]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-arm.c
bd4b5763cfbfc0f5d2c8ea9c2f9e503e171bcc3a
[thirdparty/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
67
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
325
326 /* Dynamic TLS relocations. */
327
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
341
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
413
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
427
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
441
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
892
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
1274
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1544
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 NULL, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1675
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692 };
1693
1694 /* 160 onwards: */
1695 static reloc_howto_type elf32_arm_howto_table_2[1] =
1696 {
1697 HOWTO (R_ARM_IRELATIVE, /* type */
1698 0, /* rightshift */
1699 2, /* size (0 = byte, 1 = short, 2 = long) */
1700 32, /* bitsize */
1701 FALSE, /* pc_relative */
1702 0, /* bitpos */
1703 complain_overflow_bitfield,/* complain_on_overflow */
1704 bfd_elf_generic_reloc, /* special_function */
1705 "R_ARM_IRELATIVE", /* name */
1706 TRUE, /* partial_inplace */
1707 0xffffffff, /* src_mask */
1708 0xffffffff, /* dst_mask */
1709 FALSE) /* pcrel_offset */
1710 };
1711
1712 /* 249-255 extended, currently unused, relocations: */
1713 static reloc_howto_type elf32_arm_howto_table_3[4] =
1714 {
1715 HOWTO (R_ARM_RREL32, /* type */
1716 0, /* rightshift */
1717 0, /* size (0 = byte, 1 = short, 2 = long) */
1718 0, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_dont,/* complain_on_overflow */
1722 bfd_elf_generic_reloc, /* special_function */
1723 "R_ARM_RREL32", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 HOWTO (R_ARM_RABS32, /* type */
1730 0, /* rightshift */
1731 0, /* size (0 = byte, 1 = short, 2 = long) */
1732 0, /* bitsize */
1733 FALSE, /* pc_relative */
1734 0, /* bitpos */
1735 complain_overflow_dont,/* complain_on_overflow */
1736 bfd_elf_generic_reloc, /* special_function */
1737 "R_ARM_RABS32", /* name */
1738 FALSE, /* partial_inplace */
1739 0, /* src_mask */
1740 0, /* dst_mask */
1741 FALSE), /* pcrel_offset */
1742
1743 HOWTO (R_ARM_RPC24, /* type */
1744 0, /* rightshift */
1745 0, /* size (0 = byte, 1 = short, 2 = long) */
1746 0, /* bitsize */
1747 FALSE, /* pc_relative */
1748 0, /* bitpos */
1749 complain_overflow_dont,/* complain_on_overflow */
1750 bfd_elf_generic_reloc, /* special_function */
1751 "R_ARM_RPC24", /* name */
1752 FALSE, /* partial_inplace */
1753 0, /* src_mask */
1754 0, /* dst_mask */
1755 FALSE), /* pcrel_offset */
1756
1757 HOWTO (R_ARM_RBASE, /* type */
1758 0, /* rightshift */
1759 0, /* size (0 = byte, 1 = short, 2 = long) */
1760 0, /* bitsize */
1761 FALSE, /* pc_relative */
1762 0, /* bitpos */
1763 complain_overflow_dont,/* complain_on_overflow */
1764 bfd_elf_generic_reloc, /* special_function */
1765 "R_ARM_RBASE", /* name */
1766 FALSE, /* partial_inplace */
1767 0, /* src_mask */
1768 0, /* dst_mask */
1769 FALSE) /* pcrel_offset */
1770 };
1771
1772 static reloc_howto_type *
1773 elf32_arm_howto_from_type (unsigned int r_type)
1774 {
1775 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1776 return &elf32_arm_howto_table_1[r_type];
1777
1778 if (r_type == R_ARM_IRELATIVE)
1779 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1780
1781 if (r_type >= R_ARM_RREL32
1782 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1783 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1784
1785 return NULL;
1786 }
1787
1788 static void
1789 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1790 Elf_Internal_Rela * elf_reloc)
1791 {
1792 unsigned int r_type;
1793
1794 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1795 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1796 }
1797
1798 struct elf32_arm_reloc_map
1799 {
1800 bfd_reloc_code_real_type bfd_reloc_val;
1801 unsigned char elf_reloc_val;
1802 };
1803
1804 /* All entries in this list must also be present in elf32_arm_howto_table. */
1805 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1806 {
1807 {BFD_RELOC_NONE, R_ARM_NONE},
1808 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1809 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1810 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1811 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1812 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1813 {BFD_RELOC_32, R_ARM_ABS32},
1814 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1815 {BFD_RELOC_8, R_ARM_ABS8},
1816 {BFD_RELOC_16, R_ARM_ABS16},
1817 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1818 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1819 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1821 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1822 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1823 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1824 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1825 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1826 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1827 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1828 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1829 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1830 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1831 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1832 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1833 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1834 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1835 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1836 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1837 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1838 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1839 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1840 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1841 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1842 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1843 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1844 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1845 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1846 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1847 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1848 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1849 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1850 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1851 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1852 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1853 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1854 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1855 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1856 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1857 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1858 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1859 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1860 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1861 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1862 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1863 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1864 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1865 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1866 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1867 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1868 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1869 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1870 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1871 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1872 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1873 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1874 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1875 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1876 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1877 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1878 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1879 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1880 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1881 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1882 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1883 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1884 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1885 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1886 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1887 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1888 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1889 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1890 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1891 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1892 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1893 };
1894
1895 static reloc_howto_type *
1896 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1897 bfd_reloc_code_real_type code)
1898 {
1899 unsigned int i;
1900
1901 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1902 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1903 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1904
1905 return NULL;
1906 }
1907
1908 static reloc_howto_type *
1909 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1910 const char *r_name)
1911 {
1912 unsigned int i;
1913
1914 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1915 if (elf32_arm_howto_table_1[i].name != NULL
1916 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1917 return &elf32_arm_howto_table_1[i];
1918
1919 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1920 if (elf32_arm_howto_table_2[i].name != NULL
1921 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1922 return &elf32_arm_howto_table_2[i];
1923
1924 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1925 if (elf32_arm_howto_table_3[i].name != NULL
1926 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1927 return &elf32_arm_howto_table_3[i];
1928
1929 return NULL;
1930 }
1931
1932 /* Support for core dump NOTE sections. */
1933
1934 static bfd_boolean
1935 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1936 {
1937 int offset;
1938 size_t size;
1939
1940 switch (note->descsz)
1941 {
1942 default:
1943 return FALSE;
1944
1945 case 148: /* Linux/ARM 32-bit. */
1946 /* pr_cursig */
1947 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1948
1949 /* pr_pid */
1950 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1951
1952 /* pr_reg */
1953 offset = 72;
1954 size = 72;
1955
1956 break;
1957 }
1958
1959 /* Make a ".reg/999" section. */
1960 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1961 size, note->descpos + offset);
1962 }
1963
1964 static bfd_boolean
1965 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1966 {
1967 switch (note->descsz)
1968 {
1969 default:
1970 return FALSE;
1971
1972 case 124: /* Linux/ARM elf_prpsinfo. */
1973 elf_tdata (abfd)->core->pid
1974 = bfd_get_32 (abfd, note->descdata + 12);
1975 elf_tdata (abfd)->core->program
1976 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1977 elf_tdata (abfd)->core->command
1978 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1979 }
1980
1981 /* Note that for some reason, a spurious space is tacked
1982 onto the end of the args in some (at least one anyway)
1983 implementations, so strip it off if it exists. */
1984 {
1985 char *command = elf_tdata (abfd)->core->command;
1986 int n = strlen (command);
1987
1988 if (0 < n && command[n - 1] == ' ')
1989 command[n - 1] = '\0';
1990 }
1991
1992 return TRUE;
1993 }
1994
1995 static char *
1996 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
1997 int note_type, ...)
1998 {
1999 switch (note_type)
2000 {
2001 default:
2002 return NULL;
2003
2004 case NT_PRPSINFO:
2005 {
2006 char data[124];
2007 va_list ap;
2008
2009 va_start (ap, note_type);
2010 memset (data, 0, sizeof (data));
2011 strncpy (data + 28, va_arg (ap, const char *), 16);
2012 strncpy (data + 44, va_arg (ap, const char *), 80);
2013 va_end (ap);
2014
2015 return elfcore_write_note (abfd, buf, bufsiz,
2016 "CORE", note_type, data, sizeof (data));
2017 }
2018
2019 case NT_PRSTATUS:
2020 {
2021 char data[148];
2022 va_list ap;
2023 long pid;
2024 int cursig;
2025 const void *greg;
2026
2027 va_start (ap, note_type);
2028 memset (data, 0, sizeof (data));
2029 pid = va_arg (ap, long);
2030 bfd_put_32 (abfd, pid, data + 24);
2031 cursig = va_arg (ap, int);
2032 bfd_put_16 (abfd, cursig, data + 12);
2033 greg = va_arg (ap, const void *);
2034 memcpy (data + 72, greg, 72);
2035 va_end (ap);
2036
2037 return elfcore_write_note (abfd, buf, bufsiz,
2038 "CORE", note_type, data, sizeof (data));
2039 }
2040 }
2041 }
2042
2043 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2044 #define TARGET_LITTLE_NAME "elf32-littlearm"
2045 #define TARGET_BIG_SYM arm_elf32_be_vec
2046 #define TARGET_BIG_NAME "elf32-bigarm"
2047
2048 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2049 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2050 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2051
2052 typedef unsigned long int insn32;
2053 typedef unsigned short int insn16;
2054
2055 /* In lieu of proper flags, assume all EABIv4 or later objects are
2056 interworkable. */
2057 #define INTERWORK_FLAG(abfd) \
2058 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2059 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2060 || ((abfd)->flags & BFD_LINKER_CREATED))
2061
2062 /* The linker script knows the section names for placement.
2063 The entry_names are used to do simple name mangling on the stubs.
2064 Given a function name, and its type, the stub can be found. The
2065 name can be changed. The only requirement is the %s be present. */
2066 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2067 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2068
2069 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2070 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2071
2072 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2073 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2074
2075 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2076 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2077
2078 #define STUB_ENTRY_NAME "__%s_veneer"
2079
2080 /* The name of the dynamic interpreter. This is put in the .interp
2081 section. */
2082 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2083
2084 static const unsigned long tls_trampoline [] =
2085 {
2086 0xe08e0000, /* add r0, lr, r0 */
2087 0xe5901004, /* ldr r1, [r0,#4] */
2088 0xe12fff11, /* bx r1 */
2089 };
2090
2091 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2092 {
2093 0xe52d2004, /* push {r2} */
2094 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2095 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2096 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2097 0xe081100f, /* 2: add r1, pc */
2098 0xe12fff12, /* bx r2 */
2099 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2100 + dl_tlsdesc_lazy_resolver(GOT) */
2101 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2102 };
2103
2104 #ifdef FOUR_WORD_PLT
2105
2106 /* The first entry in a procedure linkage table looks like
2107 this. It is set up so that any shared library function that is
2108 called before the relocation has been set up calls the dynamic
2109 linker first. */
2110 static const bfd_vma elf32_arm_plt0_entry [] =
2111 {
2112 0xe52de004, /* str lr, [sp, #-4]! */
2113 0xe59fe010, /* ldr lr, [pc, #16] */
2114 0xe08fe00e, /* add lr, pc, lr */
2115 0xe5bef008, /* ldr pc, [lr, #8]! */
2116 };
2117
2118 /* Subsequent entries in a procedure linkage table look like
2119 this. */
2120 static const bfd_vma elf32_arm_plt_entry [] =
2121 {
2122 0xe28fc600, /* add ip, pc, #NN */
2123 0xe28cca00, /* add ip, ip, #NN */
2124 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2125 0x00000000, /* unused */
2126 };
2127
2128 #else /* not FOUR_WORD_PLT */
2129
2130 /* The first entry in a procedure linkage table looks like
2131 this. It is set up so that any shared library function that is
2132 called before the relocation has been set up calls the dynamic
2133 linker first. */
2134 static const bfd_vma elf32_arm_plt0_entry [] =
2135 {
2136 0xe52de004, /* str lr, [sp, #-4]! */
2137 0xe59fe004, /* ldr lr, [pc, #4] */
2138 0xe08fe00e, /* add lr, pc, lr */
2139 0xe5bef008, /* ldr pc, [lr, #8]! */
2140 0x00000000, /* &GOT[0] - . */
2141 };
2142
2143 /* By default subsequent entries in a procedure linkage table look like
2144 this. Offsets that don't fit into 28 bits will cause link error. */
2145 static const bfd_vma elf32_arm_plt_entry_short [] =
2146 {
2147 0xe28fc600, /* add ip, pc, #0xNN00000 */
2148 0xe28cca00, /* add ip, ip, #0xNN000 */
2149 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2150 };
2151
2152 /* When explicitly asked, we'll use this "long" entry format
2153 which can cope with arbitrary displacements. */
2154 static const bfd_vma elf32_arm_plt_entry_long [] =
2155 {
2156 0xe28fc200, /* add ip, pc, #0xN0000000 */
2157 0xe28cc600, /* add ip, ip, #0xNN00000 */
2158 0xe28cca00, /* add ip, ip, #0xNN000 */
2159 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2160 };
2161
2162 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2163
2164 #endif /* not FOUR_WORD_PLT */
2165
2166 /* The first entry in a procedure linkage table looks like this.
2167 It is set up so that any shared library function that is called before the
2168 relocation has been set up calls the dynamic linker first. */
2169 static const bfd_vma elf32_thumb2_plt0_entry [] =
2170 {
2171 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2172 an instruction maybe encoded to one or two array elements. */
2173 0xf8dfb500, /* push {lr} */
2174 0x44fee008, /* ldr.w lr, [pc, #8] */
2175 /* add lr, pc */
2176 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2177 0x00000000, /* &GOT[0] - . */
2178 };
2179
2180 /* Subsequent entries in a procedure linkage table for thumb only target
2181 look like this. */
2182 static const bfd_vma elf32_thumb2_plt_entry [] =
2183 {
2184 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2185 an instruction maybe encoded to one or two array elements. */
2186 0x0c00f240, /* movw ip, #0xNNNN */
2187 0x0c00f2c0, /* movt ip, #0xNNNN */
2188 0xf8dc44fc, /* add ip, pc */
2189 0xbf00f000 /* ldr.w pc, [ip] */
2190 /* nop */
2191 };
2192
2193 /* The format of the first entry in the procedure linkage table
2194 for a VxWorks executable. */
2195 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2196 {
2197 0xe52dc008, /* str ip,[sp,#-8]! */
2198 0xe59fc000, /* ldr ip,[pc] */
2199 0xe59cf008, /* ldr pc,[ip,#8] */
2200 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2201 };
2202
2203 /* The format of subsequent entries in a VxWorks executable. */
2204 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2205 {
2206 0xe59fc000, /* ldr ip,[pc] */
2207 0xe59cf000, /* ldr pc,[ip] */
2208 0x00000000, /* .long @got */
2209 0xe59fc000, /* ldr ip,[pc] */
2210 0xea000000, /* b _PLT */
2211 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2212 };
2213
2214 /* The format of entries in a VxWorks shared library. */
2215 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2216 {
2217 0xe59fc000, /* ldr ip,[pc] */
2218 0xe79cf009, /* ldr pc,[ip,r9] */
2219 0x00000000, /* .long @got */
2220 0xe59fc000, /* ldr ip,[pc] */
2221 0xe599f008, /* ldr pc,[r9,#8] */
2222 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2223 };
2224
2225 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2226 #define PLT_THUMB_STUB_SIZE 4
2227 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2228 {
2229 0x4778, /* bx pc */
2230 0x46c0 /* nop */
2231 };
2232
2233 /* The entries in a PLT when using a DLL-based target with multiple
2234 address spaces. */
2235 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2236 {
2237 0xe51ff004, /* ldr pc, [pc, #-4] */
2238 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2239 };
2240
2241 /* The first entry in a procedure linkage table looks like
2242 this. It is set up so that any shared library function that is
2243 called before the relocation has been set up calls the dynamic
2244 linker first. */
2245 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2246 {
2247 /* First bundle: */
2248 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2249 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2250 0xe08cc00f, /* add ip, ip, pc */
2251 0xe52dc008, /* str ip, [sp, #-8]! */
2252 /* Second bundle: */
2253 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2254 0xe59cc000, /* ldr ip, [ip] */
2255 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2256 0xe12fff1c, /* bx ip */
2257 /* Third bundle: */
2258 0xe320f000, /* nop */
2259 0xe320f000, /* nop */
2260 0xe320f000, /* nop */
2261 /* .Lplt_tail: */
2262 0xe50dc004, /* str ip, [sp, #-4] */
2263 /* Fourth bundle: */
2264 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2265 0xe59cc000, /* ldr ip, [ip] */
2266 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2267 0xe12fff1c, /* bx ip */
2268 };
2269 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2270
2271 /* Subsequent entries in a procedure linkage table look like this. */
2272 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2273 {
2274 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2275 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2276 0xe08cc00f, /* add ip, ip, pc */
2277 0xea000000, /* b .Lplt_tail */
2278 };
2279
2280 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2281 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2282 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2283 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2284 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2285 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2286 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2287 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2288
2289 enum stub_insn_type
2290 {
2291 THUMB16_TYPE = 1,
2292 THUMB32_TYPE,
2293 ARM_TYPE,
2294 DATA_TYPE
2295 };
2296
2297 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2298 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2299 is inserted in arm_build_one_stub(). */
2300 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2301 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2302 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2303 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2304 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2305 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2306
2307 typedef struct
2308 {
2309 bfd_vma data;
2310 enum stub_insn_type type;
2311 unsigned int r_type;
2312 int reloc_addend;
2313 } insn_sequence;
2314
2315 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2316 to reach the stub if necessary. */
2317 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2318 {
2319 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2320 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2321 };
2322
2323 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2324 available. */
2325 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2326 {
2327 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2328 ARM_INSN (0xe12fff1c), /* bx ip */
2329 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2330 };
2331
2332 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2333 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2334 {
2335 THUMB16_INSN (0xb401), /* push {r0} */
2336 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2337 THUMB16_INSN (0x4684), /* mov ip, r0 */
2338 THUMB16_INSN (0xbc01), /* pop {r0} */
2339 THUMB16_INSN (0x4760), /* bx ip */
2340 THUMB16_INSN (0xbf00), /* nop */
2341 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2342 };
2343
2344 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2345 allowed. */
2346 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2347 {
2348 THUMB16_INSN (0x4778), /* bx pc */
2349 THUMB16_INSN (0x46c0), /* nop */
2350 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2351 ARM_INSN (0xe12fff1c), /* bx ip */
2352 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2353 };
2354
2355 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2356 available. */
2357 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2358 {
2359 THUMB16_INSN (0x4778), /* bx pc */
2360 THUMB16_INSN (0x46c0), /* nop */
2361 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2362 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2363 };
2364
2365 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2366 one, when the destination is close enough. */
2367 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2368 {
2369 THUMB16_INSN (0x4778), /* bx pc */
2370 THUMB16_INSN (0x46c0), /* nop */
2371 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2372 };
2373
2374 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2375 blx to reach the stub if necessary. */
2376 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2377 {
2378 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2379 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2380 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2381 };
2382
2383 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2384 blx to reach the stub if necessary. We can not add into pc;
2385 it is not guaranteed to mode switch (different in ARMv6 and
2386 ARMv7). */
2387 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2388 {
2389 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2390 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2391 ARM_INSN (0xe12fff1c), /* bx ip */
2392 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2393 };
2394
2395 /* V4T ARM -> ARM long branch stub, PIC. */
2396 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2397 {
2398 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2399 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2400 ARM_INSN (0xe12fff1c), /* bx ip */
2401 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2402 };
2403
2404 /* V4T Thumb -> ARM long branch stub, PIC. */
2405 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2406 {
2407 THUMB16_INSN (0x4778), /* bx pc */
2408 THUMB16_INSN (0x46c0), /* nop */
2409 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2410 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2411 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2412 };
2413
2414 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2415 architectures. */
2416 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2417 {
2418 THUMB16_INSN (0xb401), /* push {r0} */
2419 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2420 THUMB16_INSN (0x46fc), /* mov ip, pc */
2421 THUMB16_INSN (0x4484), /* add ip, r0 */
2422 THUMB16_INSN (0xbc01), /* pop {r0} */
2423 THUMB16_INSN (0x4760), /* bx ip */
2424 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2425 };
2426
2427 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2428 allowed. */
2429 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2430 {
2431 THUMB16_INSN (0x4778), /* bx pc */
2432 THUMB16_INSN (0x46c0), /* nop */
2433 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2434 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2435 ARM_INSN (0xe12fff1c), /* bx ip */
2436 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2437 };
2438
2439 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2440 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2441 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2442 {
2443 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2444 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2445 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2446 };
2447
2448 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2449 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2450 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2451 {
2452 THUMB16_INSN (0x4778), /* bx pc */
2453 THUMB16_INSN (0x46c0), /* nop */
2454 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2455 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2456 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2457 };
2458
2459 /* NaCl ARM -> ARM long branch stub. */
2460 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2461 {
2462 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2463 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2464 ARM_INSN (0xe12fff1c), /* bx ip */
2465 ARM_INSN (0xe320f000), /* nop */
2466 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2467 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2468 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2469 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2470 };
2471
2472 /* NaCl ARM -> ARM long branch stub, PIC. */
2473 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2474 {
2475 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2476 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2477 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2478 ARM_INSN (0xe12fff1c), /* bx ip */
2479 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2480 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2481 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2482 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2483 };
2484
2485
2486 /* Cortex-A8 erratum-workaround stubs. */
2487
2488 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2489 can't use a conditional branch to reach this stub). */
2490
2491 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2492 {
2493 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2494 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2495 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2496 };
2497
2498 /* Stub used for b.w and bl.w instructions. */
2499
2500 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2501 {
2502 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2503 };
2504
2505 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2506 {
2507 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2508 };
2509
2510 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2511 instruction (which switches to ARM mode) to point to this stub. Jump to the
2512 real destination using an ARM-mode branch. */
2513
2514 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2515 {
2516 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2517 };
2518
2519 /* For each section group there can be a specially created linker section
2520 to hold the stubs for that group. The name of the stub section is based
2521 upon the name of another section within that group with the suffix below
2522 applied.
2523
2524 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2525 create what appeared to be a linker stub section when it actually
2526 contained user code/data. For example, consider this fragment:
2527
2528 const char * stubborn_problems[] = { "np" };
2529
2530 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2531 section called:
2532
2533 .data.rel.local.stubborn_problems
2534
2535 This then causes problems in arm32_arm_build_stubs() as it triggers:
2536
2537 // Ignore non-stub sections.
2538 if (!strstr (stub_sec->name, STUB_SUFFIX))
2539 continue;
2540
2541 And so the section would be ignored instead of being processed. Hence
2542 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2543 C identifier. */
2544 #define STUB_SUFFIX ".__stub"
2545
2546 /* One entry per long/short branch stub defined above. */
2547 #define DEF_STUBS \
2548 DEF_STUB(long_branch_any_any) \
2549 DEF_STUB(long_branch_v4t_arm_thumb) \
2550 DEF_STUB(long_branch_thumb_only) \
2551 DEF_STUB(long_branch_v4t_thumb_thumb) \
2552 DEF_STUB(long_branch_v4t_thumb_arm) \
2553 DEF_STUB(short_branch_v4t_thumb_arm) \
2554 DEF_STUB(long_branch_any_arm_pic) \
2555 DEF_STUB(long_branch_any_thumb_pic) \
2556 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2557 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2558 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2559 DEF_STUB(long_branch_thumb_only_pic) \
2560 DEF_STUB(long_branch_any_tls_pic) \
2561 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2562 DEF_STUB(long_branch_arm_nacl) \
2563 DEF_STUB(long_branch_arm_nacl_pic) \
2564 DEF_STUB(a8_veneer_b_cond) \
2565 DEF_STUB(a8_veneer_b) \
2566 DEF_STUB(a8_veneer_bl) \
2567 DEF_STUB(a8_veneer_blx)
2568
2569 #define DEF_STUB(x) arm_stub_##x,
2570 enum elf32_arm_stub_type
2571 {
2572 arm_stub_none,
2573 DEF_STUBS
2574 /* Note the first a8_veneer type. */
2575 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2576 };
2577 #undef DEF_STUB
2578
2579 typedef struct
2580 {
2581 const insn_sequence* template_sequence;
2582 int template_size;
2583 } stub_def;
2584
2585 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2586 static const stub_def stub_definitions[] =
2587 {
2588 {NULL, 0},
2589 DEF_STUBS
2590 };
2591
2592 struct elf32_arm_stub_hash_entry
2593 {
2594 /* Base hash table entry structure. */
2595 struct bfd_hash_entry root;
2596
2597 /* The stub section. */
2598 asection *stub_sec;
2599
2600 /* Offset within stub_sec of the beginning of this stub. */
2601 bfd_vma stub_offset;
2602
2603 /* Given the symbol's value and its section we can determine its final
2604 value when building the stubs (so the stub knows where to jump). */
2605 bfd_vma target_value;
2606 asection *target_section;
2607
2608 /* Offset to apply to relocation referencing target_value. */
2609 bfd_vma target_addend;
2610
2611 /* The instruction which caused this stub to be generated (only valid for
2612 Cortex-A8 erratum workaround stubs at present). */
2613 unsigned long orig_insn;
2614
2615 /* The stub type. */
2616 enum elf32_arm_stub_type stub_type;
2617 /* Its encoding size in bytes. */
2618 int stub_size;
2619 /* Its template. */
2620 const insn_sequence *stub_template;
2621 /* The size of the template (number of entries). */
2622 int stub_template_size;
2623
2624 /* The symbol table entry, if any, that this was derived from. */
2625 struct elf32_arm_link_hash_entry *h;
2626
2627 /* Type of branch. */
2628 enum arm_st_branch_type branch_type;
2629
2630 /* Where this stub is being called from, or, in the case of combined
2631 stub sections, the first input section in the group. */
2632 asection *id_sec;
2633
2634 /* The name for the local symbol at the start of this stub. The
2635 stub name in the hash table has to be unique; this does not, so
2636 it can be friendlier. */
2637 char *output_name;
2638 };
2639
2640 /* Used to build a map of a section. This is required for mixed-endian
2641 code/data. */
2642
2643 typedef struct elf32_elf_section_map
2644 {
2645 bfd_vma vma;
2646 char type;
2647 }
2648 elf32_arm_section_map;
2649
2650 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2651
2652 typedef enum
2653 {
2654 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2655 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2656 VFP11_ERRATUM_ARM_VENEER,
2657 VFP11_ERRATUM_THUMB_VENEER
2658 }
2659 elf32_vfp11_erratum_type;
2660
2661 typedef struct elf32_vfp11_erratum_list
2662 {
2663 struct elf32_vfp11_erratum_list *next;
2664 bfd_vma vma;
2665 union
2666 {
2667 struct
2668 {
2669 struct elf32_vfp11_erratum_list *veneer;
2670 unsigned int vfp_insn;
2671 } b;
2672 struct
2673 {
2674 struct elf32_vfp11_erratum_list *branch;
2675 unsigned int id;
2676 } v;
2677 } u;
2678 elf32_vfp11_erratum_type type;
2679 }
2680 elf32_vfp11_erratum_list;
2681
2682 typedef enum
2683 {
2684 DELETE_EXIDX_ENTRY,
2685 INSERT_EXIDX_CANTUNWIND_AT_END
2686 }
2687 arm_unwind_edit_type;
2688
2689 /* A (sorted) list of edits to apply to an unwind table. */
2690 typedef struct arm_unwind_table_edit
2691 {
2692 arm_unwind_edit_type type;
2693 /* Note: we sometimes want to insert an unwind entry corresponding to a
2694 section different from the one we're currently writing out, so record the
2695 (text) section this edit relates to here. */
2696 asection *linked_section;
2697 unsigned int index;
2698 struct arm_unwind_table_edit *next;
2699 }
2700 arm_unwind_table_edit;
2701
2702 typedef struct _arm_elf_section_data
2703 {
2704 /* Information about mapping symbols. */
2705 struct bfd_elf_section_data elf;
2706 unsigned int mapcount;
2707 unsigned int mapsize;
2708 elf32_arm_section_map *map;
2709 /* Information about CPU errata. */
2710 unsigned int erratumcount;
2711 elf32_vfp11_erratum_list *erratumlist;
2712 /* Information about unwind tables. */
2713 union
2714 {
2715 /* Unwind info attached to a text section. */
2716 struct
2717 {
2718 asection *arm_exidx_sec;
2719 } text;
2720
2721 /* Unwind info attached to an .ARM.exidx section. */
2722 struct
2723 {
2724 arm_unwind_table_edit *unwind_edit_list;
2725 arm_unwind_table_edit *unwind_edit_tail;
2726 } exidx;
2727 } u;
2728 }
2729 _arm_elf_section_data;
2730
2731 #define elf32_arm_section_data(sec) \
2732 ((_arm_elf_section_data *) elf_section_data (sec))
2733
2734 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2735 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2736 so may be created multiple times: we use an array of these entries whilst
2737 relaxing which we can refresh easily, then create stubs for each potentially
2738 erratum-triggering instruction once we've settled on a solution. */
2739
2740 struct a8_erratum_fix
2741 {
2742 bfd *input_bfd;
2743 asection *section;
2744 bfd_vma offset;
2745 bfd_vma addend;
2746 unsigned long orig_insn;
2747 char *stub_name;
2748 enum elf32_arm_stub_type stub_type;
2749 enum arm_st_branch_type branch_type;
2750 };
2751
2752 /* A table of relocs applied to branches which might trigger Cortex-A8
2753 erratum. */
2754
2755 struct a8_erratum_reloc
2756 {
2757 bfd_vma from;
2758 bfd_vma destination;
2759 struct elf32_arm_link_hash_entry *hash;
2760 const char *sym_name;
2761 unsigned int r_type;
2762 enum arm_st_branch_type branch_type;
2763 bfd_boolean non_a8_stub;
2764 };
2765
2766 /* The size of the thread control block. */
2767 #define TCB_SIZE 8
2768
2769 /* ARM-specific information about a PLT entry, over and above the usual
2770 gotplt_union. */
2771 struct arm_plt_info
2772 {
2773 /* We reference count Thumb references to a PLT entry separately,
2774 so that we can emit the Thumb trampoline only if needed. */
2775 bfd_signed_vma thumb_refcount;
2776
2777 /* Some references from Thumb code may be eliminated by BL->BLX
2778 conversion, so record them separately. */
2779 bfd_signed_vma maybe_thumb_refcount;
2780
2781 /* How many of the recorded PLT accesses were from non-call relocations.
2782 This information is useful when deciding whether anything takes the
2783 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2784 non-call references to the function should resolve directly to the
2785 real runtime target. */
2786 unsigned int noncall_refcount;
2787
2788 /* Since PLT entries have variable size if the Thumb prologue is
2789 used, we need to record the index into .got.plt instead of
2790 recomputing it from the PLT offset. */
2791 bfd_signed_vma got_offset;
2792 };
2793
2794 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2795 struct arm_local_iplt_info
2796 {
2797 /* The information that is usually found in the generic ELF part of
2798 the hash table entry. */
2799 union gotplt_union root;
2800
2801 /* The information that is usually found in the ARM-specific part of
2802 the hash table entry. */
2803 struct arm_plt_info arm;
2804
2805 /* A list of all potential dynamic relocations against this symbol. */
2806 struct elf_dyn_relocs *dyn_relocs;
2807 };
2808
2809 struct elf_arm_obj_tdata
2810 {
2811 struct elf_obj_tdata root;
2812
2813 /* tls_type for each local got entry. */
2814 char *local_got_tls_type;
2815
2816 /* GOTPLT entries for TLS descriptors. */
2817 bfd_vma *local_tlsdesc_gotent;
2818
2819 /* Information for local symbols that need entries in .iplt. */
2820 struct arm_local_iplt_info **local_iplt;
2821
2822 /* Zero to warn when linking objects with incompatible enum sizes. */
2823 int no_enum_size_warning;
2824
2825 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2826 int no_wchar_size_warning;
2827 };
2828
2829 #define elf_arm_tdata(bfd) \
2830 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2831
2832 #define elf32_arm_local_got_tls_type(bfd) \
2833 (elf_arm_tdata (bfd)->local_got_tls_type)
2834
2835 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2836 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2837
2838 #define elf32_arm_local_iplt(bfd) \
2839 (elf_arm_tdata (bfd)->local_iplt)
2840
2841 #define is_arm_elf(bfd) \
2842 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2843 && elf_tdata (bfd) != NULL \
2844 && elf_object_id (bfd) == ARM_ELF_DATA)
2845
2846 static bfd_boolean
2847 elf32_arm_mkobject (bfd *abfd)
2848 {
2849 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2850 ARM_ELF_DATA);
2851 }
2852
2853 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2854
2855 /* Arm ELF linker hash entry. */
2856 struct elf32_arm_link_hash_entry
2857 {
2858 struct elf_link_hash_entry root;
2859
2860 /* Track dynamic relocs copied for this symbol. */
2861 struct elf_dyn_relocs *dyn_relocs;
2862
2863 /* ARM-specific PLT information. */
2864 struct arm_plt_info plt;
2865
2866 #define GOT_UNKNOWN 0
2867 #define GOT_NORMAL 1
2868 #define GOT_TLS_GD 2
2869 #define GOT_TLS_IE 4
2870 #define GOT_TLS_GDESC 8
2871 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2872 unsigned int tls_type : 8;
2873
2874 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2875 unsigned int is_iplt : 1;
2876
2877 unsigned int unused : 23;
2878
2879 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2880 starting at the end of the jump table. */
2881 bfd_vma tlsdesc_got;
2882
2883 /* The symbol marking the real symbol location for exported thumb
2884 symbols with Arm stubs. */
2885 struct elf_link_hash_entry *export_glue;
2886
2887 /* A pointer to the most recently used stub hash entry against this
2888 symbol. */
2889 struct elf32_arm_stub_hash_entry *stub_cache;
2890 };
2891
2892 /* Traverse an arm ELF linker hash table. */
2893 #define elf32_arm_link_hash_traverse(table, func, info) \
2894 (elf_link_hash_traverse \
2895 (&(table)->root, \
2896 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2897 (info)))
2898
2899 /* Get the ARM elf linker hash table from a link_info structure. */
2900 #define elf32_arm_hash_table(info) \
2901 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2902 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2903
2904 #define arm_stub_hash_lookup(table, string, create, copy) \
2905 ((struct elf32_arm_stub_hash_entry *) \
2906 bfd_hash_lookup ((table), (string), (create), (copy)))
2907
2908 /* Array to keep track of which stub sections have been created, and
2909 information on stub grouping. */
2910 struct map_stub
2911 {
2912 /* This is the section to which stubs in the group will be
2913 attached. */
2914 asection *link_sec;
2915 /* The stub section. */
2916 asection *stub_sec;
2917 };
2918
2919 #define elf32_arm_compute_jump_table_size(htab) \
2920 ((htab)->next_tls_desc_index * 4)
2921
2922 /* ARM ELF linker hash table. */
2923 struct elf32_arm_link_hash_table
2924 {
2925 /* The main hash table. */
2926 struct elf_link_hash_table root;
2927
2928 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2929 bfd_size_type thumb_glue_size;
2930
2931 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2932 bfd_size_type arm_glue_size;
2933
2934 /* The size in bytes of section containing the ARMv4 BX veneers. */
2935 bfd_size_type bx_glue_size;
2936
2937 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2938 veneer has been populated. */
2939 bfd_vma bx_glue_offset[15];
2940
2941 /* The size in bytes of the section containing glue for VFP11 erratum
2942 veneers. */
2943 bfd_size_type vfp11_erratum_glue_size;
2944
2945 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2946 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2947 elf32_arm_write_section(). */
2948 struct a8_erratum_fix *a8_erratum_fixes;
2949 unsigned int num_a8_erratum_fixes;
2950
2951 /* An arbitrary input BFD chosen to hold the glue sections. */
2952 bfd * bfd_of_glue_owner;
2953
2954 /* Nonzero to output a BE8 image. */
2955 int byteswap_code;
2956
2957 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2958 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2959 int target1_is_rel;
2960
2961 /* The relocation to use for R_ARM_TARGET2 relocations. */
2962 int target2_reloc;
2963
2964 /* 0 = Ignore R_ARM_V4BX.
2965 1 = Convert BX to MOV PC.
2966 2 = Generate v4 interworing stubs. */
2967 int fix_v4bx;
2968
2969 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2970 int fix_cortex_a8;
2971
2972 /* Whether we should fix the ARM1176 BLX immediate issue. */
2973 int fix_arm1176;
2974
2975 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2976 int use_blx;
2977
2978 /* What sort of code sequences we should look for which may trigger the
2979 VFP11 denorm erratum. */
2980 bfd_arm_vfp11_fix vfp11_fix;
2981
2982 /* Global counter for the number of fixes we have emitted. */
2983 int num_vfp11_fixes;
2984
2985 /* Nonzero to force PIC branch veneers. */
2986 int pic_veneer;
2987
2988 /* The number of bytes in the initial entry in the PLT. */
2989 bfd_size_type plt_header_size;
2990
2991 /* The number of bytes in the subsequent PLT etries. */
2992 bfd_size_type plt_entry_size;
2993
2994 /* True if the target system is VxWorks. */
2995 int vxworks_p;
2996
2997 /* True if the target system is Symbian OS. */
2998 int symbian_p;
2999
3000 /* True if the target system is Native Client. */
3001 int nacl_p;
3002
3003 /* True if the target uses REL relocations. */
3004 int use_rel;
3005
3006 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3007 bfd_vma next_tls_desc_index;
3008
3009 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3010 bfd_vma num_tls_desc;
3011
3012 /* Short-cuts to get to dynamic linker sections. */
3013 asection *sdynbss;
3014 asection *srelbss;
3015
3016 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3017 asection *srelplt2;
3018
3019 /* The offset into splt of the PLT entry for the TLS descriptor
3020 resolver. Special values are 0, if not necessary (or not found
3021 to be necessary yet), and -1 if needed but not determined
3022 yet. */
3023 bfd_vma dt_tlsdesc_plt;
3024
3025 /* The offset into sgot of the GOT entry used by the PLT entry
3026 above. */
3027 bfd_vma dt_tlsdesc_got;
3028
3029 /* Offset in .plt section of tls_arm_trampoline. */
3030 bfd_vma tls_trampoline;
3031
3032 /* Data for R_ARM_TLS_LDM32 relocations. */
3033 union
3034 {
3035 bfd_signed_vma refcount;
3036 bfd_vma offset;
3037 } tls_ldm_got;
3038
3039 /* Small local sym cache. */
3040 struct sym_cache sym_cache;
3041
3042 /* For convenience in allocate_dynrelocs. */
3043 bfd * obfd;
3044
3045 /* The amount of space used by the reserved portion of the sgotplt
3046 section, plus whatever space is used by the jump slots. */
3047 bfd_vma sgotplt_jump_table_size;
3048
3049 /* The stub hash table. */
3050 struct bfd_hash_table stub_hash_table;
3051
3052 /* Linker stub bfd. */
3053 bfd *stub_bfd;
3054
3055 /* Linker call-backs. */
3056 asection * (*add_stub_section) (const char *, asection *, unsigned int);
3057 void (*layout_sections_again) (void);
3058
3059 /* Array to keep track of which stub sections have been created, and
3060 information on stub grouping. */
3061 struct map_stub *stub_group;
3062
3063 /* Number of elements in stub_group. */
3064 int top_id;
3065
3066 /* Assorted information used by elf32_arm_size_stubs. */
3067 unsigned int bfd_count;
3068 int top_index;
3069 asection **input_list;
3070 };
3071
3072 /* Create an entry in an ARM ELF linker hash table. */
3073
3074 static struct bfd_hash_entry *
3075 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3076 struct bfd_hash_table * table,
3077 const char * string)
3078 {
3079 struct elf32_arm_link_hash_entry * ret =
3080 (struct elf32_arm_link_hash_entry *) entry;
3081
3082 /* Allocate the structure if it has not already been allocated by a
3083 subclass. */
3084 if (ret == NULL)
3085 ret = (struct elf32_arm_link_hash_entry *)
3086 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3087 if (ret == NULL)
3088 return (struct bfd_hash_entry *) ret;
3089
3090 /* Call the allocation method of the superclass. */
3091 ret = ((struct elf32_arm_link_hash_entry *)
3092 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3093 table, string));
3094 if (ret != NULL)
3095 {
3096 ret->dyn_relocs = NULL;
3097 ret->tls_type = GOT_UNKNOWN;
3098 ret->tlsdesc_got = (bfd_vma) -1;
3099 ret->plt.thumb_refcount = 0;
3100 ret->plt.maybe_thumb_refcount = 0;
3101 ret->plt.noncall_refcount = 0;
3102 ret->plt.got_offset = -1;
3103 ret->is_iplt = FALSE;
3104 ret->export_glue = NULL;
3105
3106 ret->stub_cache = NULL;
3107 }
3108
3109 return (struct bfd_hash_entry *) ret;
3110 }
3111
3112 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3113 symbols. */
3114
3115 static bfd_boolean
3116 elf32_arm_allocate_local_sym_info (bfd *abfd)
3117 {
3118 if (elf_local_got_refcounts (abfd) == NULL)
3119 {
3120 bfd_size_type num_syms;
3121 bfd_size_type size;
3122 char *data;
3123
3124 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3125 size = num_syms * (sizeof (bfd_signed_vma)
3126 + sizeof (struct arm_local_iplt_info *)
3127 + sizeof (bfd_vma)
3128 + sizeof (char));
3129 data = bfd_zalloc (abfd, size);
3130 if (data == NULL)
3131 return FALSE;
3132
3133 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3134 data += num_syms * sizeof (bfd_signed_vma);
3135
3136 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3137 data += num_syms * sizeof (struct arm_local_iplt_info *);
3138
3139 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3140 data += num_syms * sizeof (bfd_vma);
3141
3142 elf32_arm_local_got_tls_type (abfd) = data;
3143 }
3144 return TRUE;
3145 }
3146
3147 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3148 to input bfd ABFD. Create the information if it doesn't already exist.
3149 Return null if an allocation fails. */
3150
3151 static struct arm_local_iplt_info *
3152 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3153 {
3154 struct arm_local_iplt_info **ptr;
3155
3156 if (!elf32_arm_allocate_local_sym_info (abfd))
3157 return NULL;
3158
3159 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3160 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3161 if (*ptr == NULL)
3162 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3163 return *ptr;
3164 }
3165
3166 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3167 in ABFD's symbol table. If the symbol is global, H points to its
3168 hash table entry, otherwise H is null.
3169
3170 Return true if the symbol does have PLT information. When returning
3171 true, point *ROOT_PLT at the target-independent reference count/offset
3172 union and *ARM_PLT at the ARM-specific information. */
3173
3174 static bfd_boolean
3175 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3176 unsigned long r_symndx, union gotplt_union **root_plt,
3177 struct arm_plt_info **arm_plt)
3178 {
3179 struct arm_local_iplt_info *local_iplt;
3180
3181 if (h != NULL)
3182 {
3183 *root_plt = &h->root.plt;
3184 *arm_plt = &h->plt;
3185 return TRUE;
3186 }
3187
3188 if (elf32_arm_local_iplt (abfd) == NULL)
3189 return FALSE;
3190
3191 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3192 if (local_iplt == NULL)
3193 return FALSE;
3194
3195 *root_plt = &local_iplt->root;
3196 *arm_plt = &local_iplt->arm;
3197 return TRUE;
3198 }
3199
3200 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3201 before it. */
3202
3203 static bfd_boolean
3204 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3205 struct arm_plt_info *arm_plt)
3206 {
3207 struct elf32_arm_link_hash_table *htab;
3208
3209 htab = elf32_arm_hash_table (info);
3210 return (arm_plt->thumb_refcount != 0
3211 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3212 }
3213
3214 /* Return a pointer to the head of the dynamic reloc list that should
3215 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3216 ABFD's symbol table. Return null if an error occurs. */
3217
3218 static struct elf_dyn_relocs **
3219 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3220 Elf_Internal_Sym *isym)
3221 {
3222 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3223 {
3224 struct arm_local_iplt_info *local_iplt;
3225
3226 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3227 if (local_iplt == NULL)
3228 return NULL;
3229 return &local_iplt->dyn_relocs;
3230 }
3231 else
3232 {
3233 /* Track dynamic relocs needed for local syms too.
3234 We really need local syms available to do this
3235 easily. Oh well. */
3236 asection *s;
3237 void *vpp;
3238
3239 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3240 if (s == NULL)
3241 abort ();
3242
3243 vpp = &elf_section_data (s)->local_dynrel;
3244 return (struct elf_dyn_relocs **) vpp;
3245 }
3246 }
3247
3248 /* Initialize an entry in the stub hash table. */
3249
3250 static struct bfd_hash_entry *
3251 stub_hash_newfunc (struct bfd_hash_entry *entry,
3252 struct bfd_hash_table *table,
3253 const char *string)
3254 {
3255 /* Allocate the structure if it has not already been allocated by a
3256 subclass. */
3257 if (entry == NULL)
3258 {
3259 entry = (struct bfd_hash_entry *)
3260 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3261 if (entry == NULL)
3262 return entry;
3263 }
3264
3265 /* Call the allocation method of the superclass. */
3266 entry = bfd_hash_newfunc (entry, table, string);
3267 if (entry != NULL)
3268 {
3269 struct elf32_arm_stub_hash_entry *eh;
3270
3271 /* Initialize the local fields. */
3272 eh = (struct elf32_arm_stub_hash_entry *) entry;
3273 eh->stub_sec = NULL;
3274 eh->stub_offset = 0;
3275 eh->target_value = 0;
3276 eh->target_section = NULL;
3277 eh->target_addend = 0;
3278 eh->orig_insn = 0;
3279 eh->stub_type = arm_stub_none;
3280 eh->stub_size = 0;
3281 eh->stub_template = NULL;
3282 eh->stub_template_size = 0;
3283 eh->h = NULL;
3284 eh->id_sec = NULL;
3285 eh->output_name = NULL;
3286 }
3287
3288 return entry;
3289 }
3290
3291 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3292 shortcuts to them in our hash table. */
3293
3294 static bfd_boolean
3295 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3296 {
3297 struct elf32_arm_link_hash_table *htab;
3298
3299 htab = elf32_arm_hash_table (info);
3300 if (htab == NULL)
3301 return FALSE;
3302
3303 /* BPABI objects never have a GOT, or associated sections. */
3304 if (htab->symbian_p)
3305 return TRUE;
3306
3307 if (! _bfd_elf_create_got_section (dynobj, info))
3308 return FALSE;
3309
3310 return TRUE;
3311 }
3312
3313 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3314
3315 static bfd_boolean
3316 create_ifunc_sections (struct bfd_link_info *info)
3317 {
3318 struct elf32_arm_link_hash_table *htab;
3319 const struct elf_backend_data *bed;
3320 bfd *dynobj;
3321 asection *s;
3322 flagword flags;
3323
3324 htab = elf32_arm_hash_table (info);
3325 dynobj = htab->root.dynobj;
3326 bed = get_elf_backend_data (dynobj);
3327 flags = bed->dynamic_sec_flags;
3328
3329 if (htab->root.iplt == NULL)
3330 {
3331 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3332 flags | SEC_READONLY | SEC_CODE);
3333 if (s == NULL
3334 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3335 return FALSE;
3336 htab->root.iplt = s;
3337 }
3338
3339 if (htab->root.irelplt == NULL)
3340 {
3341 s = bfd_make_section_anyway_with_flags (dynobj,
3342 RELOC_SECTION (htab, ".iplt"),
3343 flags | SEC_READONLY);
3344 if (s == NULL
3345 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3346 return FALSE;
3347 htab->root.irelplt = s;
3348 }
3349
3350 if (htab->root.igotplt == NULL)
3351 {
3352 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3353 if (s == NULL
3354 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3355 return FALSE;
3356 htab->root.igotplt = s;
3357 }
3358 return TRUE;
3359 }
3360
3361 /* Determine if we're dealing with a Thumb only architecture. */
3362
3363 static bfd_boolean
3364 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3365 {
3366 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3367 Tag_CPU_arch);
3368 int profile;
3369
3370 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3371 return TRUE;
3372
3373 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3374 return FALSE;
3375
3376 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3377 Tag_CPU_arch_profile);
3378
3379 return profile == 'M';
3380 }
3381
3382 /* Determine if we're dealing with a Thumb-2 object. */
3383
3384 static bfd_boolean
3385 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3386 {
3387 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3388 Tag_CPU_arch);
3389 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3390 }
3391
3392 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3393 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3394 hash table. */
3395
3396 static bfd_boolean
3397 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3398 {
3399 struct elf32_arm_link_hash_table *htab;
3400
3401 htab = elf32_arm_hash_table (info);
3402 if (htab == NULL)
3403 return FALSE;
3404
3405 if (!htab->root.sgot && !create_got_section (dynobj, info))
3406 return FALSE;
3407
3408 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3409 return FALSE;
3410
3411 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3412 if (!bfd_link_pic (info))
3413 htab->srelbss = bfd_get_linker_section (dynobj,
3414 RELOC_SECTION (htab, ".bss"));
3415
3416 if (htab->vxworks_p)
3417 {
3418 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3419 return FALSE;
3420
3421 if (bfd_link_pic (info))
3422 {
3423 htab->plt_header_size = 0;
3424 htab->plt_entry_size
3425 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3426 }
3427 else
3428 {
3429 htab->plt_header_size
3430 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3431 htab->plt_entry_size
3432 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3433 }
3434 }
3435 else
3436 {
3437 /* PR ld/16017
3438 Test for thumb only architectures. Note - we cannot just call
3439 using_thumb_only() as the attributes in the output bfd have not been
3440 initialised at this point, so instead we use the input bfd. */
3441 bfd * saved_obfd = htab->obfd;
3442
3443 htab->obfd = dynobj;
3444 if (using_thumb_only (htab))
3445 {
3446 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3447 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3448 }
3449 htab->obfd = saved_obfd;
3450 }
3451
3452 if (!htab->root.splt
3453 || !htab->root.srelplt
3454 || !htab->sdynbss
3455 || (!bfd_link_pic (info) && !htab->srelbss))
3456 abort ();
3457
3458 return TRUE;
3459 }
3460
3461 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3462
3463 static void
3464 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3465 struct elf_link_hash_entry *dir,
3466 struct elf_link_hash_entry *ind)
3467 {
3468 struct elf32_arm_link_hash_entry *edir, *eind;
3469
3470 edir = (struct elf32_arm_link_hash_entry *) dir;
3471 eind = (struct elf32_arm_link_hash_entry *) ind;
3472
3473 if (eind->dyn_relocs != NULL)
3474 {
3475 if (edir->dyn_relocs != NULL)
3476 {
3477 struct elf_dyn_relocs **pp;
3478 struct elf_dyn_relocs *p;
3479
3480 /* Add reloc counts against the indirect sym to the direct sym
3481 list. Merge any entries against the same section. */
3482 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3483 {
3484 struct elf_dyn_relocs *q;
3485
3486 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3487 if (q->sec == p->sec)
3488 {
3489 q->pc_count += p->pc_count;
3490 q->count += p->count;
3491 *pp = p->next;
3492 break;
3493 }
3494 if (q == NULL)
3495 pp = &p->next;
3496 }
3497 *pp = edir->dyn_relocs;
3498 }
3499
3500 edir->dyn_relocs = eind->dyn_relocs;
3501 eind->dyn_relocs = NULL;
3502 }
3503
3504 if (ind->root.type == bfd_link_hash_indirect)
3505 {
3506 /* Copy over PLT info. */
3507 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3508 eind->plt.thumb_refcount = 0;
3509 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3510 eind->plt.maybe_thumb_refcount = 0;
3511 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3512 eind->plt.noncall_refcount = 0;
3513
3514 /* We should only allocate a function to .iplt once the final
3515 symbol information is known. */
3516 BFD_ASSERT (!eind->is_iplt);
3517
3518 if (dir->got.refcount <= 0)
3519 {
3520 edir->tls_type = eind->tls_type;
3521 eind->tls_type = GOT_UNKNOWN;
3522 }
3523 }
3524
3525 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3526 }
3527
3528 /* Destroy an ARM elf linker hash table. */
3529
3530 static void
3531 elf32_arm_link_hash_table_free (bfd *obfd)
3532 {
3533 struct elf32_arm_link_hash_table *ret
3534 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
3535
3536 bfd_hash_table_free (&ret->stub_hash_table);
3537 _bfd_elf_link_hash_table_free (obfd);
3538 }
3539
3540 /* Create an ARM elf linker hash table. */
3541
3542 static struct bfd_link_hash_table *
3543 elf32_arm_link_hash_table_create (bfd *abfd)
3544 {
3545 struct elf32_arm_link_hash_table *ret;
3546 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3547
3548 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3549 if (ret == NULL)
3550 return NULL;
3551
3552 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3553 elf32_arm_link_hash_newfunc,
3554 sizeof (struct elf32_arm_link_hash_entry),
3555 ARM_ELF_DATA))
3556 {
3557 free (ret);
3558 return NULL;
3559 }
3560
3561 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3562 #ifdef FOUR_WORD_PLT
3563 ret->plt_header_size = 16;
3564 ret->plt_entry_size = 16;
3565 #else
3566 ret->plt_header_size = 20;
3567 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3568 #endif
3569 ret->use_rel = 1;
3570 ret->obfd = abfd;
3571
3572 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3573 sizeof (struct elf32_arm_stub_hash_entry)))
3574 {
3575 _bfd_elf_link_hash_table_free (abfd);
3576 return NULL;
3577 }
3578 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
3579
3580 return &ret->root.root;
3581 }
3582
3583 /* Determine what kind of NOPs are available. */
3584
3585 static bfd_boolean
3586 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3587 {
3588 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3589 Tag_CPU_arch);
3590 return arch == TAG_CPU_ARCH_V6T2
3591 || arch == TAG_CPU_ARCH_V6K
3592 || arch == TAG_CPU_ARCH_V7
3593 || arch == TAG_CPU_ARCH_V7E_M;
3594 }
3595
3596 static bfd_boolean
3597 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3598 {
3599 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3600 Tag_CPU_arch);
3601 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3602 || arch == TAG_CPU_ARCH_V7E_M);
3603 }
3604
3605 static bfd_boolean
3606 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3607 {
3608 switch (stub_type)
3609 {
3610 case arm_stub_long_branch_thumb_only:
3611 case arm_stub_long_branch_v4t_thumb_arm:
3612 case arm_stub_short_branch_v4t_thumb_arm:
3613 case arm_stub_long_branch_v4t_thumb_arm_pic:
3614 case arm_stub_long_branch_v4t_thumb_tls_pic:
3615 case arm_stub_long_branch_thumb_only_pic:
3616 return TRUE;
3617 case arm_stub_none:
3618 BFD_FAIL ();
3619 return FALSE;
3620 break;
3621 default:
3622 return FALSE;
3623 }
3624 }
3625
3626 /* Determine the type of stub needed, if any, for a call. */
3627
3628 static enum elf32_arm_stub_type
3629 arm_type_of_stub (struct bfd_link_info *info,
3630 asection *input_sec,
3631 const Elf_Internal_Rela *rel,
3632 unsigned char st_type,
3633 enum arm_st_branch_type *actual_branch_type,
3634 struct elf32_arm_link_hash_entry *hash,
3635 bfd_vma destination,
3636 asection *sym_sec,
3637 bfd *input_bfd,
3638 const char *name)
3639 {
3640 bfd_vma location;
3641 bfd_signed_vma branch_offset;
3642 unsigned int r_type;
3643 struct elf32_arm_link_hash_table * globals;
3644 int thumb2;
3645 int thumb_only;
3646 enum elf32_arm_stub_type stub_type = arm_stub_none;
3647 int use_plt = 0;
3648 enum arm_st_branch_type branch_type = *actual_branch_type;
3649 union gotplt_union *root_plt;
3650 struct arm_plt_info *arm_plt;
3651
3652 if (branch_type == ST_BRANCH_LONG)
3653 return stub_type;
3654
3655 globals = elf32_arm_hash_table (info);
3656 if (globals == NULL)
3657 return stub_type;
3658
3659 thumb_only = using_thumb_only (globals);
3660
3661 thumb2 = using_thumb2 (globals);
3662
3663 /* Determine where the call point is. */
3664 location = (input_sec->output_offset
3665 + input_sec->output_section->vma
3666 + rel->r_offset);
3667
3668 r_type = ELF32_R_TYPE (rel->r_info);
3669
3670 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3671 are considering a function call relocation. */
3672 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3673 || r_type == R_ARM_THM_JUMP19)
3674 && branch_type == ST_BRANCH_TO_ARM)
3675 branch_type = ST_BRANCH_TO_THUMB;
3676
3677 /* For TLS call relocs, it is the caller's responsibility to provide
3678 the address of the appropriate trampoline. */
3679 if (r_type != R_ARM_TLS_CALL
3680 && r_type != R_ARM_THM_TLS_CALL
3681 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3682 &root_plt, &arm_plt)
3683 && root_plt->offset != (bfd_vma) -1)
3684 {
3685 asection *splt;
3686
3687 if (hash == NULL || hash->is_iplt)
3688 splt = globals->root.iplt;
3689 else
3690 splt = globals->root.splt;
3691 if (splt != NULL)
3692 {
3693 use_plt = 1;
3694
3695 /* Note when dealing with PLT entries: the main PLT stub is in
3696 ARM mode, so if the branch is in Thumb mode, another
3697 Thumb->ARM stub will be inserted later just before the ARM
3698 PLT stub. We don't take this extra distance into account
3699 here, because if a long branch stub is needed, we'll add a
3700 Thumb->Arm one and branch directly to the ARM PLT entry
3701 because it avoids spreading offset corrections in several
3702 places. */
3703
3704 destination = (splt->output_section->vma
3705 + splt->output_offset
3706 + root_plt->offset);
3707 st_type = STT_FUNC;
3708 branch_type = ST_BRANCH_TO_ARM;
3709 }
3710 }
3711 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3712 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3713
3714 branch_offset = (bfd_signed_vma)(destination - location);
3715
3716 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3717 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
3718 {
3719 /* Handle cases where:
3720 - this call goes too far (different Thumb/Thumb2 max
3721 distance)
3722 - it's a Thumb->Arm call and blx is not available, or it's a
3723 Thumb->Arm branch (not bl). A stub is needed in this case,
3724 but only if this call is not through a PLT entry. Indeed,
3725 PLT stubs handle mode switching already.
3726 */
3727 if ((!thumb2
3728 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3729 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3730 || (thumb2
3731 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3732 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3733 || (thumb2
3734 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
3735 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
3736 && (r_type == R_ARM_THM_JUMP19))
3737 || (branch_type == ST_BRANCH_TO_ARM
3738 && (((r_type == R_ARM_THM_CALL
3739 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3740 || (r_type == R_ARM_THM_JUMP24)
3741 || (r_type == R_ARM_THM_JUMP19))
3742 && !use_plt))
3743 {
3744 if (branch_type == ST_BRANCH_TO_THUMB)
3745 {
3746 /* Thumb to thumb. */
3747 if (!thumb_only)
3748 {
3749 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
3750 /* PIC stubs. */
3751 ? ((globals->use_blx
3752 && (r_type == R_ARM_THM_CALL))
3753 /* V5T and above. Stub starts with ARM code, so
3754 we must be able to switch mode before
3755 reaching it, which is only possible for 'bl'
3756 (ie R_ARM_THM_CALL relocation). */
3757 ? arm_stub_long_branch_any_thumb_pic
3758 /* On V4T, use Thumb code only. */
3759 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3760
3761 /* non-PIC stubs. */
3762 : ((globals->use_blx
3763 && (r_type == R_ARM_THM_CALL))
3764 /* V5T and above. */
3765 ? arm_stub_long_branch_any_any
3766 /* V4T. */
3767 : arm_stub_long_branch_v4t_thumb_thumb);
3768 }
3769 else
3770 {
3771 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
3772 /* PIC stub. */
3773 ? arm_stub_long_branch_thumb_only_pic
3774 /* non-PIC stub. */
3775 : arm_stub_long_branch_thumb_only;
3776 }
3777 }
3778 else
3779 {
3780 /* Thumb to arm. */
3781 if (sym_sec != NULL
3782 && sym_sec->owner != NULL
3783 && !INTERWORK_FLAG (sym_sec->owner))
3784 {
3785 (*_bfd_error_handler)
3786 (_("%B(%s): warning: interworking not enabled.\n"
3787 " first occurrence: %B: Thumb call to ARM"),
3788 sym_sec->owner, input_bfd, name);
3789 }
3790
3791 stub_type =
3792 (bfd_link_pic (info) | globals->pic_veneer)
3793 /* PIC stubs. */
3794 ? (r_type == R_ARM_THM_TLS_CALL
3795 /* TLS PIC stubs. */
3796 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3797 : arm_stub_long_branch_v4t_thumb_tls_pic)
3798 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3799 /* V5T PIC and above. */
3800 ? arm_stub_long_branch_any_arm_pic
3801 /* V4T PIC stub. */
3802 : arm_stub_long_branch_v4t_thumb_arm_pic))
3803
3804 /* non-PIC stubs. */
3805 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3806 /* V5T and above. */
3807 ? arm_stub_long_branch_any_any
3808 /* V4T. */
3809 : arm_stub_long_branch_v4t_thumb_arm);
3810
3811 /* Handle v4t short branches. */
3812 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3813 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3814 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3815 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3816 }
3817 }
3818 }
3819 else if (r_type == R_ARM_CALL
3820 || r_type == R_ARM_JUMP24
3821 || r_type == R_ARM_PLT32
3822 || r_type == R_ARM_TLS_CALL)
3823 {
3824 if (branch_type == ST_BRANCH_TO_THUMB)
3825 {
3826 /* Arm to thumb. */
3827
3828 if (sym_sec != NULL
3829 && sym_sec->owner != NULL
3830 && !INTERWORK_FLAG (sym_sec->owner))
3831 {
3832 (*_bfd_error_handler)
3833 (_("%B(%s): warning: interworking not enabled.\n"
3834 " first occurrence: %B: ARM call to Thumb"),
3835 sym_sec->owner, input_bfd, name);
3836 }
3837
3838 /* We have an extra 2-bytes reach because of
3839 the mode change (bit 24 (H) of BLX encoding). */
3840 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3841 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3842 || (r_type == R_ARM_CALL && !globals->use_blx)
3843 || (r_type == R_ARM_JUMP24)
3844 || (r_type == R_ARM_PLT32))
3845 {
3846 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
3847 /* PIC stubs. */
3848 ? ((globals->use_blx)
3849 /* V5T and above. */
3850 ? arm_stub_long_branch_any_thumb_pic
3851 /* V4T stub. */
3852 : arm_stub_long_branch_v4t_arm_thumb_pic)
3853
3854 /* non-PIC stubs. */
3855 : ((globals->use_blx)
3856 /* V5T and above. */
3857 ? arm_stub_long_branch_any_any
3858 /* V4T. */
3859 : arm_stub_long_branch_v4t_arm_thumb);
3860 }
3861 }
3862 else
3863 {
3864 /* Arm to arm. */
3865 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3866 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3867 {
3868 stub_type =
3869 (bfd_link_pic (info) | globals->pic_veneer)
3870 /* PIC stubs. */
3871 ? (r_type == R_ARM_TLS_CALL
3872 /* TLS PIC Stub. */
3873 ? arm_stub_long_branch_any_tls_pic
3874 : (globals->nacl_p
3875 ? arm_stub_long_branch_arm_nacl_pic
3876 : arm_stub_long_branch_any_arm_pic))
3877 /* non-PIC stubs. */
3878 : (globals->nacl_p
3879 ? arm_stub_long_branch_arm_nacl
3880 : arm_stub_long_branch_any_any);
3881 }
3882 }
3883 }
3884
3885 /* If a stub is needed, record the actual destination type. */
3886 if (stub_type != arm_stub_none)
3887 *actual_branch_type = branch_type;
3888
3889 return stub_type;
3890 }
3891
3892 /* Build a name for an entry in the stub hash table. */
3893
3894 static char *
3895 elf32_arm_stub_name (const asection *input_section,
3896 const asection *sym_sec,
3897 const struct elf32_arm_link_hash_entry *hash,
3898 const Elf_Internal_Rela *rel,
3899 enum elf32_arm_stub_type stub_type)
3900 {
3901 char *stub_name;
3902 bfd_size_type len;
3903
3904 if (hash)
3905 {
3906 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3907 stub_name = (char *) bfd_malloc (len);
3908 if (stub_name != NULL)
3909 sprintf (stub_name, "%08x_%s+%x_%d",
3910 input_section->id & 0xffffffff,
3911 hash->root.root.root.string,
3912 (int) rel->r_addend & 0xffffffff,
3913 (int) stub_type);
3914 }
3915 else
3916 {
3917 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3918 stub_name = (char *) bfd_malloc (len);
3919 if (stub_name != NULL)
3920 sprintf (stub_name, "%08x_%x:%x+%x_%d",
3921 input_section->id & 0xffffffff,
3922 sym_sec->id & 0xffffffff,
3923 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3924 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3925 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3926 (int) rel->r_addend & 0xffffffff,
3927 (int) stub_type);
3928 }
3929
3930 return stub_name;
3931 }
3932
3933 /* Look up an entry in the stub hash. Stub entries are cached because
3934 creating the stub name takes a bit of time. */
3935
3936 static struct elf32_arm_stub_hash_entry *
3937 elf32_arm_get_stub_entry (const asection *input_section,
3938 const asection *sym_sec,
3939 struct elf_link_hash_entry *hash,
3940 const Elf_Internal_Rela *rel,
3941 struct elf32_arm_link_hash_table *htab,
3942 enum elf32_arm_stub_type stub_type)
3943 {
3944 struct elf32_arm_stub_hash_entry *stub_entry;
3945 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3946 const asection *id_sec;
3947
3948 if ((input_section->flags & SEC_CODE) == 0)
3949 return NULL;
3950
3951 /* If this input section is part of a group of sections sharing one
3952 stub section, then use the id of the first section in the group.
3953 Stub names need to include a section id, as there may well be
3954 more than one stub used to reach say, printf, and we need to
3955 distinguish between them. */
3956 id_sec = htab->stub_group[input_section->id].link_sec;
3957
3958 if (h != NULL && h->stub_cache != NULL
3959 && h->stub_cache->h == h
3960 && h->stub_cache->id_sec == id_sec
3961 && h->stub_cache->stub_type == stub_type)
3962 {
3963 stub_entry = h->stub_cache;
3964 }
3965 else
3966 {
3967 char *stub_name;
3968
3969 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3970 if (stub_name == NULL)
3971 return NULL;
3972
3973 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3974 stub_name, FALSE, FALSE);
3975 if (h != NULL)
3976 h->stub_cache = stub_entry;
3977
3978 free (stub_name);
3979 }
3980
3981 return stub_entry;
3982 }
3983
3984 /* Find or create a stub section. Returns a pointer to the stub section, and
3985 the section to which the stub section will be attached (in *LINK_SEC_P).
3986 LINK_SEC_P may be NULL. */
3987
3988 static asection *
3989 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3990 struct elf32_arm_link_hash_table *htab)
3991 {
3992 asection *link_sec;
3993 asection *stub_sec;
3994
3995 link_sec = htab->stub_group[section->id].link_sec;
3996 BFD_ASSERT (link_sec != NULL);
3997 stub_sec = htab->stub_group[section->id].stub_sec;
3998
3999 if (stub_sec == NULL)
4000 {
4001 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4002 if (stub_sec == NULL)
4003 {
4004 size_t namelen;
4005 bfd_size_type len;
4006 char *s_name;
4007
4008 namelen = strlen (link_sec->name);
4009 len = namelen + sizeof (STUB_SUFFIX);
4010 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4011 if (s_name == NULL)
4012 return NULL;
4013
4014 memcpy (s_name, link_sec->name, namelen);
4015 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4016 stub_sec = (*htab->add_stub_section) (s_name, link_sec,
4017 htab->nacl_p ? 4 : 3);
4018 if (stub_sec == NULL)
4019 return NULL;
4020 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4021 }
4022 htab->stub_group[section->id].stub_sec = stub_sec;
4023 }
4024
4025 if (link_sec_p)
4026 *link_sec_p = link_sec;
4027
4028 return stub_sec;
4029 }
4030
4031 /* Add a new stub entry to the stub hash. Not all fields of the new
4032 stub entry are initialised. */
4033
4034 static struct elf32_arm_stub_hash_entry *
4035 elf32_arm_add_stub (const char *stub_name,
4036 asection *section,
4037 struct elf32_arm_link_hash_table *htab)
4038 {
4039 asection *link_sec;
4040 asection *stub_sec;
4041 struct elf32_arm_stub_hash_entry *stub_entry;
4042
4043 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
4044 if (stub_sec == NULL)
4045 return NULL;
4046
4047 /* Enter this entry into the linker stub hash table. */
4048 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4049 TRUE, FALSE);
4050 if (stub_entry == NULL)
4051 {
4052 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4053 section->owner,
4054 stub_name);
4055 return NULL;
4056 }
4057
4058 stub_entry->stub_sec = stub_sec;
4059 stub_entry->stub_offset = 0;
4060 stub_entry->id_sec = link_sec;
4061
4062 return stub_entry;
4063 }
4064
4065 /* Store an Arm insn into an output section not processed by
4066 elf32_arm_write_section. */
4067
4068 static void
4069 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4070 bfd * output_bfd, bfd_vma val, void * ptr)
4071 {
4072 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4073 bfd_putl32 (val, ptr);
4074 else
4075 bfd_putb32 (val, ptr);
4076 }
4077
4078 /* Store a 16-bit Thumb insn into an output section not processed by
4079 elf32_arm_write_section. */
4080
4081 static void
4082 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4083 bfd * output_bfd, bfd_vma val, void * ptr)
4084 {
4085 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4086 bfd_putl16 (val, ptr);
4087 else
4088 bfd_putb16 (val, ptr);
4089 }
4090
4091 /* If it's possible to change R_TYPE to a more efficient access
4092 model, return the new reloc type. */
4093
4094 static unsigned
4095 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4096 struct elf_link_hash_entry *h)
4097 {
4098 int is_local = (h == NULL);
4099
4100 if (bfd_link_pic (info)
4101 || (h && h->root.type == bfd_link_hash_undefweak))
4102 return r_type;
4103
4104 /* We do not support relaxations for Old TLS models. */
4105 switch (r_type)
4106 {
4107 case R_ARM_TLS_GOTDESC:
4108 case R_ARM_TLS_CALL:
4109 case R_ARM_THM_TLS_CALL:
4110 case R_ARM_TLS_DESCSEQ:
4111 case R_ARM_THM_TLS_DESCSEQ:
4112 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4113 }
4114
4115 return r_type;
4116 }
4117
4118 static bfd_reloc_status_type elf32_arm_final_link_relocate
4119 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4120 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4121 const char *, unsigned char, enum arm_st_branch_type,
4122 struct elf_link_hash_entry *, bfd_boolean *, char **);
4123
4124 static unsigned int
4125 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4126 {
4127 switch (stub_type)
4128 {
4129 case arm_stub_a8_veneer_b_cond:
4130 case arm_stub_a8_veneer_b:
4131 case arm_stub_a8_veneer_bl:
4132 return 2;
4133
4134 case arm_stub_long_branch_any_any:
4135 case arm_stub_long_branch_v4t_arm_thumb:
4136 case arm_stub_long_branch_thumb_only:
4137 case arm_stub_long_branch_v4t_thumb_thumb:
4138 case arm_stub_long_branch_v4t_thumb_arm:
4139 case arm_stub_short_branch_v4t_thumb_arm:
4140 case arm_stub_long_branch_any_arm_pic:
4141 case arm_stub_long_branch_any_thumb_pic:
4142 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4143 case arm_stub_long_branch_v4t_arm_thumb_pic:
4144 case arm_stub_long_branch_v4t_thumb_arm_pic:
4145 case arm_stub_long_branch_thumb_only_pic:
4146 case arm_stub_long_branch_any_tls_pic:
4147 case arm_stub_long_branch_v4t_thumb_tls_pic:
4148 case arm_stub_a8_veneer_blx:
4149 return 4;
4150
4151 case arm_stub_long_branch_arm_nacl:
4152 case arm_stub_long_branch_arm_nacl_pic:
4153 return 16;
4154
4155 default:
4156 abort (); /* Should be unreachable. */
4157 }
4158 }
4159
4160 static bfd_boolean
4161 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4162 void * in_arg)
4163 {
4164 #define MAXRELOCS 3
4165 struct elf32_arm_stub_hash_entry *stub_entry;
4166 struct elf32_arm_link_hash_table *globals;
4167 struct bfd_link_info *info;
4168 asection *stub_sec;
4169 bfd *stub_bfd;
4170 bfd_byte *loc;
4171 bfd_vma sym_value;
4172 int template_size;
4173 int size;
4174 const insn_sequence *template_sequence;
4175 int i;
4176 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4177 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4178 int nrelocs = 0;
4179
4180 /* Massage our args to the form they really have. */
4181 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4182 info = (struct bfd_link_info *) in_arg;
4183
4184 globals = elf32_arm_hash_table (info);
4185 if (globals == NULL)
4186 return FALSE;
4187
4188 stub_sec = stub_entry->stub_sec;
4189
4190 if ((globals->fix_cortex_a8 < 0)
4191 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4192 /* We have to do less-strictly-aligned fixes last. */
4193 return TRUE;
4194
4195 /* Make a note of the offset within the stubs for this entry. */
4196 stub_entry->stub_offset = stub_sec->size;
4197 loc = stub_sec->contents + stub_entry->stub_offset;
4198
4199 stub_bfd = stub_sec->owner;
4200
4201 /* This is the address of the stub destination. */
4202 sym_value = (stub_entry->target_value
4203 + stub_entry->target_section->output_offset
4204 + stub_entry->target_section->output_section->vma);
4205
4206 template_sequence = stub_entry->stub_template;
4207 template_size = stub_entry->stub_template_size;
4208
4209 size = 0;
4210 for (i = 0; i < template_size; i++)
4211 {
4212 switch (template_sequence[i].type)
4213 {
4214 case THUMB16_TYPE:
4215 {
4216 bfd_vma data = (bfd_vma) template_sequence[i].data;
4217 if (template_sequence[i].reloc_addend != 0)
4218 {
4219 /* We've borrowed the reloc_addend field to mean we should
4220 insert a condition code into this (Thumb-1 branch)
4221 instruction. See THUMB16_BCOND_INSN. */
4222 BFD_ASSERT ((data & 0xff00) == 0xd000);
4223 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4224 }
4225 bfd_put_16 (stub_bfd, data, loc + size);
4226 size += 2;
4227 }
4228 break;
4229
4230 case THUMB32_TYPE:
4231 bfd_put_16 (stub_bfd,
4232 (template_sequence[i].data >> 16) & 0xffff,
4233 loc + size);
4234 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4235 loc + size + 2);
4236 if (template_sequence[i].r_type != R_ARM_NONE)
4237 {
4238 stub_reloc_idx[nrelocs] = i;
4239 stub_reloc_offset[nrelocs++] = size;
4240 }
4241 size += 4;
4242 break;
4243
4244 case ARM_TYPE:
4245 bfd_put_32 (stub_bfd, template_sequence[i].data,
4246 loc + size);
4247 /* Handle cases where the target is encoded within the
4248 instruction. */
4249 if (template_sequence[i].r_type == R_ARM_JUMP24)
4250 {
4251 stub_reloc_idx[nrelocs] = i;
4252 stub_reloc_offset[nrelocs++] = size;
4253 }
4254 size += 4;
4255 break;
4256
4257 case DATA_TYPE:
4258 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4259 stub_reloc_idx[nrelocs] = i;
4260 stub_reloc_offset[nrelocs++] = size;
4261 size += 4;
4262 break;
4263
4264 default:
4265 BFD_FAIL ();
4266 return FALSE;
4267 }
4268 }
4269
4270 stub_sec->size += size;
4271
4272 /* Stub size has already been computed in arm_size_one_stub. Check
4273 consistency. */
4274 BFD_ASSERT (size == stub_entry->stub_size);
4275
4276 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4277 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4278 sym_value |= 1;
4279
4280 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4281 in each stub. */
4282 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4283
4284 for (i = 0; i < nrelocs; i++)
4285 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4286 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4287 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4288 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4289 {
4290 Elf_Internal_Rela rel;
4291 bfd_boolean unresolved_reloc;
4292 char *error_message;
4293 enum arm_st_branch_type branch_type
4294 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4295 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4296 bfd_vma points_to = sym_value + stub_entry->target_addend;
4297
4298 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4299 rel.r_info = ELF32_R_INFO (0,
4300 template_sequence[stub_reloc_idx[i]].r_type);
4301 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4302
4303 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4304 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4305 template should refer back to the instruction after the original
4306 branch. */
4307 points_to = sym_value;
4308
4309 /* There may be unintended consequences if this is not true. */
4310 BFD_ASSERT (stub_entry->h == NULL);
4311
4312 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4313 properly. We should probably use this function unconditionally,
4314 rather than only for certain relocations listed in the enclosing
4315 conditional, for the sake of consistency. */
4316 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4317 (template_sequence[stub_reloc_idx[i]].r_type),
4318 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4319 points_to, info, stub_entry->target_section, "", STT_FUNC,
4320 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4321 &unresolved_reloc, &error_message);
4322 }
4323 else
4324 {
4325 Elf_Internal_Rela rel;
4326 bfd_boolean unresolved_reloc;
4327 char *error_message;
4328 bfd_vma points_to = sym_value + stub_entry->target_addend
4329 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4330
4331 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4332 rel.r_info = ELF32_R_INFO (0,
4333 template_sequence[stub_reloc_idx[i]].r_type);
4334 rel.r_addend = 0;
4335
4336 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4337 (template_sequence[stub_reloc_idx[i]].r_type),
4338 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4339 points_to, info, stub_entry->target_section, "", STT_FUNC,
4340 stub_entry->branch_type,
4341 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4342 &error_message);
4343 }
4344
4345 return TRUE;
4346 #undef MAXRELOCS
4347 }
4348
4349 /* Calculate the template, template size and instruction size for a stub.
4350 Return value is the instruction size. */
4351
4352 static unsigned int
4353 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4354 const insn_sequence **stub_template,
4355 int *stub_template_size)
4356 {
4357 const insn_sequence *template_sequence = NULL;
4358 int template_size = 0, i;
4359 unsigned int size;
4360
4361 template_sequence = stub_definitions[stub_type].template_sequence;
4362 if (stub_template)
4363 *stub_template = template_sequence;
4364
4365 template_size = stub_definitions[stub_type].template_size;
4366 if (stub_template_size)
4367 *stub_template_size = template_size;
4368
4369 size = 0;
4370 for (i = 0; i < template_size; i++)
4371 {
4372 switch (template_sequence[i].type)
4373 {
4374 case THUMB16_TYPE:
4375 size += 2;
4376 break;
4377
4378 case ARM_TYPE:
4379 case THUMB32_TYPE:
4380 case DATA_TYPE:
4381 size += 4;
4382 break;
4383
4384 default:
4385 BFD_FAIL ();
4386 return 0;
4387 }
4388 }
4389
4390 return size;
4391 }
4392
4393 /* As above, but don't actually build the stub. Just bump offset so
4394 we know stub section sizes. */
4395
4396 static bfd_boolean
4397 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4398 void *in_arg ATTRIBUTE_UNUSED)
4399 {
4400 struct elf32_arm_stub_hash_entry *stub_entry;
4401 const insn_sequence *template_sequence;
4402 int template_size, size;
4403
4404 /* Massage our args to the form they really have. */
4405 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4406
4407 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4408 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4409
4410 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4411 &template_size);
4412
4413 stub_entry->stub_size = size;
4414 stub_entry->stub_template = template_sequence;
4415 stub_entry->stub_template_size = template_size;
4416
4417 size = (size + 7) & ~7;
4418 stub_entry->stub_sec->size += size;
4419
4420 return TRUE;
4421 }
4422
4423 /* External entry points for sizing and building linker stubs. */
4424
4425 /* Set up various things so that we can make a list of input sections
4426 for each output section included in the link. Returns -1 on error,
4427 0 when no stubs will be needed, and 1 on success. */
4428
4429 int
4430 elf32_arm_setup_section_lists (bfd *output_bfd,
4431 struct bfd_link_info *info)
4432 {
4433 bfd *input_bfd;
4434 unsigned int bfd_count;
4435 int top_id, top_index;
4436 asection *section;
4437 asection **input_list, **list;
4438 bfd_size_type amt;
4439 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4440
4441 if (htab == NULL)
4442 return 0;
4443 if (! is_elf_hash_table (htab))
4444 return 0;
4445
4446 /* Count the number of input BFDs and find the top input section id. */
4447 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4448 input_bfd != NULL;
4449 input_bfd = input_bfd->link.next)
4450 {
4451 bfd_count += 1;
4452 for (section = input_bfd->sections;
4453 section != NULL;
4454 section = section->next)
4455 {
4456 if (top_id < section->id)
4457 top_id = section->id;
4458 }
4459 }
4460 htab->bfd_count = bfd_count;
4461
4462 amt = sizeof (struct map_stub) * (top_id + 1);
4463 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4464 if (htab->stub_group == NULL)
4465 return -1;
4466 htab->top_id = top_id;
4467
4468 /* We can't use output_bfd->section_count here to find the top output
4469 section index as some sections may have been removed, and
4470 _bfd_strip_section_from_output doesn't renumber the indices. */
4471 for (section = output_bfd->sections, top_index = 0;
4472 section != NULL;
4473 section = section->next)
4474 {
4475 if (top_index < section->index)
4476 top_index = section->index;
4477 }
4478
4479 htab->top_index = top_index;
4480 amt = sizeof (asection *) * (top_index + 1);
4481 input_list = (asection **) bfd_malloc (amt);
4482 htab->input_list = input_list;
4483 if (input_list == NULL)
4484 return -1;
4485
4486 /* For sections we aren't interested in, mark their entries with a
4487 value we can check later. */
4488 list = input_list + top_index;
4489 do
4490 *list = bfd_abs_section_ptr;
4491 while (list-- != input_list);
4492
4493 for (section = output_bfd->sections;
4494 section != NULL;
4495 section = section->next)
4496 {
4497 if ((section->flags & SEC_CODE) != 0)
4498 input_list[section->index] = NULL;
4499 }
4500
4501 return 1;
4502 }
4503
4504 /* The linker repeatedly calls this function for each input section,
4505 in the order that input sections are linked into output sections.
4506 Build lists of input sections to determine groupings between which
4507 we may insert linker stubs. */
4508
4509 void
4510 elf32_arm_next_input_section (struct bfd_link_info *info,
4511 asection *isec)
4512 {
4513 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4514
4515 if (htab == NULL)
4516 return;
4517
4518 if (isec->output_section->index <= htab->top_index)
4519 {
4520 asection **list = htab->input_list + isec->output_section->index;
4521
4522 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4523 {
4524 /* Steal the link_sec pointer for our list. */
4525 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4526 /* This happens to make the list in reverse order,
4527 which we reverse later. */
4528 PREV_SEC (isec) = *list;
4529 *list = isec;
4530 }
4531 }
4532 }
4533
4534 /* See whether we can group stub sections together. Grouping stub
4535 sections may result in fewer stubs. More importantly, we need to
4536 put all .init* and .fini* stubs at the end of the .init or
4537 .fini output sections respectively, because glibc splits the
4538 _init and _fini functions into multiple parts. Putting a stub in
4539 the middle of a function is not a good idea. */
4540
4541 static void
4542 group_sections (struct elf32_arm_link_hash_table *htab,
4543 bfd_size_type stub_group_size,
4544 bfd_boolean stubs_always_after_branch)
4545 {
4546 asection **list = htab->input_list;
4547
4548 do
4549 {
4550 asection *tail = *list;
4551 asection *head;
4552
4553 if (tail == bfd_abs_section_ptr)
4554 continue;
4555
4556 /* Reverse the list: we must avoid placing stubs at the
4557 beginning of the section because the beginning of the text
4558 section may be required for an interrupt vector in bare metal
4559 code. */
4560 #define NEXT_SEC PREV_SEC
4561 head = NULL;
4562 while (tail != NULL)
4563 {
4564 /* Pop from tail. */
4565 asection *item = tail;
4566 tail = PREV_SEC (item);
4567
4568 /* Push on head. */
4569 NEXT_SEC (item) = head;
4570 head = item;
4571 }
4572
4573 while (head != NULL)
4574 {
4575 asection *curr;
4576 asection *next;
4577 bfd_vma stub_group_start = head->output_offset;
4578 bfd_vma end_of_next;
4579
4580 curr = head;
4581 while (NEXT_SEC (curr) != NULL)
4582 {
4583 next = NEXT_SEC (curr);
4584 end_of_next = next->output_offset + next->size;
4585 if (end_of_next - stub_group_start >= stub_group_size)
4586 /* End of NEXT is too far from start, so stop. */
4587 break;
4588 /* Add NEXT to the group. */
4589 curr = next;
4590 }
4591
4592 /* OK, the size from the start to the start of CURR is less
4593 than stub_group_size and thus can be handled by one stub
4594 section. (Or the head section is itself larger than
4595 stub_group_size, in which case we may be toast.)
4596 We should really be keeping track of the total size of
4597 stubs added here, as stubs contribute to the final output
4598 section size. */
4599 do
4600 {
4601 next = NEXT_SEC (head);
4602 /* Set up this stub group. */
4603 htab->stub_group[head->id].link_sec = curr;
4604 }
4605 while (head != curr && (head = next) != NULL);
4606
4607 /* But wait, there's more! Input sections up to stub_group_size
4608 bytes after the stub section can be handled by it too. */
4609 if (!stubs_always_after_branch)
4610 {
4611 stub_group_start = curr->output_offset + curr->size;
4612
4613 while (next != NULL)
4614 {
4615 end_of_next = next->output_offset + next->size;
4616 if (end_of_next - stub_group_start >= stub_group_size)
4617 /* End of NEXT is too far from stubs, so stop. */
4618 break;
4619 /* Add NEXT to the stub group. */
4620 head = next;
4621 next = NEXT_SEC (head);
4622 htab->stub_group[head->id].link_sec = curr;
4623 }
4624 }
4625 head = next;
4626 }
4627 }
4628 while (list++ != htab->input_list + htab->top_index);
4629
4630 free (htab->input_list);
4631 #undef PREV_SEC
4632 #undef NEXT_SEC
4633 }
4634
4635 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4636 erratum fix. */
4637
4638 static int
4639 a8_reloc_compare (const void *a, const void *b)
4640 {
4641 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4642 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4643
4644 if (ra->from < rb->from)
4645 return -1;
4646 else if (ra->from > rb->from)
4647 return 1;
4648 else
4649 return 0;
4650 }
4651
4652 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4653 const char *, char **);
4654
4655 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4656 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4657 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4658 otherwise. */
4659
4660 static bfd_boolean
4661 cortex_a8_erratum_scan (bfd *input_bfd,
4662 struct bfd_link_info *info,
4663 struct a8_erratum_fix **a8_fixes_p,
4664 unsigned int *num_a8_fixes_p,
4665 unsigned int *a8_fix_table_size_p,
4666 struct a8_erratum_reloc *a8_relocs,
4667 unsigned int num_a8_relocs,
4668 unsigned prev_num_a8_fixes,
4669 bfd_boolean *stub_changed_p)
4670 {
4671 asection *section;
4672 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4673 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4674 unsigned int num_a8_fixes = *num_a8_fixes_p;
4675 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4676
4677 if (htab == NULL)
4678 return FALSE;
4679
4680 for (section = input_bfd->sections;
4681 section != NULL;
4682 section = section->next)
4683 {
4684 bfd_byte *contents = NULL;
4685 struct _arm_elf_section_data *sec_data;
4686 unsigned int span;
4687 bfd_vma base_vma;
4688
4689 if (elf_section_type (section) != SHT_PROGBITS
4690 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4691 || (section->flags & SEC_EXCLUDE) != 0
4692 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4693 || (section->output_section == bfd_abs_section_ptr))
4694 continue;
4695
4696 base_vma = section->output_section->vma + section->output_offset;
4697
4698 if (elf_section_data (section)->this_hdr.contents != NULL)
4699 contents = elf_section_data (section)->this_hdr.contents;
4700 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4701 return TRUE;
4702
4703 sec_data = elf32_arm_section_data (section);
4704
4705 for (span = 0; span < sec_data->mapcount; span++)
4706 {
4707 unsigned int span_start = sec_data->map[span].vma;
4708 unsigned int span_end = (span == sec_data->mapcount - 1)
4709 ? section->size : sec_data->map[span + 1].vma;
4710 unsigned int i;
4711 char span_type = sec_data->map[span].type;
4712 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4713
4714 if (span_type != 't')
4715 continue;
4716
4717 /* Span is entirely within a single 4KB region: skip scanning. */
4718 if (((base_vma + span_start) & ~0xfff)
4719 == ((base_vma + span_end) & ~0xfff))
4720 continue;
4721
4722 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4723
4724 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4725 * The branch target is in the same 4KB region as the
4726 first half of the branch.
4727 * The instruction before the branch is a 32-bit
4728 length non-branch instruction. */
4729 for (i = span_start; i < span_end;)
4730 {
4731 unsigned int insn = bfd_getl16 (&contents[i]);
4732 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4733 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4734
4735 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4736 insn_32bit = TRUE;
4737
4738 if (insn_32bit)
4739 {
4740 /* Load the rest of the insn (in manual-friendly order). */
4741 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4742
4743 /* Encoding T4: B<c>.W. */
4744 is_b = (insn & 0xf800d000) == 0xf0009000;
4745 /* Encoding T1: BL<c>.W. */
4746 is_bl = (insn & 0xf800d000) == 0xf000d000;
4747 /* Encoding T2: BLX<c>.W. */
4748 is_blx = (insn & 0xf800d000) == 0xf000c000;
4749 /* Encoding T3: B<c>.W (not permitted in IT block). */
4750 is_bcc = (insn & 0xf800d000) == 0xf0008000
4751 && (insn & 0x07f00000) != 0x03800000;
4752 }
4753
4754 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4755
4756 if (((base_vma + i) & 0xfff) == 0xffe
4757 && insn_32bit
4758 && is_32bit_branch
4759 && last_was_32bit
4760 && ! last_was_branch)
4761 {
4762 bfd_signed_vma offset = 0;
4763 bfd_boolean force_target_arm = FALSE;
4764 bfd_boolean force_target_thumb = FALSE;
4765 bfd_vma target;
4766 enum elf32_arm_stub_type stub_type = arm_stub_none;
4767 struct a8_erratum_reloc key, *found;
4768 bfd_boolean use_plt = FALSE;
4769
4770 key.from = base_vma + i;
4771 found = (struct a8_erratum_reloc *)
4772 bsearch (&key, a8_relocs, num_a8_relocs,
4773 sizeof (struct a8_erratum_reloc),
4774 &a8_reloc_compare);
4775
4776 if (found)
4777 {
4778 char *error_message = NULL;
4779 struct elf_link_hash_entry *entry;
4780
4781 /* We don't care about the error returned from this
4782 function, only if there is glue or not. */
4783 entry = find_thumb_glue (info, found->sym_name,
4784 &error_message);
4785
4786 if (entry)
4787 found->non_a8_stub = TRUE;
4788
4789 /* Keep a simpler condition, for the sake of clarity. */
4790 if (htab->root.splt != NULL && found->hash != NULL
4791 && found->hash->root.plt.offset != (bfd_vma) -1)
4792 use_plt = TRUE;
4793
4794 if (found->r_type == R_ARM_THM_CALL)
4795 {
4796 if (found->branch_type == ST_BRANCH_TO_ARM
4797 || use_plt)
4798 force_target_arm = TRUE;
4799 else
4800 force_target_thumb = TRUE;
4801 }
4802 }
4803
4804 /* Check if we have an offending branch instruction. */
4805
4806 if (found && found->non_a8_stub)
4807 /* We've already made a stub for this instruction, e.g.
4808 it's a long branch or a Thumb->ARM stub. Assume that
4809 stub will suffice to work around the A8 erratum (see
4810 setting of always_after_branch above). */
4811 ;
4812 else if (is_bcc)
4813 {
4814 offset = (insn & 0x7ff) << 1;
4815 offset |= (insn & 0x3f0000) >> 4;
4816 offset |= (insn & 0x2000) ? 0x40000 : 0;
4817 offset |= (insn & 0x800) ? 0x80000 : 0;
4818 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4819 if (offset & 0x100000)
4820 offset |= ~ ((bfd_signed_vma) 0xfffff);
4821 stub_type = arm_stub_a8_veneer_b_cond;
4822 }
4823 else if (is_b || is_bl || is_blx)
4824 {
4825 int s = (insn & 0x4000000) != 0;
4826 int j1 = (insn & 0x2000) != 0;
4827 int j2 = (insn & 0x800) != 0;
4828 int i1 = !(j1 ^ s);
4829 int i2 = !(j2 ^ s);
4830
4831 offset = (insn & 0x7ff) << 1;
4832 offset |= (insn & 0x3ff0000) >> 4;
4833 offset |= i2 << 22;
4834 offset |= i1 << 23;
4835 offset |= s << 24;
4836 if (offset & 0x1000000)
4837 offset |= ~ ((bfd_signed_vma) 0xffffff);
4838
4839 if (is_blx)
4840 offset &= ~ ((bfd_signed_vma) 3);
4841
4842 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4843 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4844 }
4845
4846 if (stub_type != arm_stub_none)
4847 {
4848 bfd_vma pc_for_insn = base_vma + i + 4;
4849
4850 /* The original instruction is a BL, but the target is
4851 an ARM instruction. If we were not making a stub,
4852 the BL would have been converted to a BLX. Use the
4853 BLX stub instead in that case. */
4854 if (htab->use_blx && force_target_arm
4855 && stub_type == arm_stub_a8_veneer_bl)
4856 {
4857 stub_type = arm_stub_a8_veneer_blx;
4858 is_blx = TRUE;
4859 is_bl = FALSE;
4860 }
4861 /* Conversely, if the original instruction was
4862 BLX but the target is Thumb mode, use the BL
4863 stub. */
4864 else if (force_target_thumb
4865 && stub_type == arm_stub_a8_veneer_blx)
4866 {
4867 stub_type = arm_stub_a8_veneer_bl;
4868 is_blx = FALSE;
4869 is_bl = TRUE;
4870 }
4871
4872 if (is_blx)
4873 pc_for_insn &= ~ ((bfd_vma) 3);
4874
4875 /* If we found a relocation, use the proper destination,
4876 not the offset in the (unrelocated) instruction.
4877 Note this is always done if we switched the stub type
4878 above. */
4879 if (found)
4880 offset =
4881 (bfd_signed_vma) (found->destination - pc_for_insn);
4882
4883 /* If the stub will use a Thumb-mode branch to a
4884 PLT target, redirect it to the preceding Thumb
4885 entry point. */
4886 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4887 offset -= PLT_THUMB_STUB_SIZE;
4888
4889 target = pc_for_insn + offset;
4890
4891 /* The BLX stub is ARM-mode code. Adjust the offset to
4892 take the different PC value (+8 instead of +4) into
4893 account. */
4894 if (stub_type == arm_stub_a8_veneer_blx)
4895 offset += 4;
4896
4897 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4898 {
4899 char *stub_name = NULL;
4900
4901 if (num_a8_fixes == a8_fix_table_size)
4902 {
4903 a8_fix_table_size *= 2;
4904 a8_fixes = (struct a8_erratum_fix *)
4905 bfd_realloc (a8_fixes,
4906 sizeof (struct a8_erratum_fix)
4907 * a8_fix_table_size);
4908 }
4909
4910 if (num_a8_fixes < prev_num_a8_fixes)
4911 {
4912 /* If we're doing a subsequent scan,
4913 check if we've found the same fix as
4914 before, and try and reuse the stub
4915 name. */
4916 stub_name = a8_fixes[num_a8_fixes].stub_name;
4917 if ((a8_fixes[num_a8_fixes].section != section)
4918 || (a8_fixes[num_a8_fixes].offset != i))
4919 {
4920 free (stub_name);
4921 stub_name = NULL;
4922 *stub_changed_p = TRUE;
4923 }
4924 }
4925
4926 if (!stub_name)
4927 {
4928 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4929 if (stub_name != NULL)
4930 sprintf (stub_name, "%x:%x", section->id, i);
4931 }
4932
4933 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4934 a8_fixes[num_a8_fixes].section = section;
4935 a8_fixes[num_a8_fixes].offset = i;
4936 a8_fixes[num_a8_fixes].addend = offset;
4937 a8_fixes[num_a8_fixes].orig_insn = insn;
4938 a8_fixes[num_a8_fixes].stub_name = stub_name;
4939 a8_fixes[num_a8_fixes].stub_type = stub_type;
4940 a8_fixes[num_a8_fixes].branch_type =
4941 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
4942
4943 num_a8_fixes++;
4944 }
4945 }
4946 }
4947
4948 i += insn_32bit ? 4 : 2;
4949 last_was_32bit = insn_32bit;
4950 last_was_branch = is_32bit_branch;
4951 }
4952 }
4953
4954 if (elf_section_data (section)->this_hdr.contents == NULL)
4955 free (contents);
4956 }
4957
4958 *a8_fixes_p = a8_fixes;
4959 *num_a8_fixes_p = num_a8_fixes;
4960 *a8_fix_table_size_p = a8_fix_table_size;
4961
4962 return FALSE;
4963 }
4964
4965 /* Determine and set the size of the stub section for a final link.
4966
4967 The basic idea here is to examine all the relocations looking for
4968 PC-relative calls to a target that is unreachable with a "bl"
4969 instruction. */
4970
4971 bfd_boolean
4972 elf32_arm_size_stubs (bfd *output_bfd,
4973 bfd *stub_bfd,
4974 struct bfd_link_info *info,
4975 bfd_signed_vma group_size,
4976 asection * (*add_stub_section) (const char *, asection *,
4977 unsigned int),
4978 void (*layout_sections_again) (void))
4979 {
4980 bfd_size_type stub_group_size;
4981 bfd_boolean stubs_always_after_branch;
4982 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4983 struct a8_erratum_fix *a8_fixes = NULL;
4984 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4985 struct a8_erratum_reloc *a8_relocs = NULL;
4986 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4987
4988 if (htab == NULL)
4989 return FALSE;
4990
4991 if (htab->fix_cortex_a8)
4992 {
4993 a8_fixes = (struct a8_erratum_fix *)
4994 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4995 a8_relocs = (struct a8_erratum_reloc *)
4996 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4997 }
4998
4999 /* Propagate mach to stub bfd, because it may not have been
5000 finalized when we created stub_bfd. */
5001 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
5002 bfd_get_mach (output_bfd));
5003
5004 /* Stash our params away. */
5005 htab->stub_bfd = stub_bfd;
5006 htab->add_stub_section = add_stub_section;
5007 htab->layout_sections_again = layout_sections_again;
5008 stubs_always_after_branch = group_size < 0;
5009
5010 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
5011 as the first half of a 32-bit branch straddling two 4K pages. This is a
5012 crude way of enforcing that. */
5013 if (htab->fix_cortex_a8)
5014 stubs_always_after_branch = 1;
5015
5016 if (group_size < 0)
5017 stub_group_size = -group_size;
5018 else
5019 stub_group_size = group_size;
5020
5021 if (stub_group_size == 1)
5022 {
5023 /* Default values. */
5024 /* Thumb branch range is +-4MB has to be used as the default
5025 maximum size (a given section can contain both ARM and Thumb
5026 code, so the worst case has to be taken into account).
5027
5028 This value is 24K less than that, which allows for 2025
5029 12-byte stubs. If we exceed that, then we will fail to link.
5030 The user will have to relink with an explicit group size
5031 option. */
5032 stub_group_size = 4170000;
5033 }
5034
5035 group_sections (htab, stub_group_size, stubs_always_after_branch);
5036
5037 /* If we're applying the cortex A8 fix, we need to determine the
5038 program header size now, because we cannot change it later --
5039 that could alter section placements. Notice the A8 erratum fix
5040 ends up requiring the section addresses to remain unchanged
5041 modulo the page size. That's something we cannot represent
5042 inside BFD, and we don't want to force the section alignment to
5043 be the page size. */
5044 if (htab->fix_cortex_a8)
5045 (*htab->layout_sections_again) ();
5046
5047 while (1)
5048 {
5049 bfd *input_bfd;
5050 unsigned int bfd_indx;
5051 asection *stub_sec;
5052 bfd_boolean stub_changed = FALSE;
5053 unsigned prev_num_a8_fixes = num_a8_fixes;
5054
5055 num_a8_fixes = 0;
5056 for (input_bfd = info->input_bfds, bfd_indx = 0;
5057 input_bfd != NULL;
5058 input_bfd = input_bfd->link.next, bfd_indx++)
5059 {
5060 Elf_Internal_Shdr *symtab_hdr;
5061 asection *section;
5062 Elf_Internal_Sym *local_syms = NULL;
5063
5064 if (!is_arm_elf (input_bfd))
5065 continue;
5066
5067 num_a8_relocs = 0;
5068
5069 /* We'll need the symbol table in a second. */
5070 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5071 if (symtab_hdr->sh_info == 0)
5072 continue;
5073
5074 /* Walk over each section attached to the input bfd. */
5075 for (section = input_bfd->sections;
5076 section != NULL;
5077 section = section->next)
5078 {
5079 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
5080
5081 /* If there aren't any relocs, then there's nothing more
5082 to do. */
5083 if ((section->flags & SEC_RELOC) == 0
5084 || section->reloc_count == 0
5085 || (section->flags & SEC_CODE) == 0)
5086 continue;
5087
5088 /* If this section is a link-once section that will be
5089 discarded, then don't create any stubs. */
5090 if (section->output_section == NULL
5091 || section->output_section->owner != output_bfd)
5092 continue;
5093
5094 /* Get the relocs. */
5095 internal_relocs
5096 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
5097 NULL, info->keep_memory);
5098 if (internal_relocs == NULL)
5099 goto error_ret_free_local;
5100
5101 /* Now examine each relocation. */
5102 irela = internal_relocs;
5103 irelaend = irela + section->reloc_count;
5104 for (; irela < irelaend; irela++)
5105 {
5106 unsigned int r_type, r_indx;
5107 enum elf32_arm_stub_type stub_type;
5108 struct elf32_arm_stub_hash_entry *stub_entry;
5109 asection *sym_sec;
5110 bfd_vma sym_value;
5111 bfd_vma destination;
5112 struct elf32_arm_link_hash_entry *hash;
5113 const char *sym_name;
5114 char *stub_name;
5115 const asection *id_sec;
5116 unsigned char st_type;
5117 enum arm_st_branch_type branch_type;
5118 bfd_boolean created_stub = FALSE;
5119
5120 r_type = ELF32_R_TYPE (irela->r_info);
5121 r_indx = ELF32_R_SYM (irela->r_info);
5122
5123 if (r_type >= (unsigned int) R_ARM_max)
5124 {
5125 bfd_set_error (bfd_error_bad_value);
5126 error_ret_free_internal:
5127 if (elf_section_data (section)->relocs == NULL)
5128 free (internal_relocs);
5129 goto error_ret_free_local;
5130 }
5131
5132 hash = NULL;
5133 if (r_indx >= symtab_hdr->sh_info)
5134 hash = elf32_arm_hash_entry
5135 (elf_sym_hashes (input_bfd)
5136 [r_indx - symtab_hdr->sh_info]);
5137
5138 /* Only look for stubs on branch instructions, or
5139 non-relaxed TLSCALL */
5140 if ((r_type != (unsigned int) R_ARM_CALL)
5141 && (r_type != (unsigned int) R_ARM_THM_CALL)
5142 && (r_type != (unsigned int) R_ARM_JUMP24)
5143 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5144 && (r_type != (unsigned int) R_ARM_THM_XPC22)
5145 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
5146 && (r_type != (unsigned int) R_ARM_PLT32)
5147 && !((r_type == (unsigned int) R_ARM_TLS_CALL
5148 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5149 && r_type == elf32_arm_tls_transition
5150 (info, r_type, &hash->root)
5151 && ((hash ? hash->tls_type
5152 : (elf32_arm_local_got_tls_type
5153 (input_bfd)[r_indx]))
5154 & GOT_TLS_GDESC) != 0))
5155 continue;
5156
5157 /* Now determine the call target, its name, value,
5158 section. */
5159 sym_sec = NULL;
5160 sym_value = 0;
5161 destination = 0;
5162 sym_name = NULL;
5163
5164 if (r_type == (unsigned int) R_ARM_TLS_CALL
5165 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5166 {
5167 /* A non-relaxed TLS call. The target is the
5168 plt-resident trampoline and nothing to do
5169 with the symbol. */
5170 BFD_ASSERT (htab->tls_trampoline > 0);
5171 sym_sec = htab->root.splt;
5172 sym_value = htab->tls_trampoline;
5173 hash = 0;
5174 st_type = STT_FUNC;
5175 branch_type = ST_BRANCH_TO_ARM;
5176 }
5177 else if (!hash)
5178 {
5179 /* It's a local symbol. */
5180 Elf_Internal_Sym *sym;
5181
5182 if (local_syms == NULL)
5183 {
5184 local_syms
5185 = (Elf_Internal_Sym *) symtab_hdr->contents;
5186 if (local_syms == NULL)
5187 local_syms
5188 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5189 symtab_hdr->sh_info, 0,
5190 NULL, NULL, NULL);
5191 if (local_syms == NULL)
5192 goto error_ret_free_internal;
5193 }
5194
5195 sym = local_syms + r_indx;
5196 if (sym->st_shndx == SHN_UNDEF)
5197 sym_sec = bfd_und_section_ptr;
5198 else if (sym->st_shndx == SHN_ABS)
5199 sym_sec = bfd_abs_section_ptr;
5200 else if (sym->st_shndx == SHN_COMMON)
5201 sym_sec = bfd_com_section_ptr;
5202 else
5203 sym_sec =
5204 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5205
5206 if (!sym_sec)
5207 /* This is an undefined symbol. It can never
5208 be resolved. */
5209 continue;
5210
5211 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5212 sym_value = sym->st_value;
5213 destination = (sym_value + irela->r_addend
5214 + sym_sec->output_offset
5215 + sym_sec->output_section->vma);
5216 st_type = ELF_ST_TYPE (sym->st_info);
5217 branch_type = ARM_SYM_BRANCH_TYPE (sym);
5218 sym_name
5219 = bfd_elf_string_from_elf_section (input_bfd,
5220 symtab_hdr->sh_link,
5221 sym->st_name);
5222 }
5223 else
5224 {
5225 /* It's an external symbol. */
5226 while (hash->root.root.type == bfd_link_hash_indirect
5227 || hash->root.root.type == bfd_link_hash_warning)
5228 hash = ((struct elf32_arm_link_hash_entry *)
5229 hash->root.root.u.i.link);
5230
5231 if (hash->root.root.type == bfd_link_hash_defined
5232 || hash->root.root.type == bfd_link_hash_defweak)
5233 {
5234 sym_sec = hash->root.root.u.def.section;
5235 sym_value = hash->root.root.u.def.value;
5236
5237 struct elf32_arm_link_hash_table *globals =
5238 elf32_arm_hash_table (info);
5239
5240 /* For a destination in a shared library,
5241 use the PLT stub as target address to
5242 decide whether a branch stub is
5243 needed. */
5244 if (globals != NULL
5245 && globals->root.splt != NULL
5246 && hash != NULL
5247 && hash->root.plt.offset != (bfd_vma) -1)
5248 {
5249 sym_sec = globals->root.splt;
5250 sym_value = hash->root.plt.offset;
5251 if (sym_sec->output_section != NULL)
5252 destination = (sym_value
5253 + sym_sec->output_offset
5254 + sym_sec->output_section->vma);
5255 }
5256 else if (sym_sec->output_section != NULL)
5257 destination = (sym_value + irela->r_addend
5258 + sym_sec->output_offset
5259 + sym_sec->output_section->vma);
5260 }
5261 else if ((hash->root.root.type == bfd_link_hash_undefined)
5262 || (hash->root.root.type == bfd_link_hash_undefweak))
5263 {
5264 /* For a shared library, use the PLT stub as
5265 target address to decide whether a long
5266 branch stub is needed.
5267 For absolute code, they cannot be handled. */
5268 struct elf32_arm_link_hash_table *globals =
5269 elf32_arm_hash_table (info);
5270
5271 if (globals != NULL
5272 && globals->root.splt != NULL
5273 && hash != NULL
5274 && hash->root.plt.offset != (bfd_vma) -1)
5275 {
5276 sym_sec = globals->root.splt;
5277 sym_value = hash->root.plt.offset;
5278 if (sym_sec->output_section != NULL)
5279 destination = (sym_value
5280 + sym_sec->output_offset
5281 + sym_sec->output_section->vma);
5282 }
5283 else
5284 continue;
5285 }
5286 else
5287 {
5288 bfd_set_error (bfd_error_bad_value);
5289 goto error_ret_free_internal;
5290 }
5291 st_type = hash->root.type;
5292 branch_type = hash->root.target_internal;
5293 sym_name = hash->root.root.root.string;
5294 }
5295
5296 do
5297 {
5298 /* Determine what (if any) linker stub is needed. */
5299 stub_type = arm_type_of_stub (info, section, irela,
5300 st_type, &branch_type,
5301 hash, destination, sym_sec,
5302 input_bfd, sym_name);
5303 if (stub_type == arm_stub_none)
5304 break;
5305
5306 /* Support for grouping stub sections. */
5307 id_sec = htab->stub_group[section->id].link_sec;
5308
5309 /* Get the name of this stub. */
5310 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5311 irela, stub_type);
5312 if (!stub_name)
5313 goto error_ret_free_internal;
5314
5315 /* We've either created a stub for this reloc already,
5316 or we are about to. */
5317 created_stub = TRUE;
5318
5319 stub_entry = arm_stub_hash_lookup
5320 (&htab->stub_hash_table, stub_name,
5321 FALSE, FALSE);
5322 if (stub_entry != NULL)
5323 {
5324 /* The proper stub has already been created. */
5325 free (stub_name);
5326 stub_entry->target_value = sym_value;
5327 break;
5328 }
5329
5330 stub_entry = elf32_arm_add_stub (stub_name, section,
5331 htab);
5332 if (stub_entry == NULL)
5333 {
5334 free (stub_name);
5335 goto error_ret_free_internal;
5336 }
5337
5338 stub_entry->target_value = sym_value;
5339 stub_entry->target_section = sym_sec;
5340 stub_entry->stub_type = stub_type;
5341 stub_entry->h = hash;
5342 stub_entry->branch_type = branch_type;
5343
5344 if (sym_name == NULL)
5345 sym_name = "unnamed";
5346 stub_entry->output_name = (char *)
5347 bfd_alloc (htab->stub_bfd,
5348 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5349 + strlen (sym_name));
5350 if (stub_entry->output_name == NULL)
5351 {
5352 free (stub_name);
5353 goto error_ret_free_internal;
5354 }
5355
5356 /* For historical reasons, use the existing names for
5357 ARM-to-Thumb and Thumb-to-ARM stubs. */
5358 if ((r_type == (unsigned int) R_ARM_THM_CALL
5359 || r_type == (unsigned int) R_ARM_THM_JUMP24
5360 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5361 && branch_type == ST_BRANCH_TO_ARM)
5362 sprintf (stub_entry->output_name,
5363 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5364 else if ((r_type == (unsigned int) R_ARM_CALL
5365 || r_type == (unsigned int) R_ARM_JUMP24)
5366 && branch_type == ST_BRANCH_TO_THUMB)
5367 sprintf (stub_entry->output_name,
5368 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5369 else
5370 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5371 sym_name);
5372
5373 stub_changed = TRUE;
5374 }
5375 while (0);
5376
5377 /* Look for relocations which might trigger Cortex-A8
5378 erratum. */
5379 if (htab->fix_cortex_a8
5380 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5381 || r_type == (unsigned int) R_ARM_THM_JUMP19
5382 || r_type == (unsigned int) R_ARM_THM_CALL
5383 || r_type == (unsigned int) R_ARM_THM_XPC22))
5384 {
5385 bfd_vma from = section->output_section->vma
5386 + section->output_offset
5387 + irela->r_offset;
5388
5389 if ((from & 0xfff) == 0xffe)
5390 {
5391 /* Found a candidate. Note we haven't checked the
5392 destination is within 4K here: if we do so (and
5393 don't create an entry in a8_relocs) we can't tell
5394 that a branch should have been relocated when
5395 scanning later. */
5396 if (num_a8_relocs == a8_reloc_table_size)
5397 {
5398 a8_reloc_table_size *= 2;
5399 a8_relocs = (struct a8_erratum_reloc *)
5400 bfd_realloc (a8_relocs,
5401 sizeof (struct a8_erratum_reloc)
5402 * a8_reloc_table_size);
5403 }
5404
5405 a8_relocs[num_a8_relocs].from = from;
5406 a8_relocs[num_a8_relocs].destination = destination;
5407 a8_relocs[num_a8_relocs].r_type = r_type;
5408 a8_relocs[num_a8_relocs].branch_type = branch_type;
5409 a8_relocs[num_a8_relocs].sym_name = sym_name;
5410 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5411 a8_relocs[num_a8_relocs].hash = hash;
5412
5413 num_a8_relocs++;
5414 }
5415 }
5416 }
5417
5418 /* We're done with the internal relocs, free them. */
5419 if (elf_section_data (section)->relocs == NULL)
5420 free (internal_relocs);
5421 }
5422
5423 if (htab->fix_cortex_a8)
5424 {
5425 /* Sort relocs which might apply to Cortex-A8 erratum. */
5426 qsort (a8_relocs, num_a8_relocs,
5427 sizeof (struct a8_erratum_reloc),
5428 &a8_reloc_compare);
5429
5430 /* Scan for branches which might trigger Cortex-A8 erratum. */
5431 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5432 &num_a8_fixes, &a8_fix_table_size,
5433 a8_relocs, num_a8_relocs,
5434 prev_num_a8_fixes, &stub_changed)
5435 != 0)
5436 goto error_ret_free_local;
5437 }
5438 }
5439
5440 if (prev_num_a8_fixes != num_a8_fixes)
5441 stub_changed = TRUE;
5442
5443 if (!stub_changed)
5444 break;
5445
5446 /* OK, we've added some stubs. Find out the new size of the
5447 stub sections. */
5448 for (stub_sec = htab->stub_bfd->sections;
5449 stub_sec != NULL;
5450 stub_sec = stub_sec->next)
5451 {
5452 /* Ignore non-stub sections. */
5453 if (!strstr (stub_sec->name, STUB_SUFFIX))
5454 continue;
5455
5456 stub_sec->size = 0;
5457 }
5458
5459 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5460
5461 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5462 if (htab->fix_cortex_a8)
5463 for (i = 0; i < num_a8_fixes; i++)
5464 {
5465 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5466 a8_fixes[i].section, htab);
5467
5468 if (stub_sec == NULL)
5469 goto error_ret_free_local;
5470
5471 stub_sec->size
5472 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5473 NULL);
5474 }
5475
5476
5477 /* Ask the linker to do its stuff. */
5478 (*htab->layout_sections_again) ();
5479 }
5480
5481 /* Add stubs for Cortex-A8 erratum fixes now. */
5482 if (htab->fix_cortex_a8)
5483 {
5484 for (i = 0; i < num_a8_fixes; i++)
5485 {
5486 struct elf32_arm_stub_hash_entry *stub_entry;
5487 char *stub_name = a8_fixes[i].stub_name;
5488 asection *section = a8_fixes[i].section;
5489 unsigned int section_id = a8_fixes[i].section->id;
5490 asection *link_sec = htab->stub_group[section_id].link_sec;
5491 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5492 const insn_sequence *template_sequence;
5493 int template_size, size = 0;
5494
5495 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5496 TRUE, FALSE);
5497 if (stub_entry == NULL)
5498 {
5499 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5500 section->owner,
5501 stub_name);
5502 return FALSE;
5503 }
5504
5505 stub_entry->stub_sec = stub_sec;
5506 stub_entry->stub_offset = 0;
5507 stub_entry->id_sec = link_sec;
5508 stub_entry->stub_type = a8_fixes[i].stub_type;
5509 stub_entry->target_section = a8_fixes[i].section;
5510 stub_entry->target_value = a8_fixes[i].offset;
5511 stub_entry->target_addend = a8_fixes[i].addend;
5512 stub_entry->orig_insn = a8_fixes[i].orig_insn;
5513 stub_entry->branch_type = a8_fixes[i].branch_type;
5514
5515 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5516 &template_sequence,
5517 &template_size);
5518
5519 stub_entry->stub_size = size;
5520 stub_entry->stub_template = template_sequence;
5521 stub_entry->stub_template_size = template_size;
5522 }
5523
5524 /* Stash the Cortex-A8 erratum fix array for use later in
5525 elf32_arm_write_section(). */
5526 htab->a8_erratum_fixes = a8_fixes;
5527 htab->num_a8_erratum_fixes = num_a8_fixes;
5528 }
5529 else
5530 {
5531 htab->a8_erratum_fixes = NULL;
5532 htab->num_a8_erratum_fixes = 0;
5533 }
5534 return TRUE;
5535
5536 error_ret_free_local:
5537 return FALSE;
5538 }
5539
5540 /* Build all the stubs associated with the current output file. The
5541 stubs are kept in a hash table attached to the main linker hash
5542 table. We also set up the .plt entries for statically linked PIC
5543 functions here. This function is called via arm_elf_finish in the
5544 linker. */
5545
5546 bfd_boolean
5547 elf32_arm_build_stubs (struct bfd_link_info *info)
5548 {
5549 asection *stub_sec;
5550 struct bfd_hash_table *table;
5551 struct elf32_arm_link_hash_table *htab;
5552
5553 htab = elf32_arm_hash_table (info);
5554 if (htab == NULL)
5555 return FALSE;
5556
5557 for (stub_sec = htab->stub_bfd->sections;
5558 stub_sec != NULL;
5559 stub_sec = stub_sec->next)
5560 {
5561 bfd_size_type size;
5562
5563 /* Ignore non-stub sections. */
5564 if (!strstr (stub_sec->name, STUB_SUFFIX))
5565 continue;
5566
5567 /* Allocate memory to hold the linker stubs. */
5568 size = stub_sec->size;
5569 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5570 if (stub_sec->contents == NULL && size != 0)
5571 return FALSE;
5572 stub_sec->size = 0;
5573 }
5574
5575 /* Build the stubs as directed by the stub hash table. */
5576 table = &htab->stub_hash_table;
5577 bfd_hash_traverse (table, arm_build_one_stub, info);
5578 if (htab->fix_cortex_a8)
5579 {
5580 /* Place the cortex a8 stubs last. */
5581 htab->fix_cortex_a8 = -1;
5582 bfd_hash_traverse (table, arm_build_one_stub, info);
5583 }
5584
5585 return TRUE;
5586 }
5587
5588 /* Locate the Thumb encoded calling stub for NAME. */
5589
5590 static struct elf_link_hash_entry *
5591 find_thumb_glue (struct bfd_link_info *link_info,
5592 const char *name,
5593 char **error_message)
5594 {
5595 char *tmp_name;
5596 struct elf_link_hash_entry *hash;
5597 struct elf32_arm_link_hash_table *hash_table;
5598
5599 /* We need a pointer to the armelf specific hash table. */
5600 hash_table = elf32_arm_hash_table (link_info);
5601 if (hash_table == NULL)
5602 return NULL;
5603
5604 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5605 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5606
5607 BFD_ASSERT (tmp_name);
5608
5609 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5610
5611 hash = elf_link_hash_lookup
5612 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5613
5614 if (hash == NULL
5615 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5616 tmp_name, name) == -1)
5617 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5618
5619 free (tmp_name);
5620
5621 return hash;
5622 }
5623
5624 /* Locate the ARM encoded calling stub for NAME. */
5625
5626 static struct elf_link_hash_entry *
5627 find_arm_glue (struct bfd_link_info *link_info,
5628 const char *name,
5629 char **error_message)
5630 {
5631 char *tmp_name;
5632 struct elf_link_hash_entry *myh;
5633 struct elf32_arm_link_hash_table *hash_table;
5634
5635 /* We need a pointer to the elfarm specific hash table. */
5636 hash_table = elf32_arm_hash_table (link_info);
5637 if (hash_table == NULL)
5638 return NULL;
5639
5640 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5641 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5642
5643 BFD_ASSERT (tmp_name);
5644
5645 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5646
5647 myh = elf_link_hash_lookup
5648 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5649
5650 if (myh == NULL
5651 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5652 tmp_name, name) == -1)
5653 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5654
5655 free (tmp_name);
5656
5657 return myh;
5658 }
5659
5660 /* ARM->Thumb glue (static images):
5661
5662 .arm
5663 __func_from_arm:
5664 ldr r12, __func_addr
5665 bx r12
5666 __func_addr:
5667 .word func @ behave as if you saw a ARM_32 reloc.
5668
5669 (v5t static images)
5670 .arm
5671 __func_from_arm:
5672 ldr pc, __func_addr
5673 __func_addr:
5674 .word func @ behave as if you saw a ARM_32 reloc.
5675
5676 (relocatable images)
5677 .arm
5678 __func_from_arm:
5679 ldr r12, __func_offset
5680 add r12, r12, pc
5681 bx r12
5682 __func_offset:
5683 .word func - . */
5684
5685 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5686 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5687 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5688 static const insn32 a2t3_func_addr_insn = 0x00000001;
5689
5690 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5691 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5692 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5693
5694 #define ARM2THUMB_PIC_GLUE_SIZE 16
5695 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5696 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5697 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5698
5699 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5700
5701 .thumb .thumb
5702 .align 2 .align 2
5703 __func_from_thumb: __func_from_thumb:
5704 bx pc push {r6, lr}
5705 nop ldr r6, __func_addr
5706 .arm mov lr, pc
5707 b func bx r6
5708 .arm
5709 ;; back_to_thumb
5710 ldmia r13! {r6, lr}
5711 bx lr
5712 __func_addr:
5713 .word func */
5714
5715 #define THUMB2ARM_GLUE_SIZE 8
5716 static const insn16 t2a1_bx_pc_insn = 0x4778;
5717 static const insn16 t2a2_noop_insn = 0x46c0;
5718 static const insn32 t2a3_b_insn = 0xea000000;
5719
5720 #define VFP11_ERRATUM_VENEER_SIZE 8
5721
5722 #define ARM_BX_VENEER_SIZE 12
5723 static const insn32 armbx1_tst_insn = 0xe3100001;
5724 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5725 static const insn32 armbx3_bx_insn = 0xe12fff10;
5726
5727 #ifndef ELFARM_NABI_C_INCLUDED
5728 static void
5729 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5730 {
5731 asection * s;
5732 bfd_byte * contents;
5733
5734 if (size == 0)
5735 {
5736 /* Do not include empty glue sections in the output. */
5737 if (abfd != NULL)
5738 {
5739 s = bfd_get_linker_section (abfd, name);
5740 if (s != NULL)
5741 s->flags |= SEC_EXCLUDE;
5742 }
5743 return;
5744 }
5745
5746 BFD_ASSERT (abfd != NULL);
5747
5748 s = bfd_get_linker_section (abfd, name);
5749 BFD_ASSERT (s != NULL);
5750
5751 contents = (bfd_byte *) bfd_alloc (abfd, size);
5752
5753 BFD_ASSERT (s->size == size);
5754 s->contents = contents;
5755 }
5756
5757 bfd_boolean
5758 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5759 {
5760 struct elf32_arm_link_hash_table * globals;
5761
5762 globals = elf32_arm_hash_table (info);
5763 BFD_ASSERT (globals != NULL);
5764
5765 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5766 globals->arm_glue_size,
5767 ARM2THUMB_GLUE_SECTION_NAME);
5768
5769 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5770 globals->thumb_glue_size,
5771 THUMB2ARM_GLUE_SECTION_NAME);
5772
5773 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5774 globals->vfp11_erratum_glue_size,
5775 VFP11_ERRATUM_VENEER_SECTION_NAME);
5776
5777 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5778 globals->bx_glue_size,
5779 ARM_BX_GLUE_SECTION_NAME);
5780
5781 return TRUE;
5782 }
5783
5784 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5785 returns the symbol identifying the stub. */
5786
5787 static struct elf_link_hash_entry *
5788 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5789 struct elf_link_hash_entry * h)
5790 {
5791 const char * name = h->root.root.string;
5792 asection * s;
5793 char * tmp_name;
5794 struct elf_link_hash_entry * myh;
5795 struct bfd_link_hash_entry * bh;
5796 struct elf32_arm_link_hash_table * globals;
5797 bfd_vma val;
5798 bfd_size_type size;
5799
5800 globals = elf32_arm_hash_table (link_info);
5801 BFD_ASSERT (globals != NULL);
5802 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5803
5804 s = bfd_get_linker_section
5805 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5806
5807 BFD_ASSERT (s != NULL);
5808
5809 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5810 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5811
5812 BFD_ASSERT (tmp_name);
5813
5814 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5815
5816 myh = elf_link_hash_lookup
5817 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5818
5819 if (myh != NULL)
5820 {
5821 /* We've already seen this guy. */
5822 free (tmp_name);
5823 return myh;
5824 }
5825
5826 /* The only trick here is using hash_table->arm_glue_size as the value.
5827 Even though the section isn't allocated yet, this is where we will be
5828 putting it. The +1 on the value marks that the stub has not been
5829 output yet - not that it is a Thumb function. */
5830 bh = NULL;
5831 val = globals->arm_glue_size + 1;
5832 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5833 tmp_name, BSF_GLOBAL, s, val,
5834 NULL, TRUE, FALSE, &bh);
5835
5836 myh = (struct elf_link_hash_entry *) bh;
5837 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5838 myh->forced_local = 1;
5839
5840 free (tmp_name);
5841
5842 if (bfd_link_pic (link_info)
5843 || globals->root.is_relocatable_executable
5844 || globals->pic_veneer)
5845 size = ARM2THUMB_PIC_GLUE_SIZE;
5846 else if (globals->use_blx)
5847 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5848 else
5849 size = ARM2THUMB_STATIC_GLUE_SIZE;
5850
5851 s->size += size;
5852 globals->arm_glue_size += size;
5853
5854 return myh;
5855 }
5856
5857 /* Allocate space for ARMv4 BX veneers. */
5858
5859 static void
5860 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5861 {
5862 asection * s;
5863 struct elf32_arm_link_hash_table *globals;
5864 char *tmp_name;
5865 struct elf_link_hash_entry *myh;
5866 struct bfd_link_hash_entry *bh;
5867 bfd_vma val;
5868
5869 /* BX PC does not need a veneer. */
5870 if (reg == 15)
5871 return;
5872
5873 globals = elf32_arm_hash_table (link_info);
5874 BFD_ASSERT (globals != NULL);
5875 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5876
5877 /* Check if this veneer has already been allocated. */
5878 if (globals->bx_glue_offset[reg])
5879 return;
5880
5881 s = bfd_get_linker_section
5882 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5883
5884 BFD_ASSERT (s != NULL);
5885
5886 /* Add symbol for veneer. */
5887 tmp_name = (char *)
5888 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5889
5890 BFD_ASSERT (tmp_name);
5891
5892 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5893
5894 myh = elf_link_hash_lookup
5895 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5896
5897 BFD_ASSERT (myh == NULL);
5898
5899 bh = NULL;
5900 val = globals->bx_glue_size;
5901 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5902 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5903 NULL, TRUE, FALSE, &bh);
5904
5905 myh = (struct elf_link_hash_entry *) bh;
5906 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5907 myh->forced_local = 1;
5908
5909 s->size += ARM_BX_VENEER_SIZE;
5910 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5911 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5912 }
5913
5914
5915 /* Add an entry to the code/data map for section SEC. */
5916
5917 static void
5918 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5919 {
5920 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5921 unsigned int newidx;
5922
5923 if (sec_data->map == NULL)
5924 {
5925 sec_data->map = (elf32_arm_section_map *)
5926 bfd_malloc (sizeof (elf32_arm_section_map));
5927 sec_data->mapcount = 0;
5928 sec_data->mapsize = 1;
5929 }
5930
5931 newidx = sec_data->mapcount++;
5932
5933 if (sec_data->mapcount > sec_data->mapsize)
5934 {
5935 sec_data->mapsize *= 2;
5936 sec_data->map = (elf32_arm_section_map *)
5937 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5938 * sizeof (elf32_arm_section_map));
5939 }
5940
5941 if (sec_data->map)
5942 {
5943 sec_data->map[newidx].vma = vma;
5944 sec_data->map[newidx].type = type;
5945 }
5946 }
5947
5948
5949 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5950 veneers are handled for now. */
5951
5952 static bfd_vma
5953 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5954 elf32_vfp11_erratum_list *branch,
5955 bfd *branch_bfd,
5956 asection *branch_sec,
5957 unsigned int offset)
5958 {
5959 asection *s;
5960 struct elf32_arm_link_hash_table *hash_table;
5961 char *tmp_name;
5962 struct elf_link_hash_entry *myh;
5963 struct bfd_link_hash_entry *bh;
5964 bfd_vma val;
5965 struct _arm_elf_section_data *sec_data;
5966 elf32_vfp11_erratum_list *newerr;
5967
5968 hash_table = elf32_arm_hash_table (link_info);
5969 BFD_ASSERT (hash_table != NULL);
5970 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5971
5972 s = bfd_get_linker_section
5973 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5974
5975 sec_data = elf32_arm_section_data (s);
5976
5977 BFD_ASSERT (s != NULL);
5978
5979 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5980 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5981
5982 BFD_ASSERT (tmp_name);
5983
5984 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5985 hash_table->num_vfp11_fixes);
5986
5987 myh = elf_link_hash_lookup
5988 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5989
5990 BFD_ASSERT (myh == NULL);
5991
5992 bh = NULL;
5993 val = hash_table->vfp11_erratum_glue_size;
5994 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5995 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5996 NULL, TRUE, FALSE, &bh);
5997
5998 myh = (struct elf_link_hash_entry *) bh;
5999 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6000 myh->forced_local = 1;
6001
6002 /* Link veneer back to calling location. */
6003 sec_data->erratumcount += 1;
6004 newerr = (elf32_vfp11_erratum_list *)
6005 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6006
6007 newerr->type = VFP11_ERRATUM_ARM_VENEER;
6008 newerr->vma = -1;
6009 newerr->u.v.branch = branch;
6010 newerr->u.v.id = hash_table->num_vfp11_fixes;
6011 branch->u.b.veneer = newerr;
6012
6013 newerr->next = sec_data->erratumlist;
6014 sec_data->erratumlist = newerr;
6015
6016 /* A symbol for the return from the veneer. */
6017 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6018 hash_table->num_vfp11_fixes);
6019
6020 myh = elf_link_hash_lookup
6021 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6022
6023 if (myh != NULL)
6024 abort ();
6025
6026 bh = NULL;
6027 val = offset + 4;
6028 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
6029 branch_sec, val, NULL, TRUE, FALSE, &bh);
6030
6031 myh = (struct elf_link_hash_entry *) bh;
6032 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6033 myh->forced_local = 1;
6034
6035 free (tmp_name);
6036
6037 /* Generate a mapping symbol for the veneer section, and explicitly add an
6038 entry for that symbol to the code/data map for the section. */
6039 if (hash_table->vfp11_erratum_glue_size == 0)
6040 {
6041 bh = NULL;
6042 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
6043 ever requires this erratum fix. */
6044 _bfd_generic_link_add_one_symbol (link_info,
6045 hash_table->bfd_of_glue_owner, "$a",
6046 BSF_LOCAL, s, 0, NULL,
6047 TRUE, FALSE, &bh);
6048
6049 myh = (struct elf_link_hash_entry *) bh;
6050 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
6051 myh->forced_local = 1;
6052
6053 /* The elf32_arm_init_maps function only cares about symbols from input
6054 BFDs. We must make a note of this generated mapping symbol
6055 ourselves so that code byteswapping works properly in
6056 elf32_arm_write_section. */
6057 elf32_arm_section_map_add (s, 'a', 0);
6058 }
6059
6060 s->size += VFP11_ERRATUM_VENEER_SIZE;
6061 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
6062 hash_table->num_vfp11_fixes++;
6063
6064 /* The offset of the veneer. */
6065 return val;
6066 }
6067
6068 #define ARM_GLUE_SECTION_FLAGS \
6069 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
6070 | SEC_READONLY | SEC_LINKER_CREATED)
6071
6072 /* Create a fake section for use by the ARM backend of the linker. */
6073
6074 static bfd_boolean
6075 arm_make_glue_section (bfd * abfd, const char * name)
6076 {
6077 asection * sec;
6078
6079 sec = bfd_get_linker_section (abfd, name);
6080 if (sec != NULL)
6081 /* Already made. */
6082 return TRUE;
6083
6084 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
6085
6086 if (sec == NULL
6087 || !bfd_set_section_alignment (abfd, sec, 2))
6088 return FALSE;
6089
6090 /* Set the gc mark to prevent the section from being removed by garbage
6091 collection, despite the fact that no relocs refer to this section. */
6092 sec->gc_mark = 1;
6093
6094 return TRUE;
6095 }
6096
6097 /* Set size of .plt entries. This function is called from the
6098 linker scripts in ld/emultempl/{armelf}.em. */
6099
6100 void
6101 bfd_elf32_arm_use_long_plt (void)
6102 {
6103 elf32_arm_use_long_plt_entry = TRUE;
6104 }
6105
6106 /* Add the glue sections to ABFD. This function is called from the
6107 linker scripts in ld/emultempl/{armelf}.em. */
6108
6109 bfd_boolean
6110 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
6111 struct bfd_link_info *info)
6112 {
6113 /* If we are only performing a partial
6114 link do not bother adding the glue. */
6115 if (bfd_link_relocatable (info))
6116 return TRUE;
6117
6118 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
6119 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
6120 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
6121 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
6122 }
6123
6124 /* Select a BFD to be used to hold the sections used by the glue code.
6125 This function is called from the linker scripts in ld/emultempl/
6126 {armelf/pe}.em. */
6127
6128 bfd_boolean
6129 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
6130 {
6131 struct elf32_arm_link_hash_table *globals;
6132
6133 /* If we are only performing a partial link
6134 do not bother getting a bfd to hold the glue. */
6135 if (bfd_link_relocatable (info))
6136 return TRUE;
6137
6138 /* Make sure we don't attach the glue sections to a dynamic object. */
6139 BFD_ASSERT (!(abfd->flags & DYNAMIC));
6140
6141 globals = elf32_arm_hash_table (info);
6142 BFD_ASSERT (globals != NULL);
6143
6144 if (globals->bfd_of_glue_owner != NULL)
6145 return TRUE;
6146
6147 /* Save the bfd for later use. */
6148 globals->bfd_of_glue_owner = abfd;
6149
6150 return TRUE;
6151 }
6152
6153 static void
6154 check_use_blx (struct elf32_arm_link_hash_table *globals)
6155 {
6156 int cpu_arch;
6157
6158 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
6159 Tag_CPU_arch);
6160
6161 if (globals->fix_arm1176)
6162 {
6163 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6164 globals->use_blx = 1;
6165 }
6166 else
6167 {
6168 if (cpu_arch > TAG_CPU_ARCH_V4T)
6169 globals->use_blx = 1;
6170 }
6171 }
6172
6173 bfd_boolean
6174 bfd_elf32_arm_process_before_allocation (bfd *abfd,
6175 struct bfd_link_info *link_info)
6176 {
6177 Elf_Internal_Shdr *symtab_hdr;
6178 Elf_Internal_Rela *internal_relocs = NULL;
6179 Elf_Internal_Rela *irel, *irelend;
6180 bfd_byte *contents = NULL;
6181
6182 asection *sec;
6183 struct elf32_arm_link_hash_table *globals;
6184
6185 /* If we are only performing a partial link do not bother
6186 to construct any glue. */
6187 if (bfd_link_relocatable (link_info))
6188 return TRUE;
6189
6190 /* Here we have a bfd that is to be included on the link. We have a
6191 hook to do reloc rummaging, before section sizes are nailed down. */
6192 globals = elf32_arm_hash_table (link_info);
6193 BFD_ASSERT (globals != NULL);
6194
6195 check_use_blx (globals);
6196
6197 if (globals->byteswap_code && !bfd_big_endian (abfd))
6198 {
6199 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6200 abfd);
6201 return FALSE;
6202 }
6203
6204 /* PR 5398: If we have not decided to include any loadable sections in
6205 the output then we will not have a glue owner bfd. This is OK, it
6206 just means that there is nothing else for us to do here. */
6207 if (globals->bfd_of_glue_owner == NULL)
6208 return TRUE;
6209
6210 /* Rummage around all the relocs and map the glue vectors. */
6211 sec = abfd->sections;
6212
6213 if (sec == NULL)
6214 return TRUE;
6215
6216 for (; sec != NULL; sec = sec->next)
6217 {
6218 if (sec->reloc_count == 0)
6219 continue;
6220
6221 if ((sec->flags & SEC_EXCLUDE) != 0)
6222 continue;
6223
6224 symtab_hdr = & elf_symtab_hdr (abfd);
6225
6226 /* Load the relocs. */
6227 internal_relocs
6228 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6229
6230 if (internal_relocs == NULL)
6231 goto error_return;
6232
6233 irelend = internal_relocs + sec->reloc_count;
6234 for (irel = internal_relocs; irel < irelend; irel++)
6235 {
6236 long r_type;
6237 unsigned long r_index;
6238
6239 struct elf_link_hash_entry *h;
6240
6241 r_type = ELF32_R_TYPE (irel->r_info);
6242 r_index = ELF32_R_SYM (irel->r_info);
6243
6244 /* These are the only relocation types we care about. */
6245 if ( r_type != R_ARM_PC24
6246 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6247 continue;
6248
6249 /* Get the section contents if we haven't done so already. */
6250 if (contents == NULL)
6251 {
6252 /* Get cached copy if it exists. */
6253 if (elf_section_data (sec)->this_hdr.contents != NULL)
6254 contents = elf_section_data (sec)->this_hdr.contents;
6255 else
6256 {
6257 /* Go get them off disk. */
6258 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6259 goto error_return;
6260 }
6261 }
6262
6263 if (r_type == R_ARM_V4BX)
6264 {
6265 int reg;
6266
6267 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6268 record_arm_bx_glue (link_info, reg);
6269 continue;
6270 }
6271
6272 /* If the relocation is not against a symbol it cannot concern us. */
6273 h = NULL;
6274
6275 /* We don't care about local symbols. */
6276 if (r_index < symtab_hdr->sh_info)
6277 continue;
6278
6279 /* This is an external symbol. */
6280 r_index -= symtab_hdr->sh_info;
6281 h = (struct elf_link_hash_entry *)
6282 elf_sym_hashes (abfd)[r_index];
6283
6284 /* If the relocation is against a static symbol it must be within
6285 the current section and so cannot be a cross ARM/Thumb relocation. */
6286 if (h == NULL)
6287 continue;
6288
6289 /* If the call will go through a PLT entry then we do not need
6290 glue. */
6291 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6292 continue;
6293
6294 switch (r_type)
6295 {
6296 case R_ARM_PC24:
6297 /* This one is a call from arm code. We need to look up
6298 the target of the call. If it is a thumb target, we
6299 insert glue. */
6300 if (h->target_internal == ST_BRANCH_TO_THUMB)
6301 record_arm_to_thumb_glue (link_info, h);
6302 break;
6303
6304 default:
6305 abort ();
6306 }
6307 }
6308
6309 if (contents != NULL
6310 && elf_section_data (sec)->this_hdr.contents != contents)
6311 free (contents);
6312 contents = NULL;
6313
6314 if (internal_relocs != NULL
6315 && elf_section_data (sec)->relocs != internal_relocs)
6316 free (internal_relocs);
6317 internal_relocs = NULL;
6318 }
6319
6320 return TRUE;
6321
6322 error_return:
6323 if (contents != NULL
6324 && elf_section_data (sec)->this_hdr.contents != contents)
6325 free (contents);
6326 if (internal_relocs != NULL
6327 && elf_section_data (sec)->relocs != internal_relocs)
6328 free (internal_relocs);
6329
6330 return FALSE;
6331 }
6332 #endif
6333
6334
6335 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6336
6337 void
6338 bfd_elf32_arm_init_maps (bfd *abfd)
6339 {
6340 Elf_Internal_Sym *isymbuf;
6341 Elf_Internal_Shdr *hdr;
6342 unsigned int i, localsyms;
6343
6344 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6345 if (! is_arm_elf (abfd))
6346 return;
6347
6348 if ((abfd->flags & DYNAMIC) != 0)
6349 return;
6350
6351 hdr = & elf_symtab_hdr (abfd);
6352 localsyms = hdr->sh_info;
6353
6354 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6355 should contain the number of local symbols, which should come before any
6356 global symbols. Mapping symbols are always local. */
6357 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6358 NULL);
6359
6360 /* No internal symbols read? Skip this BFD. */
6361 if (isymbuf == NULL)
6362 return;
6363
6364 for (i = 0; i < localsyms; i++)
6365 {
6366 Elf_Internal_Sym *isym = &isymbuf[i];
6367 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6368 const char *name;
6369
6370 if (sec != NULL
6371 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6372 {
6373 name = bfd_elf_string_from_elf_section (abfd,
6374 hdr->sh_link, isym->st_name);
6375
6376 if (bfd_is_arm_special_symbol_name (name,
6377 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6378 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6379 }
6380 }
6381 }
6382
6383
6384 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6385 say what they wanted. */
6386
6387 void
6388 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6389 {
6390 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6391 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6392
6393 if (globals == NULL)
6394 return;
6395
6396 if (globals->fix_cortex_a8 == -1)
6397 {
6398 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6399 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6400 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6401 || out_attr[Tag_CPU_arch_profile].i == 0))
6402 globals->fix_cortex_a8 = 1;
6403 else
6404 globals->fix_cortex_a8 = 0;
6405 }
6406 }
6407
6408
6409 void
6410 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6411 {
6412 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6413 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6414
6415 if (globals == NULL)
6416 return;
6417 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6418 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6419 {
6420 switch (globals->vfp11_fix)
6421 {
6422 case BFD_ARM_VFP11_FIX_DEFAULT:
6423 case BFD_ARM_VFP11_FIX_NONE:
6424 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6425 break;
6426
6427 default:
6428 /* Give a warning, but do as the user requests anyway. */
6429 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6430 "workaround is not necessary for target architecture"), obfd);
6431 }
6432 }
6433 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6434 /* For earlier architectures, we might need the workaround, but do not
6435 enable it by default. If users is running with broken hardware, they
6436 must enable the erratum fix explicitly. */
6437 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6438 }
6439
6440
6441 enum bfd_arm_vfp11_pipe
6442 {
6443 VFP11_FMAC,
6444 VFP11_LS,
6445 VFP11_DS,
6446 VFP11_BAD
6447 };
6448
6449 /* Return a VFP register number. This is encoded as RX:X for single-precision
6450 registers, or X:RX for double-precision registers, where RX is the group of
6451 four bits in the instruction encoding and X is the single extension bit.
6452 RX and X fields are specified using their lowest (starting) bit. The return
6453 value is:
6454
6455 0...31: single-precision registers s0...s31
6456 32...63: double-precision registers d0...d31.
6457
6458 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6459 encounter VFP3 instructions, so we allow the full range for DP registers. */
6460
6461 static unsigned int
6462 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6463 unsigned int x)
6464 {
6465 if (is_double)
6466 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6467 else
6468 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6469 }
6470
6471 /* Set bits in *WMASK according to a register number REG as encoded by
6472 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6473
6474 static void
6475 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6476 {
6477 if (reg < 32)
6478 *wmask |= 1 << reg;
6479 else if (reg < 48)
6480 *wmask |= 3 << ((reg - 32) * 2);
6481 }
6482
6483 /* Return TRUE if WMASK overwrites anything in REGS. */
6484
6485 static bfd_boolean
6486 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6487 {
6488 int i;
6489
6490 for (i = 0; i < numregs; i++)
6491 {
6492 unsigned int reg = regs[i];
6493
6494 if (reg < 32 && (wmask & (1 << reg)) != 0)
6495 return TRUE;
6496
6497 reg -= 32;
6498
6499 if (reg >= 16)
6500 continue;
6501
6502 if ((wmask & (3 << (reg * 2))) != 0)
6503 return TRUE;
6504 }
6505
6506 return FALSE;
6507 }
6508
6509 /* In this function, we're interested in two things: finding input registers
6510 for VFP data-processing instructions, and finding the set of registers which
6511 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6512 hold the written set, so FLDM etc. are easy to deal with (we're only
6513 interested in 32 SP registers or 16 dp registers, due to the VFP version
6514 implemented by the chip in question). DP registers are marked by setting
6515 both SP registers in the write mask). */
6516
6517 static enum bfd_arm_vfp11_pipe
6518 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6519 int *numregs)
6520 {
6521 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6522 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6523
6524 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6525 {
6526 unsigned int pqrs;
6527 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6528 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6529
6530 pqrs = ((insn & 0x00800000) >> 20)
6531 | ((insn & 0x00300000) >> 19)
6532 | ((insn & 0x00000040) >> 6);
6533
6534 switch (pqrs)
6535 {
6536 case 0: /* fmac[sd]. */
6537 case 1: /* fnmac[sd]. */
6538 case 2: /* fmsc[sd]. */
6539 case 3: /* fnmsc[sd]. */
6540 vpipe = VFP11_FMAC;
6541 bfd_arm_vfp11_write_mask (destmask, fd);
6542 regs[0] = fd;
6543 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6544 regs[2] = fm;
6545 *numregs = 3;
6546 break;
6547
6548 case 4: /* fmul[sd]. */
6549 case 5: /* fnmul[sd]. */
6550 case 6: /* fadd[sd]. */
6551 case 7: /* fsub[sd]. */
6552 vpipe = VFP11_FMAC;
6553 goto vfp_binop;
6554
6555 case 8: /* fdiv[sd]. */
6556 vpipe = VFP11_DS;
6557 vfp_binop:
6558 bfd_arm_vfp11_write_mask (destmask, fd);
6559 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6560 regs[1] = fm;
6561 *numregs = 2;
6562 break;
6563
6564 case 15: /* extended opcode. */
6565 {
6566 unsigned int extn = ((insn >> 15) & 0x1e)
6567 | ((insn >> 7) & 1);
6568
6569 switch (extn)
6570 {
6571 case 0: /* fcpy[sd]. */
6572 case 1: /* fabs[sd]. */
6573 case 2: /* fneg[sd]. */
6574 case 8: /* fcmp[sd]. */
6575 case 9: /* fcmpe[sd]. */
6576 case 10: /* fcmpz[sd]. */
6577 case 11: /* fcmpez[sd]. */
6578 case 16: /* fuito[sd]. */
6579 case 17: /* fsito[sd]. */
6580 case 24: /* ftoui[sd]. */
6581 case 25: /* ftouiz[sd]. */
6582 case 26: /* ftosi[sd]. */
6583 case 27: /* ftosiz[sd]. */
6584 /* These instructions will not bounce due to underflow. */
6585 *numregs = 0;
6586 vpipe = VFP11_FMAC;
6587 break;
6588
6589 case 3: /* fsqrt[sd]. */
6590 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6591 registers to cause the erratum in previous instructions. */
6592 bfd_arm_vfp11_write_mask (destmask, fd);
6593 vpipe = VFP11_DS;
6594 break;
6595
6596 case 15: /* fcvt{ds,sd}. */
6597 {
6598 int rnum = 0;
6599
6600 bfd_arm_vfp11_write_mask (destmask, fd);
6601
6602 /* Only FCVTSD can underflow. */
6603 if ((insn & 0x100) != 0)
6604 regs[rnum++] = fm;
6605
6606 *numregs = rnum;
6607
6608 vpipe = VFP11_FMAC;
6609 }
6610 break;
6611
6612 default:
6613 return VFP11_BAD;
6614 }
6615 }
6616 break;
6617
6618 default:
6619 return VFP11_BAD;
6620 }
6621 }
6622 /* Two-register transfer. */
6623 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6624 {
6625 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6626
6627 if ((insn & 0x100000) == 0)
6628 {
6629 if (is_double)
6630 bfd_arm_vfp11_write_mask (destmask, fm);
6631 else
6632 {
6633 bfd_arm_vfp11_write_mask (destmask, fm);
6634 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6635 }
6636 }
6637
6638 vpipe = VFP11_LS;
6639 }
6640 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6641 {
6642 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6643 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6644
6645 switch (puw)
6646 {
6647 case 0: /* Two-reg transfer. We should catch these above. */
6648 abort ();
6649
6650 case 2: /* fldm[sdx]. */
6651 case 3:
6652 case 5:
6653 {
6654 unsigned int i, offset = insn & 0xff;
6655
6656 if (is_double)
6657 offset >>= 1;
6658
6659 for (i = fd; i < fd + offset; i++)
6660 bfd_arm_vfp11_write_mask (destmask, i);
6661 }
6662 break;
6663
6664 case 4: /* fld[sd]. */
6665 case 6:
6666 bfd_arm_vfp11_write_mask (destmask, fd);
6667 break;
6668
6669 default:
6670 return VFP11_BAD;
6671 }
6672
6673 vpipe = VFP11_LS;
6674 }
6675 /* Single-register transfer. Note L==0. */
6676 else if ((insn & 0x0f100e10) == 0x0e000a10)
6677 {
6678 unsigned int opcode = (insn >> 21) & 7;
6679 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6680
6681 switch (opcode)
6682 {
6683 case 0: /* fmsr/fmdlr. */
6684 case 1: /* fmdhr. */
6685 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6686 destination register. I don't know if this is exactly right,
6687 but it is the conservative choice. */
6688 bfd_arm_vfp11_write_mask (destmask, fn);
6689 break;
6690
6691 case 7: /* fmxr. */
6692 break;
6693 }
6694
6695 vpipe = VFP11_LS;
6696 }
6697
6698 return vpipe;
6699 }
6700
6701
6702 static int elf32_arm_compare_mapping (const void * a, const void * b);
6703
6704
6705 /* Look for potentially-troublesome code sequences which might trigger the
6706 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6707 (available from ARM) for details of the erratum. A short version is
6708 described in ld.texinfo. */
6709
6710 bfd_boolean
6711 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6712 {
6713 asection *sec;
6714 bfd_byte *contents = NULL;
6715 int state = 0;
6716 int regs[3], numregs = 0;
6717 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6718 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6719
6720 if (globals == NULL)
6721 return FALSE;
6722
6723 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6724 The states transition as follows:
6725
6726 0 -> 1 (vector) or 0 -> 2 (scalar)
6727 A VFP FMAC-pipeline instruction has been seen. Fill
6728 regs[0]..regs[numregs-1] with its input operands. Remember this
6729 instruction in 'first_fmac'.
6730
6731 1 -> 2
6732 Any instruction, except for a VFP instruction which overwrites
6733 regs[*].
6734
6735 1 -> 3 [ -> 0 ] or
6736 2 -> 3 [ -> 0 ]
6737 A VFP instruction has been seen which overwrites any of regs[*].
6738 We must make a veneer! Reset state to 0 before examining next
6739 instruction.
6740
6741 2 -> 0
6742 If we fail to match anything in state 2, reset to state 0 and reset
6743 the instruction pointer to the instruction after 'first_fmac'.
6744
6745 If the VFP11 vector mode is in use, there must be at least two unrelated
6746 instructions between anti-dependent VFP11 instructions to properly avoid
6747 triggering the erratum, hence the use of the extra state 1. */
6748
6749 /* If we are only performing a partial link do not bother
6750 to construct any glue. */
6751 if (bfd_link_relocatable (link_info))
6752 return TRUE;
6753
6754 /* Skip if this bfd does not correspond to an ELF image. */
6755 if (! is_arm_elf (abfd))
6756 return TRUE;
6757
6758 /* We should have chosen a fix type by the time we get here. */
6759 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6760
6761 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6762 return TRUE;
6763
6764 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6765 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6766 return TRUE;
6767
6768 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6769 {
6770 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6771 struct _arm_elf_section_data *sec_data;
6772
6773 /* If we don't have executable progbits, we're not interested in this
6774 section. Also skip if section is to be excluded. */
6775 if (elf_section_type (sec) != SHT_PROGBITS
6776 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6777 || (sec->flags & SEC_EXCLUDE) != 0
6778 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
6779 || sec->output_section == bfd_abs_section_ptr
6780 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6781 continue;
6782
6783 sec_data = elf32_arm_section_data (sec);
6784
6785 if (sec_data->mapcount == 0)
6786 continue;
6787
6788 if (elf_section_data (sec)->this_hdr.contents != NULL)
6789 contents = elf_section_data (sec)->this_hdr.contents;
6790 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6791 goto error_return;
6792
6793 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6794 elf32_arm_compare_mapping);
6795
6796 for (span = 0; span < sec_data->mapcount; span++)
6797 {
6798 unsigned int span_start = sec_data->map[span].vma;
6799 unsigned int span_end = (span == sec_data->mapcount - 1)
6800 ? sec->size : sec_data->map[span + 1].vma;
6801 char span_type = sec_data->map[span].type;
6802
6803 /* FIXME: Only ARM mode is supported at present. We may need to
6804 support Thumb-2 mode also at some point. */
6805 if (span_type != 'a')
6806 continue;
6807
6808 for (i = span_start; i < span_end;)
6809 {
6810 unsigned int next_i = i + 4;
6811 unsigned int insn = bfd_big_endian (abfd)
6812 ? (contents[i] << 24)
6813 | (contents[i + 1] << 16)
6814 | (contents[i + 2] << 8)
6815 | contents[i + 3]
6816 : (contents[i + 3] << 24)
6817 | (contents[i + 2] << 16)
6818 | (contents[i + 1] << 8)
6819 | contents[i];
6820 unsigned int writemask = 0;
6821 enum bfd_arm_vfp11_pipe vpipe;
6822
6823 switch (state)
6824 {
6825 case 0:
6826 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6827 &numregs);
6828 /* I'm assuming the VFP11 erratum can trigger with denorm
6829 operands on either the FMAC or the DS pipeline. This might
6830 lead to slightly overenthusiastic veneer insertion. */
6831 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6832 {
6833 state = use_vector ? 1 : 2;
6834 first_fmac = i;
6835 veneer_of_insn = insn;
6836 }
6837 break;
6838
6839 case 1:
6840 {
6841 int other_regs[3], other_numregs;
6842 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6843 other_regs,
6844 &other_numregs);
6845 if (vpipe != VFP11_BAD
6846 && bfd_arm_vfp11_antidependency (writemask, regs,
6847 numregs))
6848 state = 3;
6849 else
6850 state = 2;
6851 }
6852 break;
6853
6854 case 2:
6855 {
6856 int other_regs[3], other_numregs;
6857 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6858 other_regs,
6859 &other_numregs);
6860 if (vpipe != VFP11_BAD
6861 && bfd_arm_vfp11_antidependency (writemask, regs,
6862 numregs))
6863 state = 3;
6864 else
6865 {
6866 state = 0;
6867 next_i = first_fmac + 4;
6868 }
6869 }
6870 break;
6871
6872 case 3:
6873 abort (); /* Should be unreachable. */
6874 }
6875
6876 if (state == 3)
6877 {
6878 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6879 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6880
6881 elf32_arm_section_data (sec)->erratumcount += 1;
6882
6883 newerr->u.b.vfp_insn = veneer_of_insn;
6884
6885 switch (span_type)
6886 {
6887 case 'a':
6888 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6889 break;
6890
6891 default:
6892 abort ();
6893 }
6894
6895 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6896 first_fmac);
6897
6898 newerr->vma = -1;
6899
6900 newerr->next = sec_data->erratumlist;
6901 sec_data->erratumlist = newerr;
6902
6903 state = 0;
6904 }
6905
6906 i = next_i;
6907 }
6908 }
6909
6910 if (contents != NULL
6911 && elf_section_data (sec)->this_hdr.contents != contents)
6912 free (contents);
6913 contents = NULL;
6914 }
6915
6916 return TRUE;
6917
6918 error_return:
6919 if (contents != NULL
6920 && elf_section_data (sec)->this_hdr.contents != contents)
6921 free (contents);
6922
6923 return FALSE;
6924 }
6925
6926 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6927 after sections have been laid out, using specially-named symbols. */
6928
6929 void
6930 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6931 struct bfd_link_info *link_info)
6932 {
6933 asection *sec;
6934 struct elf32_arm_link_hash_table *globals;
6935 char *tmp_name;
6936
6937 if (bfd_link_relocatable (link_info))
6938 return;
6939
6940 /* Skip if this bfd does not correspond to an ELF image. */
6941 if (! is_arm_elf (abfd))
6942 return;
6943
6944 globals = elf32_arm_hash_table (link_info);
6945 if (globals == NULL)
6946 return;
6947
6948 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6949 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6950
6951 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6952 {
6953 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6954 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6955
6956 for (; errnode != NULL; errnode = errnode->next)
6957 {
6958 struct elf_link_hash_entry *myh;
6959 bfd_vma vma;
6960
6961 switch (errnode->type)
6962 {
6963 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6964 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6965 /* Find veneer symbol. */
6966 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6967 errnode->u.b.veneer->u.v.id);
6968
6969 myh = elf_link_hash_lookup
6970 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6971
6972 if (myh == NULL)
6973 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6974 "`%s'"), abfd, tmp_name);
6975
6976 vma = myh->root.u.def.section->output_section->vma
6977 + myh->root.u.def.section->output_offset
6978 + myh->root.u.def.value;
6979
6980 errnode->u.b.veneer->vma = vma;
6981 break;
6982
6983 case VFP11_ERRATUM_ARM_VENEER:
6984 case VFP11_ERRATUM_THUMB_VENEER:
6985 /* Find return location. */
6986 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6987 errnode->u.v.id);
6988
6989 myh = elf_link_hash_lookup
6990 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6991
6992 if (myh == NULL)
6993 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6994 "`%s'"), abfd, tmp_name);
6995
6996 vma = myh->root.u.def.section->output_section->vma
6997 + myh->root.u.def.section->output_offset
6998 + myh->root.u.def.value;
6999
7000 errnode->u.v.branch->vma = vma;
7001 break;
7002
7003 default:
7004 abort ();
7005 }
7006 }
7007 }
7008
7009 free (tmp_name);
7010 }
7011
7012
7013 /* Set target relocation values needed during linking. */
7014
7015 void
7016 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
7017 struct bfd_link_info *link_info,
7018 int target1_is_rel,
7019 char * target2_type,
7020 int fix_v4bx,
7021 int use_blx,
7022 bfd_arm_vfp11_fix vfp11_fix,
7023 int no_enum_warn, int no_wchar_warn,
7024 int pic_veneer, int fix_cortex_a8,
7025 int fix_arm1176)
7026 {
7027 struct elf32_arm_link_hash_table *globals;
7028
7029 globals = elf32_arm_hash_table (link_info);
7030 if (globals == NULL)
7031 return;
7032
7033 globals->target1_is_rel = target1_is_rel;
7034 if (strcmp (target2_type, "rel") == 0)
7035 globals->target2_reloc = R_ARM_REL32;
7036 else if (strcmp (target2_type, "abs") == 0)
7037 globals->target2_reloc = R_ARM_ABS32;
7038 else if (strcmp (target2_type, "got-rel") == 0)
7039 globals->target2_reloc = R_ARM_GOT_PREL;
7040 else
7041 {
7042 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
7043 target2_type);
7044 }
7045 globals->fix_v4bx = fix_v4bx;
7046 globals->use_blx |= use_blx;
7047 globals->vfp11_fix = vfp11_fix;
7048 globals->pic_veneer = pic_veneer;
7049 globals->fix_cortex_a8 = fix_cortex_a8;
7050 globals->fix_arm1176 = fix_arm1176;
7051
7052 BFD_ASSERT (is_arm_elf (output_bfd));
7053 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
7054 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
7055 }
7056
7057 /* Replace the target offset of a Thumb bl or b.w instruction. */
7058
7059 static void
7060 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
7061 {
7062 bfd_vma upper;
7063 bfd_vma lower;
7064 int reloc_sign;
7065
7066 BFD_ASSERT ((offset & 1) == 0);
7067
7068 upper = bfd_get_16 (abfd, insn);
7069 lower = bfd_get_16 (abfd, insn + 2);
7070 reloc_sign = (offset < 0) ? 1 : 0;
7071 upper = (upper & ~(bfd_vma) 0x7ff)
7072 | ((offset >> 12) & 0x3ff)
7073 | (reloc_sign << 10);
7074 lower = (lower & ~(bfd_vma) 0x2fff)
7075 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
7076 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
7077 | ((offset >> 1) & 0x7ff);
7078 bfd_put_16 (abfd, upper, insn);
7079 bfd_put_16 (abfd, lower, insn + 2);
7080 }
7081
7082 /* Thumb code calling an ARM function. */
7083
7084 static int
7085 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
7086 const char * name,
7087 bfd * input_bfd,
7088 bfd * output_bfd,
7089 asection * input_section,
7090 bfd_byte * hit_data,
7091 asection * sym_sec,
7092 bfd_vma offset,
7093 bfd_signed_vma addend,
7094 bfd_vma val,
7095 char **error_message)
7096 {
7097 asection * s = 0;
7098 bfd_vma my_offset;
7099 long int ret_offset;
7100 struct elf_link_hash_entry * myh;
7101 struct elf32_arm_link_hash_table * globals;
7102
7103 myh = find_thumb_glue (info, name, error_message);
7104 if (myh == NULL)
7105 return FALSE;
7106
7107 globals = elf32_arm_hash_table (info);
7108 BFD_ASSERT (globals != NULL);
7109 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7110
7111 my_offset = myh->root.u.def.value;
7112
7113 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7114 THUMB2ARM_GLUE_SECTION_NAME);
7115
7116 BFD_ASSERT (s != NULL);
7117 BFD_ASSERT (s->contents != NULL);
7118 BFD_ASSERT (s->output_section != NULL);
7119
7120 if ((my_offset & 0x01) == 0x01)
7121 {
7122 if (sym_sec != NULL
7123 && sym_sec->owner != NULL
7124 && !INTERWORK_FLAG (sym_sec->owner))
7125 {
7126 (*_bfd_error_handler)
7127 (_("%B(%s): warning: interworking not enabled.\n"
7128 " first occurrence: %B: Thumb call to ARM"),
7129 sym_sec->owner, input_bfd, name);
7130
7131 return FALSE;
7132 }
7133
7134 --my_offset;
7135 myh->root.u.def.value = my_offset;
7136
7137 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
7138 s->contents + my_offset);
7139
7140 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
7141 s->contents + my_offset + 2);
7142
7143 ret_offset =
7144 /* Address of destination of the stub. */
7145 ((bfd_signed_vma) val)
7146 - ((bfd_signed_vma)
7147 /* Offset from the start of the current section
7148 to the start of the stubs. */
7149 (s->output_offset
7150 /* Offset of the start of this stub from the start of the stubs. */
7151 + my_offset
7152 /* Address of the start of the current section. */
7153 + s->output_section->vma)
7154 /* The branch instruction is 4 bytes into the stub. */
7155 + 4
7156 /* ARM branches work from the pc of the instruction + 8. */
7157 + 8);
7158
7159 put_arm_insn (globals, output_bfd,
7160 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7161 s->contents + my_offset + 4);
7162 }
7163
7164 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7165
7166 /* Now go back and fix up the original BL insn to point to here. */
7167 ret_offset =
7168 /* Address of where the stub is located. */
7169 (s->output_section->vma + s->output_offset + my_offset)
7170 /* Address of where the BL is located. */
7171 - (input_section->output_section->vma + input_section->output_offset
7172 + offset)
7173 /* Addend in the relocation. */
7174 - addend
7175 /* Biassing for PC-relative addressing. */
7176 - 8;
7177
7178 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
7179
7180 return TRUE;
7181 }
7182
7183 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
7184
7185 static struct elf_link_hash_entry *
7186 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7187 const char * name,
7188 bfd * input_bfd,
7189 bfd * output_bfd,
7190 asection * sym_sec,
7191 bfd_vma val,
7192 asection * s,
7193 char ** error_message)
7194 {
7195 bfd_vma my_offset;
7196 long int ret_offset;
7197 struct elf_link_hash_entry * myh;
7198 struct elf32_arm_link_hash_table * globals;
7199
7200 myh = find_arm_glue (info, name, error_message);
7201 if (myh == NULL)
7202 return NULL;
7203
7204 globals = elf32_arm_hash_table (info);
7205 BFD_ASSERT (globals != NULL);
7206 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7207
7208 my_offset = myh->root.u.def.value;
7209
7210 if ((my_offset & 0x01) == 0x01)
7211 {
7212 if (sym_sec != NULL
7213 && sym_sec->owner != NULL
7214 && !INTERWORK_FLAG (sym_sec->owner))
7215 {
7216 (*_bfd_error_handler)
7217 (_("%B(%s): warning: interworking not enabled.\n"
7218 " first occurrence: %B: arm call to thumb"),
7219 sym_sec->owner, input_bfd, name);
7220 }
7221
7222 --my_offset;
7223 myh->root.u.def.value = my_offset;
7224
7225 if (bfd_link_pic (info)
7226 || globals->root.is_relocatable_executable
7227 || globals->pic_veneer)
7228 {
7229 /* For relocatable objects we can't use absolute addresses,
7230 so construct the address from a relative offset. */
7231 /* TODO: If the offset is small it's probably worth
7232 constructing the address with adds. */
7233 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7234 s->contents + my_offset);
7235 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7236 s->contents + my_offset + 4);
7237 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7238 s->contents + my_offset + 8);
7239 /* Adjust the offset by 4 for the position of the add,
7240 and 8 for the pipeline offset. */
7241 ret_offset = (val - (s->output_offset
7242 + s->output_section->vma
7243 + my_offset + 12))
7244 | 1;
7245 bfd_put_32 (output_bfd, ret_offset,
7246 s->contents + my_offset + 12);
7247 }
7248 else if (globals->use_blx)
7249 {
7250 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7251 s->contents + my_offset);
7252
7253 /* It's a thumb address. Add the low order bit. */
7254 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7255 s->contents + my_offset + 4);
7256 }
7257 else
7258 {
7259 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7260 s->contents + my_offset);
7261
7262 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7263 s->contents + my_offset + 4);
7264
7265 /* It's a thumb address. Add the low order bit. */
7266 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7267 s->contents + my_offset + 8);
7268
7269 my_offset += 12;
7270 }
7271 }
7272
7273 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7274
7275 return myh;
7276 }
7277
7278 /* Arm code calling a Thumb function. */
7279
7280 static int
7281 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7282 const char * name,
7283 bfd * input_bfd,
7284 bfd * output_bfd,
7285 asection * input_section,
7286 bfd_byte * hit_data,
7287 asection * sym_sec,
7288 bfd_vma offset,
7289 bfd_signed_vma addend,
7290 bfd_vma val,
7291 char **error_message)
7292 {
7293 unsigned long int tmp;
7294 bfd_vma my_offset;
7295 asection * s;
7296 long int ret_offset;
7297 struct elf_link_hash_entry * myh;
7298 struct elf32_arm_link_hash_table * globals;
7299
7300 globals = elf32_arm_hash_table (info);
7301 BFD_ASSERT (globals != NULL);
7302 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7303
7304 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7305 ARM2THUMB_GLUE_SECTION_NAME);
7306 BFD_ASSERT (s != NULL);
7307 BFD_ASSERT (s->contents != NULL);
7308 BFD_ASSERT (s->output_section != NULL);
7309
7310 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7311 sym_sec, val, s, error_message);
7312 if (!myh)
7313 return FALSE;
7314
7315 my_offset = myh->root.u.def.value;
7316 tmp = bfd_get_32 (input_bfd, hit_data);
7317 tmp = tmp & 0xFF000000;
7318
7319 /* Somehow these are both 4 too far, so subtract 8. */
7320 ret_offset = (s->output_offset
7321 + my_offset
7322 + s->output_section->vma
7323 - (input_section->output_offset
7324 + input_section->output_section->vma
7325 + offset + addend)
7326 - 8);
7327
7328 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7329
7330 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
7331
7332 return TRUE;
7333 }
7334
7335 /* Populate Arm stub for an exported Thumb function. */
7336
7337 static bfd_boolean
7338 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7339 {
7340 struct bfd_link_info * info = (struct bfd_link_info *) inf;
7341 asection * s;
7342 struct elf_link_hash_entry * myh;
7343 struct elf32_arm_link_hash_entry *eh;
7344 struct elf32_arm_link_hash_table * globals;
7345 asection *sec;
7346 bfd_vma val;
7347 char *error_message;
7348
7349 eh = elf32_arm_hash_entry (h);
7350 /* Allocate stubs for exported Thumb functions on v4t. */
7351 if (eh->export_glue == NULL)
7352 return TRUE;
7353
7354 globals = elf32_arm_hash_table (info);
7355 BFD_ASSERT (globals != NULL);
7356 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7357
7358 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7359 ARM2THUMB_GLUE_SECTION_NAME);
7360 BFD_ASSERT (s != NULL);
7361 BFD_ASSERT (s->contents != NULL);
7362 BFD_ASSERT (s->output_section != NULL);
7363
7364 sec = eh->export_glue->root.u.def.section;
7365
7366 BFD_ASSERT (sec->output_section != NULL);
7367
7368 val = eh->export_glue->root.u.def.value + sec->output_offset
7369 + sec->output_section->vma;
7370
7371 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7372 h->root.u.def.section->owner,
7373 globals->obfd, sec, val, s,
7374 &error_message);
7375 BFD_ASSERT (myh);
7376 return TRUE;
7377 }
7378
7379 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7380
7381 static bfd_vma
7382 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7383 {
7384 bfd_byte *p;
7385 bfd_vma glue_addr;
7386 asection *s;
7387 struct elf32_arm_link_hash_table *globals;
7388
7389 globals = elf32_arm_hash_table (info);
7390 BFD_ASSERT (globals != NULL);
7391 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7392
7393 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7394 ARM_BX_GLUE_SECTION_NAME);
7395 BFD_ASSERT (s != NULL);
7396 BFD_ASSERT (s->contents != NULL);
7397 BFD_ASSERT (s->output_section != NULL);
7398
7399 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7400
7401 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7402
7403 if ((globals->bx_glue_offset[reg] & 1) == 0)
7404 {
7405 p = s->contents + glue_addr;
7406 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7407 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7408 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7409 globals->bx_glue_offset[reg] |= 1;
7410 }
7411
7412 return glue_addr + s->output_section->vma + s->output_offset;
7413 }
7414
7415 /* Generate Arm stubs for exported Thumb symbols. */
7416 static void
7417 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
7418 struct bfd_link_info *link_info)
7419 {
7420 struct elf32_arm_link_hash_table * globals;
7421
7422 if (link_info == NULL)
7423 /* Ignore this if we are not called by the ELF backend linker. */
7424 return;
7425
7426 globals = elf32_arm_hash_table (link_info);
7427 if (globals == NULL)
7428 return;
7429
7430 /* If blx is available then exported Thumb symbols are OK and there is
7431 nothing to do. */
7432 if (globals->use_blx)
7433 return;
7434
7435 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7436 link_info);
7437 }
7438
7439 /* Reserve space for COUNT dynamic relocations in relocation selection
7440 SRELOC. */
7441
7442 static void
7443 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7444 bfd_size_type count)
7445 {
7446 struct elf32_arm_link_hash_table *htab;
7447
7448 htab = elf32_arm_hash_table (info);
7449 BFD_ASSERT (htab->root.dynamic_sections_created);
7450 if (sreloc == NULL)
7451 abort ();
7452 sreloc->size += RELOC_SIZE (htab) * count;
7453 }
7454
7455 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7456 dynamic, the relocations should go in SRELOC, otherwise they should
7457 go in the special .rel.iplt section. */
7458
7459 static void
7460 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7461 bfd_size_type count)
7462 {
7463 struct elf32_arm_link_hash_table *htab;
7464
7465 htab = elf32_arm_hash_table (info);
7466 if (!htab->root.dynamic_sections_created)
7467 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7468 else
7469 {
7470 BFD_ASSERT (sreloc != NULL);
7471 sreloc->size += RELOC_SIZE (htab) * count;
7472 }
7473 }
7474
7475 /* Add relocation REL to the end of relocation section SRELOC. */
7476
7477 static void
7478 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7479 asection *sreloc, Elf_Internal_Rela *rel)
7480 {
7481 bfd_byte *loc;
7482 struct elf32_arm_link_hash_table *htab;
7483
7484 htab = elf32_arm_hash_table (info);
7485 if (!htab->root.dynamic_sections_created
7486 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7487 sreloc = htab->root.irelplt;
7488 if (sreloc == NULL)
7489 abort ();
7490 loc = sreloc->contents;
7491 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7492 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7493 abort ();
7494 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7495 }
7496
7497 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7498 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7499 to .plt. */
7500
7501 static void
7502 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7503 bfd_boolean is_iplt_entry,
7504 union gotplt_union *root_plt,
7505 struct arm_plt_info *arm_plt)
7506 {
7507 struct elf32_arm_link_hash_table *htab;
7508 asection *splt;
7509 asection *sgotplt;
7510
7511 htab = elf32_arm_hash_table (info);
7512
7513 if (is_iplt_entry)
7514 {
7515 splt = htab->root.iplt;
7516 sgotplt = htab->root.igotplt;
7517
7518 /* NaCl uses a special first entry in .iplt too. */
7519 if (htab->nacl_p && splt->size == 0)
7520 splt->size += htab->plt_header_size;
7521
7522 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7523 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7524 }
7525 else
7526 {
7527 splt = htab->root.splt;
7528 sgotplt = htab->root.sgotplt;
7529
7530 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7531 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7532
7533 /* If this is the first .plt entry, make room for the special
7534 first entry. */
7535 if (splt->size == 0)
7536 splt->size += htab->plt_header_size;
7537
7538 htab->next_tls_desc_index++;
7539 }
7540
7541 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7542 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7543 splt->size += PLT_THUMB_STUB_SIZE;
7544 root_plt->offset = splt->size;
7545 splt->size += htab->plt_entry_size;
7546
7547 if (!htab->symbian_p)
7548 {
7549 /* We also need to make an entry in the .got.plt section, which
7550 will be placed in the .got section by the linker script. */
7551 if (is_iplt_entry)
7552 arm_plt->got_offset = sgotplt->size;
7553 else
7554 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7555 sgotplt->size += 4;
7556 }
7557 }
7558
7559 static bfd_vma
7560 arm_movw_immediate (bfd_vma value)
7561 {
7562 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
7563 }
7564
7565 static bfd_vma
7566 arm_movt_immediate (bfd_vma value)
7567 {
7568 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
7569 }
7570
7571 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7572 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7573 Otherwise, DYNINDX is the index of the symbol in the dynamic
7574 symbol table and SYM_VALUE is undefined.
7575
7576 ROOT_PLT points to the offset of the PLT entry from the start of its
7577 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7578 bookkeeping information.
7579
7580 Returns FALSE if there was a problem. */
7581
7582 static bfd_boolean
7583 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7584 union gotplt_union *root_plt,
7585 struct arm_plt_info *arm_plt,
7586 int dynindx, bfd_vma sym_value)
7587 {
7588 struct elf32_arm_link_hash_table *htab;
7589 asection *sgot;
7590 asection *splt;
7591 asection *srel;
7592 bfd_byte *loc;
7593 bfd_vma plt_index;
7594 Elf_Internal_Rela rel;
7595 bfd_vma plt_header_size;
7596 bfd_vma got_header_size;
7597
7598 htab = elf32_arm_hash_table (info);
7599
7600 /* Pick the appropriate sections and sizes. */
7601 if (dynindx == -1)
7602 {
7603 splt = htab->root.iplt;
7604 sgot = htab->root.igotplt;
7605 srel = htab->root.irelplt;
7606
7607 /* There are no reserved entries in .igot.plt, and no special
7608 first entry in .iplt. */
7609 got_header_size = 0;
7610 plt_header_size = 0;
7611 }
7612 else
7613 {
7614 splt = htab->root.splt;
7615 sgot = htab->root.sgotplt;
7616 srel = htab->root.srelplt;
7617
7618 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7619 plt_header_size = htab->plt_header_size;
7620 }
7621 BFD_ASSERT (splt != NULL && srel != NULL);
7622
7623 /* Fill in the entry in the procedure linkage table. */
7624 if (htab->symbian_p)
7625 {
7626 BFD_ASSERT (dynindx >= 0);
7627 put_arm_insn (htab, output_bfd,
7628 elf32_arm_symbian_plt_entry[0],
7629 splt->contents + root_plt->offset);
7630 bfd_put_32 (output_bfd,
7631 elf32_arm_symbian_plt_entry[1],
7632 splt->contents + root_plt->offset + 4);
7633
7634 /* Fill in the entry in the .rel.plt section. */
7635 rel.r_offset = (splt->output_section->vma
7636 + splt->output_offset
7637 + root_plt->offset + 4);
7638 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7639
7640 /* Get the index in the procedure linkage table which
7641 corresponds to this symbol. This is the index of this symbol
7642 in all the symbols for which we are making plt entries. The
7643 first entry in the procedure linkage table is reserved. */
7644 plt_index = ((root_plt->offset - plt_header_size)
7645 / htab->plt_entry_size);
7646 }
7647 else
7648 {
7649 bfd_vma got_offset, got_address, plt_address;
7650 bfd_vma got_displacement, initial_got_entry;
7651 bfd_byte * ptr;
7652
7653 BFD_ASSERT (sgot != NULL);
7654
7655 /* Get the offset into the .(i)got.plt table of the entry that
7656 corresponds to this function. */
7657 got_offset = (arm_plt->got_offset & -2);
7658
7659 /* Get the index in the procedure linkage table which
7660 corresponds to this symbol. This is the index of this symbol
7661 in all the symbols for which we are making plt entries.
7662 After the reserved .got.plt entries, all symbols appear in
7663 the same order as in .plt. */
7664 plt_index = (got_offset - got_header_size) / 4;
7665
7666 /* Calculate the address of the GOT entry. */
7667 got_address = (sgot->output_section->vma
7668 + sgot->output_offset
7669 + got_offset);
7670
7671 /* ...and the address of the PLT entry. */
7672 plt_address = (splt->output_section->vma
7673 + splt->output_offset
7674 + root_plt->offset);
7675
7676 ptr = splt->contents + root_plt->offset;
7677 if (htab->vxworks_p && bfd_link_pic (info))
7678 {
7679 unsigned int i;
7680 bfd_vma val;
7681
7682 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7683 {
7684 val = elf32_arm_vxworks_shared_plt_entry[i];
7685 if (i == 2)
7686 val |= got_address - sgot->output_section->vma;
7687 if (i == 5)
7688 val |= plt_index * RELOC_SIZE (htab);
7689 if (i == 2 || i == 5)
7690 bfd_put_32 (output_bfd, val, ptr);
7691 else
7692 put_arm_insn (htab, output_bfd, val, ptr);
7693 }
7694 }
7695 else if (htab->vxworks_p)
7696 {
7697 unsigned int i;
7698 bfd_vma val;
7699
7700 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7701 {
7702 val = elf32_arm_vxworks_exec_plt_entry[i];
7703 if (i == 2)
7704 val |= got_address;
7705 if (i == 4)
7706 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7707 if (i == 5)
7708 val |= plt_index * RELOC_SIZE (htab);
7709 if (i == 2 || i == 5)
7710 bfd_put_32 (output_bfd, val, ptr);
7711 else
7712 put_arm_insn (htab, output_bfd, val, ptr);
7713 }
7714
7715 loc = (htab->srelplt2->contents
7716 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7717
7718 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7719 referencing the GOT for this PLT entry. */
7720 rel.r_offset = plt_address + 8;
7721 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7722 rel.r_addend = got_offset;
7723 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7724 loc += RELOC_SIZE (htab);
7725
7726 /* Create the R_ARM_ABS32 relocation referencing the
7727 beginning of the PLT for this GOT entry. */
7728 rel.r_offset = got_address;
7729 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7730 rel.r_addend = 0;
7731 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7732 }
7733 else if (htab->nacl_p)
7734 {
7735 /* Calculate the displacement between the PLT slot and the
7736 common tail that's part of the special initial PLT slot. */
7737 int32_t tail_displacement
7738 = ((splt->output_section->vma + splt->output_offset
7739 + ARM_NACL_PLT_TAIL_OFFSET)
7740 - (plt_address + htab->plt_entry_size + 4));
7741 BFD_ASSERT ((tail_displacement & 3) == 0);
7742 tail_displacement >>= 2;
7743
7744 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
7745 || (-tail_displacement & 0xff000000) == 0);
7746
7747 /* Calculate the displacement between the PLT slot and the entry
7748 in the GOT. The offset accounts for the value produced by
7749 adding to pc in the penultimate instruction of the PLT stub. */
7750 got_displacement = (got_address
7751 - (plt_address + htab->plt_entry_size));
7752
7753 /* NaCl does not support interworking at all. */
7754 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
7755
7756 put_arm_insn (htab, output_bfd,
7757 elf32_arm_nacl_plt_entry[0]
7758 | arm_movw_immediate (got_displacement),
7759 ptr + 0);
7760 put_arm_insn (htab, output_bfd,
7761 elf32_arm_nacl_plt_entry[1]
7762 | arm_movt_immediate (got_displacement),
7763 ptr + 4);
7764 put_arm_insn (htab, output_bfd,
7765 elf32_arm_nacl_plt_entry[2],
7766 ptr + 8);
7767 put_arm_insn (htab, output_bfd,
7768 elf32_arm_nacl_plt_entry[3]
7769 | (tail_displacement & 0x00ffffff),
7770 ptr + 12);
7771 }
7772 else if (using_thumb_only (htab))
7773 {
7774 /* PR ld/16017: Generate thumb only PLT entries. */
7775 if (!using_thumb2 (htab))
7776 {
7777 /* FIXME: We ought to be able to generate thumb-1 PLT
7778 instructions... */
7779 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
7780 output_bfd);
7781 return FALSE;
7782 }
7783
7784 /* Calculate the displacement between the PLT slot and the entry in
7785 the GOT. The 12-byte offset accounts for the value produced by
7786 adding to pc in the 3rd instruction of the PLT stub. */
7787 got_displacement = got_address - (plt_address + 12);
7788
7789 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
7790 instead of 'put_thumb_insn'. */
7791 put_arm_insn (htab, output_bfd,
7792 elf32_thumb2_plt_entry[0]
7793 | ((got_displacement & 0x000000ff) << 16)
7794 | ((got_displacement & 0x00000700) << 20)
7795 | ((got_displacement & 0x00000800) >> 1)
7796 | ((got_displacement & 0x0000f000) >> 12),
7797 ptr + 0);
7798 put_arm_insn (htab, output_bfd,
7799 elf32_thumb2_plt_entry[1]
7800 | ((got_displacement & 0x00ff0000) )
7801 | ((got_displacement & 0x07000000) << 4)
7802 | ((got_displacement & 0x08000000) >> 17)
7803 | ((got_displacement & 0xf0000000) >> 28),
7804 ptr + 4);
7805 put_arm_insn (htab, output_bfd,
7806 elf32_thumb2_plt_entry[2],
7807 ptr + 8);
7808 put_arm_insn (htab, output_bfd,
7809 elf32_thumb2_plt_entry[3],
7810 ptr + 12);
7811 }
7812 else
7813 {
7814 /* Calculate the displacement between the PLT slot and the
7815 entry in the GOT. The eight-byte offset accounts for the
7816 value produced by adding to pc in the first instruction
7817 of the PLT stub. */
7818 got_displacement = got_address - (plt_address + 8);
7819
7820 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7821 {
7822 put_thumb_insn (htab, output_bfd,
7823 elf32_arm_plt_thumb_stub[0], ptr - 4);
7824 put_thumb_insn (htab, output_bfd,
7825 elf32_arm_plt_thumb_stub[1], ptr - 2);
7826 }
7827
7828 if (!elf32_arm_use_long_plt_entry)
7829 {
7830 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7831
7832 put_arm_insn (htab, output_bfd,
7833 elf32_arm_plt_entry_short[0]
7834 | ((got_displacement & 0x0ff00000) >> 20),
7835 ptr + 0);
7836 put_arm_insn (htab, output_bfd,
7837 elf32_arm_plt_entry_short[1]
7838 | ((got_displacement & 0x000ff000) >> 12),
7839 ptr+ 4);
7840 put_arm_insn (htab, output_bfd,
7841 elf32_arm_plt_entry_short[2]
7842 | (got_displacement & 0x00000fff),
7843 ptr + 8);
7844 #ifdef FOUR_WORD_PLT
7845 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
7846 #endif
7847 }
7848 else
7849 {
7850 put_arm_insn (htab, output_bfd,
7851 elf32_arm_plt_entry_long[0]
7852 | ((got_displacement & 0xf0000000) >> 28),
7853 ptr + 0);
7854 put_arm_insn (htab, output_bfd,
7855 elf32_arm_plt_entry_long[1]
7856 | ((got_displacement & 0x0ff00000) >> 20),
7857 ptr + 4);
7858 put_arm_insn (htab, output_bfd,
7859 elf32_arm_plt_entry_long[2]
7860 | ((got_displacement & 0x000ff000) >> 12),
7861 ptr+ 8);
7862 put_arm_insn (htab, output_bfd,
7863 elf32_arm_plt_entry_long[3]
7864 | (got_displacement & 0x00000fff),
7865 ptr + 12);
7866 }
7867 }
7868
7869 /* Fill in the entry in the .rel(a).(i)plt section. */
7870 rel.r_offset = got_address;
7871 rel.r_addend = 0;
7872 if (dynindx == -1)
7873 {
7874 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7875 The dynamic linker or static executable then calls SYM_VALUE
7876 to determine the correct run-time value of the .igot.plt entry. */
7877 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7878 initial_got_entry = sym_value;
7879 }
7880 else
7881 {
7882 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7883 initial_got_entry = (splt->output_section->vma
7884 + splt->output_offset);
7885 }
7886
7887 /* Fill in the entry in the global offset table. */
7888 bfd_put_32 (output_bfd, initial_got_entry,
7889 sgot->contents + got_offset);
7890 }
7891
7892 if (dynindx == -1)
7893 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
7894 else
7895 {
7896 loc = srel->contents + plt_index * RELOC_SIZE (htab);
7897 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7898 }
7899
7900 return TRUE;
7901 }
7902
7903 /* Some relocations map to different relocations depending on the
7904 target. Return the real relocation. */
7905
7906 static int
7907 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7908 int r_type)
7909 {
7910 switch (r_type)
7911 {
7912 case R_ARM_TARGET1:
7913 if (globals->target1_is_rel)
7914 return R_ARM_REL32;
7915 else
7916 return R_ARM_ABS32;
7917
7918 case R_ARM_TARGET2:
7919 return globals->target2_reloc;
7920
7921 default:
7922 return r_type;
7923 }
7924 }
7925
7926 /* Return the base VMA address which should be subtracted from real addresses
7927 when resolving @dtpoff relocation.
7928 This is PT_TLS segment p_vaddr. */
7929
7930 static bfd_vma
7931 dtpoff_base (struct bfd_link_info *info)
7932 {
7933 /* If tls_sec is NULL, we should have signalled an error already. */
7934 if (elf_hash_table (info)->tls_sec == NULL)
7935 return 0;
7936 return elf_hash_table (info)->tls_sec->vma;
7937 }
7938
7939 /* Return the relocation value for @tpoff relocation
7940 if STT_TLS virtual address is ADDRESS. */
7941
7942 static bfd_vma
7943 tpoff (struct bfd_link_info *info, bfd_vma address)
7944 {
7945 struct elf_link_hash_table *htab = elf_hash_table (info);
7946 bfd_vma base;
7947
7948 /* If tls_sec is NULL, we should have signalled an error already. */
7949 if (htab->tls_sec == NULL)
7950 return 0;
7951 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7952 return address - htab->tls_sec->vma + base;
7953 }
7954
7955 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7956 VALUE is the relocation value. */
7957
7958 static bfd_reloc_status_type
7959 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7960 {
7961 if (value > 0xfff)
7962 return bfd_reloc_overflow;
7963
7964 value |= bfd_get_32 (abfd, data) & 0xfffff000;
7965 bfd_put_32 (abfd, value, data);
7966 return bfd_reloc_ok;
7967 }
7968
7969 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7970 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7971 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7972
7973 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7974 is to then call final_link_relocate. Return other values in the
7975 case of error.
7976
7977 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7978 the pre-relaxed code. It would be nice if the relocs were updated
7979 to match the optimization. */
7980
7981 static bfd_reloc_status_type
7982 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
7983 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
7984 Elf_Internal_Rela *rel, unsigned long is_local)
7985 {
7986 unsigned long insn;
7987
7988 switch (ELF32_R_TYPE (rel->r_info))
7989 {
7990 default:
7991 return bfd_reloc_notsupported;
7992
7993 case R_ARM_TLS_GOTDESC:
7994 if (is_local)
7995 insn = 0;
7996 else
7997 {
7998 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7999 if (insn & 1)
8000 insn -= 5; /* THUMB */
8001 else
8002 insn -= 8; /* ARM */
8003 }
8004 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
8005 return bfd_reloc_continue;
8006
8007 case R_ARM_THM_TLS_DESCSEQ:
8008 /* Thumb insn. */
8009 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
8010 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
8011 {
8012 if (is_local)
8013 /* nop */
8014 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8015 }
8016 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
8017 {
8018 if (is_local)
8019 /* nop */
8020 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8021 else
8022 /* ldr rx,[ry] */
8023 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
8024 }
8025 else if ((insn & 0xff87) == 0x4780) /* blx rx */
8026 {
8027 if (is_local)
8028 /* nop */
8029 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8030 else
8031 /* mov r0, rx */
8032 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
8033 contents + rel->r_offset);
8034 }
8035 else
8036 {
8037 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
8038 /* It's a 32 bit instruction, fetch the rest of it for
8039 error generation. */
8040 insn = (insn << 16)
8041 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
8042 (*_bfd_error_handler)
8043 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
8044 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8045 return bfd_reloc_notsupported;
8046 }
8047 break;
8048
8049 case R_ARM_TLS_DESCSEQ:
8050 /* arm insn. */
8051 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
8052 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
8053 {
8054 if (is_local)
8055 /* mov rx, ry */
8056 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
8057 contents + rel->r_offset);
8058 }
8059 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
8060 {
8061 if (is_local)
8062 /* nop */
8063 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8064 else
8065 /* ldr rx,[ry] */
8066 bfd_put_32 (input_bfd, insn & 0xfffff000,
8067 contents + rel->r_offset);
8068 }
8069 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
8070 {
8071 if (is_local)
8072 /* nop */
8073 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8074 else
8075 /* mov r0, rx */
8076 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
8077 contents + rel->r_offset);
8078 }
8079 else
8080 {
8081 (*_bfd_error_handler)
8082 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
8083 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8084 return bfd_reloc_notsupported;
8085 }
8086 break;
8087
8088 case R_ARM_TLS_CALL:
8089 /* GD->IE relaxation, turn the instruction into 'nop' or
8090 'ldr r0, [pc,r0]' */
8091 insn = is_local ? 0xe1a00000 : 0xe79f0000;
8092 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
8093 break;
8094
8095 case R_ARM_THM_TLS_CALL:
8096 /* GD->IE relaxation. */
8097 if (!is_local)
8098 /* add r0,pc; ldr r0, [r0] */
8099 insn = 0x44786800;
8100 else if (arch_has_thumb2_nop (globals))
8101 /* nop.w */
8102 insn = 0xf3af8000;
8103 else
8104 /* nop; nop */
8105 insn = 0xbf00bf00;
8106
8107 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
8108 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
8109 break;
8110 }
8111 return bfd_reloc_ok;
8112 }
8113
8114 /* For a given value of n, calculate the value of G_n as required to
8115 deal with group relocations. We return it in the form of an
8116 encoded constant-and-rotation, together with the final residual. If n is
8117 specified as less than zero, then final_residual is filled with the
8118 input value and no further action is performed. */
8119
8120 static bfd_vma
8121 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
8122 {
8123 int current_n;
8124 bfd_vma g_n;
8125 bfd_vma encoded_g_n = 0;
8126 bfd_vma residual = value; /* Also known as Y_n. */
8127
8128 for (current_n = 0; current_n <= n; current_n++)
8129 {
8130 int shift;
8131
8132 /* Calculate which part of the value to mask. */
8133 if (residual == 0)
8134 shift = 0;
8135 else
8136 {
8137 int msb;
8138
8139 /* Determine the most significant bit in the residual and
8140 align the resulting value to a 2-bit boundary. */
8141 for (msb = 30; msb >= 0; msb -= 2)
8142 if (residual & (3 << msb))
8143 break;
8144
8145 /* The desired shift is now (msb - 6), or zero, whichever
8146 is the greater. */
8147 shift = msb - 6;
8148 if (shift < 0)
8149 shift = 0;
8150 }
8151
8152 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
8153 g_n = residual & (0xff << shift);
8154 encoded_g_n = (g_n >> shift)
8155 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
8156
8157 /* Calculate the residual for the next time around. */
8158 residual &= ~g_n;
8159 }
8160
8161 *final_residual = residual;
8162
8163 return encoded_g_n;
8164 }
8165
8166 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
8167 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
8168
8169 static int
8170 identify_add_or_sub (bfd_vma insn)
8171 {
8172 int opcode = insn & 0x1e00000;
8173
8174 if (opcode == 1 << 23) /* ADD */
8175 return 1;
8176
8177 if (opcode == 1 << 22) /* SUB */
8178 return -1;
8179
8180 return 0;
8181 }
8182
8183 /* Perform a relocation as part of a final link. */
8184
8185 static bfd_reloc_status_type
8186 elf32_arm_final_link_relocate (reloc_howto_type * howto,
8187 bfd * input_bfd,
8188 bfd * output_bfd,
8189 asection * input_section,
8190 bfd_byte * contents,
8191 Elf_Internal_Rela * rel,
8192 bfd_vma value,
8193 struct bfd_link_info * info,
8194 asection * sym_sec,
8195 const char * sym_name,
8196 unsigned char st_type,
8197 enum arm_st_branch_type branch_type,
8198 struct elf_link_hash_entry * h,
8199 bfd_boolean * unresolved_reloc_p,
8200 char ** error_message)
8201 {
8202 unsigned long r_type = howto->type;
8203 unsigned long r_symndx;
8204 bfd_byte * hit_data = contents + rel->r_offset;
8205 bfd_vma * local_got_offsets;
8206 bfd_vma * local_tlsdesc_gotents;
8207 asection * sgot;
8208 asection * splt;
8209 asection * sreloc = NULL;
8210 asection * srelgot;
8211 bfd_vma addend;
8212 bfd_signed_vma signed_addend;
8213 unsigned char dynreloc_st_type;
8214 bfd_vma dynreloc_value;
8215 struct elf32_arm_link_hash_table * globals;
8216 struct elf32_arm_link_hash_entry *eh;
8217 union gotplt_union *root_plt;
8218 struct arm_plt_info *arm_plt;
8219 bfd_vma plt_offset;
8220 bfd_vma gotplt_offset;
8221 bfd_boolean has_iplt_entry;
8222
8223 globals = elf32_arm_hash_table (info);
8224 if (globals == NULL)
8225 return bfd_reloc_notsupported;
8226
8227 BFD_ASSERT (is_arm_elf (input_bfd));
8228
8229 /* Some relocation types map to different relocations depending on the
8230 target. We pick the right one here. */
8231 r_type = arm_real_reloc_type (globals, r_type);
8232
8233 /* It is possible to have linker relaxations on some TLS access
8234 models. Update our information here. */
8235 r_type = elf32_arm_tls_transition (info, r_type, h);
8236
8237 if (r_type != howto->type)
8238 howto = elf32_arm_howto_from_type (r_type);
8239
8240 eh = (struct elf32_arm_link_hash_entry *) h;
8241 sgot = globals->root.sgot;
8242 local_got_offsets = elf_local_got_offsets (input_bfd);
8243 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
8244
8245 if (globals->root.dynamic_sections_created)
8246 srelgot = globals->root.srelgot;
8247 else
8248 srelgot = NULL;
8249
8250 r_symndx = ELF32_R_SYM (rel->r_info);
8251
8252 if (globals->use_rel)
8253 {
8254 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
8255
8256 if (addend & ((howto->src_mask + 1) >> 1))
8257 {
8258 signed_addend = -1;
8259 signed_addend &= ~ howto->src_mask;
8260 signed_addend |= addend;
8261 }
8262 else
8263 signed_addend = addend;
8264 }
8265 else
8266 addend = signed_addend = rel->r_addend;
8267
8268 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
8269 are resolving a function call relocation. */
8270 if (using_thumb_only (globals)
8271 && (r_type == R_ARM_THM_CALL
8272 || r_type == R_ARM_THM_JUMP24)
8273 && branch_type == ST_BRANCH_TO_ARM)
8274 branch_type = ST_BRANCH_TO_THUMB;
8275
8276 /* Record the symbol information that should be used in dynamic
8277 relocations. */
8278 dynreloc_st_type = st_type;
8279 dynreloc_value = value;
8280 if (branch_type == ST_BRANCH_TO_THUMB)
8281 dynreloc_value |= 1;
8282
8283 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8284 VALUE appropriately for relocations that we resolve at link time. */
8285 has_iplt_entry = FALSE;
8286 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8287 && root_plt->offset != (bfd_vma) -1)
8288 {
8289 plt_offset = root_plt->offset;
8290 gotplt_offset = arm_plt->got_offset;
8291
8292 if (h == NULL || eh->is_iplt)
8293 {
8294 has_iplt_entry = TRUE;
8295 splt = globals->root.iplt;
8296
8297 /* Populate .iplt entries here, because not all of them will
8298 be seen by finish_dynamic_symbol. The lower bit is set if
8299 we have already populated the entry. */
8300 if (plt_offset & 1)
8301 plt_offset--;
8302 else
8303 {
8304 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
8305 -1, dynreloc_value))
8306 root_plt->offset |= 1;
8307 else
8308 return bfd_reloc_notsupported;
8309 }
8310
8311 /* Static relocations always resolve to the .iplt entry. */
8312 st_type = STT_FUNC;
8313 value = (splt->output_section->vma
8314 + splt->output_offset
8315 + plt_offset);
8316 branch_type = ST_BRANCH_TO_ARM;
8317
8318 /* If there are non-call relocations that resolve to the .iplt
8319 entry, then all dynamic ones must too. */
8320 if (arm_plt->noncall_refcount != 0)
8321 {
8322 dynreloc_st_type = st_type;
8323 dynreloc_value = value;
8324 }
8325 }
8326 else
8327 /* We populate the .plt entry in finish_dynamic_symbol. */
8328 splt = globals->root.splt;
8329 }
8330 else
8331 {
8332 splt = NULL;
8333 plt_offset = (bfd_vma) -1;
8334 gotplt_offset = (bfd_vma) -1;
8335 }
8336
8337 switch (r_type)
8338 {
8339 case R_ARM_NONE:
8340 /* We don't need to find a value for this symbol. It's just a
8341 marker. */
8342 *unresolved_reloc_p = FALSE;
8343 return bfd_reloc_ok;
8344
8345 case R_ARM_ABS12:
8346 if (!globals->vxworks_p)
8347 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8348
8349 case R_ARM_PC24:
8350 case R_ARM_ABS32:
8351 case R_ARM_ABS32_NOI:
8352 case R_ARM_REL32:
8353 case R_ARM_REL32_NOI:
8354 case R_ARM_CALL:
8355 case R_ARM_JUMP24:
8356 case R_ARM_XPC25:
8357 case R_ARM_PREL31:
8358 case R_ARM_PLT32:
8359 /* Handle relocations which should use the PLT entry. ABS32/REL32
8360 will use the symbol's value, which may point to a PLT entry, but we
8361 don't need to handle that here. If we created a PLT entry, all
8362 branches in this object should go to it, except if the PLT is too
8363 far away, in which case a long branch stub should be inserted. */
8364 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
8365 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
8366 && r_type != R_ARM_CALL
8367 && r_type != R_ARM_JUMP24
8368 && r_type != R_ARM_PLT32)
8369 && plt_offset != (bfd_vma) -1)
8370 {
8371 /* If we've created a .plt section, and assigned a PLT entry
8372 to this function, it must either be a STT_GNU_IFUNC reference
8373 or not be known to bind locally. In other cases, we should
8374 have cleared the PLT entry by now. */
8375 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
8376
8377 value = (splt->output_section->vma
8378 + splt->output_offset
8379 + plt_offset);
8380 *unresolved_reloc_p = FALSE;
8381 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8382 contents, rel->r_offset, value,
8383 rel->r_addend);
8384 }
8385
8386 /* When generating a shared object or relocatable executable, these
8387 relocations are copied into the output file to be resolved at
8388 run time. */
8389 if ((bfd_link_pic (info)
8390 || globals->root.is_relocatable_executable)
8391 && (input_section->flags & SEC_ALLOC)
8392 && !(globals->vxworks_p
8393 && strcmp (input_section->output_section->name,
8394 ".tls_vars") == 0)
8395 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
8396 || !SYMBOL_CALLS_LOCAL (info, h))
8397 && !(input_bfd == globals->stub_bfd
8398 && strstr (input_section->name, STUB_SUFFIX))
8399 && (h == NULL
8400 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8401 || h->root.type != bfd_link_hash_undefweak)
8402 && r_type != R_ARM_PC24
8403 && r_type != R_ARM_CALL
8404 && r_type != R_ARM_JUMP24
8405 && r_type != R_ARM_PREL31
8406 && r_type != R_ARM_PLT32)
8407 {
8408 Elf_Internal_Rela outrel;
8409 bfd_boolean skip, relocate;
8410
8411 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
8412 && !h->def_regular)
8413 {
8414 char *v = _("shared object");
8415
8416 if (bfd_link_executable (info))
8417 v = _("PIE executable");
8418
8419 (*_bfd_error_handler)
8420 (_("%B: relocation %s against external or undefined symbol `%s'"
8421 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
8422 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
8423 return bfd_reloc_notsupported;
8424 }
8425
8426 *unresolved_reloc_p = FALSE;
8427
8428 if (sreloc == NULL && globals->root.dynamic_sections_created)
8429 {
8430 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8431 ! globals->use_rel);
8432
8433 if (sreloc == NULL)
8434 return bfd_reloc_notsupported;
8435 }
8436
8437 skip = FALSE;
8438 relocate = FALSE;
8439
8440 outrel.r_addend = addend;
8441 outrel.r_offset =
8442 _bfd_elf_section_offset (output_bfd, info, input_section,
8443 rel->r_offset);
8444 if (outrel.r_offset == (bfd_vma) -1)
8445 skip = TRUE;
8446 else if (outrel.r_offset == (bfd_vma) -2)
8447 skip = TRUE, relocate = TRUE;
8448 outrel.r_offset += (input_section->output_section->vma
8449 + input_section->output_offset);
8450
8451 if (skip)
8452 memset (&outrel, 0, sizeof outrel);
8453 else if (h != NULL
8454 && h->dynindx != -1
8455 && (!bfd_link_pic (info)
8456 || !SYMBOLIC_BIND (info, h)
8457 || !h->def_regular))
8458 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
8459 else
8460 {
8461 int symbol;
8462
8463 /* This symbol is local, or marked to become local. */
8464 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
8465 if (globals->symbian_p)
8466 {
8467 asection *osec;
8468
8469 /* On Symbian OS, the data segment and text segement
8470 can be relocated independently. Therefore, we
8471 must indicate the segment to which this
8472 relocation is relative. The BPABI allows us to
8473 use any symbol in the right segment; we just use
8474 the section symbol as it is convenient. (We
8475 cannot use the symbol given by "h" directly as it
8476 will not appear in the dynamic symbol table.)
8477
8478 Note that the dynamic linker ignores the section
8479 symbol value, so we don't subtract osec->vma
8480 from the emitted reloc addend. */
8481 if (sym_sec)
8482 osec = sym_sec->output_section;
8483 else
8484 osec = input_section->output_section;
8485 symbol = elf_section_data (osec)->dynindx;
8486 if (symbol == 0)
8487 {
8488 struct elf_link_hash_table *htab = elf_hash_table (info);
8489
8490 if ((osec->flags & SEC_READONLY) == 0
8491 && htab->data_index_section != NULL)
8492 osec = htab->data_index_section;
8493 else
8494 osec = htab->text_index_section;
8495 symbol = elf_section_data (osec)->dynindx;
8496 }
8497 BFD_ASSERT (symbol != 0);
8498 }
8499 else
8500 /* On SVR4-ish systems, the dynamic loader cannot
8501 relocate the text and data segments independently,
8502 so the symbol does not matter. */
8503 symbol = 0;
8504 if (dynreloc_st_type == STT_GNU_IFUNC)
8505 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8506 to the .iplt entry. Instead, every non-call reference
8507 must use an R_ARM_IRELATIVE relocation to obtain the
8508 correct run-time address. */
8509 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8510 else
8511 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
8512 if (globals->use_rel)
8513 relocate = TRUE;
8514 else
8515 outrel.r_addend += dynreloc_value;
8516 }
8517
8518 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
8519
8520 /* If this reloc is against an external symbol, we do not want to
8521 fiddle with the addend. Otherwise, we need to include the symbol
8522 value so that it becomes an addend for the dynamic reloc. */
8523 if (! relocate)
8524 return bfd_reloc_ok;
8525
8526 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8527 contents, rel->r_offset,
8528 dynreloc_value, (bfd_vma) 0);
8529 }
8530 else switch (r_type)
8531 {
8532 case R_ARM_ABS12:
8533 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8534
8535 case R_ARM_XPC25: /* Arm BLX instruction. */
8536 case R_ARM_CALL:
8537 case R_ARM_JUMP24:
8538 case R_ARM_PC24: /* Arm B/BL instruction. */
8539 case R_ARM_PLT32:
8540 {
8541 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8542
8543 if (r_type == R_ARM_XPC25)
8544 {
8545 /* Check for Arm calling Arm function. */
8546 /* FIXME: Should we translate the instruction into a BL
8547 instruction instead ? */
8548 if (branch_type != ST_BRANCH_TO_THUMB)
8549 (*_bfd_error_handler)
8550 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8551 input_bfd,
8552 h ? h->root.root.string : "(local)");
8553 }
8554 else if (r_type == R_ARM_PC24)
8555 {
8556 /* Check for Arm calling Thumb function. */
8557 if (branch_type == ST_BRANCH_TO_THUMB)
8558 {
8559 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8560 output_bfd, input_section,
8561 hit_data, sym_sec, rel->r_offset,
8562 signed_addend, value,
8563 error_message))
8564 return bfd_reloc_ok;
8565 else
8566 return bfd_reloc_dangerous;
8567 }
8568 }
8569
8570 /* Check if a stub has to be inserted because the
8571 destination is too far or we are changing mode. */
8572 if ( r_type == R_ARM_CALL
8573 || r_type == R_ARM_JUMP24
8574 || r_type == R_ARM_PLT32)
8575 {
8576 enum elf32_arm_stub_type stub_type = arm_stub_none;
8577 struct elf32_arm_link_hash_entry *hash;
8578
8579 hash = (struct elf32_arm_link_hash_entry *) h;
8580 stub_type = arm_type_of_stub (info, input_section, rel,
8581 st_type, &branch_type,
8582 hash, value, sym_sec,
8583 input_bfd, sym_name);
8584
8585 if (stub_type != arm_stub_none)
8586 {
8587 /* The target is out of reach, so redirect the
8588 branch to the local stub for this function. */
8589 stub_entry = elf32_arm_get_stub_entry (input_section,
8590 sym_sec, h,
8591 rel, globals,
8592 stub_type);
8593 {
8594 if (stub_entry != NULL)
8595 value = (stub_entry->stub_offset
8596 + stub_entry->stub_sec->output_offset
8597 + stub_entry->stub_sec->output_section->vma);
8598
8599 if (plt_offset != (bfd_vma) -1)
8600 *unresolved_reloc_p = FALSE;
8601 }
8602 }
8603 else
8604 {
8605 /* If the call goes through a PLT entry, make sure to
8606 check distance to the right destination address. */
8607 if (plt_offset != (bfd_vma) -1)
8608 {
8609 value = (splt->output_section->vma
8610 + splt->output_offset
8611 + plt_offset);
8612 *unresolved_reloc_p = FALSE;
8613 /* The PLT entry is in ARM mode, regardless of the
8614 target function. */
8615 branch_type = ST_BRANCH_TO_ARM;
8616 }
8617 }
8618 }
8619
8620 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8621 where:
8622 S is the address of the symbol in the relocation.
8623 P is address of the instruction being relocated.
8624 A is the addend (extracted from the instruction) in bytes.
8625
8626 S is held in 'value'.
8627 P is the base address of the section containing the
8628 instruction plus the offset of the reloc into that
8629 section, ie:
8630 (input_section->output_section->vma +
8631 input_section->output_offset +
8632 rel->r_offset).
8633 A is the addend, converted into bytes, ie:
8634 (signed_addend * 4)
8635
8636 Note: None of these operations have knowledge of the pipeline
8637 size of the processor, thus it is up to the assembler to
8638 encode this information into the addend. */
8639 value -= (input_section->output_section->vma
8640 + input_section->output_offset);
8641 value -= rel->r_offset;
8642 if (globals->use_rel)
8643 value += (signed_addend << howto->size);
8644 else
8645 /* RELA addends do not have to be adjusted by howto->size. */
8646 value += signed_addend;
8647
8648 signed_addend = value;
8649 signed_addend >>= howto->rightshift;
8650
8651 /* A branch to an undefined weak symbol is turned into a jump to
8652 the next instruction unless a PLT entry will be created.
8653 Do the same for local undefined symbols (but not for STN_UNDEF).
8654 The jump to the next instruction is optimized as a NOP depending
8655 on the architecture. */
8656 if (h ? (h->root.type == bfd_link_hash_undefweak
8657 && plt_offset == (bfd_vma) -1)
8658 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
8659 {
8660 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8661
8662 if (arch_has_arm_nop (globals))
8663 value |= 0x0320f000;
8664 else
8665 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8666 }
8667 else
8668 {
8669 /* Perform a signed range check. */
8670 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
8671 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8672 return bfd_reloc_overflow;
8673
8674 addend = (value & 2);
8675
8676 value = (signed_addend & howto->dst_mask)
8677 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
8678
8679 if (r_type == R_ARM_CALL)
8680 {
8681 /* Set the H bit in the BLX instruction. */
8682 if (branch_type == ST_BRANCH_TO_THUMB)
8683 {
8684 if (addend)
8685 value |= (1 << 24);
8686 else
8687 value &= ~(bfd_vma)(1 << 24);
8688 }
8689
8690 /* Select the correct instruction (BL or BLX). */
8691 /* Only if we are not handling a BL to a stub. In this
8692 case, mode switching is performed by the stub. */
8693 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
8694 value |= (1 << 28);
8695 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
8696 {
8697 value &= ~(bfd_vma)(1 << 28);
8698 value |= (1 << 24);
8699 }
8700 }
8701 }
8702 }
8703 break;
8704
8705 case R_ARM_ABS32:
8706 value += addend;
8707 if (branch_type == ST_BRANCH_TO_THUMB)
8708 value |= 1;
8709 break;
8710
8711 case R_ARM_ABS32_NOI:
8712 value += addend;
8713 break;
8714
8715 case R_ARM_REL32:
8716 value += addend;
8717 if (branch_type == ST_BRANCH_TO_THUMB)
8718 value |= 1;
8719 value -= (input_section->output_section->vma
8720 + input_section->output_offset + rel->r_offset);
8721 break;
8722
8723 case R_ARM_REL32_NOI:
8724 value += addend;
8725 value -= (input_section->output_section->vma
8726 + input_section->output_offset + rel->r_offset);
8727 break;
8728
8729 case R_ARM_PREL31:
8730 value -= (input_section->output_section->vma
8731 + input_section->output_offset + rel->r_offset);
8732 value += signed_addend;
8733 if (! h || h->root.type != bfd_link_hash_undefweak)
8734 {
8735 /* Check for overflow. */
8736 if ((value ^ (value >> 1)) & (1 << 30))
8737 return bfd_reloc_overflow;
8738 }
8739 value &= 0x7fffffff;
8740 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
8741 if (branch_type == ST_BRANCH_TO_THUMB)
8742 value |= 1;
8743 break;
8744 }
8745
8746 bfd_put_32 (input_bfd, value, hit_data);
8747 return bfd_reloc_ok;
8748
8749 case R_ARM_ABS8:
8750 /* PR 16202: Refectch the addend using the correct size. */
8751 if (globals->use_rel)
8752 addend = bfd_get_8 (input_bfd, hit_data);
8753 value += addend;
8754
8755 /* There is no way to tell whether the user intended to use a signed or
8756 unsigned addend. When checking for overflow we accept either,
8757 as specified by the AAELF. */
8758 if ((long) value > 0xff || (long) value < -0x80)
8759 return bfd_reloc_overflow;
8760
8761 bfd_put_8 (input_bfd, value, hit_data);
8762 return bfd_reloc_ok;
8763
8764 case R_ARM_ABS16:
8765 /* PR 16202: Refectch the addend using the correct size. */
8766 if (globals->use_rel)
8767 addend = bfd_get_16 (input_bfd, hit_data);
8768 value += addend;
8769
8770 /* See comment for R_ARM_ABS8. */
8771 if ((long) value > 0xffff || (long) value < -0x8000)
8772 return bfd_reloc_overflow;
8773
8774 bfd_put_16 (input_bfd, value, hit_data);
8775 return bfd_reloc_ok;
8776
8777 case R_ARM_THM_ABS5:
8778 /* Support ldr and str instructions for the thumb. */
8779 if (globals->use_rel)
8780 {
8781 /* Need to refetch addend. */
8782 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8783 /* ??? Need to determine shift amount from operand size. */
8784 addend >>= howto->rightshift;
8785 }
8786 value += addend;
8787
8788 /* ??? Isn't value unsigned? */
8789 if ((long) value > 0x1f || (long) value < -0x10)
8790 return bfd_reloc_overflow;
8791
8792 /* ??? Value needs to be properly shifted into place first. */
8793 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8794 bfd_put_16 (input_bfd, value, hit_data);
8795 return bfd_reloc_ok;
8796
8797 case R_ARM_THM_ALU_PREL_11_0:
8798 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8799 {
8800 bfd_vma insn;
8801 bfd_signed_vma relocation;
8802
8803 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8804 | bfd_get_16 (input_bfd, hit_data + 2);
8805
8806 if (globals->use_rel)
8807 {
8808 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8809 | ((insn & (1 << 26)) >> 15);
8810 if (insn & 0xf00000)
8811 signed_addend = -signed_addend;
8812 }
8813
8814 relocation = value + signed_addend;
8815 relocation -= Pa (input_section->output_section->vma
8816 + input_section->output_offset
8817 + rel->r_offset);
8818
8819 value = abs (relocation);
8820
8821 if (value >= 0x1000)
8822 return bfd_reloc_overflow;
8823
8824 insn = (insn & 0xfb0f8f00) | (value & 0xff)
8825 | ((value & 0x700) << 4)
8826 | ((value & 0x800) << 15);
8827 if (relocation < 0)
8828 insn |= 0xa00000;
8829
8830 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8831 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8832
8833 return bfd_reloc_ok;
8834 }
8835
8836 case R_ARM_THM_PC8:
8837 /* PR 10073: This reloc is not generated by the GNU toolchain,
8838 but it is supported for compatibility with third party libraries
8839 generated by other compilers, specifically the ARM/IAR. */
8840 {
8841 bfd_vma insn;
8842 bfd_signed_vma relocation;
8843
8844 insn = bfd_get_16 (input_bfd, hit_data);
8845
8846 if (globals->use_rel)
8847 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
8848
8849 relocation = value + addend;
8850 relocation -= Pa (input_section->output_section->vma
8851 + input_section->output_offset
8852 + rel->r_offset);
8853
8854 value = abs (relocation);
8855
8856 /* We do not check for overflow of this reloc. Although strictly
8857 speaking this is incorrect, it appears to be necessary in order
8858 to work with IAR generated relocs. Since GCC and GAS do not
8859 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8860 a problem for them. */
8861 value &= 0x3fc;
8862
8863 insn = (insn & 0xff00) | (value >> 2);
8864
8865 bfd_put_16 (input_bfd, insn, hit_data);
8866
8867 return bfd_reloc_ok;
8868 }
8869
8870 case R_ARM_THM_PC12:
8871 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8872 {
8873 bfd_vma insn;
8874 bfd_signed_vma relocation;
8875
8876 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8877 | bfd_get_16 (input_bfd, hit_data + 2);
8878
8879 if (globals->use_rel)
8880 {
8881 signed_addend = insn & 0xfff;
8882 if (!(insn & (1 << 23)))
8883 signed_addend = -signed_addend;
8884 }
8885
8886 relocation = value + signed_addend;
8887 relocation -= Pa (input_section->output_section->vma
8888 + input_section->output_offset
8889 + rel->r_offset);
8890
8891 value = abs (relocation);
8892
8893 if (value >= 0x1000)
8894 return bfd_reloc_overflow;
8895
8896 insn = (insn & 0xff7ff000) | value;
8897 if (relocation >= 0)
8898 insn |= (1 << 23);
8899
8900 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8901 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8902
8903 return bfd_reloc_ok;
8904 }
8905
8906 case R_ARM_THM_XPC22:
8907 case R_ARM_THM_CALL:
8908 case R_ARM_THM_JUMP24:
8909 /* Thumb BL (branch long instruction). */
8910 {
8911 bfd_vma relocation;
8912 bfd_vma reloc_sign;
8913 bfd_boolean overflow = FALSE;
8914 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8915 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8916 bfd_signed_vma reloc_signed_max;
8917 bfd_signed_vma reloc_signed_min;
8918 bfd_vma check;
8919 bfd_signed_vma signed_check;
8920 int bitsize;
8921 const int thumb2 = using_thumb2 (globals);
8922
8923 /* A branch to an undefined weak symbol is turned into a jump to
8924 the next instruction unless a PLT entry will be created.
8925 The jump to the next instruction is optimized as a NOP.W for
8926 Thumb-2 enabled architectures. */
8927 if (h && h->root.type == bfd_link_hash_undefweak
8928 && plt_offset == (bfd_vma) -1)
8929 {
8930 if (arch_has_thumb2_nop (globals))
8931 {
8932 bfd_put_16 (input_bfd, 0xf3af, hit_data);
8933 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8934 }
8935 else
8936 {
8937 bfd_put_16 (input_bfd, 0xe000, hit_data);
8938 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8939 }
8940 return bfd_reloc_ok;
8941 }
8942
8943 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8944 with Thumb-1) involving the J1 and J2 bits. */
8945 if (globals->use_rel)
8946 {
8947 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8948 bfd_vma upper = upper_insn & 0x3ff;
8949 bfd_vma lower = lower_insn & 0x7ff;
8950 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8951 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8952 bfd_vma i1 = j1 ^ s ? 0 : 1;
8953 bfd_vma i2 = j2 ^ s ? 0 : 1;
8954
8955 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8956 /* Sign extend. */
8957 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8958
8959 signed_addend = addend;
8960 }
8961
8962 if (r_type == R_ARM_THM_XPC22)
8963 {
8964 /* Check for Thumb to Thumb call. */
8965 /* FIXME: Should we translate the instruction into a BL
8966 instruction instead ? */
8967 if (branch_type == ST_BRANCH_TO_THUMB)
8968 (*_bfd_error_handler)
8969 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8970 input_bfd,
8971 h ? h->root.root.string : "(local)");
8972 }
8973 else
8974 {
8975 /* If it is not a call to Thumb, assume call to Arm.
8976 If it is a call relative to a section name, then it is not a
8977 function call at all, but rather a long jump. Calls through
8978 the PLT do not require stubs. */
8979 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
8980 {
8981 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8982 {
8983 /* Convert BL to BLX. */
8984 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8985 }
8986 else if (( r_type != R_ARM_THM_CALL)
8987 && (r_type != R_ARM_THM_JUMP24))
8988 {
8989 if (elf32_thumb_to_arm_stub
8990 (info, sym_name, input_bfd, output_bfd, input_section,
8991 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8992 error_message))
8993 return bfd_reloc_ok;
8994 else
8995 return bfd_reloc_dangerous;
8996 }
8997 }
8998 else if (branch_type == ST_BRANCH_TO_THUMB
8999 && globals->use_blx
9000 && r_type == R_ARM_THM_CALL)
9001 {
9002 /* Make sure this is a BL. */
9003 lower_insn |= 0x1800;
9004 }
9005 }
9006
9007 enum elf32_arm_stub_type stub_type = arm_stub_none;
9008 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
9009 {
9010 /* Check if a stub has to be inserted because the destination
9011 is too far. */
9012 struct elf32_arm_stub_hash_entry *stub_entry;
9013 struct elf32_arm_link_hash_entry *hash;
9014
9015 hash = (struct elf32_arm_link_hash_entry *) h;
9016
9017 stub_type = arm_type_of_stub (info, input_section, rel,
9018 st_type, &branch_type,
9019 hash, value, sym_sec,
9020 input_bfd, sym_name);
9021
9022 if (stub_type != arm_stub_none)
9023 {
9024 /* The target is out of reach or we are changing modes, so
9025 redirect the branch to the local stub for this
9026 function. */
9027 stub_entry = elf32_arm_get_stub_entry (input_section,
9028 sym_sec, h,
9029 rel, globals,
9030 stub_type);
9031 if (stub_entry != NULL)
9032 {
9033 value = (stub_entry->stub_offset
9034 + stub_entry->stub_sec->output_offset
9035 + stub_entry->stub_sec->output_section->vma);
9036
9037 if (plt_offset != (bfd_vma) -1)
9038 *unresolved_reloc_p = FALSE;
9039 }
9040
9041 /* If this call becomes a call to Arm, force BLX. */
9042 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
9043 {
9044 if ((stub_entry
9045 && !arm_stub_is_thumb (stub_entry->stub_type))
9046 || branch_type != ST_BRANCH_TO_THUMB)
9047 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9048 }
9049 }
9050 }
9051
9052 /* Handle calls via the PLT. */
9053 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
9054 {
9055 value = (splt->output_section->vma
9056 + splt->output_offset
9057 + plt_offset);
9058
9059 if (globals->use_blx
9060 && r_type == R_ARM_THM_CALL
9061 && ! using_thumb_only (globals))
9062 {
9063 /* If the Thumb BLX instruction is available, convert
9064 the BL to a BLX instruction to call the ARM-mode
9065 PLT entry. */
9066 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9067 branch_type = ST_BRANCH_TO_ARM;
9068 }
9069 else
9070 {
9071 if (! using_thumb_only (globals))
9072 /* Target the Thumb stub before the ARM PLT entry. */
9073 value -= PLT_THUMB_STUB_SIZE;
9074 branch_type = ST_BRANCH_TO_THUMB;
9075 }
9076 *unresolved_reloc_p = FALSE;
9077 }
9078
9079 relocation = value + signed_addend;
9080
9081 relocation -= (input_section->output_section->vma
9082 + input_section->output_offset
9083 + rel->r_offset);
9084
9085 check = relocation >> howto->rightshift;
9086
9087 /* If this is a signed value, the rightshift just dropped
9088 leading 1 bits (assuming twos complement). */
9089 if ((bfd_signed_vma) relocation >= 0)
9090 signed_check = check;
9091 else
9092 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
9093
9094 /* Calculate the permissable maximum and minimum values for
9095 this relocation according to whether we're relocating for
9096 Thumb-2 or not. */
9097 bitsize = howto->bitsize;
9098 if (!thumb2)
9099 bitsize -= 2;
9100 reloc_signed_max = (1 << (bitsize - 1)) - 1;
9101 reloc_signed_min = ~reloc_signed_max;
9102
9103 /* Assumes two's complement. */
9104 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9105 overflow = TRUE;
9106
9107 if ((lower_insn & 0x5000) == 0x4000)
9108 /* For a BLX instruction, make sure that the relocation is rounded up
9109 to a word boundary. This follows the semantics of the instruction
9110 which specifies that bit 1 of the target address will come from bit
9111 1 of the base address. */
9112 relocation = (relocation + 2) & ~ 3;
9113
9114 /* Put RELOCATION back into the insn. Assumes two's complement.
9115 We use the Thumb-2 encoding, which is safe even if dealing with
9116 a Thumb-1 instruction by virtue of our overflow check above. */
9117 reloc_sign = (signed_check < 0) ? 1 : 0;
9118 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
9119 | ((relocation >> 12) & 0x3ff)
9120 | (reloc_sign << 10);
9121 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
9122 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
9123 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
9124 | ((relocation >> 1) & 0x7ff);
9125
9126 /* Put the relocated value back in the object file: */
9127 bfd_put_16 (input_bfd, upper_insn, hit_data);
9128 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9129
9130 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9131 }
9132 break;
9133
9134 case R_ARM_THM_JUMP19:
9135 /* Thumb32 conditional branch instruction. */
9136 {
9137 bfd_vma relocation;
9138 bfd_boolean overflow = FALSE;
9139 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
9140 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
9141 bfd_signed_vma reloc_signed_max = 0xffffe;
9142 bfd_signed_vma reloc_signed_min = -0x100000;
9143 bfd_signed_vma signed_check;
9144 enum elf32_arm_stub_type stub_type = arm_stub_none;
9145 struct elf32_arm_stub_hash_entry *stub_entry;
9146 struct elf32_arm_link_hash_entry *hash;
9147
9148 /* Need to refetch the addend, reconstruct the top three bits,
9149 and squish the two 11 bit pieces together. */
9150 if (globals->use_rel)
9151 {
9152 bfd_vma S = (upper_insn & 0x0400) >> 10;
9153 bfd_vma upper = (upper_insn & 0x003f);
9154 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
9155 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
9156 bfd_vma lower = (lower_insn & 0x07ff);
9157
9158 upper |= J1 << 6;
9159 upper |= J2 << 7;
9160 upper |= (!S) << 8;
9161 upper -= 0x0100; /* Sign extend. */
9162
9163 addend = (upper << 12) | (lower << 1);
9164 signed_addend = addend;
9165 }
9166
9167 /* Handle calls via the PLT. */
9168 if (plt_offset != (bfd_vma) -1)
9169 {
9170 value = (splt->output_section->vma
9171 + splt->output_offset
9172 + plt_offset);
9173 /* Target the Thumb stub before the ARM PLT entry. */
9174 value -= PLT_THUMB_STUB_SIZE;
9175 *unresolved_reloc_p = FALSE;
9176 }
9177
9178 hash = (struct elf32_arm_link_hash_entry *)h;
9179
9180 stub_type = arm_type_of_stub (info, input_section, rel,
9181 st_type, &branch_type,
9182 hash, value, sym_sec,
9183 input_bfd, sym_name);
9184 if (stub_type != arm_stub_none)
9185 {
9186 stub_entry = elf32_arm_get_stub_entry (input_section,
9187 sym_sec, h,
9188 rel, globals,
9189 stub_type);
9190 if (stub_entry != NULL)
9191 {
9192 value = (stub_entry->stub_offset
9193 + stub_entry->stub_sec->output_offset
9194 + stub_entry->stub_sec->output_section->vma);
9195 }
9196 }
9197
9198 relocation = value + signed_addend;
9199 relocation -= (input_section->output_section->vma
9200 + input_section->output_offset
9201 + rel->r_offset);
9202 signed_check = (bfd_signed_vma) relocation;
9203
9204 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9205 overflow = TRUE;
9206
9207 /* Put RELOCATION back into the insn. */
9208 {
9209 bfd_vma S = (relocation & 0x00100000) >> 20;
9210 bfd_vma J2 = (relocation & 0x00080000) >> 19;
9211 bfd_vma J1 = (relocation & 0x00040000) >> 18;
9212 bfd_vma hi = (relocation & 0x0003f000) >> 12;
9213 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
9214
9215 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
9216 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
9217 }
9218
9219 /* Put the relocated value back in the object file: */
9220 bfd_put_16 (input_bfd, upper_insn, hit_data);
9221 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9222
9223 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9224 }
9225
9226 case R_ARM_THM_JUMP11:
9227 case R_ARM_THM_JUMP8:
9228 case R_ARM_THM_JUMP6:
9229 /* Thumb B (branch) instruction). */
9230 {
9231 bfd_signed_vma relocation;
9232 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
9233 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
9234 bfd_signed_vma signed_check;
9235
9236 /* CZB cannot jump backward. */
9237 if (r_type == R_ARM_THM_JUMP6)
9238 reloc_signed_min = 0;
9239
9240 if (globals->use_rel)
9241 {
9242 /* Need to refetch addend. */
9243 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9244 if (addend & ((howto->src_mask + 1) >> 1))
9245 {
9246 signed_addend = -1;
9247 signed_addend &= ~ howto->src_mask;
9248 signed_addend |= addend;
9249 }
9250 else
9251 signed_addend = addend;
9252 /* The value in the insn has been right shifted. We need to
9253 undo this, so that we can perform the address calculation
9254 in terms of bytes. */
9255 signed_addend <<= howto->rightshift;
9256 }
9257 relocation = value + signed_addend;
9258
9259 relocation -= (input_section->output_section->vma
9260 + input_section->output_offset
9261 + rel->r_offset);
9262
9263 relocation >>= howto->rightshift;
9264 signed_check = relocation;
9265
9266 if (r_type == R_ARM_THM_JUMP6)
9267 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
9268 else
9269 relocation &= howto->dst_mask;
9270 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
9271
9272 bfd_put_16 (input_bfd, relocation, hit_data);
9273
9274 /* Assumes two's complement. */
9275 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9276 return bfd_reloc_overflow;
9277
9278 return bfd_reloc_ok;
9279 }
9280
9281 case R_ARM_ALU_PCREL7_0:
9282 case R_ARM_ALU_PCREL15_8:
9283 case R_ARM_ALU_PCREL23_15:
9284 {
9285 bfd_vma insn;
9286 bfd_vma relocation;
9287
9288 insn = bfd_get_32 (input_bfd, hit_data);
9289 if (globals->use_rel)
9290 {
9291 /* Extract the addend. */
9292 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
9293 signed_addend = addend;
9294 }
9295 relocation = value + signed_addend;
9296
9297 relocation -= (input_section->output_section->vma
9298 + input_section->output_offset
9299 + rel->r_offset);
9300 insn = (insn & ~0xfff)
9301 | ((howto->bitpos << 7) & 0xf00)
9302 | ((relocation >> howto->bitpos) & 0xff);
9303 bfd_put_32 (input_bfd, value, hit_data);
9304 }
9305 return bfd_reloc_ok;
9306
9307 case R_ARM_GNU_VTINHERIT:
9308 case R_ARM_GNU_VTENTRY:
9309 return bfd_reloc_ok;
9310
9311 case R_ARM_GOTOFF32:
9312 /* Relocation is relative to the start of the
9313 global offset table. */
9314
9315 BFD_ASSERT (sgot != NULL);
9316 if (sgot == NULL)
9317 return bfd_reloc_notsupported;
9318
9319 /* If we are addressing a Thumb function, we need to adjust the
9320 address by one, so that attempts to call the function pointer will
9321 correctly interpret it as Thumb code. */
9322 if (branch_type == ST_BRANCH_TO_THUMB)
9323 value += 1;
9324
9325 /* Note that sgot->output_offset is not involved in this
9326 calculation. We always want the start of .got. If we
9327 define _GLOBAL_OFFSET_TABLE in a different way, as is
9328 permitted by the ABI, we might have to change this
9329 calculation. */
9330 value -= sgot->output_section->vma;
9331 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9332 contents, rel->r_offset, value,
9333 rel->r_addend);
9334
9335 case R_ARM_GOTPC:
9336 /* Use global offset table as symbol value. */
9337 BFD_ASSERT (sgot != NULL);
9338
9339 if (sgot == NULL)
9340 return bfd_reloc_notsupported;
9341
9342 *unresolved_reloc_p = FALSE;
9343 value = sgot->output_section->vma;
9344 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9345 contents, rel->r_offset, value,
9346 rel->r_addend);
9347
9348 case R_ARM_GOT32:
9349 case R_ARM_GOT_PREL:
9350 /* Relocation is to the entry for this symbol in the
9351 global offset table. */
9352 if (sgot == NULL)
9353 return bfd_reloc_notsupported;
9354
9355 if (dynreloc_st_type == STT_GNU_IFUNC
9356 && plt_offset != (bfd_vma) -1
9357 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
9358 {
9359 /* We have a relocation against a locally-binding STT_GNU_IFUNC
9360 symbol, and the relocation resolves directly to the runtime
9361 target rather than to the .iplt entry. This means that any
9362 .got entry would be the same value as the .igot.plt entry,
9363 so there's no point creating both. */
9364 sgot = globals->root.igotplt;
9365 value = sgot->output_offset + gotplt_offset;
9366 }
9367 else if (h != NULL)
9368 {
9369 bfd_vma off;
9370
9371 off = h->got.offset;
9372 BFD_ASSERT (off != (bfd_vma) -1);
9373 if ((off & 1) != 0)
9374 {
9375 /* We have already processsed one GOT relocation against
9376 this symbol. */
9377 off &= ~1;
9378 if (globals->root.dynamic_sections_created
9379 && !SYMBOL_REFERENCES_LOCAL (info, h))
9380 *unresolved_reloc_p = FALSE;
9381 }
9382 else
9383 {
9384 Elf_Internal_Rela outrel;
9385
9386 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
9387 {
9388 /* If the symbol doesn't resolve locally in a static
9389 object, we have an undefined reference. If the
9390 symbol doesn't resolve locally in a dynamic object,
9391 it should be resolved by the dynamic linker. */
9392 if (globals->root.dynamic_sections_created)
9393 {
9394 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9395 *unresolved_reloc_p = FALSE;
9396 }
9397 else
9398 outrel.r_info = 0;
9399 outrel.r_addend = 0;
9400 }
9401 else
9402 {
9403 if (dynreloc_st_type == STT_GNU_IFUNC)
9404 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9405 else if (bfd_link_pic (info) &&
9406 (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9407 || h->root.type != bfd_link_hash_undefweak))
9408 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9409 else
9410 outrel.r_info = 0;
9411 outrel.r_addend = dynreloc_value;
9412 }
9413
9414 /* The GOT entry is initialized to zero by default.
9415 See if we should install a different value. */
9416 if (outrel.r_addend != 0
9417 && (outrel.r_info == 0 || globals->use_rel))
9418 {
9419 bfd_put_32 (output_bfd, outrel.r_addend,
9420 sgot->contents + off);
9421 outrel.r_addend = 0;
9422 }
9423
9424 if (outrel.r_info != 0)
9425 {
9426 outrel.r_offset = (sgot->output_section->vma
9427 + sgot->output_offset
9428 + off);
9429 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9430 }
9431 h->got.offset |= 1;
9432 }
9433 value = sgot->output_offset + off;
9434 }
9435 else
9436 {
9437 bfd_vma off;
9438
9439 BFD_ASSERT (local_got_offsets != NULL &&
9440 local_got_offsets[r_symndx] != (bfd_vma) -1);
9441
9442 off = local_got_offsets[r_symndx];
9443
9444 /* The offset must always be a multiple of 4. We use the
9445 least significant bit to record whether we have already
9446 generated the necessary reloc. */
9447 if ((off & 1) != 0)
9448 off &= ~1;
9449 else
9450 {
9451 if (globals->use_rel)
9452 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
9453
9454 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
9455 {
9456 Elf_Internal_Rela outrel;
9457
9458 outrel.r_addend = addend + dynreloc_value;
9459 outrel.r_offset = (sgot->output_section->vma
9460 + sgot->output_offset
9461 + off);
9462 if (dynreloc_st_type == STT_GNU_IFUNC)
9463 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9464 else
9465 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9466 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9467 }
9468
9469 local_got_offsets[r_symndx] |= 1;
9470 }
9471
9472 value = sgot->output_offset + off;
9473 }
9474 if (r_type != R_ARM_GOT32)
9475 value += sgot->output_section->vma;
9476
9477 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9478 contents, rel->r_offset, value,
9479 rel->r_addend);
9480
9481 case R_ARM_TLS_LDO32:
9482 value = value - dtpoff_base (info);
9483
9484 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9485 contents, rel->r_offset, value,
9486 rel->r_addend);
9487
9488 case R_ARM_TLS_LDM32:
9489 {
9490 bfd_vma off;
9491
9492 if (sgot == NULL)
9493 abort ();
9494
9495 off = globals->tls_ldm_got.offset;
9496
9497 if ((off & 1) != 0)
9498 off &= ~1;
9499 else
9500 {
9501 /* If we don't know the module number, create a relocation
9502 for it. */
9503 if (bfd_link_pic (info))
9504 {
9505 Elf_Internal_Rela outrel;
9506
9507 if (srelgot == NULL)
9508 abort ();
9509
9510 outrel.r_addend = 0;
9511 outrel.r_offset = (sgot->output_section->vma
9512 + sgot->output_offset + off);
9513 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9514
9515 if (globals->use_rel)
9516 bfd_put_32 (output_bfd, outrel.r_addend,
9517 sgot->contents + off);
9518
9519 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9520 }
9521 else
9522 bfd_put_32 (output_bfd, 1, sgot->contents + off);
9523
9524 globals->tls_ldm_got.offset |= 1;
9525 }
9526
9527 value = sgot->output_section->vma + sgot->output_offset + off
9528 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9529
9530 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9531 contents, rel->r_offset, value,
9532 rel->r_addend);
9533 }
9534
9535 case R_ARM_TLS_CALL:
9536 case R_ARM_THM_TLS_CALL:
9537 case R_ARM_TLS_GD32:
9538 case R_ARM_TLS_IE32:
9539 case R_ARM_TLS_GOTDESC:
9540 case R_ARM_TLS_DESCSEQ:
9541 case R_ARM_THM_TLS_DESCSEQ:
9542 {
9543 bfd_vma off, offplt;
9544 int indx = 0;
9545 char tls_type;
9546
9547 BFD_ASSERT (sgot != NULL);
9548
9549 if (h != NULL)
9550 {
9551 bfd_boolean dyn;
9552 dyn = globals->root.dynamic_sections_created;
9553 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
9554 bfd_link_pic (info),
9555 h)
9556 && (!bfd_link_pic (info)
9557 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9558 {
9559 *unresolved_reloc_p = FALSE;
9560 indx = h->dynindx;
9561 }
9562 off = h->got.offset;
9563 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
9564 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9565 }
9566 else
9567 {
9568 BFD_ASSERT (local_got_offsets != NULL);
9569 off = local_got_offsets[r_symndx];
9570 offplt = local_tlsdesc_gotents[r_symndx];
9571 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9572 }
9573
9574 /* Linker relaxations happens from one of the
9575 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9576 if (ELF32_R_TYPE(rel->r_info) != r_type)
9577 tls_type = GOT_TLS_IE;
9578
9579 BFD_ASSERT (tls_type != GOT_UNKNOWN);
9580
9581 if ((off & 1) != 0)
9582 off &= ~1;
9583 else
9584 {
9585 bfd_boolean need_relocs = FALSE;
9586 Elf_Internal_Rela outrel;
9587 int cur_off = off;
9588
9589 /* The GOT entries have not been initialized yet. Do it
9590 now, and emit any relocations. If both an IE GOT and a
9591 GD GOT are necessary, we emit the GD first. */
9592
9593 if ((bfd_link_pic (info) || indx != 0)
9594 && (h == NULL
9595 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9596 || h->root.type != bfd_link_hash_undefweak))
9597 {
9598 need_relocs = TRUE;
9599 BFD_ASSERT (srelgot != NULL);
9600 }
9601
9602 if (tls_type & GOT_TLS_GDESC)
9603 {
9604 bfd_byte *loc;
9605
9606 /* We should have relaxed, unless this is an undefined
9607 weak symbol. */
9608 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9609 || bfd_link_pic (info));
9610 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9611 <= globals->root.sgotplt->size);
9612
9613 outrel.r_addend = 0;
9614 outrel.r_offset = (globals->root.sgotplt->output_section->vma
9615 + globals->root.sgotplt->output_offset
9616 + offplt
9617 + globals->sgotplt_jump_table_size);
9618
9619 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9620 sreloc = globals->root.srelplt;
9621 loc = sreloc->contents;
9622 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9623 BFD_ASSERT (loc + RELOC_SIZE (globals)
9624 <= sreloc->contents + sreloc->size);
9625
9626 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9627
9628 /* For globals, the first word in the relocation gets
9629 the relocation index and the top bit set, or zero,
9630 if we're binding now. For locals, it gets the
9631 symbol's offset in the tls section. */
9632 bfd_put_32 (output_bfd,
9633 !h ? value - elf_hash_table (info)->tls_sec->vma
9634 : info->flags & DF_BIND_NOW ? 0
9635 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
9636 globals->root.sgotplt->contents + offplt
9637 + globals->sgotplt_jump_table_size);
9638
9639 /* Second word in the relocation is always zero. */
9640 bfd_put_32 (output_bfd, 0,
9641 globals->root.sgotplt->contents + offplt
9642 + globals->sgotplt_jump_table_size + 4);
9643 }
9644 if (tls_type & GOT_TLS_GD)
9645 {
9646 if (need_relocs)
9647 {
9648 outrel.r_addend = 0;
9649 outrel.r_offset = (sgot->output_section->vma
9650 + sgot->output_offset
9651 + cur_off);
9652 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
9653
9654 if (globals->use_rel)
9655 bfd_put_32 (output_bfd, outrel.r_addend,
9656 sgot->contents + cur_off);
9657
9658 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9659
9660 if (indx == 0)
9661 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9662 sgot->contents + cur_off + 4);
9663 else
9664 {
9665 outrel.r_addend = 0;
9666 outrel.r_info = ELF32_R_INFO (indx,
9667 R_ARM_TLS_DTPOFF32);
9668 outrel.r_offset += 4;
9669
9670 if (globals->use_rel)
9671 bfd_put_32 (output_bfd, outrel.r_addend,
9672 sgot->contents + cur_off + 4);
9673
9674 elf32_arm_add_dynreloc (output_bfd, info,
9675 srelgot, &outrel);
9676 }
9677 }
9678 else
9679 {
9680 /* If we are not emitting relocations for a
9681 general dynamic reference, then we must be in a
9682 static link or an executable link with the
9683 symbol binding locally. Mark it as belonging
9684 to module 1, the executable. */
9685 bfd_put_32 (output_bfd, 1,
9686 sgot->contents + cur_off);
9687 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9688 sgot->contents + cur_off + 4);
9689 }
9690
9691 cur_off += 8;
9692 }
9693
9694 if (tls_type & GOT_TLS_IE)
9695 {
9696 if (need_relocs)
9697 {
9698 if (indx == 0)
9699 outrel.r_addend = value - dtpoff_base (info);
9700 else
9701 outrel.r_addend = 0;
9702 outrel.r_offset = (sgot->output_section->vma
9703 + sgot->output_offset
9704 + cur_off);
9705 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9706
9707 if (globals->use_rel)
9708 bfd_put_32 (output_bfd, outrel.r_addend,
9709 sgot->contents + cur_off);
9710
9711 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9712 }
9713 else
9714 bfd_put_32 (output_bfd, tpoff (info, value),
9715 sgot->contents + cur_off);
9716 cur_off += 4;
9717 }
9718
9719 if (h != NULL)
9720 h->got.offset |= 1;
9721 else
9722 local_got_offsets[r_symndx] |= 1;
9723 }
9724
9725 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9726 off += 8;
9727 else if (tls_type & GOT_TLS_GDESC)
9728 off = offplt;
9729
9730 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9731 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9732 {
9733 bfd_signed_vma offset;
9734 /* TLS stubs are arm mode. The original symbol is a
9735 data object, so branch_type is bogus. */
9736 branch_type = ST_BRANCH_TO_ARM;
9737 enum elf32_arm_stub_type stub_type
9738 = arm_type_of_stub (info, input_section, rel,
9739 st_type, &branch_type,
9740 (struct elf32_arm_link_hash_entry *)h,
9741 globals->tls_trampoline, globals->root.splt,
9742 input_bfd, sym_name);
9743
9744 if (stub_type != arm_stub_none)
9745 {
9746 struct elf32_arm_stub_hash_entry *stub_entry
9747 = elf32_arm_get_stub_entry
9748 (input_section, globals->root.splt, 0, rel,
9749 globals, stub_type);
9750 offset = (stub_entry->stub_offset
9751 + stub_entry->stub_sec->output_offset
9752 + stub_entry->stub_sec->output_section->vma);
9753 }
9754 else
9755 offset = (globals->root.splt->output_section->vma
9756 + globals->root.splt->output_offset
9757 + globals->tls_trampoline);
9758
9759 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9760 {
9761 unsigned long inst;
9762
9763 offset -= (input_section->output_section->vma
9764 + input_section->output_offset
9765 + rel->r_offset + 8);
9766
9767 inst = offset >> 2;
9768 inst &= 0x00ffffff;
9769 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9770 }
9771 else
9772 {
9773 /* Thumb blx encodes the offset in a complicated
9774 fashion. */
9775 unsigned upper_insn, lower_insn;
9776 unsigned neg;
9777
9778 offset -= (input_section->output_section->vma
9779 + input_section->output_offset
9780 + rel->r_offset + 4);
9781
9782 if (stub_type != arm_stub_none
9783 && arm_stub_is_thumb (stub_type))
9784 {
9785 lower_insn = 0xd000;
9786 }
9787 else
9788 {
9789 lower_insn = 0xc000;
9790 /* Round up the offset to a word boundary. */
9791 offset = (offset + 2) & ~2;
9792 }
9793
9794 neg = offset < 0;
9795 upper_insn = (0xf000
9796 | ((offset >> 12) & 0x3ff)
9797 | (neg << 10));
9798 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
9799 | (((!((offset >> 22) & 1)) ^ neg) << 11)
9800 | ((offset >> 1) & 0x7ff);
9801 bfd_put_16 (input_bfd, upper_insn, hit_data);
9802 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9803 return bfd_reloc_ok;
9804 }
9805 }
9806 /* These relocations needs special care, as besides the fact
9807 they point somewhere in .gotplt, the addend must be
9808 adjusted accordingly depending on the type of instruction
9809 we refer to. */
9810 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9811 {
9812 unsigned long data, insn;
9813 unsigned thumb;
9814
9815 data = bfd_get_32 (input_bfd, hit_data);
9816 thumb = data & 1;
9817 data &= ~1u;
9818
9819 if (thumb)
9820 {
9821 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9822 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9823 insn = (insn << 16)
9824 | bfd_get_16 (input_bfd,
9825 contents + rel->r_offset - data + 2);
9826 if ((insn & 0xf800c000) == 0xf000c000)
9827 /* bl/blx */
9828 value = -6;
9829 else if ((insn & 0xffffff00) == 0x4400)
9830 /* add */
9831 value = -5;
9832 else
9833 {
9834 (*_bfd_error_handler)
9835 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9836 input_bfd, input_section,
9837 (unsigned long)rel->r_offset, insn);
9838 return bfd_reloc_notsupported;
9839 }
9840 }
9841 else
9842 {
9843 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9844
9845 switch (insn >> 24)
9846 {
9847 case 0xeb: /* bl */
9848 case 0xfa: /* blx */
9849 value = -4;
9850 break;
9851
9852 case 0xe0: /* add */
9853 value = -8;
9854 break;
9855
9856 default:
9857 (*_bfd_error_handler)
9858 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9859 input_bfd, input_section,
9860 (unsigned long)rel->r_offset, insn);
9861 return bfd_reloc_notsupported;
9862 }
9863 }
9864
9865 value += ((globals->root.sgotplt->output_section->vma
9866 + globals->root.sgotplt->output_offset + off)
9867 - (input_section->output_section->vma
9868 + input_section->output_offset
9869 + rel->r_offset)
9870 + globals->sgotplt_jump_table_size);
9871 }
9872 else
9873 value = ((globals->root.sgot->output_section->vma
9874 + globals->root.sgot->output_offset + off)
9875 - (input_section->output_section->vma
9876 + input_section->output_offset + rel->r_offset));
9877
9878 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9879 contents, rel->r_offset, value,
9880 rel->r_addend);
9881 }
9882
9883 case R_ARM_TLS_LE32:
9884 if (bfd_link_pic (info) && !bfd_link_pie (info))
9885 {
9886 (*_bfd_error_handler)
9887 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9888 input_bfd, input_section,
9889 (long) rel->r_offset, howto->name);
9890 return bfd_reloc_notsupported;
9891 }
9892 else
9893 value = tpoff (info, value);
9894
9895 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9896 contents, rel->r_offset, value,
9897 rel->r_addend);
9898
9899 case R_ARM_V4BX:
9900 if (globals->fix_v4bx)
9901 {
9902 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9903
9904 /* Ensure that we have a BX instruction. */
9905 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
9906
9907 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9908 {
9909 /* Branch to veneer. */
9910 bfd_vma glue_addr;
9911 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9912 glue_addr -= input_section->output_section->vma
9913 + input_section->output_offset
9914 + rel->r_offset + 8;
9915 insn = (insn & 0xf0000000) | 0x0a000000
9916 | ((glue_addr >> 2) & 0x00ffffff);
9917 }
9918 else
9919 {
9920 /* Preserve Rm (lowest four bits) and the condition code
9921 (highest four bits). Other bits encode MOV PC,Rm. */
9922 insn = (insn & 0xf000000f) | 0x01a0f000;
9923 }
9924
9925 bfd_put_32 (input_bfd, insn, hit_data);
9926 }
9927 return bfd_reloc_ok;
9928
9929 case R_ARM_MOVW_ABS_NC:
9930 case R_ARM_MOVT_ABS:
9931 case R_ARM_MOVW_PREL_NC:
9932 case R_ARM_MOVT_PREL:
9933 /* Until we properly support segment-base-relative addressing then
9934 we assume the segment base to be zero, as for the group relocations.
9935 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9936 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9937 case R_ARM_MOVW_BREL_NC:
9938 case R_ARM_MOVW_BREL:
9939 case R_ARM_MOVT_BREL:
9940 {
9941 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9942
9943 if (globals->use_rel)
9944 {
9945 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
9946 signed_addend = (addend ^ 0x8000) - 0x8000;
9947 }
9948
9949 value += signed_addend;
9950
9951 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9952 value -= (input_section->output_section->vma
9953 + input_section->output_offset + rel->r_offset);
9954
9955 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9956 return bfd_reloc_overflow;
9957
9958 if (branch_type == ST_BRANCH_TO_THUMB)
9959 value |= 1;
9960
9961 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9962 || r_type == R_ARM_MOVT_BREL)
9963 value >>= 16;
9964
9965 insn &= 0xfff0f000;
9966 insn |= value & 0xfff;
9967 insn |= (value & 0xf000) << 4;
9968 bfd_put_32 (input_bfd, insn, hit_data);
9969 }
9970 return bfd_reloc_ok;
9971
9972 case R_ARM_THM_MOVW_ABS_NC:
9973 case R_ARM_THM_MOVT_ABS:
9974 case R_ARM_THM_MOVW_PREL_NC:
9975 case R_ARM_THM_MOVT_PREL:
9976 /* Until we properly support segment-base-relative addressing then
9977 we assume the segment base to be zero, as for the above relocations.
9978 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9979 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9980 as R_ARM_THM_MOVT_ABS. */
9981 case R_ARM_THM_MOVW_BREL_NC:
9982 case R_ARM_THM_MOVW_BREL:
9983 case R_ARM_THM_MOVT_BREL:
9984 {
9985 bfd_vma insn;
9986
9987 insn = bfd_get_16 (input_bfd, hit_data) << 16;
9988 insn |= bfd_get_16 (input_bfd, hit_data + 2);
9989
9990 if (globals->use_rel)
9991 {
9992 addend = ((insn >> 4) & 0xf000)
9993 | ((insn >> 15) & 0x0800)
9994 | ((insn >> 4) & 0x0700)
9995 | (insn & 0x00ff);
9996 signed_addend = (addend ^ 0x8000) - 0x8000;
9997 }
9998
9999 value += signed_addend;
10000
10001 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
10002 value -= (input_section->output_section->vma
10003 + input_section->output_offset + rel->r_offset);
10004
10005 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
10006 return bfd_reloc_overflow;
10007
10008 if (branch_type == ST_BRANCH_TO_THUMB)
10009 value |= 1;
10010
10011 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
10012 || r_type == R_ARM_THM_MOVT_BREL)
10013 value >>= 16;
10014
10015 insn &= 0xfbf08f00;
10016 insn |= (value & 0xf000) << 4;
10017 insn |= (value & 0x0800) << 15;
10018 insn |= (value & 0x0700) << 4;
10019 insn |= (value & 0x00ff);
10020
10021 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10022 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10023 }
10024 return bfd_reloc_ok;
10025
10026 case R_ARM_ALU_PC_G0_NC:
10027 case R_ARM_ALU_PC_G1_NC:
10028 case R_ARM_ALU_PC_G0:
10029 case R_ARM_ALU_PC_G1:
10030 case R_ARM_ALU_PC_G2:
10031 case R_ARM_ALU_SB_G0_NC:
10032 case R_ARM_ALU_SB_G1_NC:
10033 case R_ARM_ALU_SB_G0:
10034 case R_ARM_ALU_SB_G1:
10035 case R_ARM_ALU_SB_G2:
10036 {
10037 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10038 bfd_vma pc = input_section->output_section->vma
10039 + input_section->output_offset + rel->r_offset;
10040 /* sb is the origin of the *segment* containing the symbol. */
10041 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10042 bfd_vma residual;
10043 bfd_vma g_n;
10044 bfd_signed_vma signed_value;
10045 int group = 0;
10046
10047 /* Determine which group of bits to select. */
10048 switch (r_type)
10049 {
10050 case R_ARM_ALU_PC_G0_NC:
10051 case R_ARM_ALU_PC_G0:
10052 case R_ARM_ALU_SB_G0_NC:
10053 case R_ARM_ALU_SB_G0:
10054 group = 0;
10055 break;
10056
10057 case R_ARM_ALU_PC_G1_NC:
10058 case R_ARM_ALU_PC_G1:
10059 case R_ARM_ALU_SB_G1_NC:
10060 case R_ARM_ALU_SB_G1:
10061 group = 1;
10062 break;
10063
10064 case R_ARM_ALU_PC_G2:
10065 case R_ARM_ALU_SB_G2:
10066 group = 2;
10067 break;
10068
10069 default:
10070 abort ();
10071 }
10072
10073 /* If REL, extract the addend from the insn. If RELA, it will
10074 have already been fetched for us. */
10075 if (globals->use_rel)
10076 {
10077 int negative;
10078 bfd_vma constant = insn & 0xff;
10079 bfd_vma rotation = (insn & 0xf00) >> 8;
10080
10081 if (rotation == 0)
10082 signed_addend = constant;
10083 else
10084 {
10085 /* Compensate for the fact that in the instruction, the
10086 rotation is stored in multiples of 2 bits. */
10087 rotation *= 2;
10088
10089 /* Rotate "constant" right by "rotation" bits. */
10090 signed_addend = (constant >> rotation) |
10091 (constant << (8 * sizeof (bfd_vma) - rotation));
10092 }
10093
10094 /* Determine if the instruction is an ADD or a SUB.
10095 (For REL, this determines the sign of the addend.) */
10096 negative = identify_add_or_sub (insn);
10097 if (negative == 0)
10098 {
10099 (*_bfd_error_handler)
10100 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
10101 input_bfd, input_section,
10102 (long) rel->r_offset, howto->name);
10103 return bfd_reloc_overflow;
10104 }
10105
10106 signed_addend *= negative;
10107 }
10108
10109 /* Compute the value (X) to go in the place. */
10110 if (r_type == R_ARM_ALU_PC_G0_NC
10111 || r_type == R_ARM_ALU_PC_G1_NC
10112 || r_type == R_ARM_ALU_PC_G0
10113 || r_type == R_ARM_ALU_PC_G1
10114 || r_type == R_ARM_ALU_PC_G2)
10115 /* PC relative. */
10116 signed_value = value - pc + signed_addend;
10117 else
10118 /* Section base relative. */
10119 signed_value = value - sb + signed_addend;
10120
10121 /* If the target symbol is a Thumb function, then set the
10122 Thumb bit in the address. */
10123 if (branch_type == ST_BRANCH_TO_THUMB)
10124 signed_value |= 1;
10125
10126 /* Calculate the value of the relevant G_n, in encoded
10127 constant-with-rotation format. */
10128 g_n = calculate_group_reloc_mask (abs (signed_value), group,
10129 &residual);
10130
10131 /* Check for overflow if required. */
10132 if ((r_type == R_ARM_ALU_PC_G0
10133 || r_type == R_ARM_ALU_PC_G1
10134 || r_type == R_ARM_ALU_PC_G2
10135 || r_type == R_ARM_ALU_SB_G0
10136 || r_type == R_ARM_ALU_SB_G1
10137 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
10138 {
10139 (*_bfd_error_handler)
10140 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10141 input_bfd, input_section,
10142 (long) rel->r_offset, abs (signed_value), howto->name);
10143 return bfd_reloc_overflow;
10144 }
10145
10146 /* Mask out the value and the ADD/SUB part of the opcode; take care
10147 not to destroy the S bit. */
10148 insn &= 0xff1ff000;
10149
10150 /* Set the opcode according to whether the value to go in the
10151 place is negative. */
10152 if (signed_value < 0)
10153 insn |= 1 << 22;
10154 else
10155 insn |= 1 << 23;
10156
10157 /* Encode the offset. */
10158 insn |= g_n;
10159
10160 bfd_put_32 (input_bfd, insn, hit_data);
10161 }
10162 return bfd_reloc_ok;
10163
10164 case R_ARM_LDR_PC_G0:
10165 case R_ARM_LDR_PC_G1:
10166 case R_ARM_LDR_PC_G2:
10167 case R_ARM_LDR_SB_G0:
10168 case R_ARM_LDR_SB_G1:
10169 case R_ARM_LDR_SB_G2:
10170 {
10171 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10172 bfd_vma pc = input_section->output_section->vma
10173 + input_section->output_offset + rel->r_offset;
10174 /* sb is the origin of the *segment* containing the symbol. */
10175 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10176 bfd_vma residual;
10177 bfd_signed_vma signed_value;
10178 int group = 0;
10179
10180 /* Determine which groups of bits to calculate. */
10181 switch (r_type)
10182 {
10183 case R_ARM_LDR_PC_G0:
10184 case R_ARM_LDR_SB_G0:
10185 group = 0;
10186 break;
10187
10188 case R_ARM_LDR_PC_G1:
10189 case R_ARM_LDR_SB_G1:
10190 group = 1;
10191 break;
10192
10193 case R_ARM_LDR_PC_G2:
10194 case R_ARM_LDR_SB_G2:
10195 group = 2;
10196 break;
10197
10198 default:
10199 abort ();
10200 }
10201
10202 /* If REL, extract the addend from the insn. If RELA, it will
10203 have already been fetched for us. */
10204 if (globals->use_rel)
10205 {
10206 int negative = (insn & (1 << 23)) ? 1 : -1;
10207 signed_addend = negative * (insn & 0xfff);
10208 }
10209
10210 /* Compute the value (X) to go in the place. */
10211 if (r_type == R_ARM_LDR_PC_G0
10212 || r_type == R_ARM_LDR_PC_G1
10213 || r_type == R_ARM_LDR_PC_G2)
10214 /* PC relative. */
10215 signed_value = value - pc + signed_addend;
10216 else
10217 /* Section base relative. */
10218 signed_value = value - sb + signed_addend;
10219
10220 /* Calculate the value of the relevant G_{n-1} to obtain
10221 the residual at that stage. */
10222 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10223
10224 /* Check for overflow. */
10225 if (residual >= 0x1000)
10226 {
10227 (*_bfd_error_handler)
10228 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10229 input_bfd, input_section,
10230 (long) rel->r_offset, abs (signed_value), howto->name);
10231 return bfd_reloc_overflow;
10232 }
10233
10234 /* Mask out the value and U bit. */
10235 insn &= 0xff7ff000;
10236
10237 /* Set the U bit if the value to go in the place is non-negative. */
10238 if (signed_value >= 0)
10239 insn |= 1 << 23;
10240
10241 /* Encode the offset. */
10242 insn |= residual;
10243
10244 bfd_put_32 (input_bfd, insn, hit_data);
10245 }
10246 return bfd_reloc_ok;
10247
10248 case R_ARM_LDRS_PC_G0:
10249 case R_ARM_LDRS_PC_G1:
10250 case R_ARM_LDRS_PC_G2:
10251 case R_ARM_LDRS_SB_G0:
10252 case R_ARM_LDRS_SB_G1:
10253 case R_ARM_LDRS_SB_G2:
10254 {
10255 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10256 bfd_vma pc = input_section->output_section->vma
10257 + input_section->output_offset + rel->r_offset;
10258 /* sb is the origin of the *segment* containing the symbol. */
10259 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10260 bfd_vma residual;
10261 bfd_signed_vma signed_value;
10262 int group = 0;
10263
10264 /* Determine which groups of bits to calculate. */
10265 switch (r_type)
10266 {
10267 case R_ARM_LDRS_PC_G0:
10268 case R_ARM_LDRS_SB_G0:
10269 group = 0;
10270 break;
10271
10272 case R_ARM_LDRS_PC_G1:
10273 case R_ARM_LDRS_SB_G1:
10274 group = 1;
10275 break;
10276
10277 case R_ARM_LDRS_PC_G2:
10278 case R_ARM_LDRS_SB_G2:
10279 group = 2;
10280 break;
10281
10282 default:
10283 abort ();
10284 }
10285
10286 /* If REL, extract the addend from the insn. If RELA, it will
10287 have already been fetched for us. */
10288 if (globals->use_rel)
10289 {
10290 int negative = (insn & (1 << 23)) ? 1 : -1;
10291 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
10292 }
10293
10294 /* Compute the value (X) to go in the place. */
10295 if (r_type == R_ARM_LDRS_PC_G0
10296 || r_type == R_ARM_LDRS_PC_G1
10297 || r_type == R_ARM_LDRS_PC_G2)
10298 /* PC relative. */
10299 signed_value = value - pc + signed_addend;
10300 else
10301 /* Section base relative. */
10302 signed_value = value - sb + signed_addend;
10303
10304 /* Calculate the value of the relevant G_{n-1} to obtain
10305 the residual at that stage. */
10306 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10307
10308 /* Check for overflow. */
10309 if (residual >= 0x100)
10310 {
10311 (*_bfd_error_handler)
10312 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10313 input_bfd, input_section,
10314 (long) rel->r_offset, abs (signed_value), howto->name);
10315 return bfd_reloc_overflow;
10316 }
10317
10318 /* Mask out the value and U bit. */
10319 insn &= 0xff7ff0f0;
10320
10321 /* Set the U bit if the value to go in the place is non-negative. */
10322 if (signed_value >= 0)
10323 insn |= 1 << 23;
10324
10325 /* Encode the offset. */
10326 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
10327
10328 bfd_put_32 (input_bfd, insn, hit_data);
10329 }
10330 return bfd_reloc_ok;
10331
10332 case R_ARM_LDC_PC_G0:
10333 case R_ARM_LDC_PC_G1:
10334 case R_ARM_LDC_PC_G2:
10335 case R_ARM_LDC_SB_G0:
10336 case R_ARM_LDC_SB_G1:
10337 case R_ARM_LDC_SB_G2:
10338 {
10339 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10340 bfd_vma pc = input_section->output_section->vma
10341 + input_section->output_offset + rel->r_offset;
10342 /* sb is the origin of the *segment* containing the symbol. */
10343 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10344 bfd_vma residual;
10345 bfd_signed_vma signed_value;
10346 int group = 0;
10347
10348 /* Determine which groups of bits to calculate. */
10349 switch (r_type)
10350 {
10351 case R_ARM_LDC_PC_G0:
10352 case R_ARM_LDC_SB_G0:
10353 group = 0;
10354 break;
10355
10356 case R_ARM_LDC_PC_G1:
10357 case R_ARM_LDC_SB_G1:
10358 group = 1;
10359 break;
10360
10361 case R_ARM_LDC_PC_G2:
10362 case R_ARM_LDC_SB_G2:
10363 group = 2;
10364 break;
10365
10366 default:
10367 abort ();
10368 }
10369
10370 /* If REL, extract the addend from the insn. If RELA, it will
10371 have already been fetched for us. */
10372 if (globals->use_rel)
10373 {
10374 int negative = (insn & (1 << 23)) ? 1 : -1;
10375 signed_addend = negative * ((insn & 0xff) << 2);
10376 }
10377
10378 /* Compute the value (X) to go in the place. */
10379 if (r_type == R_ARM_LDC_PC_G0
10380 || r_type == R_ARM_LDC_PC_G1
10381 || r_type == R_ARM_LDC_PC_G2)
10382 /* PC relative. */
10383 signed_value = value - pc + signed_addend;
10384 else
10385 /* Section base relative. */
10386 signed_value = value - sb + signed_addend;
10387
10388 /* Calculate the value of the relevant G_{n-1} to obtain
10389 the residual at that stage. */
10390 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10391
10392 /* Check for overflow. (The absolute value to go in the place must be
10393 divisible by four and, after having been divided by four, must
10394 fit in eight bits.) */
10395 if ((residual & 0x3) != 0 || residual >= 0x400)
10396 {
10397 (*_bfd_error_handler)
10398 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10399 input_bfd, input_section,
10400 (long) rel->r_offset, abs (signed_value), howto->name);
10401 return bfd_reloc_overflow;
10402 }
10403
10404 /* Mask out the value and U bit. */
10405 insn &= 0xff7fff00;
10406
10407 /* Set the U bit if the value to go in the place is non-negative. */
10408 if (signed_value >= 0)
10409 insn |= 1 << 23;
10410
10411 /* Encode the offset. */
10412 insn |= residual >> 2;
10413
10414 bfd_put_32 (input_bfd, insn, hit_data);
10415 }
10416 return bfd_reloc_ok;
10417
10418 default:
10419 return bfd_reloc_notsupported;
10420 }
10421 }
10422
10423 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10424 static void
10425 arm_add_to_rel (bfd * abfd,
10426 bfd_byte * address,
10427 reloc_howto_type * howto,
10428 bfd_signed_vma increment)
10429 {
10430 bfd_signed_vma addend;
10431
10432 if (howto->type == R_ARM_THM_CALL
10433 || howto->type == R_ARM_THM_JUMP24)
10434 {
10435 int upper_insn, lower_insn;
10436 int upper, lower;
10437
10438 upper_insn = bfd_get_16 (abfd, address);
10439 lower_insn = bfd_get_16 (abfd, address + 2);
10440 upper = upper_insn & 0x7ff;
10441 lower = lower_insn & 0x7ff;
10442
10443 addend = (upper << 12) | (lower << 1);
10444 addend += increment;
10445 addend >>= 1;
10446
10447 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10448 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10449
10450 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10451 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
10452 }
10453 else
10454 {
10455 bfd_vma contents;
10456
10457 contents = bfd_get_32 (abfd, address);
10458
10459 /* Get the (signed) value from the instruction. */
10460 addend = contents & howto->src_mask;
10461 if (addend & ((howto->src_mask + 1) >> 1))
10462 {
10463 bfd_signed_vma mask;
10464
10465 mask = -1;
10466 mask &= ~ howto->src_mask;
10467 addend |= mask;
10468 }
10469
10470 /* Add in the increment, (which is a byte value). */
10471 switch (howto->type)
10472 {
10473 default:
10474 addend += increment;
10475 break;
10476
10477 case R_ARM_PC24:
10478 case R_ARM_PLT32:
10479 case R_ARM_CALL:
10480 case R_ARM_JUMP24:
10481 addend <<= howto->size;
10482 addend += increment;
10483
10484 /* Should we check for overflow here ? */
10485
10486 /* Drop any undesired bits. */
10487 addend >>= howto->rightshift;
10488 break;
10489 }
10490
10491 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10492
10493 bfd_put_32 (abfd, contents, address);
10494 }
10495 }
10496
10497 #define IS_ARM_TLS_RELOC(R_TYPE) \
10498 ((R_TYPE) == R_ARM_TLS_GD32 \
10499 || (R_TYPE) == R_ARM_TLS_LDO32 \
10500 || (R_TYPE) == R_ARM_TLS_LDM32 \
10501 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10502 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10503 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10504 || (R_TYPE) == R_ARM_TLS_LE32 \
10505 || (R_TYPE) == R_ARM_TLS_IE32 \
10506 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10507
10508 /* Specific set of relocations for the gnu tls dialect. */
10509 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10510 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10511 || (R_TYPE) == R_ARM_TLS_CALL \
10512 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10513 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10514 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10515
10516 /* Relocate an ARM ELF section. */
10517
10518 static bfd_boolean
10519 elf32_arm_relocate_section (bfd * output_bfd,
10520 struct bfd_link_info * info,
10521 bfd * input_bfd,
10522 asection * input_section,
10523 bfd_byte * contents,
10524 Elf_Internal_Rela * relocs,
10525 Elf_Internal_Sym * local_syms,
10526 asection ** local_sections)
10527 {
10528 Elf_Internal_Shdr *symtab_hdr;
10529 struct elf_link_hash_entry **sym_hashes;
10530 Elf_Internal_Rela *rel;
10531 Elf_Internal_Rela *relend;
10532 const char *name;
10533 struct elf32_arm_link_hash_table * globals;
10534
10535 globals = elf32_arm_hash_table (info);
10536 if (globals == NULL)
10537 return FALSE;
10538
10539 symtab_hdr = & elf_symtab_hdr (input_bfd);
10540 sym_hashes = elf_sym_hashes (input_bfd);
10541
10542 rel = relocs;
10543 relend = relocs + input_section->reloc_count;
10544 for (; rel < relend; rel++)
10545 {
10546 int r_type;
10547 reloc_howto_type * howto;
10548 unsigned long r_symndx;
10549 Elf_Internal_Sym * sym;
10550 asection * sec;
10551 struct elf_link_hash_entry * h;
10552 bfd_vma relocation;
10553 bfd_reloc_status_type r;
10554 arelent bfd_reloc;
10555 char sym_type;
10556 bfd_boolean unresolved_reloc = FALSE;
10557 char *error_message = NULL;
10558
10559 r_symndx = ELF32_R_SYM (rel->r_info);
10560 r_type = ELF32_R_TYPE (rel->r_info);
10561 r_type = arm_real_reloc_type (globals, r_type);
10562
10563 if ( r_type == R_ARM_GNU_VTENTRY
10564 || r_type == R_ARM_GNU_VTINHERIT)
10565 continue;
10566
10567 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
10568 howto = bfd_reloc.howto;
10569
10570 h = NULL;
10571 sym = NULL;
10572 sec = NULL;
10573
10574 if (r_symndx < symtab_hdr->sh_info)
10575 {
10576 sym = local_syms + r_symndx;
10577 sym_type = ELF32_ST_TYPE (sym->st_info);
10578 sec = local_sections[r_symndx];
10579
10580 /* An object file might have a reference to a local
10581 undefined symbol. This is a daft object file, but we
10582 should at least do something about it. V4BX & NONE
10583 relocations do not use the symbol and are explicitly
10584 allowed to use the undefined symbol, so allow those.
10585 Likewise for relocations against STN_UNDEF. */
10586 if (r_type != R_ARM_V4BX
10587 && r_type != R_ARM_NONE
10588 && r_symndx != STN_UNDEF
10589 && bfd_is_und_section (sec)
10590 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10591 {
10592 if (!info->callbacks->undefined_symbol
10593 (info, bfd_elf_string_from_elf_section
10594 (input_bfd, symtab_hdr->sh_link, sym->st_name),
10595 input_bfd, input_section,
10596 rel->r_offset, TRUE))
10597 return FALSE;
10598 }
10599
10600 if (globals->use_rel)
10601 {
10602 relocation = (sec->output_section->vma
10603 + sec->output_offset
10604 + sym->st_value);
10605 if (!bfd_link_relocatable (info)
10606 && (sec->flags & SEC_MERGE)
10607 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10608 {
10609 asection *msec;
10610 bfd_vma addend, value;
10611
10612 switch (r_type)
10613 {
10614 case R_ARM_MOVW_ABS_NC:
10615 case R_ARM_MOVT_ABS:
10616 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10617 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10618 addend = (addend ^ 0x8000) - 0x8000;
10619 break;
10620
10621 case R_ARM_THM_MOVW_ABS_NC:
10622 case R_ARM_THM_MOVT_ABS:
10623 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10624 << 16;
10625 value |= bfd_get_16 (input_bfd,
10626 contents + rel->r_offset + 2);
10627 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10628 | ((value & 0x04000000) >> 15);
10629 addend = (addend ^ 0x8000) - 0x8000;
10630 break;
10631
10632 default:
10633 if (howto->rightshift
10634 || (howto->src_mask & (howto->src_mask + 1)))
10635 {
10636 (*_bfd_error_handler)
10637 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10638 input_bfd, input_section,
10639 (long) rel->r_offset, howto->name);
10640 return FALSE;
10641 }
10642
10643 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10644
10645 /* Get the (signed) value from the instruction. */
10646 addend = value & howto->src_mask;
10647 if (addend & ((howto->src_mask + 1) >> 1))
10648 {
10649 bfd_signed_vma mask;
10650
10651 mask = -1;
10652 mask &= ~ howto->src_mask;
10653 addend |= mask;
10654 }
10655 break;
10656 }
10657
10658 msec = sec;
10659 addend =
10660 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10661 - relocation;
10662 addend += msec->output_section->vma + msec->output_offset;
10663
10664 /* Cases here must match those in the preceding
10665 switch statement. */
10666 switch (r_type)
10667 {
10668 case R_ARM_MOVW_ABS_NC:
10669 case R_ARM_MOVT_ABS:
10670 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10671 | (addend & 0xfff);
10672 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10673 break;
10674
10675 case R_ARM_THM_MOVW_ABS_NC:
10676 case R_ARM_THM_MOVT_ABS:
10677 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10678 | (addend & 0xff) | ((addend & 0x0800) << 15);
10679 bfd_put_16 (input_bfd, value >> 16,
10680 contents + rel->r_offset);
10681 bfd_put_16 (input_bfd, value,
10682 contents + rel->r_offset + 2);
10683 break;
10684
10685 default:
10686 value = (value & ~ howto->dst_mask)
10687 | (addend & howto->dst_mask);
10688 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10689 break;
10690 }
10691 }
10692 }
10693 else
10694 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10695 }
10696 else
10697 {
10698 bfd_boolean warned, ignored;
10699
10700 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10701 r_symndx, symtab_hdr, sym_hashes,
10702 h, sec, relocation,
10703 unresolved_reloc, warned, ignored);
10704
10705 sym_type = h->type;
10706 }
10707
10708 if (sec != NULL && discarded_section (sec))
10709 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10710 rel, 1, relend, howto, 0, contents);
10711
10712 if (bfd_link_relocatable (info))
10713 {
10714 /* This is a relocatable link. We don't have to change
10715 anything, unless the reloc is against a section symbol,
10716 in which case we have to adjust according to where the
10717 section symbol winds up in the output section. */
10718 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10719 {
10720 if (globals->use_rel)
10721 arm_add_to_rel (input_bfd, contents + rel->r_offset,
10722 howto, (bfd_signed_vma) sec->output_offset);
10723 else
10724 rel->r_addend += sec->output_offset;
10725 }
10726 continue;
10727 }
10728
10729 if (h != NULL)
10730 name = h->root.root.string;
10731 else
10732 {
10733 name = (bfd_elf_string_from_elf_section
10734 (input_bfd, symtab_hdr->sh_link, sym->st_name));
10735 if (name == NULL || *name == '\0')
10736 name = bfd_section_name (input_bfd, sec);
10737 }
10738
10739 if (r_symndx != STN_UNDEF
10740 && r_type != R_ARM_NONE
10741 && (h == NULL
10742 || h->root.type == bfd_link_hash_defined
10743 || h->root.type == bfd_link_hash_defweak)
10744 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10745 {
10746 (*_bfd_error_handler)
10747 ((sym_type == STT_TLS
10748 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10749 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10750 input_bfd,
10751 input_section,
10752 (long) rel->r_offset,
10753 howto->name,
10754 name);
10755 }
10756
10757 /* We call elf32_arm_final_link_relocate unless we're completely
10758 done, i.e., the relaxation produced the final output we want,
10759 and we won't let anybody mess with it. Also, we have to do
10760 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10761 both in relaxed and non-relaxed cases. */
10762 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10763 || (IS_ARM_TLS_GNU_RELOC (r_type)
10764 && !((h ? elf32_arm_hash_entry (h)->tls_type :
10765 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10766 & GOT_TLS_GDESC)))
10767 {
10768 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10769 contents, rel, h == NULL);
10770 /* This may have been marked unresolved because it came from
10771 a shared library. But we've just dealt with that. */
10772 unresolved_reloc = 0;
10773 }
10774 else
10775 r = bfd_reloc_continue;
10776
10777 if (r == bfd_reloc_continue)
10778 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10779 input_section, contents, rel,
10780 relocation, info, sec, name, sym_type,
10781 (h ? h->target_internal
10782 : ARM_SYM_BRANCH_TYPE (sym)), h,
10783 &unresolved_reloc, &error_message);
10784
10785 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10786 because such sections are not SEC_ALLOC and thus ld.so will
10787 not process them. */
10788 if (unresolved_reloc
10789 && !((input_section->flags & SEC_DEBUGGING) != 0
10790 && h->def_dynamic)
10791 && _bfd_elf_section_offset (output_bfd, info, input_section,
10792 rel->r_offset) != (bfd_vma) -1)
10793 {
10794 (*_bfd_error_handler)
10795 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10796 input_bfd,
10797 input_section,
10798 (long) rel->r_offset,
10799 howto->name,
10800 h->root.root.string);
10801 return FALSE;
10802 }
10803
10804 if (r != bfd_reloc_ok)
10805 {
10806 switch (r)
10807 {
10808 case bfd_reloc_overflow:
10809 /* If the overflowing reloc was to an undefined symbol,
10810 we have already printed one error message and there
10811 is no point complaining again. */
10812 if ((! h ||
10813 h->root.type != bfd_link_hash_undefined)
10814 && (!((*info->callbacks->reloc_overflow)
10815 (info, (h ? &h->root : NULL), name, howto->name,
10816 (bfd_vma) 0, input_bfd, input_section,
10817 rel->r_offset))))
10818 return FALSE;
10819 break;
10820
10821 case bfd_reloc_undefined:
10822 if (!((*info->callbacks->undefined_symbol)
10823 (info, name, input_bfd, input_section,
10824 rel->r_offset, TRUE)))
10825 return FALSE;
10826 break;
10827
10828 case bfd_reloc_outofrange:
10829 error_message = _("out of range");
10830 goto common_error;
10831
10832 case bfd_reloc_notsupported:
10833 error_message = _("unsupported relocation");
10834 goto common_error;
10835
10836 case bfd_reloc_dangerous:
10837 /* error_message should already be set. */
10838 goto common_error;
10839
10840 default:
10841 error_message = _("unknown error");
10842 /* Fall through. */
10843
10844 common_error:
10845 BFD_ASSERT (error_message != NULL);
10846 if (!((*info->callbacks->reloc_dangerous)
10847 (info, error_message, input_bfd, input_section,
10848 rel->r_offset)))
10849 return FALSE;
10850 break;
10851 }
10852 }
10853 }
10854
10855 return TRUE;
10856 }
10857
10858 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10859 adds the edit to the start of the list. (The list must be built in order of
10860 ascending TINDEX: the function's callers are primarily responsible for
10861 maintaining that condition). */
10862
10863 static void
10864 add_unwind_table_edit (arm_unwind_table_edit **head,
10865 arm_unwind_table_edit **tail,
10866 arm_unwind_edit_type type,
10867 asection *linked_section,
10868 unsigned int tindex)
10869 {
10870 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10871 xmalloc (sizeof (arm_unwind_table_edit));
10872
10873 new_edit->type = type;
10874 new_edit->linked_section = linked_section;
10875 new_edit->index = tindex;
10876
10877 if (tindex > 0)
10878 {
10879 new_edit->next = NULL;
10880
10881 if (*tail)
10882 (*tail)->next = new_edit;
10883
10884 (*tail) = new_edit;
10885
10886 if (!*head)
10887 (*head) = new_edit;
10888 }
10889 else
10890 {
10891 new_edit->next = *head;
10892
10893 if (!*tail)
10894 *tail = new_edit;
10895
10896 *head = new_edit;
10897 }
10898 }
10899
10900 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10901
10902 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10903 static void
10904 adjust_exidx_size(asection *exidx_sec, int adjust)
10905 {
10906 asection *out_sec;
10907
10908 if (!exidx_sec->rawsize)
10909 exidx_sec->rawsize = exidx_sec->size;
10910
10911 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10912 out_sec = exidx_sec->output_section;
10913 /* Adjust size of output section. */
10914 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10915 }
10916
10917 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10918 static void
10919 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10920 {
10921 struct _arm_elf_section_data *exidx_arm_data;
10922
10923 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10924 add_unwind_table_edit (
10925 &exidx_arm_data->u.exidx.unwind_edit_list,
10926 &exidx_arm_data->u.exidx.unwind_edit_tail,
10927 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10928
10929 adjust_exidx_size(exidx_sec, 8);
10930 }
10931
10932 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10933 made to those tables, such that:
10934
10935 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10936 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10937 codes which have been inlined into the index).
10938
10939 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10940
10941 The edits are applied when the tables are written
10942 (in elf32_arm_write_section). */
10943
10944 bfd_boolean
10945 elf32_arm_fix_exidx_coverage (asection **text_section_order,
10946 unsigned int num_text_sections,
10947 struct bfd_link_info *info,
10948 bfd_boolean merge_exidx_entries)
10949 {
10950 bfd *inp;
10951 unsigned int last_second_word = 0, i;
10952 asection *last_exidx_sec = NULL;
10953 asection *last_text_sec = NULL;
10954 int last_unwind_type = -1;
10955
10956 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10957 text sections. */
10958 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
10959 {
10960 asection *sec;
10961
10962 for (sec = inp->sections; sec != NULL; sec = sec->next)
10963 {
10964 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10965 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
10966
10967 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
10968 continue;
10969
10970 if (elf_sec->linked_to)
10971 {
10972 Elf_Internal_Shdr *linked_hdr
10973 = &elf_section_data (elf_sec->linked_to)->this_hdr;
10974 struct _arm_elf_section_data *linked_sec_arm_data
10975 = get_arm_elf_section_data (linked_hdr->bfd_section);
10976
10977 if (linked_sec_arm_data == NULL)
10978 continue;
10979
10980 /* Link this .ARM.exidx section back from the text section it
10981 describes. */
10982 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10983 }
10984 }
10985 }
10986
10987 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10988 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10989 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10990
10991 for (i = 0; i < num_text_sections; i++)
10992 {
10993 asection *sec = text_section_order[i];
10994 asection *exidx_sec;
10995 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10996 struct _arm_elf_section_data *exidx_arm_data;
10997 bfd_byte *contents = NULL;
10998 int deleted_exidx_bytes = 0;
10999 bfd_vma j;
11000 arm_unwind_table_edit *unwind_edit_head = NULL;
11001 arm_unwind_table_edit *unwind_edit_tail = NULL;
11002 Elf_Internal_Shdr *hdr;
11003 bfd *ibfd;
11004
11005 if (arm_data == NULL)
11006 continue;
11007
11008 exidx_sec = arm_data->u.text.arm_exidx_sec;
11009 if (exidx_sec == NULL)
11010 {
11011 /* Section has no unwind data. */
11012 if (last_unwind_type == 0 || !last_exidx_sec)
11013 continue;
11014
11015 /* Ignore zero sized sections. */
11016 if (sec->size == 0)
11017 continue;
11018
11019 insert_cantunwind_after(last_text_sec, last_exidx_sec);
11020 last_unwind_type = 0;
11021 continue;
11022 }
11023
11024 /* Skip /DISCARD/ sections. */
11025 if (bfd_is_abs_section (exidx_sec->output_section))
11026 continue;
11027
11028 hdr = &elf_section_data (exidx_sec)->this_hdr;
11029 if (hdr->sh_type != SHT_ARM_EXIDX)
11030 continue;
11031
11032 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
11033 if (exidx_arm_data == NULL)
11034 continue;
11035
11036 ibfd = exidx_sec->owner;
11037
11038 if (hdr->contents != NULL)
11039 contents = hdr->contents;
11040 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
11041 /* An error? */
11042 continue;
11043
11044 for (j = 0; j < hdr->sh_size; j += 8)
11045 {
11046 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
11047 int unwind_type;
11048 int elide = 0;
11049
11050 /* An EXIDX_CANTUNWIND entry. */
11051 if (second_word == 1)
11052 {
11053 if (last_unwind_type == 0)
11054 elide = 1;
11055 unwind_type = 0;
11056 }
11057 /* Inlined unwinding data. Merge if equal to previous. */
11058 else if ((second_word & 0x80000000) != 0)
11059 {
11060 if (merge_exidx_entries
11061 && last_second_word == second_word && last_unwind_type == 1)
11062 elide = 1;
11063 unwind_type = 1;
11064 last_second_word = second_word;
11065 }
11066 /* Normal table entry. In theory we could merge these too,
11067 but duplicate entries are likely to be much less common. */
11068 else
11069 unwind_type = 2;
11070
11071 if (elide)
11072 {
11073 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
11074 DELETE_EXIDX_ENTRY, NULL, j / 8);
11075
11076 deleted_exidx_bytes += 8;
11077 }
11078
11079 last_unwind_type = unwind_type;
11080 }
11081
11082 /* Free contents if we allocated it ourselves. */
11083 if (contents != hdr->contents)
11084 free (contents);
11085
11086 /* Record edits to be applied later (in elf32_arm_write_section). */
11087 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
11088 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
11089
11090 if (deleted_exidx_bytes > 0)
11091 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
11092
11093 last_exidx_sec = exidx_sec;
11094 last_text_sec = sec;
11095 }
11096
11097 /* Add terminating CANTUNWIND entry. */
11098 if (last_exidx_sec && last_unwind_type != 0)
11099 insert_cantunwind_after(last_text_sec, last_exidx_sec);
11100
11101 return TRUE;
11102 }
11103
11104 static bfd_boolean
11105 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
11106 bfd *ibfd, const char *name)
11107 {
11108 asection *sec, *osec;
11109
11110 sec = bfd_get_linker_section (ibfd, name);
11111 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
11112 return TRUE;
11113
11114 osec = sec->output_section;
11115 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
11116 return TRUE;
11117
11118 if (! bfd_set_section_contents (obfd, osec, sec->contents,
11119 sec->output_offset, sec->size))
11120 return FALSE;
11121
11122 return TRUE;
11123 }
11124
11125 static bfd_boolean
11126 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
11127 {
11128 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
11129 asection *sec, *osec;
11130
11131 if (globals == NULL)
11132 return FALSE;
11133
11134 /* Invoke the regular ELF backend linker to do all the work. */
11135 if (!bfd_elf_final_link (abfd, info))
11136 return FALSE;
11137
11138 /* Process stub sections (eg BE8 encoding, ...). */
11139 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
11140 int i;
11141 for (i=0; i<htab->top_id; i++)
11142 {
11143 sec = htab->stub_group[i].stub_sec;
11144 /* Only process it once, in its link_sec slot. */
11145 if (sec && i == htab->stub_group[i].link_sec->id)
11146 {
11147 osec = sec->output_section;
11148 elf32_arm_write_section (abfd, info, sec, sec->contents);
11149 if (! bfd_set_section_contents (abfd, osec, sec->contents,
11150 sec->output_offset, sec->size))
11151 return FALSE;
11152 }
11153 }
11154
11155 /* Write out any glue sections now that we have created all the
11156 stubs. */
11157 if (globals->bfd_of_glue_owner != NULL)
11158 {
11159 if (! elf32_arm_output_glue_section (info, abfd,
11160 globals->bfd_of_glue_owner,
11161 ARM2THUMB_GLUE_SECTION_NAME))
11162 return FALSE;
11163
11164 if (! elf32_arm_output_glue_section (info, abfd,
11165 globals->bfd_of_glue_owner,
11166 THUMB2ARM_GLUE_SECTION_NAME))
11167 return FALSE;
11168
11169 if (! elf32_arm_output_glue_section (info, abfd,
11170 globals->bfd_of_glue_owner,
11171 VFP11_ERRATUM_VENEER_SECTION_NAME))
11172 return FALSE;
11173
11174 if (! elf32_arm_output_glue_section (info, abfd,
11175 globals->bfd_of_glue_owner,
11176 ARM_BX_GLUE_SECTION_NAME))
11177 return FALSE;
11178 }
11179
11180 return TRUE;
11181 }
11182
11183 /* Return a best guess for the machine number based on the attributes. */
11184
11185 static unsigned int
11186 bfd_arm_get_mach_from_attributes (bfd * abfd)
11187 {
11188 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
11189
11190 switch (arch)
11191 {
11192 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
11193 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
11194 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
11195
11196 case TAG_CPU_ARCH_V5TE:
11197 {
11198 char * name;
11199
11200 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
11201 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
11202
11203 if (name)
11204 {
11205 if (strcmp (name, "IWMMXT2") == 0)
11206 return bfd_mach_arm_iWMMXt2;
11207
11208 if (strcmp (name, "IWMMXT") == 0)
11209 return bfd_mach_arm_iWMMXt;
11210
11211 if (strcmp (name, "XSCALE") == 0)
11212 {
11213 int wmmx;
11214
11215 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
11216 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
11217 switch (wmmx)
11218 {
11219 case 1: return bfd_mach_arm_iWMMXt;
11220 case 2: return bfd_mach_arm_iWMMXt2;
11221 default: return bfd_mach_arm_XScale;
11222 }
11223 }
11224 }
11225
11226 return bfd_mach_arm_5TE;
11227 }
11228
11229 default:
11230 return bfd_mach_arm_unknown;
11231 }
11232 }
11233
11234 /* Set the right machine number. */
11235
11236 static bfd_boolean
11237 elf32_arm_object_p (bfd *abfd)
11238 {
11239 unsigned int mach;
11240
11241 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
11242
11243 if (mach == bfd_mach_arm_unknown)
11244 {
11245 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
11246 mach = bfd_mach_arm_ep9312;
11247 else
11248 mach = bfd_arm_get_mach_from_attributes (abfd);
11249 }
11250
11251 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
11252 return TRUE;
11253 }
11254
11255 /* Function to keep ARM specific flags in the ELF header. */
11256
11257 static bfd_boolean
11258 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
11259 {
11260 if (elf_flags_init (abfd)
11261 && elf_elfheader (abfd)->e_flags != flags)
11262 {
11263 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
11264 {
11265 if (flags & EF_ARM_INTERWORK)
11266 (*_bfd_error_handler)
11267 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11268 abfd);
11269 else
11270 _bfd_error_handler
11271 (_("Warning: Clearing the interworking flag of %B due to outside request"),
11272 abfd);
11273 }
11274 }
11275 else
11276 {
11277 elf_elfheader (abfd)->e_flags = flags;
11278 elf_flags_init (abfd) = TRUE;
11279 }
11280
11281 return TRUE;
11282 }
11283
11284 /* Copy backend specific data from one object module to another. */
11285
11286 static bfd_boolean
11287 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
11288 {
11289 flagword in_flags;
11290 flagword out_flags;
11291
11292 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
11293 return TRUE;
11294
11295 in_flags = elf_elfheader (ibfd)->e_flags;
11296 out_flags = elf_elfheader (obfd)->e_flags;
11297
11298 if (elf_flags_init (obfd)
11299 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
11300 && in_flags != out_flags)
11301 {
11302 /* Cannot mix APCS26 and APCS32 code. */
11303 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
11304 return FALSE;
11305
11306 /* Cannot mix float APCS and non-float APCS code. */
11307 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
11308 return FALSE;
11309
11310 /* If the src and dest have different interworking flags
11311 then turn off the interworking bit. */
11312 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
11313 {
11314 if (out_flags & EF_ARM_INTERWORK)
11315 _bfd_error_handler
11316 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
11317 obfd, ibfd);
11318
11319 in_flags &= ~EF_ARM_INTERWORK;
11320 }
11321
11322 /* Likewise for PIC, though don't warn for this case. */
11323 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
11324 in_flags &= ~EF_ARM_PIC;
11325 }
11326
11327 elf_elfheader (obfd)->e_flags = in_flags;
11328 elf_flags_init (obfd) = TRUE;
11329
11330 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
11331 }
11332
11333 /* Values for Tag_ABI_PCS_R9_use. */
11334 enum
11335 {
11336 AEABI_R9_V6,
11337 AEABI_R9_SB,
11338 AEABI_R9_TLS,
11339 AEABI_R9_unused
11340 };
11341
11342 /* Values for Tag_ABI_PCS_RW_data. */
11343 enum
11344 {
11345 AEABI_PCS_RW_data_absolute,
11346 AEABI_PCS_RW_data_PCrel,
11347 AEABI_PCS_RW_data_SBrel,
11348 AEABI_PCS_RW_data_unused
11349 };
11350
11351 /* Values for Tag_ABI_enum_size. */
11352 enum
11353 {
11354 AEABI_enum_unused,
11355 AEABI_enum_short,
11356 AEABI_enum_wide,
11357 AEABI_enum_forced_wide
11358 };
11359
11360 /* Determine whether an object attribute tag takes an integer, a
11361 string or both. */
11362
11363 static int
11364 elf32_arm_obj_attrs_arg_type (int tag)
11365 {
11366 if (tag == Tag_compatibility)
11367 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
11368 else if (tag == Tag_nodefaults)
11369 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
11370 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
11371 return ATTR_TYPE_FLAG_STR_VAL;
11372 else if (tag < 32)
11373 return ATTR_TYPE_FLAG_INT_VAL;
11374 else
11375 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
11376 }
11377
11378 /* The ABI defines that Tag_conformance should be emitted first, and that
11379 Tag_nodefaults should be second (if either is defined). This sets those
11380 two positions, and bumps up the position of all the remaining tags to
11381 compensate. */
11382 static int
11383 elf32_arm_obj_attrs_order (int num)
11384 {
11385 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
11386 return Tag_conformance;
11387 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
11388 return Tag_nodefaults;
11389 if ((num - 2) < Tag_nodefaults)
11390 return num - 2;
11391 if ((num - 1) < Tag_conformance)
11392 return num - 1;
11393 return num;
11394 }
11395
11396 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
11397 static bfd_boolean
11398 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
11399 {
11400 if ((tag & 127) < 64)
11401 {
11402 _bfd_error_handler
11403 (_("%B: Unknown mandatory EABI object attribute %d"),
11404 abfd, tag);
11405 bfd_set_error (bfd_error_bad_value);
11406 return FALSE;
11407 }
11408 else
11409 {
11410 _bfd_error_handler
11411 (_("Warning: %B: Unknown EABI object attribute %d"),
11412 abfd, tag);
11413 return TRUE;
11414 }
11415 }
11416
11417 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
11418 Returns -1 if no architecture could be read. */
11419
11420 static int
11421 get_secondary_compatible_arch (bfd *abfd)
11422 {
11423 obj_attribute *attr =
11424 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11425
11426 /* Note: the tag and its argument below are uleb128 values, though
11427 currently-defined values fit in one byte for each. */
11428 if (attr->s
11429 && attr->s[0] == Tag_CPU_arch
11430 && (attr->s[1] & 128) != 128
11431 && attr->s[2] == 0)
11432 return attr->s[1];
11433
11434 /* This tag is "safely ignorable", so don't complain if it looks funny. */
11435 return -1;
11436 }
11437
11438 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11439 The tag is removed if ARCH is -1. */
11440
11441 static void
11442 set_secondary_compatible_arch (bfd *abfd, int arch)
11443 {
11444 obj_attribute *attr =
11445 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11446
11447 if (arch == -1)
11448 {
11449 attr->s = NULL;
11450 return;
11451 }
11452
11453 /* Note: the tag and its argument below are uleb128 values, though
11454 currently-defined values fit in one byte for each. */
11455 if (!attr->s)
11456 attr->s = (char *) bfd_alloc (abfd, 3);
11457 attr->s[0] = Tag_CPU_arch;
11458 attr->s[1] = arch;
11459 attr->s[2] = '\0';
11460 }
11461
11462 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11463 into account. */
11464
11465 static int
11466 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11467 int newtag, int secondary_compat)
11468 {
11469 #define T(X) TAG_CPU_ARCH_##X
11470 int tagl, tagh, result;
11471 const int v6t2[] =
11472 {
11473 T(V6T2), /* PRE_V4. */
11474 T(V6T2), /* V4. */
11475 T(V6T2), /* V4T. */
11476 T(V6T2), /* V5T. */
11477 T(V6T2), /* V5TE. */
11478 T(V6T2), /* V5TEJ. */
11479 T(V6T2), /* V6. */
11480 T(V7), /* V6KZ. */
11481 T(V6T2) /* V6T2. */
11482 };
11483 const int v6k[] =
11484 {
11485 T(V6K), /* PRE_V4. */
11486 T(V6K), /* V4. */
11487 T(V6K), /* V4T. */
11488 T(V6K), /* V5T. */
11489 T(V6K), /* V5TE. */
11490 T(V6K), /* V5TEJ. */
11491 T(V6K), /* V6. */
11492 T(V6KZ), /* V6KZ. */
11493 T(V7), /* V6T2. */
11494 T(V6K) /* V6K. */
11495 };
11496 const int v7[] =
11497 {
11498 T(V7), /* PRE_V4. */
11499 T(V7), /* V4. */
11500 T(V7), /* V4T. */
11501 T(V7), /* V5T. */
11502 T(V7), /* V5TE. */
11503 T(V7), /* V5TEJ. */
11504 T(V7), /* V6. */
11505 T(V7), /* V6KZ. */
11506 T(V7), /* V6T2. */
11507 T(V7), /* V6K. */
11508 T(V7) /* V7. */
11509 };
11510 const int v6_m[] =
11511 {
11512 -1, /* PRE_V4. */
11513 -1, /* V4. */
11514 T(V6K), /* V4T. */
11515 T(V6K), /* V5T. */
11516 T(V6K), /* V5TE. */
11517 T(V6K), /* V5TEJ. */
11518 T(V6K), /* V6. */
11519 T(V6KZ), /* V6KZ. */
11520 T(V7), /* V6T2. */
11521 T(V6K), /* V6K. */
11522 T(V7), /* V7. */
11523 T(V6_M) /* V6_M. */
11524 };
11525 const int v6s_m[] =
11526 {
11527 -1, /* PRE_V4. */
11528 -1, /* V4. */
11529 T(V6K), /* V4T. */
11530 T(V6K), /* V5T. */
11531 T(V6K), /* V5TE. */
11532 T(V6K), /* V5TEJ. */
11533 T(V6K), /* V6. */
11534 T(V6KZ), /* V6KZ. */
11535 T(V7), /* V6T2. */
11536 T(V6K), /* V6K. */
11537 T(V7), /* V7. */
11538 T(V6S_M), /* V6_M. */
11539 T(V6S_M) /* V6S_M. */
11540 };
11541 const int v7e_m[] =
11542 {
11543 -1, /* PRE_V4. */
11544 -1, /* V4. */
11545 T(V7E_M), /* V4T. */
11546 T(V7E_M), /* V5T. */
11547 T(V7E_M), /* V5TE. */
11548 T(V7E_M), /* V5TEJ. */
11549 T(V7E_M), /* V6. */
11550 T(V7E_M), /* V6KZ. */
11551 T(V7E_M), /* V6T2. */
11552 T(V7E_M), /* V6K. */
11553 T(V7E_M), /* V7. */
11554 T(V7E_M), /* V6_M. */
11555 T(V7E_M), /* V6S_M. */
11556 T(V7E_M) /* V7E_M. */
11557 };
11558 const int v8[] =
11559 {
11560 T(V8), /* PRE_V4. */
11561 T(V8), /* V4. */
11562 T(V8), /* V4T. */
11563 T(V8), /* V5T. */
11564 T(V8), /* V5TE. */
11565 T(V8), /* V5TEJ. */
11566 T(V8), /* V6. */
11567 T(V8), /* V6KZ. */
11568 T(V8), /* V6T2. */
11569 T(V8), /* V6K. */
11570 T(V8), /* V7. */
11571 T(V8), /* V6_M. */
11572 T(V8), /* V6S_M. */
11573 T(V8), /* V7E_M. */
11574 T(V8) /* V8. */
11575 };
11576 const int v4t_plus_v6_m[] =
11577 {
11578 -1, /* PRE_V4. */
11579 -1, /* V4. */
11580 T(V4T), /* V4T. */
11581 T(V5T), /* V5T. */
11582 T(V5TE), /* V5TE. */
11583 T(V5TEJ), /* V5TEJ. */
11584 T(V6), /* V6. */
11585 T(V6KZ), /* V6KZ. */
11586 T(V6T2), /* V6T2. */
11587 T(V6K), /* V6K. */
11588 T(V7), /* V7. */
11589 T(V6_M), /* V6_M. */
11590 T(V6S_M), /* V6S_M. */
11591 T(V7E_M), /* V7E_M. */
11592 T(V8), /* V8. */
11593 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
11594 };
11595 const int *comb[] =
11596 {
11597 v6t2,
11598 v6k,
11599 v7,
11600 v6_m,
11601 v6s_m,
11602 v7e_m,
11603 v8,
11604 /* Pseudo-architecture. */
11605 v4t_plus_v6_m
11606 };
11607
11608 /* Check we've not got a higher architecture than we know about. */
11609
11610 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
11611 {
11612 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
11613 return -1;
11614 }
11615
11616 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11617
11618 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11619 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11620 oldtag = T(V4T_PLUS_V6_M);
11621
11622 /* And override the new tag if we have a Tag_also_compatible_with on the
11623 input. */
11624
11625 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11626 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11627 newtag = T(V4T_PLUS_V6_M);
11628
11629 tagl = (oldtag < newtag) ? oldtag : newtag;
11630 result = tagh = (oldtag > newtag) ? oldtag : newtag;
11631
11632 /* Architectures before V6KZ add features monotonically. */
11633 if (tagh <= TAG_CPU_ARCH_V6KZ)
11634 return result;
11635
11636 result = comb[tagh - T(V6T2)][tagl];
11637
11638 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11639 as the canonical version. */
11640 if (result == T(V4T_PLUS_V6_M))
11641 {
11642 result = T(V4T);
11643 *secondary_compat_out = T(V6_M);
11644 }
11645 else
11646 *secondary_compat_out = -1;
11647
11648 if (result == -1)
11649 {
11650 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11651 ibfd, oldtag, newtag);
11652 return -1;
11653 }
11654
11655 return result;
11656 #undef T
11657 }
11658
11659 /* Query attributes object to see if integer divide instructions may be
11660 present in an object. */
11661 static bfd_boolean
11662 elf32_arm_attributes_accept_div (const obj_attribute *attr)
11663 {
11664 int arch = attr[Tag_CPU_arch].i;
11665 int profile = attr[Tag_CPU_arch_profile].i;
11666
11667 switch (attr[Tag_DIV_use].i)
11668 {
11669 case 0:
11670 /* Integer divide allowed if instruction contained in archetecture. */
11671 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11672 return TRUE;
11673 else if (arch >= TAG_CPU_ARCH_V7E_M)
11674 return TRUE;
11675 else
11676 return FALSE;
11677
11678 case 1:
11679 /* Integer divide explicitly prohibited. */
11680 return FALSE;
11681
11682 default:
11683 /* Unrecognised case - treat as allowing divide everywhere. */
11684 case 2:
11685 /* Integer divide allowed in ARM state. */
11686 return TRUE;
11687 }
11688 }
11689
11690 /* Query attributes object to see if integer divide instructions are
11691 forbidden to be in the object. This is not the inverse of
11692 elf32_arm_attributes_accept_div. */
11693 static bfd_boolean
11694 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
11695 {
11696 return attr[Tag_DIV_use].i == 1;
11697 }
11698
11699 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11700 are conflicting attributes. */
11701
11702 static bfd_boolean
11703 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11704 {
11705 obj_attribute *in_attr;
11706 obj_attribute *out_attr;
11707 /* Some tags have 0 = don't care, 1 = strong requirement,
11708 2 = weak requirement. */
11709 static const int order_021[3] = {0, 2, 1};
11710 int i;
11711 bfd_boolean result = TRUE;
11712 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
11713
11714 /* Skip the linker stubs file. This preserves previous behavior
11715 of accepting unknown attributes in the first input file - but
11716 is that a bug? */
11717 if (ibfd->flags & BFD_LINKER_CREATED)
11718 return TRUE;
11719
11720 /* Skip any input that hasn't attribute section.
11721 This enables to link object files without attribute section with
11722 any others. */
11723 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
11724 return TRUE;
11725
11726 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11727 {
11728 /* This is the first object. Copy the attributes. */
11729 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11730
11731 out_attr = elf_known_obj_attributes_proc (obfd);
11732
11733 /* Use the Tag_null value to indicate the attributes have been
11734 initialized. */
11735 out_attr[0].i = 1;
11736
11737 /* We do not output objects with Tag_MPextension_use_legacy - we move
11738 the attribute's value to Tag_MPextension_use. */
11739 if (out_attr[Tag_MPextension_use_legacy].i != 0)
11740 {
11741 if (out_attr[Tag_MPextension_use].i != 0
11742 && out_attr[Tag_MPextension_use_legacy].i
11743 != out_attr[Tag_MPextension_use].i)
11744 {
11745 _bfd_error_handler
11746 (_("Error: %B has both the current and legacy "
11747 "Tag_MPextension_use attributes"), ibfd);
11748 result = FALSE;
11749 }
11750
11751 out_attr[Tag_MPextension_use] =
11752 out_attr[Tag_MPextension_use_legacy];
11753 out_attr[Tag_MPextension_use_legacy].type = 0;
11754 out_attr[Tag_MPextension_use_legacy].i = 0;
11755 }
11756
11757 return result;
11758 }
11759
11760 in_attr = elf_known_obj_attributes_proc (ibfd);
11761 out_attr = elf_known_obj_attributes_proc (obfd);
11762 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11763 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11764 {
11765 /* Ignore mismatches if the object doesn't use floating point or is
11766 floating point ABI independent. */
11767 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
11768 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
11769 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
11770 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11771 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
11772 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
11773 {
11774 _bfd_error_handler
11775 (_("error: %B uses VFP register arguments, %B does not"),
11776 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11777 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
11778 result = FALSE;
11779 }
11780 }
11781
11782 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
11783 {
11784 /* Merge this attribute with existing attributes. */
11785 switch (i)
11786 {
11787 case Tag_CPU_raw_name:
11788 case Tag_CPU_name:
11789 /* These are merged after Tag_CPU_arch. */
11790 break;
11791
11792 case Tag_ABI_optimization_goals:
11793 case Tag_ABI_FP_optimization_goals:
11794 /* Use the first value seen. */
11795 break;
11796
11797 case Tag_CPU_arch:
11798 {
11799 int secondary_compat = -1, secondary_compat_out = -1;
11800 unsigned int saved_out_attr = out_attr[i].i;
11801 int arch_attr;
11802 static const char *name_table[] =
11803 {
11804 /* These aren't real CPU names, but we can't guess
11805 that from the architecture version alone. */
11806 "Pre v4",
11807 "ARM v4",
11808 "ARM v4T",
11809 "ARM v5T",
11810 "ARM v5TE",
11811 "ARM v5TEJ",
11812 "ARM v6",
11813 "ARM v6KZ",
11814 "ARM v6T2",
11815 "ARM v6K",
11816 "ARM v7",
11817 "ARM v6-M",
11818 "ARM v6S-M",
11819 "ARM v8"
11820 };
11821
11822 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11823 secondary_compat = get_secondary_compatible_arch (ibfd);
11824 secondary_compat_out = get_secondary_compatible_arch (obfd);
11825 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11826 &secondary_compat_out,
11827 in_attr[i].i,
11828 secondary_compat);
11829
11830 /* Return with error if failed to merge. */
11831 if (arch_attr == -1)
11832 return FALSE;
11833
11834 out_attr[i].i = arch_attr;
11835
11836 set_secondary_compatible_arch (obfd, secondary_compat_out);
11837
11838 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11839 if (out_attr[i].i == saved_out_attr)
11840 ; /* Leave the names alone. */
11841 else if (out_attr[i].i == in_attr[i].i)
11842 {
11843 /* The output architecture has been changed to match the
11844 input architecture. Use the input names. */
11845 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11846 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11847 : NULL;
11848 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11849 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11850 : NULL;
11851 }
11852 else
11853 {
11854 out_attr[Tag_CPU_name].s = NULL;
11855 out_attr[Tag_CPU_raw_name].s = NULL;
11856 }
11857
11858 /* If we still don't have a value for Tag_CPU_name,
11859 make one up now. Tag_CPU_raw_name remains blank. */
11860 if (out_attr[Tag_CPU_name].s == NULL
11861 && out_attr[i].i < ARRAY_SIZE (name_table))
11862 out_attr[Tag_CPU_name].s =
11863 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11864 }
11865 break;
11866
11867 case Tag_ARM_ISA_use:
11868 case Tag_THUMB_ISA_use:
11869 case Tag_WMMX_arch:
11870 case Tag_Advanced_SIMD_arch:
11871 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11872 case Tag_ABI_FP_rounding:
11873 case Tag_ABI_FP_exceptions:
11874 case Tag_ABI_FP_user_exceptions:
11875 case Tag_ABI_FP_number_model:
11876 case Tag_FP_HP_extension:
11877 case Tag_CPU_unaligned_access:
11878 case Tag_T2EE_use:
11879 case Tag_MPextension_use:
11880 /* Use the largest value specified. */
11881 if (in_attr[i].i > out_attr[i].i)
11882 out_attr[i].i = in_attr[i].i;
11883 break;
11884
11885 case Tag_ABI_align_preserved:
11886 case Tag_ABI_PCS_RO_data:
11887 /* Use the smallest value specified. */
11888 if (in_attr[i].i < out_attr[i].i)
11889 out_attr[i].i = in_attr[i].i;
11890 break;
11891
11892 case Tag_ABI_align_needed:
11893 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
11894 && (in_attr[Tag_ABI_align_preserved].i == 0
11895 || out_attr[Tag_ABI_align_preserved].i == 0))
11896 {
11897 /* This error message should be enabled once all non-conformant
11898 binaries in the toolchain have had the attributes set
11899 properly.
11900 _bfd_error_handler
11901 (_("error: %B: 8-byte data alignment conflicts with %B"),
11902 obfd, ibfd);
11903 result = FALSE; */
11904 }
11905 /* Fall through. */
11906 case Tag_ABI_FP_denormal:
11907 case Tag_ABI_PCS_GOT_use:
11908 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11909 value if greater than 2 (for future-proofing). */
11910 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11911 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11912 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
11913 out_attr[i].i = in_attr[i].i;
11914 break;
11915
11916 case Tag_Virtualization_use:
11917 /* The virtualization tag effectively stores two bits of
11918 information: the intended use of TrustZone (in bit 0), and the
11919 intended use of Virtualization (in bit 1). */
11920 if (out_attr[i].i == 0)
11921 out_attr[i].i = in_attr[i].i;
11922 else if (in_attr[i].i != 0
11923 && in_attr[i].i != out_attr[i].i)
11924 {
11925 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11926 out_attr[i].i = 3;
11927 else
11928 {
11929 _bfd_error_handler
11930 (_("error: %B: unable to merge virtualization attributes "
11931 "with %B"),
11932 obfd, ibfd);
11933 result = FALSE;
11934 }
11935 }
11936 break;
11937
11938 case Tag_CPU_arch_profile:
11939 if (out_attr[i].i != in_attr[i].i)
11940 {
11941 /* 0 will merge with anything.
11942 'A' and 'S' merge to 'A'.
11943 'R' and 'S' merge to 'R'.
11944 'M' and 'A|R|S' is an error. */
11945 if (out_attr[i].i == 0
11946 || (out_attr[i].i == 'S'
11947 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11948 out_attr[i].i = in_attr[i].i;
11949 else if (in_attr[i].i == 0
11950 || (in_attr[i].i == 'S'
11951 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11952 ; /* Do nothing. */
11953 else
11954 {
11955 _bfd_error_handler
11956 (_("error: %B: Conflicting architecture profiles %c/%c"),
11957 ibfd,
11958 in_attr[i].i ? in_attr[i].i : '0',
11959 out_attr[i].i ? out_attr[i].i : '0');
11960 result = FALSE;
11961 }
11962 }
11963 break;
11964 case Tag_FP_arch:
11965 {
11966 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11967 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11968 when it's 0. It might mean absence of FP hardware if
11969 Tag_FP_arch is zero. */
11970
11971 #define VFP_VERSION_COUNT 9
11972 static const struct
11973 {
11974 int ver;
11975 int regs;
11976 } vfp_versions[VFP_VERSION_COUNT] =
11977 {
11978 {0, 0},
11979 {1, 16},
11980 {2, 16},
11981 {3, 32},
11982 {3, 16},
11983 {4, 32},
11984 {4, 16},
11985 {8, 32},
11986 {8, 16}
11987 };
11988 int ver;
11989 int regs;
11990 int newval;
11991
11992 /* If the output has no requirement about FP hardware,
11993 follow the requirement of the input. */
11994 if (out_attr[i].i == 0)
11995 {
11996 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11997 out_attr[i].i = in_attr[i].i;
11998 out_attr[Tag_ABI_HardFP_use].i
11999 = in_attr[Tag_ABI_HardFP_use].i;
12000 break;
12001 }
12002 /* If the input has no requirement about FP hardware, do
12003 nothing. */
12004 else if (in_attr[i].i == 0)
12005 {
12006 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
12007 break;
12008 }
12009
12010 /* Both the input and the output have nonzero Tag_FP_arch.
12011 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
12012
12013 /* If both the input and the output have zero Tag_ABI_HardFP_use,
12014 do nothing. */
12015 if (in_attr[Tag_ABI_HardFP_use].i == 0
12016 && out_attr[Tag_ABI_HardFP_use].i == 0)
12017 ;
12018 /* If the input and the output have different Tag_ABI_HardFP_use,
12019 the combination of them is 0 (implied by Tag_FP_arch). */
12020 else if (in_attr[Tag_ABI_HardFP_use].i
12021 != out_attr[Tag_ABI_HardFP_use].i)
12022 out_attr[Tag_ABI_HardFP_use].i = 0;
12023
12024 /* Now we can handle Tag_FP_arch. */
12025
12026 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
12027 pick the biggest. */
12028 if (in_attr[i].i >= VFP_VERSION_COUNT
12029 && in_attr[i].i > out_attr[i].i)
12030 {
12031 out_attr[i] = in_attr[i];
12032 break;
12033 }
12034 /* The output uses the superset of input features
12035 (ISA version) and registers. */
12036 ver = vfp_versions[in_attr[i].i].ver;
12037 if (ver < vfp_versions[out_attr[i].i].ver)
12038 ver = vfp_versions[out_attr[i].i].ver;
12039 regs = vfp_versions[in_attr[i].i].regs;
12040 if (regs < vfp_versions[out_attr[i].i].regs)
12041 regs = vfp_versions[out_attr[i].i].regs;
12042 /* This assumes all possible supersets are also a valid
12043 options. */
12044 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
12045 {
12046 if (regs == vfp_versions[newval].regs
12047 && ver == vfp_versions[newval].ver)
12048 break;
12049 }
12050 out_attr[i].i = newval;
12051 }
12052 break;
12053 case Tag_PCS_config:
12054 if (out_attr[i].i == 0)
12055 out_attr[i].i = in_attr[i].i;
12056 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
12057 {
12058 /* It's sometimes ok to mix different configs, so this is only
12059 a warning. */
12060 _bfd_error_handler
12061 (_("Warning: %B: Conflicting platform configuration"), ibfd);
12062 }
12063 break;
12064 case Tag_ABI_PCS_R9_use:
12065 if (in_attr[i].i != out_attr[i].i
12066 && out_attr[i].i != AEABI_R9_unused
12067 && in_attr[i].i != AEABI_R9_unused)
12068 {
12069 _bfd_error_handler
12070 (_("error: %B: Conflicting use of R9"), ibfd);
12071 result = FALSE;
12072 }
12073 if (out_attr[i].i == AEABI_R9_unused)
12074 out_attr[i].i = in_attr[i].i;
12075 break;
12076 case Tag_ABI_PCS_RW_data:
12077 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
12078 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
12079 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
12080 {
12081 _bfd_error_handler
12082 (_("error: %B: SB relative addressing conflicts with use of R9"),
12083 ibfd);
12084 result = FALSE;
12085 }
12086 /* Use the smallest value specified. */
12087 if (in_attr[i].i < out_attr[i].i)
12088 out_attr[i].i = in_attr[i].i;
12089 break;
12090 case Tag_ABI_PCS_wchar_t:
12091 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
12092 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
12093 {
12094 _bfd_error_handler
12095 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
12096 ibfd, in_attr[i].i, out_attr[i].i);
12097 }
12098 else if (in_attr[i].i && !out_attr[i].i)
12099 out_attr[i].i = in_attr[i].i;
12100 break;
12101 case Tag_ABI_enum_size:
12102 if (in_attr[i].i != AEABI_enum_unused)
12103 {
12104 if (out_attr[i].i == AEABI_enum_unused
12105 || out_attr[i].i == AEABI_enum_forced_wide)
12106 {
12107 /* The existing object is compatible with anything.
12108 Use whatever requirements the new object has. */
12109 out_attr[i].i = in_attr[i].i;
12110 }
12111 else if (in_attr[i].i != AEABI_enum_forced_wide
12112 && out_attr[i].i != in_attr[i].i
12113 && !elf_arm_tdata (obfd)->no_enum_size_warning)
12114 {
12115 static const char *aeabi_enum_names[] =
12116 { "", "variable-size", "32-bit", "" };
12117 const char *in_name =
12118 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12119 ? aeabi_enum_names[in_attr[i].i]
12120 : "<unknown>";
12121 const char *out_name =
12122 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12123 ? aeabi_enum_names[out_attr[i].i]
12124 : "<unknown>";
12125 _bfd_error_handler
12126 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
12127 ibfd, in_name, out_name);
12128 }
12129 }
12130 break;
12131 case Tag_ABI_VFP_args:
12132 /* Aready done. */
12133 break;
12134 case Tag_ABI_WMMX_args:
12135 if (in_attr[i].i != out_attr[i].i)
12136 {
12137 _bfd_error_handler
12138 (_("error: %B uses iWMMXt register arguments, %B does not"),
12139 ibfd, obfd);
12140 result = FALSE;
12141 }
12142 break;
12143 case Tag_compatibility:
12144 /* Merged in target-independent code. */
12145 break;
12146 case Tag_ABI_HardFP_use:
12147 /* This is handled along with Tag_FP_arch. */
12148 break;
12149 case Tag_ABI_FP_16bit_format:
12150 if (in_attr[i].i != 0 && out_attr[i].i != 0)
12151 {
12152 if (in_attr[i].i != out_attr[i].i)
12153 {
12154 _bfd_error_handler
12155 (_("error: fp16 format mismatch between %B and %B"),
12156 ibfd, obfd);
12157 result = FALSE;
12158 }
12159 }
12160 if (in_attr[i].i != 0)
12161 out_attr[i].i = in_attr[i].i;
12162 break;
12163
12164 case Tag_DIV_use:
12165 /* A value of zero on input means that the divide instruction may
12166 be used if available in the base architecture as specified via
12167 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
12168 the user did not want divide instructions. A value of 2
12169 explicitly means that divide instructions were allowed in ARM
12170 and Thumb state. */
12171 if (in_attr[i].i == out_attr[i].i)
12172 /* Do nothing. */ ;
12173 else if (elf32_arm_attributes_forbid_div (in_attr)
12174 && !elf32_arm_attributes_accept_div (out_attr))
12175 out_attr[i].i = 1;
12176 else if (elf32_arm_attributes_forbid_div (out_attr)
12177 && elf32_arm_attributes_accept_div (in_attr))
12178 out_attr[i].i = in_attr[i].i;
12179 else if (in_attr[i].i == 2)
12180 out_attr[i].i = in_attr[i].i;
12181 break;
12182
12183 case Tag_MPextension_use_legacy:
12184 /* We don't output objects with Tag_MPextension_use_legacy - we
12185 move the value to Tag_MPextension_use. */
12186 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
12187 {
12188 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
12189 {
12190 _bfd_error_handler
12191 (_("%B has has both the current and legacy "
12192 "Tag_MPextension_use attributes"),
12193 ibfd);
12194 result = FALSE;
12195 }
12196 }
12197
12198 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
12199 out_attr[Tag_MPextension_use] = in_attr[i];
12200
12201 break;
12202
12203 case Tag_nodefaults:
12204 /* This tag is set if it exists, but the value is unused (and is
12205 typically zero). We don't actually need to do anything here -
12206 the merge happens automatically when the type flags are merged
12207 below. */
12208 break;
12209 case Tag_also_compatible_with:
12210 /* Already done in Tag_CPU_arch. */
12211 break;
12212 case Tag_conformance:
12213 /* Keep the attribute if it matches. Throw it away otherwise.
12214 No attribute means no claim to conform. */
12215 if (!in_attr[i].s || !out_attr[i].s
12216 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
12217 out_attr[i].s = NULL;
12218 break;
12219
12220 default:
12221 result
12222 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
12223 }
12224
12225 /* If out_attr was copied from in_attr then it won't have a type yet. */
12226 if (in_attr[i].type && !out_attr[i].type)
12227 out_attr[i].type = in_attr[i].type;
12228 }
12229
12230 /* Merge Tag_compatibility attributes and any common GNU ones. */
12231 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
12232 return FALSE;
12233
12234 /* Check for any attributes not known on ARM. */
12235 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
12236
12237 return result;
12238 }
12239
12240
12241 /* Return TRUE if the two EABI versions are incompatible. */
12242
12243 static bfd_boolean
12244 elf32_arm_versions_compatible (unsigned iver, unsigned over)
12245 {
12246 /* v4 and v5 are the same spec before and after it was released,
12247 so allow mixing them. */
12248 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
12249 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
12250 return TRUE;
12251
12252 return (iver == over);
12253 }
12254
12255 /* Merge backend specific data from an object file to the output
12256 object file when linking. */
12257
12258 static bfd_boolean
12259 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
12260
12261 /* Display the flags field. */
12262
12263 static bfd_boolean
12264 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
12265 {
12266 FILE * file = (FILE *) ptr;
12267 unsigned long flags;
12268
12269 BFD_ASSERT (abfd != NULL && ptr != NULL);
12270
12271 /* Print normal ELF private data. */
12272 _bfd_elf_print_private_bfd_data (abfd, ptr);
12273
12274 flags = elf_elfheader (abfd)->e_flags;
12275 /* Ignore init flag - it may not be set, despite the flags field
12276 containing valid data. */
12277
12278 /* xgettext:c-format */
12279 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12280
12281 switch (EF_ARM_EABI_VERSION (flags))
12282 {
12283 case EF_ARM_EABI_UNKNOWN:
12284 /* The following flag bits are GNU extensions and not part of the
12285 official ARM ELF extended ABI. Hence they are only decoded if
12286 the EABI version is not set. */
12287 if (flags & EF_ARM_INTERWORK)
12288 fprintf (file, _(" [interworking enabled]"));
12289
12290 if (flags & EF_ARM_APCS_26)
12291 fprintf (file, " [APCS-26]");
12292 else
12293 fprintf (file, " [APCS-32]");
12294
12295 if (flags & EF_ARM_VFP_FLOAT)
12296 fprintf (file, _(" [VFP float format]"));
12297 else if (flags & EF_ARM_MAVERICK_FLOAT)
12298 fprintf (file, _(" [Maverick float format]"));
12299 else
12300 fprintf (file, _(" [FPA float format]"));
12301
12302 if (flags & EF_ARM_APCS_FLOAT)
12303 fprintf (file, _(" [floats passed in float registers]"));
12304
12305 if (flags & EF_ARM_PIC)
12306 fprintf (file, _(" [position independent]"));
12307
12308 if (flags & EF_ARM_NEW_ABI)
12309 fprintf (file, _(" [new ABI]"));
12310
12311 if (flags & EF_ARM_OLD_ABI)
12312 fprintf (file, _(" [old ABI]"));
12313
12314 if (flags & EF_ARM_SOFT_FLOAT)
12315 fprintf (file, _(" [software FP]"));
12316
12317 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
12318 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
12319 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
12320 | EF_ARM_MAVERICK_FLOAT);
12321 break;
12322
12323 case EF_ARM_EABI_VER1:
12324 fprintf (file, _(" [Version1 EABI]"));
12325
12326 if (flags & EF_ARM_SYMSARESORTED)
12327 fprintf (file, _(" [sorted symbol table]"));
12328 else
12329 fprintf (file, _(" [unsorted symbol table]"));
12330
12331 flags &= ~ EF_ARM_SYMSARESORTED;
12332 break;
12333
12334 case EF_ARM_EABI_VER2:
12335 fprintf (file, _(" [Version2 EABI]"));
12336
12337 if (flags & EF_ARM_SYMSARESORTED)
12338 fprintf (file, _(" [sorted symbol table]"));
12339 else
12340 fprintf (file, _(" [unsorted symbol table]"));
12341
12342 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
12343 fprintf (file, _(" [dynamic symbols use segment index]"));
12344
12345 if (flags & EF_ARM_MAPSYMSFIRST)
12346 fprintf (file, _(" [mapping symbols precede others]"));
12347
12348 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
12349 | EF_ARM_MAPSYMSFIRST);
12350 break;
12351
12352 case EF_ARM_EABI_VER3:
12353 fprintf (file, _(" [Version3 EABI]"));
12354 break;
12355
12356 case EF_ARM_EABI_VER4:
12357 fprintf (file, _(" [Version4 EABI]"));
12358 goto eabi;
12359
12360 case EF_ARM_EABI_VER5:
12361 fprintf (file, _(" [Version5 EABI]"));
12362
12363 if (flags & EF_ARM_ABI_FLOAT_SOFT)
12364 fprintf (file, _(" [soft-float ABI]"));
12365
12366 if (flags & EF_ARM_ABI_FLOAT_HARD)
12367 fprintf (file, _(" [hard-float ABI]"));
12368
12369 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
12370
12371 eabi:
12372 if (flags & EF_ARM_BE8)
12373 fprintf (file, _(" [BE8]"));
12374
12375 if (flags & EF_ARM_LE8)
12376 fprintf (file, _(" [LE8]"));
12377
12378 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
12379 break;
12380
12381 default:
12382 fprintf (file, _(" <EABI version unrecognised>"));
12383 break;
12384 }
12385
12386 flags &= ~ EF_ARM_EABIMASK;
12387
12388 if (flags & EF_ARM_RELEXEC)
12389 fprintf (file, _(" [relocatable executable]"));
12390
12391 flags &= ~EF_ARM_RELEXEC;
12392
12393 if (flags)
12394 fprintf (file, _("<Unrecognised flag bits set>"));
12395
12396 fputc ('\n', file);
12397
12398 return TRUE;
12399 }
12400
12401 static int
12402 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
12403 {
12404 switch (ELF_ST_TYPE (elf_sym->st_info))
12405 {
12406 case STT_ARM_TFUNC:
12407 return ELF_ST_TYPE (elf_sym->st_info);
12408
12409 case STT_ARM_16BIT:
12410 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
12411 This allows us to distinguish between data used by Thumb instructions
12412 and non-data (which is probably code) inside Thumb regions of an
12413 executable. */
12414 if (type != STT_OBJECT && type != STT_TLS)
12415 return ELF_ST_TYPE (elf_sym->st_info);
12416 break;
12417
12418 default:
12419 break;
12420 }
12421
12422 return type;
12423 }
12424
12425 static asection *
12426 elf32_arm_gc_mark_hook (asection *sec,
12427 struct bfd_link_info *info,
12428 Elf_Internal_Rela *rel,
12429 struct elf_link_hash_entry *h,
12430 Elf_Internal_Sym *sym)
12431 {
12432 if (h != NULL)
12433 switch (ELF32_R_TYPE (rel->r_info))
12434 {
12435 case R_ARM_GNU_VTINHERIT:
12436 case R_ARM_GNU_VTENTRY:
12437 return NULL;
12438 }
12439
12440 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12441 }
12442
12443 /* Update the got entry reference counts for the section being removed. */
12444
12445 static bfd_boolean
12446 elf32_arm_gc_sweep_hook (bfd * abfd,
12447 struct bfd_link_info * info,
12448 asection * sec,
12449 const Elf_Internal_Rela * relocs)
12450 {
12451 Elf_Internal_Shdr *symtab_hdr;
12452 struct elf_link_hash_entry **sym_hashes;
12453 bfd_signed_vma *local_got_refcounts;
12454 const Elf_Internal_Rela *rel, *relend;
12455 struct elf32_arm_link_hash_table * globals;
12456
12457 if (bfd_link_relocatable (info))
12458 return TRUE;
12459
12460 globals = elf32_arm_hash_table (info);
12461 if (globals == NULL)
12462 return FALSE;
12463
12464 elf_section_data (sec)->local_dynrel = NULL;
12465
12466 symtab_hdr = & elf_symtab_hdr (abfd);
12467 sym_hashes = elf_sym_hashes (abfd);
12468 local_got_refcounts = elf_local_got_refcounts (abfd);
12469
12470 check_use_blx (globals);
12471
12472 relend = relocs + sec->reloc_count;
12473 for (rel = relocs; rel < relend; rel++)
12474 {
12475 unsigned long r_symndx;
12476 struct elf_link_hash_entry *h = NULL;
12477 struct elf32_arm_link_hash_entry *eh;
12478 int r_type;
12479 bfd_boolean call_reloc_p;
12480 bfd_boolean may_become_dynamic_p;
12481 bfd_boolean may_need_local_target_p;
12482 union gotplt_union *root_plt;
12483 struct arm_plt_info *arm_plt;
12484
12485 r_symndx = ELF32_R_SYM (rel->r_info);
12486 if (r_symndx >= symtab_hdr->sh_info)
12487 {
12488 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12489 while (h->root.type == bfd_link_hash_indirect
12490 || h->root.type == bfd_link_hash_warning)
12491 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12492 }
12493 eh = (struct elf32_arm_link_hash_entry *) h;
12494
12495 call_reloc_p = FALSE;
12496 may_become_dynamic_p = FALSE;
12497 may_need_local_target_p = FALSE;
12498
12499 r_type = ELF32_R_TYPE (rel->r_info);
12500 r_type = arm_real_reloc_type (globals, r_type);
12501 switch (r_type)
12502 {
12503 case R_ARM_GOT32:
12504 case R_ARM_GOT_PREL:
12505 case R_ARM_TLS_GD32:
12506 case R_ARM_TLS_IE32:
12507 if (h != NULL)
12508 {
12509 if (h->got.refcount > 0)
12510 h->got.refcount -= 1;
12511 }
12512 else if (local_got_refcounts != NULL)
12513 {
12514 if (local_got_refcounts[r_symndx] > 0)
12515 local_got_refcounts[r_symndx] -= 1;
12516 }
12517 break;
12518
12519 case R_ARM_TLS_LDM32:
12520 globals->tls_ldm_got.refcount -= 1;
12521 break;
12522
12523 case R_ARM_PC24:
12524 case R_ARM_PLT32:
12525 case R_ARM_CALL:
12526 case R_ARM_JUMP24:
12527 case R_ARM_PREL31:
12528 case R_ARM_THM_CALL:
12529 case R_ARM_THM_JUMP24:
12530 case R_ARM_THM_JUMP19:
12531 call_reloc_p = TRUE;
12532 may_need_local_target_p = TRUE;
12533 break;
12534
12535 case R_ARM_ABS12:
12536 if (!globals->vxworks_p)
12537 {
12538 may_need_local_target_p = TRUE;
12539 break;
12540 }
12541 /* Fall through. */
12542 case R_ARM_ABS32:
12543 case R_ARM_ABS32_NOI:
12544 case R_ARM_REL32:
12545 case R_ARM_REL32_NOI:
12546 case R_ARM_MOVW_ABS_NC:
12547 case R_ARM_MOVT_ABS:
12548 case R_ARM_MOVW_PREL_NC:
12549 case R_ARM_MOVT_PREL:
12550 case R_ARM_THM_MOVW_ABS_NC:
12551 case R_ARM_THM_MOVT_ABS:
12552 case R_ARM_THM_MOVW_PREL_NC:
12553 case R_ARM_THM_MOVT_PREL:
12554 /* Should the interworking branches be here also? */
12555 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
12556 && (sec->flags & SEC_ALLOC) != 0)
12557 {
12558 if (h == NULL
12559 && elf32_arm_howto_from_type (r_type)->pc_relative)
12560 {
12561 call_reloc_p = TRUE;
12562 may_need_local_target_p = TRUE;
12563 }
12564 else
12565 may_become_dynamic_p = TRUE;
12566 }
12567 else
12568 may_need_local_target_p = TRUE;
12569 break;
12570
12571 default:
12572 break;
12573 }
12574
12575 if (may_need_local_target_p
12576 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
12577 {
12578 /* If PLT refcount book-keeping is wrong and too low, we'll
12579 see a zero value (going to -1) for the root PLT reference
12580 count. */
12581 if (root_plt->refcount >= 0)
12582 {
12583 BFD_ASSERT (root_plt->refcount != 0);
12584 root_plt->refcount -= 1;
12585 }
12586 else
12587 /* A value of -1 means the symbol has become local, forced
12588 or seeing a hidden definition. Any other negative value
12589 is an error. */
12590 BFD_ASSERT (root_plt->refcount == -1);
12591
12592 if (!call_reloc_p)
12593 arm_plt->noncall_refcount--;
12594
12595 if (r_type == R_ARM_THM_CALL)
12596 arm_plt->maybe_thumb_refcount--;
12597
12598 if (r_type == R_ARM_THM_JUMP24
12599 || r_type == R_ARM_THM_JUMP19)
12600 arm_plt->thumb_refcount--;
12601 }
12602
12603 if (may_become_dynamic_p)
12604 {
12605 struct elf_dyn_relocs **pp;
12606 struct elf_dyn_relocs *p;
12607
12608 if (h != NULL)
12609 pp = &(eh->dyn_relocs);
12610 else
12611 {
12612 Elf_Internal_Sym *isym;
12613
12614 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12615 abfd, r_symndx);
12616 if (isym == NULL)
12617 return FALSE;
12618 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12619 if (pp == NULL)
12620 return FALSE;
12621 }
12622 for (; (p = *pp) != NULL; pp = &p->next)
12623 if (p->sec == sec)
12624 {
12625 /* Everything must go for SEC. */
12626 *pp = p->next;
12627 break;
12628 }
12629 }
12630 }
12631
12632 return TRUE;
12633 }
12634
12635 /* Look through the relocs for a section during the first phase. */
12636
12637 static bfd_boolean
12638 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12639 asection *sec, const Elf_Internal_Rela *relocs)
12640 {
12641 Elf_Internal_Shdr *symtab_hdr;
12642 struct elf_link_hash_entry **sym_hashes;
12643 const Elf_Internal_Rela *rel;
12644 const Elf_Internal_Rela *rel_end;
12645 bfd *dynobj;
12646 asection *sreloc;
12647 struct elf32_arm_link_hash_table *htab;
12648 bfd_boolean call_reloc_p;
12649 bfd_boolean may_become_dynamic_p;
12650 bfd_boolean may_need_local_target_p;
12651 unsigned long nsyms;
12652
12653 if (bfd_link_relocatable (info))
12654 return TRUE;
12655
12656 BFD_ASSERT (is_arm_elf (abfd));
12657
12658 htab = elf32_arm_hash_table (info);
12659 if (htab == NULL)
12660 return FALSE;
12661
12662 sreloc = NULL;
12663
12664 /* Create dynamic sections for relocatable executables so that we can
12665 copy relocations. */
12666 if (htab->root.is_relocatable_executable
12667 && ! htab->root.dynamic_sections_created)
12668 {
12669 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12670 return FALSE;
12671 }
12672
12673 if (htab->root.dynobj == NULL)
12674 htab->root.dynobj = abfd;
12675 if (!create_ifunc_sections (info))
12676 return FALSE;
12677
12678 dynobj = htab->root.dynobj;
12679
12680 symtab_hdr = & elf_symtab_hdr (abfd);
12681 sym_hashes = elf_sym_hashes (abfd);
12682 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
12683
12684 rel_end = relocs + sec->reloc_count;
12685 for (rel = relocs; rel < rel_end; rel++)
12686 {
12687 Elf_Internal_Sym *isym;
12688 struct elf_link_hash_entry *h;
12689 struct elf32_arm_link_hash_entry *eh;
12690 unsigned long r_symndx;
12691 int r_type;
12692
12693 r_symndx = ELF32_R_SYM (rel->r_info);
12694 r_type = ELF32_R_TYPE (rel->r_info);
12695 r_type = arm_real_reloc_type (htab, r_type);
12696
12697 if (r_symndx >= nsyms
12698 /* PR 9934: It is possible to have relocations that do not
12699 refer to symbols, thus it is also possible to have an
12700 object file containing relocations but no symbol table. */
12701 && (r_symndx > STN_UNDEF || nsyms > 0))
12702 {
12703 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
12704 r_symndx);
12705 return FALSE;
12706 }
12707
12708 h = NULL;
12709 isym = NULL;
12710 if (nsyms > 0)
12711 {
12712 if (r_symndx < symtab_hdr->sh_info)
12713 {
12714 /* A local symbol. */
12715 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12716 abfd, r_symndx);
12717 if (isym == NULL)
12718 return FALSE;
12719 }
12720 else
12721 {
12722 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12723 while (h->root.type == bfd_link_hash_indirect
12724 || h->root.type == bfd_link_hash_warning)
12725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12726
12727 /* PR15323, ref flags aren't set for references in the
12728 same object. */
12729 h->root.non_ir_ref = 1;
12730 }
12731 }
12732
12733 eh = (struct elf32_arm_link_hash_entry *) h;
12734
12735 call_reloc_p = FALSE;
12736 may_become_dynamic_p = FALSE;
12737 may_need_local_target_p = FALSE;
12738
12739 /* Could be done earlier, if h were already available. */
12740 r_type = elf32_arm_tls_transition (info, r_type, h);
12741 switch (r_type)
12742 {
12743 case R_ARM_GOT32:
12744 case R_ARM_GOT_PREL:
12745 case R_ARM_TLS_GD32:
12746 case R_ARM_TLS_IE32:
12747 case R_ARM_TLS_GOTDESC:
12748 case R_ARM_TLS_DESCSEQ:
12749 case R_ARM_THM_TLS_DESCSEQ:
12750 case R_ARM_TLS_CALL:
12751 case R_ARM_THM_TLS_CALL:
12752 /* This symbol requires a global offset table entry. */
12753 {
12754 int tls_type, old_tls_type;
12755
12756 switch (r_type)
12757 {
12758 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
12759
12760 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
12761
12762 case R_ARM_TLS_GOTDESC:
12763 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12764 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12765 tls_type = GOT_TLS_GDESC; break;
12766
12767 default: tls_type = GOT_NORMAL; break;
12768 }
12769
12770 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
12771 info->flags |= DF_STATIC_TLS;
12772
12773 if (h != NULL)
12774 {
12775 h->got.refcount++;
12776 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12777 }
12778 else
12779 {
12780 /* This is a global offset table entry for a local symbol. */
12781 if (!elf32_arm_allocate_local_sym_info (abfd))
12782 return FALSE;
12783 elf_local_got_refcounts (abfd)[r_symndx] += 1;
12784 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12785 }
12786
12787 /* If a variable is accessed with both tls methods, two
12788 slots may be created. */
12789 if (GOT_TLS_GD_ANY_P (old_tls_type)
12790 && GOT_TLS_GD_ANY_P (tls_type))
12791 tls_type |= old_tls_type;
12792
12793 /* We will already have issued an error message if there
12794 is a TLS/non-TLS mismatch, based on the symbol
12795 type. So just combine any TLS types needed. */
12796 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12797 && tls_type != GOT_NORMAL)
12798 tls_type |= old_tls_type;
12799
12800 /* If the symbol is accessed in both IE and GDESC
12801 method, we're able to relax. Turn off the GDESC flag,
12802 without messing up with any other kind of tls types
12803 that may be involved. */
12804 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12805 tls_type &= ~GOT_TLS_GDESC;
12806
12807 if (old_tls_type != tls_type)
12808 {
12809 if (h != NULL)
12810 elf32_arm_hash_entry (h)->tls_type = tls_type;
12811 else
12812 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12813 }
12814 }
12815 /* Fall through. */
12816
12817 case R_ARM_TLS_LDM32:
12818 if (r_type == R_ARM_TLS_LDM32)
12819 htab->tls_ldm_got.refcount++;
12820 /* Fall through. */
12821
12822 case R_ARM_GOTOFF32:
12823 case R_ARM_GOTPC:
12824 if (htab->root.sgot == NULL
12825 && !create_got_section (htab->root.dynobj, info))
12826 return FALSE;
12827 break;
12828
12829 case R_ARM_PC24:
12830 case R_ARM_PLT32:
12831 case R_ARM_CALL:
12832 case R_ARM_JUMP24:
12833 case R_ARM_PREL31:
12834 case R_ARM_THM_CALL:
12835 case R_ARM_THM_JUMP24:
12836 case R_ARM_THM_JUMP19:
12837 call_reloc_p = TRUE;
12838 may_need_local_target_p = TRUE;
12839 break;
12840
12841 case R_ARM_ABS12:
12842 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12843 ldr __GOTT_INDEX__ offsets. */
12844 if (!htab->vxworks_p)
12845 {
12846 may_need_local_target_p = TRUE;
12847 break;
12848 }
12849 /* Fall through. */
12850
12851 case R_ARM_MOVW_ABS_NC:
12852 case R_ARM_MOVT_ABS:
12853 case R_ARM_THM_MOVW_ABS_NC:
12854 case R_ARM_THM_MOVT_ABS:
12855 if (bfd_link_pic (info))
12856 {
12857 (*_bfd_error_handler)
12858 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12859 abfd, elf32_arm_howto_table_1[r_type].name,
12860 (h) ? h->root.root.string : "a local symbol");
12861 bfd_set_error (bfd_error_bad_value);
12862 return FALSE;
12863 }
12864
12865 /* Fall through. */
12866 case R_ARM_ABS32:
12867 case R_ARM_ABS32_NOI:
12868 if (h != NULL && bfd_link_executable (info))
12869 {
12870 h->pointer_equality_needed = 1;
12871 }
12872 /* Fall through. */
12873 case R_ARM_REL32:
12874 case R_ARM_REL32_NOI:
12875 case R_ARM_MOVW_PREL_NC:
12876 case R_ARM_MOVT_PREL:
12877 case R_ARM_THM_MOVW_PREL_NC:
12878 case R_ARM_THM_MOVT_PREL:
12879
12880 /* Should the interworking branches be listed here? */
12881 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
12882 && (sec->flags & SEC_ALLOC) != 0)
12883 {
12884 if (h == NULL
12885 && elf32_arm_howto_from_type (r_type)->pc_relative)
12886 {
12887 /* In shared libraries and relocatable executables,
12888 we treat local relative references as calls;
12889 see the related SYMBOL_CALLS_LOCAL code in
12890 allocate_dynrelocs. */
12891 call_reloc_p = TRUE;
12892 may_need_local_target_p = TRUE;
12893 }
12894 else
12895 /* We are creating a shared library or relocatable
12896 executable, and this is a reloc against a global symbol,
12897 or a non-PC-relative reloc against a local symbol.
12898 We may need to copy the reloc into the output. */
12899 may_become_dynamic_p = TRUE;
12900 }
12901 else
12902 may_need_local_target_p = TRUE;
12903 break;
12904
12905 /* This relocation describes the C++ object vtable hierarchy.
12906 Reconstruct it for later use during GC. */
12907 case R_ARM_GNU_VTINHERIT:
12908 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12909 return FALSE;
12910 break;
12911
12912 /* This relocation describes which C++ vtable entries are actually
12913 used. Record for later use during GC. */
12914 case R_ARM_GNU_VTENTRY:
12915 BFD_ASSERT (h != NULL);
12916 if (h != NULL
12917 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12918 return FALSE;
12919 break;
12920 }
12921
12922 if (h != NULL)
12923 {
12924 if (call_reloc_p)
12925 /* We may need a .plt entry if the function this reloc
12926 refers to is in a different object, regardless of the
12927 symbol's type. We can't tell for sure yet, because
12928 something later might force the symbol local. */
12929 h->needs_plt = 1;
12930 else if (may_need_local_target_p)
12931 /* If this reloc is in a read-only section, we might
12932 need a copy reloc. We can't check reliably at this
12933 stage whether the section is read-only, as input
12934 sections have not yet been mapped to output sections.
12935 Tentatively set the flag for now, and correct in
12936 adjust_dynamic_symbol. */
12937 h->non_got_ref = 1;
12938 }
12939
12940 if (may_need_local_target_p
12941 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
12942 {
12943 union gotplt_union *root_plt;
12944 struct arm_plt_info *arm_plt;
12945 struct arm_local_iplt_info *local_iplt;
12946
12947 if (h != NULL)
12948 {
12949 root_plt = &h->plt;
12950 arm_plt = &eh->plt;
12951 }
12952 else
12953 {
12954 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12955 if (local_iplt == NULL)
12956 return FALSE;
12957 root_plt = &local_iplt->root;
12958 arm_plt = &local_iplt->arm;
12959 }
12960
12961 /* If the symbol is a function that doesn't bind locally,
12962 this relocation will need a PLT entry. */
12963 if (root_plt->refcount != -1)
12964 root_plt->refcount += 1;
12965
12966 if (!call_reloc_p)
12967 arm_plt->noncall_refcount++;
12968
12969 /* It's too early to use htab->use_blx here, so we have to
12970 record possible blx references separately from
12971 relocs that definitely need a thumb stub. */
12972
12973 if (r_type == R_ARM_THM_CALL)
12974 arm_plt->maybe_thumb_refcount += 1;
12975
12976 if (r_type == R_ARM_THM_JUMP24
12977 || r_type == R_ARM_THM_JUMP19)
12978 arm_plt->thumb_refcount += 1;
12979 }
12980
12981 if (may_become_dynamic_p)
12982 {
12983 struct elf_dyn_relocs *p, **head;
12984
12985 /* Create a reloc section in dynobj. */
12986 if (sreloc == NULL)
12987 {
12988 sreloc = _bfd_elf_make_dynamic_reloc_section
12989 (sec, dynobj, 2, abfd, ! htab->use_rel);
12990
12991 if (sreloc == NULL)
12992 return FALSE;
12993
12994 /* BPABI objects never have dynamic relocations mapped. */
12995 if (htab->symbian_p)
12996 {
12997 flagword flags;
12998
12999 flags = bfd_get_section_flags (dynobj, sreloc);
13000 flags &= ~(SEC_LOAD | SEC_ALLOC);
13001 bfd_set_section_flags (dynobj, sreloc, flags);
13002 }
13003 }
13004
13005 /* If this is a global symbol, count the number of
13006 relocations we need for this symbol. */
13007 if (h != NULL)
13008 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
13009 else
13010 {
13011 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
13012 if (head == NULL)
13013 return FALSE;
13014 }
13015
13016 p = *head;
13017 if (p == NULL || p->sec != sec)
13018 {
13019 bfd_size_type amt = sizeof *p;
13020
13021 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
13022 if (p == NULL)
13023 return FALSE;
13024 p->next = *head;
13025 *head = p;
13026 p->sec = sec;
13027 p->count = 0;
13028 p->pc_count = 0;
13029 }
13030
13031 if (elf32_arm_howto_from_type (r_type)->pc_relative)
13032 p->pc_count += 1;
13033 p->count += 1;
13034 }
13035 }
13036
13037 return TRUE;
13038 }
13039
13040 /* Unwinding tables are not referenced directly. This pass marks them as
13041 required if the corresponding code section is marked. */
13042
13043 static bfd_boolean
13044 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
13045 elf_gc_mark_hook_fn gc_mark_hook)
13046 {
13047 bfd *sub;
13048 Elf_Internal_Shdr **elf_shdrp;
13049 bfd_boolean again;
13050
13051 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
13052
13053 /* Marking EH data may cause additional code sections to be marked,
13054 requiring multiple passes. */
13055 again = TRUE;
13056 while (again)
13057 {
13058 again = FALSE;
13059 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13060 {
13061 asection *o;
13062
13063 if (! is_arm_elf (sub))
13064 continue;
13065
13066 elf_shdrp = elf_elfsections (sub);
13067 for (o = sub->sections; o != NULL; o = o->next)
13068 {
13069 Elf_Internal_Shdr *hdr;
13070
13071 hdr = &elf_section_data (o)->this_hdr;
13072 if (hdr->sh_type == SHT_ARM_EXIDX
13073 && hdr->sh_link
13074 && hdr->sh_link < elf_numsections (sub)
13075 && !o->gc_mark
13076 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
13077 {
13078 again = TRUE;
13079 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13080 return FALSE;
13081 }
13082 }
13083 }
13084 }
13085
13086 return TRUE;
13087 }
13088
13089 /* Treat mapping symbols as special target symbols. */
13090
13091 static bfd_boolean
13092 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
13093 {
13094 return bfd_is_arm_special_symbol_name (sym->name,
13095 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
13096 }
13097
13098 /* This is a copy of elf_find_function() from elf.c except that
13099 ARM mapping symbols are ignored when looking for function names
13100 and STT_ARM_TFUNC is considered to a function type. */
13101
13102 static bfd_boolean
13103 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
13104 asymbol ** symbols,
13105 asection * section,
13106 bfd_vma offset,
13107 const char ** filename_ptr,
13108 const char ** functionname_ptr)
13109 {
13110 const char * filename = NULL;
13111 asymbol * func = NULL;
13112 bfd_vma low_func = 0;
13113 asymbol ** p;
13114
13115 for (p = symbols; *p != NULL; p++)
13116 {
13117 elf_symbol_type *q;
13118
13119 q = (elf_symbol_type *) *p;
13120
13121 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
13122 {
13123 default:
13124 break;
13125 case STT_FILE:
13126 filename = bfd_asymbol_name (&q->symbol);
13127 break;
13128 case STT_FUNC:
13129 case STT_ARM_TFUNC:
13130 case STT_NOTYPE:
13131 /* Skip mapping symbols. */
13132 if ((q->symbol.flags & BSF_LOCAL)
13133 && bfd_is_arm_special_symbol_name (q->symbol.name,
13134 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
13135 continue;
13136 /* Fall through. */
13137 if (bfd_get_section (&q->symbol) == section
13138 && q->symbol.value >= low_func
13139 && q->symbol.value <= offset)
13140 {
13141 func = (asymbol *) q;
13142 low_func = q->symbol.value;
13143 }
13144 break;
13145 }
13146 }
13147
13148 if (func == NULL)
13149 return FALSE;
13150
13151 if (filename_ptr)
13152 *filename_ptr = filename;
13153 if (functionname_ptr)
13154 *functionname_ptr = bfd_asymbol_name (func);
13155
13156 return TRUE;
13157 }
13158
13159
13160 /* Find the nearest line to a particular section and offset, for error
13161 reporting. This code is a duplicate of the code in elf.c, except
13162 that it uses arm_elf_find_function. */
13163
13164 static bfd_boolean
13165 elf32_arm_find_nearest_line (bfd * abfd,
13166 asymbol ** symbols,
13167 asection * section,
13168 bfd_vma offset,
13169 const char ** filename_ptr,
13170 const char ** functionname_ptr,
13171 unsigned int * line_ptr,
13172 unsigned int * discriminator_ptr)
13173 {
13174 bfd_boolean found = FALSE;
13175
13176 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13177 filename_ptr, functionname_ptr,
13178 line_ptr, discriminator_ptr,
13179 dwarf_debug_sections, 0,
13180 & elf_tdata (abfd)->dwarf2_find_line_info))
13181 {
13182 if (!*functionname_ptr)
13183 arm_elf_find_function (abfd, symbols, section, offset,
13184 *filename_ptr ? NULL : filename_ptr,
13185 functionname_ptr);
13186
13187 return TRUE;
13188 }
13189
13190 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
13191 uses DWARF1. */
13192
13193 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
13194 & found, filename_ptr,
13195 functionname_ptr, line_ptr,
13196 & elf_tdata (abfd)->line_info))
13197 return FALSE;
13198
13199 if (found && (*functionname_ptr || *line_ptr))
13200 return TRUE;
13201
13202 if (symbols == NULL)
13203 return FALSE;
13204
13205 if (! arm_elf_find_function (abfd, symbols, section, offset,
13206 filename_ptr, functionname_ptr))
13207 return FALSE;
13208
13209 *line_ptr = 0;
13210 return TRUE;
13211 }
13212
13213 static bfd_boolean
13214 elf32_arm_find_inliner_info (bfd * abfd,
13215 const char ** filename_ptr,
13216 const char ** functionname_ptr,
13217 unsigned int * line_ptr)
13218 {
13219 bfd_boolean found;
13220 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13221 functionname_ptr, line_ptr,
13222 & elf_tdata (abfd)->dwarf2_find_line_info);
13223 return found;
13224 }
13225
13226 /* Adjust a symbol defined by a dynamic object and referenced by a
13227 regular object. The current definition is in some section of the
13228 dynamic object, but we're not including those sections. We have to
13229 change the definition to something the rest of the link can
13230 understand. */
13231
13232 static bfd_boolean
13233 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
13234 struct elf_link_hash_entry * h)
13235 {
13236 bfd * dynobj;
13237 asection * s;
13238 struct elf32_arm_link_hash_entry * eh;
13239 struct elf32_arm_link_hash_table *globals;
13240
13241 globals = elf32_arm_hash_table (info);
13242 if (globals == NULL)
13243 return FALSE;
13244
13245 dynobj = elf_hash_table (info)->dynobj;
13246
13247 /* Make sure we know what is going on here. */
13248 BFD_ASSERT (dynobj != NULL
13249 && (h->needs_plt
13250 || h->type == STT_GNU_IFUNC
13251 || h->u.weakdef != NULL
13252 || (h->def_dynamic
13253 && h->ref_regular
13254 && !h->def_regular)));
13255
13256 eh = (struct elf32_arm_link_hash_entry *) h;
13257
13258 /* If this is a function, put it in the procedure linkage table. We
13259 will fill in the contents of the procedure linkage table later,
13260 when we know the address of the .got section. */
13261 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
13262 {
13263 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
13264 symbol binds locally. */
13265 if (h->plt.refcount <= 0
13266 || (h->type != STT_GNU_IFUNC
13267 && (SYMBOL_CALLS_LOCAL (info, h)
13268 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
13269 && h->root.type == bfd_link_hash_undefweak))))
13270 {
13271 /* This case can occur if we saw a PLT32 reloc in an input
13272 file, but the symbol was never referred to by a dynamic
13273 object, or if all references were garbage collected. In
13274 such a case, we don't actually need to build a procedure
13275 linkage table, and we can just do a PC24 reloc instead. */
13276 h->plt.offset = (bfd_vma) -1;
13277 eh->plt.thumb_refcount = 0;
13278 eh->plt.maybe_thumb_refcount = 0;
13279 eh->plt.noncall_refcount = 0;
13280 h->needs_plt = 0;
13281 }
13282
13283 return TRUE;
13284 }
13285 else
13286 {
13287 /* It's possible that we incorrectly decided a .plt reloc was
13288 needed for an R_ARM_PC24 or similar reloc to a non-function sym
13289 in check_relocs. We can't decide accurately between function
13290 and non-function syms in check-relocs; Objects loaded later in
13291 the link may change h->type. So fix it now. */
13292 h->plt.offset = (bfd_vma) -1;
13293 eh->plt.thumb_refcount = 0;
13294 eh->plt.maybe_thumb_refcount = 0;
13295 eh->plt.noncall_refcount = 0;
13296 }
13297
13298 /* If this is a weak symbol, and there is a real definition, the
13299 processor independent code will have arranged for us to see the
13300 real definition first, and we can just use the same value. */
13301 if (h->u.weakdef != NULL)
13302 {
13303 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
13304 || h->u.weakdef->root.type == bfd_link_hash_defweak);
13305 h->root.u.def.section = h->u.weakdef->root.u.def.section;
13306 h->root.u.def.value = h->u.weakdef->root.u.def.value;
13307 return TRUE;
13308 }
13309
13310 /* If there are no non-GOT references, we do not need a copy
13311 relocation. */
13312 if (!h->non_got_ref)
13313 return TRUE;
13314
13315 /* This is a reference to a symbol defined by a dynamic object which
13316 is not a function. */
13317
13318 /* If we are creating a shared library, we must presume that the
13319 only references to the symbol are via the global offset table.
13320 For such cases we need not do anything here; the relocations will
13321 be handled correctly by relocate_section. Relocatable executables
13322 can reference data in shared objects directly, so we don't need to
13323 do anything here. */
13324 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
13325 return TRUE;
13326
13327 /* We must allocate the symbol in our .dynbss section, which will
13328 become part of the .bss section of the executable. There will be
13329 an entry for this symbol in the .dynsym section. The dynamic
13330 object will contain position independent code, so all references
13331 from the dynamic object to this symbol will go through the global
13332 offset table. The dynamic linker will use the .dynsym entry to
13333 determine the address it must put in the global offset table, so
13334 both the dynamic object and the regular object will refer to the
13335 same memory location for the variable. */
13336 s = bfd_get_linker_section (dynobj, ".dynbss");
13337 BFD_ASSERT (s != NULL);
13338
13339 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
13340 copy the initial value out of the dynamic object and into the
13341 runtime process image. We need to remember the offset into the
13342 .rel(a).bss section we are going to use. */
13343 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
13344 {
13345 asection *srel;
13346
13347 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
13348 elf32_arm_allocate_dynrelocs (info, srel, 1);
13349 h->needs_copy = 1;
13350 }
13351
13352 return _bfd_elf_adjust_dynamic_copy (info, h, s);
13353 }
13354
13355 /* Allocate space in .plt, .got and associated reloc sections for
13356 dynamic relocs. */
13357
13358 static bfd_boolean
13359 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
13360 {
13361 struct bfd_link_info *info;
13362 struct elf32_arm_link_hash_table *htab;
13363 struct elf32_arm_link_hash_entry *eh;
13364 struct elf_dyn_relocs *p;
13365
13366 if (h->root.type == bfd_link_hash_indirect)
13367 return TRUE;
13368
13369 eh = (struct elf32_arm_link_hash_entry *) h;
13370
13371 info = (struct bfd_link_info *) inf;
13372 htab = elf32_arm_hash_table (info);
13373 if (htab == NULL)
13374 return FALSE;
13375
13376 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
13377 && h->plt.refcount > 0)
13378 {
13379 /* Make sure this symbol is output as a dynamic symbol.
13380 Undefined weak syms won't yet be marked as dynamic. */
13381 if (h->dynindx == -1
13382 && !h->forced_local)
13383 {
13384 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13385 return FALSE;
13386 }
13387
13388 /* If the call in the PLT entry binds locally, the associated
13389 GOT entry should use an R_ARM_IRELATIVE relocation instead of
13390 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
13391 than the .plt section. */
13392 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
13393 {
13394 eh->is_iplt = 1;
13395 if (eh->plt.noncall_refcount == 0
13396 && SYMBOL_REFERENCES_LOCAL (info, h))
13397 /* All non-call references can be resolved directly.
13398 This means that they can (and in some cases, must)
13399 resolve directly to the run-time target, rather than
13400 to the PLT. That in turns means that any .got entry
13401 would be equal to the .igot.plt entry, so there's
13402 no point having both. */
13403 h->got.refcount = 0;
13404 }
13405
13406 if (bfd_link_pic (info)
13407 || eh->is_iplt
13408 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
13409 {
13410 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
13411
13412 /* If this symbol is not defined in a regular file, and we are
13413 not generating a shared library, then set the symbol to this
13414 location in the .plt. This is required to make function
13415 pointers compare as equal between the normal executable and
13416 the shared library. */
13417 if (! bfd_link_pic (info)
13418 && !h->def_regular)
13419 {
13420 h->root.u.def.section = htab->root.splt;
13421 h->root.u.def.value = h->plt.offset;
13422
13423 /* Make sure the function is not marked as Thumb, in case
13424 it is the target of an ABS32 relocation, which will
13425 point to the PLT entry. */
13426 h->target_internal = ST_BRANCH_TO_ARM;
13427 }
13428
13429 /* VxWorks executables have a second set of relocations for
13430 each PLT entry. They go in a separate relocation section,
13431 which is processed by the kernel loader. */
13432 if (htab->vxworks_p && !bfd_link_pic (info))
13433 {
13434 /* There is a relocation for the initial PLT entry:
13435 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
13436 if (h->plt.offset == htab->plt_header_size)
13437 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
13438
13439 /* There are two extra relocations for each subsequent
13440 PLT entry: an R_ARM_32 relocation for the GOT entry,
13441 and an R_ARM_32 relocation for the PLT entry. */
13442 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
13443 }
13444 }
13445 else
13446 {
13447 h->plt.offset = (bfd_vma) -1;
13448 h->needs_plt = 0;
13449 }
13450 }
13451 else
13452 {
13453 h->plt.offset = (bfd_vma) -1;
13454 h->needs_plt = 0;
13455 }
13456
13457 eh = (struct elf32_arm_link_hash_entry *) h;
13458 eh->tlsdesc_got = (bfd_vma) -1;
13459
13460 if (h->got.refcount > 0)
13461 {
13462 asection *s;
13463 bfd_boolean dyn;
13464 int tls_type = elf32_arm_hash_entry (h)->tls_type;
13465 int indx;
13466
13467 /* Make sure this symbol is output as a dynamic symbol.
13468 Undefined weak syms won't yet be marked as dynamic. */
13469 if (h->dynindx == -1
13470 && !h->forced_local)
13471 {
13472 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13473 return FALSE;
13474 }
13475
13476 if (!htab->symbian_p)
13477 {
13478 s = htab->root.sgot;
13479 h->got.offset = s->size;
13480
13481 if (tls_type == GOT_UNKNOWN)
13482 abort ();
13483
13484 if (tls_type == GOT_NORMAL)
13485 /* Non-TLS symbols need one GOT slot. */
13486 s->size += 4;
13487 else
13488 {
13489 if (tls_type & GOT_TLS_GDESC)
13490 {
13491 /* R_ARM_TLS_DESC needs 2 GOT slots. */
13492 eh->tlsdesc_got
13493 = (htab->root.sgotplt->size
13494 - elf32_arm_compute_jump_table_size (htab));
13495 htab->root.sgotplt->size += 8;
13496 h->got.offset = (bfd_vma) -2;
13497 /* plt.got_offset needs to know there's a TLS_DESC
13498 reloc in the middle of .got.plt. */
13499 htab->num_tls_desc++;
13500 }
13501
13502 if (tls_type & GOT_TLS_GD)
13503 {
13504 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
13505 the symbol is both GD and GDESC, got.offset may
13506 have been overwritten. */
13507 h->got.offset = s->size;
13508 s->size += 8;
13509 }
13510
13511 if (tls_type & GOT_TLS_IE)
13512 /* R_ARM_TLS_IE32 needs one GOT slot. */
13513 s->size += 4;
13514 }
13515
13516 dyn = htab->root.dynamic_sections_created;
13517
13518 indx = 0;
13519 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
13520 bfd_link_pic (info),
13521 h)
13522 && (!bfd_link_pic (info)
13523 || !SYMBOL_REFERENCES_LOCAL (info, h)))
13524 indx = h->dynindx;
13525
13526 if (tls_type != GOT_NORMAL
13527 && (bfd_link_pic (info) || indx != 0)
13528 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13529 || h->root.type != bfd_link_hash_undefweak))
13530 {
13531 if (tls_type & GOT_TLS_IE)
13532 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13533
13534 if (tls_type & GOT_TLS_GD)
13535 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13536
13537 if (tls_type & GOT_TLS_GDESC)
13538 {
13539 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13540 /* GDESC needs a trampoline to jump to. */
13541 htab->tls_trampoline = -1;
13542 }
13543
13544 /* Only GD needs it. GDESC just emits one relocation per
13545 2 entries. */
13546 if ((tls_type & GOT_TLS_GD) && indx != 0)
13547 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13548 }
13549 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
13550 {
13551 if (htab->root.dynamic_sections_created)
13552 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13553 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13554 }
13555 else if (h->type == STT_GNU_IFUNC
13556 && eh->plt.noncall_refcount == 0)
13557 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13558 they all resolve dynamically instead. Reserve room for the
13559 GOT entry's R_ARM_IRELATIVE relocation. */
13560 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
13561 else if (bfd_link_pic (info)
13562 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13563 || h->root.type != bfd_link_hash_undefweak))
13564 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
13565 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13566 }
13567 }
13568 else
13569 h->got.offset = (bfd_vma) -1;
13570
13571 /* Allocate stubs for exported Thumb functions on v4t. */
13572 if (!htab->use_blx && h->dynindx != -1
13573 && h->def_regular
13574 && h->target_internal == ST_BRANCH_TO_THUMB
13575 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13576 {
13577 struct elf_link_hash_entry * th;
13578 struct bfd_link_hash_entry * bh;
13579 struct elf_link_hash_entry * myh;
13580 char name[1024];
13581 asection *s;
13582 bh = NULL;
13583 /* Create a new symbol to regist the real location of the function. */
13584 s = h->root.u.def.section;
13585 sprintf (name, "__real_%s", h->root.root.string);
13586 _bfd_generic_link_add_one_symbol (info, s->owner,
13587 name, BSF_GLOBAL, s,
13588 h->root.u.def.value,
13589 NULL, TRUE, FALSE, &bh);
13590
13591 myh = (struct elf_link_hash_entry *) bh;
13592 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
13593 myh->forced_local = 1;
13594 myh->target_internal = ST_BRANCH_TO_THUMB;
13595 eh->export_glue = myh;
13596 th = record_arm_to_thumb_glue (info, h);
13597 /* Point the symbol at the stub. */
13598 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
13599 h->target_internal = ST_BRANCH_TO_ARM;
13600 h->root.u.def.section = th->root.u.def.section;
13601 h->root.u.def.value = th->root.u.def.value & ~1;
13602 }
13603
13604 if (eh->dyn_relocs == NULL)
13605 return TRUE;
13606
13607 /* In the shared -Bsymbolic case, discard space allocated for
13608 dynamic pc-relative relocs against symbols which turn out to be
13609 defined in regular objects. For the normal shared case, discard
13610 space for pc-relative relocs that have become local due to symbol
13611 visibility changes. */
13612
13613 if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
13614 {
13615 /* Relocs that use pc_count are PC-relative forms, which will appear
13616 on something like ".long foo - ." or "movw REG, foo - .". We want
13617 calls to protected symbols to resolve directly to the function
13618 rather than going via the plt. If people want function pointer
13619 comparisons to work as expected then they should avoid writing
13620 assembly like ".long foo - .". */
13621 if (SYMBOL_CALLS_LOCAL (info, h))
13622 {
13623 struct elf_dyn_relocs **pp;
13624
13625 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13626 {
13627 p->count -= p->pc_count;
13628 p->pc_count = 0;
13629 if (p->count == 0)
13630 *pp = p->next;
13631 else
13632 pp = &p->next;
13633 }
13634 }
13635
13636 if (htab->vxworks_p)
13637 {
13638 struct elf_dyn_relocs **pp;
13639
13640 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13641 {
13642 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
13643 *pp = p->next;
13644 else
13645 pp = &p->next;
13646 }
13647 }
13648
13649 /* Also discard relocs on undefined weak syms with non-default
13650 visibility. */
13651 if (eh->dyn_relocs != NULL
13652 && h->root.type == bfd_link_hash_undefweak)
13653 {
13654 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
13655 eh->dyn_relocs = NULL;
13656
13657 /* Make sure undefined weak symbols are output as a dynamic
13658 symbol in PIEs. */
13659 else if (h->dynindx == -1
13660 && !h->forced_local)
13661 {
13662 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13663 return FALSE;
13664 }
13665 }
13666
13667 else if (htab->root.is_relocatable_executable && h->dynindx == -1
13668 && h->root.type == bfd_link_hash_new)
13669 {
13670 /* Output absolute symbols so that we can create relocations
13671 against them. For normal symbols we output a relocation
13672 against the section that contains them. */
13673 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13674 return FALSE;
13675 }
13676
13677 }
13678 else
13679 {
13680 /* For the non-shared case, discard space for relocs against
13681 symbols which turn out to need copy relocs or are not
13682 dynamic. */
13683
13684 if (!h->non_got_ref
13685 && ((h->def_dynamic
13686 && !h->def_regular)
13687 || (htab->root.dynamic_sections_created
13688 && (h->root.type == bfd_link_hash_undefweak
13689 || h->root.type == bfd_link_hash_undefined))))
13690 {
13691 /* Make sure this symbol is output as a dynamic symbol.
13692 Undefined weak syms won't yet be marked as dynamic. */
13693 if (h->dynindx == -1
13694 && !h->forced_local)
13695 {
13696 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13697 return FALSE;
13698 }
13699
13700 /* If that succeeded, we know we'll be keeping all the
13701 relocs. */
13702 if (h->dynindx != -1)
13703 goto keep;
13704 }
13705
13706 eh->dyn_relocs = NULL;
13707
13708 keep: ;
13709 }
13710
13711 /* Finally, allocate space. */
13712 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13713 {
13714 asection *sreloc = elf_section_data (p->sec)->sreloc;
13715 if (h->type == STT_GNU_IFUNC
13716 && eh->plt.noncall_refcount == 0
13717 && SYMBOL_REFERENCES_LOCAL (info, h))
13718 elf32_arm_allocate_irelocs (info, sreloc, p->count);
13719 else
13720 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
13721 }
13722
13723 return TRUE;
13724 }
13725
13726 /* Find any dynamic relocs that apply to read-only sections. */
13727
13728 static bfd_boolean
13729 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
13730 {
13731 struct elf32_arm_link_hash_entry * eh;
13732 struct elf_dyn_relocs * p;
13733
13734 eh = (struct elf32_arm_link_hash_entry *) h;
13735 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13736 {
13737 asection *s = p->sec;
13738
13739 if (s != NULL && (s->flags & SEC_READONLY) != 0)
13740 {
13741 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13742
13743 info->flags |= DF_TEXTREL;
13744
13745 /* Not an error, just cut short the traversal. */
13746 return FALSE;
13747 }
13748 }
13749 return TRUE;
13750 }
13751
13752 void
13753 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13754 int byteswap_code)
13755 {
13756 struct elf32_arm_link_hash_table *globals;
13757
13758 globals = elf32_arm_hash_table (info);
13759 if (globals == NULL)
13760 return;
13761
13762 globals->byteswap_code = byteswap_code;
13763 }
13764
13765 /* Set the sizes of the dynamic sections. */
13766
13767 static bfd_boolean
13768 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13769 struct bfd_link_info * info)
13770 {
13771 bfd * dynobj;
13772 asection * s;
13773 bfd_boolean plt;
13774 bfd_boolean relocs;
13775 bfd *ibfd;
13776 struct elf32_arm_link_hash_table *htab;
13777
13778 htab = elf32_arm_hash_table (info);
13779 if (htab == NULL)
13780 return FALSE;
13781
13782 dynobj = elf_hash_table (info)->dynobj;
13783 BFD_ASSERT (dynobj != NULL);
13784 check_use_blx (htab);
13785
13786 if (elf_hash_table (info)->dynamic_sections_created)
13787 {
13788 /* Set the contents of the .interp section to the interpreter. */
13789 if (bfd_link_executable (info))
13790 {
13791 s = bfd_get_linker_section (dynobj, ".interp");
13792 BFD_ASSERT (s != NULL);
13793 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
13794 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13795 }
13796 }
13797
13798 /* Set up .got offsets for local syms, and space for local dynamic
13799 relocs. */
13800 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13801 {
13802 bfd_signed_vma *local_got;
13803 bfd_signed_vma *end_local_got;
13804 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
13805 char *local_tls_type;
13806 bfd_vma *local_tlsdesc_gotent;
13807 bfd_size_type locsymcount;
13808 Elf_Internal_Shdr *symtab_hdr;
13809 asection *srel;
13810 bfd_boolean is_vxworks = htab->vxworks_p;
13811 unsigned int symndx;
13812
13813 if (! is_arm_elf (ibfd))
13814 continue;
13815
13816 for (s = ibfd->sections; s != NULL; s = s->next)
13817 {
13818 struct elf_dyn_relocs *p;
13819
13820 for (p = (struct elf_dyn_relocs *)
13821 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
13822 {
13823 if (!bfd_is_abs_section (p->sec)
13824 && bfd_is_abs_section (p->sec->output_section))
13825 {
13826 /* Input section has been discarded, either because
13827 it is a copy of a linkonce section or due to
13828 linker script /DISCARD/, so we'll be discarding
13829 the relocs too. */
13830 }
13831 else if (is_vxworks
13832 && strcmp (p->sec->output_section->name,
13833 ".tls_vars") == 0)
13834 {
13835 /* Relocations in vxworks .tls_vars sections are
13836 handled specially by the loader. */
13837 }
13838 else if (p->count != 0)
13839 {
13840 srel = elf_section_data (p->sec)->sreloc;
13841 elf32_arm_allocate_dynrelocs (info, srel, p->count);
13842 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
13843 info->flags |= DF_TEXTREL;
13844 }
13845 }
13846 }
13847
13848 local_got = elf_local_got_refcounts (ibfd);
13849 if (!local_got)
13850 continue;
13851
13852 symtab_hdr = & elf_symtab_hdr (ibfd);
13853 locsymcount = symtab_hdr->sh_info;
13854 end_local_got = local_got + locsymcount;
13855 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
13856 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
13857 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
13858 symndx = 0;
13859 s = htab->root.sgot;
13860 srel = htab->root.srelgot;
13861 for (; local_got < end_local_got;
13862 ++local_got, ++local_iplt_ptr, ++local_tls_type,
13863 ++local_tlsdesc_gotent, ++symndx)
13864 {
13865 *local_tlsdesc_gotent = (bfd_vma) -1;
13866 local_iplt = *local_iplt_ptr;
13867 if (local_iplt != NULL)
13868 {
13869 struct elf_dyn_relocs *p;
13870
13871 if (local_iplt->root.refcount > 0)
13872 {
13873 elf32_arm_allocate_plt_entry (info, TRUE,
13874 &local_iplt->root,
13875 &local_iplt->arm);
13876 if (local_iplt->arm.noncall_refcount == 0)
13877 /* All references to the PLT are calls, so all
13878 non-call references can resolve directly to the
13879 run-time target. This means that the .got entry
13880 would be the same as the .igot.plt entry, so there's
13881 no point creating both. */
13882 *local_got = 0;
13883 }
13884 else
13885 {
13886 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13887 local_iplt->root.offset = (bfd_vma) -1;
13888 }
13889
13890 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13891 {
13892 asection *psrel;
13893
13894 psrel = elf_section_data (p->sec)->sreloc;
13895 if (local_iplt->arm.noncall_refcount == 0)
13896 elf32_arm_allocate_irelocs (info, psrel, p->count);
13897 else
13898 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13899 }
13900 }
13901 if (*local_got > 0)
13902 {
13903 Elf_Internal_Sym *isym;
13904
13905 *local_got = s->size;
13906 if (*local_tls_type & GOT_TLS_GD)
13907 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13908 s->size += 8;
13909 if (*local_tls_type & GOT_TLS_GDESC)
13910 {
13911 *local_tlsdesc_gotent = htab->root.sgotplt->size
13912 - elf32_arm_compute_jump_table_size (htab);
13913 htab->root.sgotplt->size += 8;
13914 *local_got = (bfd_vma) -2;
13915 /* plt.got_offset needs to know there's a TLS_DESC
13916 reloc in the middle of .got.plt. */
13917 htab->num_tls_desc++;
13918 }
13919 if (*local_tls_type & GOT_TLS_IE)
13920 s->size += 4;
13921
13922 if (*local_tls_type & GOT_NORMAL)
13923 {
13924 /* If the symbol is both GD and GDESC, *local_got
13925 may have been overwritten. */
13926 *local_got = s->size;
13927 s->size += 4;
13928 }
13929
13930 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13931 if (isym == NULL)
13932 return FALSE;
13933
13934 /* If all references to an STT_GNU_IFUNC PLT are calls,
13935 then all non-call references, including this GOT entry,
13936 resolve directly to the run-time target. */
13937 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13938 && (local_iplt == NULL
13939 || local_iplt->arm.noncall_refcount == 0))
13940 elf32_arm_allocate_irelocs (info, srel, 1);
13941 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
13942 {
13943 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
13944 || *local_tls_type & GOT_TLS_GD)
13945 elf32_arm_allocate_dynrelocs (info, srel, 1);
13946
13947 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
13948 {
13949 elf32_arm_allocate_dynrelocs (info,
13950 htab->root.srelplt, 1);
13951 htab->tls_trampoline = -1;
13952 }
13953 }
13954 }
13955 else
13956 *local_got = (bfd_vma) -1;
13957 }
13958 }
13959
13960 if (htab->tls_ldm_got.refcount > 0)
13961 {
13962 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13963 for R_ARM_TLS_LDM32 relocations. */
13964 htab->tls_ldm_got.offset = htab->root.sgot->size;
13965 htab->root.sgot->size += 8;
13966 if (bfd_link_pic (info))
13967 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13968 }
13969 else
13970 htab->tls_ldm_got.offset = -1;
13971
13972 /* Allocate global sym .plt and .got entries, and space for global
13973 sym dynamic relocs. */
13974 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
13975
13976 /* Here we rummage through the found bfds to collect glue information. */
13977 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13978 {
13979 if (! is_arm_elf (ibfd))
13980 continue;
13981
13982 /* Initialise mapping tables for code/data. */
13983 bfd_elf32_arm_init_maps (ibfd);
13984
13985 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13986 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13987 /* xgettext:c-format */
13988 _bfd_error_handler (_("Errors encountered processing file %s"),
13989 ibfd->filename);
13990 }
13991
13992 /* Allocate space for the glue sections now that we've sized them. */
13993 bfd_elf32_arm_allocate_interworking_sections (info);
13994
13995 /* For every jump slot reserved in the sgotplt, reloc_count is
13996 incremented. However, when we reserve space for TLS descriptors,
13997 it's not incremented, so in order to compute the space reserved
13998 for them, it suffices to multiply the reloc count by the jump
13999 slot size. */
14000 if (htab->root.srelplt)
14001 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
14002
14003 if (htab->tls_trampoline)
14004 {
14005 if (htab->root.splt->size == 0)
14006 htab->root.splt->size += htab->plt_header_size;
14007
14008 htab->tls_trampoline = htab->root.splt->size;
14009 htab->root.splt->size += htab->plt_entry_size;
14010
14011 /* If we're not using lazy TLS relocations, don't generate the
14012 PLT and GOT entries they require. */
14013 if (!(info->flags & DF_BIND_NOW))
14014 {
14015 htab->dt_tlsdesc_got = htab->root.sgot->size;
14016 htab->root.sgot->size += 4;
14017
14018 htab->dt_tlsdesc_plt = htab->root.splt->size;
14019 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
14020 }
14021 }
14022
14023 /* The check_relocs and adjust_dynamic_symbol entry points have
14024 determined the sizes of the various dynamic sections. Allocate
14025 memory for them. */
14026 plt = FALSE;
14027 relocs = FALSE;
14028 for (s = dynobj->sections; s != NULL; s = s->next)
14029 {
14030 const char * name;
14031
14032 if ((s->flags & SEC_LINKER_CREATED) == 0)
14033 continue;
14034
14035 /* It's OK to base decisions on the section name, because none
14036 of the dynobj section names depend upon the input files. */
14037 name = bfd_get_section_name (dynobj, s);
14038
14039 if (s == htab->root.splt)
14040 {
14041 /* Remember whether there is a PLT. */
14042 plt = s->size != 0;
14043 }
14044 else if (CONST_STRNEQ (name, ".rel"))
14045 {
14046 if (s->size != 0)
14047 {
14048 /* Remember whether there are any reloc sections other
14049 than .rel(a).plt and .rela.plt.unloaded. */
14050 if (s != htab->root.srelplt && s != htab->srelplt2)
14051 relocs = TRUE;
14052
14053 /* We use the reloc_count field as a counter if we need
14054 to copy relocs into the output file. */
14055 s->reloc_count = 0;
14056 }
14057 }
14058 else if (s != htab->root.sgot
14059 && s != htab->root.sgotplt
14060 && s != htab->root.iplt
14061 && s != htab->root.igotplt
14062 && s != htab->sdynbss)
14063 {
14064 /* It's not one of our sections, so don't allocate space. */
14065 continue;
14066 }
14067
14068 if (s->size == 0)
14069 {
14070 /* If we don't need this section, strip it from the
14071 output file. This is mostly to handle .rel(a).bss and
14072 .rel(a).plt. We must create both sections in
14073 create_dynamic_sections, because they must be created
14074 before the linker maps input sections to output
14075 sections. The linker does that before
14076 adjust_dynamic_symbol is called, and it is that
14077 function which decides whether anything needs to go
14078 into these sections. */
14079 s->flags |= SEC_EXCLUDE;
14080 continue;
14081 }
14082
14083 if ((s->flags & SEC_HAS_CONTENTS) == 0)
14084 continue;
14085
14086 /* Allocate memory for the section contents. */
14087 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
14088 if (s->contents == NULL)
14089 return FALSE;
14090 }
14091
14092 if (elf_hash_table (info)->dynamic_sections_created)
14093 {
14094 /* Add some entries to the .dynamic section. We fill in the
14095 values later, in elf32_arm_finish_dynamic_sections, but we
14096 must add the entries now so that we get the correct size for
14097 the .dynamic section. The DT_DEBUG entry is filled in by the
14098 dynamic linker and used by the debugger. */
14099 #define add_dynamic_entry(TAG, VAL) \
14100 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
14101
14102 if (bfd_link_executable (info))
14103 {
14104 if (!add_dynamic_entry (DT_DEBUG, 0))
14105 return FALSE;
14106 }
14107
14108 if (plt)
14109 {
14110 if ( !add_dynamic_entry (DT_PLTGOT, 0)
14111 || !add_dynamic_entry (DT_PLTRELSZ, 0)
14112 || !add_dynamic_entry (DT_PLTREL,
14113 htab->use_rel ? DT_REL : DT_RELA)
14114 || !add_dynamic_entry (DT_JMPREL, 0))
14115 return FALSE;
14116
14117 if (htab->dt_tlsdesc_plt &&
14118 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
14119 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
14120 return FALSE;
14121 }
14122
14123 if (relocs)
14124 {
14125 if (htab->use_rel)
14126 {
14127 if (!add_dynamic_entry (DT_REL, 0)
14128 || !add_dynamic_entry (DT_RELSZ, 0)
14129 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
14130 return FALSE;
14131 }
14132 else
14133 {
14134 if (!add_dynamic_entry (DT_RELA, 0)
14135 || !add_dynamic_entry (DT_RELASZ, 0)
14136 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
14137 return FALSE;
14138 }
14139 }
14140
14141 /* If any dynamic relocs apply to a read-only section,
14142 then we need a DT_TEXTREL entry. */
14143 if ((info->flags & DF_TEXTREL) == 0)
14144 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
14145 info);
14146
14147 if ((info->flags & DF_TEXTREL) != 0)
14148 {
14149 if (!add_dynamic_entry (DT_TEXTREL, 0))
14150 return FALSE;
14151 }
14152 if (htab->vxworks_p
14153 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
14154 return FALSE;
14155 }
14156 #undef add_dynamic_entry
14157
14158 return TRUE;
14159 }
14160
14161 /* Size sections even though they're not dynamic. We use it to setup
14162 _TLS_MODULE_BASE_, if needed. */
14163
14164 static bfd_boolean
14165 elf32_arm_always_size_sections (bfd *output_bfd,
14166 struct bfd_link_info *info)
14167 {
14168 asection *tls_sec;
14169
14170 if (bfd_link_relocatable (info))
14171 return TRUE;
14172
14173 tls_sec = elf_hash_table (info)->tls_sec;
14174
14175 if (tls_sec)
14176 {
14177 struct elf_link_hash_entry *tlsbase;
14178
14179 tlsbase = elf_link_hash_lookup
14180 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
14181
14182 if (tlsbase)
14183 {
14184 struct bfd_link_hash_entry *bh = NULL;
14185 const struct elf_backend_data *bed
14186 = get_elf_backend_data (output_bfd);
14187
14188 if (!(_bfd_generic_link_add_one_symbol
14189 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
14190 tls_sec, 0, NULL, FALSE,
14191 bed->collect, &bh)))
14192 return FALSE;
14193
14194 tlsbase->type = STT_TLS;
14195 tlsbase = (struct elf_link_hash_entry *)bh;
14196 tlsbase->def_regular = 1;
14197 tlsbase->other = STV_HIDDEN;
14198 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
14199 }
14200 }
14201 return TRUE;
14202 }
14203
14204 /* Finish up dynamic symbol handling. We set the contents of various
14205 dynamic sections here. */
14206
14207 static bfd_boolean
14208 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
14209 struct bfd_link_info * info,
14210 struct elf_link_hash_entry * h,
14211 Elf_Internal_Sym * sym)
14212 {
14213 struct elf32_arm_link_hash_table *htab;
14214 struct elf32_arm_link_hash_entry *eh;
14215
14216 htab = elf32_arm_hash_table (info);
14217 if (htab == NULL)
14218 return FALSE;
14219
14220 eh = (struct elf32_arm_link_hash_entry *) h;
14221
14222 if (h->plt.offset != (bfd_vma) -1)
14223 {
14224 if (!eh->is_iplt)
14225 {
14226 BFD_ASSERT (h->dynindx != -1);
14227 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
14228 h->dynindx, 0))
14229 return FALSE;
14230 }
14231
14232 if (!h->def_regular)
14233 {
14234 /* Mark the symbol as undefined, rather than as defined in
14235 the .plt section. */
14236 sym->st_shndx = SHN_UNDEF;
14237 /* If the symbol is weak we need to clear the value.
14238 Otherwise, the PLT entry would provide a definition for
14239 the symbol even if the symbol wasn't defined anywhere,
14240 and so the symbol would never be NULL. Leave the value if
14241 there were any relocations where pointer equality matters
14242 (this is a clue for the dynamic linker, to make function
14243 pointer comparisons work between an application and shared
14244 library). */
14245 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
14246 sym->st_value = 0;
14247 }
14248 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
14249 {
14250 /* At least one non-call relocation references this .iplt entry,
14251 so the .iplt entry is the function's canonical address. */
14252 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
14253 sym->st_target_internal = ST_BRANCH_TO_ARM;
14254 sym->st_shndx = (_bfd_elf_section_from_bfd_section
14255 (output_bfd, htab->root.iplt->output_section));
14256 sym->st_value = (h->plt.offset
14257 + htab->root.iplt->output_section->vma
14258 + htab->root.iplt->output_offset);
14259 }
14260 }
14261
14262 if (h->needs_copy)
14263 {
14264 asection * s;
14265 Elf_Internal_Rela rel;
14266
14267 /* This symbol needs a copy reloc. Set it up. */
14268 BFD_ASSERT (h->dynindx != -1
14269 && (h->root.type == bfd_link_hash_defined
14270 || h->root.type == bfd_link_hash_defweak));
14271
14272 s = htab->srelbss;
14273 BFD_ASSERT (s != NULL);
14274
14275 rel.r_addend = 0;
14276 rel.r_offset = (h->root.u.def.value
14277 + h->root.u.def.section->output_section->vma
14278 + h->root.u.def.section->output_offset);
14279 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
14280 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
14281 }
14282
14283 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
14284 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
14285 to the ".got" section. */
14286 if (h == htab->root.hdynamic
14287 || (!htab->vxworks_p && h == htab->root.hgot))
14288 sym->st_shndx = SHN_ABS;
14289
14290 return TRUE;
14291 }
14292
14293 static void
14294 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14295 void *contents,
14296 const unsigned long *template, unsigned count)
14297 {
14298 unsigned ix;
14299
14300 for (ix = 0; ix != count; ix++)
14301 {
14302 unsigned long insn = template[ix];
14303
14304 /* Emit mov pc,rx if bx is not permitted. */
14305 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
14306 insn = (insn & 0xf000000f) | 0x01a0f000;
14307 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
14308 }
14309 }
14310
14311 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
14312 other variants, NaCl needs this entry in a static executable's
14313 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
14314 zero. For .iplt really only the last bundle is useful, and .iplt
14315 could have a shorter first entry, with each individual PLT entry's
14316 relative branch calculated differently so it targets the last
14317 bundle instead of the instruction before it (labelled .Lplt_tail
14318 above). But it's simpler to keep the size and layout of PLT0
14319 consistent with the dynamic case, at the cost of some dead code at
14320 the start of .iplt and the one dead store to the stack at the start
14321 of .Lplt_tail. */
14322 static void
14323 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14324 asection *plt, bfd_vma got_displacement)
14325 {
14326 unsigned int i;
14327
14328 put_arm_insn (htab, output_bfd,
14329 elf32_arm_nacl_plt0_entry[0]
14330 | arm_movw_immediate (got_displacement),
14331 plt->contents + 0);
14332 put_arm_insn (htab, output_bfd,
14333 elf32_arm_nacl_plt0_entry[1]
14334 | arm_movt_immediate (got_displacement),
14335 plt->contents + 4);
14336
14337 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
14338 put_arm_insn (htab, output_bfd,
14339 elf32_arm_nacl_plt0_entry[i],
14340 plt->contents + (i * 4));
14341 }
14342
14343 /* Finish up the dynamic sections. */
14344
14345 static bfd_boolean
14346 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
14347 {
14348 bfd * dynobj;
14349 asection * sgot;
14350 asection * sdyn;
14351 struct elf32_arm_link_hash_table *htab;
14352
14353 htab = elf32_arm_hash_table (info);
14354 if (htab == NULL)
14355 return FALSE;
14356
14357 dynobj = elf_hash_table (info)->dynobj;
14358
14359 sgot = htab->root.sgotplt;
14360 /* A broken linker script might have discarded the dynamic sections.
14361 Catch this here so that we do not seg-fault later on. */
14362 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
14363 return FALSE;
14364 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14365
14366 if (elf_hash_table (info)->dynamic_sections_created)
14367 {
14368 asection *splt;
14369 Elf32_External_Dyn *dyncon, *dynconend;
14370
14371 splt = htab->root.splt;
14372 BFD_ASSERT (splt != NULL && sdyn != NULL);
14373 BFD_ASSERT (htab->symbian_p || sgot != NULL);
14374
14375 dyncon = (Elf32_External_Dyn *) sdyn->contents;
14376 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
14377
14378 for (; dyncon < dynconend; dyncon++)
14379 {
14380 Elf_Internal_Dyn dyn;
14381 const char * name;
14382 asection * s;
14383
14384 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
14385
14386 switch (dyn.d_tag)
14387 {
14388 unsigned int type;
14389
14390 default:
14391 if (htab->vxworks_p
14392 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
14393 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14394 break;
14395
14396 case DT_HASH:
14397 name = ".hash";
14398 goto get_vma_if_bpabi;
14399 case DT_STRTAB:
14400 name = ".dynstr";
14401 goto get_vma_if_bpabi;
14402 case DT_SYMTAB:
14403 name = ".dynsym";
14404 goto get_vma_if_bpabi;
14405 case DT_VERSYM:
14406 name = ".gnu.version";
14407 goto get_vma_if_bpabi;
14408 case DT_VERDEF:
14409 name = ".gnu.version_d";
14410 goto get_vma_if_bpabi;
14411 case DT_VERNEED:
14412 name = ".gnu.version_r";
14413 goto get_vma_if_bpabi;
14414
14415 case DT_PLTGOT:
14416 name = ".got";
14417 goto get_vma;
14418 case DT_JMPREL:
14419 name = RELOC_SECTION (htab, ".plt");
14420 get_vma:
14421 s = bfd_get_section_by_name (output_bfd, name);
14422 if (s == NULL)
14423 {
14424 /* PR ld/14397: Issue an error message if a required section is missing. */
14425 (*_bfd_error_handler)
14426 (_("error: required section '%s' not found in the linker script"), name);
14427 bfd_set_error (bfd_error_invalid_operation);
14428 return FALSE;
14429 }
14430 if (!htab->symbian_p)
14431 dyn.d_un.d_ptr = s->vma;
14432 else
14433 /* In the BPABI, tags in the PT_DYNAMIC section point
14434 at the file offset, not the memory address, for the
14435 convenience of the post linker. */
14436 dyn.d_un.d_ptr = s->filepos;
14437 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14438 break;
14439
14440 get_vma_if_bpabi:
14441 if (htab->symbian_p)
14442 goto get_vma;
14443 break;
14444
14445 case DT_PLTRELSZ:
14446 s = htab->root.srelplt;
14447 BFD_ASSERT (s != NULL);
14448 dyn.d_un.d_val = s->size;
14449 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14450 break;
14451
14452 case DT_RELSZ:
14453 case DT_RELASZ:
14454 if (!htab->symbian_p)
14455 {
14456 /* My reading of the SVR4 ABI indicates that the
14457 procedure linkage table relocs (DT_JMPREL) should be
14458 included in the overall relocs (DT_REL). This is
14459 what Solaris does. However, UnixWare can not handle
14460 that case. Therefore, we override the DT_RELSZ entry
14461 here to make it not include the JMPREL relocs. Since
14462 the linker script arranges for .rel(a).plt to follow all
14463 other relocation sections, we don't have to worry
14464 about changing the DT_REL entry. */
14465 s = htab->root.srelplt;
14466 if (s != NULL)
14467 dyn.d_un.d_val -= s->size;
14468 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14469 break;
14470 }
14471 /* Fall through. */
14472
14473 case DT_REL:
14474 case DT_RELA:
14475 /* In the BPABI, the DT_REL tag must point at the file
14476 offset, not the VMA, of the first relocation
14477 section. So, we use code similar to that in
14478 elflink.c, but do not check for SHF_ALLOC on the
14479 relcoation section, since relocations sections are
14480 never allocated under the BPABI. The comments above
14481 about Unixware notwithstanding, we include all of the
14482 relocations here. */
14483 if (htab->symbian_p)
14484 {
14485 unsigned int i;
14486 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
14487 ? SHT_REL : SHT_RELA);
14488 dyn.d_un.d_val = 0;
14489 for (i = 1; i < elf_numsections (output_bfd); i++)
14490 {
14491 Elf_Internal_Shdr *hdr
14492 = elf_elfsections (output_bfd)[i];
14493 if (hdr->sh_type == type)
14494 {
14495 if (dyn.d_tag == DT_RELSZ
14496 || dyn.d_tag == DT_RELASZ)
14497 dyn.d_un.d_val += hdr->sh_size;
14498 else if ((ufile_ptr) hdr->sh_offset
14499 <= dyn.d_un.d_val - 1)
14500 dyn.d_un.d_val = hdr->sh_offset;
14501 }
14502 }
14503 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14504 }
14505 break;
14506
14507 case DT_TLSDESC_PLT:
14508 s = htab->root.splt;
14509 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14510 + htab->dt_tlsdesc_plt);
14511 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14512 break;
14513
14514 case DT_TLSDESC_GOT:
14515 s = htab->root.sgot;
14516 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14517 + htab->dt_tlsdesc_got);
14518 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14519 break;
14520
14521 /* Set the bottom bit of DT_INIT/FINI if the
14522 corresponding function is Thumb. */
14523 case DT_INIT:
14524 name = info->init_function;
14525 goto get_sym;
14526 case DT_FINI:
14527 name = info->fini_function;
14528 get_sym:
14529 /* If it wasn't set by elf_bfd_final_link
14530 then there is nothing to adjust. */
14531 if (dyn.d_un.d_val != 0)
14532 {
14533 struct elf_link_hash_entry * eh;
14534
14535 eh = elf_link_hash_lookup (elf_hash_table (info), name,
14536 FALSE, FALSE, TRUE);
14537 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
14538 {
14539 dyn.d_un.d_val |= 1;
14540 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14541 }
14542 }
14543 break;
14544 }
14545 }
14546
14547 /* Fill in the first entry in the procedure linkage table. */
14548 if (splt->size > 0 && htab->plt_header_size)
14549 {
14550 const bfd_vma *plt0_entry;
14551 bfd_vma got_address, plt_address, got_displacement;
14552
14553 /* Calculate the addresses of the GOT and PLT. */
14554 got_address = sgot->output_section->vma + sgot->output_offset;
14555 plt_address = splt->output_section->vma + splt->output_offset;
14556
14557 if (htab->vxworks_p)
14558 {
14559 /* The VxWorks GOT is relocated by the dynamic linker.
14560 Therefore, we must emit relocations rather than simply
14561 computing the values now. */
14562 Elf_Internal_Rela rel;
14563
14564 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
14565 put_arm_insn (htab, output_bfd, plt0_entry[0],
14566 splt->contents + 0);
14567 put_arm_insn (htab, output_bfd, plt0_entry[1],
14568 splt->contents + 4);
14569 put_arm_insn (htab, output_bfd, plt0_entry[2],
14570 splt->contents + 8);
14571 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
14572
14573 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
14574 rel.r_offset = plt_address + 12;
14575 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14576 rel.r_addend = 0;
14577 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
14578 htab->srelplt2->contents);
14579 }
14580 else if (htab->nacl_p)
14581 arm_nacl_put_plt0 (htab, output_bfd, splt,
14582 got_address + 8 - (plt_address + 16));
14583 else if (using_thumb_only (htab))
14584 {
14585 got_displacement = got_address - (plt_address + 12);
14586
14587 plt0_entry = elf32_thumb2_plt0_entry;
14588 put_arm_insn (htab, output_bfd, plt0_entry[0],
14589 splt->contents + 0);
14590 put_arm_insn (htab, output_bfd, plt0_entry[1],
14591 splt->contents + 4);
14592 put_arm_insn (htab, output_bfd, plt0_entry[2],
14593 splt->contents + 8);
14594
14595 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
14596 }
14597 else
14598 {
14599 got_displacement = got_address - (plt_address + 16);
14600
14601 plt0_entry = elf32_arm_plt0_entry;
14602 put_arm_insn (htab, output_bfd, plt0_entry[0],
14603 splt->contents + 0);
14604 put_arm_insn (htab, output_bfd, plt0_entry[1],
14605 splt->contents + 4);
14606 put_arm_insn (htab, output_bfd, plt0_entry[2],
14607 splt->contents + 8);
14608 put_arm_insn (htab, output_bfd, plt0_entry[3],
14609 splt->contents + 12);
14610
14611 #ifdef FOUR_WORD_PLT
14612 /* The displacement value goes in the otherwise-unused
14613 last word of the second entry. */
14614 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
14615 #else
14616 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
14617 #endif
14618 }
14619 }
14620
14621 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14622 really seem like the right value. */
14623 if (splt->output_section->owner == output_bfd)
14624 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
14625
14626 if (htab->dt_tlsdesc_plt)
14627 {
14628 bfd_vma got_address
14629 = sgot->output_section->vma + sgot->output_offset;
14630 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14631 + htab->root.sgot->output_offset);
14632 bfd_vma plt_address
14633 = splt->output_section->vma + splt->output_offset;
14634
14635 arm_put_trampoline (htab, output_bfd,
14636 splt->contents + htab->dt_tlsdesc_plt,
14637 dl_tlsdesc_lazy_trampoline, 6);
14638
14639 bfd_put_32 (output_bfd,
14640 gotplt_address + htab->dt_tlsdesc_got
14641 - (plt_address + htab->dt_tlsdesc_plt)
14642 - dl_tlsdesc_lazy_trampoline[6],
14643 splt->contents + htab->dt_tlsdesc_plt + 24);
14644 bfd_put_32 (output_bfd,
14645 got_address - (plt_address + htab->dt_tlsdesc_plt)
14646 - dl_tlsdesc_lazy_trampoline[7],
14647 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14648 }
14649
14650 if (htab->tls_trampoline)
14651 {
14652 arm_put_trampoline (htab, output_bfd,
14653 splt->contents + htab->tls_trampoline,
14654 tls_trampoline, 3);
14655 #ifdef FOUR_WORD_PLT
14656 bfd_put_32 (output_bfd, 0x00000000,
14657 splt->contents + htab->tls_trampoline + 12);
14658 #endif
14659 }
14660
14661 if (htab->vxworks_p
14662 && !bfd_link_pic (info)
14663 && htab->root.splt->size > 0)
14664 {
14665 /* Correct the .rel(a).plt.unloaded relocations. They will have
14666 incorrect symbol indexes. */
14667 int num_plts;
14668 unsigned char *p;
14669
14670 num_plts = ((htab->root.splt->size - htab->plt_header_size)
14671 / htab->plt_entry_size);
14672 p = htab->srelplt2->contents + RELOC_SIZE (htab);
14673
14674 for (; num_plts; num_plts--)
14675 {
14676 Elf_Internal_Rela rel;
14677
14678 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14679 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14680 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14681 p += RELOC_SIZE (htab);
14682
14683 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14684 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14685 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14686 p += RELOC_SIZE (htab);
14687 }
14688 }
14689 }
14690
14691 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
14692 /* NaCl uses a special first entry in .iplt too. */
14693 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
14694
14695 /* Fill in the first three entries in the global offset table. */
14696 if (sgot)
14697 {
14698 if (sgot->size > 0)
14699 {
14700 if (sdyn == NULL)
14701 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14702 else
14703 bfd_put_32 (output_bfd,
14704 sdyn->output_section->vma + sdyn->output_offset,
14705 sgot->contents);
14706 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14707 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14708 }
14709
14710 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14711 }
14712
14713 return TRUE;
14714 }
14715
14716 static void
14717 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
14718 {
14719 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
14720 struct elf32_arm_link_hash_table *globals;
14721
14722 i_ehdrp = elf_elfheader (abfd);
14723
14724 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14725 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14726 else
14727 _bfd_elf_post_process_headers (abfd, link_info);
14728 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
14729
14730 if (link_info)
14731 {
14732 globals = elf32_arm_hash_table (link_info);
14733 if (globals != NULL && globals->byteswap_code)
14734 i_ehdrp->e_flags |= EF_ARM_BE8;
14735 }
14736
14737 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
14738 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
14739 {
14740 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
14741 if (abi == AEABI_VFP_args_vfp)
14742 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
14743 else
14744 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
14745 }
14746 }
14747
14748 static enum elf_reloc_type_class
14749 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
14750 const asection *rel_sec ATTRIBUTE_UNUSED,
14751 const Elf_Internal_Rela *rela)
14752 {
14753 switch ((int) ELF32_R_TYPE (rela->r_info))
14754 {
14755 case R_ARM_RELATIVE:
14756 return reloc_class_relative;
14757 case R_ARM_JUMP_SLOT:
14758 return reloc_class_plt;
14759 case R_ARM_COPY:
14760 return reloc_class_copy;
14761 default:
14762 return reloc_class_normal;
14763 }
14764 }
14765
14766 static void
14767 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
14768 {
14769 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
14770 }
14771
14772 /* Return TRUE if this is an unwinding table entry. */
14773
14774 static bfd_boolean
14775 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14776 {
14777 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14778 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
14779 }
14780
14781
14782 /* Set the type and flags for an ARM section. We do this by
14783 the section name, which is a hack, but ought to work. */
14784
14785 static bfd_boolean
14786 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14787 {
14788 const char * name;
14789
14790 name = bfd_get_section_name (abfd, sec);
14791
14792 if (is_arm_elf_unwind_section_name (abfd, name))
14793 {
14794 hdr->sh_type = SHT_ARM_EXIDX;
14795 hdr->sh_flags |= SHF_LINK_ORDER;
14796 }
14797 return TRUE;
14798 }
14799
14800 /* Handle an ARM specific section when reading an object file. This is
14801 called when bfd_section_from_shdr finds a section with an unknown
14802 type. */
14803
14804 static bfd_boolean
14805 elf32_arm_section_from_shdr (bfd *abfd,
14806 Elf_Internal_Shdr * hdr,
14807 const char *name,
14808 int shindex)
14809 {
14810 /* There ought to be a place to keep ELF backend specific flags, but
14811 at the moment there isn't one. We just keep track of the
14812 sections by their name, instead. Fortunately, the ABI gives
14813 names for all the ARM specific sections, so we will probably get
14814 away with this. */
14815 switch (hdr->sh_type)
14816 {
14817 case SHT_ARM_EXIDX:
14818 case SHT_ARM_PREEMPTMAP:
14819 case SHT_ARM_ATTRIBUTES:
14820 break;
14821
14822 default:
14823 return FALSE;
14824 }
14825
14826 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
14827 return FALSE;
14828
14829 return TRUE;
14830 }
14831
14832 static _arm_elf_section_data *
14833 get_arm_elf_section_data (asection * sec)
14834 {
14835 if (sec && sec->owner && is_arm_elf (sec->owner))
14836 return elf32_arm_section_data (sec);
14837 else
14838 return NULL;
14839 }
14840
14841 typedef struct
14842 {
14843 void *flaginfo;
14844 struct bfd_link_info *info;
14845 asection *sec;
14846 int sec_shndx;
14847 int (*func) (void *, const char *, Elf_Internal_Sym *,
14848 asection *, struct elf_link_hash_entry *);
14849 } output_arch_syminfo;
14850
14851 enum map_symbol_type
14852 {
14853 ARM_MAP_ARM,
14854 ARM_MAP_THUMB,
14855 ARM_MAP_DATA
14856 };
14857
14858
14859 /* Output a single mapping symbol. */
14860
14861 static bfd_boolean
14862 elf32_arm_output_map_sym (output_arch_syminfo *osi,
14863 enum map_symbol_type type,
14864 bfd_vma offset)
14865 {
14866 static const char *names[3] = {"$a", "$t", "$d"};
14867 Elf_Internal_Sym sym;
14868
14869 sym.st_value = osi->sec->output_section->vma
14870 + osi->sec->output_offset
14871 + offset;
14872 sym.st_size = 0;
14873 sym.st_other = 0;
14874 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
14875 sym.st_shndx = osi->sec_shndx;
14876 sym.st_target_internal = 0;
14877 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
14878 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
14879 }
14880
14881 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14882 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14883
14884 static bfd_boolean
14885 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14886 bfd_boolean is_iplt_entry_p,
14887 union gotplt_union *root_plt,
14888 struct arm_plt_info *arm_plt)
14889 {
14890 struct elf32_arm_link_hash_table *htab;
14891 bfd_vma addr, plt_header_size;
14892
14893 if (root_plt->offset == (bfd_vma) -1)
14894 return TRUE;
14895
14896 htab = elf32_arm_hash_table (osi->info);
14897 if (htab == NULL)
14898 return FALSE;
14899
14900 if (is_iplt_entry_p)
14901 {
14902 osi->sec = htab->root.iplt;
14903 plt_header_size = 0;
14904 }
14905 else
14906 {
14907 osi->sec = htab->root.splt;
14908 plt_header_size = htab->plt_header_size;
14909 }
14910 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14911 (osi->info->output_bfd, osi->sec->output_section));
14912
14913 addr = root_plt->offset & -2;
14914 if (htab->symbian_p)
14915 {
14916 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14917 return FALSE;
14918 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
14919 return FALSE;
14920 }
14921 else if (htab->vxworks_p)
14922 {
14923 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14924 return FALSE;
14925 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
14926 return FALSE;
14927 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
14928 return FALSE;
14929 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
14930 return FALSE;
14931 }
14932 else if (htab->nacl_p)
14933 {
14934 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14935 return FALSE;
14936 }
14937 else if (using_thumb_only (htab))
14938 {
14939 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
14940 return FALSE;
14941 }
14942 else
14943 {
14944 bfd_boolean thumb_stub_p;
14945
14946 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14947 if (thumb_stub_p)
14948 {
14949 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
14950 return FALSE;
14951 }
14952 #ifdef FOUR_WORD_PLT
14953 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14954 return FALSE;
14955 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
14956 return FALSE;
14957 #else
14958 /* A three-word PLT with no Thumb thunk contains only Arm code,
14959 so only need to output a mapping symbol for the first PLT entry and
14960 entries with thumb thunks. */
14961 if (thumb_stub_p || addr == plt_header_size)
14962 {
14963 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14964 return FALSE;
14965 }
14966 #endif
14967 }
14968
14969 return TRUE;
14970 }
14971
14972 /* Output mapping symbols for PLT entries associated with H. */
14973
14974 static bfd_boolean
14975 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14976 {
14977 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14978 struct elf32_arm_link_hash_entry *eh;
14979
14980 if (h->root.type == bfd_link_hash_indirect)
14981 return TRUE;
14982
14983 if (h->root.type == bfd_link_hash_warning)
14984 /* When warning symbols are created, they **replace** the "real"
14985 entry in the hash table, thus we never get to see the real
14986 symbol in a hash traversal. So look at it now. */
14987 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14988
14989 eh = (struct elf32_arm_link_hash_entry *) h;
14990 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14991 &h->plt, &eh->plt);
14992 }
14993
14994 /* Output a single local symbol for a generated stub. */
14995
14996 static bfd_boolean
14997 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14998 bfd_vma offset, bfd_vma size)
14999 {
15000 Elf_Internal_Sym sym;
15001
15002 sym.st_value = osi->sec->output_section->vma
15003 + osi->sec->output_offset
15004 + offset;
15005 sym.st_size = size;
15006 sym.st_other = 0;
15007 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
15008 sym.st_shndx = osi->sec_shndx;
15009 sym.st_target_internal = 0;
15010 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
15011 }
15012
15013 static bfd_boolean
15014 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
15015 void * in_arg)
15016 {
15017 struct elf32_arm_stub_hash_entry *stub_entry;
15018 asection *stub_sec;
15019 bfd_vma addr;
15020 char *stub_name;
15021 output_arch_syminfo *osi;
15022 const insn_sequence *template_sequence;
15023 enum stub_insn_type prev_type;
15024 int size;
15025 int i;
15026 enum map_symbol_type sym_type;
15027
15028 /* Massage our args to the form they really have. */
15029 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15030 osi = (output_arch_syminfo *) in_arg;
15031
15032 stub_sec = stub_entry->stub_sec;
15033
15034 /* Ensure this stub is attached to the current section being
15035 processed. */
15036 if (stub_sec != osi->sec)
15037 return TRUE;
15038
15039 addr = (bfd_vma) stub_entry->stub_offset;
15040 stub_name = stub_entry->output_name;
15041
15042 template_sequence = stub_entry->stub_template;
15043 switch (template_sequence[0].type)
15044 {
15045 case ARM_TYPE:
15046 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
15047 return FALSE;
15048 break;
15049 case THUMB16_TYPE:
15050 case THUMB32_TYPE:
15051 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
15052 stub_entry->stub_size))
15053 return FALSE;
15054 break;
15055 default:
15056 BFD_FAIL ();
15057 return 0;
15058 }
15059
15060 prev_type = DATA_TYPE;
15061 size = 0;
15062 for (i = 0; i < stub_entry->stub_template_size; i++)
15063 {
15064 switch (template_sequence[i].type)
15065 {
15066 case ARM_TYPE:
15067 sym_type = ARM_MAP_ARM;
15068 break;
15069
15070 case THUMB16_TYPE:
15071 case THUMB32_TYPE:
15072 sym_type = ARM_MAP_THUMB;
15073 break;
15074
15075 case DATA_TYPE:
15076 sym_type = ARM_MAP_DATA;
15077 break;
15078
15079 default:
15080 BFD_FAIL ();
15081 return FALSE;
15082 }
15083
15084 if (template_sequence[i].type != prev_type)
15085 {
15086 prev_type = template_sequence[i].type;
15087 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
15088 return FALSE;
15089 }
15090
15091 switch (template_sequence[i].type)
15092 {
15093 case ARM_TYPE:
15094 case THUMB32_TYPE:
15095 size += 4;
15096 break;
15097
15098 case THUMB16_TYPE:
15099 size += 2;
15100 break;
15101
15102 case DATA_TYPE:
15103 size += 4;
15104 break;
15105
15106 default:
15107 BFD_FAIL ();
15108 return FALSE;
15109 }
15110 }
15111
15112 return TRUE;
15113 }
15114
15115 /* Output mapping symbols for linker generated sections,
15116 and for those data-only sections that do not have a
15117 $d. */
15118
15119 static bfd_boolean
15120 elf32_arm_output_arch_local_syms (bfd *output_bfd,
15121 struct bfd_link_info *info,
15122 void *flaginfo,
15123 int (*func) (void *, const char *,
15124 Elf_Internal_Sym *,
15125 asection *,
15126 struct elf_link_hash_entry *))
15127 {
15128 output_arch_syminfo osi;
15129 struct elf32_arm_link_hash_table *htab;
15130 bfd_vma offset;
15131 bfd_size_type size;
15132 bfd *input_bfd;
15133
15134 htab = elf32_arm_hash_table (info);
15135 if (htab == NULL)
15136 return FALSE;
15137
15138 check_use_blx (htab);
15139
15140 osi.flaginfo = flaginfo;
15141 osi.info = info;
15142 osi.func = func;
15143
15144 /* Add a $d mapping symbol to data-only sections that
15145 don't have any mapping symbol. This may result in (harmless) redundant
15146 mapping symbols. */
15147 for (input_bfd = info->input_bfds;
15148 input_bfd != NULL;
15149 input_bfd = input_bfd->link.next)
15150 {
15151 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
15152 for (osi.sec = input_bfd->sections;
15153 osi.sec != NULL;
15154 osi.sec = osi.sec->next)
15155 {
15156 if (osi.sec->output_section != NULL
15157 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
15158 != 0)
15159 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
15160 == SEC_HAS_CONTENTS
15161 && get_arm_elf_section_data (osi.sec) != NULL
15162 && get_arm_elf_section_data (osi.sec)->mapcount == 0
15163 && osi.sec->size > 0
15164 && (osi.sec->flags & SEC_EXCLUDE) == 0)
15165 {
15166 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15167 (output_bfd, osi.sec->output_section);
15168 if (osi.sec_shndx != (int)SHN_BAD)
15169 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
15170 }
15171 }
15172 }
15173
15174 /* ARM->Thumb glue. */
15175 if (htab->arm_glue_size > 0)
15176 {
15177 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15178 ARM2THUMB_GLUE_SECTION_NAME);
15179
15180 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15181 (output_bfd, osi.sec->output_section);
15182 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
15183 || htab->pic_veneer)
15184 size = ARM2THUMB_PIC_GLUE_SIZE;
15185 else if (htab->use_blx)
15186 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
15187 else
15188 size = ARM2THUMB_STATIC_GLUE_SIZE;
15189
15190 for (offset = 0; offset < htab->arm_glue_size; offset += size)
15191 {
15192 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
15193 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
15194 }
15195 }
15196
15197 /* Thumb->ARM glue. */
15198 if (htab->thumb_glue_size > 0)
15199 {
15200 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15201 THUMB2ARM_GLUE_SECTION_NAME);
15202
15203 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15204 (output_bfd, osi.sec->output_section);
15205 size = THUMB2ARM_GLUE_SIZE;
15206
15207 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
15208 {
15209 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
15210 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
15211 }
15212 }
15213
15214 /* ARMv4 BX veneers. */
15215 if (htab->bx_glue_size > 0)
15216 {
15217 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15218 ARM_BX_GLUE_SECTION_NAME);
15219
15220 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15221 (output_bfd, osi.sec->output_section);
15222
15223 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
15224 }
15225
15226 /* Long calls stubs. */
15227 if (htab->stub_bfd && htab->stub_bfd->sections)
15228 {
15229 asection* stub_sec;
15230
15231 for (stub_sec = htab->stub_bfd->sections;
15232 stub_sec != NULL;
15233 stub_sec = stub_sec->next)
15234 {
15235 /* Ignore non-stub sections. */
15236 if (!strstr (stub_sec->name, STUB_SUFFIX))
15237 continue;
15238
15239 osi.sec = stub_sec;
15240
15241 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15242 (output_bfd, osi.sec->output_section);
15243
15244 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
15245 }
15246 }
15247
15248 /* Finally, output mapping symbols for the PLT. */
15249 if (htab->root.splt && htab->root.splt->size > 0)
15250 {
15251 osi.sec = htab->root.splt;
15252 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15253 (output_bfd, osi.sec->output_section));
15254
15255 /* Output mapping symbols for the plt header. SymbianOS does not have a
15256 plt header. */
15257 if (htab->vxworks_p)
15258 {
15259 /* VxWorks shared libraries have no PLT header. */
15260 if (!bfd_link_pic (info))
15261 {
15262 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15263 return FALSE;
15264 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
15265 return FALSE;
15266 }
15267 }
15268 else if (htab->nacl_p)
15269 {
15270 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15271 return FALSE;
15272 }
15273 else if (using_thumb_only (htab))
15274 {
15275 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
15276 return FALSE;
15277 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
15278 return FALSE;
15279 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
15280 return FALSE;
15281 }
15282 else if (!htab->symbian_p)
15283 {
15284 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15285 return FALSE;
15286 #ifndef FOUR_WORD_PLT
15287 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
15288 return FALSE;
15289 #endif
15290 }
15291 }
15292 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
15293 {
15294 /* NaCl uses a special first entry in .iplt too. */
15295 osi.sec = htab->root.iplt;
15296 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15297 (output_bfd, osi.sec->output_section));
15298 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15299 return FALSE;
15300 }
15301 if ((htab->root.splt && htab->root.splt->size > 0)
15302 || (htab->root.iplt && htab->root.iplt->size > 0))
15303 {
15304 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
15305 for (input_bfd = info->input_bfds;
15306 input_bfd != NULL;
15307 input_bfd = input_bfd->link.next)
15308 {
15309 struct arm_local_iplt_info **local_iplt;
15310 unsigned int i, num_syms;
15311
15312 local_iplt = elf32_arm_local_iplt (input_bfd);
15313 if (local_iplt != NULL)
15314 {
15315 num_syms = elf_symtab_hdr (input_bfd).sh_info;
15316 for (i = 0; i < num_syms; i++)
15317 if (local_iplt[i] != NULL
15318 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
15319 &local_iplt[i]->root,
15320 &local_iplt[i]->arm))
15321 return FALSE;
15322 }
15323 }
15324 }
15325 if (htab->dt_tlsdesc_plt != 0)
15326 {
15327 /* Mapping symbols for the lazy tls trampoline. */
15328 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
15329 return FALSE;
15330
15331 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15332 htab->dt_tlsdesc_plt + 24))
15333 return FALSE;
15334 }
15335 if (htab->tls_trampoline != 0)
15336 {
15337 /* Mapping symbols for the tls trampoline. */
15338 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
15339 return FALSE;
15340 #ifdef FOUR_WORD_PLT
15341 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15342 htab->tls_trampoline + 12))
15343 return FALSE;
15344 #endif
15345 }
15346
15347 return TRUE;
15348 }
15349
15350 /* Allocate target specific section data. */
15351
15352 static bfd_boolean
15353 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
15354 {
15355 if (!sec->used_by_bfd)
15356 {
15357 _arm_elf_section_data *sdata;
15358 bfd_size_type amt = sizeof (*sdata);
15359
15360 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
15361 if (sdata == NULL)
15362 return FALSE;
15363 sec->used_by_bfd = sdata;
15364 }
15365
15366 return _bfd_elf_new_section_hook (abfd, sec);
15367 }
15368
15369
15370 /* Used to order a list of mapping symbols by address. */
15371
15372 static int
15373 elf32_arm_compare_mapping (const void * a, const void * b)
15374 {
15375 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
15376 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
15377
15378 if (amap->vma > bmap->vma)
15379 return 1;
15380 else if (amap->vma < bmap->vma)
15381 return -1;
15382 else if (amap->type > bmap->type)
15383 /* Ensure results do not depend on the host qsort for objects with
15384 multiple mapping symbols at the same address by sorting on type
15385 after vma. */
15386 return 1;
15387 else if (amap->type < bmap->type)
15388 return -1;
15389 else
15390 return 0;
15391 }
15392
15393 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
15394
15395 static unsigned long
15396 offset_prel31 (unsigned long addr, bfd_vma offset)
15397 {
15398 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
15399 }
15400
15401 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
15402 relocations. */
15403
15404 static void
15405 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
15406 {
15407 unsigned long first_word = bfd_get_32 (output_bfd, from);
15408 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
15409
15410 /* High bit of first word is supposed to be zero. */
15411 if ((first_word & 0x80000000ul) == 0)
15412 first_word = offset_prel31 (first_word, offset);
15413
15414 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
15415 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
15416 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
15417 second_word = offset_prel31 (second_word, offset);
15418
15419 bfd_put_32 (output_bfd, first_word, to);
15420 bfd_put_32 (output_bfd, second_word, to + 4);
15421 }
15422
15423 /* Data for make_branch_to_a8_stub(). */
15424
15425 struct a8_branch_to_stub_data
15426 {
15427 asection *writing_section;
15428 bfd_byte *contents;
15429 };
15430
15431
15432 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
15433 places for a particular section. */
15434
15435 static bfd_boolean
15436 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
15437 void *in_arg)
15438 {
15439 struct elf32_arm_stub_hash_entry *stub_entry;
15440 struct a8_branch_to_stub_data *data;
15441 bfd_byte *contents;
15442 unsigned long branch_insn;
15443 bfd_vma veneered_insn_loc, veneer_entry_loc;
15444 bfd_signed_vma branch_offset;
15445 bfd *abfd;
15446 unsigned int target;
15447
15448 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15449 data = (struct a8_branch_to_stub_data *) in_arg;
15450
15451 if (stub_entry->target_section != data->writing_section
15452 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
15453 return TRUE;
15454
15455 contents = data->contents;
15456
15457 veneered_insn_loc = stub_entry->target_section->output_section->vma
15458 + stub_entry->target_section->output_offset
15459 + stub_entry->target_value;
15460
15461 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
15462 + stub_entry->stub_sec->output_offset
15463 + stub_entry->stub_offset;
15464
15465 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
15466 veneered_insn_loc &= ~3u;
15467
15468 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
15469
15470 abfd = stub_entry->target_section->owner;
15471 target = stub_entry->target_value;
15472
15473 /* We attempt to avoid this condition by setting stubs_always_after_branch
15474 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
15475 This check is just to be on the safe side... */
15476 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
15477 {
15478 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
15479 "allocated in unsafe location"), abfd);
15480 return FALSE;
15481 }
15482
15483 switch (stub_entry->stub_type)
15484 {
15485 case arm_stub_a8_veneer_b:
15486 case arm_stub_a8_veneer_b_cond:
15487 branch_insn = 0xf0009000;
15488 goto jump24;
15489
15490 case arm_stub_a8_veneer_blx:
15491 branch_insn = 0xf000e800;
15492 goto jump24;
15493
15494 case arm_stub_a8_veneer_bl:
15495 {
15496 unsigned int i1, j1, i2, j2, s;
15497
15498 branch_insn = 0xf000d000;
15499
15500 jump24:
15501 if (branch_offset < -16777216 || branch_offset > 16777214)
15502 {
15503 /* There's not much we can do apart from complain if this
15504 happens. */
15505 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
15506 "of range (input file too large)"), abfd);
15507 return FALSE;
15508 }
15509
15510 /* i1 = not(j1 eor s), so:
15511 not i1 = j1 eor s
15512 j1 = (not i1) eor s. */
15513
15514 branch_insn |= (branch_offset >> 1) & 0x7ff;
15515 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
15516 i2 = (branch_offset >> 22) & 1;
15517 i1 = (branch_offset >> 23) & 1;
15518 s = (branch_offset >> 24) & 1;
15519 j1 = (!i1) ^ s;
15520 j2 = (!i2) ^ s;
15521 branch_insn |= j2 << 11;
15522 branch_insn |= j1 << 13;
15523 branch_insn |= s << 26;
15524 }
15525 break;
15526
15527 default:
15528 BFD_FAIL ();
15529 return FALSE;
15530 }
15531
15532 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
15533 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
15534
15535 return TRUE;
15536 }
15537
15538 /* Do code byteswapping. Return FALSE afterwards so that the section is
15539 written out as normal. */
15540
15541 static bfd_boolean
15542 elf32_arm_write_section (bfd *output_bfd,
15543 struct bfd_link_info *link_info,
15544 asection *sec,
15545 bfd_byte *contents)
15546 {
15547 unsigned int mapcount, errcount;
15548 _arm_elf_section_data *arm_data;
15549 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
15550 elf32_arm_section_map *map;
15551 elf32_vfp11_erratum_list *errnode;
15552 bfd_vma ptr;
15553 bfd_vma end;
15554 bfd_vma offset = sec->output_section->vma + sec->output_offset;
15555 bfd_byte tmp;
15556 unsigned int i;
15557
15558 if (globals == NULL)
15559 return FALSE;
15560
15561 /* If this section has not been allocated an _arm_elf_section_data
15562 structure then we cannot record anything. */
15563 arm_data = get_arm_elf_section_data (sec);
15564 if (arm_data == NULL)
15565 return FALSE;
15566
15567 mapcount = arm_data->mapcount;
15568 map = arm_data->map;
15569 errcount = arm_data->erratumcount;
15570
15571 if (errcount != 0)
15572 {
15573 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
15574
15575 for (errnode = arm_data->erratumlist; errnode != 0;
15576 errnode = errnode->next)
15577 {
15578 bfd_vma target = errnode->vma - offset;
15579
15580 switch (errnode->type)
15581 {
15582 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
15583 {
15584 bfd_vma branch_to_veneer;
15585 /* Original condition code of instruction, plus bit mask for
15586 ARM B instruction. */
15587 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
15588 | 0x0a000000;
15589
15590 /* The instruction is before the label. */
15591 target -= 4;
15592
15593 /* Above offset included in -4 below. */
15594 branch_to_veneer = errnode->u.b.veneer->vma
15595 - errnode->vma - 4;
15596
15597 if ((signed) branch_to_veneer < -(1 << 25)
15598 || (signed) branch_to_veneer >= (1 << 25))
15599 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15600 "range"), output_bfd);
15601
15602 insn |= (branch_to_veneer >> 2) & 0xffffff;
15603 contents[endianflip ^ target] = insn & 0xff;
15604 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15605 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15606 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15607 }
15608 break;
15609
15610 case VFP11_ERRATUM_ARM_VENEER:
15611 {
15612 bfd_vma branch_from_veneer;
15613 unsigned int insn;
15614
15615 /* Take size of veneer into account. */
15616 branch_from_veneer = errnode->u.v.branch->vma
15617 - errnode->vma - 12;
15618
15619 if ((signed) branch_from_veneer < -(1 << 25)
15620 || (signed) branch_from_veneer >= (1 << 25))
15621 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15622 "range"), output_bfd);
15623
15624 /* Original instruction. */
15625 insn = errnode->u.v.branch->u.b.vfp_insn;
15626 contents[endianflip ^ target] = insn & 0xff;
15627 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15628 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15629 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15630
15631 /* Branch back to insn after original insn. */
15632 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
15633 contents[endianflip ^ (target + 4)] = insn & 0xff;
15634 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
15635 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
15636 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
15637 }
15638 break;
15639
15640 default:
15641 abort ();
15642 }
15643 }
15644 }
15645
15646 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
15647 {
15648 arm_unwind_table_edit *edit_node
15649 = arm_data->u.exidx.unwind_edit_list;
15650 /* Now, sec->size is the size of the section we will write. The original
15651 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
15652 markers) was sec->rawsize. (This isn't the case if we perform no
15653 edits, then rawsize will be zero and we should use size). */
15654 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
15655 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
15656 unsigned int in_index, out_index;
15657 bfd_vma add_to_offsets = 0;
15658
15659 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
15660 {
15661 if (edit_node)
15662 {
15663 unsigned int edit_index = edit_node->index;
15664
15665 if (in_index < edit_index && in_index * 8 < input_size)
15666 {
15667 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15668 contents + in_index * 8, add_to_offsets);
15669 out_index++;
15670 in_index++;
15671 }
15672 else if (in_index == edit_index
15673 || (in_index * 8 >= input_size
15674 && edit_index == UINT_MAX))
15675 {
15676 switch (edit_node->type)
15677 {
15678 case DELETE_EXIDX_ENTRY:
15679 in_index++;
15680 add_to_offsets += 8;
15681 break;
15682
15683 case INSERT_EXIDX_CANTUNWIND_AT_END:
15684 {
15685 asection *text_sec = edit_node->linked_section;
15686 bfd_vma text_offset = text_sec->output_section->vma
15687 + text_sec->output_offset
15688 + text_sec->size;
15689 bfd_vma exidx_offset = offset + out_index * 8;
15690 unsigned long prel31_offset;
15691
15692 /* Note: this is meant to be equivalent to an
15693 R_ARM_PREL31 relocation. These synthetic
15694 EXIDX_CANTUNWIND markers are not relocated by the
15695 usual BFD method. */
15696 prel31_offset = (text_offset - exidx_offset)
15697 & 0x7ffffffful;
15698
15699 /* First address we can't unwind. */
15700 bfd_put_32 (output_bfd, prel31_offset,
15701 &edited_contents[out_index * 8]);
15702
15703 /* Code for EXIDX_CANTUNWIND. */
15704 bfd_put_32 (output_bfd, 0x1,
15705 &edited_contents[out_index * 8 + 4]);
15706
15707 out_index++;
15708 add_to_offsets -= 8;
15709 }
15710 break;
15711 }
15712
15713 edit_node = edit_node->next;
15714 }
15715 }
15716 else
15717 {
15718 /* No more edits, copy remaining entries verbatim. */
15719 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15720 contents + in_index * 8, add_to_offsets);
15721 out_index++;
15722 in_index++;
15723 }
15724 }
15725
15726 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15727 bfd_set_section_contents (output_bfd, sec->output_section,
15728 edited_contents,
15729 (file_ptr) sec->output_offset, sec->size);
15730
15731 return TRUE;
15732 }
15733
15734 /* Fix code to point to Cortex-A8 erratum stubs. */
15735 if (globals->fix_cortex_a8)
15736 {
15737 struct a8_branch_to_stub_data data;
15738
15739 data.writing_section = sec;
15740 data.contents = contents;
15741
15742 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15743 &data);
15744 }
15745
15746 if (mapcount == 0)
15747 return FALSE;
15748
15749 if (globals->byteswap_code)
15750 {
15751 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
15752
15753 ptr = map[0].vma;
15754 for (i = 0; i < mapcount; i++)
15755 {
15756 if (i == mapcount - 1)
15757 end = sec->size;
15758 else
15759 end = map[i + 1].vma;
15760
15761 switch (map[i].type)
15762 {
15763 case 'a':
15764 /* Byte swap code words. */
15765 while (ptr + 3 < end)
15766 {
15767 tmp = contents[ptr];
15768 contents[ptr] = contents[ptr + 3];
15769 contents[ptr + 3] = tmp;
15770 tmp = contents[ptr + 1];
15771 contents[ptr + 1] = contents[ptr + 2];
15772 contents[ptr + 2] = tmp;
15773 ptr += 4;
15774 }
15775 break;
15776
15777 case 't':
15778 /* Byte swap code halfwords. */
15779 while (ptr + 1 < end)
15780 {
15781 tmp = contents[ptr];
15782 contents[ptr] = contents[ptr + 1];
15783 contents[ptr + 1] = tmp;
15784 ptr += 2;
15785 }
15786 break;
15787
15788 case 'd':
15789 /* Leave data alone. */
15790 break;
15791 }
15792 ptr = end;
15793 }
15794 }
15795
15796 free (map);
15797 arm_data->mapcount = -1;
15798 arm_data->mapsize = 0;
15799 arm_data->map = NULL;
15800
15801 return FALSE;
15802 }
15803
15804 /* Mangle thumb function symbols as we read them in. */
15805
15806 static bfd_boolean
15807 elf32_arm_swap_symbol_in (bfd * abfd,
15808 const void *psrc,
15809 const void *pshn,
15810 Elf_Internal_Sym *dst)
15811 {
15812 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15813 return FALSE;
15814
15815 /* New EABI objects mark thumb function symbols by setting the low bit of
15816 the address. */
15817 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15818 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
15819 {
15820 if (dst->st_value & 1)
15821 {
15822 dst->st_value &= ~(bfd_vma) 1;
15823 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15824 }
15825 else
15826 dst->st_target_internal = ST_BRANCH_TO_ARM;
15827 }
15828 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15829 {
15830 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15831 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15832 }
15833 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15834 dst->st_target_internal = ST_BRANCH_LONG;
15835 else
15836 dst->st_target_internal = ST_BRANCH_UNKNOWN;
15837
15838 return TRUE;
15839 }
15840
15841
15842 /* Mangle thumb function symbols as we write them out. */
15843
15844 static void
15845 elf32_arm_swap_symbol_out (bfd *abfd,
15846 const Elf_Internal_Sym *src,
15847 void *cdst,
15848 void *shndx)
15849 {
15850 Elf_Internal_Sym newsym;
15851
15852 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15853 of the address set, as per the new EABI. We do this unconditionally
15854 because objcopy does not set the elf header flags until after
15855 it writes out the symbol table. */
15856 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
15857 {
15858 newsym = *src;
15859 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15860 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
15861 if (newsym.st_shndx != SHN_UNDEF)
15862 {
15863 /* Do this only for defined symbols. At link type, the static
15864 linker will simulate the work of dynamic linker of resolving
15865 symbols and will carry over the thumbness of found symbols to
15866 the output symbol table. It's not clear how it happens, but
15867 the thumbness of undefined symbols can well be different at
15868 runtime, and writing '1' for them will be confusing for users
15869 and possibly for dynamic linker itself.
15870 */
15871 newsym.st_value |= 1;
15872 }
15873
15874 src = &newsym;
15875 }
15876 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15877 }
15878
15879 /* Add the PT_ARM_EXIDX program header. */
15880
15881 static bfd_boolean
15882 elf32_arm_modify_segment_map (bfd *abfd,
15883 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15884 {
15885 struct elf_segment_map *m;
15886 asection *sec;
15887
15888 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15889 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15890 {
15891 /* If there is already a PT_ARM_EXIDX header, then we do not
15892 want to add another one. This situation arises when running
15893 "strip"; the input binary already has the header. */
15894 m = elf_seg_map (abfd);
15895 while (m && m->p_type != PT_ARM_EXIDX)
15896 m = m->next;
15897 if (!m)
15898 {
15899 m = (struct elf_segment_map *)
15900 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
15901 if (m == NULL)
15902 return FALSE;
15903 m->p_type = PT_ARM_EXIDX;
15904 m->count = 1;
15905 m->sections[0] = sec;
15906
15907 m->next = elf_seg_map (abfd);
15908 elf_seg_map (abfd) = m;
15909 }
15910 }
15911
15912 return TRUE;
15913 }
15914
15915 /* We may add a PT_ARM_EXIDX program header. */
15916
15917 static int
15918 elf32_arm_additional_program_headers (bfd *abfd,
15919 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15920 {
15921 asection *sec;
15922
15923 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15924 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15925 return 1;
15926 else
15927 return 0;
15928 }
15929
15930 /* Hook called by the linker routine which adds symbols from an object
15931 file. */
15932
15933 static bfd_boolean
15934 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15935 Elf_Internal_Sym *sym, const char **namep,
15936 flagword *flagsp, asection **secp, bfd_vma *valp)
15937 {
15938 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15939 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
15940 && (abfd->flags & DYNAMIC) == 0
15941 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
15942 elf_tdata (info->output_bfd)->has_gnu_symbols = elf_gnu_symbol_any;
15943
15944 if (elf32_arm_hash_table (info) == NULL)
15945 return FALSE;
15946
15947 if (elf32_arm_hash_table (info)->vxworks_p
15948 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15949 flagsp, secp, valp))
15950 return FALSE;
15951
15952 return TRUE;
15953 }
15954
15955 /* We use this to override swap_symbol_in and swap_symbol_out. */
15956 const struct elf_size_info elf32_arm_size_info =
15957 {
15958 sizeof (Elf32_External_Ehdr),
15959 sizeof (Elf32_External_Phdr),
15960 sizeof (Elf32_External_Shdr),
15961 sizeof (Elf32_External_Rel),
15962 sizeof (Elf32_External_Rela),
15963 sizeof (Elf32_External_Sym),
15964 sizeof (Elf32_External_Dyn),
15965 sizeof (Elf_External_Note),
15966 4,
15967 1,
15968 32, 2,
15969 ELFCLASS32, EV_CURRENT,
15970 bfd_elf32_write_out_phdrs,
15971 bfd_elf32_write_shdrs_and_ehdr,
15972 bfd_elf32_checksum_contents,
15973 bfd_elf32_write_relocs,
15974 elf32_arm_swap_symbol_in,
15975 elf32_arm_swap_symbol_out,
15976 bfd_elf32_slurp_reloc_table,
15977 bfd_elf32_slurp_symbol_table,
15978 bfd_elf32_swap_dyn_in,
15979 bfd_elf32_swap_dyn_out,
15980 bfd_elf32_swap_reloc_in,
15981 bfd_elf32_swap_reloc_out,
15982 bfd_elf32_swap_reloca_in,
15983 bfd_elf32_swap_reloca_out
15984 };
15985
15986 static bfd_vma
15987 read_code32 (const bfd *abfd, const bfd_byte *addr)
15988 {
15989 /* V7 BE8 code is always little endian. */
15990 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
15991 return bfd_getl32 (addr);
15992
15993 return bfd_get_32 (abfd, addr);
15994 }
15995
15996 static bfd_vma
15997 read_code16 (const bfd *abfd, const bfd_byte *addr)
15998 {
15999 /* V7 BE8 code is always little endian. */
16000 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
16001 return bfd_getl16 (addr);
16002
16003 return bfd_get_16 (abfd, addr);
16004 }
16005
16006 /* Return size of plt0 entry starting at ADDR
16007 or (bfd_vma) -1 if size can not be determined. */
16008
16009 static bfd_vma
16010 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
16011 {
16012 bfd_vma first_word;
16013 bfd_vma plt0_size;
16014
16015 first_word = read_code32 (abfd, addr);
16016
16017 if (first_word == elf32_arm_plt0_entry[0])
16018 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
16019 else if (first_word == elf32_thumb2_plt0_entry[0])
16020 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
16021 else
16022 /* We don't yet handle this PLT format. */
16023 return (bfd_vma) -1;
16024
16025 return plt0_size;
16026 }
16027
16028 /* Return size of plt entry starting at offset OFFSET
16029 of plt section located at address START
16030 or (bfd_vma) -1 if size can not be determined. */
16031
16032 static bfd_vma
16033 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
16034 {
16035 bfd_vma first_insn;
16036 bfd_vma plt_size = 0;
16037 const bfd_byte *addr = start + offset;
16038
16039 /* PLT entry size if fixed on Thumb-only platforms. */
16040 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
16041 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
16042
16043 /* Respect Thumb stub if necessary. */
16044 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
16045 {
16046 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
16047 }
16048
16049 /* Strip immediate from first add. */
16050 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
16051
16052 #ifdef FOUR_WORD_PLT
16053 if (first_insn == elf32_arm_plt_entry[0])
16054 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
16055 #else
16056 if (first_insn == elf32_arm_plt_entry_long[0])
16057 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
16058 else if (first_insn == elf32_arm_plt_entry_short[0])
16059 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
16060 #endif
16061 else
16062 /* We don't yet handle this PLT format. */
16063 return (bfd_vma) -1;
16064
16065 return plt_size;
16066 }
16067
16068 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
16069
16070 static long
16071 elf32_arm_get_synthetic_symtab (bfd *abfd,
16072 long symcount ATTRIBUTE_UNUSED,
16073 asymbol **syms ATTRIBUTE_UNUSED,
16074 long dynsymcount,
16075 asymbol **dynsyms,
16076 asymbol **ret)
16077 {
16078 asection *relplt;
16079 asymbol *s;
16080 arelent *p;
16081 long count, i, n;
16082 size_t size;
16083 Elf_Internal_Shdr *hdr;
16084 char *names;
16085 asection *plt;
16086 bfd_vma offset;
16087 bfd_byte *data;
16088
16089 *ret = NULL;
16090
16091 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
16092 return 0;
16093
16094 if (dynsymcount <= 0)
16095 return 0;
16096
16097 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16098 if (relplt == NULL)
16099 return 0;
16100
16101 hdr = &elf_section_data (relplt)->this_hdr;
16102 if (hdr->sh_link != elf_dynsymtab (abfd)
16103 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
16104 return 0;
16105
16106 plt = bfd_get_section_by_name (abfd, ".plt");
16107 if (plt == NULL)
16108 return 0;
16109
16110 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
16111 return -1;
16112
16113 data = plt->contents;
16114 if (data == NULL)
16115 {
16116 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
16117 return -1;
16118 bfd_cache_section_contents((asection *) plt, data);
16119 }
16120
16121 count = relplt->size / hdr->sh_entsize;
16122 size = count * sizeof (asymbol);
16123 p = relplt->relocation;
16124 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
16125 {
16126 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
16127 if (p->addend != 0)
16128 size += sizeof ("+0x") - 1 + 8;
16129 }
16130
16131 s = *ret = (asymbol *) bfd_malloc (size);
16132 if (s == NULL)
16133 return -1;
16134
16135 offset = elf32_arm_plt0_size (abfd, data);
16136 if (offset == (bfd_vma) -1)
16137 return -1;
16138
16139 names = (char *) (s + count);
16140 p = relplt->relocation;
16141 n = 0;
16142 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
16143 {
16144 size_t len;
16145
16146 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
16147 if (plt_size == (bfd_vma) -1)
16148 break;
16149
16150 *s = **p->sym_ptr_ptr;
16151 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16152 we are defining a symbol, ensure one of them is set. */
16153 if ((s->flags & BSF_LOCAL) == 0)
16154 s->flags |= BSF_GLOBAL;
16155 s->flags |= BSF_SYNTHETIC;
16156 s->section = plt;
16157 s->value = offset;
16158 s->name = names;
16159 s->udata.p = NULL;
16160 len = strlen ((*p->sym_ptr_ptr)->name);
16161 memcpy (names, (*p->sym_ptr_ptr)->name, len);
16162 names += len;
16163 if (p->addend != 0)
16164 {
16165 char buf[30], *a;
16166
16167 memcpy (names, "+0x", sizeof ("+0x") - 1);
16168 names += sizeof ("+0x") - 1;
16169 bfd_sprintf_vma (abfd, buf, p->addend);
16170 for (a = buf; *a == '0'; ++a)
16171 ;
16172 len = strlen (a);
16173 memcpy (names, a, len);
16174 names += len;
16175 }
16176 memcpy (names, "@plt", sizeof ("@plt"));
16177 names += sizeof ("@plt");
16178 ++s, ++n;
16179 offset += plt_size;
16180 }
16181
16182 return n;
16183 }
16184
16185 #define ELF_ARCH bfd_arch_arm
16186 #define ELF_TARGET_ID ARM_ELF_DATA
16187 #define ELF_MACHINE_CODE EM_ARM
16188 #ifdef __QNXTARGET__
16189 #define ELF_MAXPAGESIZE 0x1000
16190 #else
16191 #define ELF_MAXPAGESIZE 0x10000
16192 #endif
16193 #define ELF_MINPAGESIZE 0x1000
16194 #define ELF_COMMONPAGESIZE 0x1000
16195
16196 #define bfd_elf32_mkobject elf32_arm_mkobject
16197
16198 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
16199 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
16200 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
16201 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
16202 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
16203 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
16204 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
16205 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
16206 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
16207 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
16208 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
16209 #define bfd_elf32_bfd_final_link elf32_arm_final_link
16210 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
16211
16212 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
16213 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
16214 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
16215 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
16216 #define elf_backend_check_relocs elf32_arm_check_relocs
16217 #define elf_backend_relocate_section elf32_arm_relocate_section
16218 #define elf_backend_write_section elf32_arm_write_section
16219 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
16220 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
16221 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
16222 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
16223 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
16224 #define elf_backend_always_size_sections elf32_arm_always_size_sections
16225 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
16226 #define elf_backend_post_process_headers elf32_arm_post_process_headers
16227 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
16228 #define elf_backend_object_p elf32_arm_object_p
16229 #define elf_backend_fake_sections elf32_arm_fake_sections
16230 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
16231 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16232 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
16233 #define elf_backend_size_info elf32_arm_size_info
16234 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
16235 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
16236 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
16237 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
16238 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
16239
16240 #define elf_backend_can_refcount 1
16241 #define elf_backend_can_gc_sections 1
16242 #define elf_backend_plt_readonly 1
16243 #define elf_backend_want_got_plt 1
16244 #define elf_backend_want_plt_sym 0
16245 #define elf_backend_may_use_rel_p 1
16246 #define elf_backend_may_use_rela_p 0
16247 #define elf_backend_default_use_rela_p 0
16248
16249 #define elf_backend_got_header_size 12
16250 #define elf_backend_extern_protected_data 1
16251
16252 #undef elf_backend_obj_attrs_vendor
16253 #define elf_backend_obj_attrs_vendor "aeabi"
16254 #undef elf_backend_obj_attrs_section
16255 #define elf_backend_obj_attrs_section ".ARM.attributes"
16256 #undef elf_backend_obj_attrs_arg_type
16257 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
16258 #undef elf_backend_obj_attrs_section_type
16259 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
16260 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
16261 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
16262
16263 #include "elf32-target.h"
16264
16265 /* Native Client targets. */
16266
16267 #undef TARGET_LITTLE_SYM
16268 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
16269 #undef TARGET_LITTLE_NAME
16270 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
16271 #undef TARGET_BIG_SYM
16272 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
16273 #undef TARGET_BIG_NAME
16274 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
16275
16276 /* Like elf32_arm_link_hash_table_create -- but overrides
16277 appropriately for NaCl. */
16278
16279 static struct bfd_link_hash_table *
16280 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
16281 {
16282 struct bfd_link_hash_table *ret;
16283
16284 ret = elf32_arm_link_hash_table_create (abfd);
16285 if (ret)
16286 {
16287 struct elf32_arm_link_hash_table *htab
16288 = (struct elf32_arm_link_hash_table *) ret;
16289
16290 htab->nacl_p = 1;
16291
16292 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
16293 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
16294 }
16295 return ret;
16296 }
16297
16298 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
16299 really need to use elf32_arm_modify_segment_map. But we do it
16300 anyway just to reduce gratuitous differences with the stock ARM backend. */
16301
16302 static bfd_boolean
16303 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
16304 {
16305 return (elf32_arm_modify_segment_map (abfd, info)
16306 && nacl_modify_segment_map (abfd, info));
16307 }
16308
16309 static void
16310 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
16311 {
16312 elf32_arm_final_write_processing (abfd, linker);
16313 nacl_final_write_processing (abfd, linker);
16314 }
16315
16316 static bfd_vma
16317 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
16318 const arelent *rel ATTRIBUTE_UNUSED)
16319 {
16320 return plt->vma
16321 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
16322 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
16323 }
16324
16325 #undef elf32_bed
16326 #define elf32_bed elf32_arm_nacl_bed
16327 #undef bfd_elf32_bfd_link_hash_table_create
16328 #define bfd_elf32_bfd_link_hash_table_create \
16329 elf32_arm_nacl_link_hash_table_create
16330 #undef elf_backend_plt_alignment
16331 #define elf_backend_plt_alignment 4
16332 #undef elf_backend_modify_segment_map
16333 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
16334 #undef elf_backend_modify_program_headers
16335 #define elf_backend_modify_program_headers nacl_modify_program_headers
16336 #undef elf_backend_final_write_processing
16337 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
16338 #undef bfd_elf32_get_synthetic_symtab
16339 #undef elf_backend_plt_sym_val
16340 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
16341
16342 #undef ELF_MINPAGESIZE
16343 #undef ELF_COMMONPAGESIZE
16344
16345
16346 #include "elf32-target.h"
16347
16348 /* Reset to defaults. */
16349 #undef elf_backend_plt_alignment
16350 #undef elf_backend_modify_segment_map
16351 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
16352 #undef elf_backend_modify_program_headers
16353 #undef elf_backend_final_write_processing
16354 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16355 #undef ELF_MINPAGESIZE
16356 #define ELF_MINPAGESIZE 0x1000
16357 #undef ELF_COMMONPAGESIZE
16358 #define ELF_COMMONPAGESIZE 0x1000
16359
16360
16361 /* VxWorks Targets. */
16362
16363 #undef TARGET_LITTLE_SYM
16364 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
16365 #undef TARGET_LITTLE_NAME
16366 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
16367 #undef TARGET_BIG_SYM
16368 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
16369 #undef TARGET_BIG_NAME
16370 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
16371
16372 /* Like elf32_arm_link_hash_table_create -- but overrides
16373 appropriately for VxWorks. */
16374
16375 static struct bfd_link_hash_table *
16376 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
16377 {
16378 struct bfd_link_hash_table *ret;
16379
16380 ret = elf32_arm_link_hash_table_create (abfd);
16381 if (ret)
16382 {
16383 struct elf32_arm_link_hash_table *htab
16384 = (struct elf32_arm_link_hash_table *) ret;
16385 htab->use_rel = 0;
16386 htab->vxworks_p = 1;
16387 }
16388 return ret;
16389 }
16390
16391 static void
16392 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
16393 {
16394 elf32_arm_final_write_processing (abfd, linker);
16395 elf_vxworks_final_write_processing (abfd, linker);
16396 }
16397
16398 #undef elf32_bed
16399 #define elf32_bed elf32_arm_vxworks_bed
16400
16401 #undef bfd_elf32_bfd_link_hash_table_create
16402 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
16403 #undef elf_backend_final_write_processing
16404 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
16405 #undef elf_backend_emit_relocs
16406 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
16407
16408 #undef elf_backend_may_use_rel_p
16409 #define elf_backend_may_use_rel_p 0
16410 #undef elf_backend_may_use_rela_p
16411 #define elf_backend_may_use_rela_p 1
16412 #undef elf_backend_default_use_rela_p
16413 #define elf_backend_default_use_rela_p 1
16414 #undef elf_backend_want_plt_sym
16415 #define elf_backend_want_plt_sym 1
16416 #undef ELF_MAXPAGESIZE
16417 #define ELF_MAXPAGESIZE 0x1000
16418
16419 #include "elf32-target.h"
16420
16421
16422 /* Merge backend specific data from an object file to the output
16423 object file when linking. */
16424
16425 static bfd_boolean
16426 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
16427 {
16428 flagword out_flags;
16429 flagword in_flags;
16430 bfd_boolean flags_compatible = TRUE;
16431 asection *sec;
16432
16433 /* Check if we have the same endianness. */
16434 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
16435 return FALSE;
16436
16437 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
16438 return TRUE;
16439
16440 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
16441 return FALSE;
16442
16443 /* The input BFD must have had its flags initialised. */
16444 /* The following seems bogus to me -- The flags are initialized in
16445 the assembler but I don't think an elf_flags_init field is
16446 written into the object. */
16447 /* BFD_ASSERT (elf_flags_init (ibfd)); */
16448
16449 in_flags = elf_elfheader (ibfd)->e_flags;
16450 out_flags = elf_elfheader (obfd)->e_flags;
16451
16452 /* In theory there is no reason why we couldn't handle this. However
16453 in practice it isn't even close to working and there is no real
16454 reason to want it. */
16455 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
16456 && !(ibfd->flags & DYNAMIC)
16457 && (in_flags & EF_ARM_BE8))
16458 {
16459 _bfd_error_handler (_("error: %B is already in final BE8 format"),
16460 ibfd);
16461 return FALSE;
16462 }
16463
16464 if (!elf_flags_init (obfd))
16465 {
16466 /* If the input is the default architecture and had the default
16467 flags then do not bother setting the flags for the output
16468 architecture, instead allow future merges to do this. If no
16469 future merges ever set these flags then they will retain their
16470 uninitialised values, which surprise surprise, correspond
16471 to the default values. */
16472 if (bfd_get_arch_info (ibfd)->the_default
16473 && elf_elfheader (ibfd)->e_flags == 0)
16474 return TRUE;
16475
16476 elf_flags_init (obfd) = TRUE;
16477 elf_elfheader (obfd)->e_flags = in_flags;
16478
16479 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
16480 && bfd_get_arch_info (obfd)->the_default)
16481 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
16482
16483 return TRUE;
16484 }
16485
16486 /* Determine what should happen if the input ARM architecture
16487 does not match the output ARM architecture. */
16488 if (! bfd_arm_merge_machines (ibfd, obfd))
16489 return FALSE;
16490
16491 /* Identical flags must be compatible. */
16492 if (in_flags == out_flags)
16493 return TRUE;
16494
16495 /* Check to see if the input BFD actually contains any sections. If
16496 not, its flags may not have been initialised either, but it
16497 cannot actually cause any incompatiblity. Do not short-circuit
16498 dynamic objects; their section list may be emptied by
16499 elf_link_add_object_symbols.
16500
16501 Also check to see if there are no code sections in the input.
16502 In this case there is no need to check for code specific flags.
16503 XXX - do we need to worry about floating-point format compatability
16504 in data sections ? */
16505 if (!(ibfd->flags & DYNAMIC))
16506 {
16507 bfd_boolean null_input_bfd = TRUE;
16508 bfd_boolean only_data_sections = TRUE;
16509
16510 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
16511 {
16512 /* Ignore synthetic glue sections. */
16513 if (strcmp (sec->name, ".glue_7")
16514 && strcmp (sec->name, ".glue_7t"))
16515 {
16516 if ((bfd_get_section_flags (ibfd, sec)
16517 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
16518 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
16519 only_data_sections = FALSE;
16520
16521 null_input_bfd = FALSE;
16522 break;
16523 }
16524 }
16525
16526 if (null_input_bfd || only_data_sections)
16527 return TRUE;
16528 }
16529
16530 /* Complain about various flag mismatches. */
16531 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
16532 EF_ARM_EABI_VERSION (out_flags)))
16533 {
16534 _bfd_error_handler
16535 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
16536 ibfd, obfd,
16537 (in_flags & EF_ARM_EABIMASK) >> 24,
16538 (out_flags & EF_ARM_EABIMASK) >> 24);
16539 return FALSE;
16540 }
16541
16542 /* Not sure what needs to be checked for EABI versions >= 1. */
16543 /* VxWorks libraries do not use these flags. */
16544 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
16545 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
16546 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
16547 {
16548 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
16549 {
16550 _bfd_error_handler
16551 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
16552 ibfd, obfd,
16553 in_flags & EF_ARM_APCS_26 ? 26 : 32,
16554 out_flags & EF_ARM_APCS_26 ? 26 : 32);
16555 flags_compatible = FALSE;
16556 }
16557
16558 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
16559 {
16560 if (in_flags & EF_ARM_APCS_FLOAT)
16561 _bfd_error_handler
16562 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
16563 ibfd, obfd);
16564 else
16565 _bfd_error_handler
16566 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
16567 ibfd, obfd);
16568
16569 flags_compatible = FALSE;
16570 }
16571
16572 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
16573 {
16574 if (in_flags & EF_ARM_VFP_FLOAT)
16575 _bfd_error_handler
16576 (_("error: %B uses VFP instructions, whereas %B does not"),
16577 ibfd, obfd);
16578 else
16579 _bfd_error_handler
16580 (_("error: %B uses FPA instructions, whereas %B does not"),
16581 ibfd, obfd);
16582
16583 flags_compatible = FALSE;
16584 }
16585
16586 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
16587 {
16588 if (in_flags & EF_ARM_MAVERICK_FLOAT)
16589 _bfd_error_handler
16590 (_("error: %B uses Maverick instructions, whereas %B does not"),
16591 ibfd, obfd);
16592 else
16593 _bfd_error_handler
16594 (_("error: %B does not use Maverick instructions, whereas %B does"),
16595 ibfd, obfd);
16596
16597 flags_compatible = FALSE;
16598 }
16599
16600 #ifdef EF_ARM_SOFT_FLOAT
16601 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
16602 {
16603 /* We can allow interworking between code that is VFP format
16604 layout, and uses either soft float or integer regs for
16605 passing floating point arguments and results. We already
16606 know that the APCS_FLOAT flags match; similarly for VFP
16607 flags. */
16608 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
16609 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
16610 {
16611 if (in_flags & EF_ARM_SOFT_FLOAT)
16612 _bfd_error_handler
16613 (_("error: %B uses software FP, whereas %B uses hardware FP"),
16614 ibfd, obfd);
16615 else
16616 _bfd_error_handler
16617 (_("error: %B uses hardware FP, whereas %B uses software FP"),
16618 ibfd, obfd);
16619
16620 flags_compatible = FALSE;
16621 }
16622 }
16623 #endif
16624
16625 /* Interworking mismatch is only a warning. */
16626 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
16627 {
16628 if (in_flags & EF_ARM_INTERWORK)
16629 {
16630 _bfd_error_handler
16631 (_("Warning: %B supports interworking, whereas %B does not"),
16632 ibfd, obfd);
16633 }
16634 else
16635 {
16636 _bfd_error_handler
16637 (_("Warning: %B does not support interworking, whereas %B does"),
16638 ibfd, obfd);
16639 }
16640 }
16641 }
16642
16643 return flags_compatible;
16644 }
16645
16646
16647 /* Symbian OS Targets. */
16648
16649 #undef TARGET_LITTLE_SYM
16650 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
16651 #undef TARGET_LITTLE_NAME
16652 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
16653 #undef TARGET_BIG_SYM
16654 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
16655 #undef TARGET_BIG_NAME
16656 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
16657
16658 /* Like elf32_arm_link_hash_table_create -- but overrides
16659 appropriately for Symbian OS. */
16660
16661 static struct bfd_link_hash_table *
16662 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
16663 {
16664 struct bfd_link_hash_table *ret;
16665
16666 ret = elf32_arm_link_hash_table_create (abfd);
16667 if (ret)
16668 {
16669 struct elf32_arm_link_hash_table *htab
16670 = (struct elf32_arm_link_hash_table *)ret;
16671 /* There is no PLT header for Symbian OS. */
16672 htab->plt_header_size = 0;
16673 /* The PLT entries are each one instruction and one word. */
16674 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
16675 htab->symbian_p = 1;
16676 /* Symbian uses armv5t or above, so use_blx is always true. */
16677 htab->use_blx = 1;
16678 htab->root.is_relocatable_executable = 1;
16679 }
16680 return ret;
16681 }
16682
16683 static const struct bfd_elf_special_section
16684 elf32_arm_symbian_special_sections[] =
16685 {
16686 /* In a BPABI executable, the dynamic linking sections do not go in
16687 the loadable read-only segment. The post-linker may wish to
16688 refer to these sections, but they are not part of the final
16689 program image. */
16690 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
16691 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
16692 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
16693 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
16694 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
16695 /* These sections do not need to be writable as the SymbianOS
16696 postlinker will arrange things so that no dynamic relocation is
16697 required. */
16698 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
16699 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
16700 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
16701 { NULL, 0, 0, 0, 0 }
16702 };
16703
16704 static void
16705 elf32_arm_symbian_begin_write_processing (bfd *abfd,
16706 struct bfd_link_info *link_info)
16707 {
16708 /* BPABI objects are never loaded directly by an OS kernel; they are
16709 processed by a postlinker first, into an OS-specific format. If
16710 the D_PAGED bit is set on the file, BFD will align segments on
16711 page boundaries, so that an OS can directly map the file. With
16712 BPABI objects, that just results in wasted space. In addition,
16713 because we clear the D_PAGED bit, map_sections_to_segments will
16714 recognize that the program headers should not be mapped into any
16715 loadable segment. */
16716 abfd->flags &= ~D_PAGED;
16717 elf32_arm_begin_write_processing (abfd, link_info);
16718 }
16719
16720 static bfd_boolean
16721 elf32_arm_symbian_modify_segment_map (bfd *abfd,
16722 struct bfd_link_info *info)
16723 {
16724 struct elf_segment_map *m;
16725 asection *dynsec;
16726
16727 /* BPABI shared libraries and executables should have a PT_DYNAMIC
16728 segment. However, because the .dynamic section is not marked
16729 with SEC_LOAD, the generic ELF code will not create such a
16730 segment. */
16731 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
16732 if (dynsec)
16733 {
16734 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16735 if (m->p_type == PT_DYNAMIC)
16736 break;
16737
16738 if (m == NULL)
16739 {
16740 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
16741 m->next = elf_seg_map (abfd);
16742 elf_seg_map (abfd) = m;
16743 }
16744 }
16745
16746 /* Also call the generic arm routine. */
16747 return elf32_arm_modify_segment_map (abfd, info);
16748 }
16749
16750 /* Return address for Ith PLT stub in section PLT, for relocation REL
16751 or (bfd_vma) -1 if it should not be included. */
16752
16753 static bfd_vma
16754 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
16755 const arelent *rel ATTRIBUTE_UNUSED)
16756 {
16757 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
16758 }
16759
16760
16761 #undef elf32_bed
16762 #define elf32_bed elf32_arm_symbian_bed
16763
16764 /* The dynamic sections are not allocated on SymbianOS; the postlinker
16765 will process them and then discard them. */
16766 #undef ELF_DYNAMIC_SEC_FLAGS
16767 #define ELF_DYNAMIC_SEC_FLAGS \
16768 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
16769
16770 #undef elf_backend_emit_relocs
16771
16772 #undef bfd_elf32_bfd_link_hash_table_create
16773 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
16774 #undef elf_backend_special_sections
16775 #define elf_backend_special_sections elf32_arm_symbian_special_sections
16776 #undef elf_backend_begin_write_processing
16777 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
16778 #undef elf_backend_final_write_processing
16779 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16780
16781 #undef elf_backend_modify_segment_map
16782 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
16783
16784 /* There is no .got section for BPABI objects, and hence no header. */
16785 #undef elf_backend_got_header_size
16786 #define elf_backend_got_header_size 0
16787
16788 /* Similarly, there is no .got.plt section. */
16789 #undef elf_backend_want_got_plt
16790 #define elf_backend_want_got_plt 0
16791
16792 #undef elf_backend_plt_sym_val
16793 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
16794
16795 #undef elf_backend_may_use_rel_p
16796 #define elf_backend_may_use_rel_p 1
16797 #undef elf_backend_may_use_rela_p
16798 #define elf_backend_may_use_rela_p 0
16799 #undef elf_backend_default_use_rela_p
16800 #define elf_backend_default_use_rela_p 0
16801 #undef elf_backend_want_plt_sym
16802 #define elf_backend_want_plt_sym 0
16803 #undef ELF_MAXPAGESIZE
16804 #define ELF_MAXPAGESIZE 0x8000
16805
16806 #include "elf32-target.h"