]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
a4cfaf1512f6b31b68c8f068a7bf10dadfaf62a2
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2021 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bool assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bool swap_out_syms (bfd *, struct elf_strtab_hash **, int,
55 struct bfd_link_info *);
56 static bool elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset, size_t align);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bool
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return false;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return false;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return true;
255 }
256
257
258 bool
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bool
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return false;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1,
302 shstrtabsize)) == NULL)
303 {
304 /* Once we've failed to read it, make sure we don't keep
305 trying. Otherwise, we'll keep allocating space for
306 the string table over and over. */
307 i_shdrp[shindex]->sh_size = 0;
308 }
309 else
310 shstrtab[shstrtabsize] = '\0';
311 i_shdrp[shindex]->contents = shstrtab;
312 }
313 return (char *) shstrtab;
314 }
315
316 char *
317 bfd_elf_string_from_elf_section (bfd *abfd,
318 unsigned int shindex,
319 unsigned int strindex)
320 {
321 Elf_Internal_Shdr *hdr;
322
323 if (strindex == 0)
324 return "";
325
326 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
327 return NULL;
328
329 hdr = elf_elfsections (abfd)[shindex];
330
331 if (hdr->contents == NULL)
332 {
333 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
334 {
335 /* PR 17512: file: f057ec89. */
336 /* xgettext:c-format */
337 _bfd_error_handler (_("%pB: attempt to load strings from"
338 " a non-string section (number %d)"),
339 abfd, shindex);
340 return NULL;
341 }
342
343 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
344 return NULL;
345 }
346 else
347 {
348 /* PR 24273: The string section's contents may have already
349 been loaded elsewhere, eg because a corrupt file has the
350 string section index in the ELF header pointing at a group
351 section. So be paranoid, and test that the last byte of
352 the section is zero. */
353 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
354 return NULL;
355 }
356
357 if (strindex >= hdr->sh_size)
358 {
359 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
360 _bfd_error_handler
361 /* xgettext:c-format */
362 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
363 abfd, strindex, (uint64_t) hdr->sh_size,
364 (shindex == shstrndx && strindex == hdr->sh_name
365 ? ".shstrtab"
366 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
367 return NULL;
368 }
369
370 return ((char *) hdr->contents) + strindex;
371 }
372
373 /* Read and convert symbols to internal format.
374 SYMCOUNT specifies the number of symbols to read, starting from
375 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
376 are non-NULL, they are used to store the internal symbols, external
377 symbols, and symbol section index extensions, respectively.
378 Returns a pointer to the internal symbol buffer (malloced if necessary)
379 or NULL if there were no symbols or some kind of problem. */
380
381 Elf_Internal_Sym *
382 bfd_elf_get_elf_syms (bfd *ibfd,
383 Elf_Internal_Shdr *symtab_hdr,
384 size_t symcount,
385 size_t symoffset,
386 Elf_Internal_Sym *intsym_buf,
387 void *extsym_buf,
388 Elf_External_Sym_Shndx *extshndx_buf)
389 {
390 Elf_Internal_Shdr *shndx_hdr;
391 void *alloc_ext;
392 const bfd_byte *esym;
393 Elf_External_Sym_Shndx *alloc_extshndx;
394 Elf_External_Sym_Shndx *shndx;
395 Elf_Internal_Sym *alloc_intsym;
396 Elf_Internal_Sym *isym;
397 Elf_Internal_Sym *isymend;
398 const struct elf_backend_data *bed;
399 size_t extsym_size;
400 size_t amt;
401 file_ptr pos;
402
403 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
404 abort ();
405
406 if (symcount == 0)
407 return intsym_buf;
408
409 /* Normal syms might have section extension entries. */
410 shndx_hdr = NULL;
411 if (elf_symtab_shndx_list (ibfd) != NULL)
412 {
413 elf_section_list * entry;
414 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
415
416 /* Find an index section that is linked to this symtab section. */
417 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
418 {
419 /* PR 20063. */
420 if (entry->hdr.sh_link >= elf_numsections (ibfd))
421 continue;
422
423 if (sections[entry->hdr.sh_link] == symtab_hdr)
424 {
425 shndx_hdr = & entry->hdr;
426 break;
427 };
428 }
429
430 if (shndx_hdr == NULL)
431 {
432 if (symtab_hdr == & elf_symtab_hdr (ibfd))
433 /* Not really accurate, but this was how the old code used to work. */
434 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
435 /* Otherwise we do nothing. The assumption is that
436 the index table will not be needed. */
437 }
438 }
439
440 /* Read the symbols. */
441 alloc_ext = NULL;
442 alloc_extshndx = NULL;
443 alloc_intsym = NULL;
444 bed = get_elf_backend_data (ibfd);
445 extsym_size = bed->s->sizeof_sym;
446 if (_bfd_mul_overflow (symcount, extsym_size, &amt))
447 {
448 bfd_set_error (bfd_error_file_too_big);
449 intsym_buf = NULL;
450 goto out;
451 }
452 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
453 if (extsym_buf == NULL)
454 {
455 alloc_ext = bfd_malloc (amt);
456 extsym_buf = alloc_ext;
457 }
458 if (extsym_buf == NULL
459 || bfd_seek (ibfd, pos, SEEK_SET) != 0
460 || bfd_bread (extsym_buf, amt, ibfd) != amt)
461 {
462 intsym_buf = NULL;
463 goto out;
464 }
465
466 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
467 extshndx_buf = NULL;
468 else
469 {
470 if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt))
471 {
472 bfd_set_error (bfd_error_file_too_big);
473 intsym_buf = NULL;
474 goto out;
475 }
476 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
477 if (extshndx_buf == NULL)
478 {
479 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
480 extshndx_buf = alloc_extshndx;
481 }
482 if (extshndx_buf == NULL
483 || bfd_seek (ibfd, pos, SEEK_SET) != 0
484 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
485 {
486 intsym_buf = NULL;
487 goto out;
488 }
489 }
490
491 if (intsym_buf == NULL)
492 {
493 if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt))
494 {
495 bfd_set_error (bfd_error_file_too_big);
496 goto out;
497 }
498 alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt);
499 intsym_buf = alloc_intsym;
500 if (intsym_buf == NULL)
501 goto out;
502 }
503
504 /* Convert the symbols to internal form. */
505 isymend = intsym_buf + symcount;
506 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
507 shndx = extshndx_buf;
508 isym < isymend;
509 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
510 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
511 {
512 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
513 /* xgettext:c-format */
514 _bfd_error_handler (_("%pB symbol number %lu references"
515 " nonexistent SHT_SYMTAB_SHNDX section"),
516 ibfd, (unsigned long) symoffset);
517 free (alloc_intsym);
518 intsym_buf = NULL;
519 goto out;
520 }
521
522 out:
523 free (alloc_ext);
524 free (alloc_extshndx);
525
526 return intsym_buf;
527 }
528
529 /* Look up a symbol name. */
530 const char *
531 bfd_elf_sym_name (bfd *abfd,
532 Elf_Internal_Shdr *symtab_hdr,
533 Elf_Internal_Sym *isym,
534 asection *sym_sec)
535 {
536 const char *name;
537 unsigned int iname = isym->st_name;
538 unsigned int shindex = symtab_hdr->sh_link;
539
540 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
541 /* Check for a bogus st_shndx to avoid crashing. */
542 && isym->st_shndx < elf_numsections (abfd))
543 {
544 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
545 shindex = elf_elfheader (abfd)->e_shstrndx;
546 }
547
548 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
549 if (name == NULL)
550 name = "(null)";
551 else if (sym_sec && *name == '\0')
552 name = bfd_section_name (sym_sec);
553
554 return name;
555 }
556
557 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
558 sections. The first element is the flags, the rest are section
559 pointers. */
560
561 typedef union elf_internal_group {
562 Elf_Internal_Shdr *shdr;
563 unsigned int flags;
564 } Elf_Internal_Group;
565
566 /* Return the name of the group signature symbol. Why isn't the
567 signature just a string? */
568
569 static const char *
570 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
571 {
572 Elf_Internal_Shdr *hdr;
573 unsigned char esym[sizeof (Elf64_External_Sym)];
574 Elf_External_Sym_Shndx eshndx;
575 Elf_Internal_Sym isym;
576
577 /* First we need to ensure the symbol table is available. Make sure
578 that it is a symbol table section. */
579 if (ghdr->sh_link >= elf_numsections (abfd))
580 return NULL;
581 hdr = elf_elfsections (abfd) [ghdr->sh_link];
582 if (hdr->sh_type != SHT_SYMTAB
583 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
584 return NULL;
585
586 /* Go read the symbol. */
587 hdr = &elf_tdata (abfd)->symtab_hdr;
588 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
589 &isym, esym, &eshndx) == NULL)
590 return NULL;
591
592 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
593 }
594
595 /* Set next_in_group list pointer, and group name for NEWSECT. */
596
597 static bool
598 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
599 {
600 unsigned int num_group = elf_tdata (abfd)->num_group;
601
602 /* If num_group is zero, read in all SHT_GROUP sections. The count
603 is set to -1 if there are no SHT_GROUP sections. */
604 if (num_group == 0)
605 {
606 unsigned int i, shnum;
607
608 /* First count the number of groups. If we have a SHT_GROUP
609 section with just a flag word (ie. sh_size is 4), ignore it. */
610 shnum = elf_numsections (abfd);
611 num_group = 0;
612
613 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
614 ( (shdr)->sh_type == SHT_GROUP \
615 && (shdr)->sh_size >= minsize \
616 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
617 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
618
619 for (i = 0; i < shnum; i++)
620 {
621 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
622
623 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
624 num_group += 1;
625 }
626
627 if (num_group == 0)
628 {
629 num_group = (unsigned) -1;
630 elf_tdata (abfd)->num_group = num_group;
631 elf_tdata (abfd)->group_sect_ptr = NULL;
632 }
633 else
634 {
635 /* We keep a list of elf section headers for group sections,
636 so we can find them quickly. */
637 size_t amt;
638
639 elf_tdata (abfd)->num_group = num_group;
640 amt = num_group * sizeof (Elf_Internal_Shdr *);
641 elf_tdata (abfd)->group_sect_ptr
642 = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
643 if (elf_tdata (abfd)->group_sect_ptr == NULL)
644 return false;
645 num_group = 0;
646
647 for (i = 0; i < shnum; i++)
648 {
649 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
650
651 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
652 {
653 unsigned char *src;
654 Elf_Internal_Group *dest;
655
656 /* Make sure the group section has a BFD section
657 attached to it. */
658 if (!bfd_section_from_shdr (abfd, i))
659 return false;
660
661 /* Add to list of sections. */
662 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
663 num_group += 1;
664
665 /* Read the raw contents. */
666 BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0);
667 shdr->contents = NULL;
668 if (_bfd_mul_overflow (shdr->sh_size,
669 sizeof (*dest) / 4, &amt)
670 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
671 || !(shdr->contents
672 = _bfd_alloc_and_read (abfd, amt, shdr->sh_size)))
673 {
674 _bfd_error_handler
675 /* xgettext:c-format */
676 (_("%pB: invalid size field in group section"
677 " header: %#" PRIx64 ""),
678 abfd, (uint64_t) shdr->sh_size);
679 bfd_set_error (bfd_error_bad_value);
680 -- num_group;
681 continue;
682 }
683
684 /* Translate raw contents, a flag word followed by an
685 array of elf section indices all in target byte order,
686 to the flag word followed by an array of elf section
687 pointers. */
688 src = shdr->contents + shdr->sh_size;
689 dest = (Elf_Internal_Group *) (shdr->contents + amt);
690
691 while (1)
692 {
693 unsigned int idx;
694
695 src -= 4;
696 --dest;
697 idx = H_GET_32 (abfd, src);
698 if (src == shdr->contents)
699 {
700 dest->shdr = NULL;
701 dest->flags = idx;
702 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
703 shdr->bfd_section->flags
704 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
705 break;
706 }
707 if (idx < shnum)
708 {
709 dest->shdr = elf_elfsections (abfd)[idx];
710 /* PR binutils/23199: All sections in a
711 section group should be marked with
712 SHF_GROUP. But some tools generate
713 broken objects without SHF_GROUP. Fix
714 them up here. */
715 dest->shdr->sh_flags |= SHF_GROUP;
716 }
717 if (idx >= shnum
718 || dest->shdr->sh_type == SHT_GROUP)
719 {
720 _bfd_error_handler
721 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
722 abfd, i);
723 dest->shdr = NULL;
724 }
725 }
726 }
727 }
728
729 /* PR 17510: Corrupt binaries might contain invalid groups. */
730 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
731 {
732 elf_tdata (abfd)->num_group = num_group;
733
734 /* If all groups are invalid then fail. */
735 if (num_group == 0)
736 {
737 elf_tdata (abfd)->group_sect_ptr = NULL;
738 elf_tdata (abfd)->num_group = num_group = -1;
739 _bfd_error_handler
740 (_("%pB: no valid group sections found"), abfd);
741 bfd_set_error (bfd_error_bad_value);
742 }
743 }
744 }
745 }
746
747 if (num_group != (unsigned) -1)
748 {
749 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
750 unsigned int j;
751
752 for (j = 0; j < num_group; j++)
753 {
754 /* Begin search from previous found group. */
755 unsigned i = (j + search_offset) % num_group;
756
757 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
758 Elf_Internal_Group *idx;
759 bfd_size_type n_elt;
760
761 if (shdr == NULL)
762 continue;
763
764 idx = (Elf_Internal_Group *) shdr->contents;
765 if (idx == NULL || shdr->sh_size < 4)
766 {
767 /* See PR 21957 for a reproducer. */
768 /* xgettext:c-format */
769 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
770 abfd, shdr->bfd_section);
771 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
772 bfd_set_error (bfd_error_bad_value);
773 return false;
774 }
775 n_elt = shdr->sh_size / 4;
776
777 /* Look through this group's sections to see if current
778 section is a member. */
779 while (--n_elt != 0)
780 if ((++idx)->shdr == hdr)
781 {
782 asection *s = NULL;
783
784 /* We are a member of this group. Go looking through
785 other members to see if any others are linked via
786 next_in_group. */
787 idx = (Elf_Internal_Group *) shdr->contents;
788 n_elt = shdr->sh_size / 4;
789 while (--n_elt != 0)
790 if ((++idx)->shdr != NULL
791 && (s = idx->shdr->bfd_section) != NULL
792 && elf_next_in_group (s) != NULL)
793 break;
794 if (n_elt != 0)
795 {
796 /* Snarf the group name from other member, and
797 insert current section in circular list. */
798 elf_group_name (newsect) = elf_group_name (s);
799 elf_next_in_group (newsect) = elf_next_in_group (s);
800 elf_next_in_group (s) = newsect;
801 }
802 else
803 {
804 const char *gname;
805
806 gname = group_signature (abfd, shdr);
807 if (gname == NULL)
808 return false;
809 elf_group_name (newsect) = gname;
810
811 /* Start a circular list with one element. */
812 elf_next_in_group (newsect) = newsect;
813 }
814
815 /* If the group section has been created, point to the
816 new member. */
817 if (shdr->bfd_section != NULL)
818 elf_next_in_group (shdr->bfd_section) = newsect;
819
820 elf_tdata (abfd)->group_search_offset = i;
821 j = num_group - 1;
822 break;
823 }
824 }
825 }
826
827 if (elf_group_name (newsect) == NULL)
828 {
829 /* xgettext:c-format */
830 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
831 abfd, newsect);
832 return false;
833 }
834 return true;
835 }
836
837 bool
838 _bfd_elf_setup_sections (bfd *abfd)
839 {
840 unsigned int i;
841 unsigned int num_group = elf_tdata (abfd)->num_group;
842 bool result = true;
843 asection *s;
844
845 /* Process SHF_LINK_ORDER. */
846 for (s = abfd->sections; s != NULL; s = s->next)
847 {
848 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
849 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
850 {
851 unsigned int elfsec = this_hdr->sh_link;
852 /* An sh_link value of 0 is now allowed. It indicates that linked
853 to section has already been discarded, but that the current
854 section has been retained for some other reason. This linking
855 section is still a candidate for later garbage collection
856 however. */
857 if (elfsec == 0)
858 {
859 elf_linked_to_section (s) = NULL;
860 }
861 else
862 {
863 asection *linksec = NULL;
864
865 if (elfsec < elf_numsections (abfd))
866 {
867 this_hdr = elf_elfsections (abfd)[elfsec];
868 linksec = this_hdr->bfd_section;
869 }
870
871 /* PR 1991, 2008:
872 Some strip/objcopy may leave an incorrect value in
873 sh_link. We don't want to proceed. */
874 if (linksec == NULL)
875 {
876 _bfd_error_handler
877 /* xgettext:c-format */
878 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
879 s->owner, elfsec, s);
880 result = false;
881 }
882
883 elf_linked_to_section (s) = linksec;
884 }
885 }
886 else if (this_hdr->sh_type == SHT_GROUP
887 && elf_next_in_group (s) == NULL)
888 {
889 _bfd_error_handler
890 /* xgettext:c-format */
891 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
892 abfd, elf_section_data (s)->this_idx);
893 result = false;
894 }
895 }
896
897 /* Process section groups. */
898 if (num_group == (unsigned) -1)
899 return result;
900
901 for (i = 0; i < num_group; i++)
902 {
903 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
904 Elf_Internal_Group *idx;
905 unsigned int n_elt;
906
907 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
908 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
909 {
910 _bfd_error_handler
911 /* xgettext:c-format */
912 (_("%pB: section group entry number %u is corrupt"),
913 abfd, i);
914 result = false;
915 continue;
916 }
917
918 idx = (Elf_Internal_Group *) shdr->contents;
919 n_elt = shdr->sh_size / 4;
920
921 while (--n_elt != 0)
922 {
923 ++ idx;
924
925 if (idx->shdr == NULL)
926 continue;
927 else if (idx->shdr->bfd_section)
928 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
929 else if (idx->shdr->sh_type != SHT_RELA
930 && idx->shdr->sh_type != SHT_REL)
931 {
932 /* There are some unknown sections in the group. */
933 _bfd_error_handler
934 /* xgettext:c-format */
935 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
936 abfd,
937 idx->shdr->sh_type,
938 bfd_elf_string_from_elf_section (abfd,
939 (elf_elfheader (abfd)
940 ->e_shstrndx),
941 idx->shdr->sh_name),
942 shdr->bfd_section);
943 result = false;
944 }
945 }
946 }
947
948 return result;
949 }
950
951 bool
952 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
953 {
954 return elf_next_in_group (sec) != NULL;
955 }
956
957 const char *
958 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
959 {
960 if (elf_sec_group (sec) != NULL)
961 return elf_group_name (sec);
962 return NULL;
963 }
964
965 static char *
966 convert_debug_to_zdebug (bfd *abfd, const char *name)
967 {
968 unsigned int len = strlen (name);
969 char *new_name = bfd_alloc (abfd, len + 2);
970 if (new_name == NULL)
971 return NULL;
972 new_name[0] = '.';
973 new_name[1] = 'z';
974 memcpy (new_name + 2, name + 1, len);
975 return new_name;
976 }
977
978 static char *
979 convert_zdebug_to_debug (bfd *abfd, const char *name)
980 {
981 unsigned int len = strlen (name);
982 char *new_name = bfd_alloc (abfd, len);
983 if (new_name == NULL)
984 return NULL;
985 new_name[0] = '.';
986 memcpy (new_name + 1, name + 2, len - 1);
987 return new_name;
988 }
989
990 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
991
992 struct lto_section
993 {
994 int16_t major_version;
995 int16_t minor_version;
996 unsigned char slim_object;
997
998 /* Flags is a private field that is not defined publicly. */
999 uint16_t flags;
1000 };
1001
1002 /* Make a BFD section from an ELF section. We store a pointer to the
1003 BFD section in the bfd_section field of the header. */
1004
1005 bool
1006 _bfd_elf_make_section_from_shdr (bfd *abfd,
1007 Elf_Internal_Shdr *hdr,
1008 const char *name,
1009 int shindex)
1010 {
1011 asection *newsect;
1012 flagword flags;
1013 const struct elf_backend_data *bed;
1014 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
1015
1016 if (hdr->bfd_section != NULL)
1017 return true;
1018
1019 newsect = bfd_make_section_anyway (abfd, name);
1020 if (newsect == NULL)
1021 return false;
1022
1023 hdr->bfd_section = newsect;
1024 elf_section_data (newsect)->this_hdr = *hdr;
1025 elf_section_data (newsect)->this_idx = shindex;
1026
1027 /* Always use the real type/flags. */
1028 elf_section_type (newsect) = hdr->sh_type;
1029 elf_section_flags (newsect) = hdr->sh_flags;
1030
1031 newsect->filepos = hdr->sh_offset;
1032
1033 flags = SEC_NO_FLAGS;
1034 if (hdr->sh_type != SHT_NOBITS)
1035 flags |= SEC_HAS_CONTENTS;
1036 if (hdr->sh_type == SHT_GROUP)
1037 flags |= SEC_GROUP;
1038 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1039 {
1040 flags |= SEC_ALLOC;
1041 if (hdr->sh_type != SHT_NOBITS)
1042 flags |= SEC_LOAD;
1043 }
1044 if ((hdr->sh_flags & SHF_WRITE) == 0)
1045 flags |= SEC_READONLY;
1046 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1047 flags |= SEC_CODE;
1048 else if ((flags & SEC_LOAD) != 0)
1049 flags |= SEC_DATA;
1050 if ((hdr->sh_flags & SHF_MERGE) != 0)
1051 {
1052 flags |= SEC_MERGE;
1053 newsect->entsize = hdr->sh_entsize;
1054 }
1055 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1056 flags |= SEC_STRINGS;
1057 if (hdr->sh_flags & SHF_GROUP)
1058 if (!setup_group (abfd, hdr, newsect))
1059 return false;
1060 if ((hdr->sh_flags & SHF_TLS) != 0)
1061 flags |= SEC_THREAD_LOCAL;
1062 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1063 flags |= SEC_EXCLUDE;
1064
1065 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1066 {
1067 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1068 but binutils as of 2019-07-23 did not set the EI_OSABI header
1069 byte. */
1070 case ELFOSABI_GNU:
1071 case ELFOSABI_FREEBSD:
1072 if ((hdr->sh_flags & SHF_GNU_RETAIN) != 0)
1073 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_retain;
1074 /* Fall through */
1075 case ELFOSABI_NONE:
1076 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1077 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1078 break;
1079 }
1080
1081 if ((flags & SEC_ALLOC) == 0)
1082 {
1083 /* The debugging sections appear to be recognized only by name,
1084 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1085 if (name [0] == '.')
1086 {
1087 if (startswith (name, ".debug")
1088 || startswith (name, ".gnu.debuglto_.debug_")
1089 || startswith (name, ".gnu.linkonce.wi.")
1090 || startswith (name, ".zdebug"))
1091 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1092 else if (startswith (name, GNU_BUILD_ATTRS_SECTION_NAME)
1093 || startswith (name, ".note.gnu"))
1094 {
1095 flags |= SEC_ELF_OCTETS;
1096 opb = 1;
1097 }
1098 else if (startswith (name, ".line")
1099 || startswith (name, ".stab")
1100 || strcmp (name, ".gdb_index") == 0)
1101 flags |= SEC_DEBUGGING;
1102 }
1103 }
1104
1105 if (!bfd_set_section_vma (newsect, hdr->sh_addr / opb)
1106 || !bfd_set_section_size (newsect, hdr->sh_size)
1107 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1108 return false;
1109
1110 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1111 only link a single copy of the section. This is used to support
1112 g++. g++ will emit each template expansion in its own section.
1113 The symbols will be defined as weak, so that multiple definitions
1114 are permitted. The GNU linker extension is to actually discard
1115 all but one of the sections. */
1116 if (startswith (name, ".gnu.linkonce")
1117 && elf_next_in_group (newsect) == NULL)
1118 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1119
1120 if (!bfd_set_section_flags (newsect, flags))
1121 return false;
1122
1123 bed = get_elf_backend_data (abfd);
1124 if (bed->elf_backend_section_flags)
1125 if (!bed->elf_backend_section_flags (hdr))
1126 return false;
1127
1128 /* We do not parse the PT_NOTE segments as we are interested even in the
1129 separate debug info files which may have the segments offsets corrupted.
1130 PT_NOTEs from the core files are currently not parsed using BFD. */
1131 if (hdr->sh_type == SHT_NOTE)
1132 {
1133 bfd_byte *contents;
1134
1135 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1136 return false;
1137
1138 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1139 hdr->sh_offset, hdr->sh_addralign);
1140 free (contents);
1141 }
1142
1143 if ((newsect->flags & SEC_ALLOC) != 0)
1144 {
1145 Elf_Internal_Phdr *phdr;
1146 unsigned int i, nload;
1147
1148 /* Some ELF linkers produce binaries with all the program header
1149 p_paddr fields zero. If we have such a binary with more than
1150 one PT_LOAD header, then leave the section lma equal to vma
1151 so that we don't create sections with overlapping lma. */
1152 phdr = elf_tdata (abfd)->phdr;
1153 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1154 if (phdr->p_paddr != 0)
1155 break;
1156 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1157 ++nload;
1158 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1159 return true;
1160
1161 phdr = elf_tdata (abfd)->phdr;
1162 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1163 {
1164 if (((phdr->p_type == PT_LOAD
1165 && (hdr->sh_flags & SHF_TLS) == 0)
1166 || phdr->p_type == PT_TLS)
1167 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1168 {
1169 if ((newsect->flags & SEC_LOAD) == 0)
1170 newsect->lma = (phdr->p_paddr
1171 + hdr->sh_addr - phdr->p_vaddr) / opb;
1172 else
1173 /* We used to use the same adjustment for SEC_LOAD
1174 sections, but that doesn't work if the segment
1175 is packed with code from multiple VMAs.
1176 Instead we calculate the section LMA based on
1177 the segment LMA. It is assumed that the
1178 segment will contain sections with contiguous
1179 LMAs, even if the VMAs are not. */
1180 newsect->lma = (phdr->p_paddr
1181 + hdr->sh_offset - phdr->p_offset) / opb;
1182
1183 /* With contiguous segments, we can't tell from file
1184 offsets whether a section with zero size should
1185 be placed at the end of one segment or the
1186 beginning of the next. Decide based on vaddr. */
1187 if (hdr->sh_addr >= phdr->p_vaddr
1188 && (hdr->sh_addr + hdr->sh_size
1189 <= phdr->p_vaddr + phdr->p_memsz))
1190 break;
1191 }
1192 }
1193 }
1194
1195 /* Compress/decompress DWARF debug sections with names: .debug_* and
1196 .zdebug_*, after the section flags is set. */
1197 if ((newsect->flags & SEC_DEBUGGING)
1198 && ((name[1] == 'd' && name[6] == '_')
1199 || (name[1] == 'z' && name[7] == '_')))
1200 {
1201 enum { nothing, compress, decompress } action = nothing;
1202 int compression_header_size;
1203 bfd_size_type uncompressed_size;
1204 unsigned int uncompressed_align_power;
1205 bool compressed
1206 = bfd_is_section_compressed_with_header (abfd, newsect,
1207 &compression_header_size,
1208 &uncompressed_size,
1209 &uncompressed_align_power);
1210 if (compressed)
1211 {
1212 /* Compressed section. Check if we should decompress. */
1213 if ((abfd->flags & BFD_DECOMPRESS))
1214 action = decompress;
1215 }
1216
1217 /* Compress the uncompressed section or convert from/to .zdebug*
1218 section. Check if we should compress. */
1219 if (action == nothing)
1220 {
1221 if (newsect->size != 0
1222 && (abfd->flags & BFD_COMPRESS)
1223 && compression_header_size >= 0
1224 && uncompressed_size > 0
1225 && (!compressed
1226 || ((compression_header_size > 0)
1227 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1228 action = compress;
1229 else
1230 return true;
1231 }
1232
1233 if (action == compress)
1234 {
1235 if (!bfd_init_section_compress_status (abfd, newsect))
1236 {
1237 _bfd_error_handler
1238 /* xgettext:c-format */
1239 (_("%pB: unable to initialize compress status for section %s"),
1240 abfd, name);
1241 return false;
1242 }
1243 }
1244 else
1245 {
1246 if (!bfd_init_section_decompress_status (abfd, newsect))
1247 {
1248 _bfd_error_handler
1249 /* xgettext:c-format */
1250 (_("%pB: unable to initialize decompress status for section %s"),
1251 abfd, name);
1252 return false;
1253 }
1254 }
1255
1256 if (abfd->is_linker_input)
1257 {
1258 if (name[1] == 'z'
1259 && (action == decompress
1260 || (action == compress
1261 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1262 {
1263 /* Convert section name from .zdebug_* to .debug_* so
1264 that linker will consider this section as a debug
1265 section. */
1266 char *new_name = convert_zdebug_to_debug (abfd, name);
1267 if (new_name == NULL)
1268 return false;
1269 bfd_rename_section (newsect, new_name);
1270 }
1271 }
1272 else
1273 /* For objdump, don't rename the section. For objcopy, delay
1274 section rename to elf_fake_sections. */
1275 newsect->flags |= SEC_ELF_RENAME;
1276 }
1277
1278 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1279 section. */
1280 if (startswith (name, ".gnu.lto_.lto."))
1281 {
1282 struct lto_section lsection;
1283 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1284 sizeof (struct lto_section)))
1285 abfd->lto_slim_object = lsection.slim_object;
1286 }
1287
1288 return true;
1289 }
1290
1291 const char *const bfd_elf_section_type_names[] =
1292 {
1293 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1294 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1295 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1296 };
1297
1298 /* ELF relocs are against symbols. If we are producing relocatable
1299 output, and the reloc is against an external symbol, and nothing
1300 has given us any additional addend, the resulting reloc will also
1301 be against the same symbol. In such a case, we don't want to
1302 change anything about the way the reloc is handled, since it will
1303 all be done at final link time. Rather than put special case code
1304 into bfd_perform_relocation, all the reloc types use this howto
1305 function, or should call this function for relocatable output. */
1306
1307 bfd_reloc_status_type
1308 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1309 arelent *reloc_entry,
1310 asymbol *symbol,
1311 void *data ATTRIBUTE_UNUSED,
1312 asection *input_section,
1313 bfd *output_bfd,
1314 char **error_message ATTRIBUTE_UNUSED)
1315 {
1316 if (output_bfd != NULL
1317 && (symbol->flags & BSF_SECTION_SYM) == 0
1318 && (! reloc_entry->howto->partial_inplace
1319 || reloc_entry->addend == 0))
1320 {
1321 reloc_entry->address += input_section->output_offset;
1322 return bfd_reloc_ok;
1323 }
1324
1325 /* In some cases the relocation should be treated as output section
1326 relative, as when linking ELF DWARF into PE COFF. Many ELF
1327 targets lack section relative relocations and instead use
1328 ordinary absolute relocations for references between DWARF
1329 sections. That is arguably a bug in those targets but it happens
1330 to work for the usual case of linking to non-loaded ELF debug
1331 sections with VMAs forced to zero. PE COFF on the other hand
1332 doesn't allow a section VMA of zero. */
1333 if (output_bfd == NULL
1334 && !reloc_entry->howto->pc_relative
1335 && (symbol->section->flags & SEC_DEBUGGING) != 0
1336 && (input_section->flags & SEC_DEBUGGING) != 0)
1337 reloc_entry->addend -= symbol->section->output_section->vma;
1338
1339 return bfd_reloc_continue;
1340 }
1341 \f
1342 /* Returns TRUE if section A matches section B.
1343 Names, addresses and links may be different, but everything else
1344 should be the same. */
1345
1346 static bool
1347 section_match (const Elf_Internal_Shdr * a,
1348 const Elf_Internal_Shdr * b)
1349 {
1350 if (a->sh_type != b->sh_type
1351 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1352 || a->sh_addralign != b->sh_addralign
1353 || a->sh_entsize != b->sh_entsize)
1354 return false;
1355 if (a->sh_type == SHT_SYMTAB
1356 || a->sh_type == SHT_STRTAB)
1357 return true;
1358 return a->sh_size == b->sh_size;
1359 }
1360
1361 /* Find a section in OBFD that has the same characteristics
1362 as IHEADER. Return the index of this section or SHN_UNDEF if
1363 none can be found. Check's section HINT first, as this is likely
1364 to be the correct section. */
1365
1366 static unsigned int
1367 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1368 const unsigned int hint)
1369 {
1370 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1371 unsigned int i;
1372
1373 BFD_ASSERT (iheader != NULL);
1374
1375 /* See PR 20922 for a reproducer of the NULL test. */
1376 if (hint < elf_numsections (obfd)
1377 && oheaders[hint] != NULL
1378 && section_match (oheaders[hint], iheader))
1379 return hint;
1380
1381 for (i = 1; i < elf_numsections (obfd); i++)
1382 {
1383 Elf_Internal_Shdr * oheader = oheaders[i];
1384
1385 if (oheader == NULL)
1386 continue;
1387 if (section_match (oheader, iheader))
1388 /* FIXME: Do we care if there is a potential for
1389 multiple matches ? */
1390 return i;
1391 }
1392
1393 return SHN_UNDEF;
1394 }
1395
1396 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1397 Processor specific section, based upon a matching input section.
1398 Returns TRUE upon success, FALSE otherwise. */
1399
1400 static bool
1401 copy_special_section_fields (const bfd *ibfd,
1402 bfd *obfd,
1403 const Elf_Internal_Shdr *iheader,
1404 Elf_Internal_Shdr *oheader,
1405 const unsigned int secnum)
1406 {
1407 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1408 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1409 bool changed = false;
1410 unsigned int sh_link;
1411
1412 if (oheader->sh_type == SHT_NOBITS)
1413 {
1414 /* This is a feature for objcopy --only-keep-debug:
1415 When a section's type is changed to NOBITS, we preserve
1416 the sh_link and sh_info fields so that they can be
1417 matched up with the original.
1418
1419 Note: Strictly speaking these assignments are wrong.
1420 The sh_link and sh_info fields should point to the
1421 relevent sections in the output BFD, which may not be in
1422 the same location as they were in the input BFD. But
1423 the whole point of this action is to preserve the
1424 original values of the sh_link and sh_info fields, so
1425 that they can be matched up with the section headers in
1426 the original file. So strictly speaking we may be
1427 creating an invalid ELF file, but it is only for a file
1428 that just contains debug info and only for sections
1429 without any contents. */
1430 if (oheader->sh_link == 0)
1431 oheader->sh_link = iheader->sh_link;
1432 if (oheader->sh_info == 0)
1433 oheader->sh_info = iheader->sh_info;
1434 return true;
1435 }
1436
1437 /* Allow the target a chance to decide how these fields should be set. */
1438 if (bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1439 iheader, oheader))
1440 return true;
1441
1442 /* We have an iheader which might match oheader, and which has non-zero
1443 sh_info and/or sh_link fields. Attempt to follow those links and find
1444 the section in the output bfd which corresponds to the linked section
1445 in the input bfd. */
1446 if (iheader->sh_link != SHN_UNDEF)
1447 {
1448 /* See PR 20931 for a reproducer. */
1449 if (iheader->sh_link >= elf_numsections (ibfd))
1450 {
1451 _bfd_error_handler
1452 /* xgettext:c-format */
1453 (_("%pB: invalid sh_link field (%d) in section number %d"),
1454 ibfd, iheader->sh_link, secnum);
1455 return false;
1456 }
1457
1458 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1459 if (sh_link != SHN_UNDEF)
1460 {
1461 oheader->sh_link = sh_link;
1462 changed = true;
1463 }
1464 else
1465 /* FIXME: Should we install iheader->sh_link
1466 if we could not find a match ? */
1467 _bfd_error_handler
1468 /* xgettext:c-format */
1469 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1470 }
1471
1472 if (iheader->sh_info)
1473 {
1474 /* The sh_info field can hold arbitrary information, but if the
1475 SHF_LINK_INFO flag is set then it should be interpreted as a
1476 section index. */
1477 if (iheader->sh_flags & SHF_INFO_LINK)
1478 {
1479 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1480 iheader->sh_info);
1481 if (sh_link != SHN_UNDEF)
1482 oheader->sh_flags |= SHF_INFO_LINK;
1483 }
1484 else
1485 /* No idea what it means - just copy it. */
1486 sh_link = iheader->sh_info;
1487
1488 if (sh_link != SHN_UNDEF)
1489 {
1490 oheader->sh_info = sh_link;
1491 changed = true;
1492 }
1493 else
1494 _bfd_error_handler
1495 /* xgettext:c-format */
1496 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1497 }
1498
1499 return changed;
1500 }
1501
1502 /* Copy the program header and other data from one object module to
1503 another. */
1504
1505 bool
1506 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1507 {
1508 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1509 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1510 const struct elf_backend_data *bed;
1511 unsigned int i;
1512
1513 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1514 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1515 return true;
1516
1517 if (!elf_flags_init (obfd))
1518 {
1519 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1520 elf_flags_init (obfd) = true;
1521 }
1522
1523 elf_gp (obfd) = elf_gp (ibfd);
1524
1525 /* Also copy the EI_OSABI field. */
1526 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1527 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1528
1529 /* If set, copy the EI_ABIVERSION field. */
1530 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1531 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1532 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1533
1534 /* Copy object attributes. */
1535 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1536
1537 if (iheaders == NULL || oheaders == NULL)
1538 return true;
1539
1540 bed = get_elf_backend_data (obfd);
1541
1542 /* Possibly copy other fields in the section header. */
1543 for (i = 1; i < elf_numsections (obfd); i++)
1544 {
1545 unsigned int j;
1546 Elf_Internal_Shdr * oheader = oheaders[i];
1547
1548 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1549 because of a special case need for generating separate debug info
1550 files. See below for more details. */
1551 if (oheader == NULL
1552 || (oheader->sh_type != SHT_NOBITS
1553 && oheader->sh_type < SHT_LOOS))
1554 continue;
1555
1556 /* Ignore empty sections, and sections whose
1557 fields have already been initialised. */
1558 if (oheader->sh_size == 0
1559 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1560 continue;
1561
1562 /* Scan for the matching section in the input bfd.
1563 First we try for a direct mapping between the input and output sections. */
1564 for (j = 1; j < elf_numsections (ibfd); j++)
1565 {
1566 const Elf_Internal_Shdr * iheader = iheaders[j];
1567
1568 if (iheader == NULL)
1569 continue;
1570
1571 if (oheader->bfd_section != NULL
1572 && iheader->bfd_section != NULL
1573 && iheader->bfd_section->output_section != NULL
1574 && iheader->bfd_section->output_section == oheader->bfd_section)
1575 {
1576 /* We have found a connection from the input section to the
1577 output section. Attempt to copy the header fields. If
1578 this fails then do not try any further sections - there
1579 should only be a one-to-one mapping between input and output. */
1580 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1581 j = elf_numsections (ibfd);
1582 break;
1583 }
1584 }
1585
1586 if (j < elf_numsections (ibfd))
1587 continue;
1588
1589 /* That failed. So try to deduce the corresponding input section.
1590 Unfortunately we cannot compare names as the output string table
1591 is empty, so instead we check size, address and type. */
1592 for (j = 1; j < elf_numsections (ibfd); j++)
1593 {
1594 const Elf_Internal_Shdr * iheader = iheaders[j];
1595
1596 if (iheader == NULL)
1597 continue;
1598
1599 /* Try matching fields in the input section's header.
1600 Since --only-keep-debug turns all non-debug sections into
1601 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1602 input type. */
1603 if ((oheader->sh_type == SHT_NOBITS
1604 || iheader->sh_type == oheader->sh_type)
1605 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1606 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1607 && iheader->sh_addralign == oheader->sh_addralign
1608 && iheader->sh_entsize == oheader->sh_entsize
1609 && iheader->sh_size == oheader->sh_size
1610 && iheader->sh_addr == oheader->sh_addr
1611 && (iheader->sh_info != oheader->sh_info
1612 || iheader->sh_link != oheader->sh_link))
1613 {
1614 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1615 break;
1616 }
1617 }
1618
1619 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1620 {
1621 /* Final attempt. Call the backend copy function
1622 with a NULL input section. */
1623 (void) bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1624 NULL, oheader);
1625 }
1626 }
1627
1628 return true;
1629 }
1630
1631 static const char *
1632 get_segment_type (unsigned int p_type)
1633 {
1634 const char *pt;
1635 switch (p_type)
1636 {
1637 case PT_NULL: pt = "NULL"; break;
1638 case PT_LOAD: pt = "LOAD"; break;
1639 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1640 case PT_INTERP: pt = "INTERP"; break;
1641 case PT_NOTE: pt = "NOTE"; break;
1642 case PT_SHLIB: pt = "SHLIB"; break;
1643 case PT_PHDR: pt = "PHDR"; break;
1644 case PT_TLS: pt = "TLS"; break;
1645 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1646 case PT_GNU_STACK: pt = "STACK"; break;
1647 case PT_GNU_RELRO: pt = "RELRO"; break;
1648 default: pt = NULL; break;
1649 }
1650 return pt;
1651 }
1652
1653 /* Print out the program headers. */
1654
1655 bool
1656 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1657 {
1658 FILE *f = (FILE *) farg;
1659 Elf_Internal_Phdr *p;
1660 asection *s;
1661 bfd_byte *dynbuf = NULL;
1662
1663 p = elf_tdata (abfd)->phdr;
1664 if (p != NULL)
1665 {
1666 unsigned int i, c;
1667
1668 fprintf (f, _("\nProgram Header:\n"));
1669 c = elf_elfheader (abfd)->e_phnum;
1670 for (i = 0; i < c; i++, p++)
1671 {
1672 const char *pt = get_segment_type (p->p_type);
1673 char buf[20];
1674
1675 if (pt == NULL)
1676 {
1677 sprintf (buf, "0x%lx", p->p_type);
1678 pt = buf;
1679 }
1680 fprintf (f, "%8s off 0x", pt);
1681 bfd_fprintf_vma (abfd, f, p->p_offset);
1682 fprintf (f, " vaddr 0x");
1683 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1684 fprintf (f, " paddr 0x");
1685 bfd_fprintf_vma (abfd, f, p->p_paddr);
1686 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1687 fprintf (f, " filesz 0x");
1688 bfd_fprintf_vma (abfd, f, p->p_filesz);
1689 fprintf (f, " memsz 0x");
1690 bfd_fprintf_vma (abfd, f, p->p_memsz);
1691 fprintf (f, " flags %c%c%c",
1692 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1693 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1694 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1695 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1696 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1697 fprintf (f, "\n");
1698 }
1699 }
1700
1701 s = bfd_get_section_by_name (abfd, ".dynamic");
1702 if (s != NULL)
1703 {
1704 unsigned int elfsec;
1705 unsigned long shlink;
1706 bfd_byte *extdyn, *extdynend;
1707 size_t extdynsize;
1708 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1709
1710 fprintf (f, _("\nDynamic Section:\n"));
1711
1712 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1713 goto error_return;
1714
1715 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1716 if (elfsec == SHN_BAD)
1717 goto error_return;
1718 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1719
1720 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1721 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1722
1723 extdyn = dynbuf;
1724 /* PR 17512: file: 6f427532. */
1725 if (s->size < extdynsize)
1726 goto error_return;
1727 extdynend = extdyn + s->size;
1728 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1729 Fix range check. */
1730 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1731 {
1732 Elf_Internal_Dyn dyn;
1733 const char *name = "";
1734 char ab[20];
1735 bool stringp;
1736 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1737
1738 (*swap_dyn_in) (abfd, extdyn, &dyn);
1739
1740 if (dyn.d_tag == DT_NULL)
1741 break;
1742
1743 stringp = false;
1744 switch (dyn.d_tag)
1745 {
1746 default:
1747 if (bed->elf_backend_get_target_dtag)
1748 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1749
1750 if (!strcmp (name, ""))
1751 {
1752 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1753 name = ab;
1754 }
1755 break;
1756
1757 case DT_NEEDED: name = "NEEDED"; stringp = true; break;
1758 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1759 case DT_PLTGOT: name = "PLTGOT"; break;
1760 case DT_HASH: name = "HASH"; break;
1761 case DT_STRTAB: name = "STRTAB"; break;
1762 case DT_SYMTAB: name = "SYMTAB"; break;
1763 case DT_RELA: name = "RELA"; break;
1764 case DT_RELASZ: name = "RELASZ"; break;
1765 case DT_RELAENT: name = "RELAENT"; break;
1766 case DT_STRSZ: name = "STRSZ"; break;
1767 case DT_SYMENT: name = "SYMENT"; break;
1768 case DT_INIT: name = "INIT"; break;
1769 case DT_FINI: name = "FINI"; break;
1770 case DT_SONAME: name = "SONAME"; stringp = true; break;
1771 case DT_RPATH: name = "RPATH"; stringp = true; break;
1772 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1773 case DT_REL: name = "REL"; break;
1774 case DT_RELSZ: name = "RELSZ"; break;
1775 case DT_RELENT: name = "RELENT"; break;
1776 case DT_PLTREL: name = "PLTREL"; break;
1777 case DT_DEBUG: name = "DEBUG"; break;
1778 case DT_TEXTREL: name = "TEXTREL"; break;
1779 case DT_JMPREL: name = "JMPREL"; break;
1780 case DT_BIND_NOW: name = "BIND_NOW"; break;
1781 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1782 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1783 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1784 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1785 case DT_RUNPATH: name = "RUNPATH"; stringp = true; break;
1786 case DT_FLAGS: name = "FLAGS"; break;
1787 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1788 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1789 case DT_CHECKSUM: name = "CHECKSUM"; break;
1790 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1791 case DT_MOVEENT: name = "MOVEENT"; break;
1792 case DT_MOVESZ: name = "MOVESZ"; break;
1793 case DT_FEATURE: name = "FEATURE"; break;
1794 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1795 case DT_SYMINSZ: name = "SYMINSZ"; break;
1796 case DT_SYMINENT: name = "SYMINENT"; break;
1797 case DT_CONFIG: name = "CONFIG"; stringp = true; break;
1798 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break;
1799 case DT_AUDIT: name = "AUDIT"; stringp = true; break;
1800 case DT_PLTPAD: name = "PLTPAD"; break;
1801 case DT_MOVETAB: name = "MOVETAB"; break;
1802 case DT_SYMINFO: name = "SYMINFO"; break;
1803 case DT_RELACOUNT: name = "RELACOUNT"; break;
1804 case DT_RELCOUNT: name = "RELCOUNT"; break;
1805 case DT_FLAGS_1: name = "FLAGS_1"; break;
1806 case DT_VERSYM: name = "VERSYM"; break;
1807 case DT_VERDEF: name = "VERDEF"; break;
1808 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1809 case DT_VERNEED: name = "VERNEED"; break;
1810 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1811 case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break;
1812 case DT_USED: name = "USED"; break;
1813 case DT_FILTER: name = "FILTER"; stringp = true; break;
1814 case DT_GNU_HASH: name = "GNU_HASH"; break;
1815 }
1816
1817 fprintf (f, " %-20s ", name);
1818 if (! stringp)
1819 {
1820 fprintf (f, "0x");
1821 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1822 }
1823 else
1824 {
1825 const char *string;
1826 unsigned int tagv = dyn.d_un.d_val;
1827
1828 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1829 if (string == NULL)
1830 goto error_return;
1831 fprintf (f, "%s", string);
1832 }
1833 fprintf (f, "\n");
1834 }
1835
1836 free (dynbuf);
1837 dynbuf = NULL;
1838 }
1839
1840 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1841 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1842 {
1843 if (! _bfd_elf_slurp_version_tables (abfd, false))
1844 return false;
1845 }
1846
1847 if (elf_dynverdef (abfd) != 0)
1848 {
1849 Elf_Internal_Verdef *t;
1850
1851 fprintf (f, _("\nVersion definitions:\n"));
1852 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1853 {
1854 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1855 t->vd_flags, t->vd_hash,
1856 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1857 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1858 {
1859 Elf_Internal_Verdaux *a;
1860
1861 fprintf (f, "\t");
1862 for (a = t->vd_auxptr->vda_nextptr;
1863 a != NULL;
1864 a = a->vda_nextptr)
1865 fprintf (f, "%s ",
1866 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1867 fprintf (f, "\n");
1868 }
1869 }
1870 }
1871
1872 if (elf_dynverref (abfd) != 0)
1873 {
1874 Elf_Internal_Verneed *t;
1875
1876 fprintf (f, _("\nVersion References:\n"));
1877 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1878 {
1879 Elf_Internal_Vernaux *a;
1880
1881 fprintf (f, _(" required from %s:\n"),
1882 t->vn_filename ? t->vn_filename : "<corrupt>");
1883 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1884 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1885 a->vna_flags, a->vna_other,
1886 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1887 }
1888 }
1889
1890 return true;
1891
1892 error_return:
1893 free (dynbuf);
1894 return false;
1895 }
1896
1897 /* Get version name. If BASE_P is TRUE, return "Base" for VER_FLG_BASE
1898 and return symbol version for symbol version itself. */
1899
1900 const char *
1901 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1902 bool base_p,
1903 bool *hidden)
1904 {
1905 const char *version_string = NULL;
1906 if (elf_dynversym (abfd) != 0
1907 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1908 {
1909 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1910
1911 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1912 vernum &= VERSYM_VERSION;
1913
1914 if (vernum == 0)
1915 version_string = "";
1916 else if (vernum == 1
1917 && (vernum > elf_tdata (abfd)->cverdefs
1918 || (elf_tdata (abfd)->verdef[0].vd_flags
1919 == VER_FLG_BASE)))
1920 version_string = base_p ? "Base" : "";
1921 else if (vernum <= elf_tdata (abfd)->cverdefs)
1922 {
1923 const char *nodename
1924 = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1925 version_string = "";
1926 if (base_p
1927 || nodename == NULL
1928 || symbol->name == NULL
1929 || strcmp (symbol->name, nodename) != 0)
1930 version_string = nodename;
1931 }
1932 else
1933 {
1934 Elf_Internal_Verneed *t;
1935
1936 version_string = _("<corrupt>");
1937 for (t = elf_tdata (abfd)->verref;
1938 t != NULL;
1939 t = t->vn_nextref)
1940 {
1941 Elf_Internal_Vernaux *a;
1942
1943 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1944 {
1945 if (a->vna_other == vernum)
1946 {
1947 version_string = a->vna_nodename;
1948 break;
1949 }
1950 }
1951 }
1952 }
1953 }
1954 return version_string;
1955 }
1956
1957 /* Display ELF-specific fields of a symbol. */
1958
1959 void
1960 bfd_elf_print_symbol (bfd *abfd,
1961 void *filep,
1962 asymbol *symbol,
1963 bfd_print_symbol_type how)
1964 {
1965 FILE *file = (FILE *) filep;
1966 switch (how)
1967 {
1968 case bfd_print_symbol_name:
1969 fprintf (file, "%s", symbol->name);
1970 break;
1971 case bfd_print_symbol_more:
1972 fprintf (file, "elf ");
1973 bfd_fprintf_vma (abfd, file, symbol->value);
1974 fprintf (file, " %x", symbol->flags);
1975 break;
1976 case bfd_print_symbol_all:
1977 {
1978 const char *section_name;
1979 const char *name = NULL;
1980 const struct elf_backend_data *bed;
1981 unsigned char st_other;
1982 bfd_vma val;
1983 const char *version_string;
1984 bool hidden;
1985
1986 section_name = symbol->section ? symbol->section->name : "(*none*)";
1987
1988 bed = get_elf_backend_data (abfd);
1989 if (bed->elf_backend_print_symbol_all)
1990 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1991
1992 if (name == NULL)
1993 {
1994 name = symbol->name;
1995 bfd_print_symbol_vandf (abfd, file, symbol);
1996 }
1997
1998 fprintf (file, " %s\t", section_name);
1999 /* Print the "other" value for a symbol. For common symbols,
2000 we've already printed the size; now print the alignment.
2001 For other symbols, we have no specified alignment, and
2002 we've printed the address; now print the size. */
2003 if (symbol->section && bfd_is_com_section (symbol->section))
2004 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2005 else
2006 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
2007 bfd_fprintf_vma (abfd, file, val);
2008
2009 /* If we have version information, print it. */
2010 version_string = _bfd_elf_get_symbol_version_string (abfd,
2011 symbol,
2012 true,
2013 &hidden);
2014 if (version_string)
2015 {
2016 if (!hidden)
2017 fprintf (file, " %-11s", version_string);
2018 else
2019 {
2020 int i;
2021
2022 fprintf (file, " (%s)", version_string);
2023 for (i = 10 - strlen (version_string); i > 0; --i)
2024 putc (' ', file);
2025 }
2026 }
2027
2028 /* If the st_other field is not zero, print it. */
2029 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2030
2031 switch (st_other)
2032 {
2033 case 0: break;
2034 case STV_INTERNAL: fprintf (file, " .internal"); break;
2035 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2036 case STV_PROTECTED: fprintf (file, " .protected"); break;
2037 default:
2038 /* Some other non-defined flags are also present, so print
2039 everything hex. */
2040 fprintf (file, " 0x%02x", (unsigned int) st_other);
2041 }
2042
2043 fprintf (file, " %s", name);
2044 }
2045 break;
2046 }
2047 }
2048 \f
2049 /* ELF .o/exec file reading */
2050
2051 /* Create a new bfd section from an ELF section header. */
2052
2053 bool
2054 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2055 {
2056 Elf_Internal_Shdr *hdr;
2057 Elf_Internal_Ehdr *ehdr;
2058 const struct elf_backend_data *bed;
2059 const char *name;
2060 bool ret = true;
2061
2062 if (shindex >= elf_numsections (abfd))
2063 return false;
2064
2065 /* PR17512: A corrupt ELF binary might contain a loop of sections via
2066 sh_link or sh_info. Detect this here, by refusing to load a
2067 section that we are already in the process of loading. */
2068 if (elf_tdata (abfd)->being_created[shindex])
2069 {
2070 _bfd_error_handler
2071 (_("%pB: warning: loop in section dependencies detected"), abfd);
2072 return false;
2073 }
2074 elf_tdata (abfd)->being_created[shindex] = true;
2075
2076 hdr = elf_elfsections (abfd)[shindex];
2077 ehdr = elf_elfheader (abfd);
2078 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2079 hdr->sh_name);
2080 if (name == NULL)
2081 goto fail;
2082
2083 bed = get_elf_backend_data (abfd);
2084 switch (hdr->sh_type)
2085 {
2086 case SHT_NULL:
2087 /* Inactive section. Throw it away. */
2088 goto success;
2089
2090 case SHT_PROGBITS: /* Normal section with contents. */
2091 case SHT_NOBITS: /* .bss section. */
2092 case SHT_HASH: /* .hash section. */
2093 case SHT_NOTE: /* .note section. */
2094 case SHT_INIT_ARRAY: /* .init_array section. */
2095 case SHT_FINI_ARRAY: /* .fini_array section. */
2096 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2097 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2098 case SHT_GNU_HASH: /* .gnu.hash section. */
2099 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2100 goto success;
2101
2102 case SHT_DYNAMIC: /* Dynamic linking information. */
2103 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2104 goto fail;
2105
2106 if (hdr->sh_link > elf_numsections (abfd))
2107 {
2108 /* PR 10478: Accept Solaris binaries with a sh_link
2109 field set to SHN_BEFORE or SHN_AFTER. */
2110 switch (bfd_get_arch (abfd))
2111 {
2112 case bfd_arch_i386:
2113 case bfd_arch_sparc:
2114 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2115 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2116 break;
2117 /* Otherwise fall through. */
2118 default:
2119 goto fail;
2120 }
2121 }
2122 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2123 goto fail;
2124 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2125 {
2126 Elf_Internal_Shdr *dynsymhdr;
2127
2128 /* The shared libraries distributed with hpux11 have a bogus
2129 sh_link field for the ".dynamic" section. Find the
2130 string table for the ".dynsym" section instead. */
2131 if (elf_dynsymtab (abfd) != 0)
2132 {
2133 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2134 hdr->sh_link = dynsymhdr->sh_link;
2135 }
2136 else
2137 {
2138 unsigned int i, num_sec;
2139
2140 num_sec = elf_numsections (abfd);
2141 for (i = 1; i < num_sec; i++)
2142 {
2143 dynsymhdr = elf_elfsections (abfd)[i];
2144 if (dynsymhdr->sh_type == SHT_DYNSYM)
2145 {
2146 hdr->sh_link = dynsymhdr->sh_link;
2147 break;
2148 }
2149 }
2150 }
2151 }
2152 goto success;
2153
2154 case SHT_SYMTAB: /* A symbol table. */
2155 if (elf_onesymtab (abfd) == shindex)
2156 goto success;
2157
2158 if (hdr->sh_entsize != bed->s->sizeof_sym)
2159 goto fail;
2160
2161 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2162 {
2163 if (hdr->sh_size != 0)
2164 goto fail;
2165 /* Some assemblers erroneously set sh_info to one with a
2166 zero sh_size. ld sees this as a global symbol count
2167 of (unsigned) -1. Fix it here. */
2168 hdr->sh_info = 0;
2169 goto success;
2170 }
2171
2172 /* PR 18854: A binary might contain more than one symbol table.
2173 Unusual, but possible. Warn, but continue. */
2174 if (elf_onesymtab (abfd) != 0)
2175 {
2176 _bfd_error_handler
2177 /* xgettext:c-format */
2178 (_("%pB: warning: multiple symbol tables detected"
2179 " - ignoring the table in section %u"),
2180 abfd, shindex);
2181 goto success;
2182 }
2183 elf_onesymtab (abfd) = shindex;
2184 elf_symtab_hdr (abfd) = *hdr;
2185 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2186 abfd->flags |= HAS_SYMS;
2187
2188 /* Sometimes a shared object will map in the symbol table. If
2189 SHF_ALLOC is set, and this is a shared object, then we also
2190 treat this section as a BFD section. We can not base the
2191 decision purely on SHF_ALLOC, because that flag is sometimes
2192 set in a relocatable object file, which would confuse the
2193 linker. */
2194 if ((hdr->sh_flags & SHF_ALLOC) != 0
2195 && (abfd->flags & DYNAMIC) != 0
2196 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2197 shindex))
2198 goto fail;
2199
2200 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2201 can't read symbols without that section loaded as well. It
2202 is most likely specified by the next section header. */
2203 {
2204 elf_section_list * entry;
2205 unsigned int i, num_sec;
2206
2207 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2208 if (entry->hdr.sh_link == shindex)
2209 goto success;
2210
2211 num_sec = elf_numsections (abfd);
2212 for (i = shindex + 1; i < num_sec; i++)
2213 {
2214 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2215
2216 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2217 && hdr2->sh_link == shindex)
2218 break;
2219 }
2220
2221 if (i == num_sec)
2222 for (i = 1; i < shindex; i++)
2223 {
2224 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2225
2226 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2227 && hdr2->sh_link == shindex)
2228 break;
2229 }
2230
2231 if (i != shindex)
2232 ret = bfd_section_from_shdr (abfd, i);
2233 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2234 goto success;
2235 }
2236
2237 case SHT_DYNSYM: /* A dynamic symbol table. */
2238 if (elf_dynsymtab (abfd) == shindex)
2239 goto success;
2240
2241 if (hdr->sh_entsize != bed->s->sizeof_sym)
2242 goto fail;
2243
2244 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2245 {
2246 if (hdr->sh_size != 0)
2247 goto fail;
2248
2249 /* Some linkers erroneously set sh_info to one with a
2250 zero sh_size. ld sees this as a global symbol count
2251 of (unsigned) -1. Fix it here. */
2252 hdr->sh_info = 0;
2253 goto success;
2254 }
2255
2256 /* PR 18854: A binary might contain more than one dynamic symbol table.
2257 Unusual, but possible. Warn, but continue. */
2258 if (elf_dynsymtab (abfd) != 0)
2259 {
2260 _bfd_error_handler
2261 /* xgettext:c-format */
2262 (_("%pB: warning: multiple dynamic symbol tables detected"
2263 " - ignoring the table in section %u"),
2264 abfd, shindex);
2265 goto success;
2266 }
2267 elf_dynsymtab (abfd) = shindex;
2268 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2269 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2270 abfd->flags |= HAS_SYMS;
2271
2272 /* Besides being a symbol table, we also treat this as a regular
2273 section, so that objcopy can handle it. */
2274 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2275 goto success;
2276
2277 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2278 {
2279 elf_section_list * entry;
2280
2281 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2282 if (entry->ndx == shindex)
2283 goto success;
2284
2285 entry = bfd_alloc (abfd, sizeof (*entry));
2286 if (entry == NULL)
2287 goto fail;
2288 entry->ndx = shindex;
2289 entry->hdr = * hdr;
2290 entry->next = elf_symtab_shndx_list (abfd);
2291 elf_symtab_shndx_list (abfd) = entry;
2292 elf_elfsections (abfd)[shindex] = & entry->hdr;
2293 goto success;
2294 }
2295
2296 case SHT_STRTAB: /* A string table. */
2297 if (hdr->bfd_section != NULL)
2298 goto success;
2299
2300 if (ehdr->e_shstrndx == shindex)
2301 {
2302 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2303 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2304 goto success;
2305 }
2306
2307 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2308 {
2309 symtab_strtab:
2310 elf_tdata (abfd)->strtab_hdr = *hdr;
2311 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2312 goto success;
2313 }
2314
2315 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2316 {
2317 dynsymtab_strtab:
2318 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2319 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2320 elf_elfsections (abfd)[shindex] = hdr;
2321 /* We also treat this as a regular section, so that objcopy
2322 can handle it. */
2323 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2324 shindex);
2325 goto success;
2326 }
2327
2328 /* If the string table isn't one of the above, then treat it as a
2329 regular section. We need to scan all the headers to be sure,
2330 just in case this strtab section appeared before the above. */
2331 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2332 {
2333 unsigned int i, num_sec;
2334
2335 num_sec = elf_numsections (abfd);
2336 for (i = 1; i < num_sec; i++)
2337 {
2338 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2339 if (hdr2->sh_link == shindex)
2340 {
2341 /* Prevent endless recursion on broken objects. */
2342 if (i == shindex)
2343 goto fail;
2344 if (! bfd_section_from_shdr (abfd, i))
2345 goto fail;
2346 if (elf_onesymtab (abfd) == i)
2347 goto symtab_strtab;
2348 if (elf_dynsymtab (abfd) == i)
2349 goto dynsymtab_strtab;
2350 }
2351 }
2352 }
2353 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2354 goto success;
2355
2356 case SHT_REL:
2357 case SHT_RELA:
2358 /* *These* do a lot of work -- but build no sections! */
2359 {
2360 asection *target_sect;
2361 Elf_Internal_Shdr *hdr2, **p_hdr;
2362 unsigned int num_sec = elf_numsections (abfd);
2363 struct bfd_elf_section_data *esdt;
2364
2365 if (hdr->sh_entsize
2366 != (bfd_size_type) (hdr->sh_type == SHT_REL
2367 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2368 goto fail;
2369
2370 /* Check for a bogus link to avoid crashing. */
2371 if (hdr->sh_link >= num_sec)
2372 {
2373 _bfd_error_handler
2374 /* xgettext:c-format */
2375 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2376 abfd, hdr->sh_link, name, shindex);
2377 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2378 shindex);
2379 goto success;
2380 }
2381
2382 /* For some incomprehensible reason Oracle distributes
2383 libraries for Solaris in which some of the objects have
2384 bogus sh_link fields. It would be nice if we could just
2385 reject them, but, unfortunately, some people need to use
2386 them. We scan through the section headers; if we find only
2387 one suitable symbol table, we clobber the sh_link to point
2388 to it. I hope this doesn't break anything.
2389
2390 Don't do it on executable nor shared library. */
2391 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2392 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2393 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2394 {
2395 unsigned int scan;
2396 int found;
2397
2398 found = 0;
2399 for (scan = 1; scan < num_sec; scan++)
2400 {
2401 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2402 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2403 {
2404 if (found != 0)
2405 {
2406 found = 0;
2407 break;
2408 }
2409 found = scan;
2410 }
2411 }
2412 if (found != 0)
2413 hdr->sh_link = found;
2414 }
2415
2416 /* Get the symbol table. */
2417 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2418 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2419 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2420 goto fail;
2421
2422 /* If this is an alloc section in an executable or shared
2423 library, or the reloc section does not use the main symbol
2424 table we don't treat it as a reloc section. BFD can't
2425 adequately represent such a section, so at least for now,
2426 we don't try. We just present it as a normal section. We
2427 also can't use it as a reloc section if it points to the
2428 null section, an invalid section, another reloc section, or
2429 its sh_link points to the null section. */
2430 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2431 && (hdr->sh_flags & SHF_ALLOC) != 0)
2432 || hdr->sh_link == SHN_UNDEF
2433 || hdr->sh_link != elf_onesymtab (abfd)
2434 || hdr->sh_info == SHN_UNDEF
2435 || hdr->sh_info >= num_sec
2436 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2437 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2438 {
2439 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2440 shindex);
2441 goto success;
2442 }
2443
2444 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2445 goto fail;
2446
2447 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2448 if (target_sect == NULL)
2449 goto fail;
2450
2451 esdt = elf_section_data (target_sect);
2452 if (hdr->sh_type == SHT_RELA)
2453 p_hdr = &esdt->rela.hdr;
2454 else
2455 p_hdr = &esdt->rel.hdr;
2456
2457 /* PR 17512: file: 0b4f81b7.
2458 Also see PR 24456, for a file which deliberately has two reloc
2459 sections. */
2460 if (*p_hdr != NULL)
2461 {
2462 if (!bed->init_secondary_reloc_section (abfd, hdr, name, shindex))
2463 {
2464 _bfd_error_handler
2465 /* xgettext:c-format */
2466 (_("%pB: warning: secondary relocation section '%s' "
2467 "for section %pA found - ignoring"),
2468 abfd, name, target_sect);
2469 }
2470 goto success;
2471 }
2472
2473 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2474 if (hdr2 == NULL)
2475 goto fail;
2476 *hdr2 = *hdr;
2477 *p_hdr = hdr2;
2478 elf_elfsections (abfd)[shindex] = hdr2;
2479 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2480 * bed->s->int_rels_per_ext_rel);
2481 target_sect->flags |= SEC_RELOC;
2482 target_sect->relocation = NULL;
2483 target_sect->rel_filepos = hdr->sh_offset;
2484 /* In the section to which the relocations apply, mark whether
2485 its relocations are of the REL or RELA variety. */
2486 if (hdr->sh_size != 0)
2487 {
2488 if (hdr->sh_type == SHT_RELA)
2489 target_sect->use_rela_p = 1;
2490 }
2491 abfd->flags |= HAS_RELOC;
2492 goto success;
2493 }
2494
2495 case SHT_GNU_verdef:
2496 elf_dynverdef (abfd) = shindex;
2497 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2498 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2499 goto success;
2500
2501 case SHT_GNU_versym:
2502 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2503 goto fail;
2504
2505 elf_dynversym (abfd) = shindex;
2506 elf_tdata (abfd)->dynversym_hdr = *hdr;
2507 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2508 goto success;
2509
2510 case SHT_GNU_verneed:
2511 elf_dynverref (abfd) = shindex;
2512 elf_tdata (abfd)->dynverref_hdr = *hdr;
2513 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2514 goto success;
2515
2516 case SHT_SHLIB:
2517 goto success;
2518
2519 case SHT_GROUP:
2520 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2521 goto fail;
2522
2523 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2524 goto fail;
2525
2526 goto success;
2527
2528 default:
2529 /* Possibly an attributes section. */
2530 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2531 || hdr->sh_type == bed->obj_attrs_section_type)
2532 {
2533 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2534 goto fail;
2535 _bfd_elf_parse_attributes (abfd, hdr);
2536 goto success;
2537 }
2538
2539 /* Check for any processor-specific section types. */
2540 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2541 goto success;
2542
2543 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2544 {
2545 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2546 /* FIXME: How to properly handle allocated section reserved
2547 for applications? */
2548 _bfd_error_handler
2549 /* xgettext:c-format */
2550 (_("%pB: unknown type [%#x] section `%s'"),
2551 abfd, hdr->sh_type, name);
2552 else
2553 {
2554 /* Allow sections reserved for applications. */
2555 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2556 shindex);
2557 goto success;
2558 }
2559 }
2560 else if (hdr->sh_type >= SHT_LOPROC
2561 && hdr->sh_type <= SHT_HIPROC)
2562 /* FIXME: We should handle this section. */
2563 _bfd_error_handler
2564 /* xgettext:c-format */
2565 (_("%pB: unknown type [%#x] section `%s'"),
2566 abfd, hdr->sh_type, name);
2567 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2568 {
2569 /* Unrecognised OS-specific sections. */
2570 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2571 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2572 required to correctly process the section and the file should
2573 be rejected with an error message. */
2574 _bfd_error_handler
2575 /* xgettext:c-format */
2576 (_("%pB: unknown type [%#x] section `%s'"),
2577 abfd, hdr->sh_type, name);
2578 else
2579 {
2580 /* Otherwise it should be processed. */
2581 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2582 goto success;
2583 }
2584 }
2585 else
2586 /* FIXME: We should handle this section. */
2587 _bfd_error_handler
2588 /* xgettext:c-format */
2589 (_("%pB: unknown type [%#x] section `%s'"),
2590 abfd, hdr->sh_type, name);
2591
2592 goto fail;
2593 }
2594
2595 fail:
2596 ret = false;
2597 success:
2598 elf_tdata (abfd)->being_created[shindex] = false;
2599 return ret;
2600 }
2601
2602 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2603
2604 Elf_Internal_Sym *
2605 bfd_sym_from_r_symndx (struct sym_cache *cache,
2606 bfd *abfd,
2607 unsigned long r_symndx)
2608 {
2609 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2610
2611 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2612 {
2613 Elf_Internal_Shdr *symtab_hdr;
2614 unsigned char esym[sizeof (Elf64_External_Sym)];
2615 Elf_External_Sym_Shndx eshndx;
2616
2617 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2618 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2619 &cache->sym[ent], esym, &eshndx) == NULL)
2620 return NULL;
2621
2622 if (cache->abfd != abfd)
2623 {
2624 memset (cache->indx, -1, sizeof (cache->indx));
2625 cache->abfd = abfd;
2626 }
2627 cache->indx[ent] = r_symndx;
2628 }
2629
2630 return &cache->sym[ent];
2631 }
2632
2633 /* Given an ELF section number, retrieve the corresponding BFD
2634 section. */
2635
2636 asection *
2637 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2638 {
2639 if (sec_index >= elf_numsections (abfd))
2640 return NULL;
2641 return elf_elfsections (abfd)[sec_index]->bfd_section;
2642 }
2643
2644 static const struct bfd_elf_special_section special_sections_b[] =
2645 {
2646 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2647 { NULL, 0, 0, 0, 0 }
2648 };
2649
2650 static const struct bfd_elf_special_section special_sections_c[] =
2651 {
2652 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2653 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2654 { NULL, 0, 0, 0, 0 }
2655 };
2656
2657 static const struct bfd_elf_special_section special_sections_d[] =
2658 {
2659 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2660 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2661 /* There are more DWARF sections than these, but they needn't be added here
2662 unless you have to cope with broken compilers that don't emit section
2663 attributes or you want to help the user writing assembler. */
2664 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2665 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2666 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2667 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2668 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2669 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2670 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2671 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2672 { NULL, 0, 0, 0, 0 }
2673 };
2674
2675 static const struct bfd_elf_special_section special_sections_f[] =
2676 {
2677 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2678 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2679 { NULL, 0 , 0, 0, 0 }
2680 };
2681
2682 static const struct bfd_elf_special_section special_sections_g[] =
2683 {
2684 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2685 { STRING_COMMA_LEN (".gnu.linkonce.n"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2686 { STRING_COMMA_LEN (".gnu.linkonce.p"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2687 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2688 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2689 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2690 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2691 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2692 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2693 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2694 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2695 { NULL, 0, 0, 0, 0 }
2696 };
2697
2698 static const struct bfd_elf_special_section special_sections_h[] =
2699 {
2700 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2701 { NULL, 0, 0, 0, 0 }
2702 };
2703
2704 static const struct bfd_elf_special_section special_sections_i[] =
2705 {
2706 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2707 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2708 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2709 { NULL, 0, 0, 0, 0 }
2710 };
2711
2712 static const struct bfd_elf_special_section special_sections_l[] =
2713 {
2714 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2715 { NULL, 0, 0, 0, 0 }
2716 };
2717
2718 static const struct bfd_elf_special_section special_sections_n[] =
2719 {
2720 { STRING_COMMA_LEN (".noinit"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2721 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2722 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2723 { NULL, 0, 0, 0, 0 }
2724 };
2725
2726 static const struct bfd_elf_special_section special_sections_p[] =
2727 {
2728 { STRING_COMMA_LEN (".persistent.bss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2729 { STRING_COMMA_LEN (".persistent"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2730 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2731 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2732 { NULL, 0, 0, 0, 0 }
2733 };
2734
2735 static const struct bfd_elf_special_section special_sections_r[] =
2736 {
2737 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2738 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2739 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2740 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2741 { NULL, 0, 0, 0, 0 }
2742 };
2743
2744 static const struct bfd_elf_special_section special_sections_s[] =
2745 {
2746 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2747 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2748 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2749 /* See struct bfd_elf_special_section declaration for the semantics of
2750 this special case where .prefix_length != strlen (.prefix). */
2751 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2752 { NULL, 0, 0, 0, 0 }
2753 };
2754
2755 static const struct bfd_elf_special_section special_sections_t[] =
2756 {
2757 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2758 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2759 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2760 { NULL, 0, 0, 0, 0 }
2761 };
2762
2763 static const struct bfd_elf_special_section special_sections_z[] =
2764 {
2765 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2766 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2767 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2768 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2769 { NULL, 0, 0, 0, 0 }
2770 };
2771
2772 static const struct bfd_elf_special_section * const special_sections[] =
2773 {
2774 special_sections_b, /* 'b' */
2775 special_sections_c, /* 'c' */
2776 special_sections_d, /* 'd' */
2777 NULL, /* 'e' */
2778 special_sections_f, /* 'f' */
2779 special_sections_g, /* 'g' */
2780 special_sections_h, /* 'h' */
2781 special_sections_i, /* 'i' */
2782 NULL, /* 'j' */
2783 NULL, /* 'k' */
2784 special_sections_l, /* 'l' */
2785 NULL, /* 'm' */
2786 special_sections_n, /* 'n' */
2787 NULL, /* 'o' */
2788 special_sections_p, /* 'p' */
2789 NULL, /* 'q' */
2790 special_sections_r, /* 'r' */
2791 special_sections_s, /* 's' */
2792 special_sections_t, /* 't' */
2793 NULL, /* 'u' */
2794 NULL, /* 'v' */
2795 NULL, /* 'w' */
2796 NULL, /* 'x' */
2797 NULL, /* 'y' */
2798 special_sections_z /* 'z' */
2799 };
2800
2801 const struct bfd_elf_special_section *
2802 _bfd_elf_get_special_section (const char *name,
2803 const struct bfd_elf_special_section *spec,
2804 unsigned int rela)
2805 {
2806 int i;
2807 int len;
2808
2809 len = strlen (name);
2810
2811 for (i = 0; spec[i].prefix != NULL; i++)
2812 {
2813 int suffix_len;
2814 int prefix_len = spec[i].prefix_length;
2815
2816 if (len < prefix_len)
2817 continue;
2818 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2819 continue;
2820
2821 suffix_len = spec[i].suffix_length;
2822 if (suffix_len <= 0)
2823 {
2824 if (name[prefix_len] != 0)
2825 {
2826 if (suffix_len == 0)
2827 continue;
2828 if (name[prefix_len] != '.'
2829 && (suffix_len == -2
2830 || (rela && spec[i].type == SHT_REL)))
2831 continue;
2832 }
2833 }
2834 else
2835 {
2836 if (len < prefix_len + suffix_len)
2837 continue;
2838 if (memcmp (name + len - suffix_len,
2839 spec[i].prefix + prefix_len,
2840 suffix_len) != 0)
2841 continue;
2842 }
2843 return &spec[i];
2844 }
2845
2846 return NULL;
2847 }
2848
2849 const struct bfd_elf_special_section *
2850 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2851 {
2852 int i;
2853 const struct bfd_elf_special_section *spec;
2854 const struct elf_backend_data *bed;
2855
2856 /* See if this is one of the special sections. */
2857 if (sec->name == NULL)
2858 return NULL;
2859
2860 bed = get_elf_backend_data (abfd);
2861 spec = bed->special_sections;
2862 if (spec)
2863 {
2864 spec = _bfd_elf_get_special_section (sec->name,
2865 bed->special_sections,
2866 sec->use_rela_p);
2867 if (spec != NULL)
2868 return spec;
2869 }
2870
2871 if (sec->name[0] != '.')
2872 return NULL;
2873
2874 i = sec->name[1] - 'b';
2875 if (i < 0 || i > 'z' - 'b')
2876 return NULL;
2877
2878 spec = special_sections[i];
2879
2880 if (spec == NULL)
2881 return NULL;
2882
2883 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2884 }
2885
2886 bool
2887 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2888 {
2889 struct bfd_elf_section_data *sdata;
2890 const struct elf_backend_data *bed;
2891 const struct bfd_elf_special_section *ssect;
2892
2893 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2894 if (sdata == NULL)
2895 {
2896 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2897 sizeof (*sdata));
2898 if (sdata == NULL)
2899 return false;
2900 sec->used_by_bfd = sdata;
2901 }
2902
2903 /* Indicate whether or not this section should use RELA relocations. */
2904 bed = get_elf_backend_data (abfd);
2905 sec->use_rela_p = bed->default_use_rela_p;
2906
2907 /* Set up ELF section type and flags for newly created sections, if
2908 there is an ABI mandated section. */
2909 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2910 if (ssect != NULL)
2911 {
2912 elf_section_type (sec) = ssect->type;
2913 elf_section_flags (sec) = ssect->attr;
2914 }
2915
2916 return _bfd_generic_new_section_hook (abfd, sec);
2917 }
2918
2919 /* Create a new bfd section from an ELF program header.
2920
2921 Since program segments have no names, we generate a synthetic name
2922 of the form segment<NUM>, where NUM is generally the index in the
2923 program header table. For segments that are split (see below) we
2924 generate the names segment<NUM>a and segment<NUM>b.
2925
2926 Note that some program segments may have a file size that is different than
2927 (less than) the memory size. All this means is that at execution the
2928 system must allocate the amount of memory specified by the memory size,
2929 but only initialize it with the first "file size" bytes read from the
2930 file. This would occur for example, with program segments consisting
2931 of combined data+bss.
2932
2933 To handle the above situation, this routine generates TWO bfd sections
2934 for the single program segment. The first has the length specified by
2935 the file size of the segment, and the second has the length specified
2936 by the difference between the two sizes. In effect, the segment is split
2937 into its initialized and uninitialized parts.
2938
2939 */
2940
2941 bool
2942 _bfd_elf_make_section_from_phdr (bfd *abfd,
2943 Elf_Internal_Phdr *hdr,
2944 int hdr_index,
2945 const char *type_name)
2946 {
2947 asection *newsect;
2948 char *name;
2949 char namebuf[64];
2950 size_t len;
2951 int split;
2952 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
2953
2954 split = ((hdr->p_memsz > 0)
2955 && (hdr->p_filesz > 0)
2956 && (hdr->p_memsz > hdr->p_filesz));
2957
2958 if (hdr->p_filesz > 0)
2959 {
2960 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2961 len = strlen (namebuf) + 1;
2962 name = (char *) bfd_alloc (abfd, len);
2963 if (!name)
2964 return false;
2965 memcpy (name, namebuf, len);
2966 newsect = bfd_make_section (abfd, name);
2967 if (newsect == NULL)
2968 return false;
2969 newsect->vma = hdr->p_vaddr / opb;
2970 newsect->lma = hdr->p_paddr / opb;
2971 newsect->size = hdr->p_filesz;
2972 newsect->filepos = hdr->p_offset;
2973 newsect->flags |= SEC_HAS_CONTENTS;
2974 newsect->alignment_power = bfd_log2 (hdr->p_align);
2975 if (hdr->p_type == PT_LOAD)
2976 {
2977 newsect->flags |= SEC_ALLOC;
2978 newsect->flags |= SEC_LOAD;
2979 if (hdr->p_flags & PF_X)
2980 {
2981 /* FIXME: all we known is that it has execute PERMISSION,
2982 may be data. */
2983 newsect->flags |= SEC_CODE;
2984 }
2985 }
2986 if (!(hdr->p_flags & PF_W))
2987 {
2988 newsect->flags |= SEC_READONLY;
2989 }
2990 }
2991
2992 if (hdr->p_memsz > hdr->p_filesz)
2993 {
2994 bfd_vma align;
2995
2996 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2997 len = strlen (namebuf) + 1;
2998 name = (char *) bfd_alloc (abfd, len);
2999 if (!name)
3000 return false;
3001 memcpy (name, namebuf, len);
3002 newsect = bfd_make_section (abfd, name);
3003 if (newsect == NULL)
3004 return false;
3005 newsect->vma = (hdr->p_vaddr + hdr->p_filesz) / opb;
3006 newsect->lma = (hdr->p_paddr + hdr->p_filesz) / opb;
3007 newsect->size = hdr->p_memsz - hdr->p_filesz;
3008 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3009 align = newsect->vma & -newsect->vma;
3010 if (align == 0 || align > hdr->p_align)
3011 align = hdr->p_align;
3012 newsect->alignment_power = bfd_log2 (align);
3013 if (hdr->p_type == PT_LOAD)
3014 {
3015 newsect->flags |= SEC_ALLOC;
3016 if (hdr->p_flags & PF_X)
3017 newsect->flags |= SEC_CODE;
3018 }
3019 if (!(hdr->p_flags & PF_W))
3020 newsect->flags |= SEC_READONLY;
3021 }
3022
3023 return true;
3024 }
3025
3026 static bool
3027 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3028 {
3029 /* The return value is ignored. Build-ids are considered optional. */
3030 if (templ->xvec->flavour == bfd_target_elf_flavour)
3031 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3032 (templ, offset);
3033 return false;
3034 }
3035
3036 bool
3037 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3038 {
3039 const struct elf_backend_data *bed;
3040
3041 switch (hdr->p_type)
3042 {
3043 case PT_NULL:
3044 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3045
3046 case PT_LOAD:
3047 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3048 return false;
3049 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3050 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3051 return true;
3052
3053 case PT_DYNAMIC:
3054 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3055
3056 case PT_INTERP:
3057 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3058
3059 case PT_NOTE:
3060 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3061 return false;
3062 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3063 hdr->p_align))
3064 return false;
3065 return true;
3066
3067 case PT_SHLIB:
3068 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3069
3070 case PT_PHDR:
3071 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3072
3073 case PT_GNU_EH_FRAME:
3074 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3075 "eh_frame_hdr");
3076
3077 case PT_GNU_STACK:
3078 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3079
3080 case PT_GNU_RELRO:
3081 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3082
3083 default:
3084 /* Check for any processor-specific program segment types. */
3085 bed = get_elf_backend_data (abfd);
3086 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3087 }
3088 }
3089
3090 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3091 REL or RELA. */
3092
3093 Elf_Internal_Shdr *
3094 _bfd_elf_single_rel_hdr (asection *sec)
3095 {
3096 if (elf_section_data (sec)->rel.hdr)
3097 {
3098 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3099 return elf_section_data (sec)->rel.hdr;
3100 }
3101 else
3102 return elf_section_data (sec)->rela.hdr;
3103 }
3104
3105 static bool
3106 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3107 Elf_Internal_Shdr *rel_hdr,
3108 const char *sec_name,
3109 bool use_rela_p)
3110 {
3111 char *name = (char *) bfd_alloc (abfd,
3112 sizeof ".rela" + strlen (sec_name));
3113 if (name == NULL)
3114 return false;
3115
3116 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3117 rel_hdr->sh_name =
3118 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3119 false);
3120 if (rel_hdr->sh_name == (unsigned int) -1)
3121 return false;
3122
3123 return true;
3124 }
3125
3126 /* Allocate and initialize a section-header for a new reloc section,
3127 containing relocations against ASECT. It is stored in RELDATA. If
3128 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3129 relocations. */
3130
3131 static bool
3132 _bfd_elf_init_reloc_shdr (bfd *abfd,
3133 struct bfd_elf_section_reloc_data *reldata,
3134 const char *sec_name,
3135 bool use_rela_p,
3136 bool delay_st_name_p)
3137 {
3138 Elf_Internal_Shdr *rel_hdr;
3139 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3140
3141 BFD_ASSERT (reldata->hdr == NULL);
3142 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3143 reldata->hdr = rel_hdr;
3144
3145 if (delay_st_name_p)
3146 rel_hdr->sh_name = (unsigned int) -1;
3147 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3148 use_rela_p))
3149 return false;
3150 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3151 rel_hdr->sh_entsize = (use_rela_p
3152 ? bed->s->sizeof_rela
3153 : bed->s->sizeof_rel);
3154 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3155 rel_hdr->sh_flags = 0;
3156 rel_hdr->sh_addr = 0;
3157 rel_hdr->sh_size = 0;
3158 rel_hdr->sh_offset = 0;
3159
3160 return true;
3161 }
3162
3163 /* Return the default section type based on the passed in section flags. */
3164
3165 int
3166 bfd_elf_get_default_section_type (flagword flags)
3167 {
3168 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3169 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3170 return SHT_NOBITS;
3171 return SHT_PROGBITS;
3172 }
3173
3174 struct fake_section_arg
3175 {
3176 struct bfd_link_info *link_info;
3177 bool failed;
3178 };
3179
3180 /* Set up an ELF internal section header for a section. */
3181
3182 static void
3183 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3184 {
3185 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3186 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3187 struct bfd_elf_section_data *esd = elf_section_data (asect);
3188 Elf_Internal_Shdr *this_hdr;
3189 unsigned int sh_type;
3190 const char *name = asect->name;
3191 bool delay_st_name_p = false;
3192 bfd_vma mask;
3193
3194 if (arg->failed)
3195 {
3196 /* We already failed; just get out of the bfd_map_over_sections
3197 loop. */
3198 return;
3199 }
3200
3201 this_hdr = &esd->this_hdr;
3202
3203 if (arg->link_info)
3204 {
3205 /* ld: compress DWARF debug sections with names: .debug_*. */
3206 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3207 && (asect->flags & SEC_DEBUGGING)
3208 && name[1] == 'd'
3209 && name[6] == '_')
3210 {
3211 /* Set SEC_ELF_COMPRESS to indicate this section should be
3212 compressed. */
3213 asect->flags |= SEC_ELF_COMPRESS;
3214 /* If this section will be compressed, delay adding section
3215 name to section name section after it is compressed in
3216 _bfd_elf_assign_file_positions_for_non_load. */
3217 delay_st_name_p = true;
3218 }
3219 }
3220 else if ((asect->flags & SEC_ELF_RENAME))
3221 {
3222 /* objcopy: rename output DWARF debug section. */
3223 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3224 {
3225 /* When we decompress or compress with SHF_COMPRESSED,
3226 convert section name from .zdebug_* to .debug_* if
3227 needed. */
3228 if (name[1] == 'z')
3229 {
3230 char *new_name = convert_zdebug_to_debug (abfd, name);
3231 if (new_name == NULL)
3232 {
3233 arg->failed = true;
3234 return;
3235 }
3236 name = new_name;
3237 }
3238 }
3239 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3240 {
3241 /* PR binutils/18087: Compression does not always make a
3242 section smaller. So only rename the section when
3243 compression has actually taken place. If input section
3244 name is .zdebug_*, we should never compress it again. */
3245 char *new_name = convert_debug_to_zdebug (abfd, name);
3246 if (new_name == NULL)
3247 {
3248 arg->failed = true;
3249 return;
3250 }
3251 BFD_ASSERT (name[1] != 'z');
3252 name = new_name;
3253 }
3254 }
3255
3256 if (delay_st_name_p)
3257 this_hdr->sh_name = (unsigned int) -1;
3258 else
3259 {
3260 this_hdr->sh_name
3261 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3262 name, false);
3263 if (this_hdr->sh_name == (unsigned int) -1)
3264 {
3265 arg->failed = true;
3266 return;
3267 }
3268 }
3269
3270 /* Don't clear sh_flags. Assembler may set additional bits. */
3271
3272 if ((asect->flags & SEC_ALLOC) != 0
3273 || asect->user_set_vma)
3274 this_hdr->sh_addr = asect->vma * bfd_octets_per_byte (abfd, asect);
3275 else
3276 this_hdr->sh_addr = 0;
3277
3278 this_hdr->sh_offset = 0;
3279 this_hdr->sh_size = asect->size;
3280 this_hdr->sh_link = 0;
3281 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3282 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3283 {
3284 _bfd_error_handler
3285 /* xgettext:c-format */
3286 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3287 abfd, asect->alignment_power, asect);
3288 arg->failed = true;
3289 return;
3290 }
3291 /* Set sh_addralign to the highest power of two given by alignment
3292 consistent with the section VMA. Linker scripts can force VMA. */
3293 mask = ((bfd_vma) 1 << asect->alignment_power) | this_hdr->sh_addr;
3294 this_hdr->sh_addralign = mask & -mask;
3295 /* The sh_entsize and sh_info fields may have been set already by
3296 copy_private_section_data. */
3297
3298 this_hdr->bfd_section = asect;
3299 this_hdr->contents = NULL;
3300
3301 /* If the section type is unspecified, we set it based on
3302 asect->flags. */
3303 if ((asect->flags & SEC_GROUP) != 0)
3304 sh_type = SHT_GROUP;
3305 else
3306 sh_type = bfd_elf_get_default_section_type (asect->flags);
3307
3308 if (this_hdr->sh_type == SHT_NULL)
3309 this_hdr->sh_type = sh_type;
3310 else if (this_hdr->sh_type == SHT_NOBITS
3311 && sh_type == SHT_PROGBITS
3312 && (asect->flags & SEC_ALLOC) != 0)
3313 {
3314 /* Warn if we are changing a NOBITS section to PROGBITS, but
3315 allow the link to proceed. This can happen when users link
3316 non-bss input sections to bss output sections, or emit data
3317 to a bss output section via a linker script. */
3318 _bfd_error_handler
3319 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3320 this_hdr->sh_type = sh_type;
3321 }
3322
3323 switch (this_hdr->sh_type)
3324 {
3325 default:
3326 break;
3327
3328 case SHT_STRTAB:
3329 case SHT_NOTE:
3330 case SHT_NOBITS:
3331 case SHT_PROGBITS:
3332 break;
3333
3334 case SHT_INIT_ARRAY:
3335 case SHT_FINI_ARRAY:
3336 case SHT_PREINIT_ARRAY:
3337 this_hdr->sh_entsize = bed->s->arch_size / 8;
3338 break;
3339
3340 case SHT_HASH:
3341 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3342 break;
3343
3344 case SHT_DYNSYM:
3345 this_hdr->sh_entsize = bed->s->sizeof_sym;
3346 break;
3347
3348 case SHT_DYNAMIC:
3349 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3350 break;
3351
3352 case SHT_RELA:
3353 if (get_elf_backend_data (abfd)->may_use_rela_p)
3354 this_hdr->sh_entsize = bed->s->sizeof_rela;
3355 break;
3356
3357 case SHT_REL:
3358 if (get_elf_backend_data (abfd)->may_use_rel_p)
3359 this_hdr->sh_entsize = bed->s->sizeof_rel;
3360 break;
3361
3362 case SHT_GNU_versym:
3363 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3364 break;
3365
3366 case SHT_GNU_verdef:
3367 this_hdr->sh_entsize = 0;
3368 /* objcopy or strip will copy over sh_info, but may not set
3369 cverdefs. The linker will set cverdefs, but sh_info will be
3370 zero. */
3371 if (this_hdr->sh_info == 0)
3372 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3373 else
3374 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3375 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3376 break;
3377
3378 case SHT_GNU_verneed:
3379 this_hdr->sh_entsize = 0;
3380 /* objcopy or strip will copy over sh_info, but may not set
3381 cverrefs. The linker will set cverrefs, but sh_info will be
3382 zero. */
3383 if (this_hdr->sh_info == 0)
3384 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3385 else
3386 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3387 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3388 break;
3389
3390 case SHT_GROUP:
3391 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3392 break;
3393
3394 case SHT_GNU_HASH:
3395 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3396 break;
3397 }
3398
3399 if ((asect->flags & SEC_ALLOC) != 0)
3400 this_hdr->sh_flags |= SHF_ALLOC;
3401 if ((asect->flags & SEC_READONLY) == 0)
3402 this_hdr->sh_flags |= SHF_WRITE;
3403 if ((asect->flags & SEC_CODE) != 0)
3404 this_hdr->sh_flags |= SHF_EXECINSTR;
3405 if ((asect->flags & SEC_MERGE) != 0)
3406 {
3407 this_hdr->sh_flags |= SHF_MERGE;
3408 this_hdr->sh_entsize = asect->entsize;
3409 }
3410 if ((asect->flags & SEC_STRINGS) != 0)
3411 this_hdr->sh_flags |= SHF_STRINGS;
3412 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3413 this_hdr->sh_flags |= SHF_GROUP;
3414 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3415 {
3416 this_hdr->sh_flags |= SHF_TLS;
3417 if (asect->size == 0
3418 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3419 {
3420 struct bfd_link_order *o = asect->map_tail.link_order;
3421
3422 this_hdr->sh_size = 0;
3423 if (o != NULL)
3424 {
3425 this_hdr->sh_size = o->offset + o->size;
3426 if (this_hdr->sh_size != 0)
3427 this_hdr->sh_type = SHT_NOBITS;
3428 }
3429 }
3430 }
3431 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3432 this_hdr->sh_flags |= SHF_EXCLUDE;
3433
3434 /* If the section has relocs, set up a section header for the
3435 SHT_REL[A] section. If two relocation sections are required for
3436 this section, it is up to the processor-specific back-end to
3437 create the other. */
3438 if ((asect->flags & SEC_RELOC) != 0)
3439 {
3440 /* When doing a relocatable link, create both REL and RELA sections if
3441 needed. */
3442 if (arg->link_info
3443 /* Do the normal setup if we wouldn't create any sections here. */
3444 && esd->rel.count + esd->rela.count > 0
3445 && (bfd_link_relocatable (arg->link_info)
3446 || arg->link_info->emitrelocations))
3447 {
3448 if (esd->rel.count && esd->rel.hdr == NULL
3449 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3450 false, delay_st_name_p))
3451 {
3452 arg->failed = true;
3453 return;
3454 }
3455 if (esd->rela.count && esd->rela.hdr == NULL
3456 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3457 true, delay_st_name_p))
3458 {
3459 arg->failed = true;
3460 return;
3461 }
3462 }
3463 else if (!_bfd_elf_init_reloc_shdr (abfd,
3464 (asect->use_rela_p
3465 ? &esd->rela : &esd->rel),
3466 name,
3467 asect->use_rela_p,
3468 delay_st_name_p))
3469 {
3470 arg->failed = true;
3471 return;
3472 }
3473 }
3474
3475 /* Check for processor-specific section types. */
3476 sh_type = this_hdr->sh_type;
3477 if (bed->elf_backend_fake_sections
3478 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3479 {
3480 arg->failed = true;
3481 return;
3482 }
3483
3484 if (sh_type == SHT_NOBITS && asect->size != 0)
3485 {
3486 /* Don't change the header type from NOBITS if we are being
3487 called for objcopy --only-keep-debug. */
3488 this_hdr->sh_type = sh_type;
3489 }
3490 }
3491
3492 /* Fill in the contents of a SHT_GROUP section. Called from
3493 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3494 when ELF targets use the generic linker, ld. Called for ld -r
3495 from bfd_elf_final_link. */
3496
3497 void
3498 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3499 {
3500 bool *failedptr = (bool *) failedptrarg;
3501 asection *elt, *first;
3502 unsigned char *loc;
3503 bool gas;
3504
3505 /* Ignore linker created group section. See elfNN_ia64_object_p in
3506 elfxx-ia64.c. */
3507 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3508 || sec->size == 0
3509 || *failedptr)
3510 return;
3511
3512 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3513 {
3514 unsigned long symindx = 0;
3515
3516 /* elf_group_id will have been set up by objcopy and the
3517 generic linker. */
3518 if (elf_group_id (sec) != NULL)
3519 symindx = elf_group_id (sec)->udata.i;
3520
3521 if (symindx == 0)
3522 {
3523 /* If called from the assembler, swap_out_syms will have set up
3524 elf_section_syms.
3525 PR 25699: A corrupt input file could contain bogus group info. */
3526 if (elf_section_syms (abfd) == NULL)
3527 {
3528 *failedptr = true;
3529 return;
3530 }
3531 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3532 }
3533 elf_section_data (sec)->this_hdr.sh_info = symindx;
3534 }
3535 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3536 {
3537 /* The ELF backend linker sets sh_info to -2 when the group
3538 signature symbol is global, and thus the index can't be
3539 set until all local symbols are output. */
3540 asection *igroup;
3541 struct bfd_elf_section_data *sec_data;
3542 unsigned long symndx;
3543 unsigned long extsymoff;
3544 struct elf_link_hash_entry *h;
3545
3546 /* The point of this little dance to the first SHF_GROUP section
3547 then back to the SHT_GROUP section is that this gets us to
3548 the SHT_GROUP in the input object. */
3549 igroup = elf_sec_group (elf_next_in_group (sec));
3550 sec_data = elf_section_data (igroup);
3551 symndx = sec_data->this_hdr.sh_info;
3552 extsymoff = 0;
3553 if (!elf_bad_symtab (igroup->owner))
3554 {
3555 Elf_Internal_Shdr *symtab_hdr;
3556
3557 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3558 extsymoff = symtab_hdr->sh_info;
3559 }
3560 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3561 while (h->root.type == bfd_link_hash_indirect
3562 || h->root.type == bfd_link_hash_warning)
3563 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3564
3565 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3566 }
3567
3568 /* The contents won't be allocated for "ld -r" or objcopy. */
3569 gas = true;
3570 if (sec->contents == NULL)
3571 {
3572 gas = false;
3573 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3574
3575 /* Arrange for the section to be written out. */
3576 elf_section_data (sec)->this_hdr.contents = sec->contents;
3577 if (sec->contents == NULL)
3578 {
3579 *failedptr = true;
3580 return;
3581 }
3582 }
3583
3584 loc = sec->contents + sec->size;
3585
3586 /* Get the pointer to the first section in the group that gas
3587 squirreled away here. objcopy arranges for this to be set to the
3588 start of the input section group. */
3589 first = elt = elf_next_in_group (sec);
3590
3591 /* First element is a flag word. Rest of section is elf section
3592 indices for all the sections of the group. Write them backwards
3593 just to keep the group in the same order as given in .section
3594 directives, not that it matters. */
3595 while (elt != NULL)
3596 {
3597 asection *s;
3598
3599 s = elt;
3600 if (!gas)
3601 s = s->output_section;
3602 if (s != NULL
3603 && !bfd_is_abs_section (s))
3604 {
3605 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3606 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3607
3608 if (elf_sec->rel.hdr != NULL
3609 && (gas
3610 || (input_elf_sec->rel.hdr != NULL
3611 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3612 {
3613 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3614 loc -= 4;
3615 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3616 }
3617 if (elf_sec->rela.hdr != NULL
3618 && (gas
3619 || (input_elf_sec->rela.hdr != NULL
3620 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3621 {
3622 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3623 loc -= 4;
3624 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3625 }
3626 loc -= 4;
3627 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3628 }
3629 elt = elf_next_in_group (elt);
3630 if (elt == first)
3631 break;
3632 }
3633
3634 loc -= 4;
3635 BFD_ASSERT (loc == sec->contents);
3636
3637 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3638 }
3639
3640 /* Given NAME, the name of a relocation section stripped of its
3641 .rel/.rela prefix, return the section in ABFD to which the
3642 relocations apply. */
3643
3644 asection *
3645 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3646 {
3647 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3648 section likely apply to .got.plt or .got section. */
3649 if (get_elf_backend_data (abfd)->want_got_plt
3650 && strcmp (name, ".plt") == 0)
3651 {
3652 asection *sec;
3653
3654 name = ".got.plt";
3655 sec = bfd_get_section_by_name (abfd, name);
3656 if (sec != NULL)
3657 return sec;
3658 name = ".got";
3659 }
3660
3661 return bfd_get_section_by_name (abfd, name);
3662 }
3663
3664 /* Return the section to which RELOC_SEC applies. */
3665
3666 static asection *
3667 elf_get_reloc_section (asection *reloc_sec)
3668 {
3669 const char *name;
3670 unsigned int type;
3671 bfd *abfd;
3672 const struct elf_backend_data *bed;
3673
3674 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3675 if (type != SHT_REL && type != SHT_RELA)
3676 return NULL;
3677
3678 /* We look up the section the relocs apply to by name. */
3679 name = reloc_sec->name;
3680 if (!startswith (name, ".rel"))
3681 return NULL;
3682 name += 4;
3683 if (type == SHT_RELA && *name++ != 'a')
3684 return NULL;
3685
3686 abfd = reloc_sec->owner;
3687 bed = get_elf_backend_data (abfd);
3688 return bed->get_reloc_section (abfd, name);
3689 }
3690
3691 /* Assign all ELF section numbers. The dummy first section is handled here
3692 too. The link/info pointers for the standard section types are filled
3693 in here too, while we're at it. LINK_INFO will be 0 when arriving
3694 here for objcopy, and when using the generic ELF linker. */
3695
3696 static bool
3697 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3698 {
3699 struct elf_obj_tdata *t = elf_tdata (abfd);
3700 asection *sec;
3701 unsigned int section_number;
3702 Elf_Internal_Shdr **i_shdrp;
3703 struct bfd_elf_section_data *d;
3704 bool need_symtab;
3705 size_t amt;
3706
3707 section_number = 1;
3708
3709 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3710
3711 /* SHT_GROUP sections are in relocatable files only. */
3712 if (link_info == NULL || !link_info->resolve_section_groups)
3713 {
3714 size_t reloc_count = 0;
3715
3716 /* Put SHT_GROUP sections first. */
3717 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3718 {
3719 d = elf_section_data (sec);
3720
3721 if (d->this_hdr.sh_type == SHT_GROUP)
3722 {
3723 if (sec->flags & SEC_LINKER_CREATED)
3724 {
3725 /* Remove the linker created SHT_GROUP sections. */
3726 bfd_section_list_remove (abfd, sec);
3727 abfd->section_count--;
3728 }
3729 else
3730 d->this_idx = section_number++;
3731 }
3732
3733 /* Count relocations. */
3734 reloc_count += sec->reloc_count;
3735 }
3736
3737 /* Clear HAS_RELOC if there are no relocations. */
3738 if (reloc_count == 0)
3739 abfd->flags &= ~HAS_RELOC;
3740 }
3741
3742 for (sec = abfd->sections; sec; sec = sec->next)
3743 {
3744 d = elf_section_data (sec);
3745
3746 if (d->this_hdr.sh_type != SHT_GROUP)
3747 d->this_idx = section_number++;
3748 if (d->this_hdr.sh_name != (unsigned int) -1)
3749 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3750 if (d->rel.hdr)
3751 {
3752 d->rel.idx = section_number++;
3753 if (d->rel.hdr->sh_name != (unsigned int) -1)
3754 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3755 }
3756 else
3757 d->rel.idx = 0;
3758
3759 if (d->rela.hdr)
3760 {
3761 d->rela.idx = section_number++;
3762 if (d->rela.hdr->sh_name != (unsigned int) -1)
3763 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3764 }
3765 else
3766 d->rela.idx = 0;
3767 }
3768
3769 need_symtab = (bfd_get_symcount (abfd) > 0
3770 || (link_info == NULL
3771 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3772 == HAS_RELOC)));
3773 if (need_symtab)
3774 {
3775 elf_onesymtab (abfd) = section_number++;
3776 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3777 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3778 {
3779 elf_section_list *entry;
3780
3781 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3782
3783 entry = bfd_zalloc (abfd, sizeof (*entry));
3784 entry->ndx = section_number++;
3785 elf_symtab_shndx_list (abfd) = entry;
3786 entry->hdr.sh_name
3787 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3788 ".symtab_shndx", false);
3789 if (entry->hdr.sh_name == (unsigned int) -1)
3790 return false;
3791 }
3792 elf_strtab_sec (abfd) = section_number++;
3793 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3794 }
3795
3796 elf_shstrtab_sec (abfd) = section_number++;
3797 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3798 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3799
3800 if (section_number >= SHN_LORESERVE)
3801 {
3802 /* xgettext:c-format */
3803 _bfd_error_handler (_("%pB: too many sections: %u"),
3804 abfd, section_number);
3805 return false;
3806 }
3807
3808 elf_numsections (abfd) = section_number;
3809 elf_elfheader (abfd)->e_shnum = section_number;
3810
3811 /* Set up the list of section header pointers, in agreement with the
3812 indices. */
3813 amt = section_number * sizeof (Elf_Internal_Shdr *);
3814 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3815 if (i_shdrp == NULL)
3816 return false;
3817
3818 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3819 sizeof (Elf_Internal_Shdr));
3820 if (i_shdrp[0] == NULL)
3821 {
3822 bfd_release (abfd, i_shdrp);
3823 return false;
3824 }
3825
3826 elf_elfsections (abfd) = i_shdrp;
3827
3828 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3829 if (need_symtab)
3830 {
3831 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3832 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3833 {
3834 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3835 BFD_ASSERT (entry != NULL);
3836 i_shdrp[entry->ndx] = & entry->hdr;
3837 entry->hdr.sh_link = elf_onesymtab (abfd);
3838 }
3839 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3840 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3841 }
3842
3843 for (sec = abfd->sections; sec; sec = sec->next)
3844 {
3845 asection *s;
3846
3847 d = elf_section_data (sec);
3848
3849 i_shdrp[d->this_idx] = &d->this_hdr;
3850 if (d->rel.idx != 0)
3851 i_shdrp[d->rel.idx] = d->rel.hdr;
3852 if (d->rela.idx != 0)
3853 i_shdrp[d->rela.idx] = d->rela.hdr;
3854
3855 /* Fill in the sh_link and sh_info fields while we're at it. */
3856
3857 /* sh_link of a reloc section is the section index of the symbol
3858 table. sh_info is the section index of the section to which
3859 the relocation entries apply. */
3860 if (d->rel.idx != 0)
3861 {
3862 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3863 d->rel.hdr->sh_info = d->this_idx;
3864 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3865 }
3866 if (d->rela.idx != 0)
3867 {
3868 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3869 d->rela.hdr->sh_info = d->this_idx;
3870 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3871 }
3872
3873 /* We need to set up sh_link for SHF_LINK_ORDER. */
3874 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3875 {
3876 s = elf_linked_to_section (sec);
3877 /* We can now have a NULL linked section pointer.
3878 This happens when the sh_link field is 0, which is done
3879 when a linked to section is discarded but the linking
3880 section has been retained for some reason. */
3881 if (s)
3882 {
3883 /* Check discarded linkonce section. */
3884 if (discarded_section (s))
3885 {
3886 asection *kept;
3887 _bfd_error_handler
3888 /* xgettext:c-format */
3889 (_("%pB: sh_link of section `%pA' points to"
3890 " discarded section `%pA' of `%pB'"),
3891 abfd, d->this_hdr.bfd_section, s, s->owner);
3892 /* Point to the kept section if it has the same
3893 size as the discarded one. */
3894 kept = _bfd_elf_check_kept_section (s, link_info);
3895 if (kept == NULL)
3896 {
3897 bfd_set_error (bfd_error_bad_value);
3898 return false;
3899 }
3900 s = kept;
3901 }
3902 /* Handle objcopy. */
3903 else if (s->output_section == NULL)
3904 {
3905 _bfd_error_handler
3906 /* xgettext:c-format */
3907 (_("%pB: sh_link of section `%pA' points to"
3908 " removed section `%pA' of `%pB'"),
3909 abfd, d->this_hdr.bfd_section, s, s->owner);
3910 bfd_set_error (bfd_error_bad_value);
3911 return false;
3912 }
3913 s = s->output_section;
3914 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3915 }
3916 }
3917
3918 switch (d->this_hdr.sh_type)
3919 {
3920 case SHT_REL:
3921 case SHT_RELA:
3922 /* A reloc section which we are treating as a normal BFD
3923 section. sh_link is the section index of the symbol
3924 table. sh_info is the section index of the section to
3925 which the relocation entries apply. We assume that an
3926 allocated reloc section uses the dynamic symbol table.
3927 FIXME: How can we be sure? */
3928 s = bfd_get_section_by_name (abfd, ".dynsym");
3929 if (s != NULL)
3930 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3931
3932 s = elf_get_reloc_section (sec);
3933 if (s != NULL)
3934 {
3935 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3936 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3937 }
3938 break;
3939
3940 case SHT_STRTAB:
3941 /* We assume that a section named .stab*str is a stabs
3942 string section. We look for a section with the same name
3943 but without the trailing ``str'', and set its sh_link
3944 field to point to this section. */
3945 if (startswith (sec->name, ".stab")
3946 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3947 {
3948 size_t len;
3949 char *alc;
3950
3951 len = strlen (sec->name);
3952 alc = (char *) bfd_malloc (len - 2);
3953 if (alc == NULL)
3954 return false;
3955 memcpy (alc, sec->name, len - 3);
3956 alc[len - 3] = '\0';
3957 s = bfd_get_section_by_name (abfd, alc);
3958 free (alc);
3959 if (s != NULL)
3960 {
3961 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3962
3963 /* This is a .stab section. */
3964 elf_section_data (s)->this_hdr.sh_entsize = 12;
3965 }
3966 }
3967 break;
3968
3969 case SHT_DYNAMIC:
3970 case SHT_DYNSYM:
3971 case SHT_GNU_verneed:
3972 case SHT_GNU_verdef:
3973 /* sh_link is the section header index of the string table
3974 used for the dynamic entries, or the symbol table, or the
3975 version strings. */
3976 s = bfd_get_section_by_name (abfd, ".dynstr");
3977 if (s != NULL)
3978 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3979 break;
3980
3981 case SHT_GNU_LIBLIST:
3982 /* sh_link is the section header index of the prelink library
3983 list used for the dynamic entries, or the symbol table, or
3984 the version strings. */
3985 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3986 ? ".dynstr" : ".gnu.libstr");
3987 if (s != NULL)
3988 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3989 break;
3990
3991 case SHT_HASH:
3992 case SHT_GNU_HASH:
3993 case SHT_GNU_versym:
3994 /* sh_link is the section header index of the symbol table
3995 this hash table or version table is for. */
3996 s = bfd_get_section_by_name (abfd, ".dynsym");
3997 if (s != NULL)
3998 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3999 break;
4000
4001 case SHT_GROUP:
4002 d->this_hdr.sh_link = elf_onesymtab (abfd);
4003 }
4004 }
4005
4006 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4007 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4008 debug section name from .debug_* to .zdebug_* if needed. */
4009
4010 return true;
4011 }
4012
4013 static bool
4014 sym_is_global (bfd *abfd, asymbol *sym)
4015 {
4016 /* If the backend has a special mapping, use it. */
4017 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4018 if (bed->elf_backend_sym_is_global)
4019 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4020
4021 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4022 || bfd_is_und_section (bfd_asymbol_section (sym))
4023 || bfd_is_com_section (bfd_asymbol_section (sym)));
4024 }
4025
4026 /* Filter global symbols of ABFD to include in the import library. All
4027 SYMCOUNT symbols of ABFD can be examined from their pointers in
4028 SYMS. Pointers of symbols to keep should be stored contiguously at
4029 the beginning of that array.
4030
4031 Returns the number of symbols to keep. */
4032
4033 unsigned int
4034 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4035 asymbol **syms, long symcount)
4036 {
4037 long src_count, dst_count = 0;
4038
4039 for (src_count = 0; src_count < symcount; src_count++)
4040 {
4041 asymbol *sym = syms[src_count];
4042 char *name = (char *) bfd_asymbol_name (sym);
4043 struct bfd_link_hash_entry *h;
4044
4045 if (!sym_is_global (abfd, sym))
4046 continue;
4047
4048 h = bfd_link_hash_lookup (info->hash, name, false, false, false);
4049 if (h == NULL)
4050 continue;
4051 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4052 continue;
4053 if (h->linker_def || h->ldscript_def)
4054 continue;
4055
4056 syms[dst_count++] = sym;
4057 }
4058
4059 syms[dst_count] = NULL;
4060
4061 return dst_count;
4062 }
4063
4064 /* Don't output section symbols for sections that are not going to be
4065 output, that are duplicates or there is no BFD section. */
4066
4067 static bool
4068 ignore_section_sym (bfd *abfd, asymbol *sym)
4069 {
4070 elf_symbol_type *type_ptr;
4071
4072 if (sym == NULL)
4073 return false;
4074
4075 if ((sym->flags & BSF_SECTION_SYM) == 0)
4076 return false;
4077
4078 /* Ignore the section symbol if it isn't used. */
4079 if ((sym->flags & BSF_SECTION_SYM_USED) == 0)
4080 return true;
4081
4082 if (sym->section == NULL)
4083 return true;
4084
4085 type_ptr = elf_symbol_from (sym);
4086 return ((type_ptr != NULL
4087 && type_ptr->internal_elf_sym.st_shndx != 0
4088 && bfd_is_abs_section (sym->section))
4089 || !(sym->section->owner == abfd
4090 || (sym->section->output_section != NULL
4091 && sym->section->output_section->owner == abfd
4092 && sym->section->output_offset == 0)
4093 || bfd_is_abs_section (sym->section)));
4094 }
4095
4096 /* Map symbol from it's internal number to the external number, moving
4097 all local symbols to be at the head of the list. */
4098
4099 static bool
4100 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4101 {
4102 unsigned int symcount = bfd_get_symcount (abfd);
4103 asymbol **syms = bfd_get_outsymbols (abfd);
4104 asymbol **sect_syms;
4105 unsigned int num_locals = 0;
4106 unsigned int num_globals = 0;
4107 unsigned int num_locals2 = 0;
4108 unsigned int num_globals2 = 0;
4109 unsigned int max_index = 0;
4110 unsigned int idx;
4111 asection *asect;
4112 asymbol **new_syms;
4113 size_t amt;
4114
4115 #ifdef DEBUG
4116 fprintf (stderr, "elf_map_symbols\n");
4117 fflush (stderr);
4118 #endif
4119
4120 for (asect = abfd->sections; asect; asect = asect->next)
4121 {
4122 if (max_index < asect->index)
4123 max_index = asect->index;
4124 }
4125
4126 max_index++;
4127 amt = max_index * sizeof (asymbol *);
4128 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4129 if (sect_syms == NULL)
4130 return false;
4131 elf_section_syms (abfd) = sect_syms;
4132 elf_num_section_syms (abfd) = max_index;
4133
4134 /* Init sect_syms entries for any section symbols we have already
4135 decided to output. */
4136 for (idx = 0; idx < symcount; idx++)
4137 {
4138 asymbol *sym = syms[idx];
4139
4140 if ((sym->flags & BSF_SECTION_SYM) != 0
4141 && sym->value == 0
4142 && !ignore_section_sym (abfd, sym)
4143 && !bfd_is_abs_section (sym->section))
4144 {
4145 asection *sec = sym->section;
4146
4147 if (sec->owner != abfd)
4148 sec = sec->output_section;
4149
4150 sect_syms[sec->index] = syms[idx];
4151 }
4152 }
4153
4154 /* Classify all of the symbols. */
4155 for (idx = 0; idx < symcount; idx++)
4156 {
4157 if (sym_is_global (abfd, syms[idx]))
4158 num_globals++;
4159 else if (!ignore_section_sym (abfd, syms[idx]))
4160 num_locals++;
4161 }
4162
4163 /* We will be adding a section symbol for each normal BFD section. Most
4164 sections will already have a section symbol in outsymbols, but
4165 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4166 at least in that case. */
4167 for (asect = abfd->sections; asect; asect = asect->next)
4168 {
4169 asymbol *sym = asect->symbol;
4170 /* Don't include ignored section symbols. */
4171 if (!ignore_section_sym (abfd, sym)
4172 && sect_syms[asect->index] == NULL)
4173 {
4174 if (!sym_is_global (abfd, asect->symbol))
4175 num_locals++;
4176 else
4177 num_globals++;
4178 }
4179 }
4180
4181 /* Now sort the symbols so the local symbols are first. */
4182 amt = (num_locals + num_globals) * sizeof (asymbol *);
4183 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4184 if (new_syms == NULL)
4185 return false;
4186
4187 for (idx = 0; idx < symcount; idx++)
4188 {
4189 asymbol *sym = syms[idx];
4190 unsigned int i;
4191
4192 if (sym_is_global (abfd, sym))
4193 i = num_locals + num_globals2++;
4194 /* Don't include ignored section symbols. */
4195 else if (!ignore_section_sym (abfd, sym))
4196 i = num_locals2++;
4197 else
4198 continue;
4199 new_syms[i] = sym;
4200 sym->udata.i = i + 1;
4201 }
4202 for (asect = abfd->sections; asect; asect = asect->next)
4203 {
4204 asymbol *sym = asect->symbol;
4205 if (!ignore_section_sym (abfd, sym)
4206 && sect_syms[asect->index] == NULL)
4207 {
4208 unsigned int i;
4209
4210 sect_syms[asect->index] = sym;
4211 if (!sym_is_global (abfd, sym))
4212 i = num_locals2++;
4213 else
4214 i = num_locals + num_globals2++;
4215 new_syms[i] = sym;
4216 sym->udata.i = i + 1;
4217 }
4218 }
4219
4220 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4221
4222 *pnum_locals = num_locals;
4223 return true;
4224 }
4225
4226 /* Align to the maximum file alignment that could be required for any
4227 ELF data structure. */
4228
4229 static inline file_ptr
4230 align_file_position (file_ptr off, int align)
4231 {
4232 return (off + align - 1) & ~(align - 1);
4233 }
4234
4235 /* Assign a file position to a section, optionally aligning to the
4236 required section alignment. */
4237
4238 file_ptr
4239 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4240 file_ptr offset,
4241 bool align)
4242 {
4243 if (align && i_shdrp->sh_addralign > 1)
4244 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4245 i_shdrp->sh_offset = offset;
4246 if (i_shdrp->bfd_section != NULL)
4247 i_shdrp->bfd_section->filepos = offset;
4248 if (i_shdrp->sh_type != SHT_NOBITS)
4249 offset += i_shdrp->sh_size;
4250 return offset;
4251 }
4252
4253 /* Compute the file positions we are going to put the sections at, and
4254 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4255 is not NULL, this is being called by the ELF backend linker. */
4256
4257 bool
4258 _bfd_elf_compute_section_file_positions (bfd *abfd,
4259 struct bfd_link_info *link_info)
4260 {
4261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4262 struct fake_section_arg fsargs;
4263 bool failed;
4264 struct elf_strtab_hash *strtab = NULL;
4265 Elf_Internal_Shdr *shstrtab_hdr;
4266 bool need_symtab;
4267
4268 if (abfd->output_has_begun)
4269 return true;
4270
4271 /* Do any elf backend specific processing first. */
4272 if (bed->elf_backend_begin_write_processing)
4273 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4274
4275 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4276 return false;
4277
4278 fsargs.failed = false;
4279 fsargs.link_info = link_info;
4280 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4281 if (fsargs.failed)
4282 return false;
4283
4284 if (!assign_section_numbers (abfd, link_info))
4285 return false;
4286
4287 /* The backend linker builds symbol table information itself. */
4288 need_symtab = (link_info == NULL
4289 && (bfd_get_symcount (abfd) > 0
4290 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4291 == HAS_RELOC)));
4292 if (need_symtab)
4293 {
4294 /* Non-zero if doing a relocatable link. */
4295 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4296
4297 if (! swap_out_syms (abfd, &strtab, relocatable_p, link_info))
4298 return false;
4299 }
4300
4301 failed = false;
4302 if (link_info == NULL)
4303 {
4304 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4305 if (failed)
4306 return false;
4307 }
4308
4309 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4310 /* sh_name was set in init_file_header. */
4311 shstrtab_hdr->sh_type = SHT_STRTAB;
4312 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4313 shstrtab_hdr->sh_addr = 0;
4314 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4315 shstrtab_hdr->sh_entsize = 0;
4316 shstrtab_hdr->sh_link = 0;
4317 shstrtab_hdr->sh_info = 0;
4318 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4319 shstrtab_hdr->sh_addralign = 1;
4320
4321 if (!assign_file_positions_except_relocs (abfd, link_info))
4322 return false;
4323
4324 if (need_symtab)
4325 {
4326 file_ptr off;
4327 Elf_Internal_Shdr *hdr;
4328
4329 off = elf_next_file_pos (abfd);
4330
4331 hdr = & elf_symtab_hdr (abfd);
4332 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4333
4334 if (elf_symtab_shndx_list (abfd) != NULL)
4335 {
4336 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4337 if (hdr->sh_size != 0)
4338 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4339 /* FIXME: What about other symtab_shndx sections in the list ? */
4340 }
4341
4342 hdr = &elf_tdata (abfd)->strtab_hdr;
4343 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4344
4345 elf_next_file_pos (abfd) = off;
4346
4347 /* Now that we know where the .strtab section goes, write it
4348 out. */
4349 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4350 || ! _bfd_elf_strtab_emit (abfd, strtab))
4351 return false;
4352 _bfd_elf_strtab_free (strtab);
4353 }
4354
4355 abfd->output_has_begun = true;
4356
4357 return true;
4358 }
4359
4360 /* Make an initial estimate of the size of the program header. If we
4361 get the number wrong here, we'll redo section placement. */
4362
4363 static bfd_size_type
4364 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4365 {
4366 size_t segs;
4367 asection *s;
4368 const struct elf_backend_data *bed;
4369
4370 /* Assume we will need exactly two PT_LOAD segments: one for text
4371 and one for data. */
4372 segs = 2;
4373
4374 s = bfd_get_section_by_name (abfd, ".interp");
4375 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4376 {
4377 /* If we have a loadable interpreter section, we need a
4378 PT_INTERP segment. In this case, assume we also need a
4379 PT_PHDR segment, although that may not be true for all
4380 targets. */
4381 segs += 2;
4382 }
4383
4384 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4385 {
4386 /* We need a PT_DYNAMIC segment. */
4387 ++segs;
4388 }
4389
4390 if (info != NULL && info->relro)
4391 {
4392 /* We need a PT_GNU_RELRO segment. */
4393 ++segs;
4394 }
4395
4396 if (elf_eh_frame_hdr (abfd))
4397 {
4398 /* We need a PT_GNU_EH_FRAME segment. */
4399 ++segs;
4400 }
4401
4402 if (elf_stack_flags (abfd))
4403 {
4404 /* We need a PT_GNU_STACK segment. */
4405 ++segs;
4406 }
4407
4408 s = bfd_get_section_by_name (abfd,
4409 NOTE_GNU_PROPERTY_SECTION_NAME);
4410 if (s != NULL && s->size != 0)
4411 {
4412 /* We need a PT_GNU_PROPERTY segment. */
4413 ++segs;
4414 }
4415
4416 for (s = abfd->sections; s != NULL; s = s->next)
4417 {
4418 if ((s->flags & SEC_LOAD) != 0
4419 && elf_section_type (s) == SHT_NOTE)
4420 {
4421 unsigned int alignment_power;
4422 /* We need a PT_NOTE segment. */
4423 ++segs;
4424 /* Try to create just one PT_NOTE segment for all adjacent
4425 loadable SHT_NOTE sections. gABI requires that within a
4426 PT_NOTE segment (and also inside of each SHT_NOTE section)
4427 each note should have the same alignment. So we check
4428 whether the sections are correctly aligned. */
4429 alignment_power = s->alignment_power;
4430 while (s->next != NULL
4431 && s->next->alignment_power == alignment_power
4432 && (s->next->flags & SEC_LOAD) != 0
4433 && elf_section_type (s->next) == SHT_NOTE)
4434 s = s->next;
4435 }
4436 }
4437
4438 for (s = abfd->sections; s != NULL; s = s->next)
4439 {
4440 if (s->flags & SEC_THREAD_LOCAL)
4441 {
4442 /* We need a PT_TLS segment. */
4443 ++segs;
4444 break;
4445 }
4446 }
4447
4448 bed = get_elf_backend_data (abfd);
4449
4450 if ((abfd->flags & D_PAGED) != 0
4451 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4452 {
4453 /* Add a PT_GNU_MBIND segment for each mbind section. */
4454 bfd_vma commonpagesize;
4455 unsigned int page_align_power;
4456
4457 if (info != NULL)
4458 commonpagesize = info->commonpagesize;
4459 else
4460 commonpagesize = bed->commonpagesize;
4461 page_align_power = bfd_log2 (commonpagesize);
4462 for (s = abfd->sections; s != NULL; s = s->next)
4463 if (elf_section_flags (s) & SHF_GNU_MBIND)
4464 {
4465 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4466 {
4467 _bfd_error_handler
4468 /* xgettext:c-format */
4469 (_("%pB: GNU_MBIND section `%pA' has invalid "
4470 "sh_info field: %d"),
4471 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4472 continue;
4473 }
4474 /* Align mbind section to page size. */
4475 if (s->alignment_power < page_align_power)
4476 s->alignment_power = page_align_power;
4477 segs ++;
4478 }
4479 }
4480
4481 /* Let the backend count up any program headers it might need. */
4482 if (bed->elf_backend_additional_program_headers)
4483 {
4484 int a;
4485
4486 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4487 if (a == -1)
4488 abort ();
4489 segs += a;
4490 }
4491
4492 return segs * bed->s->sizeof_phdr;
4493 }
4494
4495 /* Find the segment that contains the output_section of section. */
4496
4497 Elf_Internal_Phdr *
4498 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4499 {
4500 struct elf_segment_map *m;
4501 Elf_Internal_Phdr *p;
4502
4503 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4504 m != NULL;
4505 m = m->next, p++)
4506 {
4507 int i;
4508
4509 for (i = m->count - 1; i >= 0; i--)
4510 if (m->sections[i] == section)
4511 return p;
4512 }
4513
4514 return NULL;
4515 }
4516
4517 /* Create a mapping from a set of sections to a program segment. */
4518
4519 static struct elf_segment_map *
4520 make_mapping (bfd *abfd,
4521 asection **sections,
4522 unsigned int from,
4523 unsigned int to,
4524 bool phdr)
4525 {
4526 struct elf_segment_map *m;
4527 unsigned int i;
4528 asection **hdrpp;
4529 size_t amt;
4530
4531 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4532 amt += (to - from) * sizeof (asection *);
4533 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4534 if (m == NULL)
4535 return NULL;
4536 m->next = NULL;
4537 m->p_type = PT_LOAD;
4538 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4539 m->sections[i - from] = *hdrpp;
4540 m->count = to - from;
4541
4542 if (from == 0 && phdr)
4543 {
4544 /* Include the headers in the first PT_LOAD segment. */
4545 m->includes_filehdr = 1;
4546 m->includes_phdrs = 1;
4547 }
4548
4549 return m;
4550 }
4551
4552 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4553 on failure. */
4554
4555 struct elf_segment_map *
4556 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4557 {
4558 struct elf_segment_map *m;
4559
4560 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4561 sizeof (struct elf_segment_map));
4562 if (m == NULL)
4563 return NULL;
4564 m->next = NULL;
4565 m->p_type = PT_DYNAMIC;
4566 m->count = 1;
4567 m->sections[0] = dynsec;
4568
4569 return m;
4570 }
4571
4572 /* Possibly add or remove segments from the segment map. */
4573
4574 static bool
4575 elf_modify_segment_map (bfd *abfd,
4576 struct bfd_link_info *info,
4577 bool remove_empty_load)
4578 {
4579 struct elf_segment_map **m;
4580 const struct elf_backend_data *bed;
4581
4582 /* The placement algorithm assumes that non allocated sections are
4583 not in PT_LOAD segments. We ensure this here by removing such
4584 sections from the segment map. We also remove excluded
4585 sections. Finally, any PT_LOAD segment without sections is
4586 removed. */
4587 m = &elf_seg_map (abfd);
4588 while (*m)
4589 {
4590 unsigned int i, new_count;
4591
4592 for (new_count = 0, i = 0; i < (*m)->count; i++)
4593 {
4594 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4595 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4596 || (*m)->p_type != PT_LOAD))
4597 {
4598 (*m)->sections[new_count] = (*m)->sections[i];
4599 new_count++;
4600 }
4601 }
4602 (*m)->count = new_count;
4603
4604 if (remove_empty_load
4605 && (*m)->p_type == PT_LOAD
4606 && (*m)->count == 0
4607 && !(*m)->includes_phdrs)
4608 *m = (*m)->next;
4609 else
4610 m = &(*m)->next;
4611 }
4612
4613 bed = get_elf_backend_data (abfd);
4614 if (bed->elf_backend_modify_segment_map != NULL)
4615 {
4616 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4617 return false;
4618 }
4619
4620 return true;
4621 }
4622
4623 #define IS_TBSS(s) \
4624 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4625
4626 /* Set up a mapping from BFD sections to program segments. */
4627
4628 bool
4629 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4630 {
4631 unsigned int count;
4632 struct elf_segment_map *m;
4633 asection **sections = NULL;
4634 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4635 bool no_user_phdrs;
4636
4637 no_user_phdrs = elf_seg_map (abfd) == NULL;
4638
4639 if (info != NULL)
4640 info->user_phdrs = !no_user_phdrs;
4641
4642 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4643 {
4644 asection *s;
4645 unsigned int i;
4646 struct elf_segment_map *mfirst;
4647 struct elf_segment_map **pm;
4648 asection *last_hdr;
4649 bfd_vma last_size;
4650 unsigned int hdr_index;
4651 bfd_vma maxpagesize;
4652 asection **hdrpp;
4653 bool phdr_in_segment;
4654 bool writable;
4655 bool executable;
4656 unsigned int tls_count = 0;
4657 asection *first_tls = NULL;
4658 asection *first_mbind = NULL;
4659 asection *dynsec, *eh_frame_hdr;
4660 size_t amt;
4661 bfd_vma addr_mask, wrap_to = 0; /* Bytes. */
4662 bfd_size_type phdr_size; /* Octets/bytes. */
4663 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
4664
4665 /* Select the allocated sections, and sort them. */
4666
4667 amt = bfd_count_sections (abfd) * sizeof (asection *);
4668 sections = (asection **) bfd_malloc (amt);
4669 if (sections == NULL)
4670 goto error_return;
4671
4672 /* Calculate top address, avoiding undefined behaviour of shift
4673 left operator when shift count is equal to size of type
4674 being shifted. */
4675 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4676 addr_mask = (addr_mask << 1) + 1;
4677
4678 i = 0;
4679 for (s = abfd->sections; s != NULL; s = s->next)
4680 {
4681 if ((s->flags & SEC_ALLOC) != 0)
4682 {
4683 /* target_index is unused until bfd_elf_final_link
4684 starts output of section symbols. Use it to make
4685 qsort stable. */
4686 s->target_index = i;
4687 sections[i] = s;
4688 ++i;
4689 /* A wrapping section potentially clashes with header. */
4690 if (((s->lma + s->size / opb) & addr_mask) < (s->lma & addr_mask))
4691 wrap_to = (s->lma + s->size / opb) & addr_mask;
4692 }
4693 }
4694 BFD_ASSERT (i <= bfd_count_sections (abfd));
4695 count = i;
4696
4697 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4698
4699 phdr_size = elf_program_header_size (abfd);
4700 if (phdr_size == (bfd_size_type) -1)
4701 phdr_size = get_program_header_size (abfd, info);
4702 phdr_size += bed->s->sizeof_ehdr;
4703 /* phdr_size is compared to LMA values which are in bytes. */
4704 phdr_size /= opb;
4705 if (info != NULL)
4706 maxpagesize = info->maxpagesize;
4707 else
4708 maxpagesize = bed->maxpagesize;
4709 if (maxpagesize == 0)
4710 maxpagesize = 1;
4711 phdr_in_segment = info != NULL && info->load_phdrs;
4712 if (count != 0
4713 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4714 >= (phdr_size & (maxpagesize - 1))))
4715 /* For compatibility with old scripts that may not be using
4716 SIZEOF_HEADERS, add headers when it looks like space has
4717 been left for them. */
4718 phdr_in_segment = true;
4719
4720 /* Build the mapping. */
4721 mfirst = NULL;
4722 pm = &mfirst;
4723
4724 /* If we have a .interp section, then create a PT_PHDR segment for
4725 the program headers and a PT_INTERP segment for the .interp
4726 section. */
4727 s = bfd_get_section_by_name (abfd, ".interp");
4728 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4729 {
4730 amt = sizeof (struct elf_segment_map);
4731 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4732 if (m == NULL)
4733 goto error_return;
4734 m->next = NULL;
4735 m->p_type = PT_PHDR;
4736 m->p_flags = PF_R;
4737 m->p_flags_valid = 1;
4738 m->includes_phdrs = 1;
4739 phdr_in_segment = true;
4740 *pm = m;
4741 pm = &m->next;
4742
4743 amt = sizeof (struct elf_segment_map);
4744 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4745 if (m == NULL)
4746 goto error_return;
4747 m->next = NULL;
4748 m->p_type = PT_INTERP;
4749 m->count = 1;
4750 m->sections[0] = s;
4751
4752 *pm = m;
4753 pm = &m->next;
4754 }
4755
4756 /* Look through the sections. We put sections in the same program
4757 segment when the start of the second section can be placed within
4758 a few bytes of the end of the first section. */
4759 last_hdr = NULL;
4760 last_size = 0;
4761 hdr_index = 0;
4762 writable = false;
4763 executable = false;
4764 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4765 if (dynsec != NULL
4766 && (dynsec->flags & SEC_LOAD) == 0)
4767 dynsec = NULL;
4768
4769 if ((abfd->flags & D_PAGED) == 0)
4770 phdr_in_segment = false;
4771
4772 /* Deal with -Ttext or something similar such that the first section
4773 is not adjacent to the program headers. This is an
4774 approximation, since at this point we don't know exactly how many
4775 program headers we will need. */
4776 if (phdr_in_segment && count > 0)
4777 {
4778 bfd_vma phdr_lma; /* Bytes. */
4779 bool separate_phdr = false;
4780
4781 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4782 if (info != NULL
4783 && info->separate_code
4784 && (sections[0]->flags & SEC_CODE) != 0)
4785 {
4786 /* If data sections should be separate from code and
4787 thus not executable, and the first section is
4788 executable then put the file and program headers in
4789 their own PT_LOAD. */
4790 separate_phdr = true;
4791 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4792 == (sections[0]->lma & addr_mask & -maxpagesize)))
4793 {
4794 /* The file and program headers are currently on the
4795 same page as the first section. Put them on the
4796 previous page if we can. */
4797 if (phdr_lma >= maxpagesize)
4798 phdr_lma -= maxpagesize;
4799 else
4800 separate_phdr = false;
4801 }
4802 }
4803 if ((sections[0]->lma & addr_mask) < phdr_lma
4804 || (sections[0]->lma & addr_mask) < phdr_size)
4805 /* If file and program headers would be placed at the end
4806 of memory then it's probably better to omit them. */
4807 phdr_in_segment = false;
4808 else if (phdr_lma < wrap_to)
4809 /* If a section wraps around to where we'll be placing
4810 file and program headers, then the headers will be
4811 overwritten. */
4812 phdr_in_segment = false;
4813 else if (separate_phdr)
4814 {
4815 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4816 if (m == NULL)
4817 goto error_return;
4818 m->p_paddr = phdr_lma * opb;
4819 m->p_vaddr_offset
4820 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4821 m->p_paddr_valid = 1;
4822 *pm = m;
4823 pm = &m->next;
4824 phdr_in_segment = false;
4825 }
4826 }
4827
4828 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4829 {
4830 asection *hdr;
4831 bool new_segment;
4832
4833 hdr = *hdrpp;
4834
4835 /* See if this section and the last one will fit in the same
4836 segment. */
4837
4838 if (last_hdr == NULL)
4839 {
4840 /* If we don't have a segment yet, then we don't need a new
4841 one (we build the last one after this loop). */
4842 new_segment = false;
4843 }
4844 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4845 {
4846 /* If this section has a different relation between the
4847 virtual address and the load address, then we need a new
4848 segment. */
4849 new_segment = true;
4850 }
4851 else if (hdr->lma < last_hdr->lma + last_size
4852 || last_hdr->lma + last_size < last_hdr->lma)
4853 {
4854 /* If this section has a load address that makes it overlap
4855 the previous section, then we need a new segment. */
4856 new_segment = true;
4857 }
4858 else if ((abfd->flags & D_PAGED) != 0
4859 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4860 == (hdr->lma & -maxpagesize)))
4861 {
4862 /* If we are demand paged then we can't map two disk
4863 pages onto the same memory page. */
4864 new_segment = false;
4865 }
4866 /* In the next test we have to be careful when last_hdr->lma is close
4867 to the end of the address space. If the aligned address wraps
4868 around to the start of the address space, then there are no more
4869 pages left in memory and it is OK to assume that the current
4870 section can be included in the current segment. */
4871 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4872 + maxpagesize > last_hdr->lma)
4873 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4874 + maxpagesize <= hdr->lma))
4875 {
4876 /* If putting this section in this segment would force us to
4877 skip a page in the segment, then we need a new segment. */
4878 new_segment = true;
4879 }
4880 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4881 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4882 {
4883 /* We don't want to put a loaded section after a
4884 nonloaded (ie. bss style) section in the same segment
4885 as that will force the non-loaded section to be loaded.
4886 Consider .tbss sections as loaded for this purpose. */
4887 new_segment = true;
4888 }
4889 else if ((abfd->flags & D_PAGED) == 0)
4890 {
4891 /* If the file is not demand paged, which means that we
4892 don't require the sections to be correctly aligned in the
4893 file, then there is no other reason for a new segment. */
4894 new_segment = false;
4895 }
4896 else if (info != NULL
4897 && info->separate_code
4898 && executable != ((hdr->flags & SEC_CODE) != 0))
4899 {
4900 new_segment = true;
4901 }
4902 else if (! writable
4903 && (hdr->flags & SEC_READONLY) == 0)
4904 {
4905 /* We don't want to put a writable section in a read only
4906 segment. */
4907 new_segment = true;
4908 }
4909 else
4910 {
4911 /* Otherwise, we can use the same segment. */
4912 new_segment = false;
4913 }
4914
4915 /* Allow interested parties a chance to override our decision. */
4916 if (last_hdr != NULL
4917 && info != NULL
4918 && info->callbacks->override_segment_assignment != NULL)
4919 new_segment
4920 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4921 last_hdr,
4922 new_segment);
4923
4924 if (! new_segment)
4925 {
4926 if ((hdr->flags & SEC_READONLY) == 0)
4927 writable = true;
4928 if ((hdr->flags & SEC_CODE) != 0)
4929 executable = true;
4930 last_hdr = hdr;
4931 /* .tbss sections effectively have zero size. */
4932 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4933 continue;
4934 }
4935
4936 /* We need a new program segment. We must create a new program
4937 header holding all the sections from hdr_index until hdr. */
4938
4939 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4940 if (m == NULL)
4941 goto error_return;
4942
4943 *pm = m;
4944 pm = &m->next;
4945
4946 if ((hdr->flags & SEC_READONLY) == 0)
4947 writable = true;
4948 else
4949 writable = false;
4950
4951 if ((hdr->flags & SEC_CODE) == 0)
4952 executable = false;
4953 else
4954 executable = true;
4955
4956 last_hdr = hdr;
4957 /* .tbss sections effectively have zero size. */
4958 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4959 hdr_index = i;
4960 phdr_in_segment = false;
4961 }
4962
4963 /* Create a final PT_LOAD program segment, but not if it's just
4964 for .tbss. */
4965 if (last_hdr != NULL
4966 && (i - hdr_index != 1
4967 || !IS_TBSS (last_hdr)))
4968 {
4969 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4970 if (m == NULL)
4971 goto error_return;
4972
4973 *pm = m;
4974 pm = &m->next;
4975 }
4976
4977 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4978 if (dynsec != NULL)
4979 {
4980 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4981 if (m == NULL)
4982 goto error_return;
4983 *pm = m;
4984 pm = &m->next;
4985 }
4986
4987 /* For each batch of consecutive loadable SHT_NOTE sections,
4988 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4989 because if we link together nonloadable .note sections and
4990 loadable .note sections, we will generate two .note sections
4991 in the output file. */
4992 for (s = abfd->sections; s != NULL; s = s->next)
4993 {
4994 if ((s->flags & SEC_LOAD) != 0
4995 && elf_section_type (s) == SHT_NOTE)
4996 {
4997 asection *s2;
4998 unsigned int alignment_power = s->alignment_power;
4999
5000 count = 1;
5001 for (s2 = s; s2->next != NULL; s2 = s2->next)
5002 {
5003 if (s2->next->alignment_power == alignment_power
5004 && (s2->next->flags & SEC_LOAD) != 0
5005 && elf_section_type (s2->next) == SHT_NOTE
5006 && align_power (s2->lma + s2->size / opb,
5007 alignment_power)
5008 == s2->next->lma)
5009 count++;
5010 else
5011 break;
5012 }
5013 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5014 amt += count * sizeof (asection *);
5015 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5016 if (m == NULL)
5017 goto error_return;
5018 m->next = NULL;
5019 m->p_type = PT_NOTE;
5020 m->count = count;
5021 while (count > 1)
5022 {
5023 m->sections[m->count - count--] = s;
5024 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5025 s = s->next;
5026 }
5027 m->sections[m->count - 1] = s;
5028 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5029 *pm = m;
5030 pm = &m->next;
5031 }
5032 if (s->flags & SEC_THREAD_LOCAL)
5033 {
5034 if (! tls_count)
5035 first_tls = s;
5036 tls_count++;
5037 }
5038 if (first_mbind == NULL
5039 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5040 first_mbind = s;
5041 }
5042
5043 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5044 if (tls_count > 0)
5045 {
5046 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5047 amt += tls_count * sizeof (asection *);
5048 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5049 if (m == NULL)
5050 goto error_return;
5051 m->next = NULL;
5052 m->p_type = PT_TLS;
5053 m->count = tls_count;
5054 /* Mandated PF_R. */
5055 m->p_flags = PF_R;
5056 m->p_flags_valid = 1;
5057 s = first_tls;
5058 for (i = 0; i < tls_count; ++i)
5059 {
5060 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5061 {
5062 _bfd_error_handler
5063 (_("%pB: TLS sections are not adjacent:"), abfd);
5064 s = first_tls;
5065 i = 0;
5066 while (i < tls_count)
5067 {
5068 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5069 {
5070 _bfd_error_handler (_(" TLS: %pA"), s);
5071 i++;
5072 }
5073 else
5074 _bfd_error_handler (_(" non-TLS: %pA"), s);
5075 s = s->next;
5076 }
5077 bfd_set_error (bfd_error_bad_value);
5078 goto error_return;
5079 }
5080 m->sections[i] = s;
5081 s = s->next;
5082 }
5083
5084 *pm = m;
5085 pm = &m->next;
5086 }
5087
5088 if (first_mbind
5089 && (abfd->flags & D_PAGED) != 0
5090 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5091 for (s = first_mbind; s != NULL; s = s->next)
5092 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5093 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5094 {
5095 /* Mandated PF_R. */
5096 unsigned long p_flags = PF_R;
5097 if ((s->flags & SEC_READONLY) == 0)
5098 p_flags |= PF_W;
5099 if ((s->flags & SEC_CODE) != 0)
5100 p_flags |= PF_X;
5101
5102 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5103 m = bfd_zalloc (abfd, amt);
5104 if (m == NULL)
5105 goto error_return;
5106 m->next = NULL;
5107 m->p_type = (PT_GNU_MBIND_LO
5108 + elf_section_data (s)->this_hdr.sh_info);
5109 m->count = 1;
5110 m->p_flags_valid = 1;
5111 m->sections[0] = s;
5112 m->p_flags = p_flags;
5113
5114 *pm = m;
5115 pm = &m->next;
5116 }
5117
5118 s = bfd_get_section_by_name (abfd,
5119 NOTE_GNU_PROPERTY_SECTION_NAME);
5120 if (s != NULL && s->size != 0)
5121 {
5122 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5123 m = bfd_zalloc (abfd, amt);
5124 if (m == NULL)
5125 goto error_return;
5126 m->next = NULL;
5127 m->p_type = PT_GNU_PROPERTY;
5128 m->count = 1;
5129 m->p_flags_valid = 1;
5130 m->sections[0] = s;
5131 m->p_flags = PF_R;
5132 *pm = m;
5133 pm = &m->next;
5134 }
5135
5136 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5137 segment. */
5138 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5139 if (eh_frame_hdr != NULL
5140 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5141 {
5142 amt = sizeof (struct elf_segment_map);
5143 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5144 if (m == NULL)
5145 goto error_return;
5146 m->next = NULL;
5147 m->p_type = PT_GNU_EH_FRAME;
5148 m->count = 1;
5149 m->sections[0] = eh_frame_hdr->output_section;
5150
5151 *pm = m;
5152 pm = &m->next;
5153 }
5154
5155 if (elf_stack_flags (abfd))
5156 {
5157 amt = sizeof (struct elf_segment_map);
5158 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5159 if (m == NULL)
5160 goto error_return;
5161 m->next = NULL;
5162 m->p_type = PT_GNU_STACK;
5163 m->p_flags = elf_stack_flags (abfd);
5164 m->p_align = bed->stack_align;
5165 m->p_flags_valid = 1;
5166 m->p_align_valid = m->p_align != 0;
5167 if (info->stacksize > 0)
5168 {
5169 m->p_size = info->stacksize;
5170 m->p_size_valid = 1;
5171 }
5172
5173 *pm = m;
5174 pm = &m->next;
5175 }
5176
5177 if (info != NULL && info->relro)
5178 {
5179 for (m = mfirst; m != NULL; m = m->next)
5180 {
5181 if (m->p_type == PT_LOAD
5182 && m->count != 0
5183 && m->sections[0]->vma >= info->relro_start
5184 && m->sections[0]->vma < info->relro_end)
5185 {
5186 i = m->count;
5187 while (--i != (unsigned) -1)
5188 {
5189 if (m->sections[i]->size > 0
5190 && (m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5191 == (SEC_LOAD | SEC_HAS_CONTENTS))
5192 break;
5193 }
5194
5195 if (i != (unsigned) -1)
5196 break;
5197 }
5198 }
5199
5200 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5201 if (m != NULL)
5202 {
5203 amt = sizeof (struct elf_segment_map);
5204 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5205 if (m == NULL)
5206 goto error_return;
5207 m->next = NULL;
5208 m->p_type = PT_GNU_RELRO;
5209 *pm = m;
5210 pm = &m->next;
5211 }
5212 }
5213
5214 free (sections);
5215 elf_seg_map (abfd) = mfirst;
5216 }
5217
5218 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5219 return false;
5220
5221 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5222 ++count;
5223 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5224
5225 return true;
5226
5227 error_return:
5228 free (sections);
5229 return false;
5230 }
5231
5232 /* Sort sections by address. */
5233
5234 static int
5235 elf_sort_sections (const void *arg1, const void *arg2)
5236 {
5237 const asection *sec1 = *(const asection **) arg1;
5238 const asection *sec2 = *(const asection **) arg2;
5239 bfd_size_type size1, size2;
5240
5241 /* Sort by LMA first, since this is the address used to
5242 place the section into a segment. */
5243 if (sec1->lma < sec2->lma)
5244 return -1;
5245 else if (sec1->lma > sec2->lma)
5246 return 1;
5247
5248 /* Then sort by VMA. Normally the LMA and the VMA will be
5249 the same, and this will do nothing. */
5250 if (sec1->vma < sec2->vma)
5251 return -1;
5252 else if (sec1->vma > sec2->vma)
5253 return 1;
5254
5255 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5256
5257 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 \
5258 && (x)->size != 0)
5259
5260 if (TOEND (sec1))
5261 {
5262 if (!TOEND (sec2))
5263 return 1;
5264 }
5265 else if (TOEND (sec2))
5266 return -1;
5267
5268 #undef TOEND
5269
5270 /* Sort by size, to put zero sized sections
5271 before others at the same address. */
5272
5273 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5274 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5275
5276 if (size1 < size2)
5277 return -1;
5278 if (size1 > size2)
5279 return 1;
5280
5281 return sec1->target_index - sec2->target_index;
5282 }
5283
5284 /* This qsort comparison functions sorts PT_LOAD segments first and
5285 by p_paddr, for assign_file_positions_for_load_sections. */
5286
5287 static int
5288 elf_sort_segments (const void *arg1, const void *arg2)
5289 {
5290 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5291 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5292
5293 if (m1->p_type != m2->p_type)
5294 {
5295 if (m1->p_type == PT_NULL)
5296 return 1;
5297 if (m2->p_type == PT_NULL)
5298 return -1;
5299 return m1->p_type < m2->p_type ? -1 : 1;
5300 }
5301 if (m1->includes_filehdr != m2->includes_filehdr)
5302 return m1->includes_filehdr ? -1 : 1;
5303 if (m1->no_sort_lma != m2->no_sort_lma)
5304 return m1->no_sort_lma ? -1 : 1;
5305 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5306 {
5307 bfd_vma lma1, lma2; /* Octets. */
5308 lma1 = 0;
5309 if (m1->p_paddr_valid)
5310 lma1 = m1->p_paddr;
5311 else if (m1->count != 0)
5312 {
5313 unsigned int opb = bfd_octets_per_byte (m1->sections[0]->owner,
5314 m1->sections[0]);
5315 lma1 = (m1->sections[0]->lma + m1->p_vaddr_offset) * opb;
5316 }
5317 lma2 = 0;
5318 if (m2->p_paddr_valid)
5319 lma2 = m2->p_paddr;
5320 else if (m2->count != 0)
5321 {
5322 unsigned int opb = bfd_octets_per_byte (m2->sections[0]->owner,
5323 m2->sections[0]);
5324 lma2 = (m2->sections[0]->lma + m2->p_vaddr_offset) * opb;
5325 }
5326 if (lma1 != lma2)
5327 return lma1 < lma2 ? -1 : 1;
5328 }
5329 if (m1->idx != m2->idx)
5330 return m1->idx < m2->idx ? -1 : 1;
5331 return 0;
5332 }
5333
5334 /* Ian Lance Taylor writes:
5335
5336 We shouldn't be using % with a negative signed number. That's just
5337 not good. We have to make sure either that the number is not
5338 negative, or that the number has an unsigned type. When the types
5339 are all the same size they wind up as unsigned. When file_ptr is a
5340 larger signed type, the arithmetic winds up as signed long long,
5341 which is wrong.
5342
5343 What we're trying to say here is something like ``increase OFF by
5344 the least amount that will cause it to be equal to the VMA modulo
5345 the page size.'' */
5346 /* In other words, something like:
5347
5348 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5349 off_offset = off % bed->maxpagesize;
5350 if (vma_offset < off_offset)
5351 adjustment = vma_offset + bed->maxpagesize - off_offset;
5352 else
5353 adjustment = vma_offset - off_offset;
5354
5355 which can be collapsed into the expression below. */
5356
5357 static file_ptr
5358 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5359 {
5360 /* PR binutils/16199: Handle an alignment of zero. */
5361 if (maxpagesize == 0)
5362 maxpagesize = 1;
5363 return ((vma - off) % maxpagesize);
5364 }
5365
5366 static void
5367 print_segment_map (const struct elf_segment_map *m)
5368 {
5369 unsigned int j;
5370 const char *pt = get_segment_type (m->p_type);
5371 char buf[32];
5372
5373 if (pt == NULL)
5374 {
5375 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5376 sprintf (buf, "LOPROC+%7.7x",
5377 (unsigned int) (m->p_type - PT_LOPROC));
5378 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5379 sprintf (buf, "LOOS+%7.7x",
5380 (unsigned int) (m->p_type - PT_LOOS));
5381 else
5382 snprintf (buf, sizeof (buf), "%8.8x",
5383 (unsigned int) m->p_type);
5384 pt = buf;
5385 }
5386 fflush (stdout);
5387 fprintf (stderr, "%s:", pt);
5388 for (j = 0; j < m->count; j++)
5389 fprintf (stderr, " %s", m->sections [j]->name);
5390 putc ('\n',stderr);
5391 fflush (stderr);
5392 }
5393
5394 static bool
5395 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5396 {
5397 void *buf;
5398 bool ret;
5399
5400 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5401 return false;
5402 buf = bfd_zmalloc (len);
5403 if (buf == NULL)
5404 return false;
5405 ret = bfd_bwrite (buf, len, abfd) == len;
5406 free (buf);
5407 return ret;
5408 }
5409
5410 /* Assign file positions to the sections based on the mapping from
5411 sections to segments. This function also sets up some fields in
5412 the file header. */
5413
5414 static bool
5415 assign_file_positions_for_load_sections (bfd *abfd,
5416 struct bfd_link_info *link_info)
5417 {
5418 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5419 struct elf_segment_map *m;
5420 struct elf_segment_map *phdr_load_seg;
5421 Elf_Internal_Phdr *phdrs;
5422 Elf_Internal_Phdr *p;
5423 file_ptr off; /* Octets. */
5424 bfd_size_type maxpagesize;
5425 unsigned int alloc, actual;
5426 unsigned int i, j;
5427 struct elf_segment_map **sorted_seg_map;
5428 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
5429
5430 if (link_info == NULL
5431 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5432 return false;
5433
5434 alloc = 0;
5435 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5436 m->idx = alloc++;
5437
5438 if (alloc)
5439 {
5440 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5441 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5442 }
5443 else
5444 {
5445 /* PR binutils/12467. */
5446 elf_elfheader (abfd)->e_phoff = 0;
5447 elf_elfheader (abfd)->e_phentsize = 0;
5448 }
5449
5450 elf_elfheader (abfd)->e_phnum = alloc;
5451
5452 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5453 {
5454 actual = alloc;
5455 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5456 }
5457 else
5458 {
5459 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5460 BFD_ASSERT (elf_program_header_size (abfd)
5461 == actual * bed->s->sizeof_phdr);
5462 BFD_ASSERT (actual >= alloc);
5463 }
5464
5465 if (alloc == 0)
5466 {
5467 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5468 return true;
5469 }
5470
5471 /* We're writing the size in elf_program_header_size (abfd),
5472 see assign_file_positions_except_relocs, so make sure we have
5473 that amount allocated, with trailing space cleared.
5474 The variable alloc contains the computed need, while
5475 elf_program_header_size (abfd) contains the size used for the
5476 layout.
5477 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5478 where the layout is forced to according to a larger size in the
5479 last iterations for the testcase ld-elf/header. */
5480 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5481 + alloc * sizeof (*sorted_seg_map)));
5482 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5483 elf_tdata (abfd)->phdr = phdrs;
5484 if (phdrs == NULL)
5485 return false;
5486
5487 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5488 {
5489 sorted_seg_map[j] = m;
5490 /* If elf_segment_map is not from map_sections_to_segments, the
5491 sections may not be correctly ordered. NOTE: sorting should
5492 not be done to the PT_NOTE section of a corefile, which may
5493 contain several pseudo-sections artificially created by bfd.
5494 Sorting these pseudo-sections breaks things badly. */
5495 if (m->count > 1
5496 && !(elf_elfheader (abfd)->e_type == ET_CORE
5497 && m->p_type == PT_NOTE))
5498 {
5499 for (i = 0; i < m->count; i++)
5500 m->sections[i]->target_index = i;
5501 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5502 elf_sort_sections);
5503 }
5504 }
5505 if (alloc > 1)
5506 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5507 elf_sort_segments);
5508
5509 maxpagesize = 1;
5510 if ((abfd->flags & D_PAGED) != 0)
5511 {
5512 if (link_info != NULL)
5513 maxpagesize = link_info->maxpagesize;
5514 else
5515 maxpagesize = bed->maxpagesize;
5516 }
5517
5518 /* Sections must map to file offsets past the ELF file header. */
5519 off = bed->s->sizeof_ehdr;
5520 /* And if one of the PT_LOAD headers doesn't include the program
5521 headers then we'll be mapping program headers in the usual
5522 position after the ELF file header. */
5523 phdr_load_seg = NULL;
5524 for (j = 0; j < alloc; j++)
5525 {
5526 m = sorted_seg_map[j];
5527 if (m->p_type != PT_LOAD)
5528 break;
5529 if (m->includes_phdrs)
5530 {
5531 phdr_load_seg = m;
5532 break;
5533 }
5534 }
5535 if (phdr_load_seg == NULL)
5536 off += actual * bed->s->sizeof_phdr;
5537
5538 for (j = 0; j < alloc; j++)
5539 {
5540 asection **secpp;
5541 bfd_vma off_adjust; /* Octets. */
5542 bool no_contents;
5543
5544 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5545 number of sections with contents contributing to both p_filesz
5546 and p_memsz, followed by a number of sections with no contents
5547 that just contribute to p_memsz. In this loop, OFF tracks next
5548 available file offset for PT_LOAD and PT_NOTE segments. */
5549 m = sorted_seg_map[j];
5550 p = phdrs + m->idx;
5551 p->p_type = m->p_type;
5552 p->p_flags = m->p_flags;
5553
5554 if (m->count == 0)
5555 p->p_vaddr = m->p_vaddr_offset * opb;
5556 else
5557 p->p_vaddr = (m->sections[0]->vma + m->p_vaddr_offset) * opb;
5558
5559 if (m->p_paddr_valid)
5560 p->p_paddr = m->p_paddr;
5561 else if (m->count == 0)
5562 p->p_paddr = 0;
5563 else
5564 p->p_paddr = (m->sections[0]->lma + m->p_vaddr_offset) * opb;
5565
5566 if (p->p_type == PT_LOAD
5567 && (abfd->flags & D_PAGED) != 0)
5568 {
5569 /* p_align in demand paged PT_LOAD segments effectively stores
5570 the maximum page size. When copying an executable with
5571 objcopy, we set m->p_align from the input file. Use this
5572 value for maxpagesize rather than bed->maxpagesize, which
5573 may be different. Note that we use maxpagesize for PT_TLS
5574 segment alignment later in this function, so we are relying
5575 on at least one PT_LOAD segment appearing before a PT_TLS
5576 segment. */
5577 if (m->p_align_valid)
5578 maxpagesize = m->p_align;
5579
5580 p->p_align = maxpagesize;
5581 }
5582 else if (m->p_align_valid)
5583 p->p_align = m->p_align;
5584 else if (m->count == 0)
5585 p->p_align = 1 << bed->s->log_file_align;
5586
5587 if (m == phdr_load_seg)
5588 {
5589 if (!m->includes_filehdr)
5590 p->p_offset = off;
5591 off += actual * bed->s->sizeof_phdr;
5592 }
5593
5594 no_contents = false;
5595 off_adjust = 0;
5596 if (p->p_type == PT_LOAD
5597 && m->count > 0)
5598 {
5599 bfd_size_type align; /* Bytes. */
5600 unsigned int align_power = 0;
5601
5602 if (m->p_align_valid)
5603 align = p->p_align;
5604 else
5605 {
5606 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5607 {
5608 unsigned int secalign;
5609
5610 secalign = bfd_section_alignment (*secpp);
5611 if (secalign > align_power)
5612 align_power = secalign;
5613 }
5614 align = (bfd_size_type) 1 << align_power;
5615 if (align < maxpagesize)
5616 align = maxpagesize;
5617 }
5618
5619 for (i = 0; i < m->count; i++)
5620 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5621 /* If we aren't making room for this section, then
5622 it must be SHT_NOBITS regardless of what we've
5623 set via struct bfd_elf_special_section. */
5624 elf_section_type (m->sections[i]) = SHT_NOBITS;
5625
5626 /* Find out whether this segment contains any loadable
5627 sections. */
5628 no_contents = true;
5629 for (i = 0; i < m->count; i++)
5630 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5631 {
5632 no_contents = false;
5633 break;
5634 }
5635
5636 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align * opb);
5637
5638 /* Broken hardware and/or kernel require that files do not
5639 map the same page with different permissions on some hppa
5640 processors. */
5641 if (j != 0
5642 && (abfd->flags & D_PAGED) != 0
5643 && bed->no_page_alias
5644 && (off & (maxpagesize - 1)) != 0
5645 && ((off & -maxpagesize)
5646 == ((off + off_adjust) & -maxpagesize)))
5647 off_adjust += maxpagesize;
5648 off += off_adjust;
5649 if (no_contents)
5650 {
5651 /* We shouldn't need to align the segment on disk since
5652 the segment doesn't need file space, but the gABI
5653 arguably requires the alignment and glibc ld.so
5654 checks it. So to comply with the alignment
5655 requirement but not waste file space, we adjust
5656 p_offset for just this segment. (OFF_ADJUST is
5657 subtracted from OFF later.) This may put p_offset
5658 past the end of file, but that shouldn't matter. */
5659 }
5660 else
5661 off_adjust = 0;
5662 }
5663 /* Make sure the .dynamic section is the first section in the
5664 PT_DYNAMIC segment. */
5665 else if (p->p_type == PT_DYNAMIC
5666 && m->count > 1
5667 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5668 {
5669 _bfd_error_handler
5670 (_("%pB: The first section in the PT_DYNAMIC segment"
5671 " is not the .dynamic section"),
5672 abfd);
5673 bfd_set_error (bfd_error_bad_value);
5674 return false;
5675 }
5676 /* Set the note section type to SHT_NOTE. */
5677 else if (p->p_type == PT_NOTE)
5678 for (i = 0; i < m->count; i++)
5679 elf_section_type (m->sections[i]) = SHT_NOTE;
5680
5681 if (m->includes_filehdr)
5682 {
5683 if (!m->p_flags_valid)
5684 p->p_flags |= PF_R;
5685 p->p_filesz = bed->s->sizeof_ehdr;
5686 p->p_memsz = bed->s->sizeof_ehdr;
5687 if (p->p_type == PT_LOAD)
5688 {
5689 if (m->count > 0)
5690 {
5691 if (p->p_vaddr < (bfd_vma) off
5692 || (!m->p_paddr_valid
5693 && p->p_paddr < (bfd_vma) off))
5694 {
5695 _bfd_error_handler
5696 (_("%pB: not enough room for program headers,"
5697 " try linking with -N"),
5698 abfd);
5699 bfd_set_error (bfd_error_bad_value);
5700 return false;
5701 }
5702 p->p_vaddr -= off;
5703 if (!m->p_paddr_valid)
5704 p->p_paddr -= off;
5705 }
5706 }
5707 else if (sorted_seg_map[0]->includes_filehdr)
5708 {
5709 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5710 p->p_vaddr = filehdr->p_vaddr;
5711 if (!m->p_paddr_valid)
5712 p->p_paddr = filehdr->p_paddr;
5713 }
5714 }
5715
5716 if (m->includes_phdrs)
5717 {
5718 if (!m->p_flags_valid)
5719 p->p_flags |= PF_R;
5720 p->p_filesz += actual * bed->s->sizeof_phdr;
5721 p->p_memsz += actual * bed->s->sizeof_phdr;
5722 if (!m->includes_filehdr)
5723 {
5724 if (p->p_type == PT_LOAD)
5725 {
5726 elf_elfheader (abfd)->e_phoff = p->p_offset;
5727 if (m->count > 0)
5728 {
5729 p->p_vaddr -= off - p->p_offset;
5730 if (!m->p_paddr_valid)
5731 p->p_paddr -= off - p->p_offset;
5732 }
5733 }
5734 else if (phdr_load_seg != NULL)
5735 {
5736 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5737 bfd_vma phdr_off = 0; /* Octets. */
5738 if (phdr_load_seg->includes_filehdr)
5739 phdr_off = bed->s->sizeof_ehdr;
5740 p->p_vaddr = phdr->p_vaddr + phdr_off;
5741 if (!m->p_paddr_valid)
5742 p->p_paddr = phdr->p_paddr + phdr_off;
5743 p->p_offset = phdr->p_offset + phdr_off;
5744 }
5745 else
5746 p->p_offset = bed->s->sizeof_ehdr;
5747 }
5748 }
5749
5750 if (p->p_type == PT_LOAD
5751 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5752 {
5753 if (!m->includes_filehdr && !m->includes_phdrs)
5754 {
5755 p->p_offset = off;
5756 if (no_contents)
5757 {
5758 /* Put meaningless p_offset for PT_LOAD segments
5759 without file contents somewhere within the first
5760 page, in an attempt to not point past EOF. */
5761 bfd_size_type align = maxpagesize;
5762 if (align < p->p_align)
5763 align = p->p_align;
5764 if (align < 1)
5765 align = 1;
5766 p->p_offset = off % align;
5767 }
5768 }
5769 else
5770 {
5771 file_ptr adjust; /* Octets. */
5772
5773 adjust = off - (p->p_offset + p->p_filesz);
5774 if (!no_contents)
5775 p->p_filesz += adjust;
5776 p->p_memsz += adjust;
5777 }
5778 }
5779
5780 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5781 maps. Set filepos for sections in PT_LOAD segments, and in
5782 core files, for sections in PT_NOTE segments.
5783 assign_file_positions_for_non_load_sections will set filepos
5784 for other sections and update p_filesz for other segments. */
5785 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5786 {
5787 asection *sec;
5788 bfd_size_type align;
5789 Elf_Internal_Shdr *this_hdr;
5790
5791 sec = *secpp;
5792 this_hdr = &elf_section_data (sec)->this_hdr;
5793 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5794
5795 if ((p->p_type == PT_LOAD
5796 || p->p_type == PT_TLS)
5797 && (this_hdr->sh_type != SHT_NOBITS
5798 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5799 && ((this_hdr->sh_flags & SHF_TLS) == 0
5800 || p->p_type == PT_TLS))))
5801 {
5802 bfd_vma p_start = p->p_paddr; /* Octets. */
5803 bfd_vma p_end = p_start + p->p_memsz; /* Octets. */
5804 bfd_vma s_start = sec->lma * opb; /* Octets. */
5805 bfd_vma adjust = s_start - p_end; /* Octets. */
5806
5807 if (adjust != 0
5808 && (s_start < p_end
5809 || p_end < p_start))
5810 {
5811 _bfd_error_handler
5812 /* xgettext:c-format */
5813 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5814 abfd, sec, (uint64_t) s_start / opb,
5815 (uint64_t) p_end / opb);
5816 adjust = 0;
5817 sec->lma = p_end / opb;
5818 }
5819 p->p_memsz += adjust;
5820
5821 if (p->p_type == PT_LOAD)
5822 {
5823 if (this_hdr->sh_type != SHT_NOBITS)
5824 {
5825 off_adjust = 0;
5826 if (p->p_filesz + adjust < p->p_memsz)
5827 {
5828 /* We have a PROGBITS section following NOBITS ones.
5829 Allocate file space for the NOBITS section(s) and
5830 zero it. */
5831 adjust = p->p_memsz - p->p_filesz;
5832 if (!write_zeros (abfd, off, adjust))
5833 return false;
5834 }
5835 }
5836 /* We only adjust sh_offset in SHT_NOBITS sections
5837 as would seem proper for their address when the
5838 section is first in the segment. sh_offset
5839 doesn't really have any significance for
5840 SHT_NOBITS anyway, apart from a notional position
5841 relative to other sections. Historically we
5842 didn't bother with adjusting sh_offset and some
5843 programs depend on it not being adjusted. See
5844 pr12921 and pr25662. */
5845 if (this_hdr->sh_type != SHT_NOBITS || i == 0)
5846 {
5847 off += adjust;
5848 if (this_hdr->sh_type == SHT_NOBITS)
5849 off_adjust += adjust;
5850 }
5851 }
5852 if (this_hdr->sh_type != SHT_NOBITS)
5853 p->p_filesz += adjust;
5854 }
5855
5856 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5857 {
5858 /* The section at i == 0 is the one that actually contains
5859 everything. */
5860 if (i == 0)
5861 {
5862 this_hdr->sh_offset = sec->filepos = off;
5863 off += this_hdr->sh_size;
5864 p->p_filesz = this_hdr->sh_size;
5865 p->p_memsz = 0;
5866 p->p_align = 1;
5867 }
5868 else
5869 {
5870 /* The rest are fake sections that shouldn't be written. */
5871 sec->filepos = 0;
5872 sec->size = 0;
5873 sec->flags = 0;
5874 continue;
5875 }
5876 }
5877 else
5878 {
5879 if (p->p_type == PT_LOAD)
5880 {
5881 this_hdr->sh_offset = sec->filepos = off;
5882 if (this_hdr->sh_type != SHT_NOBITS)
5883 off += this_hdr->sh_size;
5884 }
5885 else if (this_hdr->sh_type == SHT_NOBITS
5886 && (this_hdr->sh_flags & SHF_TLS) != 0
5887 && this_hdr->sh_offset == 0)
5888 {
5889 /* This is a .tbss section that didn't get a PT_LOAD.
5890 (See _bfd_elf_map_sections_to_segments "Create a
5891 final PT_LOAD".) Set sh_offset to the value it
5892 would have if we had created a zero p_filesz and
5893 p_memsz PT_LOAD header for the section. This
5894 also makes the PT_TLS header have the same
5895 p_offset value. */
5896 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5897 off, align);
5898 this_hdr->sh_offset = sec->filepos = off + adjust;
5899 }
5900
5901 if (this_hdr->sh_type != SHT_NOBITS)
5902 {
5903 p->p_filesz += this_hdr->sh_size;
5904 /* A load section without SHF_ALLOC is something like
5905 a note section in a PT_NOTE segment. These take
5906 file space but are not loaded into memory. */
5907 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5908 p->p_memsz += this_hdr->sh_size;
5909 }
5910 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5911 {
5912 if (p->p_type == PT_TLS)
5913 p->p_memsz += this_hdr->sh_size;
5914
5915 /* .tbss is special. It doesn't contribute to p_memsz of
5916 normal segments. */
5917 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5918 p->p_memsz += this_hdr->sh_size;
5919 }
5920
5921 if (align > p->p_align
5922 && !m->p_align_valid
5923 && (p->p_type != PT_LOAD
5924 || (abfd->flags & D_PAGED) == 0))
5925 p->p_align = align;
5926 }
5927
5928 if (!m->p_flags_valid)
5929 {
5930 p->p_flags |= PF_R;
5931 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5932 p->p_flags |= PF_X;
5933 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5934 p->p_flags |= PF_W;
5935 }
5936 }
5937
5938 off -= off_adjust;
5939
5940 /* PR ld/20815 - Check that the program header segment, if
5941 present, will be loaded into memory. */
5942 if (p->p_type == PT_PHDR
5943 && phdr_load_seg == NULL
5944 && !(bed->elf_backend_allow_non_load_phdr != NULL
5945 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5946 {
5947 /* The fix for this error is usually to edit the linker script being
5948 used and set up the program headers manually. Either that or
5949 leave room for the headers at the start of the SECTIONS. */
5950 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5951 " by LOAD segment"),
5952 abfd);
5953 if (link_info == NULL)
5954 return false;
5955 /* Arrange for the linker to exit with an error, deleting
5956 the output file unless --noinhibit-exec is given. */
5957 link_info->callbacks->info ("%X");
5958 }
5959
5960 /* Check that all sections are in a PT_LOAD segment.
5961 Don't check funky gdb generated core files. */
5962 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5963 {
5964 bool check_vma = true;
5965
5966 for (i = 1; i < m->count; i++)
5967 if (m->sections[i]->vma == m->sections[i - 1]->vma
5968 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5969 ->this_hdr), p) != 0
5970 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5971 ->this_hdr), p) != 0)
5972 {
5973 /* Looks like we have overlays packed into the segment. */
5974 check_vma = false;
5975 break;
5976 }
5977
5978 for (i = 0; i < m->count; i++)
5979 {
5980 Elf_Internal_Shdr *this_hdr;
5981 asection *sec;
5982
5983 sec = m->sections[i];
5984 this_hdr = &(elf_section_data(sec)->this_hdr);
5985 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5986 && !ELF_TBSS_SPECIAL (this_hdr, p))
5987 {
5988 _bfd_error_handler
5989 /* xgettext:c-format */
5990 (_("%pB: section `%pA' can't be allocated in segment %d"),
5991 abfd, sec, j);
5992 print_segment_map (m);
5993 }
5994 }
5995 }
5996 }
5997
5998 elf_next_file_pos (abfd) = off;
5999
6000 if (link_info != NULL
6001 && phdr_load_seg != NULL
6002 && phdr_load_seg->includes_filehdr)
6003 {
6004 /* There is a segment that contains both the file headers and the
6005 program headers, so provide a symbol __ehdr_start pointing there.
6006 A program can use this to examine itself robustly. */
6007
6008 struct elf_link_hash_entry *hash
6009 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
6010 false, false, true);
6011 /* If the symbol was referenced and not defined, define it. */
6012 if (hash != NULL
6013 && (hash->root.type == bfd_link_hash_new
6014 || hash->root.type == bfd_link_hash_undefined
6015 || hash->root.type == bfd_link_hash_undefweak
6016 || hash->root.type == bfd_link_hash_common))
6017 {
6018 asection *s = NULL;
6019 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr / opb;
6020
6021 if (phdr_load_seg->count != 0)
6022 /* The segment contains sections, so use the first one. */
6023 s = phdr_load_seg->sections[0];
6024 else
6025 /* Use the first (i.e. lowest-addressed) section in any segment. */
6026 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6027 if (m->p_type == PT_LOAD && m->count != 0)
6028 {
6029 s = m->sections[0];
6030 break;
6031 }
6032
6033 if (s != NULL)
6034 {
6035 hash->root.u.def.value = filehdr_vaddr - s->vma;
6036 hash->root.u.def.section = s;
6037 }
6038 else
6039 {
6040 hash->root.u.def.value = filehdr_vaddr;
6041 hash->root.u.def.section = bfd_abs_section_ptr;
6042 }
6043
6044 hash->root.type = bfd_link_hash_defined;
6045 hash->def_regular = 1;
6046 hash->non_elf = 0;
6047 }
6048 }
6049
6050 return true;
6051 }
6052
6053 /* Determine if a bfd is a debuginfo file. Unfortunately there
6054 is no defined method for detecting such files, so we have to
6055 use heuristics instead. */
6056
6057 bool
6058 is_debuginfo_file (bfd *abfd)
6059 {
6060 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6061 return false;
6062
6063 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6064 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6065 Elf_Internal_Shdr **headerp;
6066
6067 for (headerp = start_headers; headerp < end_headers; headerp ++)
6068 {
6069 Elf_Internal_Shdr *header = * headerp;
6070
6071 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6072 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6073 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6074 && header->sh_type != SHT_NOBITS
6075 && header->sh_type != SHT_NOTE)
6076 return false;
6077 }
6078
6079 return true;
6080 }
6081
6082 /* Assign file positions for the other sections, except for compressed debugging
6083 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6084
6085 static bool
6086 assign_file_positions_for_non_load_sections (bfd *abfd,
6087 struct bfd_link_info *link_info)
6088 {
6089 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6090 Elf_Internal_Shdr **i_shdrpp;
6091 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6092 Elf_Internal_Phdr *phdrs;
6093 Elf_Internal_Phdr *p;
6094 struct elf_segment_map *m;
6095 file_ptr off;
6096 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
6097 bfd_vma maxpagesize;
6098
6099 if (link_info != NULL)
6100 maxpagesize = link_info->maxpagesize;
6101 else
6102 maxpagesize = bed->maxpagesize;
6103 i_shdrpp = elf_elfsections (abfd);
6104 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6105 off = elf_next_file_pos (abfd);
6106 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6107 {
6108 Elf_Internal_Shdr *hdr;
6109
6110 hdr = *hdrpp;
6111 if (hdr->bfd_section != NULL
6112 && (hdr->bfd_section->filepos != 0
6113 || (hdr->sh_type == SHT_NOBITS
6114 && hdr->contents == NULL)))
6115 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6116 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6117 {
6118 if (hdr->sh_size != 0
6119 /* PR 24717 - debuginfo files are known to be not strictly
6120 compliant with the ELF standard. In particular they often
6121 have .note.gnu.property sections that are outside of any
6122 loadable segment. This is not a problem for such files,
6123 so do not warn about them. */
6124 && ! is_debuginfo_file (abfd))
6125 _bfd_error_handler
6126 /* xgettext:c-format */
6127 (_("%pB: warning: allocated section `%s' not in segment"),
6128 abfd,
6129 (hdr->bfd_section == NULL
6130 ? "*unknown*"
6131 : hdr->bfd_section->name));
6132 /* We don't need to page align empty sections. */
6133 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6134 off += vma_page_aligned_bias (hdr->sh_addr, off,
6135 maxpagesize);
6136 else
6137 off += vma_page_aligned_bias (hdr->sh_addr, off,
6138 hdr->sh_addralign);
6139 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6140 false);
6141 }
6142 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6143 && hdr->bfd_section == NULL)
6144 /* We don't know the offset of these sections yet: their size has
6145 not been decided. */
6146 || (hdr->bfd_section != NULL
6147 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6148 || (bfd_section_is_ctf (hdr->bfd_section)
6149 && abfd->is_linker_output)))
6150 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6151 || (elf_symtab_shndx_list (abfd) != NULL
6152 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6153 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6154 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6155 hdr->sh_offset = -1;
6156 else
6157 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
6158 }
6159 elf_next_file_pos (abfd) = off;
6160
6161 /* Now that we have set the section file positions, we can set up
6162 the file positions for the non PT_LOAD segments. */
6163 phdrs = elf_tdata (abfd)->phdr;
6164 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6165 {
6166 if (p->p_type == PT_GNU_RELRO)
6167 {
6168 bfd_vma start, end; /* Bytes. */
6169 bool ok;
6170
6171 if (link_info != NULL)
6172 {
6173 /* During linking the range of the RELRO segment is passed
6174 in link_info. Note that there may be padding between
6175 relro_start and the first RELRO section. */
6176 start = link_info->relro_start;
6177 end = link_info->relro_end;
6178 }
6179 else if (m->count != 0)
6180 {
6181 if (!m->p_size_valid)
6182 abort ();
6183 start = m->sections[0]->vma;
6184 end = start + m->p_size / opb;
6185 }
6186 else
6187 {
6188 start = 0;
6189 end = 0;
6190 }
6191
6192 ok = false;
6193 if (start < end)
6194 {
6195 struct elf_segment_map *lm;
6196 const Elf_Internal_Phdr *lp;
6197 unsigned int i;
6198
6199 /* Find a LOAD segment containing a section in the RELRO
6200 segment. */
6201 for (lm = elf_seg_map (abfd), lp = phdrs;
6202 lm != NULL;
6203 lm = lm->next, lp++)
6204 {
6205 if (lp->p_type == PT_LOAD
6206 && lm->count != 0
6207 && (lm->sections[lm->count - 1]->vma
6208 + (!IS_TBSS (lm->sections[lm->count - 1])
6209 ? lm->sections[lm->count - 1]->size / opb
6210 : 0)) > start
6211 && lm->sections[0]->vma < end)
6212 break;
6213 }
6214
6215 if (lm != NULL)
6216 {
6217 /* Find the section starting the RELRO segment. */
6218 for (i = 0; i < lm->count; i++)
6219 {
6220 asection *s = lm->sections[i];
6221 if (s->vma >= start
6222 && s->vma < end
6223 && s->size != 0)
6224 break;
6225 }
6226
6227 if (i < lm->count)
6228 {
6229 p->p_vaddr = lm->sections[i]->vma * opb;
6230 p->p_paddr = lm->sections[i]->lma * opb;
6231 p->p_offset = lm->sections[i]->filepos;
6232 p->p_memsz = end * opb - p->p_vaddr;
6233 p->p_filesz = p->p_memsz;
6234
6235 /* The RELRO segment typically ends a few bytes
6236 into .got.plt but other layouts are possible.
6237 In cases where the end does not match any
6238 loaded section (for instance is in file
6239 padding), trim p_filesz back to correspond to
6240 the end of loaded section contents. */
6241 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6242 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6243
6244 /* Preserve the alignment and flags if they are
6245 valid. The gold linker generates RW/4 for
6246 the PT_GNU_RELRO section. It is better for
6247 objcopy/strip to honor these attributes
6248 otherwise gdb will choke when using separate
6249 debug files. */
6250 if (!m->p_align_valid)
6251 p->p_align = 1;
6252 if (!m->p_flags_valid)
6253 p->p_flags = PF_R;
6254 ok = true;
6255 }
6256 }
6257 }
6258 if (link_info != NULL)
6259 BFD_ASSERT (ok);
6260 if (!ok)
6261 memset (p, 0, sizeof *p);
6262 }
6263 else if (p->p_type == PT_GNU_STACK)
6264 {
6265 if (m->p_size_valid)
6266 p->p_memsz = m->p_size;
6267 }
6268 else if (m->count != 0)
6269 {
6270 unsigned int i;
6271
6272 if (p->p_type != PT_LOAD
6273 && (p->p_type != PT_NOTE
6274 || bfd_get_format (abfd) != bfd_core))
6275 {
6276 /* A user specified segment layout may include a PHDR
6277 segment that overlaps with a LOAD segment... */
6278 if (p->p_type == PT_PHDR)
6279 {
6280 m->count = 0;
6281 continue;
6282 }
6283
6284 if (m->includes_filehdr || m->includes_phdrs)
6285 {
6286 /* PR 17512: file: 2195325e. */
6287 _bfd_error_handler
6288 (_("%pB: error: non-load segment %d includes file header "
6289 "and/or program header"),
6290 abfd, (int) (p - phdrs));
6291 return false;
6292 }
6293
6294 p->p_filesz = 0;
6295 p->p_offset = m->sections[0]->filepos;
6296 for (i = m->count; i-- != 0;)
6297 {
6298 asection *sect = m->sections[i];
6299 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6300 if (hdr->sh_type != SHT_NOBITS)
6301 {
6302 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6303 + hdr->sh_size);
6304 /* NB: p_memsz of the loadable PT_NOTE segment
6305 should be the same as p_filesz. */
6306 if (p->p_type == PT_NOTE
6307 && (hdr->sh_flags & SHF_ALLOC) != 0)
6308 p->p_memsz = p->p_filesz;
6309 break;
6310 }
6311 }
6312 }
6313 }
6314 }
6315
6316 return true;
6317 }
6318
6319 static elf_section_list *
6320 find_section_in_list (unsigned int i, elf_section_list * list)
6321 {
6322 for (;list != NULL; list = list->next)
6323 if (list->ndx == i)
6324 break;
6325 return list;
6326 }
6327
6328 /* Work out the file positions of all the sections. This is called by
6329 _bfd_elf_compute_section_file_positions. All the section sizes and
6330 VMAs must be known before this is called.
6331
6332 Reloc sections come in two flavours: Those processed specially as
6333 "side-channel" data attached to a section to which they apply, and those that
6334 bfd doesn't process as relocations. The latter sort are stored in a normal
6335 bfd section by bfd_section_from_shdr. We don't consider the former sort
6336 here, unless they form part of the loadable image. Reloc sections not
6337 assigned here (and compressed debugging sections and CTF sections which
6338 nothing else in the file can rely upon) will be handled later by
6339 assign_file_positions_for_relocs.
6340
6341 We also don't set the positions of the .symtab and .strtab here. */
6342
6343 static bool
6344 assign_file_positions_except_relocs (bfd *abfd,
6345 struct bfd_link_info *link_info)
6346 {
6347 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6348 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6349 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6350 unsigned int alloc;
6351
6352 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6353 && bfd_get_format (abfd) != bfd_core)
6354 {
6355 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6356 unsigned int num_sec = elf_numsections (abfd);
6357 Elf_Internal_Shdr **hdrpp;
6358 unsigned int i;
6359 file_ptr off;
6360
6361 /* Start after the ELF header. */
6362 off = i_ehdrp->e_ehsize;
6363
6364 /* We are not creating an executable, which means that we are
6365 not creating a program header, and that the actual order of
6366 the sections in the file is unimportant. */
6367 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6368 {
6369 Elf_Internal_Shdr *hdr;
6370
6371 hdr = *hdrpp;
6372 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6373 && hdr->bfd_section == NULL)
6374 /* Do not assign offsets for these sections yet: we don't know
6375 their sizes. */
6376 || (hdr->bfd_section != NULL
6377 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6378 || (bfd_section_is_ctf (hdr->bfd_section)
6379 && abfd->is_linker_output)))
6380 || i == elf_onesymtab (abfd)
6381 || (elf_symtab_shndx_list (abfd) != NULL
6382 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6383 || i == elf_strtab_sec (abfd)
6384 || i == elf_shstrtab_sec (abfd))
6385 {
6386 hdr->sh_offset = -1;
6387 }
6388 else
6389 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
6390 }
6391
6392 elf_next_file_pos (abfd) = off;
6393 elf_program_header_size (abfd) = 0;
6394 }
6395 else
6396 {
6397 /* Assign file positions for the loaded sections based on the
6398 assignment of sections to segments. */
6399 if (!assign_file_positions_for_load_sections (abfd, link_info))
6400 return false;
6401
6402 /* And for non-load sections. */
6403 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6404 return false;
6405 }
6406
6407 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6408 return false;
6409
6410 /* Write out the program headers. */
6411 alloc = i_ehdrp->e_phnum;
6412 if (alloc != 0)
6413 {
6414 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6415 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6416 return false;
6417 }
6418
6419 return true;
6420 }
6421
6422 bool
6423 _bfd_elf_init_file_header (bfd *abfd,
6424 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6425 {
6426 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6427 struct elf_strtab_hash *shstrtab;
6428 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6429
6430 i_ehdrp = elf_elfheader (abfd);
6431
6432 shstrtab = _bfd_elf_strtab_init ();
6433 if (shstrtab == NULL)
6434 return false;
6435
6436 elf_shstrtab (abfd) = shstrtab;
6437
6438 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6439 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6440 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6441 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6442
6443 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6444 i_ehdrp->e_ident[EI_DATA] =
6445 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6446 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6447
6448 if ((abfd->flags & DYNAMIC) != 0)
6449 i_ehdrp->e_type = ET_DYN;
6450 else if ((abfd->flags & EXEC_P) != 0)
6451 i_ehdrp->e_type = ET_EXEC;
6452 else if (bfd_get_format (abfd) == bfd_core)
6453 i_ehdrp->e_type = ET_CORE;
6454 else
6455 i_ehdrp->e_type = ET_REL;
6456
6457 switch (bfd_get_arch (abfd))
6458 {
6459 case bfd_arch_unknown:
6460 i_ehdrp->e_machine = EM_NONE;
6461 break;
6462
6463 /* There used to be a long list of cases here, each one setting
6464 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6465 in the corresponding bfd definition. To avoid duplication,
6466 the switch was removed. Machines that need special handling
6467 can generally do it in elf_backend_final_write_processing(),
6468 unless they need the information earlier than the final write.
6469 Such need can generally be supplied by replacing the tests for
6470 e_machine with the conditions used to determine it. */
6471 default:
6472 i_ehdrp->e_machine = bed->elf_machine_code;
6473 }
6474
6475 i_ehdrp->e_version = bed->s->ev_current;
6476 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6477
6478 /* No program header, for now. */
6479 i_ehdrp->e_phoff = 0;
6480 i_ehdrp->e_phentsize = 0;
6481 i_ehdrp->e_phnum = 0;
6482
6483 /* Each bfd section is section header entry. */
6484 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6485 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6486
6487 elf_tdata (abfd)->symtab_hdr.sh_name =
6488 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", false);
6489 elf_tdata (abfd)->strtab_hdr.sh_name =
6490 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", false);
6491 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6492 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", false);
6493 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6494 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6495 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6496 return false;
6497
6498 return true;
6499 }
6500
6501 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6502
6503 FIXME: We used to have code here to sort the PT_LOAD segments into
6504 ascending order, as per the ELF spec. But this breaks some programs,
6505 including the Linux kernel. But really either the spec should be
6506 changed or the programs updated. */
6507
6508 bool
6509 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6510 {
6511 if (link_info != NULL && bfd_link_pie (link_info))
6512 {
6513 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6514 unsigned int num_segments = i_ehdrp->e_phnum;
6515 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6516 Elf_Internal_Phdr *segment = tdata->phdr;
6517 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6518
6519 /* Find the lowest p_vaddr in PT_LOAD segments. */
6520 bfd_vma p_vaddr = (bfd_vma) -1;
6521 for (; segment < end_segment; segment++)
6522 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6523 p_vaddr = segment->p_vaddr;
6524
6525 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6526 segments is non-zero. */
6527 if (p_vaddr)
6528 i_ehdrp->e_type = ET_EXEC;
6529 }
6530 return true;
6531 }
6532
6533 /* Assign file positions for all the reloc sections which are not part
6534 of the loadable file image, and the file position of section headers. */
6535
6536 static bool
6537 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6538 {
6539 file_ptr off;
6540 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6541 Elf_Internal_Shdr *shdrp;
6542 Elf_Internal_Ehdr *i_ehdrp;
6543 const struct elf_backend_data *bed;
6544
6545 off = elf_next_file_pos (abfd);
6546
6547 shdrpp = elf_elfsections (abfd);
6548 end_shdrpp = shdrpp + elf_numsections (abfd);
6549 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6550 {
6551 shdrp = *shdrpp;
6552 if (shdrp->sh_offset == -1)
6553 {
6554 asection *sec = shdrp->bfd_section;
6555 bool is_rel = (shdrp->sh_type == SHT_REL
6556 || shdrp->sh_type == SHT_RELA);
6557 bool is_ctf = sec && bfd_section_is_ctf (sec);
6558 if (is_rel
6559 || is_ctf
6560 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6561 {
6562 if (!is_rel && !is_ctf)
6563 {
6564 const char *name = sec->name;
6565 struct bfd_elf_section_data *d;
6566
6567 /* Compress DWARF debug sections. */
6568 if (!bfd_compress_section (abfd, sec,
6569 shdrp->contents))
6570 return false;
6571
6572 if (sec->compress_status == COMPRESS_SECTION_DONE
6573 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6574 {
6575 /* If section is compressed with zlib-gnu, convert
6576 section name from .debug_* to .zdebug_*. */
6577 char *new_name
6578 = convert_debug_to_zdebug (abfd, name);
6579 if (new_name == NULL)
6580 return false;
6581 name = new_name;
6582 }
6583 /* Add section name to section name section. */
6584 if (shdrp->sh_name != (unsigned int) -1)
6585 abort ();
6586 shdrp->sh_name
6587 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6588 name, false);
6589 d = elf_section_data (sec);
6590
6591 /* Add reloc section name to section name section. */
6592 if (d->rel.hdr
6593 && !_bfd_elf_set_reloc_sh_name (abfd,
6594 d->rel.hdr,
6595 name, false))
6596 return false;
6597 if (d->rela.hdr
6598 && !_bfd_elf_set_reloc_sh_name (abfd,
6599 d->rela.hdr,
6600 name, true))
6601 return false;
6602
6603 /* Update section size and contents. */
6604 shdrp->sh_size = sec->size;
6605 shdrp->contents = sec->contents;
6606 shdrp->bfd_section->contents = NULL;
6607 }
6608 else if (is_ctf)
6609 {
6610 /* Update section size and contents. */
6611 shdrp->sh_size = sec->size;
6612 shdrp->contents = sec->contents;
6613 }
6614
6615 off = _bfd_elf_assign_file_position_for_section (shdrp,
6616 off,
6617 true);
6618 }
6619 }
6620 }
6621
6622 /* Place section name section after DWARF debug sections have been
6623 compressed. */
6624 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6625 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6626 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6627 off = _bfd_elf_assign_file_position_for_section (shdrp, off, true);
6628
6629 /* Place the section headers. */
6630 i_ehdrp = elf_elfheader (abfd);
6631 bed = get_elf_backend_data (abfd);
6632 off = align_file_position (off, 1 << bed->s->log_file_align);
6633 i_ehdrp->e_shoff = off;
6634 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6635 elf_next_file_pos (abfd) = off;
6636
6637 return true;
6638 }
6639
6640 bool
6641 _bfd_elf_write_object_contents (bfd *abfd)
6642 {
6643 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6644 Elf_Internal_Shdr **i_shdrp;
6645 bool failed;
6646 unsigned int count, num_sec;
6647 struct elf_obj_tdata *t;
6648
6649 if (! abfd->output_has_begun
6650 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6651 return false;
6652 /* Do not rewrite ELF data when the BFD has been opened for update.
6653 abfd->output_has_begun was set to TRUE on opening, so creation of new
6654 sections, and modification of existing section sizes was restricted.
6655 This means the ELF header, program headers and section headers can't have
6656 changed.
6657 If the contents of any sections has been modified, then those changes have
6658 already been written to the BFD. */
6659 else if (abfd->direction == both_direction)
6660 {
6661 BFD_ASSERT (abfd->output_has_begun);
6662 return true;
6663 }
6664
6665 i_shdrp = elf_elfsections (abfd);
6666
6667 failed = false;
6668 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6669 if (failed)
6670 return false;
6671
6672 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6673 return false;
6674
6675 /* After writing the headers, we need to write the sections too... */
6676 num_sec = elf_numsections (abfd);
6677 for (count = 1; count < num_sec; count++)
6678 {
6679 i_shdrp[count]->sh_name
6680 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6681 i_shdrp[count]->sh_name);
6682 if (bed->elf_backend_section_processing)
6683 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6684 return false;
6685 if (i_shdrp[count]->contents)
6686 {
6687 bfd_size_type amt = i_shdrp[count]->sh_size;
6688
6689 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6690 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6691 return false;
6692 }
6693 }
6694
6695 /* Write out the section header names. */
6696 t = elf_tdata (abfd);
6697 if (elf_shstrtab (abfd) != NULL
6698 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6699 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6700 return false;
6701
6702 if (!(*bed->elf_backend_final_write_processing) (abfd))
6703 return false;
6704
6705 if (!bed->s->write_shdrs_and_ehdr (abfd))
6706 return false;
6707
6708 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6709 if (t->o->build_id.after_write_object_contents != NULL)
6710 return (*t->o->build_id.after_write_object_contents) (abfd);
6711
6712 return true;
6713 }
6714
6715 bool
6716 _bfd_elf_write_corefile_contents (bfd *abfd)
6717 {
6718 /* Hopefully this can be done just like an object file. */
6719 return _bfd_elf_write_object_contents (abfd);
6720 }
6721
6722 /* Given a section, search the header to find them. */
6723
6724 unsigned int
6725 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6726 {
6727 const struct elf_backend_data *bed;
6728 unsigned int sec_index;
6729
6730 if (elf_section_data (asect) != NULL
6731 && elf_section_data (asect)->this_idx != 0)
6732 return elf_section_data (asect)->this_idx;
6733
6734 if (bfd_is_abs_section (asect))
6735 sec_index = SHN_ABS;
6736 else if (bfd_is_com_section (asect))
6737 sec_index = SHN_COMMON;
6738 else if (bfd_is_und_section (asect))
6739 sec_index = SHN_UNDEF;
6740 else
6741 sec_index = SHN_BAD;
6742
6743 bed = get_elf_backend_data (abfd);
6744 if (bed->elf_backend_section_from_bfd_section)
6745 {
6746 int retval = sec_index;
6747
6748 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6749 return retval;
6750 }
6751
6752 if (sec_index == SHN_BAD)
6753 bfd_set_error (bfd_error_nonrepresentable_section);
6754
6755 return sec_index;
6756 }
6757
6758 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6759 on error. */
6760
6761 int
6762 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6763 {
6764 asymbol *asym_ptr = *asym_ptr_ptr;
6765 int idx;
6766 flagword flags = asym_ptr->flags;
6767
6768 /* When gas creates relocations against local labels, it creates its
6769 own symbol for the section, but does put the symbol into the
6770 symbol chain, so udata is 0. When the linker is generating
6771 relocatable output, this section symbol may be for one of the
6772 input sections rather than the output section. */
6773 if (asym_ptr->udata.i == 0
6774 && (flags & BSF_SECTION_SYM)
6775 && asym_ptr->section)
6776 {
6777 asection *sec;
6778 int indx;
6779
6780 sec = asym_ptr->section;
6781 if (sec->owner != abfd && sec->output_section != NULL)
6782 sec = sec->output_section;
6783 if (sec->owner == abfd
6784 && (indx = sec->index) < elf_num_section_syms (abfd)
6785 && elf_section_syms (abfd)[indx] != NULL)
6786 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6787 }
6788
6789 idx = asym_ptr->udata.i;
6790
6791 if (idx == 0)
6792 {
6793 /* This case can occur when using --strip-symbol on a symbol
6794 which is used in a relocation entry. */
6795 _bfd_error_handler
6796 /* xgettext:c-format */
6797 (_("%pB: symbol `%s' required but not present"),
6798 abfd, bfd_asymbol_name (asym_ptr));
6799 bfd_set_error (bfd_error_no_symbols);
6800 return -1;
6801 }
6802
6803 #if DEBUG & 4
6804 {
6805 fprintf (stderr,
6806 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6807 (long) asym_ptr, asym_ptr->name, idx, flags);
6808 fflush (stderr);
6809 }
6810 #endif
6811
6812 return idx;
6813 }
6814
6815 /* Rewrite program header information. */
6816
6817 static bool
6818 rewrite_elf_program_header (bfd *ibfd, bfd *obfd, bfd_vma maxpagesize)
6819 {
6820 Elf_Internal_Ehdr *iehdr;
6821 struct elf_segment_map *map;
6822 struct elf_segment_map *map_first;
6823 struct elf_segment_map **pointer_to_map;
6824 Elf_Internal_Phdr *segment;
6825 asection *section;
6826 unsigned int i;
6827 unsigned int num_segments;
6828 bool phdr_included = false;
6829 bool p_paddr_valid;
6830 struct elf_segment_map *phdr_adjust_seg = NULL;
6831 unsigned int phdr_adjust_num = 0;
6832 const struct elf_backend_data *bed;
6833 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
6834
6835 bed = get_elf_backend_data (ibfd);
6836 iehdr = elf_elfheader (ibfd);
6837
6838 map_first = NULL;
6839 pointer_to_map = &map_first;
6840
6841 num_segments = elf_elfheader (ibfd)->e_phnum;
6842
6843 /* Returns the end address of the segment + 1. */
6844 #define SEGMENT_END(segment, start) \
6845 (start + (segment->p_memsz > segment->p_filesz \
6846 ? segment->p_memsz : segment->p_filesz))
6847
6848 #define SECTION_SIZE(section, segment) \
6849 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6850 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6851 ? section->size : 0)
6852
6853 /* Returns TRUE if the given section is contained within
6854 the given segment. VMA addresses are compared. */
6855 #define IS_CONTAINED_BY_VMA(section, segment, opb) \
6856 (section->vma * (opb) >= segment->p_vaddr \
6857 && (section->vma * (opb) + SECTION_SIZE (section, segment) \
6858 <= (SEGMENT_END (segment, segment->p_vaddr))))
6859
6860 /* Returns TRUE if the given section is contained within
6861 the given segment. LMA addresses are compared. */
6862 #define IS_CONTAINED_BY_LMA(section, segment, base, opb) \
6863 (section->lma * (opb) >= base \
6864 && (section->lma + SECTION_SIZE (section, segment) / (opb) >= section->lma) \
6865 && (section->lma * (opb) + SECTION_SIZE (section, segment) \
6866 <= SEGMENT_END (segment, base)))
6867
6868 /* Handle PT_NOTE segment. */
6869 #define IS_NOTE(p, s) \
6870 (p->p_type == PT_NOTE \
6871 && elf_section_type (s) == SHT_NOTE \
6872 && (bfd_vma) s->filepos >= p->p_offset \
6873 && ((bfd_vma) s->filepos + s->size \
6874 <= p->p_offset + p->p_filesz))
6875
6876 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6877 etc. */
6878 #define IS_COREFILE_NOTE(p, s) \
6879 (IS_NOTE (p, s) \
6880 && bfd_get_format (ibfd) == bfd_core \
6881 && s->vma == 0 \
6882 && s->lma == 0)
6883
6884 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6885 linker, which generates a PT_INTERP section with p_vaddr and
6886 p_memsz set to 0. */
6887 #define IS_SOLARIS_PT_INTERP(p, s) \
6888 (p->p_vaddr == 0 \
6889 && p->p_paddr == 0 \
6890 && p->p_memsz == 0 \
6891 && p->p_filesz > 0 \
6892 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6893 && s->size > 0 \
6894 && (bfd_vma) s->filepos >= p->p_offset \
6895 && ((bfd_vma) s->filepos + s->size \
6896 <= p->p_offset + p->p_filesz))
6897
6898 /* Decide if the given section should be included in the given segment.
6899 A section will be included if:
6900 1. It is within the address space of the segment -- we use the LMA
6901 if that is set for the segment and the VMA otherwise,
6902 2. It is an allocated section or a NOTE section in a PT_NOTE
6903 segment.
6904 3. There is an output section associated with it,
6905 4. The section has not already been allocated to a previous segment.
6906 5. PT_GNU_STACK segments do not include any sections.
6907 6. PT_TLS segment includes only SHF_TLS sections.
6908 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6909 8. PT_DYNAMIC should not contain empty sections at the beginning
6910 (with the possible exception of .dynamic). */
6911 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed, opb) \
6912 ((((segment->p_paddr \
6913 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr, opb) \
6914 : IS_CONTAINED_BY_VMA (section, segment, opb)) \
6915 && (section->flags & SEC_ALLOC) != 0) \
6916 || IS_NOTE (segment, section)) \
6917 && segment->p_type != PT_GNU_STACK \
6918 && (segment->p_type != PT_TLS \
6919 || (section->flags & SEC_THREAD_LOCAL)) \
6920 && (segment->p_type == PT_LOAD \
6921 || segment->p_type == PT_TLS \
6922 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6923 && (segment->p_type != PT_DYNAMIC \
6924 || SECTION_SIZE (section, segment) > 0 \
6925 || (segment->p_paddr \
6926 ? segment->p_paddr != section->lma * (opb) \
6927 : segment->p_vaddr != section->vma * (opb)) \
6928 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6929 && (segment->p_type != PT_LOAD || !section->segment_mark))
6930
6931 /* If the output section of a section in the input segment is NULL,
6932 it is removed from the corresponding output segment. */
6933 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed, opb) \
6934 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb) \
6935 && section->output_section != NULL)
6936
6937 /* Returns TRUE iff seg1 starts after the end of seg2. */
6938 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6939 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6940
6941 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6942 their VMA address ranges and their LMA address ranges overlap.
6943 It is possible to have overlapping VMA ranges without overlapping LMA
6944 ranges. RedBoot images for example can have both .data and .bss mapped
6945 to the same VMA range, but with the .data section mapped to a different
6946 LMA. */
6947 #define SEGMENT_OVERLAPS(seg1, seg2) \
6948 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6949 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6950 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6951 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6952
6953 /* Initialise the segment mark field. */
6954 for (section = ibfd->sections; section != NULL; section = section->next)
6955 section->segment_mark = false;
6956
6957 /* The Solaris linker creates program headers in which all the
6958 p_paddr fields are zero. When we try to objcopy or strip such a
6959 file, we get confused. Check for this case, and if we find it
6960 don't set the p_paddr_valid fields. */
6961 p_paddr_valid = false;
6962 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6963 i < num_segments;
6964 i++, segment++)
6965 if (segment->p_paddr != 0)
6966 {
6967 p_paddr_valid = true;
6968 break;
6969 }
6970
6971 /* Scan through the segments specified in the program header
6972 of the input BFD. For this first scan we look for overlaps
6973 in the loadable segments. These can be created by weird
6974 parameters to objcopy. Also, fix some solaris weirdness. */
6975 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6976 i < num_segments;
6977 i++, segment++)
6978 {
6979 unsigned int j;
6980 Elf_Internal_Phdr *segment2;
6981
6982 if (segment->p_type == PT_INTERP)
6983 for (section = ibfd->sections; section; section = section->next)
6984 if (IS_SOLARIS_PT_INTERP (segment, section))
6985 {
6986 /* Mininal change so that the normal section to segment
6987 assignment code will work. */
6988 segment->p_vaddr = section->vma * opb;
6989 break;
6990 }
6991
6992 if (segment->p_type != PT_LOAD)
6993 {
6994 /* Remove PT_GNU_RELRO segment. */
6995 if (segment->p_type == PT_GNU_RELRO)
6996 segment->p_type = PT_NULL;
6997 continue;
6998 }
6999
7000 /* Determine if this segment overlaps any previous segments. */
7001 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
7002 {
7003 bfd_signed_vma extra_length;
7004
7005 if (segment2->p_type != PT_LOAD
7006 || !SEGMENT_OVERLAPS (segment, segment2))
7007 continue;
7008
7009 /* Merge the two segments together. */
7010 if (segment2->p_vaddr < segment->p_vaddr)
7011 {
7012 /* Extend SEGMENT2 to include SEGMENT and then delete
7013 SEGMENT. */
7014 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
7015 - SEGMENT_END (segment2, segment2->p_vaddr));
7016
7017 if (extra_length > 0)
7018 {
7019 segment2->p_memsz += extra_length;
7020 segment2->p_filesz += extra_length;
7021 }
7022
7023 segment->p_type = PT_NULL;
7024
7025 /* Since we have deleted P we must restart the outer loop. */
7026 i = 0;
7027 segment = elf_tdata (ibfd)->phdr;
7028 break;
7029 }
7030 else
7031 {
7032 /* Extend SEGMENT to include SEGMENT2 and then delete
7033 SEGMENT2. */
7034 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7035 - SEGMENT_END (segment, segment->p_vaddr));
7036
7037 if (extra_length > 0)
7038 {
7039 segment->p_memsz += extra_length;
7040 segment->p_filesz += extra_length;
7041 }
7042
7043 segment2->p_type = PT_NULL;
7044 }
7045 }
7046 }
7047
7048 /* The second scan attempts to assign sections to segments. */
7049 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7050 i < num_segments;
7051 i++, segment++)
7052 {
7053 unsigned int section_count;
7054 asection **sections;
7055 asection *output_section;
7056 unsigned int isec;
7057 asection *matching_lma;
7058 asection *suggested_lma;
7059 unsigned int j;
7060 size_t amt;
7061 asection *first_section;
7062
7063 if (segment->p_type == PT_NULL)
7064 continue;
7065
7066 first_section = NULL;
7067 /* Compute how many sections might be placed into this segment. */
7068 for (section = ibfd->sections, section_count = 0;
7069 section != NULL;
7070 section = section->next)
7071 {
7072 /* Find the first section in the input segment, which may be
7073 removed from the corresponding output segment. */
7074 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb))
7075 {
7076 if (first_section == NULL)
7077 first_section = section;
7078 if (section->output_section != NULL)
7079 ++section_count;
7080 }
7081 }
7082
7083 /* Allocate a segment map big enough to contain
7084 all of the sections we have selected. */
7085 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7086 amt += section_count * sizeof (asection *);
7087 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7088 if (map == NULL)
7089 return false;
7090
7091 /* Initialise the fields of the segment map. Default to
7092 using the physical address of the segment in the input BFD. */
7093 map->next = NULL;
7094 map->p_type = segment->p_type;
7095 map->p_flags = segment->p_flags;
7096 map->p_flags_valid = 1;
7097
7098 if (map->p_type == PT_LOAD
7099 && (ibfd->flags & D_PAGED) != 0
7100 && maxpagesize > 1
7101 && segment->p_align > 1)
7102 {
7103 map->p_align = segment->p_align;
7104 if (segment->p_align > maxpagesize)
7105 map->p_align = maxpagesize;
7106 map->p_align_valid = 1;
7107 }
7108
7109 /* If the first section in the input segment is removed, there is
7110 no need to preserve segment physical address in the corresponding
7111 output segment. */
7112 if (!first_section || first_section->output_section != NULL)
7113 {
7114 map->p_paddr = segment->p_paddr;
7115 map->p_paddr_valid = p_paddr_valid;
7116 }
7117
7118 /* Determine if this segment contains the ELF file header
7119 and if it contains the program headers themselves. */
7120 map->includes_filehdr = (segment->p_offset == 0
7121 && segment->p_filesz >= iehdr->e_ehsize);
7122 map->includes_phdrs = 0;
7123
7124 if (!phdr_included || segment->p_type != PT_LOAD)
7125 {
7126 map->includes_phdrs =
7127 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7128 && (segment->p_offset + segment->p_filesz
7129 >= ((bfd_vma) iehdr->e_phoff
7130 + iehdr->e_phnum * iehdr->e_phentsize)));
7131
7132 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7133 phdr_included = true;
7134 }
7135
7136 if (section_count == 0)
7137 {
7138 /* Special segments, such as the PT_PHDR segment, may contain
7139 no sections, but ordinary, loadable segments should contain
7140 something. They are allowed by the ELF spec however, so only
7141 a warning is produced.
7142 There is however the valid use case of embedded systems which
7143 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7144 flash memory with zeros. No warning is shown for that case. */
7145 if (segment->p_type == PT_LOAD
7146 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7147 /* xgettext:c-format */
7148 _bfd_error_handler
7149 (_("%pB: warning: empty loadable segment detected"
7150 " at vaddr=%#" PRIx64 ", is this intentional?"),
7151 ibfd, (uint64_t) segment->p_vaddr);
7152
7153 map->p_vaddr_offset = segment->p_vaddr / opb;
7154 map->count = 0;
7155 *pointer_to_map = map;
7156 pointer_to_map = &map->next;
7157
7158 continue;
7159 }
7160
7161 /* Now scan the sections in the input BFD again and attempt
7162 to add their corresponding output sections to the segment map.
7163 The problem here is how to handle an output section which has
7164 been moved (ie had its LMA changed). There are four possibilities:
7165
7166 1. None of the sections have been moved.
7167 In this case we can continue to use the segment LMA from the
7168 input BFD.
7169
7170 2. All of the sections have been moved by the same amount.
7171 In this case we can change the segment's LMA to match the LMA
7172 of the first section.
7173
7174 3. Some of the sections have been moved, others have not.
7175 In this case those sections which have not been moved can be
7176 placed in the current segment which will have to have its size,
7177 and possibly its LMA changed, and a new segment or segments will
7178 have to be created to contain the other sections.
7179
7180 4. The sections have been moved, but not by the same amount.
7181 In this case we can change the segment's LMA to match the LMA
7182 of the first section and we will have to create a new segment
7183 or segments to contain the other sections.
7184
7185 In order to save time, we allocate an array to hold the section
7186 pointers that we are interested in. As these sections get assigned
7187 to a segment, they are removed from this array. */
7188
7189 amt = section_count * sizeof (asection *);
7190 sections = (asection **) bfd_malloc (amt);
7191 if (sections == NULL)
7192 return false;
7193
7194 /* Step One: Scan for segment vs section LMA conflicts.
7195 Also add the sections to the section array allocated above.
7196 Also add the sections to the current segment. In the common
7197 case, where the sections have not been moved, this means that
7198 we have completely filled the segment, and there is nothing
7199 more to do. */
7200 isec = 0;
7201 matching_lma = NULL;
7202 suggested_lma = NULL;
7203
7204 for (section = first_section, j = 0;
7205 section != NULL;
7206 section = section->next)
7207 {
7208 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed, opb))
7209 {
7210 output_section = section->output_section;
7211
7212 sections[j++] = section;
7213
7214 /* The Solaris native linker always sets p_paddr to 0.
7215 We try to catch that case here, and set it to the
7216 correct value. Note - some backends require that
7217 p_paddr be left as zero. */
7218 if (!p_paddr_valid
7219 && segment->p_vaddr != 0
7220 && !bed->want_p_paddr_set_to_zero
7221 && isec == 0
7222 && output_section->lma != 0
7223 && (align_power (segment->p_vaddr
7224 + (map->includes_filehdr
7225 ? iehdr->e_ehsize : 0)
7226 + (map->includes_phdrs
7227 ? iehdr->e_phnum * iehdr->e_phentsize
7228 : 0),
7229 output_section->alignment_power * opb)
7230 == (output_section->vma * opb)))
7231 map->p_paddr = segment->p_vaddr;
7232
7233 /* Match up the physical address of the segment with the
7234 LMA address of the output section. */
7235 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7236 opb)
7237 || IS_COREFILE_NOTE (segment, section)
7238 || (bed->want_p_paddr_set_to_zero
7239 && IS_CONTAINED_BY_VMA (output_section, segment, opb)))
7240 {
7241 if (matching_lma == NULL
7242 || output_section->lma < matching_lma->lma)
7243 matching_lma = output_section;
7244
7245 /* We assume that if the section fits within the segment
7246 then it does not overlap any other section within that
7247 segment. */
7248 map->sections[isec++] = output_section;
7249 }
7250 else if (suggested_lma == NULL)
7251 suggested_lma = output_section;
7252
7253 if (j == section_count)
7254 break;
7255 }
7256 }
7257
7258 BFD_ASSERT (j == section_count);
7259
7260 /* Step Two: Adjust the physical address of the current segment,
7261 if necessary. */
7262 if (isec == section_count)
7263 {
7264 /* All of the sections fitted within the segment as currently
7265 specified. This is the default case. Add the segment to
7266 the list of built segments and carry on to process the next
7267 program header in the input BFD. */
7268 map->count = section_count;
7269 *pointer_to_map = map;
7270 pointer_to_map = &map->next;
7271
7272 if (p_paddr_valid
7273 && !bed->want_p_paddr_set_to_zero)
7274 {
7275 bfd_vma hdr_size = 0;
7276 if (map->includes_filehdr)
7277 hdr_size = iehdr->e_ehsize;
7278 if (map->includes_phdrs)
7279 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7280
7281 /* Account for padding before the first section in the
7282 segment. */
7283 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7284 - matching_lma->lma);
7285 }
7286
7287 free (sections);
7288 continue;
7289 }
7290 else
7291 {
7292 /* Change the current segment's physical address to match
7293 the LMA of the first section that fitted, or if no
7294 section fitted, the first section. */
7295 if (matching_lma == NULL)
7296 matching_lma = suggested_lma;
7297
7298 map->p_paddr = matching_lma->lma * opb;
7299
7300 /* Offset the segment physical address from the lma
7301 to allow for space taken up by elf headers. */
7302 if (map->includes_phdrs)
7303 {
7304 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7305
7306 /* iehdr->e_phnum is just an estimate of the number
7307 of program headers that we will need. Make a note
7308 here of the number we used and the segment we chose
7309 to hold these headers, so that we can adjust the
7310 offset when we know the correct value. */
7311 phdr_adjust_num = iehdr->e_phnum;
7312 phdr_adjust_seg = map;
7313 }
7314
7315 if (map->includes_filehdr)
7316 {
7317 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7318 map->p_paddr -= iehdr->e_ehsize;
7319 /* We've subtracted off the size of headers from the
7320 first section lma, but there may have been some
7321 alignment padding before that section too. Try to
7322 account for that by adjusting the segment lma down to
7323 the same alignment. */
7324 if (segment->p_align != 0 && segment->p_align < align)
7325 align = segment->p_align;
7326 map->p_paddr &= -(align * opb);
7327 }
7328 }
7329
7330 /* Step Three: Loop over the sections again, this time assigning
7331 those that fit to the current segment and removing them from the
7332 sections array; but making sure not to leave large gaps. Once all
7333 possible sections have been assigned to the current segment it is
7334 added to the list of built segments and if sections still remain
7335 to be assigned, a new segment is constructed before repeating
7336 the loop. */
7337 isec = 0;
7338 do
7339 {
7340 map->count = 0;
7341 suggested_lma = NULL;
7342
7343 /* Fill the current segment with sections that fit. */
7344 for (j = 0; j < section_count; j++)
7345 {
7346 section = sections[j];
7347
7348 if (section == NULL)
7349 continue;
7350
7351 output_section = section->output_section;
7352
7353 BFD_ASSERT (output_section != NULL);
7354
7355 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7356 opb)
7357 || IS_COREFILE_NOTE (segment, section))
7358 {
7359 if (map->count == 0)
7360 {
7361 /* If the first section in a segment does not start at
7362 the beginning of the segment, then something is
7363 wrong. */
7364 if (align_power (map->p_paddr
7365 + (map->includes_filehdr
7366 ? iehdr->e_ehsize : 0)
7367 + (map->includes_phdrs
7368 ? iehdr->e_phnum * iehdr->e_phentsize
7369 : 0),
7370 output_section->alignment_power * opb)
7371 != output_section->lma * opb)
7372 goto sorry;
7373 }
7374 else
7375 {
7376 asection *prev_sec;
7377
7378 prev_sec = map->sections[map->count - 1];
7379
7380 /* If the gap between the end of the previous section
7381 and the start of this section is more than
7382 maxpagesize then we need to start a new segment. */
7383 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7384 maxpagesize)
7385 < BFD_ALIGN (output_section->lma, maxpagesize))
7386 || (prev_sec->lma + prev_sec->size
7387 > output_section->lma))
7388 {
7389 if (suggested_lma == NULL)
7390 suggested_lma = output_section;
7391
7392 continue;
7393 }
7394 }
7395
7396 map->sections[map->count++] = output_section;
7397 ++isec;
7398 sections[j] = NULL;
7399 if (segment->p_type == PT_LOAD)
7400 section->segment_mark = true;
7401 }
7402 else if (suggested_lma == NULL)
7403 suggested_lma = output_section;
7404 }
7405
7406 /* PR 23932. A corrupt input file may contain sections that cannot
7407 be assigned to any segment - because for example they have a
7408 negative size - or segments that do not contain any sections.
7409 But there are also valid reasons why a segment can be empty.
7410 So allow a count of zero. */
7411
7412 /* Add the current segment to the list of built segments. */
7413 *pointer_to_map = map;
7414 pointer_to_map = &map->next;
7415
7416 if (isec < section_count)
7417 {
7418 /* We still have not allocated all of the sections to
7419 segments. Create a new segment here, initialise it
7420 and carry on looping. */
7421 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7422 amt += section_count * sizeof (asection *);
7423 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7424 if (map == NULL)
7425 {
7426 free (sections);
7427 return false;
7428 }
7429
7430 /* Initialise the fields of the segment map. Set the physical
7431 physical address to the LMA of the first section that has
7432 not yet been assigned. */
7433 map->next = NULL;
7434 map->p_type = segment->p_type;
7435 map->p_flags = segment->p_flags;
7436 map->p_flags_valid = 1;
7437 map->p_paddr = suggested_lma->lma * opb;
7438 map->p_paddr_valid = p_paddr_valid;
7439 map->includes_filehdr = 0;
7440 map->includes_phdrs = 0;
7441 }
7442
7443 continue;
7444 sorry:
7445 bfd_set_error (bfd_error_sorry);
7446 free (sections);
7447 return false;
7448 }
7449 while (isec < section_count);
7450
7451 free (sections);
7452 }
7453
7454 elf_seg_map (obfd) = map_first;
7455
7456 /* If we had to estimate the number of program headers that were
7457 going to be needed, then check our estimate now and adjust
7458 the offset if necessary. */
7459 if (phdr_adjust_seg != NULL)
7460 {
7461 unsigned int count;
7462
7463 for (count = 0, map = map_first; map != NULL; map = map->next)
7464 count++;
7465
7466 if (count > phdr_adjust_num)
7467 phdr_adjust_seg->p_paddr
7468 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7469
7470 for (map = map_first; map != NULL; map = map->next)
7471 if (map->p_type == PT_PHDR)
7472 {
7473 bfd_vma adjust
7474 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7475 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7476 break;
7477 }
7478 }
7479
7480 #undef SEGMENT_END
7481 #undef SECTION_SIZE
7482 #undef IS_CONTAINED_BY_VMA
7483 #undef IS_CONTAINED_BY_LMA
7484 #undef IS_NOTE
7485 #undef IS_COREFILE_NOTE
7486 #undef IS_SOLARIS_PT_INTERP
7487 #undef IS_SECTION_IN_INPUT_SEGMENT
7488 #undef INCLUDE_SECTION_IN_SEGMENT
7489 #undef SEGMENT_AFTER_SEGMENT
7490 #undef SEGMENT_OVERLAPS
7491 return true;
7492 }
7493
7494 /* Copy ELF program header information. */
7495
7496 static bool
7497 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7498 {
7499 Elf_Internal_Ehdr *iehdr;
7500 struct elf_segment_map *map;
7501 struct elf_segment_map *map_first;
7502 struct elf_segment_map **pointer_to_map;
7503 Elf_Internal_Phdr *segment;
7504 unsigned int i;
7505 unsigned int num_segments;
7506 bool phdr_included = false;
7507 bool p_paddr_valid;
7508 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
7509
7510 iehdr = elf_elfheader (ibfd);
7511
7512 map_first = NULL;
7513 pointer_to_map = &map_first;
7514
7515 /* If all the segment p_paddr fields are zero, don't set
7516 map->p_paddr_valid. */
7517 p_paddr_valid = false;
7518 num_segments = elf_elfheader (ibfd)->e_phnum;
7519 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7520 i < num_segments;
7521 i++, segment++)
7522 if (segment->p_paddr != 0)
7523 {
7524 p_paddr_valid = true;
7525 break;
7526 }
7527
7528 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7529 i < num_segments;
7530 i++, segment++)
7531 {
7532 asection *section;
7533 unsigned int section_count;
7534 size_t amt;
7535 Elf_Internal_Shdr *this_hdr;
7536 asection *first_section = NULL;
7537 asection *lowest_section;
7538
7539 /* Compute how many sections are in this segment. */
7540 for (section = ibfd->sections, section_count = 0;
7541 section != NULL;
7542 section = section->next)
7543 {
7544 this_hdr = &(elf_section_data(section)->this_hdr);
7545 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7546 {
7547 if (first_section == NULL)
7548 first_section = section;
7549 section_count++;
7550 }
7551 }
7552
7553 /* Allocate a segment map big enough to contain
7554 all of the sections we have selected. */
7555 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7556 amt += section_count * sizeof (asection *);
7557 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7558 if (map == NULL)
7559 return false;
7560
7561 /* Initialize the fields of the output segment map with the
7562 input segment. */
7563 map->next = NULL;
7564 map->p_type = segment->p_type;
7565 map->p_flags = segment->p_flags;
7566 map->p_flags_valid = 1;
7567 map->p_paddr = segment->p_paddr;
7568 map->p_paddr_valid = p_paddr_valid;
7569 map->p_align = segment->p_align;
7570 map->p_align_valid = 1;
7571 map->p_vaddr_offset = 0;
7572
7573 if (map->p_type == PT_GNU_RELRO
7574 || map->p_type == PT_GNU_STACK)
7575 {
7576 /* The PT_GNU_RELRO segment may contain the first a few
7577 bytes in the .got.plt section even if the whole .got.plt
7578 section isn't in the PT_GNU_RELRO segment. We won't
7579 change the size of the PT_GNU_RELRO segment.
7580 Similarly, PT_GNU_STACK size is significant on uclinux
7581 systems. */
7582 map->p_size = segment->p_memsz;
7583 map->p_size_valid = 1;
7584 }
7585
7586 /* Determine if this segment contains the ELF file header
7587 and if it contains the program headers themselves. */
7588 map->includes_filehdr = (segment->p_offset == 0
7589 && segment->p_filesz >= iehdr->e_ehsize);
7590
7591 map->includes_phdrs = 0;
7592 if (! phdr_included || segment->p_type != PT_LOAD)
7593 {
7594 map->includes_phdrs =
7595 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7596 && (segment->p_offset + segment->p_filesz
7597 >= ((bfd_vma) iehdr->e_phoff
7598 + iehdr->e_phnum * iehdr->e_phentsize)));
7599
7600 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7601 phdr_included = true;
7602 }
7603
7604 lowest_section = NULL;
7605 if (section_count != 0)
7606 {
7607 unsigned int isec = 0;
7608
7609 for (section = first_section;
7610 section != NULL;
7611 section = section->next)
7612 {
7613 this_hdr = &(elf_section_data(section)->this_hdr);
7614 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7615 {
7616 map->sections[isec++] = section->output_section;
7617 if ((section->flags & SEC_ALLOC) != 0)
7618 {
7619 bfd_vma seg_off;
7620
7621 if (lowest_section == NULL
7622 || section->lma < lowest_section->lma)
7623 lowest_section = section;
7624
7625 /* Section lmas are set up from PT_LOAD header
7626 p_paddr in _bfd_elf_make_section_from_shdr.
7627 If this header has a p_paddr that disagrees
7628 with the section lma, flag the p_paddr as
7629 invalid. */
7630 if ((section->flags & SEC_LOAD) != 0)
7631 seg_off = this_hdr->sh_offset - segment->p_offset;
7632 else
7633 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7634 if (section->lma * opb - segment->p_paddr != seg_off)
7635 map->p_paddr_valid = false;
7636 }
7637 if (isec == section_count)
7638 break;
7639 }
7640 }
7641 }
7642
7643 if (section_count == 0)
7644 map->p_vaddr_offset = segment->p_vaddr / opb;
7645 else if (map->p_paddr_valid)
7646 {
7647 /* Account for padding before the first section in the segment. */
7648 bfd_vma hdr_size = 0;
7649 if (map->includes_filehdr)
7650 hdr_size = iehdr->e_ehsize;
7651 if (map->includes_phdrs)
7652 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7653
7654 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7655 - (lowest_section ? lowest_section->lma : 0));
7656 }
7657
7658 map->count = section_count;
7659 *pointer_to_map = map;
7660 pointer_to_map = &map->next;
7661 }
7662
7663 elf_seg_map (obfd) = map_first;
7664 return true;
7665 }
7666
7667 /* Copy private BFD data. This copies or rewrites ELF program header
7668 information. */
7669
7670 static bool
7671 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7672 {
7673 bfd_vma maxpagesize;
7674
7675 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7676 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7677 return true;
7678
7679 if (elf_tdata (ibfd)->phdr == NULL)
7680 return true;
7681
7682 if (ibfd->xvec == obfd->xvec)
7683 {
7684 /* Check to see if any sections in the input BFD
7685 covered by ELF program header have changed. */
7686 Elf_Internal_Phdr *segment;
7687 asection *section, *osec;
7688 unsigned int i, num_segments;
7689 Elf_Internal_Shdr *this_hdr;
7690 const struct elf_backend_data *bed;
7691
7692 bed = get_elf_backend_data (ibfd);
7693
7694 /* Regenerate the segment map if p_paddr is set to 0. */
7695 if (bed->want_p_paddr_set_to_zero)
7696 goto rewrite;
7697
7698 /* Initialize the segment mark field. */
7699 for (section = obfd->sections; section != NULL;
7700 section = section->next)
7701 section->segment_mark = false;
7702
7703 num_segments = elf_elfheader (ibfd)->e_phnum;
7704 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7705 i < num_segments;
7706 i++, segment++)
7707 {
7708 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7709 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7710 which severly confuses things, so always regenerate the segment
7711 map in this case. */
7712 if (segment->p_paddr == 0
7713 && segment->p_memsz == 0
7714 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7715 goto rewrite;
7716
7717 for (section = ibfd->sections;
7718 section != NULL; section = section->next)
7719 {
7720 /* We mark the output section so that we know it comes
7721 from the input BFD. */
7722 osec = section->output_section;
7723 if (osec)
7724 osec->segment_mark = true;
7725
7726 /* Check if this section is covered by the segment. */
7727 this_hdr = &(elf_section_data(section)->this_hdr);
7728 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7729 {
7730 /* FIXME: Check if its output section is changed or
7731 removed. What else do we need to check? */
7732 if (osec == NULL
7733 || section->flags != osec->flags
7734 || section->lma != osec->lma
7735 || section->vma != osec->vma
7736 || section->size != osec->size
7737 || section->rawsize != osec->rawsize
7738 || section->alignment_power != osec->alignment_power)
7739 goto rewrite;
7740 }
7741 }
7742 }
7743
7744 /* Check to see if any output section do not come from the
7745 input BFD. */
7746 for (section = obfd->sections; section != NULL;
7747 section = section->next)
7748 {
7749 if (!section->segment_mark)
7750 goto rewrite;
7751 else
7752 section->segment_mark = false;
7753 }
7754
7755 return copy_elf_program_header (ibfd, obfd);
7756 }
7757
7758 rewrite:
7759 maxpagesize = 0;
7760 if (ibfd->xvec == obfd->xvec)
7761 {
7762 /* When rewriting program header, set the output maxpagesize to
7763 the maximum alignment of input PT_LOAD segments. */
7764 Elf_Internal_Phdr *segment;
7765 unsigned int i;
7766 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7767
7768 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7769 i < num_segments;
7770 i++, segment++)
7771 if (segment->p_type == PT_LOAD
7772 && maxpagesize < segment->p_align)
7773 {
7774 /* PR 17512: file: f17299af. */
7775 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7776 /* xgettext:c-format */
7777 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7778 PRIx64 " is too large"),
7779 ibfd, (uint64_t) segment->p_align);
7780 else
7781 maxpagesize = segment->p_align;
7782 }
7783 }
7784 if (maxpagesize == 0)
7785 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
7786
7787 return rewrite_elf_program_header (ibfd, obfd, maxpagesize);
7788 }
7789
7790 /* Initialize private output section information from input section. */
7791
7792 bool
7793 _bfd_elf_init_private_section_data (bfd *ibfd,
7794 asection *isec,
7795 bfd *obfd,
7796 asection *osec,
7797 struct bfd_link_info *link_info)
7798
7799 {
7800 Elf_Internal_Shdr *ihdr, *ohdr;
7801 bool final_link = (link_info != NULL
7802 && !bfd_link_relocatable (link_info));
7803
7804 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7805 || obfd->xvec->flavour != bfd_target_elf_flavour)
7806 return true;
7807
7808 BFD_ASSERT (elf_section_data (osec) != NULL);
7809
7810 /* If this is a known ABI section, ELF section type and flags may
7811 have been set up when OSEC was created. For normal sections we
7812 allow the user to override the type and flags other than
7813 SHF_MASKOS and SHF_MASKPROC. */
7814 if (elf_section_type (osec) == SHT_PROGBITS
7815 || elf_section_type (osec) == SHT_NOTE
7816 || elf_section_type (osec) == SHT_NOBITS)
7817 elf_section_type (osec) = SHT_NULL;
7818 /* For objcopy and relocatable link, copy the ELF section type from
7819 the input file if the BFD section flags are the same. (If they
7820 are different the user may be doing something like
7821 "objcopy --set-section-flags .text=alloc,data".) For a final
7822 link allow some flags that the linker clears to differ. */
7823 if (elf_section_type (osec) == SHT_NULL
7824 && (osec->flags == isec->flags
7825 || (final_link
7826 && ((osec->flags ^ isec->flags)
7827 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7828 elf_section_type (osec) = elf_section_type (isec);
7829
7830 /* FIXME: Is this correct for all OS/PROC specific flags? */
7831 elf_section_flags (osec) = (elf_section_flags (isec)
7832 & (SHF_MASKOS | SHF_MASKPROC));
7833
7834 /* Copy sh_info from input for mbind section. */
7835 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7836 && elf_section_flags (isec) & SHF_GNU_MBIND)
7837 elf_section_data (osec)->this_hdr.sh_info
7838 = elf_section_data (isec)->this_hdr.sh_info;
7839
7840 /* Set things up for objcopy and relocatable link. The output
7841 SHT_GROUP section will have its elf_next_in_group pointing back
7842 to the input group members. Ignore linker created group section.
7843 See elfNN_ia64_object_p in elfxx-ia64.c. */
7844 if ((link_info == NULL
7845 || !link_info->resolve_section_groups)
7846 && (elf_sec_group (isec) == NULL
7847 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7848 {
7849 if (elf_section_flags (isec) & SHF_GROUP)
7850 elf_section_flags (osec) |= SHF_GROUP;
7851 elf_next_in_group (osec) = elf_next_in_group (isec);
7852 elf_section_data (osec)->group = elf_section_data (isec)->group;
7853 }
7854
7855 /* If not decompress, preserve SHF_COMPRESSED. */
7856 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7857 elf_section_flags (osec) |= (elf_section_flags (isec)
7858 & SHF_COMPRESSED);
7859
7860 ihdr = &elf_section_data (isec)->this_hdr;
7861
7862 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7863 don't use the output section of the linked-to section since it
7864 may be NULL at this point. */
7865 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7866 {
7867 ohdr = &elf_section_data (osec)->this_hdr;
7868 ohdr->sh_flags |= SHF_LINK_ORDER;
7869 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7870 }
7871
7872 osec->use_rela_p = isec->use_rela_p;
7873
7874 return true;
7875 }
7876
7877 /* Copy private section information. This copies over the entsize
7878 field, and sometimes the info field. */
7879
7880 bool
7881 _bfd_elf_copy_private_section_data (bfd *ibfd,
7882 asection *isec,
7883 bfd *obfd,
7884 asection *osec)
7885 {
7886 Elf_Internal_Shdr *ihdr, *ohdr;
7887
7888 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7889 || obfd->xvec->flavour != bfd_target_elf_flavour)
7890 return true;
7891
7892 ihdr = &elf_section_data (isec)->this_hdr;
7893 ohdr = &elf_section_data (osec)->this_hdr;
7894
7895 ohdr->sh_entsize = ihdr->sh_entsize;
7896
7897 if (ihdr->sh_type == SHT_SYMTAB
7898 || ihdr->sh_type == SHT_DYNSYM
7899 || ihdr->sh_type == SHT_GNU_verneed
7900 || ihdr->sh_type == SHT_GNU_verdef)
7901 ohdr->sh_info = ihdr->sh_info;
7902
7903 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7904 NULL);
7905 }
7906
7907 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7908 necessary if we are removing either the SHT_GROUP section or any of
7909 the group member sections. DISCARDED is the value that a section's
7910 output_section has if the section will be discarded, NULL when this
7911 function is called from objcopy, bfd_abs_section_ptr when called
7912 from the linker. */
7913
7914 bool
7915 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7916 {
7917 asection *isec;
7918
7919 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7920 if (elf_section_type (isec) == SHT_GROUP)
7921 {
7922 asection *first = elf_next_in_group (isec);
7923 asection *s = first;
7924 bfd_size_type removed = 0;
7925
7926 while (s != NULL)
7927 {
7928 /* If this member section is being output but the
7929 SHT_GROUP section is not, then clear the group info
7930 set up by _bfd_elf_copy_private_section_data. */
7931 if (s->output_section != discarded
7932 && isec->output_section == discarded)
7933 {
7934 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7935 elf_group_name (s->output_section) = NULL;
7936 }
7937 else
7938 {
7939 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7940 if (s->output_section == discarded
7941 && isec->output_section != discarded)
7942 {
7943 /* Conversely, if the member section is not being
7944 output but the SHT_GROUP section is, then adjust
7945 its size. */
7946 removed += 4;
7947 if (elf_sec->rel.hdr != NULL
7948 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7949 removed += 4;
7950 if (elf_sec->rela.hdr != NULL
7951 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7952 removed += 4;
7953 }
7954 else
7955 {
7956 /* Also adjust for zero-sized relocation member
7957 section. */
7958 if (elf_sec->rel.hdr != NULL
7959 && elf_sec->rel.hdr->sh_size == 0)
7960 removed += 4;
7961 if (elf_sec->rela.hdr != NULL
7962 && elf_sec->rela.hdr->sh_size == 0)
7963 removed += 4;
7964 }
7965 }
7966 s = elf_next_in_group (s);
7967 if (s == first)
7968 break;
7969 }
7970 if (removed != 0)
7971 {
7972 if (discarded != NULL)
7973 {
7974 /* If we've been called for ld -r, then we need to
7975 adjust the input section size. */
7976 if (isec->rawsize == 0)
7977 isec->rawsize = isec->size;
7978 isec->size = isec->rawsize - removed;
7979 if (isec->size <= 4)
7980 {
7981 isec->size = 0;
7982 isec->flags |= SEC_EXCLUDE;
7983 }
7984 }
7985 else
7986 {
7987 /* Adjust the output section size when called from
7988 objcopy. */
7989 isec->output_section->size -= removed;
7990 if (isec->output_section->size <= 4)
7991 {
7992 isec->output_section->size = 0;
7993 isec->output_section->flags |= SEC_EXCLUDE;
7994 }
7995 }
7996 }
7997 }
7998
7999 return true;
8000 }
8001
8002 /* Copy private header information. */
8003
8004 bool
8005 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
8006 {
8007 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8008 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8009 return true;
8010
8011 /* Copy over private BFD data if it has not already been copied.
8012 This must be done here, rather than in the copy_private_bfd_data
8013 entry point, because the latter is called after the section
8014 contents have been set, which means that the program headers have
8015 already been worked out. */
8016 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
8017 {
8018 if (! copy_private_bfd_data (ibfd, obfd))
8019 return false;
8020 }
8021
8022 return _bfd_elf_fixup_group_sections (ibfd, NULL);
8023 }
8024
8025 /* Copy private symbol information. If this symbol is in a section
8026 which we did not map into a BFD section, try to map the section
8027 index correctly. We use special macro definitions for the mapped
8028 section indices; these definitions are interpreted by the
8029 swap_out_syms function. */
8030
8031 #define MAP_ONESYMTAB (SHN_HIOS + 1)
8032 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
8033 #define MAP_STRTAB (SHN_HIOS + 3)
8034 #define MAP_SHSTRTAB (SHN_HIOS + 4)
8035 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
8036
8037 bool
8038 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
8039 asymbol *isymarg,
8040 bfd *obfd,
8041 asymbol *osymarg)
8042 {
8043 elf_symbol_type *isym, *osym;
8044
8045 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8046 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8047 return true;
8048
8049 isym = elf_symbol_from (isymarg);
8050 osym = elf_symbol_from (osymarg);
8051
8052 if (isym != NULL
8053 && isym->internal_elf_sym.st_shndx != 0
8054 && osym != NULL
8055 && bfd_is_abs_section (isym->symbol.section))
8056 {
8057 unsigned int shndx;
8058
8059 shndx = isym->internal_elf_sym.st_shndx;
8060 if (shndx == elf_onesymtab (ibfd))
8061 shndx = MAP_ONESYMTAB;
8062 else if (shndx == elf_dynsymtab (ibfd))
8063 shndx = MAP_DYNSYMTAB;
8064 else if (shndx == elf_strtab_sec (ibfd))
8065 shndx = MAP_STRTAB;
8066 else if (shndx == elf_shstrtab_sec (ibfd))
8067 shndx = MAP_SHSTRTAB;
8068 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
8069 shndx = MAP_SYM_SHNDX;
8070 osym->internal_elf_sym.st_shndx = shndx;
8071 }
8072
8073 return true;
8074 }
8075
8076 /* Swap out the symbols. */
8077
8078 static bool
8079 swap_out_syms (bfd *abfd,
8080 struct elf_strtab_hash **sttp,
8081 int relocatable_p,
8082 struct bfd_link_info *info)
8083 {
8084 const struct elf_backend_data *bed;
8085 unsigned int symcount;
8086 asymbol **syms;
8087 struct elf_strtab_hash *stt;
8088 Elf_Internal_Shdr *symtab_hdr;
8089 Elf_Internal_Shdr *symtab_shndx_hdr;
8090 Elf_Internal_Shdr *symstrtab_hdr;
8091 struct elf_sym_strtab *symstrtab;
8092 bfd_byte *outbound_syms;
8093 bfd_byte *outbound_shndx;
8094 unsigned long outbound_syms_index;
8095 unsigned long outbound_shndx_index;
8096 unsigned int idx;
8097 unsigned int num_locals;
8098 size_t amt;
8099 bool name_local_sections;
8100
8101 if (!elf_map_symbols (abfd, &num_locals))
8102 return false;
8103
8104 /* Dump out the symtabs. */
8105 stt = _bfd_elf_strtab_init ();
8106 if (stt == NULL)
8107 return false;
8108
8109 bed = get_elf_backend_data (abfd);
8110 symcount = bfd_get_symcount (abfd);
8111 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8112 symtab_hdr->sh_type = SHT_SYMTAB;
8113 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8114 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8115 symtab_hdr->sh_info = num_locals + 1;
8116 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8117
8118 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8119 symstrtab_hdr->sh_type = SHT_STRTAB;
8120
8121 /* Allocate buffer to swap out the .strtab section. */
8122 if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt)
8123 || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL)
8124 {
8125 bfd_set_error (bfd_error_no_memory);
8126 _bfd_elf_strtab_free (stt);
8127 return false;
8128 }
8129
8130 if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt)
8131 || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL)
8132 {
8133 error_no_mem:
8134 bfd_set_error (bfd_error_no_memory);
8135 error_return:
8136 free (symstrtab);
8137 _bfd_elf_strtab_free (stt);
8138 return false;
8139 }
8140 symtab_hdr->contents = outbound_syms;
8141 outbound_syms_index = 0;
8142
8143 outbound_shndx = NULL;
8144 outbound_shndx_index = 0;
8145
8146 if (elf_symtab_shndx_list (abfd))
8147 {
8148 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8149 if (symtab_shndx_hdr->sh_name != 0)
8150 {
8151 if (_bfd_mul_overflow (symcount + 1,
8152 sizeof (Elf_External_Sym_Shndx), &amt))
8153 goto error_no_mem;
8154 outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt);
8155 if (outbound_shndx == NULL)
8156 goto error_return;
8157
8158 symtab_shndx_hdr->contents = outbound_shndx;
8159 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8160 symtab_shndx_hdr->sh_size = amt;
8161 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8162 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8163 }
8164 /* FIXME: What about any other headers in the list ? */
8165 }
8166
8167 /* Now generate the data (for "contents"). */
8168 {
8169 /* Fill in zeroth symbol and swap it out. */
8170 Elf_Internal_Sym sym;
8171 sym.st_name = 0;
8172 sym.st_value = 0;
8173 sym.st_size = 0;
8174 sym.st_info = 0;
8175 sym.st_other = 0;
8176 sym.st_shndx = SHN_UNDEF;
8177 sym.st_target_internal = 0;
8178 symstrtab[0].sym = sym;
8179 symstrtab[0].dest_index = outbound_syms_index;
8180 symstrtab[0].destshndx_index = outbound_shndx_index;
8181 outbound_syms_index++;
8182 if (outbound_shndx != NULL)
8183 outbound_shndx_index++;
8184 }
8185
8186 name_local_sections
8187 = (bed->elf_backend_name_local_section_symbols
8188 && bed->elf_backend_name_local_section_symbols (abfd));
8189
8190 syms = bfd_get_outsymbols (abfd);
8191 for (idx = 0; idx < symcount;)
8192 {
8193 Elf_Internal_Sym sym;
8194 bfd_vma value = syms[idx]->value;
8195 elf_symbol_type *type_ptr;
8196 flagword flags = syms[idx]->flags;
8197 int type;
8198
8199 if (!name_local_sections
8200 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8201 {
8202 /* Local section symbols have no name. */
8203 sym.st_name = (unsigned long) -1;
8204 }
8205 else
8206 {
8207 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8208 to get the final offset for st_name. */
8209 sym.st_name
8210 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8211 false);
8212 if (sym.st_name == (unsigned long) -1)
8213 goto error_return;
8214 }
8215
8216 type_ptr = elf_symbol_from (syms[idx]);
8217
8218 if ((flags & BSF_SECTION_SYM) == 0
8219 && bfd_is_com_section (syms[idx]->section))
8220 {
8221 /* ELF common symbols put the alignment into the `value' field,
8222 and the size into the `size' field. This is backwards from
8223 how BFD handles it, so reverse it here. */
8224 sym.st_size = value;
8225 if (type_ptr == NULL
8226 || type_ptr->internal_elf_sym.st_value == 0)
8227 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8228 else
8229 sym.st_value = type_ptr->internal_elf_sym.st_value;
8230 sym.st_shndx = _bfd_elf_section_from_bfd_section
8231 (abfd, syms[idx]->section);
8232 }
8233 else
8234 {
8235 asection *sec = syms[idx]->section;
8236 unsigned int shndx;
8237
8238 if (sec->output_section)
8239 {
8240 value += sec->output_offset;
8241 sec = sec->output_section;
8242 }
8243
8244 /* Don't add in the section vma for relocatable output. */
8245 if (! relocatable_p)
8246 value += sec->vma;
8247 sym.st_value = value;
8248 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8249
8250 if (bfd_is_abs_section (sec)
8251 && type_ptr != NULL
8252 && type_ptr->internal_elf_sym.st_shndx != 0)
8253 {
8254 /* This symbol is in a real ELF section which we did
8255 not create as a BFD section. Undo the mapping done
8256 by copy_private_symbol_data. */
8257 shndx = type_ptr->internal_elf_sym.st_shndx;
8258 switch (shndx)
8259 {
8260 case MAP_ONESYMTAB:
8261 shndx = elf_onesymtab (abfd);
8262 break;
8263 case MAP_DYNSYMTAB:
8264 shndx = elf_dynsymtab (abfd);
8265 break;
8266 case MAP_STRTAB:
8267 shndx = elf_strtab_sec (abfd);
8268 break;
8269 case MAP_SHSTRTAB:
8270 shndx = elf_shstrtab_sec (abfd);
8271 break;
8272 case MAP_SYM_SHNDX:
8273 if (elf_symtab_shndx_list (abfd))
8274 shndx = elf_symtab_shndx_list (abfd)->ndx;
8275 break;
8276 case SHN_COMMON:
8277 case SHN_ABS:
8278 shndx = SHN_ABS;
8279 break;
8280 default:
8281 if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS)
8282 {
8283 if (bed->symbol_section_index)
8284 shndx = bed->symbol_section_index (abfd, type_ptr);
8285 /* Otherwise just leave the index alone. */
8286 }
8287 else
8288 {
8289 if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE)
8290 _bfd_error_handler (_("%pB: \
8291 Unable to handle section index %x in ELF symbol. Using ABS instead."),
8292 abfd, shndx);
8293 shndx = SHN_ABS;
8294 }
8295 break;
8296 }
8297 }
8298 else
8299 {
8300 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8301
8302 if (shndx == SHN_BAD)
8303 {
8304 asection *sec2;
8305
8306 /* Writing this would be a hell of a lot easier if
8307 we had some decent documentation on bfd, and
8308 knew what to expect of the library, and what to
8309 demand of applications. For example, it
8310 appears that `objcopy' might not set the
8311 section of a symbol to be a section that is
8312 actually in the output file. */
8313 sec2 = bfd_get_section_by_name (abfd, sec->name);
8314 if (sec2 != NULL)
8315 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8316 if (shndx == SHN_BAD)
8317 {
8318 /* xgettext:c-format */
8319 _bfd_error_handler
8320 (_("unable to find equivalent output section"
8321 " for symbol '%s' from section '%s'"),
8322 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8323 sec->name);
8324 bfd_set_error (bfd_error_invalid_operation);
8325 goto error_return;
8326 }
8327 }
8328 }
8329
8330 sym.st_shndx = shndx;
8331 }
8332
8333 if ((flags & BSF_THREAD_LOCAL) != 0)
8334 type = STT_TLS;
8335 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8336 type = STT_GNU_IFUNC;
8337 else if ((flags & BSF_FUNCTION) != 0)
8338 type = STT_FUNC;
8339 else if ((flags & BSF_OBJECT) != 0)
8340 type = STT_OBJECT;
8341 else if ((flags & BSF_RELC) != 0)
8342 type = STT_RELC;
8343 else if ((flags & BSF_SRELC) != 0)
8344 type = STT_SRELC;
8345 else
8346 type = STT_NOTYPE;
8347
8348 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8349 type = STT_TLS;
8350
8351 /* Processor-specific types. */
8352 if (type_ptr != NULL
8353 && bed->elf_backend_get_symbol_type)
8354 type = ((*bed->elf_backend_get_symbol_type)
8355 (&type_ptr->internal_elf_sym, type));
8356
8357 if (flags & BSF_SECTION_SYM)
8358 {
8359 if (flags & BSF_GLOBAL)
8360 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8361 else
8362 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8363 }
8364 else if (bfd_is_com_section (syms[idx]->section))
8365 {
8366 if (type != STT_TLS)
8367 {
8368 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8369 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8370 ? STT_COMMON : STT_OBJECT);
8371 else
8372 type = ((flags & BSF_ELF_COMMON) != 0
8373 ? STT_COMMON : STT_OBJECT);
8374 }
8375 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8376 }
8377 else if (bfd_is_und_section (syms[idx]->section))
8378 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8379 ? STB_WEAK
8380 : STB_GLOBAL),
8381 type);
8382 else if (flags & BSF_FILE)
8383 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8384 else
8385 {
8386 int bind = STB_LOCAL;
8387
8388 if (flags & BSF_LOCAL)
8389 bind = STB_LOCAL;
8390 else if (flags & BSF_GNU_UNIQUE)
8391 bind = STB_GNU_UNIQUE;
8392 else if (flags & BSF_WEAK)
8393 bind = STB_WEAK;
8394 else if (flags & BSF_GLOBAL)
8395 bind = STB_GLOBAL;
8396
8397 sym.st_info = ELF_ST_INFO (bind, type);
8398 }
8399
8400 if (type_ptr != NULL)
8401 {
8402 sym.st_other = type_ptr->internal_elf_sym.st_other;
8403 sym.st_target_internal
8404 = type_ptr->internal_elf_sym.st_target_internal;
8405 }
8406 else
8407 {
8408 sym.st_other = 0;
8409 sym.st_target_internal = 0;
8410 }
8411
8412 idx++;
8413 symstrtab[idx].sym = sym;
8414 symstrtab[idx].dest_index = outbound_syms_index;
8415 symstrtab[idx].destshndx_index = outbound_shndx_index;
8416
8417 outbound_syms_index++;
8418 if (outbound_shndx != NULL)
8419 outbound_shndx_index++;
8420 }
8421
8422 /* Finalize the .strtab section. */
8423 _bfd_elf_strtab_finalize (stt);
8424
8425 /* Swap out the .strtab section. */
8426 for (idx = 0; idx <= symcount; idx++)
8427 {
8428 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8429 if (elfsym->sym.st_name == (unsigned long) -1)
8430 elfsym->sym.st_name = 0;
8431 else
8432 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8433 elfsym->sym.st_name);
8434 if (info && info->callbacks->ctf_new_symbol)
8435 info->callbacks->ctf_new_symbol (elfsym->dest_index,
8436 &elfsym->sym);
8437
8438 /* Inform the linker of the addition of this symbol. */
8439
8440 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8441 (outbound_syms
8442 + (elfsym->dest_index
8443 * bed->s->sizeof_sym)),
8444 (outbound_shndx
8445 + (elfsym->destshndx_index
8446 * sizeof (Elf_External_Sym_Shndx))));
8447 }
8448 free (symstrtab);
8449
8450 *sttp = stt;
8451 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8452 symstrtab_hdr->sh_type = SHT_STRTAB;
8453 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8454 symstrtab_hdr->sh_addr = 0;
8455 symstrtab_hdr->sh_entsize = 0;
8456 symstrtab_hdr->sh_link = 0;
8457 symstrtab_hdr->sh_info = 0;
8458 symstrtab_hdr->sh_addralign = 1;
8459
8460 return true;
8461 }
8462
8463 /* Return the number of bytes required to hold the symtab vector.
8464
8465 Note that we base it on the count plus 1, since we will null terminate
8466 the vector allocated based on this size. However, the ELF symbol table
8467 always has a dummy entry as symbol #0, so it ends up even. */
8468
8469 long
8470 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8471 {
8472 bfd_size_type symcount;
8473 long symtab_size;
8474 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8475
8476 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8477 if (symcount > LONG_MAX / sizeof (asymbol *))
8478 {
8479 bfd_set_error (bfd_error_file_too_big);
8480 return -1;
8481 }
8482 symtab_size = symcount * (sizeof (asymbol *));
8483 if (symcount == 0)
8484 symtab_size = sizeof (asymbol *);
8485 else if (!bfd_write_p (abfd))
8486 {
8487 ufile_ptr filesize = bfd_get_file_size (abfd);
8488
8489 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8490 {
8491 bfd_set_error (bfd_error_file_truncated);
8492 return -1;
8493 }
8494 }
8495
8496 return symtab_size;
8497 }
8498
8499 long
8500 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8501 {
8502 bfd_size_type symcount;
8503 long symtab_size;
8504 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8505
8506 if (elf_dynsymtab (abfd) == 0)
8507 {
8508 bfd_set_error (bfd_error_invalid_operation);
8509 return -1;
8510 }
8511
8512 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8513 if (symcount > LONG_MAX / sizeof (asymbol *))
8514 {
8515 bfd_set_error (bfd_error_file_too_big);
8516 return -1;
8517 }
8518 symtab_size = symcount * (sizeof (asymbol *));
8519 if (symcount == 0)
8520 symtab_size = sizeof (asymbol *);
8521 else if (!bfd_write_p (abfd))
8522 {
8523 ufile_ptr filesize = bfd_get_file_size (abfd);
8524
8525 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8526 {
8527 bfd_set_error (bfd_error_file_truncated);
8528 return -1;
8529 }
8530 }
8531
8532 return symtab_size;
8533 }
8534
8535 long
8536 _bfd_elf_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
8537 {
8538 if (asect->reloc_count != 0 && !bfd_write_p (abfd))
8539 {
8540 /* Sanity check reloc section size. */
8541 struct bfd_elf_section_data *d = elf_section_data (asect);
8542 Elf_Internal_Shdr *rel_hdr = &d->this_hdr;
8543 bfd_size_type ext_rel_size = rel_hdr->sh_size;
8544 ufile_ptr filesize = bfd_get_file_size (abfd);
8545
8546 if (filesize != 0 && ext_rel_size > filesize)
8547 {
8548 bfd_set_error (bfd_error_file_truncated);
8549 return -1;
8550 }
8551 }
8552
8553 #if SIZEOF_LONG == SIZEOF_INT
8554 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8555 {
8556 bfd_set_error (bfd_error_file_too_big);
8557 return -1;
8558 }
8559 #endif
8560 return (asect->reloc_count + 1) * sizeof (arelent *);
8561 }
8562
8563 /* Canonicalize the relocs. */
8564
8565 long
8566 _bfd_elf_canonicalize_reloc (bfd *abfd,
8567 sec_ptr section,
8568 arelent **relptr,
8569 asymbol **symbols)
8570 {
8571 arelent *tblptr;
8572 unsigned int i;
8573 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8574
8575 if (! bed->s->slurp_reloc_table (abfd, section, symbols, false))
8576 return -1;
8577
8578 tblptr = section->relocation;
8579 for (i = 0; i < section->reloc_count; i++)
8580 *relptr++ = tblptr++;
8581
8582 *relptr = NULL;
8583
8584 return section->reloc_count;
8585 }
8586
8587 long
8588 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8589 {
8590 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8591 long symcount = bed->s->slurp_symbol_table (abfd, allocation, false);
8592
8593 if (symcount >= 0)
8594 abfd->symcount = symcount;
8595 return symcount;
8596 }
8597
8598 long
8599 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8600 asymbol **allocation)
8601 {
8602 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8603 long symcount = bed->s->slurp_symbol_table (abfd, allocation, true);
8604
8605 if (symcount >= 0)
8606 abfd->dynsymcount = symcount;
8607 return symcount;
8608 }
8609
8610 /* Return the size required for the dynamic reloc entries. Any loadable
8611 section that was actually installed in the BFD, and has type SHT_REL
8612 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8613 dynamic reloc section. */
8614
8615 long
8616 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8617 {
8618 bfd_size_type count, ext_rel_size;
8619 asection *s;
8620
8621 if (elf_dynsymtab (abfd) == 0)
8622 {
8623 bfd_set_error (bfd_error_invalid_operation);
8624 return -1;
8625 }
8626
8627 count = 1;
8628 ext_rel_size = 0;
8629 for (s = abfd->sections; s != NULL; s = s->next)
8630 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8631 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8632 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8633 {
8634 ext_rel_size += s->size;
8635 if (ext_rel_size < s->size)
8636 {
8637 bfd_set_error (bfd_error_file_truncated);
8638 return -1;
8639 }
8640 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8641 if (count > LONG_MAX / sizeof (arelent *))
8642 {
8643 bfd_set_error (bfd_error_file_too_big);
8644 return -1;
8645 }
8646 }
8647 if (count > 1 && !bfd_write_p (abfd))
8648 {
8649 /* Sanity check reloc section sizes. */
8650 ufile_ptr filesize = bfd_get_file_size (abfd);
8651 if (filesize != 0 && ext_rel_size > filesize)
8652 {
8653 bfd_set_error (bfd_error_file_truncated);
8654 return -1;
8655 }
8656 }
8657 return count * sizeof (arelent *);
8658 }
8659
8660 /* Canonicalize the dynamic relocation entries. Note that we return the
8661 dynamic relocations as a single block, although they are actually
8662 associated with particular sections; the interface, which was
8663 designed for SunOS style shared libraries, expects that there is only
8664 one set of dynamic relocs. Any loadable section that was actually
8665 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8666 dynamic symbol table, is considered to be a dynamic reloc section. */
8667
8668 long
8669 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8670 arelent **storage,
8671 asymbol **syms)
8672 {
8673 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
8674 asection *s;
8675 long ret;
8676
8677 if (elf_dynsymtab (abfd) == 0)
8678 {
8679 bfd_set_error (bfd_error_invalid_operation);
8680 return -1;
8681 }
8682
8683 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8684 ret = 0;
8685 for (s = abfd->sections; s != NULL; s = s->next)
8686 {
8687 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8688 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8689 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8690 {
8691 arelent *p;
8692 long count, i;
8693
8694 if (! (*slurp_relocs) (abfd, s, syms, true))
8695 return -1;
8696 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8697 p = s->relocation;
8698 for (i = 0; i < count; i++)
8699 *storage++ = p++;
8700 ret += count;
8701 }
8702 }
8703
8704 *storage = NULL;
8705
8706 return ret;
8707 }
8708 \f
8709 /* Read in the version information. */
8710
8711 bool
8712 _bfd_elf_slurp_version_tables (bfd *abfd, bool default_imported_symver)
8713 {
8714 bfd_byte *contents = NULL;
8715 unsigned int freeidx = 0;
8716 size_t amt;
8717
8718 if (elf_dynverref (abfd) != 0)
8719 {
8720 Elf_Internal_Shdr *hdr;
8721 Elf_External_Verneed *everneed;
8722 Elf_Internal_Verneed *iverneed;
8723 unsigned int i;
8724 bfd_byte *contents_end;
8725
8726 hdr = &elf_tdata (abfd)->dynverref_hdr;
8727
8728 if (hdr->sh_info == 0
8729 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8730 {
8731 error_return_bad_verref:
8732 _bfd_error_handler
8733 (_("%pB: .gnu.version_r invalid entry"), abfd);
8734 bfd_set_error (bfd_error_bad_value);
8735 error_return_verref:
8736 elf_tdata (abfd)->verref = NULL;
8737 elf_tdata (abfd)->cverrefs = 0;
8738 goto error_return;
8739 }
8740
8741 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8742 goto error_return_verref;
8743 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8744 if (contents == NULL)
8745 goto error_return_verref;
8746
8747 if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt))
8748 {
8749 bfd_set_error (bfd_error_file_too_big);
8750 goto error_return_verref;
8751 }
8752 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt);
8753 if (elf_tdata (abfd)->verref == NULL)
8754 goto error_return_verref;
8755
8756 BFD_ASSERT (sizeof (Elf_External_Verneed)
8757 == sizeof (Elf_External_Vernaux));
8758 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8759 everneed = (Elf_External_Verneed *) contents;
8760 iverneed = elf_tdata (abfd)->verref;
8761 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8762 {
8763 Elf_External_Vernaux *evernaux;
8764 Elf_Internal_Vernaux *ivernaux;
8765 unsigned int j;
8766
8767 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8768
8769 iverneed->vn_bfd = abfd;
8770
8771 iverneed->vn_filename =
8772 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8773 iverneed->vn_file);
8774 if (iverneed->vn_filename == NULL)
8775 goto error_return_bad_verref;
8776
8777 if (iverneed->vn_cnt == 0)
8778 iverneed->vn_auxptr = NULL;
8779 else
8780 {
8781 if (_bfd_mul_overflow (iverneed->vn_cnt,
8782 sizeof (Elf_Internal_Vernaux), &amt))
8783 {
8784 bfd_set_error (bfd_error_file_too_big);
8785 goto error_return_verref;
8786 }
8787 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8788 bfd_alloc (abfd, amt);
8789 if (iverneed->vn_auxptr == NULL)
8790 goto error_return_verref;
8791 }
8792
8793 if (iverneed->vn_aux
8794 > (size_t) (contents_end - (bfd_byte *) everneed))
8795 goto error_return_bad_verref;
8796
8797 evernaux = ((Elf_External_Vernaux *)
8798 ((bfd_byte *) everneed + iverneed->vn_aux));
8799 ivernaux = iverneed->vn_auxptr;
8800 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8801 {
8802 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8803
8804 ivernaux->vna_nodename =
8805 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8806 ivernaux->vna_name);
8807 if (ivernaux->vna_nodename == NULL)
8808 goto error_return_bad_verref;
8809
8810 if (ivernaux->vna_other > freeidx)
8811 freeidx = ivernaux->vna_other;
8812
8813 ivernaux->vna_nextptr = NULL;
8814 if (ivernaux->vna_next == 0)
8815 {
8816 iverneed->vn_cnt = j + 1;
8817 break;
8818 }
8819 if (j + 1 < iverneed->vn_cnt)
8820 ivernaux->vna_nextptr = ivernaux + 1;
8821
8822 if (ivernaux->vna_next
8823 > (size_t) (contents_end - (bfd_byte *) evernaux))
8824 goto error_return_bad_verref;
8825
8826 evernaux = ((Elf_External_Vernaux *)
8827 ((bfd_byte *) evernaux + ivernaux->vna_next));
8828 }
8829
8830 iverneed->vn_nextref = NULL;
8831 if (iverneed->vn_next == 0)
8832 break;
8833 if (i + 1 < hdr->sh_info)
8834 iverneed->vn_nextref = iverneed + 1;
8835
8836 if (iverneed->vn_next
8837 > (size_t) (contents_end - (bfd_byte *) everneed))
8838 goto error_return_bad_verref;
8839
8840 everneed = ((Elf_External_Verneed *)
8841 ((bfd_byte *) everneed + iverneed->vn_next));
8842 }
8843 elf_tdata (abfd)->cverrefs = i;
8844
8845 free (contents);
8846 contents = NULL;
8847 }
8848
8849 if (elf_dynverdef (abfd) != 0)
8850 {
8851 Elf_Internal_Shdr *hdr;
8852 Elf_External_Verdef *everdef;
8853 Elf_Internal_Verdef *iverdef;
8854 Elf_Internal_Verdef *iverdefarr;
8855 Elf_Internal_Verdef iverdefmem;
8856 unsigned int i;
8857 unsigned int maxidx;
8858 bfd_byte *contents_end_def, *contents_end_aux;
8859
8860 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8861
8862 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8863 {
8864 error_return_bad_verdef:
8865 _bfd_error_handler
8866 (_("%pB: .gnu.version_d invalid entry"), abfd);
8867 bfd_set_error (bfd_error_bad_value);
8868 error_return_verdef:
8869 elf_tdata (abfd)->verdef = NULL;
8870 elf_tdata (abfd)->cverdefs = 0;
8871 goto error_return;
8872 }
8873
8874 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8875 goto error_return_verdef;
8876 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8877 if (contents == NULL)
8878 goto error_return_verdef;
8879
8880 BFD_ASSERT (sizeof (Elf_External_Verdef)
8881 >= sizeof (Elf_External_Verdaux));
8882 contents_end_def = contents + hdr->sh_size
8883 - sizeof (Elf_External_Verdef);
8884 contents_end_aux = contents + hdr->sh_size
8885 - sizeof (Elf_External_Verdaux);
8886
8887 /* We know the number of entries in the section but not the maximum
8888 index. Therefore we have to run through all entries and find
8889 the maximum. */
8890 everdef = (Elf_External_Verdef *) contents;
8891 maxidx = 0;
8892 for (i = 0; i < hdr->sh_info; ++i)
8893 {
8894 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8895
8896 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8897 goto error_return_bad_verdef;
8898 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8899 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8900
8901 if (iverdefmem.vd_next == 0)
8902 break;
8903
8904 if (iverdefmem.vd_next
8905 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8906 goto error_return_bad_verdef;
8907
8908 everdef = ((Elf_External_Verdef *)
8909 ((bfd_byte *) everdef + iverdefmem.vd_next));
8910 }
8911
8912 if (default_imported_symver)
8913 {
8914 if (freeidx > maxidx)
8915 maxidx = ++freeidx;
8916 else
8917 freeidx = ++maxidx;
8918 }
8919 if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt))
8920 {
8921 bfd_set_error (bfd_error_file_too_big);
8922 goto error_return_verdef;
8923 }
8924 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8925 if (elf_tdata (abfd)->verdef == NULL)
8926 goto error_return_verdef;
8927
8928 elf_tdata (abfd)->cverdefs = maxidx;
8929
8930 everdef = (Elf_External_Verdef *) contents;
8931 iverdefarr = elf_tdata (abfd)->verdef;
8932 for (i = 0; i < hdr->sh_info; i++)
8933 {
8934 Elf_External_Verdaux *everdaux;
8935 Elf_Internal_Verdaux *iverdaux;
8936 unsigned int j;
8937
8938 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8939
8940 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8941 goto error_return_bad_verdef;
8942
8943 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8944 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8945
8946 iverdef->vd_bfd = abfd;
8947
8948 if (iverdef->vd_cnt == 0)
8949 iverdef->vd_auxptr = NULL;
8950 else
8951 {
8952 if (_bfd_mul_overflow (iverdef->vd_cnt,
8953 sizeof (Elf_Internal_Verdaux), &amt))
8954 {
8955 bfd_set_error (bfd_error_file_too_big);
8956 goto error_return_verdef;
8957 }
8958 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8959 bfd_alloc (abfd, amt);
8960 if (iverdef->vd_auxptr == NULL)
8961 goto error_return_verdef;
8962 }
8963
8964 if (iverdef->vd_aux
8965 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8966 goto error_return_bad_verdef;
8967
8968 everdaux = ((Elf_External_Verdaux *)
8969 ((bfd_byte *) everdef + iverdef->vd_aux));
8970 iverdaux = iverdef->vd_auxptr;
8971 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8972 {
8973 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8974
8975 iverdaux->vda_nodename =
8976 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8977 iverdaux->vda_name);
8978 if (iverdaux->vda_nodename == NULL)
8979 goto error_return_bad_verdef;
8980
8981 iverdaux->vda_nextptr = NULL;
8982 if (iverdaux->vda_next == 0)
8983 {
8984 iverdef->vd_cnt = j + 1;
8985 break;
8986 }
8987 if (j + 1 < iverdef->vd_cnt)
8988 iverdaux->vda_nextptr = iverdaux + 1;
8989
8990 if (iverdaux->vda_next
8991 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8992 goto error_return_bad_verdef;
8993
8994 everdaux = ((Elf_External_Verdaux *)
8995 ((bfd_byte *) everdaux + iverdaux->vda_next));
8996 }
8997
8998 iverdef->vd_nodename = NULL;
8999 if (iverdef->vd_cnt)
9000 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
9001
9002 iverdef->vd_nextdef = NULL;
9003 if (iverdef->vd_next == 0)
9004 break;
9005 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
9006 iverdef->vd_nextdef = iverdef + 1;
9007
9008 everdef = ((Elf_External_Verdef *)
9009 ((bfd_byte *) everdef + iverdef->vd_next));
9010 }
9011
9012 free (contents);
9013 contents = NULL;
9014 }
9015 else if (default_imported_symver)
9016 {
9017 if (freeidx < 3)
9018 freeidx = 3;
9019 else
9020 freeidx++;
9021
9022 if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt))
9023 {
9024 bfd_set_error (bfd_error_file_too_big);
9025 goto error_return;
9026 }
9027 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
9028 if (elf_tdata (abfd)->verdef == NULL)
9029 goto error_return;
9030
9031 elf_tdata (abfd)->cverdefs = freeidx;
9032 }
9033
9034 /* Create a default version based on the soname. */
9035 if (default_imported_symver)
9036 {
9037 Elf_Internal_Verdef *iverdef;
9038 Elf_Internal_Verdaux *iverdaux;
9039
9040 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
9041
9042 iverdef->vd_version = VER_DEF_CURRENT;
9043 iverdef->vd_flags = 0;
9044 iverdef->vd_ndx = freeidx;
9045 iverdef->vd_cnt = 1;
9046
9047 iverdef->vd_bfd = abfd;
9048
9049 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
9050 if (iverdef->vd_nodename == NULL)
9051 goto error_return_verdef;
9052 iverdef->vd_nextdef = NULL;
9053 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
9054 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
9055 if (iverdef->vd_auxptr == NULL)
9056 goto error_return_verdef;
9057
9058 iverdaux = iverdef->vd_auxptr;
9059 iverdaux->vda_nodename = iverdef->vd_nodename;
9060 }
9061
9062 return true;
9063
9064 error_return:
9065 free (contents);
9066 return false;
9067 }
9068 \f
9069 asymbol *
9070 _bfd_elf_make_empty_symbol (bfd *abfd)
9071 {
9072 elf_symbol_type *newsym;
9073
9074 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
9075 if (!newsym)
9076 return NULL;
9077 newsym->symbol.the_bfd = abfd;
9078 return &newsym->symbol;
9079 }
9080
9081 void
9082 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
9083 asymbol *symbol,
9084 symbol_info *ret)
9085 {
9086 bfd_symbol_info (symbol, ret);
9087 }
9088
9089 /* Return whether a symbol name implies a local symbol. Most targets
9090 use this function for the is_local_label_name entry point, but some
9091 override it. */
9092
9093 bool
9094 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
9095 const char *name)
9096 {
9097 /* Normal local symbols start with ``.L''. */
9098 if (name[0] == '.' && name[1] == 'L')
9099 return true;
9100
9101 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
9102 DWARF debugging symbols starting with ``..''. */
9103 if (name[0] == '.' && name[1] == '.')
9104 return true;
9105
9106 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
9107 emitting DWARF debugging output. I suspect this is actually a
9108 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
9109 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
9110 underscore to be emitted on some ELF targets). For ease of use,
9111 we treat such symbols as local. */
9112 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
9113 return true;
9114
9115 /* Treat assembler generated fake symbols, dollar local labels and
9116 forward-backward labels (aka local labels) as locals.
9117 These labels have the form:
9118
9119 L0^A.* (fake symbols)
9120
9121 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
9122
9123 Versions which start with .L will have already been matched above,
9124 so we only need to match the rest. */
9125 if (name[0] == 'L' && ISDIGIT (name[1]))
9126 {
9127 bool ret = false;
9128 const char * p;
9129 char c;
9130
9131 for (p = name + 2; (c = *p); p++)
9132 {
9133 if (c == 1 || c == 2)
9134 {
9135 if (c == 1 && p == name + 2)
9136 /* A fake symbol. */
9137 return true;
9138
9139 /* FIXME: We are being paranoid here and treating symbols like
9140 L0^Bfoo as if there were non-local, on the grounds that the
9141 assembler will never generate them. But can any symbol
9142 containing an ASCII value in the range 1-31 ever be anything
9143 other than some kind of local ? */
9144 ret = true;
9145 }
9146
9147 if (! ISDIGIT (c))
9148 {
9149 ret = false;
9150 break;
9151 }
9152 }
9153 return ret;
9154 }
9155
9156 return false;
9157 }
9158
9159 alent *
9160 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9161 asymbol *symbol ATTRIBUTE_UNUSED)
9162 {
9163 abort ();
9164 return NULL;
9165 }
9166
9167 bool
9168 _bfd_elf_set_arch_mach (bfd *abfd,
9169 enum bfd_architecture arch,
9170 unsigned long machine)
9171 {
9172 /* If this isn't the right architecture for this backend, and this
9173 isn't the generic backend, fail. */
9174 if (arch != get_elf_backend_data (abfd)->arch
9175 && arch != bfd_arch_unknown
9176 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9177 return false;
9178
9179 return bfd_default_set_arch_mach (abfd, arch, machine);
9180 }
9181
9182 /* Find the nearest line to a particular section and offset,
9183 for error reporting. */
9184
9185 bool
9186 _bfd_elf_find_nearest_line (bfd *abfd,
9187 asymbol **symbols,
9188 asection *section,
9189 bfd_vma offset,
9190 const char **filename_ptr,
9191 const char **functionname_ptr,
9192 unsigned int *line_ptr,
9193 unsigned int *discriminator_ptr)
9194 {
9195 bool found;
9196
9197 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9198 filename_ptr, functionname_ptr,
9199 line_ptr, discriminator_ptr,
9200 dwarf_debug_sections,
9201 &elf_tdata (abfd)->dwarf2_find_line_info))
9202 return true;
9203
9204 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9205 filename_ptr, functionname_ptr, line_ptr))
9206 {
9207 if (!*functionname_ptr)
9208 _bfd_elf_find_function (abfd, symbols, section, offset,
9209 *filename_ptr ? NULL : filename_ptr,
9210 functionname_ptr);
9211 return true;
9212 }
9213
9214 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9215 &found, filename_ptr,
9216 functionname_ptr, line_ptr,
9217 &elf_tdata (abfd)->line_info))
9218 return false;
9219 if (found && (*functionname_ptr || *line_ptr))
9220 return true;
9221
9222 if (symbols == NULL)
9223 return false;
9224
9225 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9226 filename_ptr, functionname_ptr))
9227 return false;
9228
9229 *line_ptr = 0;
9230 return true;
9231 }
9232
9233 /* Find the line for a symbol. */
9234
9235 bool
9236 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9237 const char **filename_ptr, unsigned int *line_ptr)
9238 {
9239 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9240 filename_ptr, NULL, line_ptr, NULL,
9241 dwarf_debug_sections,
9242 &elf_tdata (abfd)->dwarf2_find_line_info);
9243 }
9244
9245 /* After a call to bfd_find_nearest_line, successive calls to
9246 bfd_find_inliner_info can be used to get source information about
9247 each level of function inlining that terminated at the address
9248 passed to bfd_find_nearest_line. Currently this is only supported
9249 for DWARF2 with appropriate DWARF3 extensions. */
9250
9251 bool
9252 _bfd_elf_find_inliner_info (bfd *abfd,
9253 const char **filename_ptr,
9254 const char **functionname_ptr,
9255 unsigned int *line_ptr)
9256 {
9257 bool found;
9258 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9259 functionname_ptr, line_ptr,
9260 & elf_tdata (abfd)->dwarf2_find_line_info);
9261 return found;
9262 }
9263
9264 int
9265 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9266 {
9267 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9268 int ret = bed->s->sizeof_ehdr;
9269
9270 if (!bfd_link_relocatable (info))
9271 {
9272 bfd_size_type phdr_size = elf_program_header_size (abfd);
9273
9274 if (phdr_size == (bfd_size_type) -1)
9275 {
9276 struct elf_segment_map *m;
9277
9278 phdr_size = 0;
9279 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9280 phdr_size += bed->s->sizeof_phdr;
9281
9282 if (phdr_size == 0)
9283 phdr_size = get_program_header_size (abfd, info);
9284 }
9285
9286 elf_program_header_size (abfd) = phdr_size;
9287 ret += phdr_size;
9288 }
9289
9290 return ret;
9291 }
9292
9293 bool
9294 _bfd_elf_set_section_contents (bfd *abfd,
9295 sec_ptr section,
9296 const void *location,
9297 file_ptr offset,
9298 bfd_size_type count)
9299 {
9300 Elf_Internal_Shdr *hdr;
9301 file_ptr pos;
9302
9303 if (! abfd->output_has_begun
9304 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9305 return false;
9306
9307 if (!count)
9308 return true;
9309
9310 hdr = &elf_section_data (section)->this_hdr;
9311 if (hdr->sh_offset == (file_ptr) -1)
9312 {
9313 unsigned char *contents;
9314
9315 if (bfd_section_is_ctf (section))
9316 /* Nothing to do with this section: the contents are generated
9317 later. */
9318 return true;
9319
9320 if ((section->flags & SEC_ELF_COMPRESS) == 0)
9321 {
9322 _bfd_error_handler
9323 (_("%pB:%pA: error: attempting to write into an unallocated compressed section"),
9324 abfd, section);
9325 bfd_set_error (bfd_error_invalid_operation);
9326 return false;
9327 }
9328
9329 if ((offset + count) > hdr->sh_size)
9330 {
9331 _bfd_error_handler
9332 (_("%pB:%pA: error: attempting to write over the end of the section"),
9333 abfd, section);
9334
9335 bfd_set_error (bfd_error_invalid_operation);
9336 return false;
9337 }
9338
9339 contents = hdr->contents;
9340 if (contents == NULL)
9341 {
9342 _bfd_error_handler
9343 (_("%pB:%pA: error: attempting to write section into an empty buffer"),
9344 abfd, section);
9345
9346 bfd_set_error (bfd_error_invalid_operation);
9347 return false;
9348 }
9349
9350 memcpy (contents + offset, location, count);
9351 return true;
9352 }
9353
9354 pos = hdr->sh_offset + offset;
9355 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9356 || bfd_bwrite (location, count, abfd) != count)
9357 return false;
9358
9359 return true;
9360 }
9361
9362 bool
9363 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9364 arelent *cache_ptr ATTRIBUTE_UNUSED,
9365 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9366 {
9367 abort ();
9368 return false;
9369 }
9370
9371 /* Try to convert a non-ELF reloc into an ELF one. */
9372
9373 bool
9374 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9375 {
9376 /* Check whether we really have an ELF howto. */
9377
9378 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9379 {
9380 bfd_reloc_code_real_type code;
9381 reloc_howto_type *howto;
9382
9383 /* Alien reloc: Try to determine its type to replace it with an
9384 equivalent ELF reloc. */
9385
9386 if (areloc->howto->pc_relative)
9387 {
9388 switch (areloc->howto->bitsize)
9389 {
9390 case 8:
9391 code = BFD_RELOC_8_PCREL;
9392 break;
9393 case 12:
9394 code = BFD_RELOC_12_PCREL;
9395 break;
9396 case 16:
9397 code = BFD_RELOC_16_PCREL;
9398 break;
9399 case 24:
9400 code = BFD_RELOC_24_PCREL;
9401 break;
9402 case 32:
9403 code = BFD_RELOC_32_PCREL;
9404 break;
9405 case 64:
9406 code = BFD_RELOC_64_PCREL;
9407 break;
9408 default:
9409 goto fail;
9410 }
9411
9412 howto = bfd_reloc_type_lookup (abfd, code);
9413
9414 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9415 {
9416 if (howto->pcrel_offset)
9417 areloc->addend += areloc->address;
9418 else
9419 areloc->addend -= areloc->address; /* addend is unsigned!! */
9420 }
9421 }
9422 else
9423 {
9424 switch (areloc->howto->bitsize)
9425 {
9426 case 8:
9427 code = BFD_RELOC_8;
9428 break;
9429 case 14:
9430 code = BFD_RELOC_14;
9431 break;
9432 case 16:
9433 code = BFD_RELOC_16;
9434 break;
9435 case 26:
9436 code = BFD_RELOC_26;
9437 break;
9438 case 32:
9439 code = BFD_RELOC_32;
9440 break;
9441 case 64:
9442 code = BFD_RELOC_64;
9443 break;
9444 default:
9445 goto fail;
9446 }
9447
9448 howto = bfd_reloc_type_lookup (abfd, code);
9449 }
9450
9451 if (howto)
9452 areloc->howto = howto;
9453 else
9454 goto fail;
9455 }
9456
9457 return true;
9458
9459 fail:
9460 /* xgettext:c-format */
9461 _bfd_error_handler (_("%pB: %s unsupported"),
9462 abfd, areloc->howto->name);
9463 bfd_set_error (bfd_error_sorry);
9464 return false;
9465 }
9466
9467 bool
9468 _bfd_elf_close_and_cleanup (bfd *abfd)
9469 {
9470 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9471 if (tdata != NULL
9472 && (bfd_get_format (abfd) == bfd_object
9473 || bfd_get_format (abfd) == bfd_core))
9474 {
9475 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9476 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9477 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9478 }
9479
9480 return _bfd_generic_close_and_cleanup (abfd);
9481 }
9482
9483 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9484 in the relocation's offset. Thus we cannot allow any sort of sanity
9485 range-checking to interfere. There is nothing else to do in processing
9486 this reloc. */
9487
9488 bfd_reloc_status_type
9489 _bfd_elf_rel_vtable_reloc_fn
9490 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9491 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9492 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9493 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9494 {
9495 return bfd_reloc_ok;
9496 }
9497 \f
9498 /* Elf core file support. Much of this only works on native
9499 toolchains, since we rely on knowing the
9500 machine-dependent procfs structure in order to pick
9501 out details about the corefile. */
9502
9503 #ifdef HAVE_SYS_PROCFS_H
9504 # include <sys/procfs.h>
9505 #endif
9506
9507 /* Return a PID that identifies a "thread" for threaded cores, or the
9508 PID of the main process for non-threaded cores. */
9509
9510 static int
9511 elfcore_make_pid (bfd *abfd)
9512 {
9513 int pid;
9514
9515 pid = elf_tdata (abfd)->core->lwpid;
9516 if (pid == 0)
9517 pid = elf_tdata (abfd)->core->pid;
9518
9519 return pid;
9520 }
9521
9522 /* If there isn't a section called NAME, make one, using
9523 data from SECT. Note, this function will generate a
9524 reference to NAME, so you shouldn't deallocate or
9525 overwrite it. */
9526
9527 static bool
9528 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9529 {
9530 asection *sect2;
9531
9532 if (bfd_get_section_by_name (abfd, name) != NULL)
9533 return true;
9534
9535 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9536 if (sect2 == NULL)
9537 return false;
9538
9539 sect2->size = sect->size;
9540 sect2->filepos = sect->filepos;
9541 sect2->alignment_power = sect->alignment_power;
9542 return true;
9543 }
9544
9545 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9546 actually creates up to two pseudosections:
9547 - For the single-threaded case, a section named NAME, unless
9548 such a section already exists.
9549 - For the multi-threaded case, a section named "NAME/PID", where
9550 PID is elfcore_make_pid (abfd).
9551 Both pseudosections have identical contents. */
9552 bool
9553 _bfd_elfcore_make_pseudosection (bfd *abfd,
9554 char *name,
9555 size_t size,
9556 ufile_ptr filepos)
9557 {
9558 char buf[100];
9559 char *threaded_name;
9560 size_t len;
9561 asection *sect;
9562
9563 /* Build the section name. */
9564
9565 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9566 len = strlen (buf) + 1;
9567 threaded_name = (char *) bfd_alloc (abfd, len);
9568 if (threaded_name == NULL)
9569 return false;
9570 memcpy (threaded_name, buf, len);
9571
9572 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9573 SEC_HAS_CONTENTS);
9574 if (sect == NULL)
9575 return false;
9576 sect->size = size;
9577 sect->filepos = filepos;
9578 sect->alignment_power = 2;
9579
9580 return elfcore_maybe_make_sect (abfd, name, sect);
9581 }
9582
9583 static bool
9584 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9585 size_t offs)
9586 {
9587 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9588 SEC_HAS_CONTENTS);
9589
9590 if (sect == NULL)
9591 return false;
9592
9593 sect->size = note->descsz - offs;
9594 sect->filepos = note->descpos + offs;
9595 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9596
9597 return true;
9598 }
9599
9600 static bool
9601 elfcore_make_memtag_note_section (bfd *abfd, Elf_Internal_Note *note,
9602 size_t offs)
9603 {
9604 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".memtag",
9605 SEC_HAS_CONTENTS);
9606
9607 if (sect == NULL)
9608 return false;
9609
9610 sect->size = note->descsz - offs;
9611 sect->filepos = note->descpos + offs;
9612 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9613
9614 return true;
9615 }
9616
9617 /* prstatus_t exists on:
9618 solaris 2.5+
9619 linux 2.[01] + glibc
9620 unixware 4.2
9621 */
9622
9623 #if defined (HAVE_PRSTATUS_T)
9624
9625 static bool
9626 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9627 {
9628 size_t size;
9629 int offset;
9630
9631 if (note->descsz == sizeof (prstatus_t))
9632 {
9633 prstatus_t prstat;
9634
9635 size = sizeof (prstat.pr_reg);
9636 offset = offsetof (prstatus_t, pr_reg);
9637 memcpy (&prstat, note->descdata, sizeof (prstat));
9638
9639 /* Do not overwrite the core signal if it
9640 has already been set by another thread. */
9641 if (elf_tdata (abfd)->core->signal == 0)
9642 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9643 if (elf_tdata (abfd)->core->pid == 0)
9644 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9645
9646 /* pr_who exists on:
9647 solaris 2.5+
9648 unixware 4.2
9649 pr_who doesn't exist on:
9650 linux 2.[01]
9651 */
9652 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9653 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9654 #else
9655 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9656 #endif
9657 }
9658 #if defined (HAVE_PRSTATUS32_T)
9659 else if (note->descsz == sizeof (prstatus32_t))
9660 {
9661 /* 64-bit host, 32-bit corefile */
9662 prstatus32_t prstat;
9663
9664 size = sizeof (prstat.pr_reg);
9665 offset = offsetof (prstatus32_t, pr_reg);
9666 memcpy (&prstat, note->descdata, sizeof (prstat));
9667
9668 /* Do not overwrite the core signal if it
9669 has already been set by another thread. */
9670 if (elf_tdata (abfd)->core->signal == 0)
9671 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9672 if (elf_tdata (abfd)->core->pid == 0)
9673 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9674
9675 /* pr_who exists on:
9676 solaris 2.5+
9677 unixware 4.2
9678 pr_who doesn't exist on:
9679 linux 2.[01]
9680 */
9681 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9682 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9683 #else
9684 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9685 #endif
9686 }
9687 #endif /* HAVE_PRSTATUS32_T */
9688 else
9689 {
9690 /* Fail - we don't know how to handle any other
9691 note size (ie. data object type). */
9692 return true;
9693 }
9694
9695 /* Make a ".reg/999" section and a ".reg" section. */
9696 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9697 size, note->descpos + offset);
9698 }
9699 #endif /* defined (HAVE_PRSTATUS_T) */
9700
9701 /* Create a pseudosection containing the exact contents of NOTE. */
9702 static bool
9703 elfcore_make_note_pseudosection (bfd *abfd,
9704 char *name,
9705 Elf_Internal_Note *note)
9706 {
9707 return _bfd_elfcore_make_pseudosection (abfd, name,
9708 note->descsz, note->descpos);
9709 }
9710
9711 /* There isn't a consistent prfpregset_t across platforms,
9712 but it doesn't matter, because we don't have to pick this
9713 data structure apart. */
9714
9715 static bool
9716 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9717 {
9718 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9719 }
9720
9721 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9722 type of NT_PRXFPREG. Just include the whole note's contents
9723 literally. */
9724
9725 static bool
9726 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9727 {
9728 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9729 }
9730
9731 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9732 with a note type of NT_X86_XSTATE. Just include the whole note's
9733 contents literally. */
9734
9735 static bool
9736 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9737 {
9738 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9739 }
9740
9741 static bool
9742 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9743 {
9744 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9745 }
9746
9747 static bool
9748 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9749 {
9750 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9751 }
9752
9753 static bool
9754 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9755 {
9756 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9757 }
9758
9759 static bool
9760 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9761 {
9762 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9763 }
9764
9765 static bool
9766 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9767 {
9768 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9769 }
9770
9771 static bool
9772 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9773 {
9774 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9775 }
9776
9777 static bool
9778 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9779 {
9780 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9781 }
9782
9783 static bool
9784 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9785 {
9786 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9787 }
9788
9789 static bool
9790 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9791 {
9792 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9793 }
9794
9795 static bool
9796 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9797 {
9798 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9799 }
9800
9801 static bool
9802 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9803 {
9804 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9805 }
9806
9807 static bool
9808 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9809 {
9810 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9811 }
9812
9813 static bool
9814 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9815 {
9816 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9817 }
9818
9819 static bool
9820 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9821 {
9822 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9823 }
9824
9825 static bool
9826 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9827 {
9828 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9829 }
9830
9831 static bool
9832 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9833 {
9834 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9835 }
9836
9837 static bool
9838 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9839 {
9840 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9841 }
9842
9843 static bool
9844 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9845 {
9846 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9847 }
9848
9849 static bool
9850 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9851 {
9852 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9853 }
9854
9855 static bool
9856 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9857 {
9858 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9859 }
9860
9861 static bool
9862 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9863 {
9864 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9865 }
9866
9867 static bool
9868 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9869 {
9870 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9871 }
9872
9873 static bool
9874 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9875 {
9876 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9877 }
9878
9879 static bool
9880 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9881 {
9882 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9883 }
9884
9885 static bool
9886 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9887 {
9888 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9889 }
9890
9891 static bool
9892 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9893 {
9894 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9895 }
9896
9897 static bool
9898 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9899 {
9900 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9901 }
9902
9903 static bool
9904 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9905 {
9906 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9907 }
9908
9909 static bool
9910 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9911 {
9912 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9913 }
9914
9915 static bool
9916 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9917 {
9918 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9919 }
9920
9921 static bool
9922 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9923 {
9924 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9925 }
9926
9927 static bool
9928 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9929 {
9930 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9931 }
9932
9933 static bool
9934 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9935 {
9936 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9937 }
9938
9939 static bool
9940 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9941 {
9942 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9943 }
9944
9945 static bool
9946 elfcore_grok_aarch_mte (bfd *abfd, Elf_Internal_Note *note)
9947 {
9948 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-mte",
9949 note);
9950 }
9951
9952 static bool
9953 elfcore_grok_arc_v2 (bfd *abfd, Elf_Internal_Note *note)
9954 {
9955 return elfcore_make_note_pseudosection (abfd, ".reg-arc-v2", note);
9956 }
9957
9958 /* Convert NOTE into a bfd_section called ".reg-riscv-csr". Return TRUE if
9959 successful otherwise, return FALSE. */
9960
9961 static bool
9962 elfcore_grok_riscv_csr (bfd *abfd, Elf_Internal_Note *note)
9963 {
9964 return elfcore_make_note_pseudosection (abfd, ".reg-riscv-csr", note);
9965 }
9966
9967 /* Convert NOTE into a bfd_section called ".gdb-tdesc". Return TRUE if
9968 successful otherwise, return FALSE. */
9969
9970 static bool
9971 elfcore_grok_gdb_tdesc (bfd *abfd, Elf_Internal_Note *note)
9972 {
9973 return elfcore_make_note_pseudosection (abfd, ".gdb-tdesc", note);
9974 }
9975
9976 #if defined (HAVE_PRPSINFO_T)
9977 typedef prpsinfo_t elfcore_psinfo_t;
9978 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9979 typedef prpsinfo32_t elfcore_psinfo32_t;
9980 #endif
9981 #endif
9982
9983 #if defined (HAVE_PSINFO_T)
9984 typedef psinfo_t elfcore_psinfo_t;
9985 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9986 typedef psinfo32_t elfcore_psinfo32_t;
9987 #endif
9988 #endif
9989
9990 /* return a malloc'ed copy of a string at START which is at
9991 most MAX bytes long, possibly without a terminating '\0'.
9992 the copy will always have a terminating '\0'. */
9993
9994 char *
9995 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9996 {
9997 char *dups;
9998 char *end = (char *) memchr (start, '\0', max);
9999 size_t len;
10000
10001 if (end == NULL)
10002 len = max;
10003 else
10004 len = end - start;
10005
10006 dups = (char *) bfd_alloc (abfd, len + 1);
10007 if (dups == NULL)
10008 return NULL;
10009
10010 memcpy (dups, start, len);
10011 dups[len] = '\0';
10012
10013 return dups;
10014 }
10015
10016 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10017 static bool
10018 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
10019 {
10020 if (note->descsz == sizeof (elfcore_psinfo_t))
10021 {
10022 elfcore_psinfo_t psinfo;
10023
10024 memcpy (&psinfo, note->descdata, sizeof (psinfo));
10025
10026 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
10027 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
10028 #endif
10029 elf_tdata (abfd)->core->program
10030 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
10031 sizeof (psinfo.pr_fname));
10032
10033 elf_tdata (abfd)->core->command
10034 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
10035 sizeof (psinfo.pr_psargs));
10036 }
10037 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10038 else if (note->descsz == sizeof (elfcore_psinfo32_t))
10039 {
10040 /* 64-bit host, 32-bit corefile */
10041 elfcore_psinfo32_t psinfo;
10042
10043 memcpy (&psinfo, note->descdata, sizeof (psinfo));
10044
10045 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
10046 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
10047 #endif
10048 elf_tdata (abfd)->core->program
10049 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
10050 sizeof (psinfo.pr_fname));
10051
10052 elf_tdata (abfd)->core->command
10053 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
10054 sizeof (psinfo.pr_psargs));
10055 }
10056 #endif
10057
10058 else
10059 {
10060 /* Fail - we don't know how to handle any other
10061 note size (ie. data object type). */
10062 return true;
10063 }
10064
10065 /* Note that for some reason, a spurious space is tacked
10066 onto the end of the args in some (at least one anyway)
10067 implementations, so strip it off if it exists. */
10068
10069 {
10070 char *command = elf_tdata (abfd)->core->command;
10071 int n = strlen (command);
10072
10073 if (0 < n && command[n - 1] == ' ')
10074 command[n - 1] = '\0';
10075 }
10076
10077 return true;
10078 }
10079 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
10080
10081 #if defined (HAVE_PSTATUS_T)
10082 static bool
10083 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
10084 {
10085 if (note->descsz == sizeof (pstatus_t)
10086 #if defined (HAVE_PXSTATUS_T)
10087 || note->descsz == sizeof (pxstatus_t)
10088 #endif
10089 )
10090 {
10091 pstatus_t pstat;
10092
10093 memcpy (&pstat, note->descdata, sizeof (pstat));
10094
10095 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10096 }
10097 #if defined (HAVE_PSTATUS32_T)
10098 else if (note->descsz == sizeof (pstatus32_t))
10099 {
10100 /* 64-bit host, 32-bit corefile */
10101 pstatus32_t pstat;
10102
10103 memcpy (&pstat, note->descdata, sizeof (pstat));
10104
10105 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10106 }
10107 #endif
10108 /* Could grab some more details from the "representative"
10109 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
10110 NT_LWPSTATUS note, presumably. */
10111
10112 return true;
10113 }
10114 #endif /* defined (HAVE_PSTATUS_T) */
10115
10116 #if defined (HAVE_LWPSTATUS_T)
10117 static bool
10118 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
10119 {
10120 lwpstatus_t lwpstat;
10121 char buf[100];
10122 char *name;
10123 size_t len;
10124 asection *sect;
10125
10126 if (note->descsz != sizeof (lwpstat)
10127 #if defined (HAVE_LWPXSTATUS_T)
10128 && note->descsz != sizeof (lwpxstatus_t)
10129 #endif
10130 )
10131 return true;
10132
10133 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
10134
10135 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
10136 /* Do not overwrite the core signal if it has already been set by
10137 another thread. */
10138 if (elf_tdata (abfd)->core->signal == 0)
10139 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
10140
10141 /* Make a ".reg/999" section. */
10142
10143 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
10144 len = strlen (buf) + 1;
10145 name = bfd_alloc (abfd, len);
10146 if (name == NULL)
10147 return false;
10148 memcpy (name, buf, len);
10149
10150 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10151 if (sect == NULL)
10152 return false;
10153
10154 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10155 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
10156 sect->filepos = note->descpos
10157 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
10158 #endif
10159
10160 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10161 sect->size = sizeof (lwpstat.pr_reg);
10162 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
10163 #endif
10164
10165 sect->alignment_power = 2;
10166
10167 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
10168 return false;
10169
10170 /* Make a ".reg2/999" section */
10171
10172 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
10173 len = strlen (buf) + 1;
10174 name = bfd_alloc (abfd, len);
10175 if (name == NULL)
10176 return false;
10177 memcpy (name, buf, len);
10178
10179 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10180 if (sect == NULL)
10181 return false;
10182
10183 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10184 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
10185 sect->filepos = note->descpos
10186 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
10187 #endif
10188
10189 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
10190 sect->size = sizeof (lwpstat.pr_fpreg);
10191 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
10192 #endif
10193
10194 sect->alignment_power = 2;
10195
10196 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
10197 }
10198 #endif /* defined (HAVE_LWPSTATUS_T) */
10199
10200 /* These constants, and the structure offsets used below, are defined by
10201 Cygwin's core_dump.h */
10202 #define NOTE_INFO_PROCESS 1
10203 #define NOTE_INFO_THREAD 2
10204 #define NOTE_INFO_MODULE 3
10205 #define NOTE_INFO_MODULE64 4
10206
10207 static bool
10208 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
10209 {
10210 char buf[30];
10211 char *name;
10212 size_t len;
10213 unsigned int name_size;
10214 asection *sect;
10215 unsigned int type;
10216 int is_active_thread;
10217 bfd_vma base_addr;
10218
10219 if (note->descsz < 4)
10220 return true;
10221
10222 if (! startswith (note->namedata, "win32"))
10223 return true;
10224
10225 type = bfd_get_32 (abfd, note->descdata);
10226
10227 struct
10228 {
10229 const char *type_name;
10230 unsigned long min_size;
10231 } size_check[] =
10232 {
10233 { "NOTE_INFO_PROCESS", 12 },
10234 { "NOTE_INFO_THREAD", 12 },
10235 { "NOTE_INFO_MODULE", 12 },
10236 { "NOTE_INFO_MODULE64", 16 },
10237 };
10238
10239 if (type == 0 || type > (sizeof(size_check)/sizeof(size_check[0])))
10240 return true;
10241
10242 if (note->descsz < size_check[type - 1].min_size)
10243 {
10244 _bfd_error_handler (_("%pB: warning: win32pstatus %s of size %lu bytes is too small"),
10245 abfd, size_check[type - 1].type_name, note->descsz);
10246 return true;
10247 }
10248
10249 switch (type)
10250 {
10251 case NOTE_INFO_PROCESS:
10252 /* FIXME: need to add ->core->command. */
10253 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 4);
10254 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 8);
10255 break;
10256
10257 case NOTE_INFO_THREAD:
10258 /* Make a ".reg/<tid>" section containing the Win32 API thread CONTEXT
10259 structure. */
10260 /* thread_info.tid */
10261 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 4));
10262
10263 len = strlen (buf) + 1;
10264 name = (char *) bfd_alloc (abfd, len);
10265 if (name == NULL)
10266 return false;
10267
10268 memcpy (name, buf, len);
10269
10270 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10271 if (sect == NULL)
10272 return false;
10273
10274 /* sizeof (thread_info.thread_context) */
10275 sect->size = note->descsz - 12;
10276 /* offsetof (thread_info.thread_context) */
10277 sect->filepos = note->descpos + 12;
10278 sect->alignment_power = 2;
10279
10280 /* thread_info.is_active_thread */
10281 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10282
10283 if (is_active_thread)
10284 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10285 return false;
10286 break;
10287
10288 case NOTE_INFO_MODULE:
10289 case NOTE_INFO_MODULE64:
10290 /* Make a ".module/xxxxxxxx" section. */
10291 if (type == NOTE_INFO_MODULE)
10292 {
10293 /* module_info.base_address */
10294 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10295 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10296 /* module_info.module_name_size */
10297 name_size = bfd_get_32 (abfd, note->descdata + 8);
10298 }
10299 else /* NOTE_INFO_MODULE64 */
10300 {
10301 /* module_info.base_address */
10302 base_addr = bfd_get_64 (abfd, note->descdata + 4);
10303 sprintf (buf, ".module/%016lx", (unsigned long) base_addr);
10304 /* module_info.module_name_size */
10305 name_size = bfd_get_32 (abfd, note->descdata + 12);
10306 }
10307
10308 len = strlen (buf) + 1;
10309 name = (char *) bfd_alloc (abfd, len);
10310 if (name == NULL)
10311 return false;
10312
10313 memcpy (name, buf, len);
10314
10315 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10316
10317 if (sect == NULL)
10318 return false;
10319
10320 if (note->descsz < 12 + name_size)
10321 {
10322 _bfd_error_handler (_("%pB: win32pstatus NOTE_INFO_MODULE of size %lu is too small to contain a name of size %u"),
10323 abfd, note->descsz, name_size);
10324 return true;
10325 }
10326
10327 sect->size = note->descsz;
10328 sect->filepos = note->descpos;
10329 sect->alignment_power = 2;
10330 break;
10331
10332 default:
10333 return true;
10334 }
10335
10336 return true;
10337 }
10338
10339 static bool
10340 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10341 {
10342 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10343
10344 switch (note->type)
10345 {
10346 default:
10347 return true;
10348
10349 case NT_PRSTATUS:
10350 if (bed->elf_backend_grok_prstatus)
10351 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10352 return true;
10353 #if defined (HAVE_PRSTATUS_T)
10354 return elfcore_grok_prstatus (abfd, note);
10355 #else
10356 return true;
10357 #endif
10358
10359 #if defined (HAVE_PSTATUS_T)
10360 case NT_PSTATUS:
10361 return elfcore_grok_pstatus (abfd, note);
10362 #endif
10363
10364 #if defined (HAVE_LWPSTATUS_T)
10365 case NT_LWPSTATUS:
10366 return elfcore_grok_lwpstatus (abfd, note);
10367 #endif
10368
10369 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10370 return elfcore_grok_prfpreg (abfd, note);
10371
10372 case NT_WIN32PSTATUS:
10373 return elfcore_grok_win32pstatus (abfd, note);
10374
10375 case NT_PRXFPREG: /* Linux SSE extension */
10376 if (note->namesz == 6
10377 && strcmp (note->namedata, "LINUX") == 0)
10378 return elfcore_grok_prxfpreg (abfd, note);
10379 else
10380 return true;
10381
10382 case NT_X86_XSTATE: /* Linux XSAVE extension */
10383 if (note->namesz == 6
10384 && strcmp (note->namedata, "LINUX") == 0)
10385 return elfcore_grok_xstatereg (abfd, note);
10386 else
10387 return true;
10388
10389 case NT_PPC_VMX:
10390 if (note->namesz == 6
10391 && strcmp (note->namedata, "LINUX") == 0)
10392 return elfcore_grok_ppc_vmx (abfd, note);
10393 else
10394 return true;
10395
10396 case NT_PPC_VSX:
10397 if (note->namesz == 6
10398 && strcmp (note->namedata, "LINUX") == 0)
10399 return elfcore_grok_ppc_vsx (abfd, note);
10400 else
10401 return true;
10402
10403 case NT_PPC_TAR:
10404 if (note->namesz == 6
10405 && strcmp (note->namedata, "LINUX") == 0)
10406 return elfcore_grok_ppc_tar (abfd, note);
10407 else
10408 return true;
10409
10410 case NT_PPC_PPR:
10411 if (note->namesz == 6
10412 && strcmp (note->namedata, "LINUX") == 0)
10413 return elfcore_grok_ppc_ppr (abfd, note);
10414 else
10415 return true;
10416
10417 case NT_PPC_DSCR:
10418 if (note->namesz == 6
10419 && strcmp (note->namedata, "LINUX") == 0)
10420 return elfcore_grok_ppc_dscr (abfd, note);
10421 else
10422 return true;
10423
10424 case NT_PPC_EBB:
10425 if (note->namesz == 6
10426 && strcmp (note->namedata, "LINUX") == 0)
10427 return elfcore_grok_ppc_ebb (abfd, note);
10428 else
10429 return true;
10430
10431 case NT_PPC_PMU:
10432 if (note->namesz == 6
10433 && strcmp (note->namedata, "LINUX") == 0)
10434 return elfcore_grok_ppc_pmu (abfd, note);
10435 else
10436 return true;
10437
10438 case NT_PPC_TM_CGPR:
10439 if (note->namesz == 6
10440 && strcmp (note->namedata, "LINUX") == 0)
10441 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10442 else
10443 return true;
10444
10445 case NT_PPC_TM_CFPR:
10446 if (note->namesz == 6
10447 && strcmp (note->namedata, "LINUX") == 0)
10448 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10449 else
10450 return true;
10451
10452 case NT_PPC_TM_CVMX:
10453 if (note->namesz == 6
10454 && strcmp (note->namedata, "LINUX") == 0)
10455 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10456 else
10457 return true;
10458
10459 case NT_PPC_TM_CVSX:
10460 if (note->namesz == 6
10461 && strcmp (note->namedata, "LINUX") == 0)
10462 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10463 else
10464 return true;
10465
10466 case NT_PPC_TM_SPR:
10467 if (note->namesz == 6
10468 && strcmp (note->namedata, "LINUX") == 0)
10469 return elfcore_grok_ppc_tm_spr (abfd, note);
10470 else
10471 return true;
10472
10473 case NT_PPC_TM_CTAR:
10474 if (note->namesz == 6
10475 && strcmp (note->namedata, "LINUX") == 0)
10476 return elfcore_grok_ppc_tm_ctar (abfd, note);
10477 else
10478 return true;
10479
10480 case NT_PPC_TM_CPPR:
10481 if (note->namesz == 6
10482 && strcmp (note->namedata, "LINUX") == 0)
10483 return elfcore_grok_ppc_tm_cppr (abfd, note);
10484 else
10485 return true;
10486
10487 case NT_PPC_TM_CDSCR:
10488 if (note->namesz == 6
10489 && strcmp (note->namedata, "LINUX") == 0)
10490 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10491 else
10492 return true;
10493
10494 case NT_S390_HIGH_GPRS:
10495 if (note->namesz == 6
10496 && strcmp (note->namedata, "LINUX") == 0)
10497 return elfcore_grok_s390_high_gprs (abfd, note);
10498 else
10499 return true;
10500
10501 case NT_S390_TIMER:
10502 if (note->namesz == 6
10503 && strcmp (note->namedata, "LINUX") == 0)
10504 return elfcore_grok_s390_timer (abfd, note);
10505 else
10506 return true;
10507
10508 case NT_S390_TODCMP:
10509 if (note->namesz == 6
10510 && strcmp (note->namedata, "LINUX") == 0)
10511 return elfcore_grok_s390_todcmp (abfd, note);
10512 else
10513 return true;
10514
10515 case NT_S390_TODPREG:
10516 if (note->namesz == 6
10517 && strcmp (note->namedata, "LINUX") == 0)
10518 return elfcore_grok_s390_todpreg (abfd, note);
10519 else
10520 return true;
10521
10522 case NT_S390_CTRS:
10523 if (note->namesz == 6
10524 && strcmp (note->namedata, "LINUX") == 0)
10525 return elfcore_grok_s390_ctrs (abfd, note);
10526 else
10527 return true;
10528
10529 case NT_S390_PREFIX:
10530 if (note->namesz == 6
10531 && strcmp (note->namedata, "LINUX") == 0)
10532 return elfcore_grok_s390_prefix (abfd, note);
10533 else
10534 return true;
10535
10536 case NT_S390_LAST_BREAK:
10537 if (note->namesz == 6
10538 && strcmp (note->namedata, "LINUX") == 0)
10539 return elfcore_grok_s390_last_break (abfd, note);
10540 else
10541 return true;
10542
10543 case NT_S390_SYSTEM_CALL:
10544 if (note->namesz == 6
10545 && strcmp (note->namedata, "LINUX") == 0)
10546 return elfcore_grok_s390_system_call (abfd, note);
10547 else
10548 return true;
10549
10550 case NT_S390_TDB:
10551 if (note->namesz == 6
10552 && strcmp (note->namedata, "LINUX") == 0)
10553 return elfcore_grok_s390_tdb (abfd, note);
10554 else
10555 return true;
10556
10557 case NT_S390_VXRS_LOW:
10558 if (note->namesz == 6
10559 && strcmp (note->namedata, "LINUX") == 0)
10560 return elfcore_grok_s390_vxrs_low (abfd, note);
10561 else
10562 return true;
10563
10564 case NT_S390_VXRS_HIGH:
10565 if (note->namesz == 6
10566 && strcmp (note->namedata, "LINUX") == 0)
10567 return elfcore_grok_s390_vxrs_high (abfd, note);
10568 else
10569 return true;
10570
10571 case NT_S390_GS_CB:
10572 if (note->namesz == 6
10573 && strcmp (note->namedata, "LINUX") == 0)
10574 return elfcore_grok_s390_gs_cb (abfd, note);
10575 else
10576 return true;
10577
10578 case NT_S390_GS_BC:
10579 if (note->namesz == 6
10580 && strcmp (note->namedata, "LINUX") == 0)
10581 return elfcore_grok_s390_gs_bc (abfd, note);
10582 else
10583 return true;
10584
10585 case NT_ARC_V2:
10586 if (note->namesz == 6
10587 && strcmp (note->namedata, "LINUX") == 0)
10588 return elfcore_grok_arc_v2 (abfd, note);
10589 else
10590 return true;
10591
10592 case NT_ARM_VFP:
10593 if (note->namesz == 6
10594 && strcmp (note->namedata, "LINUX") == 0)
10595 return elfcore_grok_arm_vfp (abfd, note);
10596 else
10597 return true;
10598
10599 case NT_ARM_TLS:
10600 if (note->namesz == 6
10601 && strcmp (note->namedata, "LINUX") == 0)
10602 return elfcore_grok_aarch_tls (abfd, note);
10603 else
10604 return true;
10605
10606 case NT_ARM_HW_BREAK:
10607 if (note->namesz == 6
10608 && strcmp (note->namedata, "LINUX") == 0)
10609 return elfcore_grok_aarch_hw_break (abfd, note);
10610 else
10611 return true;
10612
10613 case NT_ARM_HW_WATCH:
10614 if (note->namesz == 6
10615 && strcmp (note->namedata, "LINUX") == 0)
10616 return elfcore_grok_aarch_hw_watch (abfd, note);
10617 else
10618 return true;
10619
10620 case NT_ARM_SVE:
10621 if (note->namesz == 6
10622 && strcmp (note->namedata, "LINUX") == 0)
10623 return elfcore_grok_aarch_sve (abfd, note);
10624 else
10625 return true;
10626
10627 case NT_ARM_PAC_MASK:
10628 if (note->namesz == 6
10629 && strcmp (note->namedata, "LINUX") == 0)
10630 return elfcore_grok_aarch_pauth (abfd, note);
10631 else
10632 return true;
10633
10634 case NT_ARM_TAGGED_ADDR_CTRL:
10635 if (note->namesz == 6
10636 && strcmp (note->namedata, "LINUX") == 0)
10637 return elfcore_grok_aarch_mte (abfd, note);
10638 else
10639 return true;
10640
10641 case NT_GDB_TDESC:
10642 if (note->namesz == 4
10643 && strcmp (note->namedata, "GDB") == 0)
10644 return elfcore_grok_gdb_tdesc (abfd, note);
10645 else
10646 return true;
10647
10648 case NT_RISCV_CSR:
10649 if (note->namesz == 4
10650 && strcmp (note->namedata, "GDB") == 0)
10651 return elfcore_grok_riscv_csr (abfd, note);
10652 else
10653 return true;
10654
10655 case NT_PRPSINFO:
10656 case NT_PSINFO:
10657 if (bed->elf_backend_grok_psinfo)
10658 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10659 return true;
10660 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10661 return elfcore_grok_psinfo (abfd, note);
10662 #else
10663 return true;
10664 #endif
10665
10666 case NT_AUXV:
10667 return elfcore_make_auxv_note_section (abfd, note, 0);
10668
10669 case NT_FILE:
10670 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10671 note);
10672
10673 case NT_SIGINFO:
10674 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10675 note);
10676
10677 case NT_MEMTAG:
10678 return elfcore_make_memtag_note_section (abfd, note, 0);
10679 }
10680 }
10681
10682 static bool
10683 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10684 {
10685 struct bfd_build_id* build_id;
10686
10687 if (note->descsz == 0)
10688 return false;
10689
10690 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10691 if (build_id == NULL)
10692 return false;
10693
10694 build_id->size = note->descsz;
10695 memcpy (build_id->data, note->descdata, note->descsz);
10696 abfd->build_id = build_id;
10697
10698 return true;
10699 }
10700
10701 static bool
10702 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10703 {
10704 switch (note->type)
10705 {
10706 default:
10707 return true;
10708
10709 case NT_GNU_PROPERTY_TYPE_0:
10710 return _bfd_elf_parse_gnu_properties (abfd, note);
10711
10712 case NT_GNU_BUILD_ID:
10713 return elfobj_grok_gnu_build_id (abfd, note);
10714 }
10715 }
10716
10717 static bool
10718 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10719 {
10720 struct sdt_note *cur =
10721 (struct sdt_note *) bfd_alloc (abfd,
10722 sizeof (struct sdt_note) + note->descsz);
10723
10724 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10725 cur->size = (bfd_size_type) note->descsz;
10726 memcpy (cur->data, note->descdata, note->descsz);
10727
10728 elf_tdata (abfd)->sdt_note_head = cur;
10729
10730 return true;
10731 }
10732
10733 static bool
10734 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10735 {
10736 switch (note->type)
10737 {
10738 case NT_STAPSDT:
10739 return elfobj_grok_stapsdt_note_1 (abfd, note);
10740
10741 default:
10742 return true;
10743 }
10744 }
10745
10746 static bool
10747 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10748 {
10749 size_t offset;
10750
10751 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10752 {
10753 case ELFCLASS32:
10754 if (note->descsz < 108)
10755 return false;
10756 break;
10757
10758 case ELFCLASS64:
10759 if (note->descsz < 120)
10760 return false;
10761 break;
10762
10763 default:
10764 return false;
10765 }
10766
10767 /* Check for version 1 in pr_version. */
10768 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10769 return false;
10770
10771 offset = 4;
10772
10773 /* Skip over pr_psinfosz. */
10774 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10775 offset += 4;
10776 else
10777 {
10778 offset += 4; /* Padding before pr_psinfosz. */
10779 offset += 8;
10780 }
10781
10782 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10783 elf_tdata (abfd)->core->program
10784 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10785 offset += 17;
10786
10787 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10788 elf_tdata (abfd)->core->command
10789 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10790 offset += 81;
10791
10792 /* Padding before pr_pid. */
10793 offset += 2;
10794
10795 /* The pr_pid field was added in version "1a". */
10796 if (note->descsz < offset + 4)
10797 return true;
10798
10799 elf_tdata (abfd)->core->pid
10800 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10801
10802 return true;
10803 }
10804
10805 static bool
10806 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10807 {
10808 size_t offset;
10809 size_t size;
10810 size_t min_size;
10811
10812 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10813 Also compute minimum size of this note. */
10814 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10815 {
10816 case ELFCLASS32:
10817 offset = 4 + 4;
10818 min_size = offset + (4 * 2) + 4 + 4 + 4;
10819 break;
10820
10821 case ELFCLASS64:
10822 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10823 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10824 break;
10825
10826 default:
10827 return false;
10828 }
10829
10830 if (note->descsz < min_size)
10831 return false;
10832
10833 /* Check for version 1 in pr_version. */
10834 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10835 return false;
10836
10837 /* Extract size of pr_reg from pr_gregsetsz. */
10838 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10839 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10840 {
10841 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10842 offset += 4 * 2;
10843 }
10844 else
10845 {
10846 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10847 offset += 8 * 2;
10848 }
10849
10850 /* Skip over pr_osreldate. */
10851 offset += 4;
10852
10853 /* Read signal from pr_cursig. */
10854 if (elf_tdata (abfd)->core->signal == 0)
10855 elf_tdata (abfd)->core->signal
10856 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10857 offset += 4;
10858
10859 /* Read TID from pr_pid. */
10860 elf_tdata (abfd)->core->lwpid
10861 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10862 offset += 4;
10863
10864 /* Padding before pr_reg. */
10865 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10866 offset += 4;
10867
10868 /* Make sure that there is enough data remaining in the note. */
10869 if ((note->descsz - offset) < size)
10870 return false;
10871
10872 /* Make a ".reg/999" section and a ".reg" section. */
10873 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10874 size, note->descpos + offset);
10875 }
10876
10877 static bool
10878 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10879 {
10880 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10881
10882 switch (note->type)
10883 {
10884 case NT_PRSTATUS:
10885 if (bed->elf_backend_grok_freebsd_prstatus)
10886 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10887 return true;
10888 return elfcore_grok_freebsd_prstatus (abfd, note);
10889
10890 case NT_FPREGSET:
10891 return elfcore_grok_prfpreg (abfd, note);
10892
10893 case NT_PRPSINFO:
10894 return elfcore_grok_freebsd_psinfo (abfd, note);
10895
10896 case NT_FREEBSD_THRMISC:
10897 if (note->namesz == 8)
10898 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10899 else
10900 return true;
10901
10902 case NT_FREEBSD_PROCSTAT_PROC:
10903 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10904 note);
10905
10906 case NT_FREEBSD_PROCSTAT_FILES:
10907 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10908 note);
10909
10910 case NT_FREEBSD_PROCSTAT_VMMAP:
10911 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10912 note);
10913
10914 case NT_FREEBSD_PROCSTAT_AUXV:
10915 return elfcore_make_auxv_note_section (abfd, note, 4);
10916
10917 case NT_X86_XSTATE:
10918 if (note->namesz == 8)
10919 return elfcore_grok_xstatereg (abfd, note);
10920 else
10921 return true;
10922
10923 case NT_FREEBSD_PTLWPINFO:
10924 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10925 note);
10926
10927 case NT_ARM_VFP:
10928 return elfcore_grok_arm_vfp (abfd, note);
10929
10930 default:
10931 return true;
10932 }
10933 }
10934
10935 static bool
10936 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10937 {
10938 char *cp;
10939
10940 cp = strchr (note->namedata, '@');
10941 if (cp != NULL)
10942 {
10943 *lwpidp = atoi(cp + 1);
10944 return true;
10945 }
10946 return false;
10947 }
10948
10949 static bool
10950 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10951 {
10952 if (note->descsz <= 0x7c + 31)
10953 return false;
10954
10955 /* Signal number at offset 0x08. */
10956 elf_tdata (abfd)->core->signal
10957 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10958
10959 /* Process ID at offset 0x50. */
10960 elf_tdata (abfd)->core->pid
10961 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10962
10963 /* Command name at 0x7c (max 32 bytes, including nul). */
10964 elf_tdata (abfd)->core->command
10965 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10966
10967 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10968 note);
10969 }
10970
10971 static bool
10972 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10973 {
10974 int lwp;
10975
10976 if (elfcore_netbsd_get_lwpid (note, &lwp))
10977 elf_tdata (abfd)->core->lwpid = lwp;
10978
10979 switch (note->type)
10980 {
10981 case NT_NETBSDCORE_PROCINFO:
10982 /* NetBSD-specific core "procinfo". Note that we expect to
10983 find this note before any of the others, which is fine,
10984 since the kernel writes this note out first when it
10985 creates a core file. */
10986 return elfcore_grok_netbsd_procinfo (abfd, note);
10987 case NT_NETBSDCORE_AUXV:
10988 /* NetBSD-specific Elf Auxiliary Vector data. */
10989 return elfcore_make_auxv_note_section (abfd, note, 4);
10990 case NT_NETBSDCORE_LWPSTATUS:
10991 return elfcore_make_note_pseudosection (abfd,
10992 ".note.netbsdcore.lwpstatus",
10993 note);
10994 default:
10995 break;
10996 }
10997
10998 /* As of March 2020 there are no other machine-independent notes
10999 defined for NetBSD core files. If the note type is less
11000 than the start of the machine-dependent note types, we don't
11001 understand it. */
11002
11003 if (note->type < NT_NETBSDCORE_FIRSTMACH)
11004 return true;
11005
11006
11007 switch (bfd_get_arch (abfd))
11008 {
11009 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
11010 PT_GETFPREGS == mach+2. */
11011
11012 case bfd_arch_aarch64:
11013 case bfd_arch_alpha:
11014 case bfd_arch_sparc:
11015 switch (note->type)
11016 {
11017 case NT_NETBSDCORE_FIRSTMACH+0:
11018 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11019
11020 case NT_NETBSDCORE_FIRSTMACH+2:
11021 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11022
11023 default:
11024 return true;
11025 }
11026
11027 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
11028 There's also old PT___GETREGS40 == mach + 1 for old reg
11029 structure which lacks GBR. */
11030
11031 case bfd_arch_sh:
11032 switch (note->type)
11033 {
11034 case NT_NETBSDCORE_FIRSTMACH+3:
11035 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11036
11037 case NT_NETBSDCORE_FIRSTMACH+5:
11038 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11039
11040 default:
11041 return true;
11042 }
11043
11044 /* On all other arch's, PT_GETREGS == mach+1 and
11045 PT_GETFPREGS == mach+3. */
11046
11047 default:
11048 switch (note->type)
11049 {
11050 case NT_NETBSDCORE_FIRSTMACH+1:
11051 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11052
11053 case NT_NETBSDCORE_FIRSTMACH+3:
11054 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11055
11056 default:
11057 return true;
11058 }
11059 }
11060 /* NOTREACHED */
11061 }
11062
11063 static bool
11064 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
11065 {
11066 if (note->descsz <= 0x48 + 31)
11067 return false;
11068
11069 /* Signal number at offset 0x08. */
11070 elf_tdata (abfd)->core->signal
11071 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
11072
11073 /* Process ID at offset 0x20. */
11074 elf_tdata (abfd)->core->pid
11075 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
11076
11077 /* Command name at 0x48 (max 32 bytes, including nul). */
11078 elf_tdata (abfd)->core->command
11079 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
11080
11081 return true;
11082 }
11083
11084 static bool
11085 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
11086 {
11087 if (note->type == NT_OPENBSD_PROCINFO)
11088 return elfcore_grok_openbsd_procinfo (abfd, note);
11089
11090 if (note->type == NT_OPENBSD_REGS)
11091 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11092
11093 if (note->type == NT_OPENBSD_FPREGS)
11094 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11095
11096 if (note->type == NT_OPENBSD_XFPREGS)
11097 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
11098
11099 if (note->type == NT_OPENBSD_AUXV)
11100 return elfcore_make_auxv_note_section (abfd, note, 0);
11101
11102 if (note->type == NT_OPENBSD_WCOOKIE)
11103 {
11104 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
11105 SEC_HAS_CONTENTS);
11106
11107 if (sect == NULL)
11108 return false;
11109 sect->size = note->descsz;
11110 sect->filepos = note->descpos;
11111 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
11112
11113 return true;
11114 }
11115
11116 return true;
11117 }
11118
11119 static bool
11120 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
11121 {
11122 void *ddata = note->descdata;
11123 char buf[100];
11124 char *name;
11125 asection *sect;
11126 short sig;
11127 unsigned flags;
11128
11129 if (note->descsz < 16)
11130 return false;
11131
11132 /* nto_procfs_status 'pid' field is at offset 0. */
11133 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
11134
11135 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
11136 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
11137
11138 /* nto_procfs_status 'flags' field is at offset 8. */
11139 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
11140
11141 /* nto_procfs_status 'what' field is at offset 14. */
11142 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
11143 {
11144 elf_tdata (abfd)->core->signal = sig;
11145 elf_tdata (abfd)->core->lwpid = *tid;
11146 }
11147
11148 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
11149 do not come from signals so we make sure we set the current
11150 thread just in case. */
11151 if (flags & 0x00000080)
11152 elf_tdata (abfd)->core->lwpid = *tid;
11153
11154 /* Make a ".qnx_core_status/%d" section. */
11155 sprintf (buf, ".qnx_core_status/%ld", *tid);
11156
11157 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11158 if (name == NULL)
11159 return false;
11160 strcpy (name, buf);
11161
11162 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11163 if (sect == NULL)
11164 return false;
11165
11166 sect->size = note->descsz;
11167 sect->filepos = note->descpos;
11168 sect->alignment_power = 2;
11169
11170 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
11171 }
11172
11173 static bool
11174 elfcore_grok_nto_regs (bfd *abfd,
11175 Elf_Internal_Note *note,
11176 long tid,
11177 char *base)
11178 {
11179 char buf[100];
11180 char *name;
11181 asection *sect;
11182
11183 /* Make a "(base)/%d" section. */
11184 sprintf (buf, "%s/%ld", base, tid);
11185
11186 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11187 if (name == NULL)
11188 return false;
11189 strcpy (name, buf);
11190
11191 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11192 if (sect == NULL)
11193 return false;
11194
11195 sect->size = note->descsz;
11196 sect->filepos = note->descpos;
11197 sect->alignment_power = 2;
11198
11199 /* This is the current thread. */
11200 if (elf_tdata (abfd)->core->lwpid == tid)
11201 return elfcore_maybe_make_sect (abfd, base, sect);
11202
11203 return true;
11204 }
11205
11206 #define BFD_QNT_CORE_INFO 7
11207 #define BFD_QNT_CORE_STATUS 8
11208 #define BFD_QNT_CORE_GREG 9
11209 #define BFD_QNT_CORE_FPREG 10
11210
11211 static bool
11212 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
11213 {
11214 /* Every GREG section has a STATUS section before it. Store the
11215 tid from the previous call to pass down to the next gregs
11216 function. */
11217 static long tid = 1;
11218
11219 switch (note->type)
11220 {
11221 case BFD_QNT_CORE_INFO:
11222 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
11223 case BFD_QNT_CORE_STATUS:
11224 return elfcore_grok_nto_status (abfd, note, &tid);
11225 case BFD_QNT_CORE_GREG:
11226 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
11227 case BFD_QNT_CORE_FPREG:
11228 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
11229 default:
11230 return true;
11231 }
11232 }
11233
11234 static bool
11235 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
11236 {
11237 char *name;
11238 asection *sect;
11239 size_t len;
11240
11241 /* Use note name as section name. */
11242 len = note->namesz;
11243 name = (char *) bfd_alloc (abfd, len);
11244 if (name == NULL)
11245 return false;
11246 memcpy (name, note->namedata, len);
11247 name[len - 1] = '\0';
11248
11249 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11250 if (sect == NULL)
11251 return false;
11252
11253 sect->size = note->descsz;
11254 sect->filepos = note->descpos;
11255 sect->alignment_power = 1;
11256
11257 return true;
11258 }
11259
11260 /* Function: elfcore_write_note
11261
11262 Inputs:
11263 buffer to hold note, and current size of buffer
11264 name of note
11265 type of note
11266 data for note
11267 size of data for note
11268
11269 Writes note to end of buffer. ELF64 notes are written exactly as
11270 for ELF32, despite the current (as of 2006) ELF gabi specifying
11271 that they ought to have 8-byte namesz and descsz field, and have
11272 8-byte alignment. Other writers, eg. Linux kernel, do the same.
11273
11274 Return:
11275 Pointer to realloc'd buffer, *BUFSIZ updated. */
11276
11277 char *
11278 elfcore_write_note (bfd *abfd,
11279 char *buf,
11280 int *bufsiz,
11281 const char *name,
11282 int type,
11283 const void *input,
11284 int size)
11285 {
11286 Elf_External_Note *xnp;
11287 size_t namesz;
11288 size_t newspace;
11289 char *dest;
11290
11291 namesz = 0;
11292 if (name != NULL)
11293 namesz = strlen (name) + 1;
11294
11295 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
11296
11297 buf = (char *) realloc (buf, *bufsiz + newspace);
11298 if (buf == NULL)
11299 return buf;
11300 dest = buf + *bufsiz;
11301 *bufsiz += newspace;
11302 xnp = (Elf_External_Note *) dest;
11303 H_PUT_32 (abfd, namesz, xnp->namesz);
11304 H_PUT_32 (abfd, size, xnp->descsz);
11305 H_PUT_32 (abfd, type, xnp->type);
11306 dest = xnp->name;
11307 if (name != NULL)
11308 {
11309 memcpy (dest, name, namesz);
11310 dest += namesz;
11311 while (namesz & 3)
11312 {
11313 *dest++ = '\0';
11314 ++namesz;
11315 }
11316 }
11317 memcpy (dest, input, size);
11318 dest += size;
11319 while (size & 3)
11320 {
11321 *dest++ = '\0';
11322 ++size;
11323 }
11324 return buf;
11325 }
11326
11327 /* gcc-8 warns (*) on all the strncpy calls in this function about
11328 possible string truncation. The "truncation" is not a bug. We
11329 have an external representation of structs with fields that are not
11330 necessarily NULL terminated and corresponding internal
11331 representation fields that are one larger so that they can always
11332 be NULL terminated.
11333 gcc versions between 4.2 and 4.6 do not allow pragma control of
11334 diagnostics inside functions, giving a hard error if you try to use
11335 the finer control available with later versions.
11336 gcc prior to 4.2 warns about diagnostic push and pop.
11337 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11338 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11339 (*) Depending on your system header files! */
11340 #if GCC_VERSION >= 8000
11341 # pragma GCC diagnostic push
11342 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11343 #endif
11344 char *
11345 elfcore_write_prpsinfo (bfd *abfd,
11346 char *buf,
11347 int *bufsiz,
11348 const char *fname,
11349 const char *psargs)
11350 {
11351 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11352
11353 if (bed->elf_backend_write_core_note != NULL)
11354 {
11355 char *ret;
11356 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11357 NT_PRPSINFO, fname, psargs);
11358 if (ret != NULL)
11359 return ret;
11360 }
11361
11362 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11363 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11364 if (bed->s->elfclass == ELFCLASS32)
11365 {
11366 # if defined (HAVE_PSINFO32_T)
11367 psinfo32_t data;
11368 int note_type = NT_PSINFO;
11369 # else
11370 prpsinfo32_t data;
11371 int note_type = NT_PRPSINFO;
11372 # endif
11373
11374 memset (&data, 0, sizeof (data));
11375 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11376 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11377 return elfcore_write_note (abfd, buf, bufsiz,
11378 "CORE", note_type, &data, sizeof (data));
11379 }
11380 else
11381 # endif
11382 {
11383 # if defined (HAVE_PSINFO_T)
11384 psinfo_t data;
11385 int note_type = NT_PSINFO;
11386 # else
11387 prpsinfo_t data;
11388 int note_type = NT_PRPSINFO;
11389 # endif
11390
11391 memset (&data, 0, sizeof (data));
11392 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11393 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11394 return elfcore_write_note (abfd, buf, bufsiz,
11395 "CORE", note_type, &data, sizeof (data));
11396 }
11397 #endif /* PSINFO_T or PRPSINFO_T */
11398
11399 free (buf);
11400 return NULL;
11401 }
11402 #if GCC_VERSION >= 8000
11403 # pragma GCC diagnostic pop
11404 #endif
11405
11406 char *
11407 elfcore_write_linux_prpsinfo32
11408 (bfd *abfd, char *buf, int *bufsiz,
11409 const struct elf_internal_linux_prpsinfo *prpsinfo)
11410 {
11411 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11412 {
11413 struct elf_external_linux_prpsinfo32_ugid16 data;
11414
11415 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11416 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11417 &data, sizeof (data));
11418 }
11419 else
11420 {
11421 struct elf_external_linux_prpsinfo32_ugid32 data;
11422
11423 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11424 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11425 &data, sizeof (data));
11426 }
11427 }
11428
11429 char *
11430 elfcore_write_linux_prpsinfo64
11431 (bfd *abfd, char *buf, int *bufsiz,
11432 const struct elf_internal_linux_prpsinfo *prpsinfo)
11433 {
11434 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11435 {
11436 struct elf_external_linux_prpsinfo64_ugid16 data;
11437
11438 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11439 return elfcore_write_note (abfd, buf, bufsiz,
11440 "CORE", NT_PRPSINFO, &data, sizeof (data));
11441 }
11442 else
11443 {
11444 struct elf_external_linux_prpsinfo64_ugid32 data;
11445
11446 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11447 return elfcore_write_note (abfd, buf, bufsiz,
11448 "CORE", NT_PRPSINFO, &data, sizeof (data));
11449 }
11450 }
11451
11452 char *
11453 elfcore_write_prstatus (bfd *abfd,
11454 char *buf,
11455 int *bufsiz,
11456 long pid,
11457 int cursig,
11458 const void *gregs)
11459 {
11460 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11461
11462 if (bed->elf_backend_write_core_note != NULL)
11463 {
11464 char *ret;
11465 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11466 NT_PRSTATUS,
11467 pid, cursig, gregs);
11468 if (ret != NULL)
11469 return ret;
11470 }
11471
11472 #if defined (HAVE_PRSTATUS_T)
11473 #if defined (HAVE_PRSTATUS32_T)
11474 if (bed->s->elfclass == ELFCLASS32)
11475 {
11476 prstatus32_t prstat;
11477
11478 memset (&prstat, 0, sizeof (prstat));
11479 prstat.pr_pid = pid;
11480 prstat.pr_cursig = cursig;
11481 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11482 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11483 NT_PRSTATUS, &prstat, sizeof (prstat));
11484 }
11485 else
11486 #endif
11487 {
11488 prstatus_t prstat;
11489
11490 memset (&prstat, 0, sizeof (prstat));
11491 prstat.pr_pid = pid;
11492 prstat.pr_cursig = cursig;
11493 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11494 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11495 NT_PRSTATUS, &prstat, sizeof (prstat));
11496 }
11497 #endif /* HAVE_PRSTATUS_T */
11498
11499 free (buf);
11500 return NULL;
11501 }
11502
11503 #if defined (HAVE_LWPSTATUS_T)
11504 char *
11505 elfcore_write_lwpstatus (bfd *abfd,
11506 char *buf,
11507 int *bufsiz,
11508 long pid,
11509 int cursig,
11510 const void *gregs)
11511 {
11512 lwpstatus_t lwpstat;
11513 const char *note_name = "CORE";
11514
11515 memset (&lwpstat, 0, sizeof (lwpstat));
11516 lwpstat.pr_lwpid = pid >> 16;
11517 lwpstat.pr_cursig = cursig;
11518 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11519 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11520 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11521 #if !defined(gregs)
11522 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11523 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11524 #else
11525 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11526 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11527 #endif
11528 #endif
11529 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11530 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11531 }
11532 #endif /* HAVE_LWPSTATUS_T */
11533
11534 #if defined (HAVE_PSTATUS_T)
11535 char *
11536 elfcore_write_pstatus (bfd *abfd,
11537 char *buf,
11538 int *bufsiz,
11539 long pid,
11540 int cursig ATTRIBUTE_UNUSED,
11541 const void *gregs ATTRIBUTE_UNUSED)
11542 {
11543 const char *note_name = "CORE";
11544 #if defined (HAVE_PSTATUS32_T)
11545 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11546
11547 if (bed->s->elfclass == ELFCLASS32)
11548 {
11549 pstatus32_t pstat;
11550
11551 memset (&pstat, 0, sizeof (pstat));
11552 pstat.pr_pid = pid & 0xffff;
11553 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11554 NT_PSTATUS, &pstat, sizeof (pstat));
11555 return buf;
11556 }
11557 else
11558 #endif
11559 {
11560 pstatus_t pstat;
11561
11562 memset (&pstat, 0, sizeof (pstat));
11563 pstat.pr_pid = pid & 0xffff;
11564 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11565 NT_PSTATUS, &pstat, sizeof (pstat));
11566 return buf;
11567 }
11568 }
11569 #endif /* HAVE_PSTATUS_T */
11570
11571 char *
11572 elfcore_write_prfpreg (bfd *abfd,
11573 char *buf,
11574 int *bufsiz,
11575 const void *fpregs,
11576 int size)
11577 {
11578 const char *note_name = "CORE";
11579 return elfcore_write_note (abfd, buf, bufsiz,
11580 note_name, NT_FPREGSET, fpregs, size);
11581 }
11582
11583 char *
11584 elfcore_write_prxfpreg (bfd *abfd,
11585 char *buf,
11586 int *bufsiz,
11587 const void *xfpregs,
11588 int size)
11589 {
11590 char *note_name = "LINUX";
11591 return elfcore_write_note (abfd, buf, bufsiz,
11592 note_name, NT_PRXFPREG, xfpregs, size);
11593 }
11594
11595 char *
11596 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11597 const void *xfpregs, int size)
11598 {
11599 char *note_name;
11600 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11601 note_name = "FreeBSD";
11602 else
11603 note_name = "LINUX";
11604 return elfcore_write_note (abfd, buf, bufsiz,
11605 note_name, NT_X86_XSTATE, xfpregs, size);
11606 }
11607
11608 char *
11609 elfcore_write_ppc_vmx (bfd *abfd,
11610 char *buf,
11611 int *bufsiz,
11612 const void *ppc_vmx,
11613 int size)
11614 {
11615 char *note_name = "LINUX";
11616 return elfcore_write_note (abfd, buf, bufsiz,
11617 note_name, NT_PPC_VMX, ppc_vmx, size);
11618 }
11619
11620 char *
11621 elfcore_write_ppc_vsx (bfd *abfd,
11622 char *buf,
11623 int *bufsiz,
11624 const void *ppc_vsx,
11625 int size)
11626 {
11627 char *note_name = "LINUX";
11628 return elfcore_write_note (abfd, buf, bufsiz,
11629 note_name, NT_PPC_VSX, ppc_vsx, size);
11630 }
11631
11632 char *
11633 elfcore_write_ppc_tar (bfd *abfd,
11634 char *buf,
11635 int *bufsiz,
11636 const void *ppc_tar,
11637 int size)
11638 {
11639 char *note_name = "LINUX";
11640 return elfcore_write_note (abfd, buf, bufsiz,
11641 note_name, NT_PPC_TAR, ppc_tar, size);
11642 }
11643
11644 char *
11645 elfcore_write_ppc_ppr (bfd *abfd,
11646 char *buf,
11647 int *bufsiz,
11648 const void *ppc_ppr,
11649 int size)
11650 {
11651 char *note_name = "LINUX";
11652 return elfcore_write_note (abfd, buf, bufsiz,
11653 note_name, NT_PPC_PPR, ppc_ppr, size);
11654 }
11655
11656 char *
11657 elfcore_write_ppc_dscr (bfd *abfd,
11658 char *buf,
11659 int *bufsiz,
11660 const void *ppc_dscr,
11661 int size)
11662 {
11663 char *note_name = "LINUX";
11664 return elfcore_write_note (abfd, buf, bufsiz,
11665 note_name, NT_PPC_DSCR, ppc_dscr, size);
11666 }
11667
11668 char *
11669 elfcore_write_ppc_ebb (bfd *abfd,
11670 char *buf,
11671 int *bufsiz,
11672 const void *ppc_ebb,
11673 int size)
11674 {
11675 char *note_name = "LINUX";
11676 return elfcore_write_note (abfd, buf, bufsiz,
11677 note_name, NT_PPC_EBB, ppc_ebb, size);
11678 }
11679
11680 char *
11681 elfcore_write_ppc_pmu (bfd *abfd,
11682 char *buf,
11683 int *bufsiz,
11684 const void *ppc_pmu,
11685 int size)
11686 {
11687 char *note_name = "LINUX";
11688 return elfcore_write_note (abfd, buf, bufsiz,
11689 note_name, NT_PPC_PMU, ppc_pmu, size);
11690 }
11691
11692 char *
11693 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11694 char *buf,
11695 int *bufsiz,
11696 const void *ppc_tm_cgpr,
11697 int size)
11698 {
11699 char *note_name = "LINUX";
11700 return elfcore_write_note (abfd, buf, bufsiz,
11701 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11702 }
11703
11704 char *
11705 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11706 char *buf,
11707 int *bufsiz,
11708 const void *ppc_tm_cfpr,
11709 int size)
11710 {
11711 char *note_name = "LINUX";
11712 return elfcore_write_note (abfd, buf, bufsiz,
11713 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11714 }
11715
11716 char *
11717 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11718 char *buf,
11719 int *bufsiz,
11720 const void *ppc_tm_cvmx,
11721 int size)
11722 {
11723 char *note_name = "LINUX";
11724 return elfcore_write_note (abfd, buf, bufsiz,
11725 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11726 }
11727
11728 char *
11729 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11730 char *buf,
11731 int *bufsiz,
11732 const void *ppc_tm_cvsx,
11733 int size)
11734 {
11735 char *note_name = "LINUX";
11736 return elfcore_write_note (abfd, buf, bufsiz,
11737 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11738 }
11739
11740 char *
11741 elfcore_write_ppc_tm_spr (bfd *abfd,
11742 char *buf,
11743 int *bufsiz,
11744 const void *ppc_tm_spr,
11745 int size)
11746 {
11747 char *note_name = "LINUX";
11748 return elfcore_write_note (abfd, buf, bufsiz,
11749 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11750 }
11751
11752 char *
11753 elfcore_write_ppc_tm_ctar (bfd *abfd,
11754 char *buf,
11755 int *bufsiz,
11756 const void *ppc_tm_ctar,
11757 int size)
11758 {
11759 char *note_name = "LINUX";
11760 return elfcore_write_note (abfd, buf, bufsiz,
11761 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11762 }
11763
11764 char *
11765 elfcore_write_ppc_tm_cppr (bfd *abfd,
11766 char *buf,
11767 int *bufsiz,
11768 const void *ppc_tm_cppr,
11769 int size)
11770 {
11771 char *note_name = "LINUX";
11772 return elfcore_write_note (abfd, buf, bufsiz,
11773 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11774 }
11775
11776 char *
11777 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11778 char *buf,
11779 int *bufsiz,
11780 const void *ppc_tm_cdscr,
11781 int size)
11782 {
11783 char *note_name = "LINUX";
11784 return elfcore_write_note (abfd, buf, bufsiz,
11785 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11786 }
11787
11788 static char *
11789 elfcore_write_s390_high_gprs (bfd *abfd,
11790 char *buf,
11791 int *bufsiz,
11792 const void *s390_high_gprs,
11793 int size)
11794 {
11795 char *note_name = "LINUX";
11796 return elfcore_write_note (abfd, buf, bufsiz,
11797 note_name, NT_S390_HIGH_GPRS,
11798 s390_high_gprs, size);
11799 }
11800
11801 char *
11802 elfcore_write_s390_timer (bfd *abfd,
11803 char *buf,
11804 int *bufsiz,
11805 const void *s390_timer,
11806 int size)
11807 {
11808 char *note_name = "LINUX";
11809 return elfcore_write_note (abfd, buf, bufsiz,
11810 note_name, NT_S390_TIMER, s390_timer, size);
11811 }
11812
11813 char *
11814 elfcore_write_s390_todcmp (bfd *abfd,
11815 char *buf,
11816 int *bufsiz,
11817 const void *s390_todcmp,
11818 int size)
11819 {
11820 char *note_name = "LINUX";
11821 return elfcore_write_note (abfd, buf, bufsiz,
11822 note_name, NT_S390_TODCMP, s390_todcmp, size);
11823 }
11824
11825 char *
11826 elfcore_write_s390_todpreg (bfd *abfd,
11827 char *buf,
11828 int *bufsiz,
11829 const void *s390_todpreg,
11830 int size)
11831 {
11832 char *note_name = "LINUX";
11833 return elfcore_write_note (abfd, buf, bufsiz,
11834 note_name, NT_S390_TODPREG, s390_todpreg, size);
11835 }
11836
11837 char *
11838 elfcore_write_s390_ctrs (bfd *abfd,
11839 char *buf,
11840 int *bufsiz,
11841 const void *s390_ctrs,
11842 int size)
11843 {
11844 char *note_name = "LINUX";
11845 return elfcore_write_note (abfd, buf, bufsiz,
11846 note_name, NT_S390_CTRS, s390_ctrs, size);
11847 }
11848
11849 char *
11850 elfcore_write_s390_prefix (bfd *abfd,
11851 char *buf,
11852 int *bufsiz,
11853 const void *s390_prefix,
11854 int size)
11855 {
11856 char *note_name = "LINUX";
11857 return elfcore_write_note (abfd, buf, bufsiz,
11858 note_name, NT_S390_PREFIX, s390_prefix, size);
11859 }
11860
11861 char *
11862 elfcore_write_s390_last_break (bfd *abfd,
11863 char *buf,
11864 int *bufsiz,
11865 const void *s390_last_break,
11866 int size)
11867 {
11868 char *note_name = "LINUX";
11869 return elfcore_write_note (abfd, buf, bufsiz,
11870 note_name, NT_S390_LAST_BREAK,
11871 s390_last_break, size);
11872 }
11873
11874 char *
11875 elfcore_write_s390_system_call (bfd *abfd,
11876 char *buf,
11877 int *bufsiz,
11878 const void *s390_system_call,
11879 int size)
11880 {
11881 char *note_name = "LINUX";
11882 return elfcore_write_note (abfd, buf, bufsiz,
11883 note_name, NT_S390_SYSTEM_CALL,
11884 s390_system_call, size);
11885 }
11886
11887 char *
11888 elfcore_write_s390_tdb (bfd *abfd,
11889 char *buf,
11890 int *bufsiz,
11891 const void *s390_tdb,
11892 int size)
11893 {
11894 char *note_name = "LINUX";
11895 return elfcore_write_note (abfd, buf, bufsiz,
11896 note_name, NT_S390_TDB, s390_tdb, size);
11897 }
11898
11899 char *
11900 elfcore_write_s390_vxrs_low (bfd *abfd,
11901 char *buf,
11902 int *bufsiz,
11903 const void *s390_vxrs_low,
11904 int size)
11905 {
11906 char *note_name = "LINUX";
11907 return elfcore_write_note (abfd, buf, bufsiz,
11908 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11909 }
11910
11911 char *
11912 elfcore_write_s390_vxrs_high (bfd *abfd,
11913 char *buf,
11914 int *bufsiz,
11915 const void *s390_vxrs_high,
11916 int size)
11917 {
11918 char *note_name = "LINUX";
11919 return elfcore_write_note (abfd, buf, bufsiz,
11920 note_name, NT_S390_VXRS_HIGH,
11921 s390_vxrs_high, size);
11922 }
11923
11924 char *
11925 elfcore_write_s390_gs_cb (bfd *abfd,
11926 char *buf,
11927 int *bufsiz,
11928 const void *s390_gs_cb,
11929 int size)
11930 {
11931 char *note_name = "LINUX";
11932 return elfcore_write_note (abfd, buf, bufsiz,
11933 note_name, NT_S390_GS_CB,
11934 s390_gs_cb, size);
11935 }
11936
11937 char *
11938 elfcore_write_s390_gs_bc (bfd *abfd,
11939 char *buf,
11940 int *bufsiz,
11941 const void *s390_gs_bc,
11942 int size)
11943 {
11944 char *note_name = "LINUX";
11945 return elfcore_write_note (abfd, buf, bufsiz,
11946 note_name, NT_S390_GS_BC,
11947 s390_gs_bc, size);
11948 }
11949
11950 char *
11951 elfcore_write_arm_vfp (bfd *abfd,
11952 char *buf,
11953 int *bufsiz,
11954 const void *arm_vfp,
11955 int size)
11956 {
11957 char *note_name = "LINUX";
11958 return elfcore_write_note (abfd, buf, bufsiz,
11959 note_name, NT_ARM_VFP, arm_vfp, size);
11960 }
11961
11962 char *
11963 elfcore_write_aarch_tls (bfd *abfd,
11964 char *buf,
11965 int *bufsiz,
11966 const void *aarch_tls,
11967 int size)
11968 {
11969 char *note_name = "LINUX";
11970 return elfcore_write_note (abfd, buf, bufsiz,
11971 note_name, NT_ARM_TLS, aarch_tls, size);
11972 }
11973
11974 char *
11975 elfcore_write_aarch_hw_break (bfd *abfd,
11976 char *buf,
11977 int *bufsiz,
11978 const void *aarch_hw_break,
11979 int size)
11980 {
11981 char *note_name = "LINUX";
11982 return elfcore_write_note (abfd, buf, bufsiz,
11983 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11984 }
11985
11986 char *
11987 elfcore_write_aarch_hw_watch (bfd *abfd,
11988 char *buf,
11989 int *bufsiz,
11990 const void *aarch_hw_watch,
11991 int size)
11992 {
11993 char *note_name = "LINUX";
11994 return elfcore_write_note (abfd, buf, bufsiz,
11995 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11996 }
11997
11998 char *
11999 elfcore_write_aarch_sve (bfd *abfd,
12000 char *buf,
12001 int *bufsiz,
12002 const void *aarch_sve,
12003 int size)
12004 {
12005 char *note_name = "LINUX";
12006 return elfcore_write_note (abfd, buf, bufsiz,
12007 note_name, NT_ARM_SVE, aarch_sve, size);
12008 }
12009
12010 char *
12011 elfcore_write_aarch_pauth (bfd *abfd,
12012 char *buf,
12013 int *bufsiz,
12014 const void *aarch_pauth,
12015 int size)
12016 {
12017 char *note_name = "LINUX";
12018 return elfcore_write_note (abfd, buf, bufsiz,
12019 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
12020 }
12021
12022 char *
12023 elfcore_write_aarch_mte (bfd *abfd,
12024 char *buf,
12025 int *bufsiz,
12026 const void *aarch_mte,
12027 int size)
12028 {
12029 char *note_name = "LINUX";
12030 return elfcore_write_note (abfd, buf, bufsiz,
12031 note_name, NT_ARM_TAGGED_ADDR_CTRL,
12032 aarch_mte,
12033 size);
12034 }
12035
12036 char *
12037 elfcore_write_arc_v2 (bfd *abfd,
12038 char *buf,
12039 int *bufsiz,
12040 const void *arc_v2,
12041 int size)
12042 {
12043 char *note_name = "LINUX";
12044 return elfcore_write_note (abfd, buf, bufsiz,
12045 note_name, NT_ARC_V2, arc_v2, size);
12046 }
12047
12048 /* Write the buffer of csr values in CSRS (length SIZE) into the note
12049 buffer BUF and update *BUFSIZ. ABFD is the bfd the note is being
12050 written into. Return a pointer to the new start of the note buffer, to
12051 replace BUF which may no longer be valid. */
12052
12053 char *
12054 elfcore_write_riscv_csr (bfd *abfd,
12055 char *buf,
12056 int *bufsiz,
12057 const void *csrs,
12058 int size)
12059 {
12060 const char *note_name = "GDB";
12061 return elfcore_write_note (abfd, buf, bufsiz,
12062 note_name, NT_RISCV_CSR, csrs, size);
12063 }
12064
12065 /* Write the target description (a string) pointed to by TDESC, length
12066 SIZE, into the note buffer BUF, and update *BUFSIZ. ABFD is the bfd the
12067 note is being written into. Return a pointer to the new start of the
12068 note buffer, to replace BUF which may no longer be valid. */
12069
12070 char *
12071 elfcore_write_gdb_tdesc (bfd *abfd,
12072 char *buf,
12073 int *bufsiz,
12074 const void *tdesc,
12075 int size)
12076 {
12077 const char *note_name = "GDB";
12078 return elfcore_write_note (abfd, buf, bufsiz,
12079 note_name, NT_GDB_TDESC, tdesc, size);
12080 }
12081
12082 char *
12083 elfcore_write_register_note (bfd *abfd,
12084 char *buf,
12085 int *bufsiz,
12086 const char *section,
12087 const void *data,
12088 int size)
12089 {
12090 if (strcmp (section, ".reg2") == 0)
12091 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
12092 if (strcmp (section, ".reg-xfp") == 0)
12093 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
12094 if (strcmp (section, ".reg-xstate") == 0)
12095 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
12096 if (strcmp (section, ".reg-ppc-vmx") == 0)
12097 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
12098 if (strcmp (section, ".reg-ppc-vsx") == 0)
12099 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
12100 if (strcmp (section, ".reg-ppc-tar") == 0)
12101 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
12102 if (strcmp (section, ".reg-ppc-ppr") == 0)
12103 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
12104 if (strcmp (section, ".reg-ppc-dscr") == 0)
12105 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
12106 if (strcmp (section, ".reg-ppc-ebb") == 0)
12107 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
12108 if (strcmp (section, ".reg-ppc-pmu") == 0)
12109 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
12110 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
12111 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
12112 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
12113 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
12114 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
12115 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
12116 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
12117 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
12118 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
12119 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
12120 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
12121 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
12122 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
12123 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
12124 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
12125 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
12126 if (strcmp (section, ".reg-s390-high-gprs") == 0)
12127 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
12128 if (strcmp (section, ".reg-s390-timer") == 0)
12129 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
12130 if (strcmp (section, ".reg-s390-todcmp") == 0)
12131 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
12132 if (strcmp (section, ".reg-s390-todpreg") == 0)
12133 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
12134 if (strcmp (section, ".reg-s390-ctrs") == 0)
12135 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
12136 if (strcmp (section, ".reg-s390-prefix") == 0)
12137 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
12138 if (strcmp (section, ".reg-s390-last-break") == 0)
12139 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
12140 if (strcmp (section, ".reg-s390-system-call") == 0)
12141 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
12142 if (strcmp (section, ".reg-s390-tdb") == 0)
12143 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
12144 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
12145 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
12146 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
12147 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
12148 if (strcmp (section, ".reg-s390-gs-cb") == 0)
12149 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
12150 if (strcmp (section, ".reg-s390-gs-bc") == 0)
12151 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
12152 if (strcmp (section, ".reg-arm-vfp") == 0)
12153 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
12154 if (strcmp (section, ".reg-aarch-tls") == 0)
12155 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
12156 if (strcmp (section, ".reg-aarch-hw-break") == 0)
12157 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
12158 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
12159 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
12160 if (strcmp (section, ".reg-aarch-sve") == 0)
12161 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
12162 if (strcmp (section, ".reg-aarch-pauth") == 0)
12163 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
12164 if (strcmp (section, ".reg-aarch-mte") == 0)
12165 return elfcore_write_aarch_mte (abfd, buf, bufsiz, data, size);
12166 if (strcmp (section, ".reg-arc-v2") == 0)
12167 return elfcore_write_arc_v2 (abfd, buf, bufsiz, data, size);
12168 if (strcmp (section, ".gdb-tdesc") == 0)
12169 return elfcore_write_gdb_tdesc (abfd, buf, bufsiz, data, size);
12170 if (strcmp (section, ".reg-riscv-csr") == 0)
12171 return elfcore_write_riscv_csr (abfd, buf, bufsiz, data, size);
12172 return NULL;
12173 }
12174
12175 char *
12176 elfcore_write_file_note (bfd *obfd, char *note_data, int *note_size,
12177 const void *buf, int bufsiz)
12178 {
12179 return elfcore_write_note (obfd, note_data, note_size,
12180 "CORE", NT_FILE, buf, bufsiz);
12181 }
12182
12183 static bool
12184 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
12185 size_t align)
12186 {
12187 char *p;
12188
12189 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
12190 gABI specifies that PT_NOTE alignment should be aligned to 4
12191 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
12192 align is less than 4, we use 4 byte alignment. */
12193 if (align < 4)
12194 align = 4;
12195 if (align != 4 && align != 8)
12196 return false;
12197
12198 p = buf;
12199 while (p < buf + size)
12200 {
12201 Elf_External_Note *xnp = (Elf_External_Note *) p;
12202 Elf_Internal_Note in;
12203
12204 if (offsetof (Elf_External_Note, name) > buf - p + size)
12205 return false;
12206
12207 in.type = H_GET_32 (abfd, xnp->type);
12208
12209 in.namesz = H_GET_32 (abfd, xnp->namesz);
12210 in.namedata = xnp->name;
12211 if (in.namesz > buf - in.namedata + size)
12212 return false;
12213
12214 in.descsz = H_GET_32 (abfd, xnp->descsz);
12215 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
12216 in.descpos = offset + (in.descdata - buf);
12217 if (in.descsz != 0
12218 && (in.descdata >= buf + size
12219 || in.descsz > buf - in.descdata + size))
12220 return false;
12221
12222 switch (bfd_get_format (abfd))
12223 {
12224 default:
12225 return true;
12226
12227 case bfd_core:
12228 {
12229 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
12230 struct
12231 {
12232 const char * string;
12233 size_t len;
12234 bool (*func) (bfd *, Elf_Internal_Note *);
12235 }
12236 grokers[] =
12237 {
12238 GROKER_ELEMENT ("", elfcore_grok_note),
12239 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
12240 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
12241 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
12242 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
12243 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
12244 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
12245 };
12246 #undef GROKER_ELEMENT
12247 int i;
12248
12249 for (i = ARRAY_SIZE (grokers); i--;)
12250 {
12251 if (in.namesz >= grokers[i].len
12252 && strncmp (in.namedata, grokers[i].string,
12253 grokers[i].len) == 0)
12254 {
12255 if (! grokers[i].func (abfd, & in))
12256 return false;
12257 break;
12258 }
12259 }
12260 break;
12261 }
12262
12263 case bfd_object:
12264 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
12265 {
12266 if (! elfobj_grok_gnu_note (abfd, &in))
12267 return false;
12268 }
12269 else if (in.namesz == sizeof "stapsdt"
12270 && strcmp (in.namedata, "stapsdt") == 0)
12271 {
12272 if (! elfobj_grok_stapsdt_note (abfd, &in))
12273 return false;
12274 }
12275 break;
12276 }
12277
12278 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
12279 }
12280
12281 return true;
12282 }
12283
12284 bool
12285 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
12286 size_t align)
12287 {
12288 char *buf;
12289
12290 if (size == 0 || (size + 1) == 0)
12291 return true;
12292
12293 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
12294 return false;
12295
12296 buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size);
12297 if (buf == NULL)
12298 return false;
12299
12300 /* PR 17512: file: ec08f814
12301 0-termintate the buffer so that string searches will not overflow. */
12302 buf[size] = 0;
12303
12304 if (!elf_parse_notes (abfd, buf, size, offset, align))
12305 {
12306 free (buf);
12307 return false;
12308 }
12309
12310 free (buf);
12311 return true;
12312 }
12313 \f
12314 /* Providing external access to the ELF program header table. */
12315
12316 /* Return an upper bound on the number of bytes required to store a
12317 copy of ABFD's program header table entries. Return -1 if an error
12318 occurs; bfd_get_error will return an appropriate code. */
12319
12320 long
12321 bfd_get_elf_phdr_upper_bound (bfd *abfd)
12322 {
12323 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12324 {
12325 bfd_set_error (bfd_error_wrong_format);
12326 return -1;
12327 }
12328
12329 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
12330 }
12331
12332 /* Copy ABFD's program header table entries to *PHDRS. The entries
12333 will be stored as an array of Elf_Internal_Phdr structures, as
12334 defined in include/elf/internal.h. To find out how large the
12335 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
12336
12337 Return the number of program header table entries read, or -1 if an
12338 error occurs; bfd_get_error will return an appropriate code. */
12339
12340 int
12341 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
12342 {
12343 int num_phdrs;
12344
12345 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12346 {
12347 bfd_set_error (bfd_error_wrong_format);
12348 return -1;
12349 }
12350
12351 num_phdrs = elf_elfheader (abfd)->e_phnum;
12352 if (num_phdrs != 0)
12353 memcpy (phdrs, elf_tdata (abfd)->phdr,
12354 num_phdrs * sizeof (Elf_Internal_Phdr));
12355
12356 return num_phdrs;
12357 }
12358
12359 enum elf_reloc_type_class
12360 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
12361 const asection *rel_sec ATTRIBUTE_UNUSED,
12362 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
12363 {
12364 return reloc_class_normal;
12365 }
12366
12367 /* For RELA architectures, return the relocation value for a
12368 relocation against a local symbol. */
12369
12370 bfd_vma
12371 _bfd_elf_rela_local_sym (bfd *abfd,
12372 Elf_Internal_Sym *sym,
12373 asection **psec,
12374 Elf_Internal_Rela *rel)
12375 {
12376 asection *sec = *psec;
12377 bfd_vma relocation;
12378
12379 relocation = (sec->output_section->vma
12380 + sec->output_offset
12381 + sym->st_value);
12382 if ((sec->flags & SEC_MERGE)
12383 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12384 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12385 {
12386 rel->r_addend =
12387 _bfd_merged_section_offset (abfd, psec,
12388 elf_section_data (sec)->sec_info,
12389 sym->st_value + rel->r_addend);
12390 if (sec != *psec)
12391 {
12392 /* If we have changed the section, and our original section is
12393 marked with SEC_EXCLUDE, it means that the original
12394 SEC_MERGE section has been completely subsumed in some
12395 other SEC_MERGE section. In this case, we need to leave
12396 some info around for --emit-relocs. */
12397 if ((sec->flags & SEC_EXCLUDE) != 0)
12398 sec->kept_section = *psec;
12399 sec = *psec;
12400 }
12401 rel->r_addend -= relocation;
12402 rel->r_addend += sec->output_section->vma + sec->output_offset;
12403 }
12404 return relocation;
12405 }
12406
12407 bfd_vma
12408 _bfd_elf_rel_local_sym (bfd *abfd,
12409 Elf_Internal_Sym *sym,
12410 asection **psec,
12411 bfd_vma addend)
12412 {
12413 asection *sec = *psec;
12414
12415 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12416 return sym->st_value + addend;
12417
12418 return _bfd_merged_section_offset (abfd, psec,
12419 elf_section_data (sec)->sec_info,
12420 sym->st_value + addend);
12421 }
12422
12423 /* Adjust an address within a section. Given OFFSET within SEC, return
12424 the new offset within the section, based upon changes made to the
12425 section. Returns -1 if the offset is now invalid.
12426 The offset (in abnd out) is in target sized bytes, however big a
12427 byte may be. */
12428
12429 bfd_vma
12430 _bfd_elf_section_offset (bfd *abfd,
12431 struct bfd_link_info *info,
12432 asection *sec,
12433 bfd_vma offset)
12434 {
12435 switch (sec->sec_info_type)
12436 {
12437 case SEC_INFO_TYPE_STABS:
12438 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12439 offset);
12440 case SEC_INFO_TYPE_EH_FRAME:
12441 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12442
12443 default:
12444 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12445 {
12446 /* Reverse the offset. */
12447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12448 bfd_size_type address_size = bed->s->arch_size / 8;
12449
12450 /* address_size and sec->size are in octets. Convert
12451 to bytes before subtracting the original offset. */
12452 offset = ((sec->size - address_size)
12453 / bfd_octets_per_byte (abfd, sec) - offset);
12454 }
12455 return offset;
12456 }
12457 }
12458 \f
12459 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12460 reconstruct an ELF file by reading the segments out of remote memory
12461 based on the ELF file header at EHDR_VMA and the ELF program headers it
12462 points to. If not null, *LOADBASEP is filled in with the difference
12463 between the VMAs from which the segments were read, and the VMAs the
12464 file headers (and hence BFD's idea of each section's VMA) put them at.
12465
12466 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12467 remote memory at target address VMA into the local buffer at MYADDR; it
12468 should return zero on success or an `errno' code on failure. TEMPL must
12469 be a BFD for an ELF target with the word size and byte order found in
12470 the remote memory. */
12471
12472 bfd *
12473 bfd_elf_bfd_from_remote_memory
12474 (bfd *templ,
12475 bfd_vma ehdr_vma,
12476 bfd_size_type size,
12477 bfd_vma *loadbasep,
12478 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12479 {
12480 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12481 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12482 }
12483 \f
12484 long
12485 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12486 long symcount ATTRIBUTE_UNUSED,
12487 asymbol **syms ATTRIBUTE_UNUSED,
12488 long dynsymcount,
12489 asymbol **dynsyms,
12490 asymbol **ret)
12491 {
12492 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12493 asection *relplt;
12494 asymbol *s;
12495 const char *relplt_name;
12496 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
12497 arelent *p;
12498 long count, i, n;
12499 size_t size;
12500 Elf_Internal_Shdr *hdr;
12501 char *names;
12502 asection *plt;
12503
12504 *ret = NULL;
12505
12506 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12507 return 0;
12508
12509 if (dynsymcount <= 0)
12510 return 0;
12511
12512 if (!bed->plt_sym_val)
12513 return 0;
12514
12515 relplt_name = bed->relplt_name;
12516 if (relplt_name == NULL)
12517 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12518 relplt = bfd_get_section_by_name (abfd, relplt_name);
12519 if (relplt == NULL)
12520 return 0;
12521
12522 hdr = &elf_section_data (relplt)->this_hdr;
12523 if (hdr->sh_link != elf_dynsymtab (abfd)
12524 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12525 return 0;
12526
12527 plt = bfd_get_section_by_name (abfd, ".plt");
12528 if (plt == NULL)
12529 return 0;
12530
12531 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12532 if (! (*slurp_relocs) (abfd, relplt, dynsyms, true))
12533 return -1;
12534
12535 count = relplt->size / hdr->sh_entsize;
12536 size = count * sizeof (asymbol);
12537 p = relplt->relocation;
12538 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12539 {
12540 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12541 if (p->addend != 0)
12542 {
12543 #ifdef BFD64
12544 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12545 #else
12546 size += sizeof ("+0x") - 1 + 8;
12547 #endif
12548 }
12549 }
12550
12551 s = *ret = (asymbol *) bfd_malloc (size);
12552 if (s == NULL)
12553 return -1;
12554
12555 names = (char *) (s + count);
12556 p = relplt->relocation;
12557 n = 0;
12558 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12559 {
12560 size_t len;
12561 bfd_vma addr;
12562
12563 addr = bed->plt_sym_val (i, plt, p);
12564 if (addr == (bfd_vma) -1)
12565 continue;
12566
12567 *s = **p->sym_ptr_ptr;
12568 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12569 we are defining a symbol, ensure one of them is set. */
12570 if ((s->flags & BSF_LOCAL) == 0)
12571 s->flags |= BSF_GLOBAL;
12572 s->flags |= BSF_SYNTHETIC;
12573 s->section = plt;
12574 s->value = addr - plt->vma;
12575 s->name = names;
12576 s->udata.p = NULL;
12577 len = strlen ((*p->sym_ptr_ptr)->name);
12578 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12579 names += len;
12580 if (p->addend != 0)
12581 {
12582 char buf[30], *a;
12583
12584 memcpy (names, "+0x", sizeof ("+0x") - 1);
12585 names += sizeof ("+0x") - 1;
12586 bfd_sprintf_vma (abfd, buf, p->addend);
12587 for (a = buf; *a == '0'; ++a)
12588 ;
12589 len = strlen (a);
12590 memcpy (names, a, len);
12591 names += len;
12592 }
12593 memcpy (names, "@plt", sizeof ("@plt"));
12594 names += sizeof ("@plt");
12595 ++s, ++n;
12596 }
12597
12598 return n;
12599 }
12600
12601 /* It is only used by x86-64 so far.
12602 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12603 but current usage would allow all of _bfd_std_section to be zero. */
12604 static const asymbol lcomm_sym
12605 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12606 asection _bfd_elf_large_com_section
12607 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12608 "LARGE_COMMON", 0, SEC_IS_COMMON);
12609
12610 bool
12611 _bfd_elf_final_write_processing (bfd *abfd)
12612 {
12613 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12614
12615 i_ehdrp = elf_elfheader (abfd);
12616
12617 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12618 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12619
12620 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12621 SHF_GNU_MBIND or SHF_GNU_RETAIN sections or symbols of STT_GNU_IFUNC type
12622 or STB_GNU_UNIQUE binding. */
12623 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12624 {
12625 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12626 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12627 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12628 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12629 {
12630 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12631 _bfd_error_handler (_("GNU_MBIND section is supported only by GNU "
12632 "and FreeBSD targets"));
12633 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12634 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is supported "
12635 "only by GNU and FreeBSD targets"));
12636 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12637 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is supported "
12638 "only by GNU and FreeBSD targets"));
12639 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_retain)
12640 _bfd_error_handler (_("GNU_RETAIN section is supported "
12641 "only by GNU and FreeBSD targets"));
12642 bfd_set_error (bfd_error_sorry);
12643 return false;
12644 }
12645 }
12646 return true;
12647 }
12648
12649
12650 /* Return TRUE for ELF symbol types that represent functions.
12651 This is the default version of this function, which is sufficient for
12652 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12653
12654 bool
12655 _bfd_elf_is_function_type (unsigned int type)
12656 {
12657 return (type == STT_FUNC
12658 || type == STT_GNU_IFUNC);
12659 }
12660
12661 /* If the ELF symbol SYM might be a function in SEC, return the
12662 function size and set *CODE_OFF to the function's entry point,
12663 otherwise return zero. */
12664
12665 bfd_size_type
12666 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12667 bfd_vma *code_off)
12668 {
12669 bfd_size_type size;
12670 elf_symbol_type * elf_sym = (elf_symbol_type *) sym;
12671
12672 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12673 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12674 || sym->section != sec)
12675 return 0;
12676
12677 size = (sym->flags & BSF_SYNTHETIC) ? 0 : elf_sym->internal_elf_sym.st_size;
12678
12679 /* In theory we should check that the symbol's type satisfies
12680 _bfd_elf_is_function_type(), but there are some function-like
12681 symbols which would fail this test. (eg _start). Instead
12682 we check for hidden, local, notype symbols with zero size.
12683 This type of symbol is generated by the annobin plugin for gcc
12684 and clang, and should not be considered to be a function symbol. */
12685 if (size == 0
12686 && ((sym->flags & (BSF_SYNTHETIC | BSF_LOCAL)) == BSF_LOCAL)
12687 && ELF_ST_TYPE (elf_sym->internal_elf_sym.st_info) == STT_NOTYPE
12688 && ELF_ST_VISIBILITY (elf_sym->internal_elf_sym.st_other) == STV_HIDDEN)
12689 return 0;
12690
12691 *code_off = sym->value;
12692 /* Do not return 0 for the function's size. */
12693 return size ? size : 1;
12694 }
12695
12696 /* Set to non-zero to enable some debug messages. */
12697 #define DEBUG_SECONDARY_RELOCS 0
12698
12699 /* An internal-to-the-bfd-library only section type
12700 used to indicate a cached secondary reloc section. */
12701 #define SHT_SECONDARY_RELOC (SHT_LOOS + SHT_RELA)
12702
12703 /* Create a BFD section to hold a secondary reloc section. */
12704
12705 bool
12706 _bfd_elf_init_secondary_reloc_section (bfd * abfd,
12707 Elf_Internal_Shdr *hdr,
12708 const char * name,
12709 unsigned int shindex)
12710 {
12711 /* We only support RELA secondary relocs. */
12712 if (hdr->sh_type != SHT_RELA)
12713 return false;
12714
12715 #if DEBUG_SECONDARY_RELOCS
12716 fprintf (stderr, "secondary reloc section %s encountered\n", name);
12717 #endif
12718 hdr->sh_type = SHT_SECONDARY_RELOC;
12719 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
12720 }
12721
12722 /* Read in any secondary relocs associated with SEC. */
12723
12724 bool
12725 _bfd_elf_slurp_secondary_reloc_section (bfd * abfd,
12726 asection * sec,
12727 asymbol ** symbols,
12728 bool dynamic)
12729 {
12730 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12731 asection * relsec;
12732 bool result = true;
12733 bfd_vma (*r_sym) (bfd_vma);
12734
12735 #if BFD_DEFAULT_TARGET_SIZE > 32
12736 if (bfd_arch_bits_per_address (abfd) != 32)
12737 r_sym = elf64_r_sym;
12738 else
12739 #endif
12740 r_sym = elf32_r_sym;
12741
12742 /* Discover if there are any secondary reloc sections
12743 associated with SEC. */
12744 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12745 {
12746 Elf_Internal_Shdr * hdr = & elf_section_data (relsec)->this_hdr;
12747
12748 if (hdr->sh_type == SHT_SECONDARY_RELOC
12749 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx
12750 && (hdr->sh_entsize == ebd->s->sizeof_rel
12751 || hdr->sh_entsize == ebd->s->sizeof_rela))
12752 {
12753 bfd_byte * native_relocs;
12754 bfd_byte * native_reloc;
12755 arelent * internal_relocs;
12756 arelent * internal_reloc;
12757 unsigned int i;
12758 unsigned int entsize;
12759 unsigned int symcount;
12760 unsigned int reloc_count;
12761 size_t amt;
12762
12763 if (ebd->elf_info_to_howto == NULL)
12764 return false;
12765
12766 #if DEBUG_SECONDARY_RELOCS
12767 fprintf (stderr, "read secondary relocs for %s from %s\n",
12768 sec->name, relsec->name);
12769 #endif
12770 entsize = hdr->sh_entsize;
12771
12772 native_relocs = bfd_malloc (hdr->sh_size);
12773 if (native_relocs == NULL)
12774 {
12775 result = false;
12776 continue;
12777 }
12778
12779 reloc_count = NUM_SHDR_ENTRIES (hdr);
12780 if (_bfd_mul_overflow (reloc_count, sizeof (arelent), & amt))
12781 {
12782 free (native_relocs);
12783 bfd_set_error (bfd_error_file_too_big);
12784 result = false;
12785 continue;
12786 }
12787
12788 internal_relocs = (arelent *) bfd_alloc (abfd, amt);
12789 if (internal_relocs == NULL)
12790 {
12791 free (native_relocs);
12792 result = false;
12793 continue;
12794 }
12795
12796 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
12797 || (bfd_bread (native_relocs, hdr->sh_size, abfd)
12798 != hdr->sh_size))
12799 {
12800 free (native_relocs);
12801 /* The internal_relocs will be freed when
12802 the memory for the bfd is released. */
12803 result = false;
12804 continue;
12805 }
12806
12807 if (dynamic)
12808 symcount = bfd_get_dynamic_symcount (abfd);
12809 else
12810 symcount = bfd_get_symcount (abfd);
12811
12812 for (i = 0, internal_reloc = internal_relocs,
12813 native_reloc = native_relocs;
12814 i < reloc_count;
12815 i++, internal_reloc++, native_reloc += entsize)
12816 {
12817 bool res;
12818 Elf_Internal_Rela rela;
12819
12820 if (entsize == ebd->s->sizeof_rel)
12821 ebd->s->swap_reloc_in (abfd, native_reloc, & rela);
12822 else /* entsize == ebd->s->sizeof_rela */
12823 ebd->s->swap_reloca_in (abfd, native_reloc, & rela);
12824
12825 /* The address of an ELF reloc is section relative for an object
12826 file, and absolute for an executable file or shared library.
12827 The address of a normal BFD reloc is always section relative,
12828 and the address of a dynamic reloc is absolute.. */
12829 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
12830 internal_reloc->address = rela.r_offset;
12831 else
12832 internal_reloc->address = rela.r_offset - sec->vma;
12833
12834 if (r_sym (rela.r_info) == STN_UNDEF)
12835 {
12836 /* FIXME: This and the error case below mean that we
12837 have a symbol on relocs that is not elf_symbol_type. */
12838 internal_reloc->sym_ptr_ptr =
12839 bfd_abs_section_ptr->symbol_ptr_ptr;
12840 }
12841 else if (r_sym (rela.r_info) > symcount)
12842 {
12843 _bfd_error_handler
12844 /* xgettext:c-format */
12845 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
12846 abfd, sec, i, (long) r_sym (rela.r_info));
12847 bfd_set_error (bfd_error_bad_value);
12848 internal_reloc->sym_ptr_ptr =
12849 bfd_abs_section_ptr->symbol_ptr_ptr;
12850 result = false;
12851 }
12852 else
12853 {
12854 asymbol **ps;
12855
12856 ps = symbols + r_sym (rela.r_info) - 1;
12857 internal_reloc->sym_ptr_ptr = ps;
12858 /* Make sure that this symbol is not removed by strip. */
12859 (*ps)->flags |= BSF_KEEP;
12860 }
12861
12862 internal_reloc->addend = rela.r_addend;
12863
12864 res = ebd->elf_info_to_howto (abfd, internal_reloc, & rela);
12865 if (! res || internal_reloc->howto == NULL)
12866 {
12867 #if DEBUG_SECONDARY_RELOCS
12868 fprintf (stderr, "there is no howto associated with reloc %lx\n",
12869 rela.r_info);
12870 #endif
12871 result = false;
12872 }
12873 }
12874
12875 free (native_relocs);
12876 /* Store the internal relocs. */
12877 elf_section_data (relsec)->sec_info = internal_relocs;
12878 }
12879 }
12880
12881 return result;
12882 }
12883
12884 /* Set the ELF section header fields of an output secondary reloc section. */
12885
12886 bool
12887 _bfd_elf_copy_special_section_fields (const bfd * ibfd ATTRIBUTE_UNUSED,
12888 bfd * obfd ATTRIBUTE_UNUSED,
12889 const Elf_Internal_Shdr * isection,
12890 Elf_Internal_Shdr * osection)
12891 {
12892 asection * isec;
12893 asection * osec;
12894 struct bfd_elf_section_data * esd;
12895
12896 if (isection == NULL)
12897 return false;
12898
12899 if (isection->sh_type != SHT_SECONDARY_RELOC)
12900 return true;
12901
12902 isec = isection->bfd_section;
12903 if (isec == NULL)
12904 return false;
12905
12906 osec = osection->bfd_section;
12907 if (osec == NULL)
12908 return false;
12909
12910 esd = elf_section_data (osec);
12911 BFD_ASSERT (esd->sec_info == NULL);
12912 esd->sec_info = elf_section_data (isec)->sec_info;
12913 osection->sh_type = SHT_RELA;
12914 osection->sh_link = elf_onesymtab (obfd);
12915 if (osection->sh_link == 0)
12916 {
12917 /* There is no symbol table - we are hosed... */
12918 _bfd_error_handler
12919 /* xgettext:c-format */
12920 (_("%pB(%pA): link section cannot be set because the output file does not have a symbol table"),
12921 obfd, osec);
12922 bfd_set_error (bfd_error_bad_value);
12923 return false;
12924 }
12925
12926 /* Find the output section that corresponds to the isection's sh_info link. */
12927 if (isection->sh_info == 0
12928 || isection->sh_info >= elf_numsections (ibfd))
12929 {
12930 _bfd_error_handler
12931 /* xgettext:c-format */
12932 (_("%pB(%pA): info section index is invalid"),
12933 obfd, osec);
12934 bfd_set_error (bfd_error_bad_value);
12935 return false;
12936 }
12937
12938 isection = elf_elfsections (ibfd)[isection->sh_info];
12939
12940 if (isection == NULL
12941 || isection->bfd_section == NULL
12942 || isection->bfd_section->output_section == NULL)
12943 {
12944 _bfd_error_handler
12945 /* xgettext:c-format */
12946 (_("%pB(%pA): info section index cannot be set because the section is not in the output"),
12947 obfd, osec);
12948 bfd_set_error (bfd_error_bad_value);
12949 return false;
12950 }
12951
12952 esd = elf_section_data (isection->bfd_section->output_section);
12953 BFD_ASSERT (esd != NULL);
12954 osection->sh_info = esd->this_idx;
12955 esd->has_secondary_relocs = true;
12956 #if DEBUG_SECONDARY_RELOCS
12957 fprintf (stderr, "update header of %s, sh_link = %u, sh_info = %u\n",
12958 osec->name, osection->sh_link, osection->sh_info);
12959 fprintf (stderr, "mark section %s as having secondary relocs\n",
12960 bfd_section_name (isection->bfd_section->output_section));
12961 #endif
12962
12963 return true;
12964 }
12965
12966 /* Write out a secondary reloc section.
12967
12968 FIXME: Currently this function can result in a serious performance penalty
12969 for files with secondary relocs and lots of sections. The proper way to
12970 fix this is for _bfd_elf_copy_special_section_fields() to chain secondary
12971 relocs together and then to have this function just walk that chain. */
12972
12973 bool
12974 _bfd_elf_write_secondary_reloc_section (bfd *abfd, asection *sec)
12975 {
12976 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12977 bfd_vma addr_offset;
12978 asection * relsec;
12979 bfd_vma (*r_info) (bfd_vma, bfd_vma);
12980 bool result = true;
12981
12982 if (sec == NULL)
12983 return false;
12984
12985 #if BFD_DEFAULT_TARGET_SIZE > 32
12986 if (bfd_arch_bits_per_address (abfd) != 32)
12987 r_info = elf64_r_info;
12988 else
12989 #endif
12990 r_info = elf32_r_info;
12991
12992 /* The address of an ELF reloc is section relative for an object
12993 file, and absolute for an executable file or shared library.
12994 The address of a BFD reloc is always section relative. */
12995 addr_offset = 0;
12996 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
12997 addr_offset = sec->vma;
12998
12999 /* Discover if there are any secondary reloc sections
13000 associated with SEC. */
13001 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
13002 {
13003 const struct bfd_elf_section_data * const esd = elf_section_data (relsec);
13004 Elf_Internal_Shdr * const hdr = (Elf_Internal_Shdr *) & esd->this_hdr;
13005
13006 if (hdr->sh_type == SHT_RELA
13007 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx)
13008 {
13009 asymbol * last_sym;
13010 int last_sym_idx;
13011 unsigned int reloc_count;
13012 unsigned int idx;
13013 unsigned int entsize;
13014 arelent * src_irel;
13015 bfd_byte * dst_rela;
13016
13017 if (hdr->contents != NULL)
13018 {
13019 _bfd_error_handler
13020 /* xgettext:c-format */
13021 (_("%pB(%pA): error: secondary reloc section processed twice"),
13022 abfd, relsec);
13023 bfd_set_error (bfd_error_bad_value);
13024 result = false;
13025 continue;
13026 }
13027
13028 entsize = hdr->sh_entsize;
13029 if (entsize == 0)
13030 {
13031 _bfd_error_handler
13032 /* xgettext:c-format */
13033 (_("%pB(%pA): error: secondary reloc section has zero sized entries"),
13034 abfd, relsec);
13035 bfd_set_error (bfd_error_bad_value);
13036 result = false;
13037 continue;
13038 }
13039 else if (entsize != ebd->s->sizeof_rel
13040 && entsize != ebd->s->sizeof_rela)
13041 {
13042 _bfd_error_handler
13043 /* xgettext:c-format */
13044 (_("%pB(%pA): error: secondary reloc section has non-standard sized entries"),
13045 abfd, relsec);
13046 bfd_set_error (bfd_error_bad_value);
13047 result = false;
13048 continue;
13049 }
13050
13051 reloc_count = hdr->sh_size / entsize;
13052 if (reloc_count <= 0)
13053 {
13054 _bfd_error_handler
13055 /* xgettext:c-format */
13056 (_("%pB(%pA): error: secondary reloc section is empty!"),
13057 abfd, relsec);
13058 bfd_set_error (bfd_error_bad_value);
13059 result = false;
13060 continue;
13061 }
13062
13063 hdr->contents = bfd_alloc (abfd, hdr->sh_size);
13064 if (hdr->contents == NULL)
13065 continue;
13066
13067 #if DEBUG_SECONDARY_RELOCS
13068 fprintf (stderr, "write %u secondary relocs for %s from %s\n",
13069 reloc_count, sec->name, relsec->name);
13070 #endif
13071 last_sym = NULL;
13072 last_sym_idx = 0;
13073 dst_rela = hdr->contents;
13074 src_irel = (arelent *) esd->sec_info;
13075 if (src_irel == NULL)
13076 {
13077 _bfd_error_handler
13078 /* xgettext:c-format */
13079 (_("%pB(%pA): error: internal relocs missing for secondary reloc section"),
13080 abfd, relsec);
13081 bfd_set_error (bfd_error_bad_value);
13082 result = false;
13083 continue;
13084 }
13085
13086 for (idx = 0; idx < reloc_count; idx++, dst_rela += entsize)
13087 {
13088 Elf_Internal_Rela src_rela;
13089 arelent *ptr;
13090 asymbol *sym;
13091 int n;
13092
13093 ptr = src_irel + idx;
13094 if (ptr == NULL)
13095 {
13096 _bfd_error_handler
13097 /* xgettext:c-format */
13098 (_("%pB(%pA): error: reloc table entry %u is empty"),
13099 abfd, relsec, idx);
13100 bfd_set_error (bfd_error_bad_value);
13101 result = false;
13102 break;
13103 }
13104
13105 if (ptr->sym_ptr_ptr == NULL)
13106 {
13107 /* FIXME: Is this an error ? */
13108 n = 0;
13109 }
13110 else
13111 {
13112 sym = *ptr->sym_ptr_ptr;
13113
13114 if (sym == last_sym)
13115 n = last_sym_idx;
13116 else
13117 {
13118 n = _bfd_elf_symbol_from_bfd_symbol (abfd, & sym);
13119 if (n < 0)
13120 {
13121 _bfd_error_handler
13122 /* xgettext:c-format */
13123 (_("%pB(%pA): error: secondary reloc %u references a missing symbol"),
13124 abfd, relsec, idx);
13125 bfd_set_error (bfd_error_bad_value);
13126 result = false;
13127 n = 0;
13128 }
13129
13130 last_sym = sym;
13131 last_sym_idx = n;
13132 }
13133
13134 if (sym->the_bfd != NULL
13135 && sym->the_bfd->xvec != abfd->xvec
13136 && ! _bfd_elf_validate_reloc (abfd, ptr))
13137 {
13138 _bfd_error_handler
13139 /* xgettext:c-format */
13140 (_("%pB(%pA): error: secondary reloc %u references a deleted symbol"),
13141 abfd, relsec, idx);
13142 bfd_set_error (bfd_error_bad_value);
13143 result = false;
13144 n = 0;
13145 }
13146 }
13147
13148 src_rela.r_offset = ptr->address + addr_offset;
13149 if (ptr->howto == NULL)
13150 {
13151 _bfd_error_handler
13152 /* xgettext:c-format */
13153 (_("%pB(%pA): error: secondary reloc %u is of an unknown type"),
13154 abfd, relsec, idx);
13155 bfd_set_error (bfd_error_bad_value);
13156 result = false;
13157 src_rela.r_info = r_info (0, 0);
13158 }
13159 else
13160 src_rela.r_info = r_info (n, ptr->howto->type);
13161 src_rela.r_addend = ptr->addend;
13162
13163 if (entsize == ebd->s->sizeof_rel)
13164 ebd->s->swap_reloc_out (abfd, &src_rela, dst_rela);
13165 else /* entsize == ebd->s->sizeof_rela */
13166 ebd->s->swap_reloca_out (abfd, &src_rela, dst_rela);
13167 }
13168 }
13169 }
13170
13171 return result;
13172 }