr_t current_addr;
573 MemoryRegion *mr = block->mr;
574 uint8_t *p;
575 int ret;
576 bool send_async = true;
577
578 cont = (block == last_sent_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
579
580 p = memory_region_get_ram_ptr(mr) + offset;
581
582 /* In doubt sent page as normal */
583 bytes_sent = -1;
584 ret = ram_control_save_page(f, block->offset,
585 offset, TARGET_PAGE_SIZE, &bytes_sent);
586
587 XBZRLE_cache_lock();
588
589 current_addr = block->offset + offset;
590 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
591 if (ret != RAM_SAVE_CONTROL_DELAYED) {
592 if (bytes_sent > 0) {
593 acct_info.norm_pages++;
594 } else if (bytes_sent == 0) {
595 acct_info.dup_pages++;
596 }
597 }
598 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
599 acct_info.dup_pages++;
600 bytes_sent = save_block_hdr(f, block, offset, cont,
601 RAM_SAVE_FLAG_COMPRESS);
602 qemu_put_byte(f, 0);
603 bytes_sent++;
604 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
605 * page would be stale
606 */
607 xbzrle_cache_zero_page(current_addr);
608 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
609 bytes_sent = save_xbzrle_page(f, &p, current_addr, block,
610 offset, cont, last_stage);
611 if (!last_stage) {
612 /* Can't send this cached data async, since the cache page
613 * might get updated before it gets to the wire
614 */
615 send_async = false;
616 }
617 }
618
619 /* XBZRLE overflow or normal page */
620 if (bytes_sent == -1) {
621 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
622 if (send_async) {
623 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
624 } else {
625 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
626 }
627 bytes_sent += TARGET_PAGE_SIZE;
628 acct_info.norm_pages++;
629 }
630
631 XBZRLE_cache_unlock();
632
633 return bytes_sent;
634 }
635
636 /*
637 * ram_find_and_save_block: Finds a page to send and sends it to f
638 *
639 * Returns: The number of bytes written.
640 * 0 means no dirty pages
641 */
642
643 static int ram_find_and_save_block(QEMUFile *f, bool last_stage)
644 {
645 RAMBlock *block = last_seen_block;
646 ram_addr_t offset = last_offset;
647 bool complete_round = false;
648 int bytes_sent = 0;
649 MemoryRegion *mr;
650
651 if (!block)
652 block = QTAILQ_FIRST(&ram_list.blocks);
653
654 while (true) {
655 mr = block->mr;
656 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
657 if (complete_round && block == last_seen_block &&
658 offset >= last_offset) {
659 break;
660 }
661 if (offset >= block->length) {
662 offset = 0;
663 block = QTAILQ_NEXT(block, next);
664 if (!block) {
665 block = QTAILQ_FIRST(&ram_list.blocks);
666 complete_round = true;
667 ram_bulk_stage = false;
668 }
669 } else {
670 bytes_sent = ram_save_page(f, block, offset, last_stage);
671
672 /* if page is unmodified, continue to the next */
673 if (bytes_sent > 0) {
674 last_sent_block = block;
675 break;
676 }
677 }
678 }
679 last_seen_block = block;
680 last_offset = offset;
681
682 return bytes_sent;
683 }
684
685 static uint64_t bytes_transferred;
686
687 void acct_update_position(QEMUFile *f, size_t size, bool zero)
688 {
689 uint64_t pages = size / TARGET_PAGE_SIZE;
690 if (zero) {
691 acct_info.dup_pages += pages;
692 } else {
693 acct_info.norm_pages += pages;
694 bytes_transferred += size;
695 qemu_update_position(f, size);
696 }
697 }
698
699 static ram_addr_t ram_save_remaining(void)
700 {
701 return migration_dirty_pages;
702 }
703
704 uint64_t ram_bytes_remaining(void)
705 {
706 return ram_save_remaining() * TARGET_PAGE_SIZE;
707 }
708
709 uint64_t ram_bytes_transferred(void)
710 {
711 return bytes_transferred;
712 }
713
714 uint64_t ram_bytes_total(void)
715 {
716 RAMBlock *block;
717 uint64_t total = 0;
718
719 QTAILQ_FOREACH(block, &ram_list.blocks, next)
720 total += block->length;
721
722 return total;
723 }
724
725 void free_xbzrle_decoded_buf(void)
726 {
727 g_free(xbzrle_decoded_buf);
728 xbzrle_decoded_buf = NULL;
729 }
730
731 static void migration_end(void)
732 {
733 if (migration_bitmap) {
734 memory_global_dirty_log_stop();
735 g_free(migration_bitmap);
736 migration_bitmap = NULL;
737 }
738
739 XBZRLE_cache_lock();
740 if (XBZRLE.cache) {
741 cache_fini(XBZRLE.cache);
742 g_free(XBZRLE.encoded_buf);
743 g_free(XBZRLE.current_buf);
744 XBZRLE.cache = NULL;
745 XBZRLE.encoded_buf = NULL;
746 XBZRLE.current_buf = NULL;
747 }
748 XBZRLE_cache_unlock();
749 }
750
751 static void ram_migration_cancel(void *opaque)
752 {
753 migration_end();
754 }
755
756 static void reset_ram_globals(void)
757 {
758 last_seen_block = NULL;
759 last_sent_block = NULL;
760 last_offset = 0;
761 last_version = ram_list.version;
762 ram_bulk_stage = true;
763 }
764
765 #define MAX_WAIT 50 /* ms, half buffered_file limit */
766
767 static int ram_save_setup(QEMUFile *f, void *opaque)
768 {
769 RAMBlock *block;
770 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
771
772 mig_throttle_on = false;
773 dirty_rate_high_cnt = 0;
774 bitmap_sync_count = 0;
775
776 if (migrate_use_xbzrle()) {
777 XBZRLE_cache_lock();
778 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
779 TARGET_PAGE_SIZE,
780 TARGET_PAGE_SIZE);
781 if (!XBZRLE.cache) {
782 XBZRLE_cache_unlock();
783 error_report("Error creating cache");
784 return -1;
785 }
786 XBZRLE_cache_unlock();
787
788 /* We prefer not to abort if there is no memory */
789 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
790 if (!XBZRLE.encoded_buf) {
791 error_report("Error allocating encoded_buf");
792 return -1;
793 }
794
795 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
796 if (!XBZRLE.current_buf) {
797 error_report("Error allocating current_buf");
798 g_free(XBZRLE.encoded_buf);
799 XBZRLE.encoded_buf = NULL;
800 return -1;
801 }
802
803 acct_clear();
804 }
805
806 qemu_mutex_lock_iothread();
807 qemu_mutex_lock_ramlist();
808 bytes_transferred = 0;
809 reset_ram_globals();
810
811 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
812 migration_bitmap = bitmap_new(ram_bitmap_pages);
813 bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
814
815 /*
816 * Count the total number of pages used by ram blocks not including any
817 * gaps due to alignment or unplugs.
818 */
819 migration_dirty_pages = 0;
820 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
821 uint64_t block_pages;
822
823 block_pages = block->length >> TARGET_PAGE_BITS;
824 migration_dirty_pages += block_pages;
825 }
826
827 memory_global_dirty_log_start();
828 migration_bitmap_sync();
829 qemu_mutex_unlock_iothread();
830
831 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
832
833 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
834 qemu_put_byte(f, strlen(block->idstr));
835 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
836 qemu_put_be64(f, block->length);
837 }
838
839 qemu_mutex_unlock_ramlist();
840
841 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
842 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
843
844 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
845
846 return 0;
847 }
848
849 static int ram_save_iterate(QEMUFile *f, void *opaque)
850 {
851 int ret;
852 int i;
853 int64_t t0;
854 int total_sent = 0;
855
856 qemu_mutex_lock_ramlist();
857
858 if (ram_list.version != last_version) {
859 reset_ram_globals();
860 }
861
862 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
863
864 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
865 i = 0;
866 while ((ret = qemu_file_rate_limit(f)) == 0) {
867 int bytes_sent;
868
869 bytes_sent = ram_find_and_save_block(f, false);
870 /* no more blocks to sent */
871 if (bytes_sent == 0) {
872 break;
873 }
874 total_sent += bytes_sent;
875 acct_info.iterations++;
876 check_guest_throttling();
877 /* we want to check in the 1st loop, just in case it was the 1st time
878 and we had to sync the dirty bitmap.
879 qemu_get_clock_ns() is a bit expensive, so we only check each some
880 iterations
881 */
882 if ((i & 63) == 0) {
883 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
884 if (t1 > MAX_WAIT) {
885 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
886 t1, i);
887 break;
888 }
889 }
890 i++;
891 }
892
893 qemu_mutex_unlock_ramlist();
894
895 /*
896 * Must occur before EOS (or any QEMUFile operation)
897 * because of RDMA protocol.
898 */
899 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
900
901 bytes_transferred += total_sent;
902
903 /*
904 * Do not count these 8 bytes into total_sent, so that we can
905 * return 0 if no page had been dirtied.
906 */
907 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
908 bytes_transferred += 8;
909
910 ret = qemu_file_get_error(f);
911 if (ret < 0) {
912 return ret;
913 }
914
915 return total_sent;
916 }
917
918 static int ram_save_complete(QEMUFile *f, void *opaque)
919 {
920 qemu_mutex_lock_ramlist();
921 migration_bitmap_sync();
922
923 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
924
925 /* try transferring iterative blocks of memory */
926
927 /* flush all remaining blocks regardless of rate limiting */
928 while (true) {
929 int bytes_sent;
930
931 bytes_sent = ram_find_and_save_block(f, true);
932 /* no more blocks to sent */
933 if (bytes_sent == 0) {
934 break;
935 }
936 bytes_transferred += bytes_sent;
937 }
938
939 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
940 migration_end();
941
942 qemu_mutex_unlock_ramlist();
943 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
944
945 return 0;
946 }
947
948 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
949 {
950 uint64_t remaining_size;
951
952 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
953
954 if (remaining_size < max_size) {
955 qemu_mutex_lock_iothread();
956 migration_bitmap_sync();
957 qemu_mutex_unlock_iothread();
958 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
959 }
960 return remaining_size;
961 }
962
963 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
964 {
965 unsigned int xh_len;
966 int xh_flags;
967
968 if (!xbzrle_decoded_buf) {
969 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
970 }
971
972 /* extract RLE header */
973 xh_flags = qemu_get_byte(f);
974 xh_len = qemu_get_be16(f);
975
976 if (xh_flags != ENCODING_FLAG_XBZRLE) {
977 error_report("Failed to load XBZRLE page - wrong compression!");
978 return -1;
979 }
980
981 if (xh_len > TARGET_PAGE_SIZE) {
982 error_report("Failed to load XBZRLE page - len overflow!");
983 return -1;
984 }
985 /* load data and decode */
986 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
987
988 /* decode RLE */
989 if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
990 TARGET_PAGE_SIZE) == -1) {
991 error_report("Failed to load XBZRLE page - decode error!");
992 return -1;
993 }
994
995 return 0;
996 }
997
998 static inline void *host_from_stream_offset(QEMUFile *f,
999 ram_addr_t offset,
1000 int flags)
1001 {
1002 static RAMBlock *block = NULL;
1003 char id[256];
1004 uint8_t len;
1005
1006 if (flags & RAM_SAVE_FLAG_CONTINUE) {
1007 if (!block) {
1008 error_report("Ack, bad migration stream!");
1009 return NULL;
1010 }
1011
1012 return memory_region_get_ram_ptr(block->mr) + offset;
1013 }
1014
1015 len = qemu_get_byte(f);
1016 qemu_get_buffer(f, (uint8_t *)id, len);
1017 id[len] = 0;
1018
1019 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1020 if (!strncmp(id, block->idstr, sizeof(id)))
1021 return memory_region_get_ram_ptr(block->mr) + offset;
1022 }
1023
1024 error_report("Can't find block %s!", id);
1025 return NULL;
1026 }
1027
1028 /*
1029 * If a page (or a whole RDMA chunk) has been
1030 * determined to be zero, then zap it.
1031 */
1032 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1033 {
1034 if (ch != 0 || !is_zero_range(host, size)) {
1035 memset(host, ch, size);
1036 }
1037 }
1038
1039 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1040 {
1041 ram_addr_t addr;
1042 int flags, ret = 0;
1043 static uint64_t seq_iter;
1044
1045 seq_iter++;
1046
1047 if (version_id != 4) {
1048 ret = -EINVAL;
1049 }
1050
1051 while (!ret) {
1052 addr = qemu_get_be64(f);
1053
1054 flags = addr & ~TARGET_PAGE_MASK;
1055 addr &= TARGET_PAGE_MASK;
1056
1057 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
1058 /* Synchronize RAM block list */
1059 char id[256];
1060 ram_addr_t length;
1061 ram_addr_t total_ram_bytes = addr;
1062
1063 while (total_ram_bytes) {
1064 RAMBlock *block;
1065 uint8_t len;
1066
1067 len = qemu_get_byte(f);
1068 qemu_get_buffer(f, (uint8_t *)id, len);
1069 id[len] = 0;
1070 length = qemu_get_be64(f);
1071
1072 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1073 if (!strncmp(id, block->idstr, sizeof(id))) {
1074 if (block->length != length) {
1075 error_report("Length mismatch: %s: " RAM_ADDR_FMT
1076 " in != " RAM_ADDR_FMT, id, length,
1077 block->length);
1078 ret = -EINVAL;
1079 }
1080 break;
1081 }
1082 }
1083
1084 if (!block) {
1085 error_report("Unknown ramblock \"%s\", cannot "
1086 "accept migration", id);
1087 ret = -EINVAL;
1088 }
1089 if (ret) {
1090 break;
1091 }
1092
1093 total_ram_bytes -= length;
1094 }
1095 } else if (flags & RAM_SAVE_FLAG_COMPRESS) {
1096 void *host;
1097 uint8_t ch;
1098
1099 host = host_from_stream_offset(f, addr, flags);
1100 if (!host) {
1101 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1102 ret = -EINVAL;
1103 break;
1104 }
1105
1106 ch = qemu_get_byte(f);
1107 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1108 } else if (flags & RAM_SAVE_FLAG_PAGE) {
1109 void *host;
1110
1111 host = host_from_stream_offset(f, addr, flags);
1112 if (!host) {
1113 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1114 ret = -EINVAL;
1115 break;
1116 }
1117
1118 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1119 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
1120 void *host = host_from_stream_offset(f, addr, flags);
1121 if (!host) {
1122 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1123 ret = -EINVAL;
1124 break;
1125 }
1126
1127 if (load_xbzrle(f, addr, host) < 0) {
1128 error_report("Failed to decompress XBZRLE page at "
1129 RAM_ADDR_FMT, addr);
1130 ret = -EINVAL;
1131 break;
1132 }
1133 } else if (flags & RAM_SAVE_FLAG_HOOK) {
1134 ram_control_load_hook(f, flags);
1135 } else if (flags & RAM_SAVE_FLAG_EOS) {
1136 /* normal exit */
1137 break;
1138 } else {
1139 error_report("Unknown migration flags: %#x", flags);
1140 ret = -EINVAL;
1141 break;
1142 }
1143 ret = qemu_file_get_error(f);
1144 }
1145
1146 DPRINTF("Completed load of VM with exit code %d seq iteration "
1147 "%" PRIu64 "\n", ret, seq_iter);
1148 return ret;
1149 }
1150
1151 static SaveVMHandlers savevm_ram_handlers = {
1152 .save_live_setup = ram_save_setup,
1153 .save_live_iterate = ram_save_iterate,
1154 .save_live_complete = ram_save_complete,
1155 .save_live_pending = ram_save_pending,
1156 .load_state = ram_load,
1157 .cancel = ram_migration_cancel,
1158 };
1159
1160 void ram_mig_init(void)
1161 {
1162 qemu_mutex_init(&XBZRLE.lock);
1163 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1164 }
1165
1166 struct soundhw {
1167 const char *name;
1168 const char *descr;
1169 int enabled;
1170 int isa;
1171 union {
1172 int (*init_isa) (ISABus *bus);
1173 int (*init_pci) (PCIBus *bus);
1174 } init;
1175 };
1176
1177 static struct soundhw soundhw[9];
1178 static int soundhw_count;
1179
1180 void isa_register_soundhw(const char *name, const char *descr,
1181 int (*init_isa)(ISABus *bus))
1182 {
1183 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1184 soundhw[soundhw_count].name = name;
1185 soundhw[soundhw_count].descr = descr;
1186 soundhw[soundhw_count].isa = 1;
1187 soundhw[soundhw_count].init.init_isa = init_isa;
1188 soundhw_count++;
1189 }
1190
1191 void pci_register_soundhw(const char *name, const char *descr,
1192 int (*init_pci)(PCIBus *bus))
1193 {
1194 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1195 soundhw[soundhw_count].name = name;
1196 soundhw[soundhw_count].descr = descr;
1197 soundhw[soundhw_count].isa = 0;
1198 soundhw[soundhw_count].init.init_pci = init_pci;
1199 soundhw_count++;
1200 }
1201
1202 void select_soundhw(const char *optarg)
1203 {
1204 struct soundhw *c;
1205
1206 if (is_help_option(optarg)) {
1207 show_valid_cards:
1208
1209 if (soundhw_count) {
1210 printf("Valid sound card names (comma separated):\n");
1211 for (c = soundhw; c->name; ++c) {
1212 printf ("%-11s %s\n", c->name, c->descr);
1213 }
1214 printf("\n-soundhw all will enable all of the above\n");
1215 } else {
1216 printf("Machine has no user-selectable audio hardware "
1217 "(it may or may not have always-present audio hardware).\n");
1218 }
1219 exit(!is_help_option(optarg));
1220 }
1221 else {
1222 size_t l;
1223 const char *p;
1224 char *e;
1225 int bad_card = 0;
1226
1227 if (!strcmp(optarg, "all")) {
1228 for (c = soundhw; c->name; ++c) {
1229 c->enabled = 1;
1230 }
1231 return;
1232 }
1233
1234 p = optarg;
1235 while (*p) {
1236 e = strchr(p, ',');
1237 l = !e ? strlen(p) : (size_t) (e - p);
1238
1239 for (c = soundhw; c->name; ++c) {
1240 if (!strncmp(c->name, p, l) && !c->name[l]) {
1241 c->enabled = 1;
1242 break;
1243 }
1244 }
1245
1246 if (!c->name) {
1247 if (l > 80) {
1248 error_report("Unknown sound card name (too big to show)");
1249 }
1250 else {
1251 error_report("Unknown sound card name `%.*s'",
1252 (int) l, p);
1253 }
1254 bad_card = 1;
1255 }
1256 p += l + (e != NULL);
1257 }
1258
1259 if (bad_card) {
1260 goto show_valid_cards;
1261 }
1262 }
1263 }
1264
1265 void audio_init(void)
1266 {
1267 struct soundhw *c;
1268 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1269 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1270
1271 for (c = soundhw; c->name; ++c) {
1272 if (c->enabled) {
1273 if (c->isa) {
1274 if (!isa_bus) {
1275 error_report("ISA bus not available for %s", c->name);
1276 exit(1);
1277 }
1278 c->init.init_isa(isa_bus);
1279 } else {
1280 if (!pci_bus) {
1281 error_report("PCI bus not available for %s", c->name);
1282 exit(1);
1283 }
1284 c->init.init_pci(pci_bus);
1285 }
1286 }
1287 }
1288 }
1289
1290 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1291 {
1292 int ret;
1293
1294 if (strlen(str) != 36) {
1295 return -1;
1296 }
1297
1298 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1299 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1300 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1301 &uuid[15]);
1302
1303 if (ret != 16) {
1304 return -1;
1305 }
1306 return 0;
1307 }
1308
1309 void do_acpitable_option(const QemuOpts *opts)
1310 {
1311 #ifdef TARGET_I386
1312 Error *err = NULL;
1313
1314 acpi_table_add(opts, &err);
1315 if (err) {
1316 error_report("Wrong acpi table provided: %s",
1317 error_get_pretty(err));
1318 error_free(err);
1319 exit(1);
1320 }
1321 #endif
1322 }
1323
1324 void do_smbios_option(QemuOpts *opts)
1325 {
1326 #ifdef TARGET_I386
1327 smbios_entry_add(opts);
1328 #endif
1329 }
1330
1331 void cpudef_init(void)
1332 {
1333 #if defined(cpudef_setup)
1334 cpudef_setup(); /* parse cpu definitions in target config file */
1335 #endif
1336 }
1337
1338 int tcg_available(void)
1339 {
1340 return 1;
1341 }
1342
1343 int kvm_available(void)
1344 {
1345 #ifdef CONFIG_KVM
1346 return 1;
1347 #else
1348 return 0;
1349 #endif
1350 }
1351
1352 int xen_available(void)
1353 {
1354 #ifdef CONFIG_XEN
1355 return 1;
1356 #else
1357 return 0;
1358 #endif
1359 }
1360
1361
1362 TargetInfo *qmp_query_target(Error **errp)
1363 {
1364 TargetInfo *info = g_malloc0(sizeof(*info));
1365
1366 info->arch = g_strdup(TARGET_NAME);
1367
1368 return info;
1369 }
1370
1371 /* Stub function that's gets run on the vcpu when its brought out of the
1372 VM to run inside qemu via async_run_on_cpu()*/
1373 static void mig_sleep_cpu(void *opq)
1374 {
1375 qemu_mutex_unlock_iothread();
1376 g_usleep(30*1000);
1377 qemu_mutex_lock_iothread();
1378 }
1379
1380 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1381 much time in the VM. The migration thread will try to catchup.
1382 Workload will experience a performance drop.
1383 */
1384 static void mig_throttle_guest_down(void)
1385 {
1386 CPUState *cpu;
1387
1388 qemu_mutex_lock_iothread();
1389 CPU_FOREACH(cpu) {
1390 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1391 }
1392 qemu_mutex_unlock_iothread();
1393 }
1394
1395 static void check_guest_throttling(void)
1396 {
1397 static int64_t t0;
1398 int64_t t1;
1399
1400 if (!mig_throttle_on) {
1401 return;
1402 }
1403
1404 if (!t0) {
1405 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1406 return;
1407 }
1408
1409 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1410
1411 /* If it has been more than 40 ms since the last time the guest
1412 * was throttled then do it again.
1413 */
1414 if (40 < (t1-t0)/1000000) {
1415 mig_throttle_guest_down();
1416 t0 = t1;
1417 }
1418 }