]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
906e13d879650a8894e51a5d1d8877e50da1429d
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* SECTION
22
23 ELF backends
24
25 BFD support for ELF formats is being worked on.
26 Currently, the best supported back ends are for sparc and i386
27 (running svr4 or Solaris 2).
28
29 Documentation of the internals of the support code still needs
30 to be written. The code is changing quickly enough that we
31 haven't bothered yet. */
32
33 /* For sparc64-cross-sparc32. */
34 #define _SYSCALL32
35 #include "bfd.h"
36 #include "sysdep.h"
37 #include "bfdlink.h"
38 #include "libbfd.h"
39 #define ARCH_SIZE 0
40 #include "elf-bfd.h"
41 #include "libiberty.h"
42
43 static INLINE struct elf_segment_map *make_mapping
44 PARAMS ((bfd *, asection **, unsigned int, unsigned int, bfd_boolean));
45 static bfd_boolean map_sections_to_segments
46 PARAMS ((bfd *));
47 static int elf_sort_sections
48 PARAMS ((const PTR, const PTR));
49 static bfd_boolean assign_file_positions_for_segments
50 PARAMS ((bfd *));
51 static bfd_boolean assign_file_positions_except_relocs
52 PARAMS ((bfd *));
53 static bfd_boolean prep_headers
54 PARAMS ((bfd *));
55 static bfd_boolean swap_out_syms
56 PARAMS ((bfd *, struct bfd_strtab_hash **, int));
57 static bfd_boolean copy_private_bfd_data
58 PARAMS ((bfd *, bfd *));
59 static char *elf_read
60 PARAMS ((bfd *, file_ptr, bfd_size_type));
61 static const char *group_signature
62 PARAMS ((bfd *, Elf_Internal_Shdr *));
63 static bfd_boolean setup_group
64 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
65 static void merge_sections_remove_hook
66 PARAMS ((bfd *, asection *));
67 static void elf_fake_sections
68 PARAMS ((bfd *, asection *, PTR));
69 static bfd_boolean assign_section_numbers
70 PARAMS ((bfd *));
71 static INLINE int sym_is_global
72 PARAMS ((bfd *, asymbol *));
73 static bfd_boolean elf_map_symbols
74 PARAMS ((bfd *));
75 static bfd_size_type get_program_header_size
76 PARAMS ((bfd *));
77 static bfd_boolean elfcore_read_notes
78 PARAMS ((bfd *, file_ptr, bfd_size_type));
79 static bfd_boolean elf_find_function
80 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
81 const char **));
82 static int elfcore_make_pid
83 PARAMS ((bfd *));
84 static bfd_boolean elfcore_maybe_make_sect
85 PARAMS ((bfd *, char *, asection *));
86 static bfd_boolean elfcore_make_note_pseudosection
87 PARAMS ((bfd *, char *, Elf_Internal_Note *));
88 static bfd_boolean elfcore_grok_prfpreg
89 PARAMS ((bfd *, Elf_Internal_Note *));
90 static bfd_boolean elfcore_grok_prxfpreg
91 PARAMS ((bfd *, Elf_Internal_Note *));
92 static bfd_boolean elfcore_grok_note
93 PARAMS ((bfd *, Elf_Internal_Note *));
94 static bfd_boolean elfcore_netbsd_get_lwpid
95 PARAMS ((Elf_Internal_Note *, int *));
96 static bfd_boolean elfcore_grok_netbsd_procinfo
97 PARAMS ((bfd *, Elf_Internal_Note *));
98 static bfd_boolean elfcore_grok_netbsd_note
99 PARAMS ((bfd *, Elf_Internal_Note *));
100 static bfd_boolean elfcore_grok_nto_gregs
101 PARAMS ((bfd *, Elf_Internal_Note *, pid_t));
102 static bfd_boolean elfcore_grok_nto_status
103 PARAMS ((bfd *, Elf_Internal_Note *, pid_t *));
104 static bfd_boolean elfcore_grok_nto_note
105 PARAMS ((bfd *, Elf_Internal_Note *));
106
107 /* Swap version information in and out. The version information is
108 currently size independent. If that ever changes, this code will
109 need to move into elfcode.h. */
110
111 /* Swap in a Verdef structure. */
112
113 void
114 _bfd_elf_swap_verdef_in (abfd, src, dst)
115 bfd *abfd;
116 const Elf_External_Verdef *src;
117 Elf_Internal_Verdef *dst;
118 {
119 dst->vd_version = H_GET_16 (abfd, src->vd_version);
120 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
121 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
122 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
123 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
124 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
125 dst->vd_next = H_GET_32 (abfd, src->vd_next);
126 }
127
128 /* Swap out a Verdef structure. */
129
130 void
131 _bfd_elf_swap_verdef_out (abfd, src, dst)
132 bfd *abfd;
133 const Elf_Internal_Verdef *src;
134 Elf_External_Verdef *dst;
135 {
136 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
137 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
138 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
139 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
140 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
141 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
142 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
143 }
144
145 /* Swap in a Verdaux structure. */
146
147 void
148 _bfd_elf_swap_verdaux_in (abfd, src, dst)
149 bfd *abfd;
150 const Elf_External_Verdaux *src;
151 Elf_Internal_Verdaux *dst;
152 {
153 dst->vda_name = H_GET_32 (abfd, src->vda_name);
154 dst->vda_next = H_GET_32 (abfd, src->vda_next);
155 }
156
157 /* Swap out a Verdaux structure. */
158
159 void
160 _bfd_elf_swap_verdaux_out (abfd, src, dst)
161 bfd *abfd;
162 const Elf_Internal_Verdaux *src;
163 Elf_External_Verdaux *dst;
164 {
165 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
166 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
167 }
168
169 /* Swap in a Verneed structure. */
170
171 void
172 _bfd_elf_swap_verneed_in (abfd, src, dst)
173 bfd *abfd;
174 const Elf_External_Verneed *src;
175 Elf_Internal_Verneed *dst;
176 {
177 dst->vn_version = H_GET_16 (abfd, src->vn_version);
178 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
179 dst->vn_file = H_GET_32 (abfd, src->vn_file);
180 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
181 dst->vn_next = H_GET_32 (abfd, src->vn_next);
182 }
183
184 /* Swap out a Verneed structure. */
185
186 void
187 _bfd_elf_swap_verneed_out (abfd, src, dst)
188 bfd *abfd;
189 const Elf_Internal_Verneed *src;
190 Elf_External_Verneed *dst;
191 {
192 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
193 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
194 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
195 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
196 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
197 }
198
199 /* Swap in a Vernaux structure. */
200
201 void
202 _bfd_elf_swap_vernaux_in (abfd, src, dst)
203 bfd *abfd;
204 const Elf_External_Vernaux *src;
205 Elf_Internal_Vernaux *dst;
206 {
207 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
208 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
209 dst->vna_other = H_GET_16 (abfd, src->vna_other);
210 dst->vna_name = H_GET_32 (abfd, src->vna_name);
211 dst->vna_next = H_GET_32 (abfd, src->vna_next);
212 }
213
214 /* Swap out a Vernaux structure. */
215
216 void
217 _bfd_elf_swap_vernaux_out (abfd, src, dst)
218 bfd *abfd;
219 const Elf_Internal_Vernaux *src;
220 Elf_External_Vernaux *dst;
221 {
222 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
223 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
224 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
225 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
226 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
227 }
228
229 /* Swap in a Versym structure. */
230
231 void
232 _bfd_elf_swap_versym_in (abfd, src, dst)
233 bfd *abfd;
234 const Elf_External_Versym *src;
235 Elf_Internal_Versym *dst;
236 {
237 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
238 }
239
240 /* Swap out a Versym structure. */
241
242 void
243 _bfd_elf_swap_versym_out (abfd, src, dst)
244 bfd *abfd;
245 const Elf_Internal_Versym *src;
246 Elf_External_Versym *dst;
247 {
248 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
249 }
250
251 /* Standard ELF hash function. Do not change this function; you will
252 cause invalid hash tables to be generated. */
253
254 unsigned long
255 bfd_elf_hash (namearg)
256 const char *namearg;
257 {
258 const unsigned char *name = (const unsigned char *) namearg;
259 unsigned long h = 0;
260 unsigned long g;
261 int ch;
262
263 while ((ch = *name++) != '\0')
264 {
265 h = (h << 4) + ch;
266 if ((g = (h & 0xf0000000)) != 0)
267 {
268 h ^= g >> 24;
269 /* The ELF ABI says `h &= ~g', but this is equivalent in
270 this case and on some machines one insn instead of two. */
271 h ^= g;
272 }
273 }
274 return h & 0xffffffff;
275 }
276
277 /* Read a specified number of bytes at a specified offset in an ELF
278 file, into a newly allocated buffer, and return a pointer to the
279 buffer. */
280
281 static char *
282 elf_read (abfd, offset, size)
283 bfd *abfd;
284 file_ptr offset;
285 bfd_size_type size;
286 {
287 char *buf;
288
289 if ((buf = bfd_alloc (abfd, size)) == NULL)
290 return NULL;
291 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
292 return NULL;
293 if (bfd_bread ((PTR) buf, size, abfd) != size)
294 {
295 if (bfd_get_error () != bfd_error_system_call)
296 bfd_set_error (bfd_error_file_truncated);
297 return NULL;
298 }
299 return buf;
300 }
301
302 bfd_boolean
303 bfd_elf_mkobject (abfd)
304 bfd *abfd;
305 {
306 /* This just does initialization. */
307 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
308 bfd_size_type amt = sizeof (struct elf_obj_tdata);
309 elf_tdata (abfd) = (struct elf_obj_tdata *) bfd_zalloc (abfd, amt);
310 if (elf_tdata (abfd) == 0)
311 return FALSE;
312 /* Since everything is done at close time, do we need any
313 initialization? */
314
315 return TRUE;
316 }
317
318 bfd_boolean
319 bfd_elf_mkcorefile (abfd)
320 bfd *abfd;
321 {
322 /* I think this can be done just like an object file. */
323 return bfd_elf_mkobject (abfd);
324 }
325
326 char *
327 bfd_elf_get_str_section (abfd, shindex)
328 bfd *abfd;
329 unsigned int shindex;
330 {
331 Elf_Internal_Shdr **i_shdrp;
332 char *shstrtab = NULL;
333 file_ptr offset;
334 bfd_size_type shstrtabsize;
335
336 i_shdrp = elf_elfsections (abfd);
337 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
338 return 0;
339
340 shstrtab = (char *) i_shdrp[shindex]->contents;
341 if (shstrtab == NULL)
342 {
343 /* No cached one, attempt to read, and cache what we read. */
344 offset = i_shdrp[shindex]->sh_offset;
345 shstrtabsize = i_shdrp[shindex]->sh_size;
346 shstrtab = elf_read (abfd, offset, shstrtabsize);
347 i_shdrp[shindex]->contents = (PTR) shstrtab;
348 }
349 return shstrtab;
350 }
351
352 char *
353 bfd_elf_string_from_elf_section (abfd, shindex, strindex)
354 bfd *abfd;
355 unsigned int shindex;
356 unsigned int strindex;
357 {
358 Elf_Internal_Shdr *hdr;
359
360 if (strindex == 0)
361 return "";
362
363 hdr = elf_elfsections (abfd)[shindex];
364
365 if (hdr->contents == NULL
366 && bfd_elf_get_str_section (abfd, shindex) == NULL)
367 return NULL;
368
369 if (strindex >= hdr->sh_size)
370 {
371 (*_bfd_error_handler)
372 (_("%s: invalid string offset %u >= %lu for section `%s'"),
373 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
374 ((shindex == elf_elfheader(abfd)->e_shstrndx
375 && strindex == hdr->sh_name)
376 ? ".shstrtab"
377 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
378 return "";
379 }
380
381 return ((char *) hdr->contents) + strindex;
382 }
383
384 /* Read and convert symbols to internal format.
385 SYMCOUNT specifies the number of symbols to read, starting from
386 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
387 are non-NULL, they are used to store the internal symbols, external
388 symbols, and symbol section index extensions, respectively. */
389
390 Elf_Internal_Sym *
391 bfd_elf_get_elf_syms (ibfd, symtab_hdr, symcount, symoffset,
392 intsym_buf, extsym_buf, extshndx_buf)
393 bfd *ibfd;
394 Elf_Internal_Shdr *symtab_hdr;
395 size_t symcount;
396 size_t symoffset;
397 Elf_Internal_Sym *intsym_buf;
398 PTR extsym_buf;
399 Elf_External_Sym_Shndx *extshndx_buf;
400 {
401 Elf_Internal_Shdr *shndx_hdr;
402 PTR alloc_ext;
403 const bfd_byte *esym;
404 Elf_External_Sym_Shndx *alloc_extshndx;
405 Elf_External_Sym_Shndx *shndx;
406 Elf_Internal_Sym *isym;
407 Elf_Internal_Sym *isymend;
408 struct elf_backend_data *bed;
409 size_t extsym_size;
410 bfd_size_type amt;
411 file_ptr pos;
412
413 if (symcount == 0)
414 return intsym_buf;
415
416 /* Normal syms might have section extension entries. */
417 shndx_hdr = NULL;
418 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
419 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
420
421 /* Read the symbols. */
422 alloc_ext = NULL;
423 alloc_extshndx = NULL;
424 bed = get_elf_backend_data (ibfd);
425 extsym_size = bed->s->sizeof_sym;
426 amt = symcount * extsym_size;
427 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
428 if (extsym_buf == NULL)
429 {
430 alloc_ext = bfd_malloc (amt);
431 extsym_buf = alloc_ext;
432 }
433 if (extsym_buf == NULL
434 || bfd_seek (ibfd, pos, SEEK_SET) != 0
435 || bfd_bread (extsym_buf, amt, ibfd) != amt)
436 {
437 intsym_buf = NULL;
438 goto out;
439 }
440
441 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
442 extshndx_buf = NULL;
443 else
444 {
445 amt = symcount * sizeof (Elf_External_Sym_Shndx);
446 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
447 if (extshndx_buf == NULL)
448 {
449 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
450 extshndx_buf = alloc_extshndx;
451 }
452 if (extshndx_buf == NULL
453 || bfd_seek (ibfd, pos, SEEK_SET) != 0
454 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
455 {
456 intsym_buf = NULL;
457 goto out;
458 }
459 }
460
461 if (intsym_buf == NULL)
462 {
463 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
464 intsym_buf = (Elf_Internal_Sym *) bfd_malloc (amt);
465 if (intsym_buf == NULL)
466 goto out;
467 }
468
469 /* Convert the symbols to internal form. */
470 isymend = intsym_buf + symcount;
471 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
472 isym < isymend;
473 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
474 (*bed->s->swap_symbol_in) (ibfd, esym, (const PTR) shndx, isym);
475
476 out:
477 if (alloc_ext != NULL)
478 free (alloc_ext);
479 if (alloc_extshndx != NULL)
480 free (alloc_extshndx);
481
482 return intsym_buf;
483 }
484
485 /* Look up a symbol name. */
486 const char *
487 bfd_elf_local_sym_name (abfd, isym)
488 bfd *abfd;
489 Elf_Internal_Sym *isym;
490 {
491 unsigned int iname = isym->st_name;
492 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
493 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
494 {
495 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
496 shindex = elf_elfheader (abfd)->e_shstrndx;
497 }
498
499 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
500 }
501
502 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
503 sections. The first element is the flags, the rest are section
504 pointers. */
505
506 typedef union elf_internal_group {
507 Elf_Internal_Shdr *shdr;
508 unsigned int flags;
509 } Elf_Internal_Group;
510
511 /* Return the name of the group signature symbol. Why isn't the
512 signature just a string? */
513
514 static const char *
515 group_signature (abfd, ghdr)
516 bfd *abfd;
517 Elf_Internal_Shdr *ghdr;
518 {
519 Elf_Internal_Shdr *hdr;
520 unsigned char esym[sizeof (Elf64_External_Sym)];
521 Elf_External_Sym_Shndx eshndx;
522 Elf_Internal_Sym isym;
523
524 /* First we need to ensure the symbol table is available. */
525 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
526 return NULL;
527
528 /* Go read the symbol. */
529 hdr = &elf_tdata (abfd)->symtab_hdr;
530 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
531 &isym, esym, &eshndx) == NULL)
532 return NULL;
533
534 return bfd_elf_local_sym_name (abfd, &isym);
535 }
536
537 /* Set next_in_group list pointer, and group name for NEWSECT. */
538
539 static bfd_boolean
540 setup_group (abfd, hdr, newsect)
541 bfd *abfd;
542 Elf_Internal_Shdr *hdr;
543 asection *newsect;
544 {
545 unsigned int num_group = elf_tdata (abfd)->num_group;
546
547 /* If num_group is zero, read in all SHT_GROUP sections. The count
548 is set to -1 if there are no SHT_GROUP sections. */
549 if (num_group == 0)
550 {
551 unsigned int i, shnum;
552
553 /* First count the number of groups. If we have a SHT_GROUP
554 section with just a flag word (ie. sh_size is 4), ignore it. */
555 shnum = elf_numsections (abfd);
556 num_group = 0;
557 for (i = 0; i < shnum; i++)
558 {
559 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
560 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
561 num_group += 1;
562 }
563
564 if (num_group == 0)
565 num_group = (unsigned) -1;
566 elf_tdata (abfd)->num_group = num_group;
567
568 if (num_group > 0)
569 {
570 /* We keep a list of elf section headers for group sections,
571 so we can find them quickly. */
572 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
573 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
574 if (elf_tdata (abfd)->group_sect_ptr == NULL)
575 return FALSE;
576
577 num_group = 0;
578 for (i = 0; i < shnum; i++)
579 {
580 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
581 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
582 {
583 unsigned char *src;
584 Elf_Internal_Group *dest;
585
586 /* Add to list of sections. */
587 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
588 num_group += 1;
589
590 /* Read the raw contents. */
591 BFD_ASSERT (sizeof (*dest) >= 4);
592 amt = shdr->sh_size * sizeof (*dest) / 4;
593 shdr->contents = bfd_alloc (abfd, amt);
594 if (shdr->contents == NULL
595 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
596 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
597 != shdr->sh_size))
598 return FALSE;
599
600 /* Translate raw contents, a flag word followed by an
601 array of elf section indices all in target byte order,
602 to the flag word followed by an array of elf section
603 pointers. */
604 src = shdr->contents + shdr->sh_size;
605 dest = (Elf_Internal_Group *) (shdr->contents + amt);
606 while (1)
607 {
608 unsigned int idx;
609
610 src -= 4;
611 --dest;
612 idx = H_GET_32 (abfd, src);
613 if (src == shdr->contents)
614 {
615 dest->flags = idx;
616 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
617 shdr->bfd_section->flags
618 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
619 break;
620 }
621 if (idx >= shnum)
622 {
623 ((*_bfd_error_handler)
624 (_("%s: invalid SHT_GROUP entry"),
625 bfd_archive_filename (abfd)));
626 idx = 0;
627 }
628 dest->shdr = elf_elfsections (abfd)[idx];
629 }
630 }
631 }
632 }
633 }
634
635 if (num_group != (unsigned) -1)
636 {
637 unsigned int i;
638
639 for (i = 0; i < num_group; i++)
640 {
641 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
642 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
643 unsigned int n_elt = shdr->sh_size / 4;
644
645 /* Look through this group's sections to see if current
646 section is a member. */
647 while (--n_elt != 0)
648 if ((++idx)->shdr == hdr)
649 {
650 asection *s = NULL;
651
652 /* We are a member of this group. Go looking through
653 other members to see if any others are linked via
654 next_in_group. */
655 idx = (Elf_Internal_Group *) shdr->contents;
656 n_elt = shdr->sh_size / 4;
657 while (--n_elt != 0)
658 if ((s = (++idx)->shdr->bfd_section) != NULL
659 && elf_next_in_group (s) != NULL)
660 break;
661 if (n_elt != 0)
662 {
663 /* Snarf the group name from other member, and
664 insert current section in circular list. */
665 elf_group_name (newsect) = elf_group_name (s);
666 elf_next_in_group (newsect) = elf_next_in_group (s);
667 elf_next_in_group (s) = newsect;
668 }
669 else
670 {
671 const char *gname;
672
673 gname = group_signature (abfd, shdr);
674 if (gname == NULL)
675 return FALSE;
676 elf_group_name (newsect) = gname;
677
678 /* Start a circular list with one element. */
679 elf_next_in_group (newsect) = newsect;
680 }
681
682 /* If the group section has been created, point to the
683 new member. */
684 if (shdr->bfd_section != NULL)
685 elf_next_in_group (shdr->bfd_section) = newsect;
686
687 i = num_group - 1;
688 break;
689 }
690 }
691 }
692
693 if (elf_group_name (newsect) == NULL)
694 {
695 (*_bfd_error_handler) (_("%s: no group info for section %s"),
696 bfd_archive_filename (abfd), newsect->name);
697 }
698 return TRUE;
699 }
700
701 bfd_boolean
702 bfd_elf_discard_group (abfd, group)
703 bfd *abfd ATTRIBUTE_UNUSED;
704 asection *group;
705 {
706 asection *first = elf_next_in_group (group);
707 asection *s = first;
708
709 while (s != NULL)
710 {
711 s->output_section = bfd_abs_section_ptr;
712 s = elf_next_in_group (s);
713 /* These lists are circular. */
714 if (s == first)
715 break;
716 }
717 return TRUE;
718 }
719
720 /* Make a BFD section from an ELF section. We store a pointer to the
721 BFD section in the bfd_section field of the header. */
722
723 bfd_boolean
724 _bfd_elf_make_section_from_shdr (abfd, hdr, name)
725 bfd *abfd;
726 Elf_Internal_Shdr *hdr;
727 const char *name;
728 {
729 asection *newsect;
730 flagword flags;
731 struct elf_backend_data *bed;
732
733 if (hdr->bfd_section != NULL)
734 {
735 BFD_ASSERT (strcmp (name,
736 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
737 return TRUE;
738 }
739
740 newsect = bfd_make_section_anyway (abfd, name);
741 if (newsect == NULL)
742 return FALSE;
743
744 newsect->filepos = hdr->sh_offset;
745
746 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
747 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
748 || ! bfd_set_section_alignment (abfd, newsect,
749 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
750 return FALSE;
751
752 flags = SEC_NO_FLAGS;
753 if (hdr->sh_type != SHT_NOBITS)
754 flags |= SEC_HAS_CONTENTS;
755 if (hdr->sh_type == SHT_GROUP)
756 flags |= SEC_GROUP | SEC_EXCLUDE;
757 if ((hdr->sh_flags & SHF_ALLOC) != 0)
758 {
759 flags |= SEC_ALLOC;
760 if (hdr->sh_type != SHT_NOBITS)
761 flags |= SEC_LOAD;
762 }
763 if ((hdr->sh_flags & SHF_WRITE) == 0)
764 flags |= SEC_READONLY;
765 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
766 flags |= SEC_CODE;
767 else if ((flags & SEC_LOAD) != 0)
768 flags |= SEC_DATA;
769 if ((hdr->sh_flags & SHF_MERGE) != 0)
770 {
771 flags |= SEC_MERGE;
772 newsect->entsize = hdr->sh_entsize;
773 if ((hdr->sh_flags & SHF_STRINGS) != 0)
774 flags |= SEC_STRINGS;
775 }
776 if (hdr->sh_flags & SHF_GROUP)
777 if (!setup_group (abfd, hdr, newsect))
778 return FALSE;
779 if ((hdr->sh_flags & SHF_TLS) != 0)
780 flags |= SEC_THREAD_LOCAL;
781
782 /* The debugging sections appear to be recognized only by name, not
783 any sort of flag. */
784 {
785 static const char *debug_sec_names [] =
786 {
787 ".debug",
788 ".gnu.linkonce.wi.",
789 ".line",
790 ".stab"
791 };
792 int i;
793
794 for (i = ARRAY_SIZE (debug_sec_names); i--;)
795 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
796 break;
797
798 if (i >= 0)
799 flags |= SEC_DEBUGGING;
800 }
801
802 /* As a GNU extension, if the name begins with .gnu.linkonce, we
803 only link a single copy of the section. This is used to support
804 g++. g++ will emit each template expansion in its own section.
805 The symbols will be defined as weak, so that multiple definitions
806 are permitted. The GNU linker extension is to actually discard
807 all but one of the sections. */
808 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
809 && elf_next_in_group (newsect) == NULL)
810 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
811
812 bed = get_elf_backend_data (abfd);
813 if (bed->elf_backend_section_flags)
814 if (! bed->elf_backend_section_flags (&flags, hdr))
815 return FALSE;
816
817 if (! bfd_set_section_flags (abfd, newsect, flags))
818 return FALSE;
819
820 if ((flags & SEC_ALLOC) != 0)
821 {
822 Elf_Internal_Phdr *phdr;
823 unsigned int i;
824
825 /* Look through the phdrs to see if we need to adjust the lma.
826 If all the p_paddr fields are zero, we ignore them, since
827 some ELF linkers produce such output. */
828 phdr = elf_tdata (abfd)->phdr;
829 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
830 {
831 if (phdr->p_paddr != 0)
832 break;
833 }
834 if (i < elf_elfheader (abfd)->e_phnum)
835 {
836 phdr = elf_tdata (abfd)->phdr;
837 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
838 {
839 /* This section is part of this segment if its file
840 offset plus size lies within the segment's memory
841 span and, if the section is loaded, the extent of the
842 loaded data lies within the extent of the segment.
843
844 Note - we used to check the p_paddr field as well, and
845 refuse to set the LMA if it was 0. This is wrong
846 though, as a perfectly valid initialised segment can
847 have a p_paddr of zero. Some architectures, eg ARM,
848 place special significance on the address 0 and
849 executables need to be able to have a segment which
850 covers this address. */
851 if (phdr->p_type == PT_LOAD
852 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
853 && (hdr->sh_offset + hdr->sh_size
854 <= phdr->p_offset + phdr->p_memsz)
855 && ((flags & SEC_LOAD) == 0
856 || (hdr->sh_offset + hdr->sh_size
857 <= phdr->p_offset + phdr->p_filesz)))
858 {
859 if ((flags & SEC_LOAD) == 0)
860 newsect->lma = (phdr->p_paddr
861 + hdr->sh_addr - phdr->p_vaddr);
862 else
863 /* We used to use the same adjustment for SEC_LOAD
864 sections, but that doesn't work if the segment
865 is packed with code from multiple VMAs.
866 Instead we calculate the section LMA based on
867 the segment LMA. It is assumed that the
868 segment will contain sections with contiguous
869 LMAs, even if the VMAs are not. */
870 newsect->lma = (phdr->p_paddr
871 + hdr->sh_offset - phdr->p_offset);
872
873 /* With contiguous segments, we can't tell from file
874 offsets whether a section with zero size should
875 be placed at the end of one segment or the
876 beginning of the next. Decide based on vaddr. */
877 if (hdr->sh_addr >= phdr->p_vaddr
878 && (hdr->sh_addr + hdr->sh_size
879 <= phdr->p_vaddr + phdr->p_memsz))
880 break;
881 }
882 }
883 }
884 }
885
886 hdr->bfd_section = newsect;
887 elf_section_data (newsect)->this_hdr = *hdr;
888
889 return TRUE;
890 }
891
892 /*
893 INTERNAL_FUNCTION
894 bfd_elf_find_section
895
896 SYNOPSIS
897 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
898
899 DESCRIPTION
900 Helper functions for GDB to locate the string tables.
901 Since BFD hides string tables from callers, GDB needs to use an
902 internal hook to find them. Sun's .stabstr, in particular,
903 isn't even pointed to by the .stab section, so ordinary
904 mechanisms wouldn't work to find it, even if we had some.
905 */
906
907 struct elf_internal_shdr *
908 bfd_elf_find_section (abfd, name)
909 bfd *abfd;
910 char *name;
911 {
912 Elf_Internal_Shdr **i_shdrp;
913 char *shstrtab;
914 unsigned int max;
915 unsigned int i;
916
917 i_shdrp = elf_elfsections (abfd);
918 if (i_shdrp != NULL)
919 {
920 shstrtab = bfd_elf_get_str_section (abfd,
921 elf_elfheader (abfd)->e_shstrndx);
922 if (shstrtab != NULL)
923 {
924 max = elf_numsections (abfd);
925 for (i = 1; i < max; i++)
926 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
927 return i_shdrp[i];
928 }
929 }
930 return 0;
931 }
932
933 const char *const bfd_elf_section_type_names[] = {
934 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
935 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
936 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
937 };
938
939 /* ELF relocs are against symbols. If we are producing relocateable
940 output, and the reloc is against an external symbol, and nothing
941 has given us any additional addend, the resulting reloc will also
942 be against the same symbol. In such a case, we don't want to
943 change anything about the way the reloc is handled, since it will
944 all be done at final link time. Rather than put special case code
945 into bfd_perform_relocation, all the reloc types use this howto
946 function. It just short circuits the reloc if producing
947 relocateable output against an external symbol. */
948
949 bfd_reloc_status_type
950 bfd_elf_generic_reloc (abfd,
951 reloc_entry,
952 symbol,
953 data,
954 input_section,
955 output_bfd,
956 error_message)
957 bfd *abfd ATTRIBUTE_UNUSED;
958 arelent *reloc_entry;
959 asymbol *symbol;
960 PTR data ATTRIBUTE_UNUSED;
961 asection *input_section;
962 bfd *output_bfd;
963 char **error_message ATTRIBUTE_UNUSED;
964 {
965 if (output_bfd != (bfd *) NULL
966 && (symbol->flags & BSF_SECTION_SYM) == 0
967 && (! reloc_entry->howto->partial_inplace
968 || reloc_entry->addend == 0))
969 {
970 reloc_entry->address += input_section->output_offset;
971 return bfd_reloc_ok;
972 }
973
974 return bfd_reloc_continue;
975 }
976 \f
977 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
978
979 static void
980 merge_sections_remove_hook (abfd, sec)
981 bfd *abfd ATTRIBUTE_UNUSED;
982 asection *sec;
983 {
984 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
985 sec->sec_info_type = ELF_INFO_TYPE_NONE;
986 }
987
988 /* Finish SHF_MERGE section merging. */
989
990 bfd_boolean
991 _bfd_elf_merge_sections (abfd, info)
992 bfd *abfd;
993 struct bfd_link_info *info;
994 {
995 if (!is_elf_hash_table (info))
996 return FALSE;
997 if (elf_hash_table (info)->merge_info)
998 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
999 merge_sections_remove_hook);
1000 return TRUE;
1001 }
1002
1003 void
1004 _bfd_elf_link_just_syms (sec, info)
1005 asection *sec;
1006 struct bfd_link_info *info;
1007 {
1008 sec->output_section = bfd_abs_section_ptr;
1009 sec->output_offset = sec->vma;
1010 if (!is_elf_hash_table (info))
1011 return;
1012
1013 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1014 }
1015 \f
1016 /* Copy the program header and other data from one object module to
1017 another. */
1018
1019 bfd_boolean
1020 _bfd_elf_copy_private_bfd_data (ibfd, obfd)
1021 bfd *ibfd;
1022 bfd *obfd;
1023 {
1024 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1025 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1026 return TRUE;
1027
1028 BFD_ASSERT (!elf_flags_init (obfd)
1029 || (elf_elfheader (obfd)->e_flags
1030 == elf_elfheader (ibfd)->e_flags));
1031
1032 elf_gp (obfd) = elf_gp (ibfd);
1033 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1034 elf_flags_init (obfd) = TRUE;
1035 return TRUE;
1036 }
1037
1038 /* Print out the program headers. */
1039
1040 bfd_boolean
1041 _bfd_elf_print_private_bfd_data (abfd, farg)
1042 bfd *abfd;
1043 PTR farg;
1044 {
1045 FILE *f = (FILE *) farg;
1046 Elf_Internal_Phdr *p;
1047 asection *s;
1048 bfd_byte *dynbuf = NULL;
1049
1050 p = elf_tdata (abfd)->phdr;
1051 if (p != NULL)
1052 {
1053 unsigned int i, c;
1054
1055 fprintf (f, _("\nProgram Header:\n"));
1056 c = elf_elfheader (abfd)->e_phnum;
1057 for (i = 0; i < c; i++, p++)
1058 {
1059 const char *pt;
1060 char buf[20];
1061
1062 switch (p->p_type)
1063 {
1064 case PT_NULL: pt = "NULL"; break;
1065 case PT_LOAD: pt = "LOAD"; break;
1066 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1067 case PT_INTERP: pt = "INTERP"; break;
1068 case PT_NOTE: pt = "NOTE"; break;
1069 case PT_SHLIB: pt = "SHLIB"; break;
1070 case PT_PHDR: pt = "PHDR"; break;
1071 case PT_TLS: pt = "TLS"; break;
1072 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1073 case PT_GNU_STACK: pt = "STACK"; break;
1074 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1075 }
1076 fprintf (f, "%8s off 0x", pt);
1077 bfd_fprintf_vma (abfd, f, p->p_offset);
1078 fprintf (f, " vaddr 0x");
1079 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1080 fprintf (f, " paddr 0x");
1081 bfd_fprintf_vma (abfd, f, p->p_paddr);
1082 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1083 fprintf (f, " filesz 0x");
1084 bfd_fprintf_vma (abfd, f, p->p_filesz);
1085 fprintf (f, " memsz 0x");
1086 bfd_fprintf_vma (abfd, f, p->p_memsz);
1087 fprintf (f, " flags %c%c%c",
1088 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1089 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1090 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1091 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1092 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1093 fprintf (f, "\n");
1094 }
1095 }
1096
1097 s = bfd_get_section_by_name (abfd, ".dynamic");
1098 if (s != NULL)
1099 {
1100 int elfsec;
1101 unsigned long shlink;
1102 bfd_byte *extdyn, *extdynend;
1103 size_t extdynsize;
1104 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
1105
1106 fprintf (f, _("\nDynamic Section:\n"));
1107
1108 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
1109 if (dynbuf == NULL)
1110 goto error_return;
1111 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
1112 s->_raw_size))
1113 goto error_return;
1114
1115 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1116 if (elfsec == -1)
1117 goto error_return;
1118 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1119
1120 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1121 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1122
1123 extdyn = dynbuf;
1124 extdynend = extdyn + s->_raw_size;
1125 for (; extdyn < extdynend; extdyn += extdynsize)
1126 {
1127 Elf_Internal_Dyn dyn;
1128 const char *name;
1129 char ab[20];
1130 bfd_boolean stringp;
1131
1132 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
1133
1134 if (dyn.d_tag == DT_NULL)
1135 break;
1136
1137 stringp = FALSE;
1138 switch (dyn.d_tag)
1139 {
1140 default:
1141 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1142 name = ab;
1143 break;
1144
1145 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1146 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1147 case DT_PLTGOT: name = "PLTGOT"; break;
1148 case DT_HASH: name = "HASH"; break;
1149 case DT_STRTAB: name = "STRTAB"; break;
1150 case DT_SYMTAB: name = "SYMTAB"; break;
1151 case DT_RELA: name = "RELA"; break;
1152 case DT_RELASZ: name = "RELASZ"; break;
1153 case DT_RELAENT: name = "RELAENT"; break;
1154 case DT_STRSZ: name = "STRSZ"; break;
1155 case DT_SYMENT: name = "SYMENT"; break;
1156 case DT_INIT: name = "INIT"; break;
1157 case DT_FINI: name = "FINI"; break;
1158 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1159 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1160 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1161 case DT_REL: name = "REL"; break;
1162 case DT_RELSZ: name = "RELSZ"; break;
1163 case DT_RELENT: name = "RELENT"; break;
1164 case DT_PLTREL: name = "PLTREL"; break;
1165 case DT_DEBUG: name = "DEBUG"; break;
1166 case DT_TEXTREL: name = "TEXTREL"; break;
1167 case DT_JMPREL: name = "JMPREL"; break;
1168 case DT_BIND_NOW: name = "BIND_NOW"; break;
1169 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1170 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1171 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1172 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1173 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1174 case DT_FLAGS: name = "FLAGS"; break;
1175 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1176 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1177 case DT_CHECKSUM: name = "CHECKSUM"; break;
1178 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1179 case DT_MOVEENT: name = "MOVEENT"; break;
1180 case DT_MOVESZ: name = "MOVESZ"; break;
1181 case DT_FEATURE: name = "FEATURE"; break;
1182 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1183 case DT_SYMINSZ: name = "SYMINSZ"; break;
1184 case DT_SYMINENT: name = "SYMINENT"; break;
1185 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1186 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1187 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1188 case DT_PLTPAD: name = "PLTPAD"; break;
1189 case DT_MOVETAB: name = "MOVETAB"; break;
1190 case DT_SYMINFO: name = "SYMINFO"; break;
1191 case DT_RELACOUNT: name = "RELACOUNT"; break;
1192 case DT_RELCOUNT: name = "RELCOUNT"; break;
1193 case DT_FLAGS_1: name = "FLAGS_1"; break;
1194 case DT_VERSYM: name = "VERSYM"; break;
1195 case DT_VERDEF: name = "VERDEF"; break;
1196 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1197 case DT_VERNEED: name = "VERNEED"; break;
1198 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1199 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1200 case DT_USED: name = "USED"; break;
1201 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1202 }
1203
1204 fprintf (f, " %-11s ", name);
1205 if (! stringp)
1206 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1207 else
1208 {
1209 const char *string;
1210 unsigned int tagv = dyn.d_un.d_val;
1211
1212 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1213 if (string == NULL)
1214 goto error_return;
1215 fprintf (f, "%s", string);
1216 }
1217 fprintf (f, "\n");
1218 }
1219
1220 free (dynbuf);
1221 dynbuf = NULL;
1222 }
1223
1224 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1225 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1226 {
1227 if (! _bfd_elf_slurp_version_tables (abfd))
1228 return FALSE;
1229 }
1230
1231 if (elf_dynverdef (abfd) != 0)
1232 {
1233 Elf_Internal_Verdef *t;
1234
1235 fprintf (f, _("\nVersion definitions:\n"));
1236 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1237 {
1238 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1239 t->vd_flags, t->vd_hash, t->vd_nodename);
1240 if (t->vd_auxptr->vda_nextptr != NULL)
1241 {
1242 Elf_Internal_Verdaux *a;
1243
1244 fprintf (f, "\t");
1245 for (a = t->vd_auxptr->vda_nextptr;
1246 a != NULL;
1247 a = a->vda_nextptr)
1248 fprintf (f, "%s ", a->vda_nodename);
1249 fprintf (f, "\n");
1250 }
1251 }
1252 }
1253
1254 if (elf_dynverref (abfd) != 0)
1255 {
1256 Elf_Internal_Verneed *t;
1257
1258 fprintf (f, _("\nVersion References:\n"));
1259 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1260 {
1261 Elf_Internal_Vernaux *a;
1262
1263 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1264 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1265 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1266 a->vna_flags, a->vna_other, a->vna_nodename);
1267 }
1268 }
1269
1270 return TRUE;
1271
1272 error_return:
1273 if (dynbuf != NULL)
1274 free (dynbuf);
1275 return FALSE;
1276 }
1277
1278 /* Display ELF-specific fields of a symbol. */
1279
1280 void
1281 bfd_elf_print_symbol (abfd, filep, symbol, how)
1282 bfd *abfd;
1283 PTR filep;
1284 asymbol *symbol;
1285 bfd_print_symbol_type how;
1286 {
1287 FILE *file = (FILE *) filep;
1288 switch (how)
1289 {
1290 case bfd_print_symbol_name:
1291 fprintf (file, "%s", symbol->name);
1292 break;
1293 case bfd_print_symbol_more:
1294 fprintf (file, "elf ");
1295 bfd_fprintf_vma (abfd, file, symbol->value);
1296 fprintf (file, " %lx", (long) symbol->flags);
1297 break;
1298 case bfd_print_symbol_all:
1299 {
1300 const char *section_name;
1301 const char *name = NULL;
1302 struct elf_backend_data *bed;
1303 unsigned char st_other;
1304 bfd_vma val;
1305
1306 section_name = symbol->section ? symbol->section->name : "(*none*)";
1307
1308 bed = get_elf_backend_data (abfd);
1309 if (bed->elf_backend_print_symbol_all)
1310 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1311
1312 if (name == NULL)
1313 {
1314 name = symbol->name;
1315 bfd_print_symbol_vandf (abfd, (PTR) file, symbol);
1316 }
1317
1318 fprintf (file, " %s\t", section_name);
1319 /* Print the "other" value for a symbol. For common symbols,
1320 we've already printed the size; now print the alignment.
1321 For other symbols, we have no specified alignment, and
1322 we've printed the address; now print the size. */
1323 if (bfd_is_com_section (symbol->section))
1324 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1325 else
1326 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1327 bfd_fprintf_vma (abfd, file, val);
1328
1329 /* If we have version information, print it. */
1330 if (elf_tdata (abfd)->dynversym_section != 0
1331 && (elf_tdata (abfd)->dynverdef_section != 0
1332 || elf_tdata (abfd)->dynverref_section != 0))
1333 {
1334 unsigned int vernum;
1335 const char *version_string;
1336
1337 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1338
1339 if (vernum == 0)
1340 version_string = "";
1341 else if (vernum == 1)
1342 version_string = "Base";
1343 else if (vernum <= elf_tdata (abfd)->cverdefs)
1344 version_string =
1345 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1346 else
1347 {
1348 Elf_Internal_Verneed *t;
1349
1350 version_string = "";
1351 for (t = elf_tdata (abfd)->verref;
1352 t != NULL;
1353 t = t->vn_nextref)
1354 {
1355 Elf_Internal_Vernaux *a;
1356
1357 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1358 {
1359 if (a->vna_other == vernum)
1360 {
1361 version_string = a->vna_nodename;
1362 break;
1363 }
1364 }
1365 }
1366 }
1367
1368 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1369 fprintf (file, " %-11s", version_string);
1370 else
1371 {
1372 int i;
1373
1374 fprintf (file, " (%s)", version_string);
1375 for (i = 10 - strlen (version_string); i > 0; --i)
1376 putc (' ', file);
1377 }
1378 }
1379
1380 /* If the st_other field is not zero, print it. */
1381 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1382
1383 switch (st_other)
1384 {
1385 case 0: break;
1386 case STV_INTERNAL: fprintf (file, " .internal"); break;
1387 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1388 case STV_PROTECTED: fprintf (file, " .protected"); break;
1389 default:
1390 /* Some other non-defined flags are also present, so print
1391 everything hex. */
1392 fprintf (file, " 0x%02x", (unsigned int) st_other);
1393 }
1394
1395 fprintf (file, " %s", name);
1396 }
1397 break;
1398 }
1399 }
1400 \f
1401 /* Create an entry in an ELF linker hash table. */
1402
1403 struct bfd_hash_entry *
1404 _bfd_elf_link_hash_newfunc (entry, table, string)
1405 struct bfd_hash_entry *entry;
1406 struct bfd_hash_table *table;
1407 const char *string;
1408 {
1409 /* Allocate the structure if it has not already been allocated by a
1410 subclass. */
1411 if (entry == NULL)
1412 {
1413 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1414 if (entry == NULL)
1415 return entry;
1416 }
1417
1418 /* Call the allocation method of the superclass. */
1419 entry = _bfd_link_hash_newfunc (entry, table, string);
1420 if (entry != NULL)
1421 {
1422 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1423 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1424
1425 /* Set local fields. */
1426 ret->indx = -1;
1427 ret->dynindx = -1;
1428 ret->dynstr_index = 0;
1429 ret->elf_hash_value = 0;
1430 ret->weakdef = NULL;
1431 ret->linker_section_pointer = NULL;
1432 ret->verinfo.verdef = NULL;
1433 ret->vtable_entries_size = 0;
1434 ret->vtable_entries_used = NULL;
1435 ret->vtable_parent = NULL;
1436 ret->got = htab->init_refcount;
1437 ret->plt = htab->init_refcount;
1438 ret->size = 0;
1439 ret->type = STT_NOTYPE;
1440 ret->other = 0;
1441 /* Assume that we have been called by a non-ELF symbol reader.
1442 This flag is then reset by the code which reads an ELF input
1443 file. This ensures that a symbol created by a non-ELF symbol
1444 reader will have the flag set correctly. */
1445 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1446 }
1447
1448 return entry;
1449 }
1450
1451 /* Copy data from an indirect symbol to its direct symbol, hiding the
1452 old indirect symbol. Also used for copying flags to a weakdef. */
1453
1454 void
1455 _bfd_elf_link_hash_copy_indirect (bed, dir, ind)
1456 struct elf_backend_data *bed;
1457 struct elf_link_hash_entry *dir, *ind;
1458 {
1459 bfd_signed_vma tmp;
1460 bfd_signed_vma lowest_valid = bed->can_refcount;
1461
1462 /* Copy down any references that we may have already seen to the
1463 symbol which just became indirect. */
1464
1465 dir->elf_link_hash_flags |=
1466 (ind->elf_link_hash_flags
1467 & (ELF_LINK_HASH_REF_DYNAMIC
1468 | ELF_LINK_HASH_REF_REGULAR
1469 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1470 | ELF_LINK_NON_GOT_REF));
1471
1472 if (ind->root.type != bfd_link_hash_indirect)
1473 return;
1474
1475 /* Copy over the global and procedure linkage table refcount entries.
1476 These may have been already set up by a check_relocs routine. */
1477 tmp = dir->got.refcount;
1478 if (tmp < lowest_valid)
1479 {
1480 dir->got.refcount = ind->got.refcount;
1481 ind->got.refcount = tmp;
1482 }
1483 else
1484 BFD_ASSERT (ind->got.refcount < lowest_valid);
1485
1486 tmp = dir->plt.refcount;
1487 if (tmp < lowest_valid)
1488 {
1489 dir->plt.refcount = ind->plt.refcount;
1490 ind->plt.refcount = tmp;
1491 }
1492 else
1493 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1494
1495 if (dir->dynindx == -1)
1496 {
1497 dir->dynindx = ind->dynindx;
1498 dir->dynstr_index = ind->dynstr_index;
1499 ind->dynindx = -1;
1500 ind->dynstr_index = 0;
1501 }
1502 else
1503 BFD_ASSERT (ind->dynindx == -1);
1504 }
1505
1506 void
1507 _bfd_elf_link_hash_hide_symbol (info, h, force_local)
1508 struct bfd_link_info *info;
1509 struct elf_link_hash_entry *h;
1510 bfd_boolean force_local;
1511 {
1512 h->plt = elf_hash_table (info)->init_offset;
1513 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1514 if (force_local)
1515 {
1516 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1517 if (h->dynindx != -1)
1518 {
1519 h->dynindx = -1;
1520 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1521 h->dynstr_index);
1522 }
1523 }
1524 }
1525
1526 /* Initialize an ELF linker hash table. */
1527
1528 bfd_boolean
1529 _bfd_elf_link_hash_table_init (table, abfd, newfunc)
1530 struct elf_link_hash_table *table;
1531 bfd *abfd;
1532 struct bfd_hash_entry *(*newfunc)
1533 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *,
1534 const char *));
1535 {
1536 bfd_boolean ret;
1537
1538 table->dynamic_sections_created = FALSE;
1539 table->dynobj = NULL;
1540 /* Make sure can_refcount is extended to the width and signedness of
1541 init_refcount before we subtract one from it. */
1542 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1543 table->init_refcount.refcount -= 1;
1544 table->init_offset.offset = -(bfd_vma) 1;
1545 /* The first dynamic symbol is a dummy. */
1546 table->dynsymcount = 1;
1547 table->dynstr = NULL;
1548 table->bucketcount = 0;
1549 table->needed = NULL;
1550 table->hgot = NULL;
1551 table->stab_info = NULL;
1552 table->merge_info = NULL;
1553 memset (&table->eh_info, 0, sizeof (table->eh_info));
1554 table->dynlocal = NULL;
1555 table->runpath = NULL;
1556 table->tls_segment = NULL;
1557 table->loaded = NULL;
1558
1559 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1560 table->root.type = bfd_link_elf_hash_table;
1561
1562 return ret;
1563 }
1564
1565 /* Create an ELF linker hash table. */
1566
1567 struct bfd_link_hash_table *
1568 _bfd_elf_link_hash_table_create (abfd)
1569 bfd *abfd;
1570 {
1571 struct elf_link_hash_table *ret;
1572 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1573
1574 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
1575 if (ret == (struct elf_link_hash_table *) NULL)
1576 return NULL;
1577
1578 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1579 {
1580 free (ret);
1581 return NULL;
1582 }
1583
1584 return &ret->root;
1585 }
1586
1587 /* This is a hook for the ELF emulation code in the generic linker to
1588 tell the backend linker what file name to use for the DT_NEEDED
1589 entry for a dynamic object. The generic linker passes name as an
1590 empty string to indicate that no DT_NEEDED entry should be made. */
1591
1592 void
1593 bfd_elf_set_dt_needed_name (abfd, name)
1594 bfd *abfd;
1595 const char *name;
1596 {
1597 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1598 && bfd_get_format (abfd) == bfd_object)
1599 elf_dt_name (abfd) = name;
1600 }
1601
1602 void
1603 bfd_elf_set_dt_needed_soname (abfd, name)
1604 bfd *abfd;
1605 const char *name;
1606 {
1607 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1608 && bfd_get_format (abfd) == bfd_object)
1609 elf_dt_soname (abfd) = name;
1610 }
1611
1612 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1613 the linker ELF emulation code. */
1614
1615 struct bfd_link_needed_list *
1616 bfd_elf_get_needed_list (abfd, info)
1617 bfd *abfd ATTRIBUTE_UNUSED;
1618 struct bfd_link_info *info;
1619 {
1620 if (! is_elf_hash_table (info))
1621 return NULL;
1622 return elf_hash_table (info)->needed;
1623 }
1624
1625 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1626 hook for the linker ELF emulation code. */
1627
1628 struct bfd_link_needed_list *
1629 bfd_elf_get_runpath_list (abfd, info)
1630 bfd *abfd ATTRIBUTE_UNUSED;
1631 struct bfd_link_info *info;
1632 {
1633 if (! is_elf_hash_table (info))
1634 return NULL;
1635 return elf_hash_table (info)->runpath;
1636 }
1637
1638 /* Get the name actually used for a dynamic object for a link. This
1639 is the SONAME entry if there is one. Otherwise, it is the string
1640 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1641
1642 const char *
1643 bfd_elf_get_dt_soname (abfd)
1644 bfd *abfd;
1645 {
1646 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1647 && bfd_get_format (abfd) == bfd_object)
1648 return elf_dt_name (abfd);
1649 return NULL;
1650 }
1651
1652 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1653 the ELF linker emulation code. */
1654
1655 bfd_boolean
1656 bfd_elf_get_bfd_needed_list (abfd, pneeded)
1657 bfd *abfd;
1658 struct bfd_link_needed_list **pneeded;
1659 {
1660 asection *s;
1661 bfd_byte *dynbuf = NULL;
1662 int elfsec;
1663 unsigned long shlink;
1664 bfd_byte *extdyn, *extdynend;
1665 size_t extdynsize;
1666 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
1667
1668 *pneeded = NULL;
1669
1670 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1671 || bfd_get_format (abfd) != bfd_object)
1672 return TRUE;
1673
1674 s = bfd_get_section_by_name (abfd, ".dynamic");
1675 if (s == NULL || s->_raw_size == 0)
1676 return TRUE;
1677
1678 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
1679 if (dynbuf == NULL)
1680 goto error_return;
1681
1682 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
1683 s->_raw_size))
1684 goto error_return;
1685
1686 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1687 if (elfsec == -1)
1688 goto error_return;
1689
1690 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1691
1692 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1693 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1694
1695 extdyn = dynbuf;
1696 extdynend = extdyn + s->_raw_size;
1697 for (; extdyn < extdynend; extdyn += extdynsize)
1698 {
1699 Elf_Internal_Dyn dyn;
1700
1701 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
1702
1703 if (dyn.d_tag == DT_NULL)
1704 break;
1705
1706 if (dyn.d_tag == DT_NEEDED)
1707 {
1708 const char *string;
1709 struct bfd_link_needed_list *l;
1710 unsigned int tagv = dyn.d_un.d_val;
1711 bfd_size_type amt;
1712
1713 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1714 if (string == NULL)
1715 goto error_return;
1716
1717 amt = sizeof *l;
1718 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1719 if (l == NULL)
1720 goto error_return;
1721
1722 l->by = abfd;
1723 l->name = string;
1724 l->next = *pneeded;
1725 *pneeded = l;
1726 }
1727 }
1728
1729 free (dynbuf);
1730
1731 return TRUE;
1732
1733 error_return:
1734 if (dynbuf != NULL)
1735 free (dynbuf);
1736 return FALSE;
1737 }
1738 \f
1739 /* Allocate an ELF string table--force the first byte to be zero. */
1740
1741 struct bfd_strtab_hash *
1742 _bfd_elf_stringtab_init ()
1743 {
1744 struct bfd_strtab_hash *ret;
1745
1746 ret = _bfd_stringtab_init ();
1747 if (ret != NULL)
1748 {
1749 bfd_size_type loc;
1750
1751 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1752 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1753 if (loc == (bfd_size_type) -1)
1754 {
1755 _bfd_stringtab_free (ret);
1756 ret = NULL;
1757 }
1758 }
1759 return ret;
1760 }
1761 \f
1762 /* ELF .o/exec file reading */
1763
1764 /* Create a new bfd section from an ELF section header. */
1765
1766 bfd_boolean
1767 bfd_section_from_shdr (abfd, shindex)
1768 bfd *abfd;
1769 unsigned int shindex;
1770 {
1771 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1772 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1773 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1774 const char *name;
1775
1776 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1777
1778 switch (hdr->sh_type)
1779 {
1780 case SHT_NULL:
1781 /* Inactive section. Throw it away. */
1782 return TRUE;
1783
1784 case SHT_PROGBITS: /* Normal section with contents. */
1785 case SHT_NOBITS: /* .bss section. */
1786 case SHT_HASH: /* .hash section. */
1787 case SHT_NOTE: /* .note section. */
1788 case SHT_INIT_ARRAY: /* .init_array section. */
1789 case SHT_FINI_ARRAY: /* .fini_array section. */
1790 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1791 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1792
1793 case SHT_DYNAMIC: /* Dynamic linking information. */
1794 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1795 return FALSE;
1796 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1797 {
1798 Elf_Internal_Shdr *dynsymhdr;
1799
1800 /* The shared libraries distributed with hpux11 have a bogus
1801 sh_link field for the ".dynamic" section. Find the
1802 string table for the ".dynsym" section instead. */
1803 if (elf_dynsymtab (abfd) != 0)
1804 {
1805 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1806 hdr->sh_link = dynsymhdr->sh_link;
1807 }
1808 else
1809 {
1810 unsigned int i, num_sec;
1811
1812 num_sec = elf_numsections (abfd);
1813 for (i = 1; i < num_sec; i++)
1814 {
1815 dynsymhdr = elf_elfsections (abfd)[i];
1816 if (dynsymhdr->sh_type == SHT_DYNSYM)
1817 {
1818 hdr->sh_link = dynsymhdr->sh_link;
1819 break;
1820 }
1821 }
1822 }
1823 }
1824 break;
1825
1826 case SHT_SYMTAB: /* A symbol table */
1827 if (elf_onesymtab (abfd) == shindex)
1828 return TRUE;
1829
1830 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1831 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1832 elf_onesymtab (abfd) = shindex;
1833 elf_tdata (abfd)->symtab_hdr = *hdr;
1834 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1835 abfd->flags |= HAS_SYMS;
1836
1837 /* Sometimes a shared object will map in the symbol table. If
1838 SHF_ALLOC is set, and this is a shared object, then we also
1839 treat this section as a BFD section. We can not base the
1840 decision purely on SHF_ALLOC, because that flag is sometimes
1841 set in a relocateable object file, which would confuse the
1842 linker. */
1843 if ((hdr->sh_flags & SHF_ALLOC) != 0
1844 && (abfd->flags & DYNAMIC) != 0
1845 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1846 return FALSE;
1847
1848 return TRUE;
1849
1850 case SHT_DYNSYM: /* A dynamic symbol table */
1851 if (elf_dynsymtab (abfd) == shindex)
1852 return TRUE;
1853
1854 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1855 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1856 elf_dynsymtab (abfd) = shindex;
1857 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1858 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1859 abfd->flags |= HAS_SYMS;
1860
1861 /* Besides being a symbol table, we also treat this as a regular
1862 section, so that objcopy can handle it. */
1863 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1864
1865 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1866 if (elf_symtab_shndx (abfd) == shindex)
1867 return TRUE;
1868
1869 /* Get the associated symbol table. */
1870 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1871 || hdr->sh_link != elf_onesymtab (abfd))
1872 return FALSE;
1873
1874 elf_symtab_shndx (abfd) = shindex;
1875 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1876 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1877 return TRUE;
1878
1879 case SHT_STRTAB: /* A string table */
1880 if (hdr->bfd_section != NULL)
1881 return TRUE;
1882 if (ehdr->e_shstrndx == shindex)
1883 {
1884 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1885 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1886 return TRUE;
1887 }
1888 {
1889 unsigned int i, num_sec;
1890
1891 num_sec = elf_numsections (abfd);
1892 for (i = 1; i < num_sec; i++)
1893 {
1894 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1895 if (hdr2->sh_link == shindex)
1896 {
1897 if (! bfd_section_from_shdr (abfd, i))
1898 return FALSE;
1899 if (elf_onesymtab (abfd) == i)
1900 {
1901 elf_tdata (abfd)->strtab_hdr = *hdr;
1902 elf_elfsections (abfd)[shindex] =
1903 &elf_tdata (abfd)->strtab_hdr;
1904 return TRUE;
1905 }
1906 if (elf_dynsymtab (abfd) == i)
1907 {
1908 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1909 elf_elfsections (abfd)[shindex] = hdr =
1910 &elf_tdata (abfd)->dynstrtab_hdr;
1911 /* We also treat this as a regular section, so
1912 that objcopy can handle it. */
1913 break;
1914 }
1915 #if 0 /* Not handling other string tables specially right now. */
1916 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1917 /* We have a strtab for some random other section. */
1918 newsect = (asection *) hdr2->bfd_section;
1919 if (!newsect)
1920 break;
1921 hdr->bfd_section = newsect;
1922 hdr2 = &elf_section_data (newsect)->str_hdr;
1923 *hdr2 = *hdr;
1924 elf_elfsections (abfd)[shindex] = hdr2;
1925 #endif
1926 }
1927 }
1928 }
1929
1930 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1931
1932 case SHT_REL:
1933 case SHT_RELA:
1934 /* *These* do a lot of work -- but build no sections! */
1935 {
1936 asection *target_sect;
1937 Elf_Internal_Shdr *hdr2;
1938 unsigned int num_sec = elf_numsections (abfd);
1939
1940 /* Check for a bogus link to avoid crashing. */
1941 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1942 || hdr->sh_link >= num_sec)
1943 {
1944 ((*_bfd_error_handler)
1945 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1946 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1947 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1948 }
1949
1950 /* For some incomprehensible reason Oracle distributes
1951 libraries for Solaris in which some of the objects have
1952 bogus sh_link fields. It would be nice if we could just
1953 reject them, but, unfortunately, some people need to use
1954 them. We scan through the section headers; if we find only
1955 one suitable symbol table, we clobber the sh_link to point
1956 to it. I hope this doesn't break anything. */
1957 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1958 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1959 {
1960 unsigned int scan;
1961 int found;
1962
1963 found = 0;
1964 for (scan = 1; scan < num_sec; scan++)
1965 {
1966 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1967 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1968 {
1969 if (found != 0)
1970 {
1971 found = 0;
1972 break;
1973 }
1974 found = scan;
1975 }
1976 }
1977 if (found != 0)
1978 hdr->sh_link = found;
1979 }
1980
1981 /* Get the symbol table. */
1982 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1983 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1984 return FALSE;
1985
1986 /* If this reloc section does not use the main symbol table we
1987 don't treat it as a reloc section. BFD can't adequately
1988 represent such a section, so at least for now, we don't
1989 try. We just present it as a normal section. We also
1990 can't use it as a reloc section if it points to the null
1991 section. */
1992 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1993 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1994
1995 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1996 return FALSE;
1997 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1998 if (target_sect == NULL)
1999 return FALSE;
2000
2001 if ((target_sect->flags & SEC_RELOC) == 0
2002 || target_sect->reloc_count == 0)
2003 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2004 else
2005 {
2006 bfd_size_type amt;
2007 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2008 amt = sizeof (*hdr2);
2009 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
2010 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2011 }
2012 *hdr2 = *hdr;
2013 elf_elfsections (abfd)[shindex] = hdr2;
2014 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2015 target_sect->flags |= SEC_RELOC;
2016 target_sect->relocation = NULL;
2017 target_sect->rel_filepos = hdr->sh_offset;
2018 /* In the section to which the relocations apply, mark whether
2019 its relocations are of the REL or RELA variety. */
2020 if (hdr->sh_size != 0)
2021 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2022 abfd->flags |= HAS_RELOC;
2023 return TRUE;
2024 }
2025 break;
2026
2027 case SHT_GNU_verdef:
2028 elf_dynverdef (abfd) = shindex;
2029 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2030 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
2031 break;
2032
2033 case SHT_GNU_versym:
2034 elf_dynversym (abfd) = shindex;
2035 elf_tdata (abfd)->dynversym_hdr = *hdr;
2036 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
2037 break;
2038
2039 case SHT_GNU_verneed:
2040 elf_dynverref (abfd) = shindex;
2041 elf_tdata (abfd)->dynverref_hdr = *hdr;
2042 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
2043 break;
2044
2045 case SHT_SHLIB:
2046 return TRUE;
2047
2048 case SHT_GROUP:
2049 /* We need a BFD section for objcopy and relocatable linking,
2050 and it's handy to have the signature available as the section
2051 name. */
2052 name = group_signature (abfd, hdr);
2053 if (name == NULL)
2054 return FALSE;
2055 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
2056 return FALSE;
2057 if (hdr->contents != NULL)
2058 {
2059 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2060 unsigned int n_elt = hdr->sh_size / 4;
2061 asection *s;
2062
2063 if (idx->flags & GRP_COMDAT)
2064 hdr->bfd_section->flags
2065 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2066
2067 while (--n_elt != 0)
2068 if ((s = (++idx)->shdr->bfd_section) != NULL
2069 && elf_next_in_group (s) != NULL)
2070 {
2071 elf_next_in_group (hdr->bfd_section) = s;
2072 break;
2073 }
2074 }
2075 break;
2076
2077 default:
2078 /* Check for any processor-specific section types. */
2079 {
2080 if (bed->elf_backend_section_from_shdr)
2081 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
2082 }
2083 break;
2084 }
2085
2086 return TRUE;
2087 }
2088
2089 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2090 Return SEC for sections that have no elf section, and NULL on error. */
2091
2092 asection *
2093 bfd_section_from_r_symndx (abfd, cache, sec, r_symndx)
2094 bfd *abfd;
2095 struct sym_sec_cache *cache;
2096 asection *sec;
2097 unsigned long r_symndx;
2098 {
2099 Elf_Internal_Shdr *symtab_hdr;
2100 unsigned char esym[sizeof (Elf64_External_Sym)];
2101 Elf_External_Sym_Shndx eshndx;
2102 Elf_Internal_Sym isym;
2103 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2104
2105 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2106 return cache->sec[ent];
2107
2108 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2109 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2110 &isym, esym, &eshndx) == NULL)
2111 return NULL;
2112
2113 if (cache->abfd != abfd)
2114 {
2115 memset (cache->indx, -1, sizeof (cache->indx));
2116 cache->abfd = abfd;
2117 }
2118 cache->indx[ent] = r_symndx;
2119 cache->sec[ent] = sec;
2120 if (isym.st_shndx < SHN_LORESERVE || isym.st_shndx > SHN_HIRESERVE)
2121 {
2122 asection *s;
2123 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2124 if (s != NULL)
2125 cache->sec[ent] = s;
2126 }
2127 return cache->sec[ent];
2128 }
2129
2130 /* Given an ELF section number, retrieve the corresponding BFD
2131 section. */
2132
2133 asection *
2134 bfd_section_from_elf_index (abfd, index)
2135 bfd *abfd;
2136 unsigned int index;
2137 {
2138 if (index >= elf_numsections (abfd))
2139 return NULL;
2140 return elf_elfsections (abfd)[index]->bfd_section;
2141 }
2142
2143 bfd_boolean
2144 _bfd_elf_new_section_hook (abfd, sec)
2145 bfd *abfd;
2146 asection *sec;
2147 {
2148 struct bfd_elf_section_data *sdata;
2149
2150 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2151 if (sdata == NULL)
2152 {
2153 bfd_size_type amt = sizeof (*sdata);
2154 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, amt);
2155 if (sdata == NULL)
2156 return FALSE;
2157 sec->used_by_bfd = (PTR) sdata;
2158 }
2159
2160 /* Indicate whether or not this section should use RELA relocations. */
2161 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2162
2163 return TRUE;
2164 }
2165
2166 /* Create a new bfd section from an ELF program header.
2167
2168 Since program segments have no names, we generate a synthetic name
2169 of the form segment<NUM>, where NUM is generally the index in the
2170 program header table. For segments that are split (see below) we
2171 generate the names segment<NUM>a and segment<NUM>b.
2172
2173 Note that some program segments may have a file size that is different than
2174 (less than) the memory size. All this means is that at execution the
2175 system must allocate the amount of memory specified by the memory size,
2176 but only initialize it with the first "file size" bytes read from the
2177 file. This would occur for example, with program segments consisting
2178 of combined data+bss.
2179
2180 To handle the above situation, this routine generates TWO bfd sections
2181 for the single program segment. The first has the length specified by
2182 the file size of the segment, and the second has the length specified
2183 by the difference between the two sizes. In effect, the segment is split
2184 into it's initialized and uninitialized parts.
2185
2186 */
2187
2188 bfd_boolean
2189 _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename)
2190 bfd *abfd;
2191 Elf_Internal_Phdr *hdr;
2192 int index;
2193 const char *typename;
2194 {
2195 asection *newsect;
2196 char *name;
2197 char namebuf[64];
2198 size_t len;
2199 int split;
2200
2201 split = ((hdr->p_memsz > 0)
2202 && (hdr->p_filesz > 0)
2203 && (hdr->p_memsz > hdr->p_filesz));
2204 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2205 len = strlen (namebuf) + 1;
2206 name = bfd_alloc (abfd, (bfd_size_type) len);
2207 if (!name)
2208 return FALSE;
2209 memcpy (name, namebuf, len);
2210 newsect = bfd_make_section (abfd, name);
2211 if (newsect == NULL)
2212 return FALSE;
2213 newsect->vma = hdr->p_vaddr;
2214 newsect->lma = hdr->p_paddr;
2215 newsect->_raw_size = hdr->p_filesz;
2216 newsect->filepos = hdr->p_offset;
2217 newsect->flags |= SEC_HAS_CONTENTS;
2218 if (hdr->p_type == PT_LOAD)
2219 {
2220 newsect->flags |= SEC_ALLOC;
2221 newsect->flags |= SEC_LOAD;
2222 if (hdr->p_flags & PF_X)
2223 {
2224 /* FIXME: all we known is that it has execute PERMISSION,
2225 may be data. */
2226 newsect->flags |= SEC_CODE;
2227 }
2228 }
2229 if (!(hdr->p_flags & PF_W))
2230 {
2231 newsect->flags |= SEC_READONLY;
2232 }
2233
2234 if (split)
2235 {
2236 sprintf (namebuf, "%s%db", typename, index);
2237 len = strlen (namebuf) + 1;
2238 name = bfd_alloc (abfd, (bfd_size_type) len);
2239 if (!name)
2240 return FALSE;
2241 memcpy (name, namebuf, len);
2242 newsect = bfd_make_section (abfd, name);
2243 if (newsect == NULL)
2244 return FALSE;
2245 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2246 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2247 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2248 if (hdr->p_type == PT_LOAD)
2249 {
2250 newsect->flags |= SEC_ALLOC;
2251 if (hdr->p_flags & PF_X)
2252 newsect->flags |= SEC_CODE;
2253 }
2254 if (!(hdr->p_flags & PF_W))
2255 newsect->flags |= SEC_READONLY;
2256 }
2257
2258 return TRUE;
2259 }
2260
2261 bfd_boolean
2262 bfd_section_from_phdr (abfd, hdr, index)
2263 bfd *abfd;
2264 Elf_Internal_Phdr *hdr;
2265 int index;
2266 {
2267 struct elf_backend_data *bed;
2268
2269 switch (hdr->p_type)
2270 {
2271 case PT_NULL:
2272 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2273
2274 case PT_LOAD:
2275 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2276
2277 case PT_DYNAMIC:
2278 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2279
2280 case PT_INTERP:
2281 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2282
2283 case PT_NOTE:
2284 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2285 return FALSE;
2286 if (! elfcore_read_notes (abfd, (file_ptr) hdr->p_offset, hdr->p_filesz))
2287 return FALSE;
2288 return TRUE;
2289
2290 case PT_SHLIB:
2291 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2292
2293 case PT_PHDR:
2294 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2295
2296 case PT_GNU_EH_FRAME:
2297 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2298 "eh_frame_hdr");
2299
2300 case PT_GNU_STACK:
2301 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2302
2303 default:
2304 /* Check for any processor-specific program segment types.
2305 If no handler for them, default to making "segment" sections. */
2306 bed = get_elf_backend_data (abfd);
2307 if (bed->elf_backend_section_from_phdr)
2308 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2309 else
2310 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2311 }
2312 }
2313
2314 /* Initialize REL_HDR, the section-header for new section, containing
2315 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2316 relocations; otherwise, we use REL relocations. */
2317
2318 bfd_boolean
2319 _bfd_elf_init_reloc_shdr (abfd, rel_hdr, asect, use_rela_p)
2320 bfd *abfd;
2321 Elf_Internal_Shdr *rel_hdr;
2322 asection *asect;
2323 bfd_boolean use_rela_p;
2324 {
2325 char *name;
2326 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2327 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2328
2329 name = bfd_alloc (abfd, amt);
2330 if (name == NULL)
2331 return FALSE;
2332 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2333 rel_hdr->sh_name =
2334 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2335 FALSE);
2336 if (rel_hdr->sh_name == (unsigned int) -1)
2337 return FALSE;
2338 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2339 rel_hdr->sh_entsize = (use_rela_p
2340 ? bed->s->sizeof_rela
2341 : bed->s->sizeof_rel);
2342 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2343 rel_hdr->sh_flags = 0;
2344 rel_hdr->sh_addr = 0;
2345 rel_hdr->sh_size = 0;
2346 rel_hdr->sh_offset = 0;
2347
2348 return TRUE;
2349 }
2350
2351 /* Set up an ELF internal section header for a section. */
2352
2353 static void
2354 elf_fake_sections (abfd, asect, failedptrarg)
2355 bfd *abfd;
2356 asection *asect;
2357 PTR failedptrarg;
2358 {
2359 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2360 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2361 Elf_Internal_Shdr *this_hdr;
2362
2363 if (*failedptr)
2364 {
2365 /* We already failed; just get out of the bfd_map_over_sections
2366 loop. */
2367 return;
2368 }
2369
2370 this_hdr = &elf_section_data (asect)->this_hdr;
2371
2372 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2373 asect->name, FALSE);
2374 if (this_hdr->sh_name == (unsigned int) -1)
2375 {
2376 *failedptr = TRUE;
2377 return;
2378 }
2379
2380 this_hdr->sh_flags = 0;
2381
2382 if ((asect->flags & SEC_ALLOC) != 0
2383 || asect->user_set_vma)
2384 this_hdr->sh_addr = asect->vma;
2385 else
2386 this_hdr->sh_addr = 0;
2387
2388 this_hdr->sh_offset = 0;
2389 this_hdr->sh_size = asect->_raw_size;
2390 this_hdr->sh_link = 0;
2391 this_hdr->sh_addralign = 1 << asect->alignment_power;
2392 /* The sh_entsize and sh_info fields may have been set already by
2393 copy_private_section_data. */
2394
2395 this_hdr->bfd_section = asect;
2396 this_hdr->contents = NULL;
2397
2398 /* FIXME: This should not be based on section names. */
2399 if (strcmp (asect->name, ".dynstr") == 0)
2400 this_hdr->sh_type = SHT_STRTAB;
2401 else if (strcmp (asect->name, ".hash") == 0)
2402 {
2403 this_hdr->sh_type = SHT_HASH;
2404 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2405 }
2406 else if (strcmp (asect->name, ".dynsym") == 0)
2407 {
2408 this_hdr->sh_type = SHT_DYNSYM;
2409 this_hdr->sh_entsize = bed->s->sizeof_sym;
2410 }
2411 else if (strcmp (asect->name, ".dynamic") == 0)
2412 {
2413 this_hdr->sh_type = SHT_DYNAMIC;
2414 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2415 }
2416 else if (strncmp (asect->name, ".rela", 5) == 0
2417 && get_elf_backend_data (abfd)->may_use_rela_p)
2418 {
2419 this_hdr->sh_type = SHT_RELA;
2420 this_hdr->sh_entsize = bed->s->sizeof_rela;
2421 }
2422 else if (strncmp (asect->name, ".rel", 4) == 0
2423 && get_elf_backend_data (abfd)->may_use_rel_p)
2424 {
2425 this_hdr->sh_type = SHT_REL;
2426 this_hdr->sh_entsize = bed->s->sizeof_rel;
2427 }
2428 else if (strcmp (asect->name, ".init_array") == 0)
2429 this_hdr->sh_type = SHT_INIT_ARRAY;
2430 else if (strcmp (asect->name, ".fini_array") == 0)
2431 this_hdr->sh_type = SHT_FINI_ARRAY;
2432 else if (strcmp (asect->name, ".preinit_array") == 0)
2433 this_hdr->sh_type = SHT_PREINIT_ARRAY;
2434 else if (strncmp (asect->name, ".note", 5) == 0)
2435 this_hdr->sh_type = SHT_NOTE;
2436 else if (strncmp (asect->name, ".stab", 5) == 0
2437 && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0)
2438 this_hdr->sh_type = SHT_STRTAB;
2439 else if (strcmp (asect->name, ".gnu.version") == 0)
2440 {
2441 this_hdr->sh_type = SHT_GNU_versym;
2442 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2443 }
2444 else if (strcmp (asect->name, ".gnu.version_d") == 0)
2445 {
2446 this_hdr->sh_type = SHT_GNU_verdef;
2447 this_hdr->sh_entsize = 0;
2448 /* objcopy or strip will copy over sh_info, but may not set
2449 cverdefs. The linker will set cverdefs, but sh_info will be
2450 zero. */
2451 if (this_hdr->sh_info == 0)
2452 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2453 else
2454 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2455 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2456 }
2457 else if (strcmp (asect->name, ".gnu.version_r") == 0)
2458 {
2459 this_hdr->sh_type = SHT_GNU_verneed;
2460 this_hdr->sh_entsize = 0;
2461 /* objcopy or strip will copy over sh_info, but may not set
2462 cverrefs. The linker will set cverrefs, but sh_info will be
2463 zero. */
2464 if (this_hdr->sh_info == 0)
2465 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2466 else
2467 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2468 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2469 }
2470 else if ((asect->flags & SEC_GROUP) != 0)
2471 {
2472 this_hdr->sh_type = SHT_GROUP;
2473 this_hdr->sh_entsize = 4;
2474 }
2475 else if ((asect->flags & SEC_ALLOC) != 0
2476 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2477 || (asect->flags & SEC_NEVER_LOAD) != 0))
2478 this_hdr->sh_type = SHT_NOBITS;
2479 else
2480 this_hdr->sh_type = SHT_PROGBITS;
2481
2482 if ((asect->flags & SEC_ALLOC) != 0)
2483 this_hdr->sh_flags |= SHF_ALLOC;
2484 if ((asect->flags & SEC_READONLY) == 0)
2485 this_hdr->sh_flags |= SHF_WRITE;
2486 if ((asect->flags & SEC_CODE) != 0)
2487 this_hdr->sh_flags |= SHF_EXECINSTR;
2488 if ((asect->flags & SEC_MERGE) != 0)
2489 {
2490 this_hdr->sh_flags |= SHF_MERGE;
2491 this_hdr->sh_entsize = asect->entsize;
2492 if ((asect->flags & SEC_STRINGS) != 0)
2493 this_hdr->sh_flags |= SHF_STRINGS;
2494 }
2495 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2496 this_hdr->sh_flags |= SHF_GROUP;
2497 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2498 {
2499 this_hdr->sh_flags |= SHF_TLS;
2500 if (asect->_raw_size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2501 {
2502 struct bfd_link_order *o;
2503
2504 this_hdr->sh_size = 0;
2505 for (o = asect->link_order_head; o != NULL; o = o->next)
2506 if (this_hdr->sh_size < o->offset + o->size)
2507 this_hdr->sh_size = o->offset + o->size;
2508 if (this_hdr->sh_size)
2509 this_hdr->sh_type = SHT_NOBITS;
2510 }
2511 }
2512
2513 /* Check for processor-specific section types. */
2514 if (bed->elf_backend_fake_sections
2515 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2516 *failedptr = TRUE;
2517
2518 /* If the section has relocs, set up a section header for the
2519 SHT_REL[A] section. If two relocation sections are required for
2520 this section, it is up to the processor-specific back-end to
2521 create the other. */
2522 if ((asect->flags & SEC_RELOC) != 0
2523 && !_bfd_elf_init_reloc_shdr (abfd,
2524 &elf_section_data (asect)->rel_hdr,
2525 asect,
2526 asect->use_rela_p))
2527 *failedptr = TRUE;
2528 }
2529
2530 /* Fill in the contents of a SHT_GROUP section. */
2531
2532 void
2533 bfd_elf_set_group_contents (abfd, sec, failedptrarg)
2534 bfd *abfd;
2535 asection *sec;
2536 PTR failedptrarg;
2537 {
2538 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2539 unsigned long symindx;
2540 asection *elt, *first;
2541 unsigned char *loc;
2542 struct bfd_link_order *l;
2543 bfd_boolean gas;
2544
2545 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2546 || *failedptr)
2547 return;
2548
2549 symindx = 0;
2550 if (elf_group_id (sec) != NULL)
2551 symindx = elf_group_id (sec)->udata.i;
2552
2553 if (symindx == 0)
2554 {
2555 /* If called from the assembler, swap_out_syms will have set up
2556 elf_section_syms; If called for "ld -r", use target_index. */
2557 if (elf_section_syms (abfd) != NULL)
2558 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2559 else
2560 symindx = sec->target_index;
2561 }
2562 elf_section_data (sec)->this_hdr.sh_info = symindx;
2563
2564 /* The contents won't be allocated for "ld -r" or objcopy. */
2565 gas = TRUE;
2566 if (sec->contents == NULL)
2567 {
2568 gas = FALSE;
2569 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2570
2571 /* Arrange for the section to be written out. */
2572 elf_section_data (sec)->this_hdr.contents = sec->contents;
2573 if (sec->contents == NULL)
2574 {
2575 *failedptr = TRUE;
2576 return;
2577 }
2578 }
2579
2580 loc = sec->contents + sec->_raw_size;
2581
2582 /* Get the pointer to the first section in the group that gas
2583 squirreled away here. objcopy arranges for this to be set to the
2584 start of the input section group. */
2585 first = elt = elf_next_in_group (sec);
2586
2587 /* First element is a flag word. Rest of section is elf section
2588 indices for all the sections of the group. Write them backwards
2589 just to keep the group in the same order as given in .section
2590 directives, not that it matters. */
2591 while (elt != NULL)
2592 {
2593 asection *s;
2594 unsigned int idx;
2595
2596 loc -= 4;
2597 s = elt;
2598 if (!gas)
2599 s = s->output_section;
2600 idx = 0;
2601 if (s != NULL)
2602 idx = elf_section_data (s)->this_idx;
2603 H_PUT_32 (abfd, idx, loc);
2604 elt = elf_next_in_group (elt);
2605 if (elt == first)
2606 break;
2607 }
2608
2609 /* If this is a relocatable link, then the above did nothing because
2610 SEC is the output section. Look through the input sections
2611 instead. */
2612 for (l = sec->link_order_head; l != NULL; l = l->next)
2613 if (l->type == bfd_indirect_link_order
2614 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2615 do
2616 {
2617 loc -= 4;
2618 H_PUT_32 (abfd,
2619 elf_section_data (elt->output_section)->this_idx, loc);
2620 elt = elf_next_in_group (elt);
2621 /* During a relocatable link, the lists are circular. */
2622 }
2623 while (elt != elf_next_in_group (l->u.indirect.section));
2624
2625 /* With ld -r, merging SHT_GROUP sections results in wasted space
2626 due to allowing for the flag word on each input. We may well
2627 duplicate entries too. */
2628 while ((loc -= 4) > sec->contents)
2629 H_PUT_32 (abfd, 0, loc);
2630
2631 if (loc != sec->contents)
2632 abort ();
2633
2634 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2635 }
2636
2637 /* Assign all ELF section numbers. The dummy first section is handled here
2638 too. The link/info pointers for the standard section types are filled
2639 in here too, while we're at it. */
2640
2641 static bfd_boolean
2642 assign_section_numbers (abfd)
2643 bfd *abfd;
2644 {
2645 struct elf_obj_tdata *t = elf_tdata (abfd);
2646 asection *sec;
2647 unsigned int section_number, secn;
2648 Elf_Internal_Shdr **i_shdrp;
2649 bfd_size_type amt;
2650
2651 section_number = 1;
2652
2653 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2654
2655 for (sec = abfd->sections; sec; sec = sec->next)
2656 {
2657 struct bfd_elf_section_data *d = elf_section_data (sec);
2658
2659 if (section_number == SHN_LORESERVE)
2660 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2661 d->this_idx = section_number++;
2662 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2663 if ((sec->flags & SEC_RELOC) == 0)
2664 d->rel_idx = 0;
2665 else
2666 {
2667 if (section_number == SHN_LORESERVE)
2668 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2669 d->rel_idx = section_number++;
2670 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2671 }
2672
2673 if (d->rel_hdr2)
2674 {
2675 if (section_number == SHN_LORESERVE)
2676 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2677 d->rel_idx2 = section_number++;
2678 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2679 }
2680 else
2681 d->rel_idx2 = 0;
2682 }
2683
2684 if (section_number == SHN_LORESERVE)
2685 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2686 t->shstrtab_section = section_number++;
2687 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2688 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2689
2690 if (bfd_get_symcount (abfd) > 0)
2691 {
2692 if (section_number == SHN_LORESERVE)
2693 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2694 t->symtab_section = section_number++;
2695 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2696 if (section_number > SHN_LORESERVE - 2)
2697 {
2698 if (section_number == SHN_LORESERVE)
2699 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2700 t->symtab_shndx_section = section_number++;
2701 t->symtab_shndx_hdr.sh_name
2702 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2703 ".symtab_shndx", FALSE);
2704 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2705 return FALSE;
2706 }
2707 if (section_number == SHN_LORESERVE)
2708 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2709 t->strtab_section = section_number++;
2710 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2711 }
2712
2713 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2714 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2715
2716 elf_numsections (abfd) = section_number;
2717 elf_elfheader (abfd)->e_shnum = section_number;
2718 if (section_number > SHN_LORESERVE)
2719 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2720
2721 /* Set up the list of section header pointers, in agreement with the
2722 indices. */
2723 amt = section_number * sizeof (Elf_Internal_Shdr *);
2724 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
2725 if (i_shdrp == NULL)
2726 return FALSE;
2727
2728 amt = sizeof (Elf_Internal_Shdr);
2729 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
2730 if (i_shdrp[0] == NULL)
2731 {
2732 bfd_release (abfd, i_shdrp);
2733 return FALSE;
2734 }
2735
2736 elf_elfsections (abfd) = i_shdrp;
2737
2738 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2739 if (bfd_get_symcount (abfd) > 0)
2740 {
2741 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2742 if (elf_numsections (abfd) > SHN_LORESERVE)
2743 {
2744 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2745 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2746 }
2747 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2748 t->symtab_hdr.sh_link = t->strtab_section;
2749 }
2750 for (sec = abfd->sections; sec; sec = sec->next)
2751 {
2752 struct bfd_elf_section_data *d = elf_section_data (sec);
2753 asection *s;
2754 const char *name;
2755
2756 i_shdrp[d->this_idx] = &d->this_hdr;
2757 if (d->rel_idx != 0)
2758 i_shdrp[d->rel_idx] = &d->rel_hdr;
2759 if (d->rel_idx2 != 0)
2760 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2761
2762 /* Fill in the sh_link and sh_info fields while we're at it. */
2763
2764 /* sh_link of a reloc section is the section index of the symbol
2765 table. sh_info is the section index of the section to which
2766 the relocation entries apply. */
2767 if (d->rel_idx != 0)
2768 {
2769 d->rel_hdr.sh_link = t->symtab_section;
2770 d->rel_hdr.sh_info = d->this_idx;
2771 }
2772 if (d->rel_idx2 != 0)
2773 {
2774 d->rel_hdr2->sh_link = t->symtab_section;
2775 d->rel_hdr2->sh_info = d->this_idx;
2776 }
2777
2778 switch (d->this_hdr.sh_type)
2779 {
2780 case SHT_REL:
2781 case SHT_RELA:
2782 /* A reloc section which we are treating as a normal BFD
2783 section. sh_link is the section index of the symbol
2784 table. sh_info is the section index of the section to
2785 which the relocation entries apply. We assume that an
2786 allocated reloc section uses the dynamic symbol table.
2787 FIXME: How can we be sure? */
2788 s = bfd_get_section_by_name (abfd, ".dynsym");
2789 if (s != NULL)
2790 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2791
2792 /* We look up the section the relocs apply to by name. */
2793 name = sec->name;
2794 if (d->this_hdr.sh_type == SHT_REL)
2795 name += 4;
2796 else
2797 name += 5;
2798 s = bfd_get_section_by_name (abfd, name);
2799 if (s != NULL)
2800 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2801 break;
2802
2803 case SHT_STRTAB:
2804 /* We assume that a section named .stab*str is a stabs
2805 string section. We look for a section with the same name
2806 but without the trailing ``str'', and set its sh_link
2807 field to point to this section. */
2808 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2809 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2810 {
2811 size_t len;
2812 char *alc;
2813
2814 len = strlen (sec->name);
2815 alc = (char *) bfd_malloc ((bfd_size_type) (len - 2));
2816 if (alc == NULL)
2817 return FALSE;
2818 memcpy (alc, sec->name, len - 3);
2819 alc[len - 3] = '\0';
2820 s = bfd_get_section_by_name (abfd, alc);
2821 free (alc);
2822 if (s != NULL)
2823 {
2824 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2825
2826 /* This is a .stab section. */
2827 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2828 elf_section_data (s)->this_hdr.sh_entsize
2829 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2830 }
2831 }
2832 break;
2833
2834 case SHT_DYNAMIC:
2835 case SHT_DYNSYM:
2836 case SHT_GNU_verneed:
2837 case SHT_GNU_verdef:
2838 /* sh_link is the section header index of the string table
2839 used for the dynamic entries, or the symbol table, or the
2840 version strings. */
2841 s = bfd_get_section_by_name (abfd, ".dynstr");
2842 if (s != NULL)
2843 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2844 break;
2845
2846 case SHT_HASH:
2847 case SHT_GNU_versym:
2848 /* sh_link is the section header index of the symbol table
2849 this hash table or version table is for. */
2850 s = bfd_get_section_by_name (abfd, ".dynsym");
2851 if (s != NULL)
2852 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2853 break;
2854
2855 case SHT_GROUP:
2856 d->this_hdr.sh_link = t->symtab_section;
2857 }
2858 }
2859
2860 for (secn = 1; secn < section_number; ++secn)
2861 if (i_shdrp[secn] == NULL)
2862 i_shdrp[secn] = i_shdrp[0];
2863 else
2864 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2865 i_shdrp[secn]->sh_name);
2866 return TRUE;
2867 }
2868
2869 /* Map symbol from it's internal number to the external number, moving
2870 all local symbols to be at the head of the list. */
2871
2872 static INLINE int
2873 sym_is_global (abfd, sym)
2874 bfd *abfd;
2875 asymbol *sym;
2876 {
2877 /* If the backend has a special mapping, use it. */
2878 if (get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2879 return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2880 (abfd, sym));
2881
2882 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2883 || bfd_is_und_section (bfd_get_section (sym))
2884 || bfd_is_com_section (bfd_get_section (sym)));
2885 }
2886
2887 static bfd_boolean
2888 elf_map_symbols (abfd)
2889 bfd *abfd;
2890 {
2891 unsigned int symcount = bfd_get_symcount (abfd);
2892 asymbol **syms = bfd_get_outsymbols (abfd);
2893 asymbol **sect_syms;
2894 unsigned int num_locals = 0;
2895 unsigned int num_globals = 0;
2896 unsigned int num_locals2 = 0;
2897 unsigned int num_globals2 = 0;
2898 int max_index = 0;
2899 unsigned int idx;
2900 asection *asect;
2901 asymbol **new_syms;
2902 bfd_size_type amt;
2903
2904 #ifdef DEBUG
2905 fprintf (stderr, "elf_map_symbols\n");
2906 fflush (stderr);
2907 #endif
2908
2909 for (asect = abfd->sections; asect; asect = asect->next)
2910 {
2911 if (max_index < asect->index)
2912 max_index = asect->index;
2913 }
2914
2915 max_index++;
2916 amt = max_index * sizeof (asymbol *);
2917 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
2918 if (sect_syms == NULL)
2919 return FALSE;
2920 elf_section_syms (abfd) = sect_syms;
2921 elf_num_section_syms (abfd) = max_index;
2922
2923 /* Init sect_syms entries for any section symbols we have already
2924 decided to output. */
2925 for (idx = 0; idx < symcount; idx++)
2926 {
2927 asymbol *sym = syms[idx];
2928
2929 if ((sym->flags & BSF_SECTION_SYM) != 0
2930 && sym->value == 0)
2931 {
2932 asection *sec;
2933
2934 sec = sym->section;
2935
2936 if (sec->owner != NULL)
2937 {
2938 if (sec->owner != abfd)
2939 {
2940 if (sec->output_offset != 0)
2941 continue;
2942
2943 sec = sec->output_section;
2944
2945 /* Empty sections in the input files may have had a
2946 section symbol created for them. (See the comment
2947 near the end of _bfd_generic_link_output_symbols in
2948 linker.c). If the linker script discards such
2949 sections then we will reach this point. Since we know
2950 that we cannot avoid this case, we detect it and skip
2951 the abort and the assignment to the sect_syms array.
2952 To reproduce this particular case try running the
2953 linker testsuite test ld-scripts/weak.exp for an ELF
2954 port that uses the generic linker. */
2955 if (sec->owner == NULL)
2956 continue;
2957
2958 BFD_ASSERT (sec->owner == abfd);
2959 }
2960 sect_syms[sec->index] = syms[idx];
2961 }
2962 }
2963 }
2964
2965 /* Classify all of the symbols. */
2966 for (idx = 0; idx < symcount; idx++)
2967 {
2968 if (!sym_is_global (abfd, syms[idx]))
2969 num_locals++;
2970 else
2971 num_globals++;
2972 }
2973
2974 /* We will be adding a section symbol for each BFD section. Most normal
2975 sections will already have a section symbol in outsymbols, but
2976 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2977 at least in that case. */
2978 for (asect = abfd->sections; asect; asect = asect->next)
2979 {
2980 if (sect_syms[asect->index] == NULL)
2981 {
2982 if (!sym_is_global (abfd, asect->symbol))
2983 num_locals++;
2984 else
2985 num_globals++;
2986 }
2987 }
2988
2989 /* Now sort the symbols so the local symbols are first. */
2990 amt = (num_locals + num_globals) * sizeof (asymbol *);
2991 new_syms = (asymbol **) bfd_alloc (abfd, amt);
2992
2993 if (new_syms == NULL)
2994 return FALSE;
2995
2996 for (idx = 0; idx < symcount; idx++)
2997 {
2998 asymbol *sym = syms[idx];
2999 unsigned int i;
3000
3001 if (!sym_is_global (abfd, sym))
3002 i = num_locals2++;
3003 else
3004 i = num_locals + num_globals2++;
3005 new_syms[i] = sym;
3006 sym->udata.i = i + 1;
3007 }
3008 for (asect = abfd->sections; asect; asect = asect->next)
3009 {
3010 if (sect_syms[asect->index] == NULL)
3011 {
3012 asymbol *sym = asect->symbol;
3013 unsigned int i;
3014
3015 sect_syms[asect->index] = sym;
3016 if (!sym_is_global (abfd, sym))
3017 i = num_locals2++;
3018 else
3019 i = num_locals + num_globals2++;
3020 new_syms[i] = sym;
3021 sym->udata.i = i + 1;
3022 }
3023 }
3024
3025 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3026
3027 elf_num_locals (abfd) = num_locals;
3028 elf_num_globals (abfd) = num_globals;
3029 return TRUE;
3030 }
3031
3032 /* Align to the maximum file alignment that could be required for any
3033 ELF data structure. */
3034
3035 static INLINE file_ptr align_file_position
3036 PARAMS ((file_ptr, int));
3037 static INLINE file_ptr
3038 align_file_position (off, align)
3039 file_ptr off;
3040 int align;
3041 {
3042 return (off + align - 1) & ~(align - 1);
3043 }
3044
3045 /* Assign a file position to a section, optionally aligning to the
3046 required section alignment. */
3047
3048 INLINE file_ptr
3049 _bfd_elf_assign_file_position_for_section (i_shdrp, offset, align)
3050 Elf_Internal_Shdr *i_shdrp;
3051 file_ptr offset;
3052 bfd_boolean align;
3053 {
3054 if (align)
3055 {
3056 unsigned int al;
3057
3058 al = i_shdrp->sh_addralign;
3059 if (al > 1)
3060 offset = BFD_ALIGN (offset, al);
3061 }
3062 i_shdrp->sh_offset = offset;
3063 if (i_shdrp->bfd_section != NULL)
3064 i_shdrp->bfd_section->filepos = offset;
3065 if (i_shdrp->sh_type != SHT_NOBITS)
3066 offset += i_shdrp->sh_size;
3067 return offset;
3068 }
3069
3070 /* Compute the file positions we are going to put the sections at, and
3071 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3072 is not NULL, this is being called by the ELF backend linker. */
3073
3074 bfd_boolean
3075 _bfd_elf_compute_section_file_positions (abfd, link_info)
3076 bfd *abfd;
3077 struct bfd_link_info *link_info;
3078 {
3079 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3080 bfd_boolean failed;
3081 struct bfd_strtab_hash *strtab;
3082 Elf_Internal_Shdr *shstrtab_hdr;
3083
3084 if (abfd->output_has_begun)
3085 return TRUE;
3086
3087 /* Do any elf backend specific processing first. */
3088 if (bed->elf_backend_begin_write_processing)
3089 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3090
3091 if (! prep_headers (abfd))
3092 return FALSE;
3093
3094 /* Post process the headers if necessary. */
3095 if (bed->elf_backend_post_process_headers)
3096 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3097
3098 failed = FALSE;
3099 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3100 if (failed)
3101 return FALSE;
3102
3103 if (!assign_section_numbers (abfd))
3104 return FALSE;
3105
3106 /* The backend linker builds symbol table information itself. */
3107 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3108 {
3109 /* Non-zero if doing a relocatable link. */
3110 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3111
3112 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3113 return FALSE;
3114 }
3115
3116 if (link_info == NULL)
3117 {
3118 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3119 if (failed)
3120 return FALSE;
3121 }
3122
3123 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3124 /* sh_name was set in prep_headers. */
3125 shstrtab_hdr->sh_type = SHT_STRTAB;
3126 shstrtab_hdr->sh_flags = 0;
3127 shstrtab_hdr->sh_addr = 0;
3128 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3129 shstrtab_hdr->sh_entsize = 0;
3130 shstrtab_hdr->sh_link = 0;
3131 shstrtab_hdr->sh_info = 0;
3132 /* sh_offset is set in assign_file_positions_except_relocs. */
3133 shstrtab_hdr->sh_addralign = 1;
3134
3135 if (!assign_file_positions_except_relocs (abfd))
3136 return FALSE;
3137
3138 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3139 {
3140 file_ptr off;
3141 Elf_Internal_Shdr *hdr;
3142
3143 off = elf_tdata (abfd)->next_file_pos;
3144
3145 hdr = &elf_tdata (abfd)->symtab_hdr;
3146 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3147
3148 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3149 if (hdr->sh_size != 0)
3150 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3151
3152 hdr = &elf_tdata (abfd)->strtab_hdr;
3153 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3154
3155 elf_tdata (abfd)->next_file_pos = off;
3156
3157 /* Now that we know where the .strtab section goes, write it
3158 out. */
3159 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3160 || ! _bfd_stringtab_emit (abfd, strtab))
3161 return FALSE;
3162 _bfd_stringtab_free (strtab);
3163 }
3164
3165 abfd->output_has_begun = TRUE;
3166
3167 return TRUE;
3168 }
3169
3170 /* Create a mapping from a set of sections to a program segment. */
3171
3172 static INLINE struct elf_segment_map *
3173 make_mapping (abfd, sections, from, to, phdr)
3174 bfd *abfd;
3175 asection **sections;
3176 unsigned int from;
3177 unsigned int to;
3178 bfd_boolean phdr;
3179 {
3180 struct elf_segment_map *m;
3181 unsigned int i;
3182 asection **hdrpp;
3183 bfd_size_type amt;
3184
3185 amt = sizeof (struct elf_segment_map);
3186 amt += (to - from - 1) * sizeof (asection *);
3187 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3188 if (m == NULL)
3189 return NULL;
3190 m->next = NULL;
3191 m->p_type = PT_LOAD;
3192 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3193 m->sections[i - from] = *hdrpp;
3194 m->count = to - from;
3195
3196 if (from == 0 && phdr)
3197 {
3198 /* Include the headers in the first PT_LOAD segment. */
3199 m->includes_filehdr = 1;
3200 m->includes_phdrs = 1;
3201 }
3202
3203 return m;
3204 }
3205
3206 /* Set up a mapping from BFD sections to program segments. */
3207
3208 static bfd_boolean
3209 map_sections_to_segments (abfd)
3210 bfd *abfd;
3211 {
3212 asection **sections = NULL;
3213 asection *s;
3214 unsigned int i;
3215 unsigned int count;
3216 struct elf_segment_map *mfirst;
3217 struct elf_segment_map **pm;
3218 struct elf_segment_map *m;
3219 asection *last_hdr;
3220 unsigned int phdr_index;
3221 bfd_vma maxpagesize;
3222 asection **hdrpp;
3223 bfd_boolean phdr_in_segment = TRUE;
3224 bfd_boolean writable;
3225 int tls_count = 0;
3226 asection *first_tls = NULL;
3227 asection *dynsec, *eh_frame_hdr;
3228 bfd_size_type amt;
3229
3230 if (elf_tdata (abfd)->segment_map != NULL)
3231 return TRUE;
3232
3233 if (bfd_count_sections (abfd) == 0)
3234 return TRUE;
3235
3236 /* Select the allocated sections, and sort them. */
3237
3238 amt = bfd_count_sections (abfd) * sizeof (asection *);
3239 sections = (asection **) bfd_malloc (amt);
3240 if (sections == NULL)
3241 goto error_return;
3242
3243 i = 0;
3244 for (s = abfd->sections; s != NULL; s = s->next)
3245 {
3246 if ((s->flags & SEC_ALLOC) != 0)
3247 {
3248 sections[i] = s;
3249 ++i;
3250 }
3251 }
3252 BFD_ASSERT (i <= bfd_count_sections (abfd));
3253 count = i;
3254
3255 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3256
3257 /* Build the mapping. */
3258
3259 mfirst = NULL;
3260 pm = &mfirst;
3261
3262 /* If we have a .interp section, then create a PT_PHDR segment for
3263 the program headers and a PT_INTERP segment for the .interp
3264 section. */
3265 s = bfd_get_section_by_name (abfd, ".interp");
3266 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3267 {
3268 amt = sizeof (struct elf_segment_map);
3269 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3270 if (m == NULL)
3271 goto error_return;
3272 m->next = NULL;
3273 m->p_type = PT_PHDR;
3274 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3275 m->p_flags = PF_R | PF_X;
3276 m->p_flags_valid = 1;
3277 m->includes_phdrs = 1;
3278
3279 *pm = m;
3280 pm = &m->next;
3281
3282 amt = sizeof (struct elf_segment_map);
3283 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3284 if (m == NULL)
3285 goto error_return;
3286 m->next = NULL;
3287 m->p_type = PT_INTERP;
3288 m->count = 1;
3289 m->sections[0] = s;
3290
3291 *pm = m;
3292 pm = &m->next;
3293 }
3294
3295 /* Look through the sections. We put sections in the same program
3296 segment when the start of the second section can be placed within
3297 a few bytes of the end of the first section. */
3298 last_hdr = NULL;
3299 phdr_index = 0;
3300 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3301 writable = FALSE;
3302 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3303 if (dynsec != NULL
3304 && (dynsec->flags & SEC_LOAD) == 0)
3305 dynsec = NULL;
3306
3307 /* Deal with -Ttext or something similar such that the first section
3308 is not adjacent to the program headers. This is an
3309 approximation, since at this point we don't know exactly how many
3310 program headers we will need. */
3311 if (count > 0)
3312 {
3313 bfd_size_type phdr_size;
3314
3315 phdr_size = elf_tdata (abfd)->program_header_size;
3316 if (phdr_size == 0)
3317 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3318 if ((abfd->flags & D_PAGED) == 0
3319 || sections[0]->lma < phdr_size
3320 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3321 phdr_in_segment = FALSE;
3322 }
3323
3324 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3325 {
3326 asection *hdr;
3327 bfd_boolean new_segment;
3328
3329 hdr = *hdrpp;
3330
3331 /* See if this section and the last one will fit in the same
3332 segment. */
3333
3334 if (last_hdr == NULL)
3335 {
3336 /* If we don't have a segment yet, then we don't need a new
3337 one (we build the last one after this loop). */
3338 new_segment = FALSE;
3339 }
3340 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3341 {
3342 /* If this section has a different relation between the
3343 virtual address and the load address, then we need a new
3344 segment. */
3345 new_segment = TRUE;
3346 }
3347 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3348 < BFD_ALIGN (hdr->lma, maxpagesize))
3349 {
3350 /* If putting this section in this segment would force us to
3351 skip a page in the segment, then we need a new segment. */
3352 new_segment = TRUE;
3353 }
3354 else if ((last_hdr->flags & SEC_LOAD) == 0
3355 && (hdr->flags & SEC_LOAD) != 0)
3356 {
3357 /* We don't want to put a loadable section after a
3358 nonloadable section in the same segment. */
3359 new_segment = TRUE;
3360 }
3361 else if ((abfd->flags & D_PAGED) == 0)
3362 {
3363 /* If the file is not demand paged, which means that we
3364 don't require the sections to be correctly aligned in the
3365 file, then there is no other reason for a new segment. */
3366 new_segment = FALSE;
3367 }
3368 else if (! writable
3369 && (hdr->flags & SEC_READONLY) == 0
3370 && (((last_hdr->lma + last_hdr->_raw_size - 1)
3371 & ~(maxpagesize - 1))
3372 != (hdr->lma & ~(maxpagesize - 1))))
3373 {
3374 /* We don't want to put a writable section in a read only
3375 segment, unless they are on the same page in memory
3376 anyhow. We already know that the last section does not
3377 bring us past the current section on the page, so the
3378 only case in which the new section is not on the same
3379 page as the previous section is when the previous section
3380 ends precisely on a page boundary. */
3381 new_segment = TRUE;
3382 }
3383 else
3384 {
3385 /* Otherwise, we can use the same segment. */
3386 new_segment = FALSE;
3387 }
3388
3389 if (! new_segment)
3390 {
3391 if ((hdr->flags & SEC_READONLY) == 0)
3392 writable = TRUE;
3393 last_hdr = hdr;
3394 continue;
3395 }
3396
3397 /* We need a new program segment. We must create a new program
3398 header holding all the sections from phdr_index until hdr. */
3399
3400 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3401 if (m == NULL)
3402 goto error_return;
3403
3404 *pm = m;
3405 pm = &m->next;
3406
3407 if ((hdr->flags & SEC_READONLY) == 0)
3408 writable = TRUE;
3409 else
3410 writable = FALSE;
3411
3412 last_hdr = hdr;
3413 phdr_index = i;
3414 phdr_in_segment = FALSE;
3415 }
3416
3417 /* Create a final PT_LOAD program segment. */
3418 if (last_hdr != NULL)
3419 {
3420 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3421 if (m == NULL)
3422 goto error_return;
3423
3424 *pm = m;
3425 pm = &m->next;
3426 }
3427
3428 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3429 if (dynsec != NULL)
3430 {
3431 amt = sizeof (struct elf_segment_map);
3432 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3433 if (m == NULL)
3434 goto error_return;
3435 m->next = NULL;
3436 m->p_type = PT_DYNAMIC;
3437 m->count = 1;
3438 m->sections[0] = dynsec;
3439
3440 *pm = m;
3441 pm = &m->next;
3442 }
3443
3444 /* For each loadable .note section, add a PT_NOTE segment. We don't
3445 use bfd_get_section_by_name, because if we link together
3446 nonloadable .note sections and loadable .note sections, we will
3447 generate two .note sections in the output file. FIXME: Using
3448 names for section types is bogus anyhow. */
3449 for (s = abfd->sections; s != NULL; s = s->next)
3450 {
3451 if ((s->flags & SEC_LOAD) != 0
3452 && strncmp (s->name, ".note", 5) == 0)
3453 {
3454 amt = sizeof (struct elf_segment_map);
3455 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3456 if (m == NULL)
3457 goto error_return;
3458 m->next = NULL;
3459 m->p_type = PT_NOTE;
3460 m->count = 1;
3461 m->sections[0] = s;
3462
3463 *pm = m;
3464 pm = &m->next;
3465 }
3466 if (s->flags & SEC_THREAD_LOCAL)
3467 {
3468 if (! tls_count)
3469 first_tls = s;
3470 tls_count++;
3471 }
3472 }
3473
3474 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3475 if (tls_count > 0)
3476 {
3477 int i;
3478
3479 amt = sizeof (struct elf_segment_map);
3480 amt += (tls_count - 1) * sizeof (asection *);
3481 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3482 if (m == NULL)
3483 goto error_return;
3484 m->next = NULL;
3485 m->p_type = PT_TLS;
3486 m->count = tls_count;
3487 /* Mandated PF_R. */
3488 m->p_flags = PF_R;
3489 m->p_flags_valid = 1;
3490 for (i = 0; i < tls_count; ++i)
3491 {
3492 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3493 m->sections[i] = first_tls;
3494 first_tls = first_tls->next;
3495 }
3496
3497 *pm = m;
3498 pm = &m->next;
3499 }
3500
3501 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3502 segment. */
3503 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3504 if (eh_frame_hdr != NULL
3505 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3506 {
3507 amt = sizeof (struct elf_segment_map);
3508 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3509 if (m == NULL)
3510 goto error_return;
3511 m->next = NULL;
3512 m->p_type = PT_GNU_EH_FRAME;
3513 m->count = 1;
3514 m->sections[0] = eh_frame_hdr->output_section;
3515
3516 *pm = m;
3517 pm = &m->next;
3518 }
3519
3520 if (elf_tdata (abfd)->stack_flags)
3521 {
3522 amt = sizeof (struct elf_segment_map);
3523 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3524 if (m == NULL)
3525 goto error_return;
3526 m->next = NULL;
3527 m->p_type = PT_GNU_STACK;
3528 m->p_flags = elf_tdata (abfd)->stack_flags;
3529 m->p_flags_valid = 1;
3530
3531 *pm = m;
3532 pm = &m->next;
3533 }
3534
3535 free (sections);
3536 sections = NULL;
3537
3538 elf_tdata (abfd)->segment_map = mfirst;
3539 return TRUE;
3540
3541 error_return:
3542 if (sections != NULL)
3543 free (sections);
3544 return FALSE;
3545 }
3546
3547 /* Sort sections by address. */
3548
3549 static int
3550 elf_sort_sections (arg1, arg2)
3551 const PTR arg1;
3552 const PTR arg2;
3553 {
3554 const asection *sec1 = *(const asection **) arg1;
3555 const asection *sec2 = *(const asection **) arg2;
3556 bfd_size_type size1, size2;
3557
3558 /* Sort by LMA first, since this is the address used to
3559 place the section into a segment. */
3560 if (sec1->lma < sec2->lma)
3561 return -1;
3562 else if (sec1->lma > sec2->lma)
3563 return 1;
3564
3565 /* Then sort by VMA. Normally the LMA and the VMA will be
3566 the same, and this will do nothing. */
3567 if (sec1->vma < sec2->vma)
3568 return -1;
3569 else if (sec1->vma > sec2->vma)
3570 return 1;
3571
3572 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3573
3574 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3575
3576 if (TOEND (sec1))
3577 {
3578 if (TOEND (sec2))
3579 {
3580 /* If the indicies are the same, do not return 0
3581 here, but continue to try the next comparison. */
3582 if (sec1->target_index - sec2->target_index != 0)
3583 return sec1->target_index - sec2->target_index;
3584 }
3585 else
3586 return 1;
3587 }
3588 else if (TOEND (sec2))
3589 return -1;
3590
3591 #undef TOEND
3592
3593 /* Sort by size, to put zero sized sections
3594 before others at the same address. */
3595
3596 size1 = (sec1->flags & SEC_LOAD) ? sec1->_raw_size : 0;
3597 size2 = (sec2->flags & SEC_LOAD) ? sec2->_raw_size : 0;
3598
3599 if (size1 < size2)
3600 return -1;
3601 if (size1 > size2)
3602 return 1;
3603
3604 return sec1->target_index - sec2->target_index;
3605 }
3606
3607 /* Assign file positions to the sections based on the mapping from
3608 sections to segments. This function also sets up some fields in
3609 the file header, and writes out the program headers. */
3610
3611 static bfd_boolean
3612 assign_file_positions_for_segments (abfd)
3613 bfd *abfd;
3614 {
3615 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3616 unsigned int count;
3617 struct elf_segment_map *m;
3618 unsigned int alloc;
3619 Elf_Internal_Phdr *phdrs;
3620 file_ptr off, voff;
3621 bfd_vma filehdr_vaddr, filehdr_paddr;
3622 bfd_vma phdrs_vaddr, phdrs_paddr;
3623 Elf_Internal_Phdr *p;
3624 bfd_size_type amt;
3625
3626 if (elf_tdata (abfd)->segment_map == NULL)
3627 {
3628 if (! map_sections_to_segments (abfd))
3629 return FALSE;
3630 }
3631 else
3632 {
3633 /* The placement algorithm assumes that non allocated sections are
3634 not in PT_LOAD segments. We ensure this here by removing such
3635 sections from the segment map. */
3636 for (m = elf_tdata (abfd)->segment_map;
3637 m != NULL;
3638 m = m->next)
3639 {
3640 unsigned int new_count;
3641 unsigned int i;
3642
3643 if (m->p_type != PT_LOAD)
3644 continue;
3645
3646 new_count = 0;
3647 for (i = 0; i < m->count; i ++)
3648 {
3649 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3650 {
3651 if (i != new_count)
3652 m->sections[new_count] = m->sections[i];
3653
3654 new_count ++;
3655 }
3656 }
3657
3658 if (new_count != m->count)
3659 m->count = new_count;
3660 }
3661 }
3662
3663 if (bed->elf_backend_modify_segment_map)
3664 {
3665 if (! (*bed->elf_backend_modify_segment_map) (abfd))
3666 return FALSE;
3667 }
3668
3669 count = 0;
3670 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3671 ++count;
3672
3673 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3674 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3675 elf_elfheader (abfd)->e_phnum = count;
3676
3677 if (count == 0)
3678 return TRUE;
3679
3680 /* If we already counted the number of program segments, make sure
3681 that we allocated enough space. This happens when SIZEOF_HEADERS
3682 is used in a linker script. */
3683 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3684 if (alloc != 0 && count > alloc)
3685 {
3686 ((*_bfd_error_handler)
3687 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3688 bfd_get_filename (abfd), alloc, count));
3689 bfd_set_error (bfd_error_bad_value);
3690 return FALSE;
3691 }
3692
3693 if (alloc == 0)
3694 alloc = count;
3695
3696 amt = alloc * sizeof (Elf_Internal_Phdr);
3697 phdrs = (Elf_Internal_Phdr *) bfd_alloc (abfd, amt);
3698 if (phdrs == NULL)
3699 return FALSE;
3700
3701 off = bed->s->sizeof_ehdr;
3702 off += alloc * bed->s->sizeof_phdr;
3703
3704 filehdr_vaddr = 0;
3705 filehdr_paddr = 0;
3706 phdrs_vaddr = 0;
3707 phdrs_paddr = 0;
3708
3709 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3710 m != NULL;
3711 m = m->next, p++)
3712 {
3713 unsigned int i;
3714 asection **secpp;
3715
3716 /* If elf_segment_map is not from map_sections_to_segments, the
3717 sections may not be correctly ordered. NOTE: sorting should
3718 not be done to the PT_NOTE section of a corefile, which may
3719 contain several pseudo-sections artificially created by bfd.
3720 Sorting these pseudo-sections breaks things badly. */
3721 if (m->count > 1
3722 && !(elf_elfheader (abfd)->e_type == ET_CORE
3723 && m->p_type == PT_NOTE))
3724 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3725 elf_sort_sections);
3726
3727 p->p_type = m->p_type;
3728 p->p_flags = m->p_flags;
3729
3730 if (p->p_type == PT_LOAD
3731 && m->count > 0
3732 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3733 {
3734 if ((abfd->flags & D_PAGED) != 0)
3735 off += (m->sections[0]->vma - off) % bed->maxpagesize;
3736 else
3737 {
3738 bfd_size_type align;
3739
3740 align = 0;
3741 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3742 {
3743 bfd_size_type secalign;
3744
3745 secalign = bfd_get_section_alignment (abfd, *secpp);
3746 if (secalign > align)
3747 align = secalign;
3748 }
3749
3750 off += (m->sections[0]->vma - off) % (1 << align);
3751 }
3752 }
3753
3754 if (m->count == 0)
3755 p->p_vaddr = 0;
3756 else
3757 p->p_vaddr = m->sections[0]->vma;
3758
3759 if (m->p_paddr_valid)
3760 p->p_paddr = m->p_paddr;
3761 else if (m->count == 0)
3762 p->p_paddr = 0;
3763 else
3764 p->p_paddr = m->sections[0]->lma;
3765
3766 if (p->p_type == PT_LOAD
3767 && (abfd->flags & D_PAGED) != 0)
3768 p->p_align = bed->maxpagesize;
3769 else if (m->count == 0)
3770 p->p_align = 1 << bed->s->log_file_align;
3771 else
3772 p->p_align = 0;
3773
3774 p->p_offset = 0;
3775 p->p_filesz = 0;
3776 p->p_memsz = 0;
3777
3778 if (m->includes_filehdr)
3779 {
3780 if (! m->p_flags_valid)
3781 p->p_flags |= PF_R;
3782 p->p_offset = 0;
3783 p->p_filesz = bed->s->sizeof_ehdr;
3784 p->p_memsz = bed->s->sizeof_ehdr;
3785 if (m->count > 0)
3786 {
3787 BFD_ASSERT (p->p_type == PT_LOAD);
3788
3789 if (p->p_vaddr < (bfd_vma) off)
3790 {
3791 (*_bfd_error_handler)
3792 (_("%s: Not enough room for program headers, try linking with -N"),
3793 bfd_get_filename (abfd));
3794 bfd_set_error (bfd_error_bad_value);
3795 return FALSE;
3796 }
3797
3798 p->p_vaddr -= off;
3799 if (! m->p_paddr_valid)
3800 p->p_paddr -= off;
3801 }
3802 if (p->p_type == PT_LOAD)
3803 {
3804 filehdr_vaddr = p->p_vaddr;
3805 filehdr_paddr = p->p_paddr;
3806 }
3807 }
3808
3809 if (m->includes_phdrs)
3810 {
3811 if (! m->p_flags_valid)
3812 p->p_flags |= PF_R;
3813
3814 if (m->includes_filehdr)
3815 {
3816 if (p->p_type == PT_LOAD)
3817 {
3818 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3819 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3820 }
3821 }
3822 else
3823 {
3824 p->p_offset = bed->s->sizeof_ehdr;
3825
3826 if (m->count > 0)
3827 {
3828 BFD_ASSERT (p->p_type == PT_LOAD);
3829 p->p_vaddr -= off - p->p_offset;
3830 if (! m->p_paddr_valid)
3831 p->p_paddr -= off - p->p_offset;
3832 }
3833
3834 if (p->p_type == PT_LOAD)
3835 {
3836 phdrs_vaddr = p->p_vaddr;
3837 phdrs_paddr = p->p_paddr;
3838 }
3839 else
3840 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3841 }
3842
3843 p->p_filesz += alloc * bed->s->sizeof_phdr;
3844 p->p_memsz += alloc * bed->s->sizeof_phdr;
3845 }
3846
3847 if (p->p_type == PT_LOAD
3848 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3849 {
3850 if (! m->includes_filehdr && ! m->includes_phdrs)
3851 p->p_offset = off;
3852 else
3853 {
3854 file_ptr adjust;
3855
3856 adjust = off - (p->p_offset + p->p_filesz);
3857 p->p_filesz += adjust;
3858 p->p_memsz += adjust;
3859 }
3860 }
3861
3862 voff = off;
3863
3864 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3865 {
3866 asection *sec;
3867 flagword flags;
3868 bfd_size_type align;
3869
3870 sec = *secpp;
3871 flags = sec->flags;
3872 align = 1 << bfd_get_section_alignment (abfd, sec);
3873
3874 /* The section may have artificial alignment forced by a
3875 link script. Notice this case by the gap between the
3876 cumulative phdr lma and the section's lma. */
3877 if (p->p_paddr + p->p_memsz < sec->lma)
3878 {
3879 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3880
3881 p->p_memsz += adjust;
3882 if (p->p_type == PT_LOAD
3883 || (p->p_type == PT_NOTE
3884 && bfd_get_format (abfd) == bfd_core))
3885 {
3886 off += adjust;
3887 voff += adjust;
3888 }
3889 if ((flags & SEC_LOAD) != 0
3890 || (flags & SEC_THREAD_LOCAL) != 0)
3891 p->p_filesz += adjust;
3892 }
3893
3894 if (p->p_type == PT_LOAD)
3895 {
3896 bfd_signed_vma adjust;
3897
3898 if ((flags & SEC_LOAD) != 0)
3899 {
3900 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3901 if (adjust < 0)
3902 adjust = 0;
3903 }
3904 else if ((flags & SEC_ALLOC) != 0)
3905 {
3906 /* The section VMA must equal the file position
3907 modulo the page size. FIXME: I'm not sure if
3908 this adjustment is really necessary. We used to
3909 not have the SEC_LOAD case just above, and then
3910 this was necessary, but now I'm not sure. */
3911 if ((abfd->flags & D_PAGED) != 0)
3912 adjust = (sec->vma - voff) % bed->maxpagesize;
3913 else
3914 adjust = (sec->vma - voff) % align;
3915 }
3916 else
3917 adjust = 0;
3918
3919 if (adjust != 0)
3920 {
3921 if (i == 0)
3922 {
3923 (* _bfd_error_handler) (_("\
3924 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3925 bfd_section_name (abfd, sec),
3926 sec->lma,
3927 p->p_paddr);
3928 return FALSE;
3929 }
3930 p->p_memsz += adjust;
3931 off += adjust;
3932 voff += adjust;
3933 if ((flags & SEC_LOAD) != 0)
3934 p->p_filesz += adjust;
3935 }
3936
3937 sec->filepos = off;
3938
3939 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3940 used in a linker script we may have a section with
3941 SEC_LOAD clear but which is supposed to have
3942 contents. */
3943 if ((flags & SEC_LOAD) != 0
3944 || (flags & SEC_HAS_CONTENTS) != 0)
3945 off += sec->_raw_size;
3946
3947 if ((flags & SEC_ALLOC) != 0
3948 && ((flags & SEC_LOAD) != 0
3949 || (flags & SEC_THREAD_LOCAL) == 0))
3950 voff += sec->_raw_size;
3951 }
3952
3953 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3954 {
3955 /* The actual "note" segment has i == 0.
3956 This is the one that actually contains everything. */
3957 if (i == 0)
3958 {
3959 sec->filepos = off;
3960 p->p_filesz = sec->_raw_size;
3961 off += sec->_raw_size;
3962 voff = off;
3963 }
3964 else
3965 {
3966 /* Fake sections -- don't need to be written. */
3967 sec->filepos = 0;
3968 sec->_raw_size = 0;
3969 flags = sec->flags = 0;
3970 }
3971 p->p_memsz = 0;
3972 p->p_align = 1;
3973 }
3974 else
3975 {
3976 if ((sec->flags & SEC_LOAD) != 0
3977 || (sec->flags & SEC_THREAD_LOCAL) == 0
3978 || p->p_type == PT_TLS)
3979 p->p_memsz += sec->_raw_size;
3980
3981 if ((flags & SEC_LOAD) != 0)
3982 p->p_filesz += sec->_raw_size;
3983
3984 if (p->p_type == PT_TLS
3985 && sec->_raw_size == 0
3986 && (sec->flags & SEC_HAS_CONTENTS) == 0)
3987 {
3988 struct bfd_link_order *o;
3989 bfd_vma tbss_size = 0;
3990
3991 for (o = sec->link_order_head; o != NULL; o = o->next)
3992 if (tbss_size < o->offset + o->size)
3993 tbss_size = o->offset + o->size;
3994
3995 p->p_memsz += tbss_size;
3996 }
3997
3998 if (align > p->p_align
3999 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4000 p->p_align = align;
4001 }
4002
4003 if (! m->p_flags_valid)
4004 {
4005 p->p_flags |= PF_R;
4006 if ((flags & SEC_CODE) != 0)
4007 p->p_flags |= PF_X;
4008 if ((flags & SEC_READONLY) == 0)
4009 p->p_flags |= PF_W;
4010 }
4011 }
4012 }
4013
4014 /* Now that we have set the section file positions, we can set up
4015 the file positions for the non PT_LOAD segments. */
4016 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4017 m != NULL;
4018 m = m->next, p++)
4019 {
4020 if (p->p_type != PT_LOAD && m->count > 0)
4021 {
4022 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4023 p->p_offset = m->sections[0]->filepos;
4024 }
4025 if (m->count == 0)
4026 {
4027 if (m->includes_filehdr)
4028 {
4029 p->p_vaddr = filehdr_vaddr;
4030 if (! m->p_paddr_valid)
4031 p->p_paddr = filehdr_paddr;
4032 }
4033 else if (m->includes_phdrs)
4034 {
4035 p->p_vaddr = phdrs_vaddr;
4036 if (! m->p_paddr_valid)
4037 p->p_paddr = phdrs_paddr;
4038 }
4039 }
4040 }
4041
4042 /* Clear out any program headers we allocated but did not use. */
4043 for (; count < alloc; count++, p++)
4044 {
4045 memset (p, 0, sizeof *p);
4046 p->p_type = PT_NULL;
4047 }
4048
4049 elf_tdata (abfd)->phdr = phdrs;
4050
4051 elf_tdata (abfd)->next_file_pos = off;
4052
4053 /* Write out the program headers. */
4054 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4055 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4056 return FALSE;
4057
4058 return TRUE;
4059 }
4060
4061 /* Get the size of the program header.
4062
4063 If this is called by the linker before any of the section VMA's are set, it
4064 can't calculate the correct value for a strange memory layout. This only
4065 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4066 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4067 data segment (exclusive of .interp and .dynamic).
4068
4069 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4070 will be two segments. */
4071
4072 static bfd_size_type
4073 get_program_header_size (abfd)
4074 bfd *abfd;
4075 {
4076 size_t segs;
4077 asection *s;
4078 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4079
4080 /* We can't return a different result each time we're called. */
4081 if (elf_tdata (abfd)->program_header_size != 0)
4082 return elf_tdata (abfd)->program_header_size;
4083
4084 if (elf_tdata (abfd)->segment_map != NULL)
4085 {
4086 struct elf_segment_map *m;
4087
4088 segs = 0;
4089 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4090 ++segs;
4091 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4092 return elf_tdata (abfd)->program_header_size;
4093 }
4094
4095 /* Assume we will need exactly two PT_LOAD segments: one for text
4096 and one for data. */
4097 segs = 2;
4098
4099 s = bfd_get_section_by_name (abfd, ".interp");
4100 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4101 {
4102 /* If we have a loadable interpreter section, we need a
4103 PT_INTERP segment. In this case, assume we also need a
4104 PT_PHDR segment, although that may not be true for all
4105 targets. */
4106 segs += 2;
4107 }
4108
4109 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4110 {
4111 /* We need a PT_DYNAMIC segment. */
4112 ++segs;
4113 }
4114
4115 if (elf_tdata (abfd)->eh_frame_hdr)
4116 {
4117 /* We need a PT_GNU_EH_FRAME segment. */
4118 ++segs;
4119 }
4120
4121 if (elf_tdata (abfd)->stack_flags)
4122 {
4123 /* We need a PT_GNU_STACK segment. */
4124 ++segs;
4125 }
4126
4127 for (s = abfd->sections; s != NULL; s = s->next)
4128 {
4129 if ((s->flags & SEC_LOAD) != 0
4130 && strncmp (s->name, ".note", 5) == 0)
4131 {
4132 /* We need a PT_NOTE segment. */
4133 ++segs;
4134 }
4135 }
4136
4137 for (s = abfd->sections; s != NULL; s = s->next)
4138 {
4139 if (s->flags & SEC_THREAD_LOCAL)
4140 {
4141 /* We need a PT_TLS segment. */
4142 ++segs;
4143 break;
4144 }
4145 }
4146
4147 /* Let the backend count up any program headers it might need. */
4148 if (bed->elf_backend_additional_program_headers)
4149 {
4150 int a;
4151
4152 a = (*bed->elf_backend_additional_program_headers) (abfd);
4153 if (a == -1)
4154 abort ();
4155 segs += a;
4156 }
4157
4158 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4159 return elf_tdata (abfd)->program_header_size;
4160 }
4161
4162 /* Work out the file positions of all the sections. This is called by
4163 _bfd_elf_compute_section_file_positions. All the section sizes and
4164 VMAs must be known before this is called.
4165
4166 We do not consider reloc sections at this point, unless they form
4167 part of the loadable image. Reloc sections are assigned file
4168 positions in assign_file_positions_for_relocs, which is called by
4169 write_object_contents and final_link.
4170
4171 We also don't set the positions of the .symtab and .strtab here. */
4172
4173 static bfd_boolean
4174 assign_file_positions_except_relocs (abfd)
4175 bfd *abfd;
4176 {
4177 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4178 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4179 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4180 unsigned int num_sec = elf_numsections (abfd);
4181 file_ptr off;
4182 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4183
4184 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4185 && bfd_get_format (abfd) != bfd_core)
4186 {
4187 Elf_Internal_Shdr **hdrpp;
4188 unsigned int i;
4189
4190 /* Start after the ELF header. */
4191 off = i_ehdrp->e_ehsize;
4192
4193 /* We are not creating an executable, which means that we are
4194 not creating a program header, and that the actual order of
4195 the sections in the file is unimportant. */
4196 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4197 {
4198 Elf_Internal_Shdr *hdr;
4199
4200 hdr = *hdrpp;
4201 if (hdr->sh_type == SHT_REL
4202 || hdr->sh_type == SHT_RELA
4203 || i == tdata->symtab_section
4204 || i == tdata->symtab_shndx_section
4205 || i == tdata->strtab_section)
4206 {
4207 hdr->sh_offset = -1;
4208 }
4209 else
4210 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4211
4212 if (i == SHN_LORESERVE - 1)
4213 {
4214 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4215 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4216 }
4217 }
4218 }
4219 else
4220 {
4221 unsigned int i;
4222 Elf_Internal_Shdr **hdrpp;
4223
4224 /* Assign file positions for the loaded sections based on the
4225 assignment of sections to segments. */
4226 if (! assign_file_positions_for_segments (abfd))
4227 return FALSE;
4228
4229 /* Assign file positions for the other sections. */
4230
4231 off = elf_tdata (abfd)->next_file_pos;
4232 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4233 {
4234 Elf_Internal_Shdr *hdr;
4235
4236 hdr = *hdrpp;
4237 if (hdr->bfd_section != NULL
4238 && hdr->bfd_section->filepos != 0)
4239 hdr->sh_offset = hdr->bfd_section->filepos;
4240 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4241 {
4242 ((*_bfd_error_handler)
4243 (_("%s: warning: allocated section `%s' not in segment"),
4244 bfd_get_filename (abfd),
4245 (hdr->bfd_section == NULL
4246 ? "*unknown*"
4247 : hdr->bfd_section->name)));
4248 if ((abfd->flags & D_PAGED) != 0)
4249 off += (hdr->sh_addr - off) % bed->maxpagesize;
4250 else
4251 off += (hdr->sh_addr - off) % hdr->sh_addralign;
4252 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4253 FALSE);
4254 }
4255 else if (hdr->sh_type == SHT_REL
4256 || hdr->sh_type == SHT_RELA
4257 || hdr == i_shdrpp[tdata->symtab_section]
4258 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4259 || hdr == i_shdrpp[tdata->strtab_section])
4260 hdr->sh_offset = -1;
4261 else
4262 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4263
4264 if (i == SHN_LORESERVE - 1)
4265 {
4266 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4267 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4268 }
4269 }
4270 }
4271
4272 /* Place the section headers. */
4273 off = align_file_position (off, 1 << bed->s->log_file_align);
4274 i_ehdrp->e_shoff = off;
4275 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4276
4277 elf_tdata (abfd)->next_file_pos = off;
4278
4279 return TRUE;
4280 }
4281
4282 static bfd_boolean
4283 prep_headers (abfd)
4284 bfd *abfd;
4285 {
4286 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4287 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4288 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4289 struct elf_strtab_hash *shstrtab;
4290 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4291
4292 i_ehdrp = elf_elfheader (abfd);
4293 i_shdrp = elf_elfsections (abfd);
4294
4295 shstrtab = _bfd_elf_strtab_init ();
4296 if (shstrtab == NULL)
4297 return FALSE;
4298
4299 elf_shstrtab (abfd) = shstrtab;
4300
4301 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4302 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4303 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4304 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4305
4306 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4307 i_ehdrp->e_ident[EI_DATA] =
4308 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4309 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4310
4311 if ((abfd->flags & DYNAMIC) != 0)
4312 i_ehdrp->e_type = ET_DYN;
4313 else if ((abfd->flags & EXEC_P) != 0)
4314 i_ehdrp->e_type = ET_EXEC;
4315 else if (bfd_get_format (abfd) == bfd_core)
4316 i_ehdrp->e_type = ET_CORE;
4317 else
4318 i_ehdrp->e_type = ET_REL;
4319
4320 switch (bfd_get_arch (abfd))
4321 {
4322 case bfd_arch_unknown:
4323 i_ehdrp->e_machine = EM_NONE;
4324 break;
4325
4326 /* There used to be a long list of cases here, each one setting
4327 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4328 in the corresponding bfd definition. To avoid duplication,
4329 the switch was removed. Machines that need special handling
4330 can generally do it in elf_backend_final_write_processing(),
4331 unless they need the information earlier than the final write.
4332 Such need can generally be supplied by replacing the tests for
4333 e_machine with the conditions used to determine it. */
4334 default:
4335 if (get_elf_backend_data (abfd) != NULL)
4336 i_ehdrp->e_machine = get_elf_backend_data (abfd)->elf_machine_code;
4337 else
4338 i_ehdrp->e_machine = EM_NONE;
4339 }
4340
4341 i_ehdrp->e_version = bed->s->ev_current;
4342 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4343
4344 /* No program header, for now. */
4345 i_ehdrp->e_phoff = 0;
4346 i_ehdrp->e_phentsize = 0;
4347 i_ehdrp->e_phnum = 0;
4348
4349 /* Each bfd section is section header entry. */
4350 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4351 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4352
4353 /* If we're building an executable, we'll need a program header table. */
4354 if (abfd->flags & EXEC_P)
4355 {
4356 /* It all happens later. */
4357 #if 0
4358 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4359
4360 /* elf_build_phdrs() returns a (NULL-terminated) array of
4361 Elf_Internal_Phdrs. */
4362 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4363 i_ehdrp->e_phoff = outbase;
4364 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4365 #endif
4366 }
4367 else
4368 {
4369 i_ehdrp->e_phentsize = 0;
4370 i_phdrp = 0;
4371 i_ehdrp->e_phoff = 0;
4372 }
4373
4374 elf_tdata (abfd)->symtab_hdr.sh_name =
4375 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4376 elf_tdata (abfd)->strtab_hdr.sh_name =
4377 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4378 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4379 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4380 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4381 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4382 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4383 return FALSE;
4384
4385 return TRUE;
4386 }
4387
4388 /* Assign file positions for all the reloc sections which are not part
4389 of the loadable file image. */
4390
4391 void
4392 _bfd_elf_assign_file_positions_for_relocs (abfd)
4393 bfd *abfd;
4394 {
4395 file_ptr off;
4396 unsigned int i, num_sec;
4397 Elf_Internal_Shdr **shdrpp;
4398
4399 off = elf_tdata (abfd)->next_file_pos;
4400
4401 num_sec = elf_numsections (abfd);
4402 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4403 {
4404 Elf_Internal_Shdr *shdrp;
4405
4406 shdrp = *shdrpp;
4407 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4408 && shdrp->sh_offset == -1)
4409 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4410 }
4411
4412 elf_tdata (abfd)->next_file_pos = off;
4413 }
4414
4415 bfd_boolean
4416 _bfd_elf_write_object_contents (abfd)
4417 bfd *abfd;
4418 {
4419 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4420 Elf_Internal_Ehdr *i_ehdrp;
4421 Elf_Internal_Shdr **i_shdrp;
4422 bfd_boolean failed;
4423 unsigned int count, num_sec;
4424
4425 if (! abfd->output_has_begun
4426 && ! _bfd_elf_compute_section_file_positions
4427 (abfd, (struct bfd_link_info *) NULL))
4428 return FALSE;
4429
4430 i_shdrp = elf_elfsections (abfd);
4431 i_ehdrp = elf_elfheader (abfd);
4432
4433 failed = FALSE;
4434 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4435 if (failed)
4436 return FALSE;
4437
4438 _bfd_elf_assign_file_positions_for_relocs (abfd);
4439
4440 /* After writing the headers, we need to write the sections too... */
4441 num_sec = elf_numsections (abfd);
4442 for (count = 1; count < num_sec; count++)
4443 {
4444 if (bed->elf_backend_section_processing)
4445 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4446 if (i_shdrp[count]->contents)
4447 {
4448 bfd_size_type amt = i_shdrp[count]->sh_size;
4449
4450 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4451 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4452 return FALSE;
4453 }
4454 if (count == SHN_LORESERVE - 1)
4455 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4456 }
4457
4458 /* Write out the section header names. */
4459 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4460 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4461 return FALSE;
4462
4463 if (bed->elf_backend_final_write_processing)
4464 (*bed->elf_backend_final_write_processing) (abfd,
4465 elf_tdata (abfd)->linker);
4466
4467 return bed->s->write_shdrs_and_ehdr (abfd);
4468 }
4469
4470 bfd_boolean
4471 _bfd_elf_write_corefile_contents (abfd)
4472 bfd *abfd;
4473 {
4474 /* Hopefully this can be done just like an object file. */
4475 return _bfd_elf_write_object_contents (abfd);
4476 }
4477
4478 /* Given a section, search the header to find them. */
4479
4480 int
4481 _bfd_elf_section_from_bfd_section (abfd, asect)
4482 bfd *abfd;
4483 struct sec *asect;
4484 {
4485 struct elf_backend_data *bed;
4486 int index;
4487
4488 if (elf_section_data (asect) != NULL
4489 && elf_section_data (asect)->this_idx != 0)
4490 return elf_section_data (asect)->this_idx;
4491
4492 if (bfd_is_abs_section (asect))
4493 index = SHN_ABS;
4494 else if (bfd_is_com_section (asect))
4495 index = SHN_COMMON;
4496 else if (bfd_is_und_section (asect))
4497 index = SHN_UNDEF;
4498 else
4499 {
4500 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4501 int maxindex = elf_numsections (abfd);
4502
4503 for (index = 1; index < maxindex; index++)
4504 {
4505 Elf_Internal_Shdr *hdr = i_shdrp[index];
4506
4507 if (hdr != NULL && hdr->bfd_section == asect)
4508 return index;
4509 }
4510 index = -1;
4511 }
4512
4513 bed = get_elf_backend_data (abfd);
4514 if (bed->elf_backend_section_from_bfd_section)
4515 {
4516 int retval = index;
4517
4518 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4519 return retval;
4520 }
4521
4522 if (index == -1)
4523 bfd_set_error (bfd_error_nonrepresentable_section);
4524
4525 return index;
4526 }
4527
4528 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4529 on error. */
4530
4531 int
4532 _bfd_elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr)
4533 bfd *abfd;
4534 asymbol **asym_ptr_ptr;
4535 {
4536 asymbol *asym_ptr = *asym_ptr_ptr;
4537 int idx;
4538 flagword flags = asym_ptr->flags;
4539
4540 /* When gas creates relocations against local labels, it creates its
4541 own symbol for the section, but does put the symbol into the
4542 symbol chain, so udata is 0. When the linker is generating
4543 relocatable output, this section symbol may be for one of the
4544 input sections rather than the output section. */
4545 if (asym_ptr->udata.i == 0
4546 && (flags & BSF_SECTION_SYM)
4547 && asym_ptr->section)
4548 {
4549 int indx;
4550
4551 if (asym_ptr->section->output_section != NULL)
4552 indx = asym_ptr->section->output_section->index;
4553 else
4554 indx = asym_ptr->section->index;
4555 if (indx < elf_num_section_syms (abfd)
4556 && elf_section_syms (abfd)[indx] != NULL)
4557 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4558 }
4559
4560 idx = asym_ptr->udata.i;
4561
4562 if (idx == 0)
4563 {
4564 /* This case can occur when using --strip-symbol on a symbol
4565 which is used in a relocation entry. */
4566 (*_bfd_error_handler)
4567 (_("%s: symbol `%s' required but not present"),
4568 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4569 bfd_set_error (bfd_error_no_symbols);
4570 return -1;
4571 }
4572
4573 #if DEBUG & 4
4574 {
4575 fprintf (stderr,
4576 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4577 (long) asym_ptr, asym_ptr->name, idx, flags,
4578 elf_symbol_flags (flags));
4579 fflush (stderr);
4580 }
4581 #endif
4582
4583 return idx;
4584 }
4585
4586 /* Copy private BFD data. This copies any program header information. */
4587
4588 static bfd_boolean
4589 copy_private_bfd_data (ibfd, obfd)
4590 bfd *ibfd;
4591 bfd *obfd;
4592 {
4593 Elf_Internal_Ehdr *iehdr;
4594 struct elf_segment_map *map;
4595 struct elf_segment_map *map_first;
4596 struct elf_segment_map **pointer_to_map;
4597 Elf_Internal_Phdr *segment;
4598 asection *section;
4599 unsigned int i;
4600 unsigned int num_segments;
4601 bfd_boolean phdr_included = FALSE;
4602 bfd_vma maxpagesize;
4603 struct elf_segment_map *phdr_adjust_seg = NULL;
4604 unsigned int phdr_adjust_num = 0;
4605 struct elf_backend_data *bed;
4606
4607 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4608 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4609 return TRUE;
4610
4611 if (elf_tdata (ibfd)->phdr == NULL)
4612 return TRUE;
4613
4614 bed = get_elf_backend_data (ibfd);
4615 iehdr = elf_elfheader (ibfd);
4616
4617 map_first = NULL;
4618 pointer_to_map = &map_first;
4619
4620 num_segments = elf_elfheader (ibfd)->e_phnum;
4621 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4622
4623 /* Returns the end address of the segment + 1. */
4624 #define SEGMENT_END(segment, start) \
4625 (start + (segment->p_memsz > segment->p_filesz \
4626 ? segment->p_memsz : segment->p_filesz))
4627
4628 #define SECTION_SIZE(section, segment) \
4629 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4630 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4631 ? section->_raw_size : 0)
4632
4633 /* Returns TRUE if the given section is contained within
4634 the given segment. VMA addresses are compared. */
4635 #define IS_CONTAINED_BY_VMA(section, segment) \
4636 (section->vma >= segment->p_vaddr \
4637 && (section->vma + SECTION_SIZE (section, segment) \
4638 <= (SEGMENT_END (segment, segment->p_vaddr))))
4639
4640 /* Returns TRUE if the given section is contained within
4641 the given segment. LMA addresses are compared. */
4642 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4643 (section->lma >= base \
4644 && (section->lma + SECTION_SIZE (section, segment) \
4645 <= SEGMENT_END (segment, base)))
4646
4647 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4648 #define IS_COREFILE_NOTE(p, s) \
4649 (p->p_type == PT_NOTE \
4650 && bfd_get_format (ibfd) == bfd_core \
4651 && s->vma == 0 && s->lma == 0 \
4652 && (bfd_vma) s->filepos >= p->p_offset \
4653 && ((bfd_vma) s->filepos + s->_raw_size \
4654 <= p->p_offset + p->p_filesz))
4655
4656 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4657 linker, which generates a PT_INTERP section with p_vaddr and
4658 p_memsz set to 0. */
4659 #define IS_SOLARIS_PT_INTERP(p, s) \
4660 (p->p_vaddr == 0 \
4661 && p->p_paddr == 0 \
4662 && p->p_memsz == 0 \
4663 && p->p_filesz > 0 \
4664 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4665 && s->_raw_size > 0 \
4666 && (bfd_vma) s->filepos >= p->p_offset \
4667 && ((bfd_vma) s->filepos + s->_raw_size \
4668 <= p->p_offset + p->p_filesz))
4669
4670 /* Decide if the given section should be included in the given segment.
4671 A section will be included if:
4672 1. It is within the address space of the segment -- we use the LMA
4673 if that is set for the segment and the VMA otherwise,
4674 2. It is an allocated segment,
4675 3. There is an output section associated with it,
4676 4. The section has not already been allocated to a previous segment.
4677 5. PT_TLS segment includes only SHF_TLS sections.
4678 6. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4679 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4680 ((((segment->p_paddr \
4681 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4682 : IS_CONTAINED_BY_VMA (section, segment)) \
4683 && (section->flags & SEC_ALLOC) != 0) \
4684 || IS_COREFILE_NOTE (segment, section)) \
4685 && section->output_section != NULL \
4686 && (segment->p_type != PT_TLS \
4687 || (section->flags & SEC_THREAD_LOCAL)) \
4688 && (segment->p_type == PT_LOAD \
4689 || segment->p_type == PT_TLS \
4690 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4691 && ! section->segment_mark)
4692
4693 /* Returns TRUE iff seg1 starts after the end of seg2. */
4694 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4695 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4696
4697 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4698 their VMA address ranges and their LMA address ranges overlap.
4699 It is possible to have overlapping VMA ranges without overlapping LMA
4700 ranges. RedBoot images for example can have both .data and .bss mapped
4701 to the same VMA range, but with the .data section mapped to a different
4702 LMA. */
4703 #define SEGMENT_OVERLAPS(seg1, seg2) \
4704 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4705 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4706 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4707 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4708
4709 /* Initialise the segment mark field. */
4710 for (section = ibfd->sections; section != NULL; section = section->next)
4711 section->segment_mark = FALSE;
4712
4713 /* Scan through the segments specified in the program header
4714 of the input BFD. For this first scan we look for overlaps
4715 in the loadable segments. These can be created by weird
4716 parameters to objcopy. Also, fix some solaris weirdness. */
4717 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4718 i < num_segments;
4719 i++, segment++)
4720 {
4721 unsigned int j;
4722 Elf_Internal_Phdr *segment2;
4723
4724 if (segment->p_type == PT_INTERP)
4725 for (section = ibfd->sections; section; section = section->next)
4726 if (IS_SOLARIS_PT_INTERP (segment, section))
4727 {
4728 /* Mininal change so that the normal section to segment
4729 assigment code will work. */
4730 segment->p_vaddr = section->vma;
4731 break;
4732 }
4733
4734 if (segment->p_type != PT_LOAD)
4735 continue;
4736
4737 /* Determine if this segment overlaps any previous segments. */
4738 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4739 {
4740 bfd_signed_vma extra_length;
4741
4742 if (segment2->p_type != PT_LOAD
4743 || ! SEGMENT_OVERLAPS (segment, segment2))
4744 continue;
4745
4746 /* Merge the two segments together. */
4747 if (segment2->p_vaddr < segment->p_vaddr)
4748 {
4749 /* Extend SEGMENT2 to include SEGMENT and then delete
4750 SEGMENT. */
4751 extra_length =
4752 SEGMENT_END (segment, segment->p_vaddr)
4753 - SEGMENT_END (segment2, segment2->p_vaddr);
4754
4755 if (extra_length > 0)
4756 {
4757 segment2->p_memsz += extra_length;
4758 segment2->p_filesz += extra_length;
4759 }
4760
4761 segment->p_type = PT_NULL;
4762
4763 /* Since we have deleted P we must restart the outer loop. */
4764 i = 0;
4765 segment = elf_tdata (ibfd)->phdr;
4766 break;
4767 }
4768 else
4769 {
4770 /* Extend SEGMENT to include SEGMENT2 and then delete
4771 SEGMENT2. */
4772 extra_length =
4773 SEGMENT_END (segment2, segment2->p_vaddr)
4774 - SEGMENT_END (segment, segment->p_vaddr);
4775
4776 if (extra_length > 0)
4777 {
4778 segment->p_memsz += extra_length;
4779 segment->p_filesz += extra_length;
4780 }
4781
4782 segment2->p_type = PT_NULL;
4783 }
4784 }
4785 }
4786
4787 /* The second scan attempts to assign sections to segments. */
4788 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4789 i < num_segments;
4790 i ++, segment ++)
4791 {
4792 unsigned int section_count;
4793 asection ** sections;
4794 asection * output_section;
4795 unsigned int isec;
4796 bfd_vma matching_lma;
4797 bfd_vma suggested_lma;
4798 unsigned int j;
4799 bfd_size_type amt;
4800
4801 if (segment->p_type == PT_NULL)
4802 continue;
4803
4804 /* Compute how many sections might be placed into this segment. */
4805 for (section = ibfd->sections, section_count = 0;
4806 section != NULL;
4807 section = section->next)
4808 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4809 ++section_count;
4810
4811 /* Allocate a segment map big enough to contain
4812 all of the sections we have selected. */
4813 amt = sizeof (struct elf_segment_map);
4814 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4815 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
4816 if (map == NULL)
4817 return FALSE;
4818
4819 /* Initialise the fields of the segment map. Default to
4820 using the physical address of the segment in the input BFD. */
4821 map->next = NULL;
4822 map->p_type = segment->p_type;
4823 map->p_flags = segment->p_flags;
4824 map->p_flags_valid = 1;
4825 map->p_paddr = segment->p_paddr;
4826 map->p_paddr_valid = 1;
4827
4828 /* Determine if this segment contains the ELF file header
4829 and if it contains the program headers themselves. */
4830 map->includes_filehdr = (segment->p_offset == 0
4831 && segment->p_filesz >= iehdr->e_ehsize);
4832
4833 map->includes_phdrs = 0;
4834
4835 if (! phdr_included || segment->p_type != PT_LOAD)
4836 {
4837 map->includes_phdrs =
4838 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4839 && (segment->p_offset + segment->p_filesz
4840 >= ((bfd_vma) iehdr->e_phoff
4841 + iehdr->e_phnum * iehdr->e_phentsize)));
4842
4843 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4844 phdr_included = TRUE;
4845 }
4846
4847 if (section_count == 0)
4848 {
4849 /* Special segments, such as the PT_PHDR segment, may contain
4850 no sections, but ordinary, loadable segments should contain
4851 something. They are allowed by the ELF spec however, so only
4852 a warning is produced. */
4853 if (segment->p_type == PT_LOAD)
4854 (*_bfd_error_handler)
4855 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4856 bfd_archive_filename (ibfd));
4857
4858 map->count = 0;
4859 *pointer_to_map = map;
4860 pointer_to_map = &map->next;
4861
4862 continue;
4863 }
4864
4865 /* Now scan the sections in the input BFD again and attempt
4866 to add their corresponding output sections to the segment map.
4867 The problem here is how to handle an output section which has
4868 been moved (ie had its LMA changed). There are four possibilities:
4869
4870 1. None of the sections have been moved.
4871 In this case we can continue to use the segment LMA from the
4872 input BFD.
4873
4874 2. All of the sections have been moved by the same amount.
4875 In this case we can change the segment's LMA to match the LMA
4876 of the first section.
4877
4878 3. Some of the sections have been moved, others have not.
4879 In this case those sections which have not been moved can be
4880 placed in the current segment which will have to have its size,
4881 and possibly its LMA changed, and a new segment or segments will
4882 have to be created to contain the other sections.
4883
4884 4. The sections have been moved, but not by the same amount.
4885 In this case we can change the segment's LMA to match the LMA
4886 of the first section and we will have to create a new segment
4887 or segments to contain the other sections.
4888
4889 In order to save time, we allocate an array to hold the section
4890 pointers that we are interested in. As these sections get assigned
4891 to a segment, they are removed from this array. */
4892
4893 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4894 to work around this long long bug. */
4895 amt = section_count * sizeof (asection *);
4896 sections = (asection **) bfd_malloc (amt);
4897 if (sections == NULL)
4898 return FALSE;
4899
4900 /* Step One: Scan for segment vs section LMA conflicts.
4901 Also add the sections to the section array allocated above.
4902 Also add the sections to the current segment. In the common
4903 case, where the sections have not been moved, this means that
4904 we have completely filled the segment, and there is nothing
4905 more to do. */
4906 isec = 0;
4907 matching_lma = 0;
4908 suggested_lma = 0;
4909
4910 for (j = 0, section = ibfd->sections;
4911 section != NULL;
4912 section = section->next)
4913 {
4914 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4915 {
4916 output_section = section->output_section;
4917
4918 sections[j ++] = section;
4919
4920 /* The Solaris native linker always sets p_paddr to 0.
4921 We try to catch that case here, and set it to the
4922 correct value. Note - some backends require that
4923 p_paddr be left as zero. */
4924 if (segment->p_paddr == 0
4925 && segment->p_vaddr != 0
4926 && (! bed->want_p_paddr_set_to_zero)
4927 && isec == 0
4928 && output_section->lma != 0
4929 && (output_section->vma == (segment->p_vaddr
4930 + (map->includes_filehdr
4931 ? iehdr->e_ehsize
4932 : 0)
4933 + (map->includes_phdrs
4934 ? (iehdr->e_phnum
4935 * iehdr->e_phentsize)
4936 : 0))))
4937 map->p_paddr = segment->p_vaddr;
4938
4939 /* Match up the physical address of the segment with the
4940 LMA address of the output section. */
4941 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4942 || IS_COREFILE_NOTE (segment, section)
4943 || (bed->want_p_paddr_set_to_zero &&
4944 IS_CONTAINED_BY_VMA (output_section, segment))
4945 )
4946 {
4947 if (matching_lma == 0)
4948 matching_lma = output_section->lma;
4949
4950 /* We assume that if the section fits within the segment
4951 then it does not overlap any other section within that
4952 segment. */
4953 map->sections[isec ++] = output_section;
4954 }
4955 else if (suggested_lma == 0)
4956 suggested_lma = output_section->lma;
4957 }
4958 }
4959
4960 BFD_ASSERT (j == section_count);
4961
4962 /* Step Two: Adjust the physical address of the current segment,
4963 if necessary. */
4964 if (isec == section_count)
4965 {
4966 /* All of the sections fitted within the segment as currently
4967 specified. This is the default case. Add the segment to
4968 the list of built segments and carry on to process the next
4969 program header in the input BFD. */
4970 map->count = section_count;
4971 *pointer_to_map = map;
4972 pointer_to_map = &map->next;
4973
4974 free (sections);
4975 continue;
4976 }
4977 else
4978 {
4979 if (matching_lma != 0)
4980 {
4981 /* At least one section fits inside the current segment.
4982 Keep it, but modify its physical address to match the
4983 LMA of the first section that fitted. */
4984 map->p_paddr = matching_lma;
4985 }
4986 else
4987 {
4988 /* None of the sections fitted inside the current segment.
4989 Change the current segment's physical address to match
4990 the LMA of the first section. */
4991 map->p_paddr = suggested_lma;
4992 }
4993
4994 /* Offset the segment physical address from the lma
4995 to allow for space taken up by elf headers. */
4996 if (map->includes_filehdr)
4997 map->p_paddr -= iehdr->e_ehsize;
4998
4999 if (map->includes_phdrs)
5000 {
5001 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5002
5003 /* iehdr->e_phnum is just an estimate of the number
5004 of program headers that we will need. Make a note
5005 here of the number we used and the segment we chose
5006 to hold these headers, so that we can adjust the
5007 offset when we know the correct value. */
5008 phdr_adjust_num = iehdr->e_phnum;
5009 phdr_adjust_seg = map;
5010 }
5011 }
5012
5013 /* Step Three: Loop over the sections again, this time assigning
5014 those that fit to the current segment and removing them from the
5015 sections array; but making sure not to leave large gaps. Once all
5016 possible sections have been assigned to the current segment it is
5017 added to the list of built segments and if sections still remain
5018 to be assigned, a new segment is constructed before repeating
5019 the loop. */
5020 isec = 0;
5021 do
5022 {
5023 map->count = 0;
5024 suggested_lma = 0;
5025
5026 /* Fill the current segment with sections that fit. */
5027 for (j = 0; j < section_count; j++)
5028 {
5029 section = sections[j];
5030
5031 if (section == NULL)
5032 continue;
5033
5034 output_section = section->output_section;
5035
5036 BFD_ASSERT (output_section != NULL);
5037
5038 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5039 || IS_COREFILE_NOTE (segment, section))
5040 {
5041 if (map->count == 0)
5042 {
5043 /* If the first section in a segment does not start at
5044 the beginning of the segment, then something is
5045 wrong. */
5046 if (output_section->lma !=
5047 (map->p_paddr
5048 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5049 + (map->includes_phdrs
5050 ? iehdr->e_phnum * iehdr->e_phentsize
5051 : 0)))
5052 abort ();
5053 }
5054 else
5055 {
5056 asection * prev_sec;
5057
5058 prev_sec = map->sections[map->count - 1];
5059
5060 /* If the gap between the end of the previous section
5061 and the start of this section is more than
5062 maxpagesize then we need to start a new segment. */
5063 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
5064 maxpagesize)
5065 < BFD_ALIGN (output_section->lma, maxpagesize))
5066 || ((prev_sec->lma + prev_sec->_raw_size)
5067 > output_section->lma))
5068 {
5069 if (suggested_lma == 0)
5070 suggested_lma = output_section->lma;
5071
5072 continue;
5073 }
5074 }
5075
5076 map->sections[map->count++] = output_section;
5077 ++isec;
5078 sections[j] = NULL;
5079 section->segment_mark = TRUE;
5080 }
5081 else if (suggested_lma == 0)
5082 suggested_lma = output_section->lma;
5083 }
5084
5085 BFD_ASSERT (map->count > 0);
5086
5087 /* Add the current segment to the list of built segments. */
5088 *pointer_to_map = map;
5089 pointer_to_map = &map->next;
5090
5091 if (isec < section_count)
5092 {
5093 /* We still have not allocated all of the sections to
5094 segments. Create a new segment here, initialise it
5095 and carry on looping. */
5096 amt = sizeof (struct elf_segment_map);
5097 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5098 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5099 if (map == NULL)
5100 {
5101 free (sections);
5102 return FALSE;
5103 }
5104
5105 /* Initialise the fields of the segment map. Set the physical
5106 physical address to the LMA of the first section that has
5107 not yet been assigned. */
5108 map->next = NULL;
5109 map->p_type = segment->p_type;
5110 map->p_flags = segment->p_flags;
5111 map->p_flags_valid = 1;
5112 map->p_paddr = suggested_lma;
5113 map->p_paddr_valid = 1;
5114 map->includes_filehdr = 0;
5115 map->includes_phdrs = 0;
5116 }
5117 }
5118 while (isec < section_count);
5119
5120 free (sections);
5121 }
5122
5123 /* The Solaris linker creates program headers in which all the
5124 p_paddr fields are zero. When we try to objcopy or strip such a
5125 file, we get confused. Check for this case, and if we find it
5126 reset the p_paddr_valid fields. */
5127 for (map = map_first; map != NULL; map = map->next)
5128 if (map->p_paddr != 0)
5129 break;
5130 if (map == NULL)
5131 for (map = map_first; map != NULL; map = map->next)
5132 map->p_paddr_valid = 0;
5133
5134 elf_tdata (obfd)->segment_map = map_first;
5135
5136 /* If we had to estimate the number of program headers that were
5137 going to be needed, then check our estimate now and adjust
5138 the offset if necessary. */
5139 if (phdr_adjust_seg != NULL)
5140 {
5141 unsigned int count;
5142
5143 for (count = 0, map = map_first; map != NULL; map = map->next)
5144 count++;
5145
5146 if (count > phdr_adjust_num)
5147 phdr_adjust_seg->p_paddr
5148 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5149 }
5150
5151 #if 0
5152 /* Final Step: Sort the segments into ascending order of physical
5153 address. */
5154 if (map_first != NULL)
5155 {
5156 struct elf_segment_map *prev;
5157
5158 prev = map_first;
5159 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5160 {
5161 /* Yes I know - its a bubble sort.... */
5162 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5163 {
5164 /* Swap map and map->next. */
5165 prev->next = map->next;
5166 map->next = map->next->next;
5167 prev->next->next = map;
5168
5169 /* Restart loop. */
5170 map = map_first;
5171 }
5172 }
5173 }
5174 #endif
5175
5176 #undef SEGMENT_END
5177 #undef SECTION_SIZE
5178 #undef IS_CONTAINED_BY_VMA
5179 #undef IS_CONTAINED_BY_LMA
5180 #undef IS_COREFILE_NOTE
5181 #undef IS_SOLARIS_PT_INTERP
5182 #undef INCLUDE_SECTION_IN_SEGMENT
5183 #undef SEGMENT_AFTER_SEGMENT
5184 #undef SEGMENT_OVERLAPS
5185 return TRUE;
5186 }
5187
5188 /* Copy private section information. This copies over the entsize
5189 field, and sometimes the info field. */
5190
5191 bfd_boolean
5192 _bfd_elf_copy_private_section_data (ibfd, isec, obfd, osec)
5193 bfd *ibfd;
5194 asection *isec;
5195 bfd *obfd;
5196 asection *osec;
5197 {
5198 Elf_Internal_Shdr *ihdr, *ohdr;
5199
5200 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5201 || obfd->xvec->flavour != bfd_target_elf_flavour)
5202 return TRUE;
5203
5204 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5205 {
5206 asection *s;
5207
5208 /* Only set up the segments if there are no more SEC_ALLOC
5209 sections. FIXME: This won't do the right thing if objcopy is
5210 used to remove the last SEC_ALLOC section, since objcopy
5211 won't call this routine in that case. */
5212 for (s = isec->next; s != NULL; s = s->next)
5213 if ((s->flags & SEC_ALLOC) != 0)
5214 break;
5215 if (s == NULL)
5216 {
5217 if (! copy_private_bfd_data (ibfd, obfd))
5218 return FALSE;
5219 }
5220 }
5221
5222 ihdr = &elf_section_data (isec)->this_hdr;
5223 ohdr = &elf_section_data (osec)->this_hdr;
5224
5225 ohdr->sh_entsize = ihdr->sh_entsize;
5226
5227 if (ihdr->sh_type == SHT_SYMTAB
5228 || ihdr->sh_type == SHT_DYNSYM
5229 || ihdr->sh_type == SHT_GNU_verneed
5230 || ihdr->sh_type == SHT_GNU_verdef)
5231 ohdr->sh_info = ihdr->sh_info;
5232
5233 /* Set things up for objcopy. The output SHT_GROUP section will
5234 have its elf_next_in_group pointing back to the input group
5235 members. */
5236 elf_next_in_group (osec) = elf_next_in_group (isec);
5237 elf_group_name (osec) = elf_group_name (isec);
5238
5239 osec->use_rela_p = isec->use_rela_p;
5240
5241 return TRUE;
5242 }
5243
5244 /* Copy private symbol information. If this symbol is in a section
5245 which we did not map into a BFD section, try to map the section
5246 index correctly. We use special macro definitions for the mapped
5247 section indices; these definitions are interpreted by the
5248 swap_out_syms function. */
5249
5250 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5251 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5252 #define MAP_STRTAB (SHN_HIOS + 3)
5253 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5254 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5255
5256 bfd_boolean
5257 _bfd_elf_copy_private_symbol_data (ibfd, isymarg, obfd, osymarg)
5258 bfd *ibfd;
5259 asymbol *isymarg;
5260 bfd *obfd;
5261 asymbol *osymarg;
5262 {
5263 elf_symbol_type *isym, *osym;
5264
5265 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5266 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5267 return TRUE;
5268
5269 isym = elf_symbol_from (ibfd, isymarg);
5270 osym = elf_symbol_from (obfd, osymarg);
5271
5272 if (isym != NULL
5273 && osym != NULL
5274 && bfd_is_abs_section (isym->symbol.section))
5275 {
5276 unsigned int shndx;
5277
5278 shndx = isym->internal_elf_sym.st_shndx;
5279 if (shndx == elf_onesymtab (ibfd))
5280 shndx = MAP_ONESYMTAB;
5281 else if (shndx == elf_dynsymtab (ibfd))
5282 shndx = MAP_DYNSYMTAB;
5283 else if (shndx == elf_tdata (ibfd)->strtab_section)
5284 shndx = MAP_STRTAB;
5285 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5286 shndx = MAP_SHSTRTAB;
5287 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5288 shndx = MAP_SYM_SHNDX;
5289 osym->internal_elf_sym.st_shndx = shndx;
5290 }
5291
5292 return TRUE;
5293 }
5294
5295 /* Swap out the symbols. */
5296
5297 static bfd_boolean
5298 swap_out_syms (abfd, sttp, relocatable_p)
5299 bfd *abfd;
5300 struct bfd_strtab_hash **sttp;
5301 int relocatable_p;
5302 {
5303 struct elf_backend_data *bed;
5304 int symcount;
5305 asymbol **syms;
5306 struct bfd_strtab_hash *stt;
5307 Elf_Internal_Shdr *symtab_hdr;
5308 Elf_Internal_Shdr *symtab_shndx_hdr;
5309 Elf_Internal_Shdr *symstrtab_hdr;
5310 char *outbound_syms;
5311 char *outbound_shndx;
5312 int idx;
5313 bfd_size_type amt;
5314
5315 if (!elf_map_symbols (abfd))
5316 return FALSE;
5317
5318 /* Dump out the symtabs. */
5319 stt = _bfd_elf_stringtab_init ();
5320 if (stt == NULL)
5321 return FALSE;
5322
5323 bed = get_elf_backend_data (abfd);
5324 symcount = bfd_get_symcount (abfd);
5325 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5326 symtab_hdr->sh_type = SHT_SYMTAB;
5327 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5328 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5329 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5330 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5331
5332 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5333 symstrtab_hdr->sh_type = SHT_STRTAB;
5334
5335 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5336 outbound_syms = bfd_alloc (abfd, amt);
5337 if (outbound_syms == NULL)
5338 {
5339 _bfd_stringtab_free (stt);
5340 return FALSE;
5341 }
5342 symtab_hdr->contents = (PTR) outbound_syms;
5343
5344 outbound_shndx = NULL;
5345 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5346 if (symtab_shndx_hdr->sh_name != 0)
5347 {
5348 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5349 outbound_shndx = bfd_zalloc (abfd, amt);
5350 if (outbound_shndx == NULL)
5351 {
5352 _bfd_stringtab_free (stt);
5353 return FALSE;
5354 }
5355
5356 symtab_shndx_hdr->contents = outbound_shndx;
5357 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5358 symtab_shndx_hdr->sh_size = amt;
5359 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5360 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5361 }
5362
5363 /* Now generate the data (for "contents"). */
5364 {
5365 /* Fill in zeroth symbol and swap it out. */
5366 Elf_Internal_Sym sym;
5367 sym.st_name = 0;
5368 sym.st_value = 0;
5369 sym.st_size = 0;
5370 sym.st_info = 0;
5371 sym.st_other = 0;
5372 sym.st_shndx = SHN_UNDEF;
5373 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5374 outbound_syms += bed->s->sizeof_sym;
5375 if (outbound_shndx != NULL)
5376 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5377 }
5378
5379 syms = bfd_get_outsymbols (abfd);
5380 for (idx = 0; idx < symcount; idx++)
5381 {
5382 Elf_Internal_Sym sym;
5383 bfd_vma value = syms[idx]->value;
5384 elf_symbol_type *type_ptr;
5385 flagword flags = syms[idx]->flags;
5386 int type;
5387
5388 if ((flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5389 {
5390 /* Local section symbols have no name. */
5391 sym.st_name = 0;
5392 }
5393 else
5394 {
5395 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5396 syms[idx]->name,
5397 TRUE, FALSE);
5398 if (sym.st_name == (unsigned long) -1)
5399 {
5400 _bfd_stringtab_free (stt);
5401 return FALSE;
5402 }
5403 }
5404
5405 type_ptr = elf_symbol_from (abfd, syms[idx]);
5406
5407 if ((flags & BSF_SECTION_SYM) == 0
5408 && bfd_is_com_section (syms[idx]->section))
5409 {
5410 /* ELF common symbols put the alignment into the `value' field,
5411 and the size into the `size' field. This is backwards from
5412 how BFD handles it, so reverse it here. */
5413 sym.st_size = value;
5414 if (type_ptr == NULL
5415 || type_ptr->internal_elf_sym.st_value == 0)
5416 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5417 else
5418 sym.st_value = type_ptr->internal_elf_sym.st_value;
5419 sym.st_shndx = _bfd_elf_section_from_bfd_section
5420 (abfd, syms[idx]->section);
5421 }
5422 else
5423 {
5424 asection *sec = syms[idx]->section;
5425 int shndx;
5426
5427 if (sec->output_section)
5428 {
5429 value += sec->output_offset;
5430 sec = sec->output_section;
5431 }
5432
5433 /* Don't add in the section vma for relocatable output. */
5434 if (! relocatable_p)
5435 value += sec->vma;
5436 sym.st_value = value;
5437 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5438
5439 if (bfd_is_abs_section (sec)
5440 && type_ptr != NULL
5441 && type_ptr->internal_elf_sym.st_shndx != 0)
5442 {
5443 /* This symbol is in a real ELF section which we did
5444 not create as a BFD section. Undo the mapping done
5445 by copy_private_symbol_data. */
5446 shndx = type_ptr->internal_elf_sym.st_shndx;
5447 switch (shndx)
5448 {
5449 case MAP_ONESYMTAB:
5450 shndx = elf_onesymtab (abfd);
5451 break;
5452 case MAP_DYNSYMTAB:
5453 shndx = elf_dynsymtab (abfd);
5454 break;
5455 case MAP_STRTAB:
5456 shndx = elf_tdata (abfd)->strtab_section;
5457 break;
5458 case MAP_SHSTRTAB:
5459 shndx = elf_tdata (abfd)->shstrtab_section;
5460 break;
5461 case MAP_SYM_SHNDX:
5462 shndx = elf_tdata (abfd)->symtab_shndx_section;
5463 break;
5464 default:
5465 break;
5466 }
5467 }
5468 else
5469 {
5470 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5471
5472 if (shndx == -1)
5473 {
5474 asection *sec2;
5475
5476 /* Writing this would be a hell of a lot easier if
5477 we had some decent documentation on bfd, and
5478 knew what to expect of the library, and what to
5479 demand of applications. For example, it
5480 appears that `objcopy' might not set the
5481 section of a symbol to be a section that is
5482 actually in the output file. */
5483 sec2 = bfd_get_section_by_name (abfd, sec->name);
5484 if (sec2 == NULL)
5485 {
5486 _bfd_error_handler (_("\
5487 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5488 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5489 sec->name);
5490 bfd_set_error (bfd_error_invalid_operation);
5491 _bfd_stringtab_free (stt);
5492 return FALSE;
5493 }
5494
5495 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5496 BFD_ASSERT (shndx != -1);
5497 }
5498 }
5499
5500 sym.st_shndx = shndx;
5501 }
5502
5503 if ((flags & BSF_THREAD_LOCAL) != 0)
5504 type = STT_TLS;
5505 else if ((flags & BSF_FUNCTION) != 0)
5506 type = STT_FUNC;
5507 else if ((flags & BSF_OBJECT) != 0)
5508 type = STT_OBJECT;
5509 else
5510 type = STT_NOTYPE;
5511
5512 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5513 type = STT_TLS;
5514
5515 /* Processor-specific types. */
5516 if (type_ptr != NULL
5517 && bed->elf_backend_get_symbol_type)
5518 type = ((*bed->elf_backend_get_symbol_type)
5519 (&type_ptr->internal_elf_sym, type));
5520
5521 if (flags & BSF_SECTION_SYM)
5522 {
5523 if (flags & BSF_GLOBAL)
5524 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5525 else
5526 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5527 }
5528 else if (bfd_is_com_section (syms[idx]->section))
5529 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5530 else if (bfd_is_und_section (syms[idx]->section))
5531 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5532 ? STB_WEAK
5533 : STB_GLOBAL),
5534 type);
5535 else if (flags & BSF_FILE)
5536 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5537 else
5538 {
5539 int bind = STB_LOCAL;
5540
5541 if (flags & BSF_LOCAL)
5542 bind = STB_LOCAL;
5543 else if (flags & BSF_WEAK)
5544 bind = STB_WEAK;
5545 else if (flags & BSF_GLOBAL)
5546 bind = STB_GLOBAL;
5547
5548 sym.st_info = ELF_ST_INFO (bind, type);
5549 }
5550
5551 if (type_ptr != NULL)
5552 sym.st_other = type_ptr->internal_elf_sym.st_other;
5553 else
5554 sym.st_other = 0;
5555
5556 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5557 outbound_syms += bed->s->sizeof_sym;
5558 if (outbound_shndx != NULL)
5559 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5560 }
5561
5562 *sttp = stt;
5563 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5564 symstrtab_hdr->sh_type = SHT_STRTAB;
5565
5566 symstrtab_hdr->sh_flags = 0;
5567 symstrtab_hdr->sh_addr = 0;
5568 symstrtab_hdr->sh_entsize = 0;
5569 symstrtab_hdr->sh_link = 0;
5570 symstrtab_hdr->sh_info = 0;
5571 symstrtab_hdr->sh_addralign = 1;
5572
5573 return TRUE;
5574 }
5575
5576 /* Return the number of bytes required to hold the symtab vector.
5577
5578 Note that we base it on the count plus 1, since we will null terminate
5579 the vector allocated based on this size. However, the ELF symbol table
5580 always has a dummy entry as symbol #0, so it ends up even. */
5581
5582 long
5583 _bfd_elf_get_symtab_upper_bound (abfd)
5584 bfd *abfd;
5585 {
5586 long symcount;
5587 long symtab_size;
5588 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5589
5590 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5591 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5592 if (symcount > 0)
5593 symtab_size -= sizeof (asymbol *);
5594
5595 return symtab_size;
5596 }
5597
5598 long
5599 _bfd_elf_get_dynamic_symtab_upper_bound (abfd)
5600 bfd *abfd;
5601 {
5602 long symcount;
5603 long symtab_size;
5604 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5605
5606 if (elf_dynsymtab (abfd) == 0)
5607 {
5608 bfd_set_error (bfd_error_invalid_operation);
5609 return -1;
5610 }
5611
5612 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5613 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5614 if (symcount > 0)
5615 symtab_size -= sizeof (asymbol *);
5616
5617 return symtab_size;
5618 }
5619
5620 long
5621 _bfd_elf_get_reloc_upper_bound (abfd, asect)
5622 bfd *abfd ATTRIBUTE_UNUSED;
5623 sec_ptr asect;
5624 {
5625 return (asect->reloc_count + 1) * sizeof (arelent *);
5626 }
5627
5628 /* Canonicalize the relocs. */
5629
5630 long
5631 _bfd_elf_canonicalize_reloc (abfd, section, relptr, symbols)
5632 bfd *abfd;
5633 sec_ptr section;
5634 arelent **relptr;
5635 asymbol **symbols;
5636 {
5637 arelent *tblptr;
5638 unsigned int i;
5639 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5640
5641 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5642 return -1;
5643
5644 tblptr = section->relocation;
5645 for (i = 0; i < section->reloc_count; i++)
5646 *relptr++ = tblptr++;
5647
5648 *relptr = NULL;
5649
5650 return section->reloc_count;
5651 }
5652
5653 long
5654 _bfd_elf_get_symtab (abfd, alocation)
5655 bfd *abfd;
5656 asymbol **alocation;
5657 {
5658 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5659 long symcount = bed->s->slurp_symbol_table (abfd, alocation, FALSE);
5660
5661 if (symcount >= 0)
5662 bfd_get_symcount (abfd) = symcount;
5663 return symcount;
5664 }
5665
5666 long
5667 _bfd_elf_canonicalize_dynamic_symtab (abfd, alocation)
5668 bfd *abfd;
5669 asymbol **alocation;
5670 {
5671 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5672 long symcount = bed->s->slurp_symbol_table (abfd, alocation, TRUE);
5673
5674 if (symcount >= 0)
5675 bfd_get_dynamic_symcount (abfd) = symcount;
5676 return symcount;
5677 }
5678
5679 /* Return the size required for the dynamic reloc entries. Any
5680 section that was actually installed in the BFD, and has type
5681 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5682 considered to be a dynamic reloc section. */
5683
5684 long
5685 _bfd_elf_get_dynamic_reloc_upper_bound (abfd)
5686 bfd *abfd;
5687 {
5688 long ret;
5689 asection *s;
5690
5691 if (elf_dynsymtab (abfd) == 0)
5692 {
5693 bfd_set_error (bfd_error_invalid_operation);
5694 return -1;
5695 }
5696
5697 ret = sizeof (arelent *);
5698 for (s = abfd->sections; s != NULL; s = s->next)
5699 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5700 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5701 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5702 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5703 * sizeof (arelent *));
5704
5705 return ret;
5706 }
5707
5708 /* Canonicalize the dynamic relocation entries. Note that we return
5709 the dynamic relocations as a single block, although they are
5710 actually associated with particular sections; the interface, which
5711 was designed for SunOS style shared libraries, expects that there
5712 is only one set of dynamic relocs. Any section that was actually
5713 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5714 the dynamic symbol table, is considered to be a dynamic reloc
5715 section. */
5716
5717 long
5718 _bfd_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
5719 bfd *abfd;
5720 arelent **storage;
5721 asymbol **syms;
5722 {
5723 bfd_boolean (*slurp_relocs)
5724 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
5725 asection *s;
5726 long ret;
5727
5728 if (elf_dynsymtab (abfd) == 0)
5729 {
5730 bfd_set_error (bfd_error_invalid_operation);
5731 return -1;
5732 }
5733
5734 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5735 ret = 0;
5736 for (s = abfd->sections; s != NULL; s = s->next)
5737 {
5738 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5739 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5740 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5741 {
5742 arelent *p;
5743 long count, i;
5744
5745 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
5746 return -1;
5747 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5748 p = s->relocation;
5749 for (i = 0; i < count; i++)
5750 *storage++ = p++;
5751 ret += count;
5752 }
5753 }
5754
5755 *storage = NULL;
5756
5757 return ret;
5758 }
5759 \f
5760 /* Read in the version information. */
5761
5762 bfd_boolean
5763 _bfd_elf_slurp_version_tables (abfd)
5764 bfd *abfd;
5765 {
5766 bfd_byte *contents = NULL;
5767 bfd_size_type amt;
5768
5769 if (elf_dynverdef (abfd) != 0)
5770 {
5771 Elf_Internal_Shdr *hdr;
5772 Elf_External_Verdef *everdef;
5773 Elf_Internal_Verdef *iverdef;
5774 Elf_Internal_Verdef *iverdefarr;
5775 Elf_Internal_Verdef iverdefmem;
5776 unsigned int i;
5777 unsigned int maxidx;
5778
5779 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5780
5781 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
5782 if (contents == NULL)
5783 goto error_return;
5784 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5785 || bfd_bread ((PTR) contents, hdr->sh_size, abfd) != hdr->sh_size)
5786 goto error_return;
5787
5788 /* We know the number of entries in the section but not the maximum
5789 index. Therefore we have to run through all entries and find
5790 the maximum. */
5791 everdef = (Elf_External_Verdef *) contents;
5792 maxidx = 0;
5793 for (i = 0; i < hdr->sh_info; ++i)
5794 {
5795 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5796
5797 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5798 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5799
5800 everdef = ((Elf_External_Verdef *)
5801 ((bfd_byte *) everdef + iverdefmem.vd_next));
5802 }
5803
5804 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5805 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
5806 if (elf_tdata (abfd)->verdef == NULL)
5807 goto error_return;
5808
5809 elf_tdata (abfd)->cverdefs = maxidx;
5810
5811 everdef = (Elf_External_Verdef *) contents;
5812 iverdefarr = elf_tdata (abfd)->verdef;
5813 for (i = 0; i < hdr->sh_info; i++)
5814 {
5815 Elf_External_Verdaux *everdaux;
5816 Elf_Internal_Verdaux *iverdaux;
5817 unsigned int j;
5818
5819 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5820
5821 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5822 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5823
5824 iverdef->vd_bfd = abfd;
5825
5826 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5827 iverdef->vd_auxptr = (Elf_Internal_Verdaux *) bfd_alloc (abfd, amt);
5828 if (iverdef->vd_auxptr == NULL)
5829 goto error_return;
5830
5831 everdaux = ((Elf_External_Verdaux *)
5832 ((bfd_byte *) everdef + iverdef->vd_aux));
5833 iverdaux = iverdef->vd_auxptr;
5834 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5835 {
5836 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5837
5838 iverdaux->vda_nodename =
5839 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5840 iverdaux->vda_name);
5841 if (iverdaux->vda_nodename == NULL)
5842 goto error_return;
5843
5844 if (j + 1 < iverdef->vd_cnt)
5845 iverdaux->vda_nextptr = iverdaux + 1;
5846 else
5847 iverdaux->vda_nextptr = NULL;
5848
5849 everdaux = ((Elf_External_Verdaux *)
5850 ((bfd_byte *) everdaux + iverdaux->vda_next));
5851 }
5852
5853 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5854
5855 if (i + 1 < hdr->sh_info)
5856 iverdef->vd_nextdef = iverdef + 1;
5857 else
5858 iverdef->vd_nextdef = NULL;
5859
5860 everdef = ((Elf_External_Verdef *)
5861 ((bfd_byte *) everdef + iverdef->vd_next));
5862 }
5863
5864 free (contents);
5865 contents = NULL;
5866 }
5867
5868 if (elf_dynverref (abfd) != 0)
5869 {
5870 Elf_Internal_Shdr *hdr;
5871 Elf_External_Verneed *everneed;
5872 Elf_Internal_Verneed *iverneed;
5873 unsigned int i;
5874
5875 hdr = &elf_tdata (abfd)->dynverref_hdr;
5876
5877 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5878 elf_tdata (abfd)->verref =
5879 (Elf_Internal_Verneed *) bfd_zalloc (abfd, amt);
5880 if (elf_tdata (abfd)->verref == NULL)
5881 goto error_return;
5882
5883 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5884
5885 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
5886 if (contents == NULL)
5887 goto error_return;
5888 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5889 || bfd_bread ((PTR) contents, hdr->sh_size, abfd) != hdr->sh_size)
5890 goto error_return;
5891
5892 everneed = (Elf_External_Verneed *) contents;
5893 iverneed = elf_tdata (abfd)->verref;
5894 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5895 {
5896 Elf_External_Vernaux *evernaux;
5897 Elf_Internal_Vernaux *ivernaux;
5898 unsigned int j;
5899
5900 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5901
5902 iverneed->vn_bfd = abfd;
5903
5904 iverneed->vn_filename =
5905 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5906 iverneed->vn_file);
5907 if (iverneed->vn_filename == NULL)
5908 goto error_return;
5909
5910 amt = iverneed->vn_cnt;
5911 amt *= sizeof (Elf_Internal_Vernaux);
5912 iverneed->vn_auxptr = (Elf_Internal_Vernaux *) bfd_alloc (abfd, amt);
5913
5914 evernaux = ((Elf_External_Vernaux *)
5915 ((bfd_byte *) everneed + iverneed->vn_aux));
5916 ivernaux = iverneed->vn_auxptr;
5917 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5918 {
5919 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5920
5921 ivernaux->vna_nodename =
5922 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5923 ivernaux->vna_name);
5924 if (ivernaux->vna_nodename == NULL)
5925 goto error_return;
5926
5927 if (j + 1 < iverneed->vn_cnt)
5928 ivernaux->vna_nextptr = ivernaux + 1;
5929 else
5930 ivernaux->vna_nextptr = NULL;
5931
5932 evernaux = ((Elf_External_Vernaux *)
5933 ((bfd_byte *) evernaux + ivernaux->vna_next));
5934 }
5935
5936 if (i + 1 < hdr->sh_info)
5937 iverneed->vn_nextref = iverneed + 1;
5938 else
5939 iverneed->vn_nextref = NULL;
5940
5941 everneed = ((Elf_External_Verneed *)
5942 ((bfd_byte *) everneed + iverneed->vn_next));
5943 }
5944
5945 free (contents);
5946 contents = NULL;
5947 }
5948
5949 return TRUE;
5950
5951 error_return:
5952 if (contents != NULL)
5953 free (contents);
5954 return FALSE;
5955 }
5956 \f
5957 asymbol *
5958 _bfd_elf_make_empty_symbol (abfd)
5959 bfd *abfd;
5960 {
5961 elf_symbol_type *newsym;
5962 bfd_size_type amt = sizeof (elf_symbol_type);
5963
5964 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
5965 if (!newsym)
5966 return NULL;
5967 else
5968 {
5969 newsym->symbol.the_bfd = abfd;
5970 return &newsym->symbol;
5971 }
5972 }
5973
5974 void
5975 _bfd_elf_get_symbol_info (ignore_abfd, symbol, ret)
5976 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5977 asymbol *symbol;
5978 symbol_info *ret;
5979 {
5980 bfd_symbol_info (symbol, ret);
5981 }
5982
5983 /* Return whether a symbol name implies a local symbol. Most targets
5984 use this function for the is_local_label_name entry point, but some
5985 override it. */
5986
5987 bfd_boolean
5988 _bfd_elf_is_local_label_name (abfd, name)
5989 bfd *abfd ATTRIBUTE_UNUSED;
5990 const char *name;
5991 {
5992 /* Normal local symbols start with ``.L''. */
5993 if (name[0] == '.' && name[1] == 'L')
5994 return TRUE;
5995
5996 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5997 DWARF debugging symbols starting with ``..''. */
5998 if (name[0] == '.' && name[1] == '.')
5999 return TRUE;
6000
6001 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6002 emitting DWARF debugging output. I suspect this is actually a
6003 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6004 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6005 underscore to be emitted on some ELF targets). For ease of use,
6006 we treat such symbols as local. */
6007 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6008 return TRUE;
6009
6010 return FALSE;
6011 }
6012
6013 alent *
6014 _bfd_elf_get_lineno (ignore_abfd, symbol)
6015 bfd *ignore_abfd ATTRIBUTE_UNUSED;
6016 asymbol *symbol ATTRIBUTE_UNUSED;
6017 {
6018 abort ();
6019 return NULL;
6020 }
6021
6022 bfd_boolean
6023 _bfd_elf_set_arch_mach (abfd, arch, machine)
6024 bfd *abfd;
6025 enum bfd_architecture arch;
6026 unsigned long machine;
6027 {
6028 /* If this isn't the right architecture for this backend, and this
6029 isn't the generic backend, fail. */
6030 if (arch != get_elf_backend_data (abfd)->arch
6031 && arch != bfd_arch_unknown
6032 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6033 return FALSE;
6034
6035 return bfd_default_set_arch_mach (abfd, arch, machine);
6036 }
6037
6038 /* Find the function to a particular section and offset,
6039 for error reporting. */
6040
6041 static bfd_boolean
6042 elf_find_function (abfd, section, symbols, offset,
6043 filename_ptr, functionname_ptr)
6044 bfd *abfd ATTRIBUTE_UNUSED;
6045 asection *section;
6046 asymbol **symbols;
6047 bfd_vma offset;
6048 const char **filename_ptr;
6049 const char **functionname_ptr;
6050 {
6051 const char *filename;
6052 asymbol *func;
6053 bfd_vma low_func;
6054 asymbol **p;
6055
6056 filename = NULL;
6057 func = NULL;
6058 low_func = 0;
6059
6060 for (p = symbols; *p != NULL; p++)
6061 {
6062 elf_symbol_type *q;
6063
6064 q = (elf_symbol_type *) *p;
6065
6066 if (bfd_get_section (&q->symbol) != section)
6067 continue;
6068
6069 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6070 {
6071 default:
6072 break;
6073 case STT_FILE:
6074 filename = bfd_asymbol_name (&q->symbol);
6075 break;
6076 case STT_NOTYPE:
6077 case STT_FUNC:
6078 if (q->symbol.section == section
6079 && q->symbol.value >= low_func
6080 && q->symbol.value <= offset)
6081 {
6082 func = (asymbol *) q;
6083 low_func = q->symbol.value;
6084 }
6085 break;
6086 }
6087 }
6088
6089 if (func == NULL)
6090 return FALSE;
6091
6092 if (filename_ptr)
6093 *filename_ptr = filename;
6094 if (functionname_ptr)
6095 *functionname_ptr = bfd_asymbol_name (func);
6096
6097 return TRUE;
6098 }
6099
6100 /* Find the nearest line to a particular section and offset,
6101 for error reporting. */
6102
6103 bfd_boolean
6104 _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
6105 filename_ptr, functionname_ptr, line_ptr)
6106 bfd *abfd;
6107 asection *section;
6108 asymbol **symbols;
6109 bfd_vma offset;
6110 const char **filename_ptr;
6111 const char **functionname_ptr;
6112 unsigned int *line_ptr;
6113 {
6114 bfd_boolean found;
6115
6116 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6117 filename_ptr, functionname_ptr,
6118 line_ptr))
6119 {
6120 if (!*functionname_ptr)
6121 elf_find_function (abfd, section, symbols, offset,
6122 *filename_ptr ? NULL : filename_ptr,
6123 functionname_ptr);
6124
6125 return TRUE;
6126 }
6127
6128 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6129 filename_ptr, functionname_ptr,
6130 line_ptr, 0,
6131 &elf_tdata (abfd)->dwarf2_find_line_info))
6132 {
6133 if (!*functionname_ptr)
6134 elf_find_function (abfd, section, symbols, offset,
6135 *filename_ptr ? NULL : filename_ptr,
6136 functionname_ptr);
6137
6138 return TRUE;
6139 }
6140
6141 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6142 &found, filename_ptr,
6143 functionname_ptr, line_ptr,
6144 &elf_tdata (abfd)->line_info))
6145 return FALSE;
6146 if (found && (*functionname_ptr || *line_ptr))
6147 return TRUE;
6148
6149 if (symbols == NULL)
6150 return FALSE;
6151
6152 if (! elf_find_function (abfd, section, symbols, offset,
6153 filename_ptr, functionname_ptr))
6154 return FALSE;
6155
6156 *line_ptr = 0;
6157 return TRUE;
6158 }
6159
6160 int
6161 _bfd_elf_sizeof_headers (abfd, reloc)
6162 bfd *abfd;
6163 bfd_boolean reloc;
6164 {
6165 int ret;
6166
6167 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6168 if (! reloc)
6169 ret += get_program_header_size (abfd);
6170 return ret;
6171 }
6172
6173 bfd_boolean
6174 _bfd_elf_set_section_contents (abfd, section, location, offset, count)
6175 bfd *abfd;
6176 sec_ptr section;
6177 PTR location;
6178 file_ptr offset;
6179 bfd_size_type count;
6180 {
6181 Elf_Internal_Shdr *hdr;
6182 bfd_signed_vma pos;
6183
6184 if (! abfd->output_has_begun
6185 && ! (_bfd_elf_compute_section_file_positions
6186 (abfd, (struct bfd_link_info *) NULL)))
6187 return FALSE;
6188
6189 hdr = &elf_section_data (section)->this_hdr;
6190 pos = hdr->sh_offset + offset;
6191 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6192 || bfd_bwrite (location, count, abfd) != count)
6193 return FALSE;
6194
6195 return TRUE;
6196 }
6197
6198 void
6199 _bfd_elf_no_info_to_howto (abfd, cache_ptr, dst)
6200 bfd *abfd ATTRIBUTE_UNUSED;
6201 arelent *cache_ptr ATTRIBUTE_UNUSED;
6202 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED;
6203 {
6204 abort ();
6205 }
6206
6207 /* Try to convert a non-ELF reloc into an ELF one. */
6208
6209 bfd_boolean
6210 _bfd_elf_validate_reloc (abfd, areloc)
6211 bfd *abfd;
6212 arelent *areloc;
6213 {
6214 /* Check whether we really have an ELF howto. */
6215
6216 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6217 {
6218 bfd_reloc_code_real_type code;
6219 reloc_howto_type *howto;
6220
6221 /* Alien reloc: Try to determine its type to replace it with an
6222 equivalent ELF reloc. */
6223
6224 if (areloc->howto->pc_relative)
6225 {
6226 switch (areloc->howto->bitsize)
6227 {
6228 case 8:
6229 code = BFD_RELOC_8_PCREL;
6230 break;
6231 case 12:
6232 code = BFD_RELOC_12_PCREL;
6233 break;
6234 case 16:
6235 code = BFD_RELOC_16_PCREL;
6236 break;
6237 case 24:
6238 code = BFD_RELOC_24_PCREL;
6239 break;
6240 case 32:
6241 code = BFD_RELOC_32_PCREL;
6242 break;
6243 case 64:
6244 code = BFD_RELOC_64_PCREL;
6245 break;
6246 default:
6247 goto fail;
6248 }
6249
6250 howto = bfd_reloc_type_lookup (abfd, code);
6251
6252 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6253 {
6254 if (howto->pcrel_offset)
6255 areloc->addend += areloc->address;
6256 else
6257 areloc->addend -= areloc->address; /* addend is unsigned!! */
6258 }
6259 }
6260 else
6261 {
6262 switch (areloc->howto->bitsize)
6263 {
6264 case 8:
6265 code = BFD_RELOC_8;
6266 break;
6267 case 14:
6268 code = BFD_RELOC_14;
6269 break;
6270 case 16:
6271 code = BFD_RELOC_16;
6272 break;
6273 case 26:
6274 code = BFD_RELOC_26;
6275 break;
6276 case 32:
6277 code = BFD_RELOC_32;
6278 break;
6279 case 64:
6280 code = BFD_RELOC_64;
6281 break;
6282 default:
6283 goto fail;
6284 }
6285
6286 howto = bfd_reloc_type_lookup (abfd, code);
6287 }
6288
6289 if (howto)
6290 areloc->howto = howto;
6291 else
6292 goto fail;
6293 }
6294
6295 return TRUE;
6296
6297 fail:
6298 (*_bfd_error_handler)
6299 (_("%s: unsupported relocation type %s"),
6300 bfd_archive_filename (abfd), areloc->howto->name);
6301 bfd_set_error (bfd_error_bad_value);
6302 return FALSE;
6303 }
6304
6305 bfd_boolean
6306 _bfd_elf_close_and_cleanup (abfd)
6307 bfd *abfd;
6308 {
6309 if (bfd_get_format (abfd) == bfd_object)
6310 {
6311 if (elf_shstrtab (abfd) != NULL)
6312 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6313 }
6314
6315 return _bfd_generic_close_and_cleanup (abfd);
6316 }
6317
6318 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6319 in the relocation's offset. Thus we cannot allow any sort of sanity
6320 range-checking to interfere. There is nothing else to do in processing
6321 this reloc. */
6322
6323 bfd_reloc_status_type
6324 _bfd_elf_rel_vtable_reloc_fn (abfd, re, symbol, data, is, obfd, errmsg)
6325 bfd *abfd ATTRIBUTE_UNUSED;
6326 arelent *re ATTRIBUTE_UNUSED;
6327 struct symbol_cache_entry *symbol ATTRIBUTE_UNUSED;
6328 PTR data ATTRIBUTE_UNUSED;
6329 asection *is ATTRIBUTE_UNUSED;
6330 bfd *obfd ATTRIBUTE_UNUSED;
6331 char **errmsg ATTRIBUTE_UNUSED;
6332 {
6333 return bfd_reloc_ok;
6334 }
6335 \f
6336 /* Elf core file support. Much of this only works on native
6337 toolchains, since we rely on knowing the
6338 machine-dependent procfs structure in order to pick
6339 out details about the corefile. */
6340
6341 #ifdef HAVE_SYS_PROCFS_H
6342 # include <sys/procfs.h>
6343 #endif
6344
6345 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6346
6347 static int
6348 elfcore_make_pid (abfd)
6349 bfd *abfd;
6350 {
6351 return ((elf_tdata (abfd)->core_lwpid << 16)
6352 + (elf_tdata (abfd)->core_pid));
6353 }
6354
6355 /* If there isn't a section called NAME, make one, using
6356 data from SECT. Note, this function will generate a
6357 reference to NAME, so you shouldn't deallocate or
6358 overwrite it. */
6359
6360 static bfd_boolean
6361 elfcore_maybe_make_sect (abfd, name, sect)
6362 bfd *abfd;
6363 char *name;
6364 asection *sect;
6365 {
6366 asection *sect2;
6367
6368 if (bfd_get_section_by_name (abfd, name) != NULL)
6369 return TRUE;
6370
6371 sect2 = bfd_make_section (abfd, name);
6372 if (sect2 == NULL)
6373 return FALSE;
6374
6375 sect2->_raw_size = sect->_raw_size;
6376 sect2->filepos = sect->filepos;
6377 sect2->flags = sect->flags;
6378 sect2->alignment_power = sect->alignment_power;
6379 return TRUE;
6380 }
6381
6382 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6383 actually creates up to two pseudosections:
6384 - For the single-threaded case, a section named NAME, unless
6385 such a section already exists.
6386 - For the multi-threaded case, a section named "NAME/PID", where
6387 PID is elfcore_make_pid (abfd).
6388 Both pseudosections have identical contents. */
6389 bfd_boolean
6390 _bfd_elfcore_make_pseudosection (abfd, name, size, filepos)
6391 bfd *abfd;
6392 char *name;
6393 size_t size;
6394 ufile_ptr filepos;
6395 {
6396 char buf[100];
6397 char *threaded_name;
6398 size_t len;
6399 asection *sect;
6400
6401 /* Build the section name. */
6402
6403 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6404 len = strlen (buf) + 1;
6405 threaded_name = bfd_alloc (abfd, (bfd_size_type) len);
6406 if (threaded_name == NULL)
6407 return FALSE;
6408 memcpy (threaded_name, buf, len);
6409
6410 sect = bfd_make_section (abfd, threaded_name);
6411 if (sect == NULL)
6412 return FALSE;
6413 sect->_raw_size = size;
6414 sect->filepos = filepos;
6415 sect->flags = SEC_HAS_CONTENTS;
6416 sect->alignment_power = 2;
6417
6418 return elfcore_maybe_make_sect (abfd, name, sect);
6419 }
6420
6421 /* prstatus_t exists on:
6422 solaris 2.5+
6423 linux 2.[01] + glibc
6424 unixware 4.2
6425 */
6426
6427 #if defined (HAVE_PRSTATUS_T)
6428 static bfd_boolean elfcore_grok_prstatus
6429 PARAMS ((bfd *, Elf_Internal_Note *));
6430
6431 static bfd_boolean
6432 elfcore_grok_prstatus (abfd, note)
6433 bfd *abfd;
6434 Elf_Internal_Note *note;
6435 {
6436 size_t raw_size;
6437 int offset;
6438
6439 if (note->descsz == sizeof (prstatus_t))
6440 {
6441 prstatus_t prstat;
6442
6443 raw_size = sizeof (prstat.pr_reg);
6444 offset = offsetof (prstatus_t, pr_reg);
6445 memcpy (&prstat, note->descdata, sizeof (prstat));
6446
6447 /* Do not overwrite the core signal if it
6448 has already been set by another thread. */
6449 if (elf_tdata (abfd)->core_signal == 0)
6450 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6451 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6452
6453 /* pr_who exists on:
6454 solaris 2.5+
6455 unixware 4.2
6456 pr_who doesn't exist on:
6457 linux 2.[01]
6458 */
6459 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6460 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6461 #endif
6462 }
6463 #if defined (HAVE_PRSTATUS32_T)
6464 else if (note->descsz == sizeof (prstatus32_t))
6465 {
6466 /* 64-bit host, 32-bit corefile */
6467 prstatus32_t prstat;
6468
6469 raw_size = sizeof (prstat.pr_reg);
6470 offset = offsetof (prstatus32_t, pr_reg);
6471 memcpy (&prstat, note->descdata, sizeof (prstat));
6472
6473 /* Do not overwrite the core signal if it
6474 has already been set by another thread. */
6475 if (elf_tdata (abfd)->core_signal == 0)
6476 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6477 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6478
6479 /* pr_who exists on:
6480 solaris 2.5+
6481 unixware 4.2
6482 pr_who doesn't exist on:
6483 linux 2.[01]
6484 */
6485 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6486 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6487 #endif
6488 }
6489 #endif /* HAVE_PRSTATUS32_T */
6490 else
6491 {
6492 /* Fail - we don't know how to handle any other
6493 note size (ie. data object type). */
6494 return TRUE;
6495 }
6496
6497 /* Make a ".reg/999" section and a ".reg" section. */
6498 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6499 raw_size, note->descpos + offset);
6500 }
6501 #endif /* defined (HAVE_PRSTATUS_T) */
6502
6503 /* Create a pseudosection containing the exact contents of NOTE. */
6504 static bfd_boolean
6505 elfcore_make_note_pseudosection (abfd, name, note)
6506 bfd *abfd;
6507 char *name;
6508 Elf_Internal_Note *note;
6509 {
6510 return _bfd_elfcore_make_pseudosection (abfd, name,
6511 note->descsz, note->descpos);
6512 }
6513
6514 /* There isn't a consistent prfpregset_t across platforms,
6515 but it doesn't matter, because we don't have to pick this
6516 data structure apart. */
6517
6518 static bfd_boolean
6519 elfcore_grok_prfpreg (abfd, note)
6520 bfd *abfd;
6521 Elf_Internal_Note *note;
6522 {
6523 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6524 }
6525
6526 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6527 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6528 literally. */
6529
6530 static bfd_boolean
6531 elfcore_grok_prxfpreg (abfd, note)
6532 bfd *abfd;
6533 Elf_Internal_Note *note;
6534 {
6535 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6536 }
6537
6538 #if defined (HAVE_PRPSINFO_T)
6539 typedef prpsinfo_t elfcore_psinfo_t;
6540 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6541 typedef prpsinfo32_t elfcore_psinfo32_t;
6542 #endif
6543 #endif
6544
6545 #if defined (HAVE_PSINFO_T)
6546 typedef psinfo_t elfcore_psinfo_t;
6547 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6548 typedef psinfo32_t elfcore_psinfo32_t;
6549 #endif
6550 #endif
6551
6552 /* return a malloc'ed copy of a string at START which is at
6553 most MAX bytes long, possibly without a terminating '\0'.
6554 the copy will always have a terminating '\0'. */
6555
6556 char *
6557 _bfd_elfcore_strndup (abfd, start, max)
6558 bfd *abfd;
6559 char *start;
6560 size_t max;
6561 {
6562 char *dups;
6563 char *end = memchr (start, '\0', max);
6564 size_t len;
6565
6566 if (end == NULL)
6567 len = max;
6568 else
6569 len = end - start;
6570
6571 dups = bfd_alloc (abfd, (bfd_size_type) len + 1);
6572 if (dups == NULL)
6573 return NULL;
6574
6575 memcpy (dups, start, len);
6576 dups[len] = '\0';
6577
6578 return dups;
6579 }
6580
6581 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6582 static bfd_boolean elfcore_grok_psinfo
6583 PARAMS ((bfd *, Elf_Internal_Note *));
6584
6585 static bfd_boolean
6586 elfcore_grok_psinfo (abfd, note)
6587 bfd *abfd;
6588 Elf_Internal_Note *note;
6589 {
6590 if (note->descsz == sizeof (elfcore_psinfo_t))
6591 {
6592 elfcore_psinfo_t psinfo;
6593
6594 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6595
6596 elf_tdata (abfd)->core_program
6597 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6598 sizeof (psinfo.pr_fname));
6599
6600 elf_tdata (abfd)->core_command
6601 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6602 sizeof (psinfo.pr_psargs));
6603 }
6604 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6605 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6606 {
6607 /* 64-bit host, 32-bit corefile */
6608 elfcore_psinfo32_t psinfo;
6609
6610 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6611
6612 elf_tdata (abfd)->core_program
6613 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6614 sizeof (psinfo.pr_fname));
6615
6616 elf_tdata (abfd)->core_command
6617 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6618 sizeof (psinfo.pr_psargs));
6619 }
6620 #endif
6621
6622 else
6623 {
6624 /* Fail - we don't know how to handle any other
6625 note size (ie. data object type). */
6626 return TRUE;
6627 }
6628
6629 /* Note that for some reason, a spurious space is tacked
6630 onto the end of the args in some (at least one anyway)
6631 implementations, so strip it off if it exists. */
6632
6633 {
6634 char *command = elf_tdata (abfd)->core_command;
6635 int n = strlen (command);
6636
6637 if (0 < n && command[n - 1] == ' ')
6638 command[n - 1] = '\0';
6639 }
6640
6641 return TRUE;
6642 }
6643 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6644
6645 #if defined (HAVE_PSTATUS_T)
6646 static bfd_boolean elfcore_grok_pstatus
6647 PARAMS ((bfd *, Elf_Internal_Note *));
6648
6649 static bfd_boolean
6650 elfcore_grok_pstatus (abfd, note)
6651 bfd *abfd;
6652 Elf_Internal_Note *note;
6653 {
6654 if (note->descsz == sizeof (pstatus_t)
6655 #if defined (HAVE_PXSTATUS_T)
6656 || note->descsz == sizeof (pxstatus_t)
6657 #endif
6658 )
6659 {
6660 pstatus_t pstat;
6661
6662 memcpy (&pstat, note->descdata, sizeof (pstat));
6663
6664 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6665 }
6666 #if defined (HAVE_PSTATUS32_T)
6667 else if (note->descsz == sizeof (pstatus32_t))
6668 {
6669 /* 64-bit host, 32-bit corefile */
6670 pstatus32_t pstat;
6671
6672 memcpy (&pstat, note->descdata, sizeof (pstat));
6673
6674 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6675 }
6676 #endif
6677 /* Could grab some more details from the "representative"
6678 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6679 NT_LWPSTATUS note, presumably. */
6680
6681 return TRUE;
6682 }
6683 #endif /* defined (HAVE_PSTATUS_T) */
6684
6685 #if defined (HAVE_LWPSTATUS_T)
6686 static bfd_boolean elfcore_grok_lwpstatus
6687 PARAMS ((bfd *, Elf_Internal_Note *));
6688
6689 static bfd_boolean
6690 elfcore_grok_lwpstatus (abfd, note)
6691 bfd *abfd;
6692 Elf_Internal_Note *note;
6693 {
6694 lwpstatus_t lwpstat;
6695 char buf[100];
6696 char *name;
6697 size_t len;
6698 asection *sect;
6699
6700 if (note->descsz != sizeof (lwpstat)
6701 #if defined (HAVE_LWPXSTATUS_T)
6702 && note->descsz != sizeof (lwpxstatus_t)
6703 #endif
6704 )
6705 return TRUE;
6706
6707 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6708
6709 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6710 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6711
6712 /* Make a ".reg/999" section. */
6713
6714 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6715 len = strlen (buf) + 1;
6716 name = bfd_alloc (abfd, (bfd_size_type) len);
6717 if (name == NULL)
6718 return FALSE;
6719 memcpy (name, buf, len);
6720
6721 sect = bfd_make_section (abfd, name);
6722 if (sect == NULL)
6723 return FALSE;
6724
6725 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6726 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6727 sect->filepos = note->descpos
6728 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6729 #endif
6730
6731 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6732 sect->_raw_size = sizeof (lwpstat.pr_reg);
6733 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6734 #endif
6735
6736 sect->flags = SEC_HAS_CONTENTS;
6737 sect->alignment_power = 2;
6738
6739 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6740 return FALSE;
6741
6742 /* Make a ".reg2/999" section */
6743
6744 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6745 len = strlen (buf) + 1;
6746 name = bfd_alloc (abfd, (bfd_size_type) len);
6747 if (name == NULL)
6748 return FALSE;
6749 memcpy (name, buf, len);
6750
6751 sect = bfd_make_section (abfd, name);
6752 if (sect == NULL)
6753 return FALSE;
6754
6755 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6756 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6757 sect->filepos = note->descpos
6758 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6759 #endif
6760
6761 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6762 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6763 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6764 #endif
6765
6766 sect->flags = SEC_HAS_CONTENTS;
6767 sect->alignment_power = 2;
6768
6769 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6770 }
6771 #endif /* defined (HAVE_LWPSTATUS_T) */
6772
6773 #if defined (HAVE_WIN32_PSTATUS_T)
6774 static bfd_boolean
6775 elfcore_grok_win32pstatus (abfd, note)
6776 bfd *abfd;
6777 Elf_Internal_Note *note;
6778 {
6779 char buf[30];
6780 char *name;
6781 size_t len;
6782 asection *sect;
6783 win32_pstatus_t pstatus;
6784
6785 if (note->descsz < sizeof (pstatus))
6786 return TRUE;
6787
6788 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6789
6790 switch (pstatus.data_type)
6791 {
6792 case NOTE_INFO_PROCESS:
6793 /* FIXME: need to add ->core_command. */
6794 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6795 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6796 break;
6797
6798 case NOTE_INFO_THREAD:
6799 /* Make a ".reg/999" section. */
6800 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6801
6802 len = strlen (buf) + 1;
6803 name = bfd_alloc (abfd, (bfd_size_type) len);
6804 if (name == NULL)
6805 return FALSE;
6806
6807 memcpy (name, buf, len);
6808
6809 sect = bfd_make_section (abfd, name);
6810 if (sect == NULL)
6811 return FALSE;
6812
6813 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6814 sect->filepos = (note->descpos
6815 + offsetof (struct win32_pstatus,
6816 data.thread_info.thread_context));
6817 sect->flags = SEC_HAS_CONTENTS;
6818 sect->alignment_power = 2;
6819
6820 if (pstatus.data.thread_info.is_active_thread)
6821 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6822 return FALSE;
6823 break;
6824
6825 case NOTE_INFO_MODULE:
6826 /* Make a ".module/xxxxxxxx" section. */
6827 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6828
6829 len = strlen (buf) + 1;
6830 name = bfd_alloc (abfd, (bfd_size_type) len);
6831 if (name == NULL)
6832 return FALSE;
6833
6834 memcpy (name, buf, len);
6835
6836 sect = bfd_make_section (abfd, name);
6837
6838 if (sect == NULL)
6839 return FALSE;
6840
6841 sect->_raw_size = note->descsz;
6842 sect->filepos = note->descpos;
6843 sect->flags = SEC_HAS_CONTENTS;
6844 sect->alignment_power = 2;
6845 break;
6846
6847 default:
6848 return TRUE;
6849 }
6850
6851 return TRUE;
6852 }
6853 #endif /* HAVE_WIN32_PSTATUS_T */
6854
6855 static bfd_boolean
6856 elfcore_grok_note (abfd, note)
6857 bfd *abfd;
6858 Elf_Internal_Note *note;
6859 {
6860 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6861
6862 switch (note->type)
6863 {
6864 default:
6865 return TRUE;
6866
6867 case NT_PRSTATUS:
6868 if (bed->elf_backend_grok_prstatus)
6869 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6870 return TRUE;
6871 #if defined (HAVE_PRSTATUS_T)
6872 return elfcore_grok_prstatus (abfd, note);
6873 #else
6874 return TRUE;
6875 #endif
6876
6877 #if defined (HAVE_PSTATUS_T)
6878 case NT_PSTATUS:
6879 return elfcore_grok_pstatus (abfd, note);
6880 #endif
6881
6882 #if defined (HAVE_LWPSTATUS_T)
6883 case NT_LWPSTATUS:
6884 return elfcore_grok_lwpstatus (abfd, note);
6885 #endif
6886
6887 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6888 return elfcore_grok_prfpreg (abfd, note);
6889
6890 #if defined (HAVE_WIN32_PSTATUS_T)
6891 case NT_WIN32PSTATUS:
6892 return elfcore_grok_win32pstatus (abfd, note);
6893 #endif
6894
6895 case NT_PRXFPREG: /* Linux SSE extension */
6896 if (note->namesz == 6
6897 && strcmp (note->namedata, "LINUX") == 0)
6898 return elfcore_grok_prxfpreg (abfd, note);
6899 else
6900 return TRUE;
6901
6902 case NT_PRPSINFO:
6903 case NT_PSINFO:
6904 if (bed->elf_backend_grok_psinfo)
6905 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6906 return TRUE;
6907 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6908 return elfcore_grok_psinfo (abfd, note);
6909 #else
6910 return TRUE;
6911 #endif
6912
6913 case NT_AUXV:
6914 {
6915 asection *sect = bfd_make_section (abfd, ".auxv");
6916
6917 if (sect == NULL)
6918 return FALSE;
6919 sect->_raw_size = note->descsz;
6920 sect->filepos = note->descpos;
6921 sect->flags = SEC_HAS_CONTENTS;
6922 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
6923
6924 return TRUE;
6925 }
6926 }
6927 }
6928
6929 static bfd_boolean
6930 elfcore_netbsd_get_lwpid (note, lwpidp)
6931 Elf_Internal_Note *note;
6932 int *lwpidp;
6933 {
6934 char *cp;
6935
6936 cp = strchr (note->namedata, '@');
6937 if (cp != NULL)
6938 {
6939 *lwpidp = atoi(cp + 1);
6940 return TRUE;
6941 }
6942 return FALSE;
6943 }
6944
6945 static bfd_boolean
6946 elfcore_grok_netbsd_procinfo (abfd, note)
6947 bfd *abfd;
6948 Elf_Internal_Note *note;
6949 {
6950
6951 /* Signal number at offset 0x08. */
6952 elf_tdata (abfd)->core_signal
6953 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6954
6955 /* Process ID at offset 0x50. */
6956 elf_tdata (abfd)->core_pid
6957 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6958
6959 /* Command name at 0x7c (max 32 bytes, including nul). */
6960 elf_tdata (abfd)->core_command
6961 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6962
6963 return TRUE;
6964 }
6965
6966 static bfd_boolean
6967 elfcore_grok_netbsd_note (abfd, note)
6968 bfd *abfd;
6969 Elf_Internal_Note *note;
6970 {
6971 int lwp;
6972
6973 if (elfcore_netbsd_get_lwpid (note, &lwp))
6974 elf_tdata (abfd)->core_lwpid = lwp;
6975
6976 if (note->type == NT_NETBSDCORE_PROCINFO)
6977 {
6978 /* NetBSD-specific core "procinfo". Note that we expect to
6979 find this note before any of the others, which is fine,
6980 since the kernel writes this note out first when it
6981 creates a core file. */
6982
6983 return elfcore_grok_netbsd_procinfo (abfd, note);
6984 }
6985
6986 /* As of Jan 2002 there are no other machine-independent notes
6987 defined for NetBSD core files. If the note type is less
6988 than the start of the machine-dependent note types, we don't
6989 understand it. */
6990
6991 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6992 return TRUE;
6993
6994
6995 switch (bfd_get_arch (abfd))
6996 {
6997 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6998 PT_GETFPREGS == mach+2. */
6999
7000 case bfd_arch_alpha:
7001 case bfd_arch_sparc:
7002 switch (note->type)
7003 {
7004 case NT_NETBSDCORE_FIRSTMACH+0:
7005 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7006
7007 case NT_NETBSDCORE_FIRSTMACH+2:
7008 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7009
7010 default:
7011 return TRUE;
7012 }
7013
7014 /* On all other arch's, PT_GETREGS == mach+1 and
7015 PT_GETFPREGS == mach+3. */
7016
7017 default:
7018 switch (note->type)
7019 {
7020 case NT_NETBSDCORE_FIRSTMACH+1:
7021 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7022
7023 case NT_NETBSDCORE_FIRSTMACH+3:
7024 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7025
7026 default:
7027 return TRUE;
7028 }
7029 }
7030 /* NOTREACHED */
7031 }
7032
7033 static bfd_boolean
7034 elfcore_grok_nto_status (abfd, note, tid)
7035 bfd *abfd;
7036 Elf_Internal_Note *note;
7037 pid_t *tid;
7038 {
7039 void *ddata = note->descdata;
7040 char buf[100];
7041 char *name;
7042 asection *sect;
7043 short sig;
7044 unsigned flags;
7045
7046 /* nto_procfs_status 'pid' field is at offset 0. */
7047 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7048
7049 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7050 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7051
7052 /* nto_procfs_status 'flags' field is at offset 8. */
7053 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7054
7055 /* nto_procfs_status 'what' field is at offset 14. */
7056 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7057 {
7058 elf_tdata (abfd)->core_signal = sig;
7059 elf_tdata (abfd)->core_lwpid = *tid;
7060 }
7061
7062 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7063 do not come from signals so we make sure we set the current
7064 thread just in case. */
7065 if (flags & 0x00000080)
7066 elf_tdata (abfd)->core_lwpid = *tid;
7067
7068 /* Make a ".qnx_core_status/%d" section. */
7069 sprintf (buf, ".qnx_core_status/%d", *tid);
7070
7071 name = bfd_alloc (abfd, (bfd_size_type) strlen (buf) + 1);
7072 if (name == NULL)
7073 return FALSE;
7074 strcpy (name, buf);
7075
7076 sect = bfd_make_section (abfd, name);
7077 if (sect == NULL)
7078 return FALSE;
7079
7080 sect->_raw_size = note->descsz;
7081 sect->filepos = note->descpos;
7082 sect->flags = SEC_HAS_CONTENTS;
7083 sect->alignment_power = 2;
7084
7085 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7086 }
7087
7088 static bfd_boolean
7089 elfcore_grok_nto_gregs (abfd, note, tid)
7090 bfd *abfd;
7091 Elf_Internal_Note *note;
7092 pid_t tid;
7093 {
7094 char buf[100];
7095 char *name;
7096 asection *sect;
7097
7098 /* Make a ".reg/%d" section. */
7099 sprintf (buf, ".reg/%d", tid);
7100
7101 name = bfd_alloc (abfd, (bfd_size_type) strlen (buf) + 1);
7102 if (name == NULL)
7103 return FALSE;
7104 strcpy (name, buf);
7105
7106 sect = bfd_make_section (abfd, name);
7107 if (sect == NULL)
7108 return FALSE;
7109
7110 sect->_raw_size = note->descsz;
7111 sect->filepos = note->descpos;
7112 sect->flags = SEC_HAS_CONTENTS;
7113 sect->alignment_power = 2;
7114
7115 /* This is the current thread. */
7116 if (elf_tdata (abfd)->core_lwpid == tid)
7117 return elfcore_maybe_make_sect (abfd, ".reg", sect);
7118
7119 return TRUE;
7120 }
7121
7122 #define BFD_QNT_CORE_INFO 7
7123 #define BFD_QNT_CORE_STATUS 8
7124 #define BFD_QNT_CORE_GREG 9
7125 #define BFD_QNT_CORE_FPREG 10
7126
7127 static bfd_boolean
7128 elfcore_grok_nto_note (abfd, note)
7129 bfd *abfd;
7130 Elf_Internal_Note *note;
7131 {
7132 /* Every GREG section has a STATUS section before it. Store the
7133 tid from the previous call to pass down to the next gregs
7134 function. */
7135 static pid_t tid = 1;
7136
7137 switch (note->type)
7138 {
7139 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7140 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7141 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7142 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7143 default: return TRUE;
7144 }
7145 }
7146
7147 /* Function: elfcore_write_note
7148
7149 Inputs:
7150 buffer to hold note
7151 name of note
7152 type of note
7153 data for note
7154 size of data for note
7155
7156 Return:
7157 End of buffer containing note. */
7158
7159 char *
7160 elfcore_write_note (abfd, buf, bufsiz, name, type, input, size)
7161 bfd *abfd;
7162 char *buf;
7163 int *bufsiz;
7164 const char *name;
7165 int type;
7166 const PTR input;
7167 int size;
7168 {
7169 Elf_External_Note *xnp;
7170 size_t namesz;
7171 size_t pad;
7172 size_t newspace;
7173 char *p, *dest;
7174
7175 namesz = 0;
7176 pad = 0;
7177 if (name != NULL)
7178 {
7179 struct elf_backend_data *bed;
7180
7181 namesz = strlen (name) + 1;
7182 bed = get_elf_backend_data (abfd);
7183 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7184 }
7185
7186 newspace = sizeof (Elf_External_Note) - 1 + namesz + pad + size;
7187
7188 p = realloc (buf, *bufsiz + newspace);
7189 dest = p + *bufsiz;
7190 *bufsiz += newspace;
7191 xnp = (Elf_External_Note *) dest;
7192 H_PUT_32 (abfd, namesz, xnp->namesz);
7193 H_PUT_32 (abfd, size, xnp->descsz);
7194 H_PUT_32 (abfd, type, xnp->type);
7195 dest = xnp->name;
7196 if (name != NULL)
7197 {
7198 memcpy (dest, name, namesz);
7199 dest += namesz;
7200 while (pad != 0)
7201 {
7202 *dest++ = '\0';
7203 --pad;
7204 }
7205 }
7206 memcpy (dest, input, size);
7207 return p;
7208 }
7209
7210 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7211 char *
7212 elfcore_write_prpsinfo (abfd, buf, bufsiz, fname, psargs)
7213 bfd *abfd;
7214 char *buf;
7215 int *bufsiz;
7216 const char *fname;
7217 const char *psargs;
7218 {
7219 int note_type;
7220 char *note_name = "CORE";
7221
7222 #if defined (HAVE_PSINFO_T)
7223 psinfo_t data;
7224 note_type = NT_PSINFO;
7225 #else
7226 prpsinfo_t data;
7227 note_type = NT_PRPSINFO;
7228 #endif
7229
7230 memset (&data, 0, sizeof (data));
7231 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7232 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7233 return elfcore_write_note (abfd, buf, bufsiz,
7234 note_name, note_type, &data, sizeof (data));
7235 }
7236 #endif /* PSINFO_T or PRPSINFO_T */
7237
7238 #if defined (HAVE_PRSTATUS_T)
7239 char *
7240 elfcore_write_prstatus (abfd, buf, bufsiz, pid, cursig, gregs)
7241 bfd *abfd;
7242 char *buf;
7243 int *bufsiz;
7244 long pid;
7245 int cursig;
7246 const PTR gregs;
7247 {
7248 prstatus_t prstat;
7249 char *note_name = "CORE";
7250
7251 memset (&prstat, 0, sizeof (prstat));
7252 prstat.pr_pid = pid;
7253 prstat.pr_cursig = cursig;
7254 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7255 return elfcore_write_note (abfd, buf, bufsiz,
7256 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7257 }
7258 #endif /* HAVE_PRSTATUS_T */
7259
7260 #if defined (HAVE_LWPSTATUS_T)
7261 char *
7262 elfcore_write_lwpstatus (abfd, buf, bufsiz, pid, cursig, gregs)
7263 bfd *abfd;
7264 char *buf;
7265 int *bufsiz;
7266 long pid;
7267 int cursig;
7268 const PTR gregs;
7269 {
7270 lwpstatus_t lwpstat;
7271 char *note_name = "CORE";
7272
7273 memset (&lwpstat, 0, sizeof (lwpstat));
7274 lwpstat.pr_lwpid = pid >> 16;
7275 lwpstat.pr_cursig = cursig;
7276 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7277 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7278 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7279 #if !defined(gregs)
7280 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7281 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7282 #else
7283 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7284 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7285 #endif
7286 #endif
7287 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7288 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7289 }
7290 #endif /* HAVE_LWPSTATUS_T */
7291
7292 #if defined (HAVE_PSTATUS_T)
7293 char *
7294 elfcore_write_pstatus (abfd, buf, bufsiz, pid, cursig, gregs)
7295 bfd *abfd;
7296 char *buf;
7297 int *bufsiz;
7298 long pid;
7299 int cursig;
7300 const PTR gregs;
7301 {
7302 pstatus_t pstat;
7303 char *note_name = "CORE";
7304
7305 memset (&pstat, 0, sizeof (pstat));
7306 pstat.pr_pid = pid & 0xffff;
7307 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7308 NT_PSTATUS, &pstat, sizeof (pstat));
7309 return buf;
7310 }
7311 #endif /* HAVE_PSTATUS_T */
7312
7313 char *
7314 elfcore_write_prfpreg (abfd, buf, bufsiz, fpregs, size)
7315 bfd *abfd;
7316 char *buf;
7317 int *bufsiz;
7318 const PTR fpregs;
7319 int size;
7320 {
7321 char *note_name = "CORE";
7322 return elfcore_write_note (abfd, buf, bufsiz,
7323 note_name, NT_FPREGSET, fpregs, size);
7324 }
7325
7326 char *
7327 elfcore_write_prxfpreg (abfd, buf, bufsiz, xfpregs, size)
7328 bfd *abfd;
7329 char *buf;
7330 int *bufsiz;
7331 const PTR xfpregs;
7332 int size;
7333 {
7334 char *note_name = "LINUX";
7335 return elfcore_write_note (abfd, buf, bufsiz,
7336 note_name, NT_PRXFPREG, xfpregs, size);
7337 }
7338
7339 static bfd_boolean
7340 elfcore_read_notes (abfd, offset, size)
7341 bfd *abfd;
7342 file_ptr offset;
7343 bfd_size_type size;
7344 {
7345 char *buf;
7346 char *p;
7347
7348 if (size <= 0)
7349 return TRUE;
7350
7351 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7352 return FALSE;
7353
7354 buf = bfd_malloc (size);
7355 if (buf == NULL)
7356 return FALSE;
7357
7358 if (bfd_bread (buf, size, abfd) != size)
7359 {
7360 error:
7361 free (buf);
7362 return FALSE;
7363 }
7364
7365 p = buf;
7366 while (p < buf + size)
7367 {
7368 /* FIXME: bad alignment assumption. */
7369 Elf_External_Note *xnp = (Elf_External_Note *) p;
7370 Elf_Internal_Note in;
7371
7372 in.type = H_GET_32 (abfd, xnp->type);
7373
7374 in.namesz = H_GET_32 (abfd, xnp->namesz);
7375 in.namedata = xnp->name;
7376
7377 in.descsz = H_GET_32 (abfd, xnp->descsz);
7378 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7379 in.descpos = offset + (in.descdata - buf);
7380
7381 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7382 {
7383 if (! elfcore_grok_netbsd_note (abfd, &in))
7384 goto error;
7385 }
7386 else if (strncmp (in.namedata, "QNX", 3) == 0)
7387 {
7388 if (! elfcore_grok_nto_note (abfd, &in))
7389 goto error;
7390 }
7391 else
7392 {
7393 if (! elfcore_grok_note (abfd, &in))
7394 goto error;
7395 }
7396
7397 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7398 }
7399
7400 free (buf);
7401 return TRUE;
7402 }
7403 \f
7404 /* Providing external access to the ELF program header table. */
7405
7406 /* Return an upper bound on the number of bytes required to store a
7407 copy of ABFD's program header table entries. Return -1 if an error
7408 occurs; bfd_get_error will return an appropriate code. */
7409
7410 long
7411 bfd_get_elf_phdr_upper_bound (abfd)
7412 bfd *abfd;
7413 {
7414 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7415 {
7416 bfd_set_error (bfd_error_wrong_format);
7417 return -1;
7418 }
7419
7420 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7421 }
7422
7423 /* Copy ABFD's program header table entries to *PHDRS. The entries
7424 will be stored as an array of Elf_Internal_Phdr structures, as
7425 defined in include/elf/internal.h. To find out how large the
7426 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7427
7428 Return the number of program header table entries read, or -1 if an
7429 error occurs; bfd_get_error will return an appropriate code. */
7430
7431 int
7432 bfd_get_elf_phdrs (abfd, phdrs)
7433 bfd *abfd;
7434 void *phdrs;
7435 {
7436 int num_phdrs;
7437
7438 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7439 {
7440 bfd_set_error (bfd_error_wrong_format);
7441 return -1;
7442 }
7443
7444 num_phdrs = elf_elfheader (abfd)->e_phnum;
7445 memcpy (phdrs, elf_tdata (abfd)->phdr,
7446 num_phdrs * sizeof (Elf_Internal_Phdr));
7447
7448 return num_phdrs;
7449 }
7450
7451 void
7452 _bfd_elf_sprintf_vma (abfd, buf, value)
7453 bfd *abfd ATTRIBUTE_UNUSED;
7454 char *buf;
7455 bfd_vma value;
7456 {
7457 #ifdef BFD64
7458 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7459
7460 i_ehdrp = elf_elfheader (abfd);
7461 if (i_ehdrp == NULL)
7462 sprintf_vma (buf, value);
7463 else
7464 {
7465 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7466 {
7467 #if BFD_HOST_64BIT_LONG
7468 sprintf (buf, "%016lx", value);
7469 #else
7470 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7471 _bfd_int64_low (value));
7472 #endif
7473 }
7474 else
7475 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7476 }
7477 #else
7478 sprintf_vma (buf, value);
7479 #endif
7480 }
7481
7482 void
7483 _bfd_elf_fprintf_vma (abfd, stream, value)
7484 bfd *abfd ATTRIBUTE_UNUSED;
7485 PTR stream;
7486 bfd_vma value;
7487 {
7488 #ifdef BFD64
7489 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7490
7491 i_ehdrp = elf_elfheader (abfd);
7492 if (i_ehdrp == NULL)
7493 fprintf_vma ((FILE *) stream, value);
7494 else
7495 {
7496 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7497 {
7498 #if BFD_HOST_64BIT_LONG
7499 fprintf ((FILE *) stream, "%016lx", value);
7500 #else
7501 fprintf ((FILE *) stream, "%08lx%08lx",
7502 _bfd_int64_high (value), _bfd_int64_low (value));
7503 #endif
7504 }
7505 else
7506 fprintf ((FILE *) stream, "%08lx",
7507 (unsigned long) (value & 0xffffffff));
7508 }
7509 #else
7510 fprintf_vma ((FILE *) stream, value);
7511 #endif
7512 }
7513
7514 enum elf_reloc_type_class
7515 _bfd_elf_reloc_type_class (rela)
7516 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED;
7517 {
7518 return reloc_class_normal;
7519 }
7520
7521 /* For RELA architectures, return the relocation value for a
7522 relocation against a local symbol. */
7523
7524 bfd_vma
7525 _bfd_elf_rela_local_sym (abfd, sym, sec, rel)
7526 bfd *abfd;
7527 Elf_Internal_Sym *sym;
7528 asection *sec;
7529 Elf_Internal_Rela *rel;
7530 {
7531 bfd_vma relocation;
7532
7533 relocation = (sec->output_section->vma
7534 + sec->output_offset
7535 + sym->st_value);
7536 if ((sec->flags & SEC_MERGE)
7537 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7538 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7539 {
7540 asection *msec;
7541
7542 msec = sec;
7543 rel->r_addend =
7544 _bfd_merged_section_offset (abfd, &msec,
7545 elf_section_data (sec)->sec_info,
7546 sym->st_value + rel->r_addend,
7547 (bfd_vma) 0)
7548 - relocation;
7549 rel->r_addend += msec->output_section->vma + msec->output_offset;
7550 }
7551 return relocation;
7552 }
7553
7554 bfd_vma
7555 _bfd_elf_rel_local_sym (abfd, sym, psec, addend)
7556 bfd *abfd;
7557 Elf_Internal_Sym *sym;
7558 asection **psec;
7559 bfd_vma addend;
7560 {
7561 asection *sec = *psec;
7562
7563 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7564 return sym->st_value + addend;
7565
7566 return _bfd_merged_section_offset (abfd, psec,
7567 elf_section_data (sec)->sec_info,
7568 sym->st_value + addend, (bfd_vma) 0);
7569 }
7570
7571 bfd_vma
7572 _bfd_elf_section_offset (abfd, info, sec, offset)
7573 bfd *abfd;
7574 struct bfd_link_info *info;
7575 asection *sec;
7576 bfd_vma offset;
7577 {
7578 struct bfd_elf_section_data *sec_data;
7579
7580 sec_data = elf_section_data (sec);
7581 switch (sec->sec_info_type)
7582 {
7583 case ELF_INFO_TYPE_STABS:
7584 return _bfd_stab_section_offset (abfd,
7585 &elf_hash_table (info)->merge_info,
7586 sec, &sec_data->sec_info, offset);
7587 case ELF_INFO_TYPE_EH_FRAME:
7588 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7589 default:
7590 return offset;
7591 }
7592 }
7593 \f
7594 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7595 reconstruct an ELF file by reading the segments out of remote memory
7596 based on the ELF file header at EHDR_VMA and the ELF program headers it
7597 points to. If not null, *LOADBASEP is filled in with the difference
7598 between the VMAs from which the segments were read, and the VMAs the
7599 file headers (and hence BFD's idea of each section's VMA) put them at.
7600
7601 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7602 remote memory at target address VMA into the local buffer at MYADDR; it
7603 should return zero on success or an `errno' code on failure. TEMPL must
7604 be a BFD for an ELF target with the word size and byte order found in
7605 the remote memory. */
7606
7607 bfd *
7608 bfd_elf_bfd_from_remote_memory (templ, ehdr_vma, loadbasep, target_read_memory)
7609 bfd *templ;
7610 bfd_vma ehdr_vma;
7611 bfd_vma *loadbasep;
7612 int (*target_read_memory) PARAMS ((bfd_vma vma, char *myaddr, int len));
7613 {
7614 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7615 (templ, ehdr_vma, loadbasep, target_read_memory);
7616 }