]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.c
0add01b5ad9fb094985fd88c5338a3a5260fa652
[thirdparty/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143 }
144
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203 }
204 \f
205 /* Create a strtab to hold the dynamic symbol names. */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
222 if ((ibfd->flags
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
224 {
225 abfd = ibfd;
226 break;
227 }
228 }
229 hash_table->dynobj = abfd;
230 }
231
232 if (hash_table->dynstr == NULL)
233 {
234 hash_table->dynstr = _bfd_elf_strtab_init ();
235 if (hash_table->dynstr == NULL)
236 return FALSE;
237 }
238 return TRUE;
239 }
240
241 /* Create some sections which will be filled in with dynamic linking
242 information. ABFD is an input file which requires dynamic sections
243 to be created. The dynamic sections take up virtual memory space
244 when the final executable is run, so we need to create them before
245 addresses are assigned to the output sections. We work out the
246 actual contents and size of these sections later. */
247
248 bfd_boolean
249 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
250 {
251 flagword flags;
252 asection *s;
253 const struct elf_backend_data *bed;
254 struct elf_link_hash_entry *h;
255
256 if (! is_elf_hash_table (info->hash))
257 return FALSE;
258
259 if (elf_hash_table (info)->dynamic_sections_created)
260 return TRUE;
261
262 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
263 return FALSE;
264
265 abfd = elf_hash_table (info)->dynobj;
266 bed = get_elf_backend_data (abfd);
267
268 flags = bed->dynamic_sec_flags;
269
270 /* A dynamically linked executable has a .interp section, but a
271 shared library does not. */
272 if (bfd_link_executable (info) && !info->nointerp)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
275 flags | SEC_READONLY);
276 if (s == NULL)
277 return FALSE;
278 }
279
280 /* Create sections to hold version informations. These are removed
281 if they are not needed. */
282 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
283 flags | SEC_READONLY);
284 if (s == NULL
285 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
286 return FALSE;
287
288 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
289 flags | SEC_READONLY);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, 1))
292 return FALSE;
293
294 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
295 flags | SEC_READONLY);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298 return FALSE;
299
300 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
301 flags | SEC_READONLY);
302 if (s == NULL
303 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
304 return FALSE;
305 elf_hash_table (info)->dynsym = s;
306
307 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
308 flags | SEC_READONLY);
309 if (s == NULL)
310 return FALSE;
311
312 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
313 if (s == NULL
314 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
315 return FALSE;
316
317 /* The special symbol _DYNAMIC is always set to the start of the
318 .dynamic section. We could set _DYNAMIC in a linker script, but we
319 only want to define it if we are, in fact, creating a .dynamic
320 section. We don't want to define it if there is no .dynamic
321 section, since on some ELF platforms the start up code examines it
322 to decide how to initialize the process. */
323 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
324 elf_hash_table (info)->hdynamic = h;
325 if (h == NULL)
326 return FALSE;
327
328 if (info->emit_hash)
329 {
330 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
331 flags | SEC_READONLY);
332 if (s == NULL
333 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
334 return FALSE;
335 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
336 }
337
338 if (info->emit_gnu_hash)
339 {
340 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
341 flags | SEC_READONLY);
342 if (s == NULL
343 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
344 return FALSE;
345 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
346 4 32-bit words followed by variable count of 64-bit words, then
347 variable count of 32-bit words. */
348 if (bed->s->arch_size == 64)
349 elf_section_data (s)->this_hdr.sh_entsize = 0;
350 else
351 elf_section_data (s)->this_hdr.sh_entsize = 4;
352 }
353
354 /* Let the backend create the rest of the sections. This lets the
355 backend set the right flags. The backend will normally create
356 the .got and .plt sections. */
357 if (bed->elf_backend_create_dynamic_sections == NULL
358 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
359 return FALSE;
360
361 elf_hash_table (info)->dynamic_sections_created = TRUE;
362
363 return TRUE;
364 }
365
366 /* Create dynamic sections when linking against a dynamic object. */
367
368 bfd_boolean
369 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
370 {
371 flagword flags, pltflags;
372 struct elf_link_hash_entry *h;
373 asection *s;
374 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
375 struct elf_link_hash_table *htab = elf_hash_table (info);
376
377 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
378 .rel[a].bss sections. */
379 flags = bed->dynamic_sec_flags;
380
381 pltflags = flags;
382 if (bed->plt_not_loaded)
383 /* We do not clear SEC_ALLOC here because we still want the OS to
384 allocate space for the section; it's just that there's nothing
385 to read in from the object file. */
386 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
387 else
388 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
389 if (bed->plt_readonly)
390 pltflags |= SEC_READONLY;
391
392 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
393 if (s == NULL
394 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
395 return FALSE;
396 htab->splt = s;
397
398 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
399 .plt section. */
400 if (bed->want_plt_sym)
401 {
402 h = _bfd_elf_define_linkage_sym (abfd, info, s,
403 "_PROCEDURE_LINKAGE_TABLE_");
404 elf_hash_table (info)->hplt = h;
405 if (h == NULL)
406 return FALSE;
407 }
408
409 s = bfd_make_section_anyway_with_flags (abfd,
410 (bed->rela_plts_and_copies_p
411 ? ".rela.plt" : ".rel.plt"),
412 flags | SEC_READONLY);
413 if (s == NULL
414 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
415 return FALSE;
416 htab->srelplt = s;
417
418 if (! _bfd_elf_create_got_section (abfd, info))
419 return FALSE;
420
421 if (bed->want_dynbss)
422 {
423 /* The .dynbss section is a place to put symbols which are defined
424 by dynamic objects, are referenced by regular objects, and are
425 not functions. We must allocate space for them in the process
426 image and use a R_*_COPY reloc to tell the dynamic linker to
427 initialize them at run time. The linker script puts the .dynbss
428 section into the .bss section of the final image. */
429 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
430 SEC_ALLOC | SEC_LINKER_CREATED);
431 if (s == NULL)
432 return FALSE;
433 htab->sdynbss = s;
434
435 if (bed->want_dynrelro)
436 {
437 /* Similarly, but for symbols that were originally in read-only
438 sections. This section doesn't really need to have contents,
439 but make it like other .data.rel.ro sections. */
440 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
441 flags);
442 if (s == NULL)
443 return FALSE;
444 htab->sdynrelro = s;
445 }
446
447 /* The .rel[a].bss section holds copy relocs. This section is not
448 normally needed. We need to create it here, though, so that the
449 linker will map it to an output section. We can't just create it
450 only if we need it, because we will not know whether we need it
451 until we have seen all the input files, and the first time the
452 main linker code calls BFD after examining all the input files
453 (size_dynamic_sections) the input sections have already been
454 mapped to the output sections. If the section turns out not to
455 be needed, we can discard it later. We will never need this
456 section when generating a shared object, since they do not use
457 copy relocs. */
458 if (bfd_link_executable (info))
459 {
460 s = bfd_make_section_anyway_with_flags (abfd,
461 (bed->rela_plts_and_copies_p
462 ? ".rela.bss" : ".rel.bss"),
463 flags | SEC_READONLY);
464 if (s == NULL
465 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
466 return FALSE;
467 htab->srelbss = s;
468
469 if (bed->want_dynrelro)
470 {
471 s = (bfd_make_section_anyway_with_flags
472 (abfd, (bed->rela_plts_and_copies_p
473 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
474 flags | SEC_READONLY));
475 if (s == NULL
476 || ! bfd_set_section_alignment (abfd, s,
477 bed->s->log_file_align))
478 return FALSE;
479 htab->sreldynrelro = s;
480 }
481 }
482 }
483
484 return TRUE;
485 }
486 \f
487 /* Record a new dynamic symbol. We record the dynamic symbols as we
488 read the input files, since we need to have a list of all of them
489 before we can determine the final sizes of the output sections.
490 Note that we may actually call this function even though we are not
491 going to output any dynamic symbols; in some cases we know that a
492 symbol should be in the dynamic symbol table, but only if there is
493 one. */
494
495 bfd_boolean
496 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
497 struct elf_link_hash_entry *h)
498 {
499 if (h->dynindx == -1)
500 {
501 struct elf_strtab_hash *dynstr;
502 char *p;
503 const char *name;
504 size_t indx;
505
506 /* XXX: The ABI draft says the linker must turn hidden and
507 internal symbols into STB_LOCAL symbols when producing the
508 DSO. However, if ld.so honors st_other in the dynamic table,
509 this would not be necessary. */
510 switch (ELF_ST_VISIBILITY (h->other))
511 {
512 case STV_INTERNAL:
513 case STV_HIDDEN:
514 if (h->root.type != bfd_link_hash_undefined
515 && h->root.type != bfd_link_hash_undefweak)
516 {
517 h->forced_local = 1;
518 if (!elf_hash_table (info)->is_relocatable_executable)
519 return TRUE;
520 }
521
522 default:
523 break;
524 }
525
526 h->dynindx = elf_hash_table (info)->dynsymcount;
527 ++elf_hash_table (info)->dynsymcount;
528
529 dynstr = elf_hash_table (info)->dynstr;
530 if (dynstr == NULL)
531 {
532 /* Create a strtab to hold the dynamic symbol names. */
533 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
534 if (dynstr == NULL)
535 return FALSE;
536 }
537
538 /* We don't put any version information in the dynamic string
539 table. */
540 name = h->root.root.string;
541 p = strchr (name, ELF_VER_CHR);
542 if (p != NULL)
543 /* We know that the p points into writable memory. In fact,
544 there are only a few symbols that have read-only names, being
545 those like _GLOBAL_OFFSET_TABLE_ that are created specially
546 by the backends. Most symbols will have names pointing into
547 an ELF string table read from a file, or to objalloc memory. */
548 *p = 0;
549
550 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
551
552 if (p != NULL)
553 *p = ELF_VER_CHR;
554
555 if (indx == (size_t) -1)
556 return FALSE;
557 h->dynstr_index = indx;
558 }
559
560 return TRUE;
561 }
562 \f
563 /* Mark a symbol dynamic. */
564
565 static void
566 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
567 struct elf_link_hash_entry *h,
568 Elf_Internal_Sym *sym)
569 {
570 struct bfd_elf_dynamic_list *d = info->dynamic_list;
571
572 /* It may be called more than once on the same H. */
573 if(h->dynamic || bfd_link_relocatable (info))
574 return;
575
576 if ((info->dynamic_data
577 && (h->type == STT_OBJECT
578 || h->type == STT_COMMON
579 || (sym != NULL
580 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
581 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
582 || (d != NULL
583 && h->root.type == bfd_link_hash_new
584 && (*d->match) (&d->head, NULL, h->root.root.string)))
585 h->dynamic = 1;
586 }
587
588 /* Record an assignment to a symbol made by a linker script. We need
589 this in case some dynamic object refers to this symbol. */
590
591 bfd_boolean
592 bfd_elf_record_link_assignment (bfd *output_bfd,
593 struct bfd_link_info *info,
594 const char *name,
595 bfd_boolean provide,
596 bfd_boolean hidden)
597 {
598 struct elf_link_hash_entry *h, *hv;
599 struct elf_link_hash_table *htab;
600 const struct elf_backend_data *bed;
601
602 if (!is_elf_hash_table (info->hash))
603 return TRUE;
604
605 htab = elf_hash_table (info);
606 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
607 if (h == NULL)
608 return provide;
609
610 if (h->root.type == bfd_link_hash_warning)
611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
612
613 if (h->versioned == unknown)
614 {
615 /* Set versioned if symbol version is unknown. */
616 char *version = strrchr (name, ELF_VER_CHR);
617 if (version)
618 {
619 if (version > name && version[-1] != ELF_VER_CHR)
620 h->versioned = versioned_hidden;
621 else
622 h->versioned = versioned;
623 }
624 }
625
626 switch (h->root.type)
627 {
628 case bfd_link_hash_defined:
629 case bfd_link_hash_defweak:
630 case bfd_link_hash_common:
631 break;
632 case bfd_link_hash_undefweak:
633 case bfd_link_hash_undefined:
634 /* Since we're defining the symbol, don't let it seem to have not
635 been defined. record_dynamic_symbol and size_dynamic_sections
636 may depend on this. */
637 h->root.type = bfd_link_hash_new;
638 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
639 bfd_link_repair_undef_list (&htab->root);
640 break;
641 case bfd_link_hash_new:
642 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
643 h->non_elf = 0;
644 break;
645 case bfd_link_hash_indirect:
646 /* We had a versioned symbol in a dynamic library. We make the
647 the versioned symbol point to this one. */
648 bed = get_elf_backend_data (output_bfd);
649 hv = h;
650 while (hv->root.type == bfd_link_hash_indirect
651 || hv->root.type == bfd_link_hash_warning)
652 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
653 /* We don't need to update h->root.u since linker will set them
654 later. */
655 h->root.type = bfd_link_hash_undefined;
656 hv->root.type = bfd_link_hash_indirect;
657 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
658 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
659 break;
660 default:
661 BFD_FAIL ();
662 return FALSE;
663 }
664
665 /* If this symbol is being provided by the linker script, and it is
666 currently defined by a dynamic object, but not by a regular
667 object, then mark it as undefined so that the generic linker will
668 force the correct value. */
669 if (provide
670 && h->def_dynamic
671 && !h->def_regular)
672 h->root.type = bfd_link_hash_undefined;
673
674 /* If this symbol is not being provided by the linker script, and it is
675 currently defined by a dynamic object, but not by a regular object,
676 then clear out any version information because the symbol will not be
677 associated with the dynamic object any more. */
678 if (!provide
679 && h->def_dynamic
680 && !h->def_regular)
681 h->verinfo.verdef = NULL;
682
683 /* Make sure this symbol is not garbage collected. */
684 h->mark = 1;
685
686 h->def_regular = 1;
687
688 if (hidden)
689 {
690 bed = get_elf_backend_data (output_bfd);
691 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
692 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
693 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
694 }
695
696 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
697 and executables. */
698 if (!bfd_link_relocatable (info)
699 && h->dynindx != -1
700 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
701 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
702 h->forced_local = 1;
703
704 if ((h->def_dynamic
705 || h->ref_dynamic
706 || bfd_link_dll (info)
707 || elf_hash_table (info)->is_relocatable_executable)
708 && h->dynindx == -1)
709 {
710 if (! bfd_elf_link_record_dynamic_symbol (info, h))
711 return FALSE;
712
713 /* If this is a weak defined symbol, and we know a corresponding
714 real symbol from the same dynamic object, make sure the real
715 symbol is also made into a dynamic symbol. */
716 if (h->u.weakdef != NULL
717 && h->u.weakdef->dynindx == -1)
718 {
719 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
720 return FALSE;
721 }
722 }
723
724 return TRUE;
725 }
726
727 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
728 success, and 2 on a failure caused by attempting to record a symbol
729 in a discarded section, eg. a discarded link-once section symbol. */
730
731 int
732 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
733 bfd *input_bfd,
734 long input_indx)
735 {
736 bfd_size_type amt;
737 struct elf_link_local_dynamic_entry *entry;
738 struct elf_link_hash_table *eht;
739 struct elf_strtab_hash *dynstr;
740 size_t dynstr_index;
741 char *name;
742 Elf_External_Sym_Shndx eshndx;
743 char esym[sizeof (Elf64_External_Sym)];
744
745 if (! is_elf_hash_table (info->hash))
746 return 0;
747
748 /* See if the entry exists already. */
749 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
750 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
751 return 1;
752
753 amt = sizeof (*entry);
754 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
755 if (entry == NULL)
756 return 0;
757
758 /* Go find the symbol, so that we can find it's name. */
759 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
760 1, input_indx, &entry->isym, esym, &eshndx))
761 {
762 bfd_release (input_bfd, entry);
763 return 0;
764 }
765
766 if (entry->isym.st_shndx != SHN_UNDEF
767 && entry->isym.st_shndx < SHN_LORESERVE)
768 {
769 asection *s;
770
771 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
772 if (s == NULL || bfd_is_abs_section (s->output_section))
773 {
774 /* We can still bfd_release here as nothing has done another
775 bfd_alloc. We can't do this later in this function. */
776 bfd_release (input_bfd, entry);
777 return 2;
778 }
779 }
780
781 name = (bfd_elf_string_from_elf_section
782 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
783 entry->isym.st_name));
784
785 dynstr = elf_hash_table (info)->dynstr;
786 if (dynstr == NULL)
787 {
788 /* Create a strtab to hold the dynamic symbol names. */
789 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
790 if (dynstr == NULL)
791 return 0;
792 }
793
794 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
795 if (dynstr_index == (size_t) -1)
796 return 0;
797 entry->isym.st_name = dynstr_index;
798
799 eht = elf_hash_table (info);
800
801 entry->next = eht->dynlocal;
802 eht->dynlocal = entry;
803 entry->input_bfd = input_bfd;
804 entry->input_indx = input_indx;
805 eht->dynsymcount++;
806
807 /* Whatever binding the symbol had before, it's now local. */
808 entry->isym.st_info
809 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
810
811 /* The dynindx will be set at the end of size_dynamic_sections. */
812
813 return 1;
814 }
815
816 /* Return the dynindex of a local dynamic symbol. */
817
818 long
819 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
820 bfd *input_bfd,
821 long input_indx)
822 {
823 struct elf_link_local_dynamic_entry *e;
824
825 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
826 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
827 return e->dynindx;
828 return -1;
829 }
830
831 /* This function is used to renumber the dynamic symbols, if some of
832 them are removed because they are marked as local. This is called
833 via elf_link_hash_traverse. */
834
835 static bfd_boolean
836 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
837 void *data)
838 {
839 size_t *count = (size_t *) data;
840
841 if (h->forced_local)
842 return TRUE;
843
844 if (h->dynindx != -1)
845 h->dynindx = ++(*count);
846
847 return TRUE;
848 }
849
850
851 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
852 STB_LOCAL binding. */
853
854 static bfd_boolean
855 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
856 void *data)
857 {
858 size_t *count = (size_t *) data;
859
860 if (!h->forced_local)
861 return TRUE;
862
863 if (h->dynindx != -1)
864 h->dynindx = ++(*count);
865
866 return TRUE;
867 }
868
869 /* Return true if the dynamic symbol for a given section should be
870 omitted when creating a shared library. */
871 bfd_boolean
872 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
873 struct bfd_link_info *info,
874 asection *p)
875 {
876 struct elf_link_hash_table *htab;
877 asection *ip;
878
879 switch (elf_section_data (p)->this_hdr.sh_type)
880 {
881 case SHT_PROGBITS:
882 case SHT_NOBITS:
883 /* If sh_type is yet undecided, assume it could be
884 SHT_PROGBITS/SHT_NOBITS. */
885 case SHT_NULL:
886 htab = elf_hash_table (info);
887 if (p == htab->tls_sec)
888 return FALSE;
889
890 if (htab->text_index_section != NULL)
891 return p != htab->text_index_section && p != htab->data_index_section;
892
893 return (htab->dynobj != NULL
894 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
895 && ip->output_section == p);
896
897 /* There shouldn't be section relative relocations
898 against any other section. */
899 default:
900 return TRUE;
901 }
902 }
903
904 /* Assign dynsym indices. In a shared library we generate a section
905 symbol for each output section, which come first. Next come symbols
906 which have been forced to local binding. Then all of the back-end
907 allocated local dynamic syms, followed by the rest of the global
908 symbols. */
909
910 static unsigned long
911 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
912 struct bfd_link_info *info,
913 unsigned long *section_sym_count)
914 {
915 unsigned long dynsymcount = 0;
916
917 if (bfd_link_pic (info)
918 || elf_hash_table (info)->is_relocatable_executable)
919 {
920 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
921 asection *p;
922 for (p = output_bfd->sections; p ; p = p->next)
923 if ((p->flags & SEC_EXCLUDE) == 0
924 && (p->flags & SEC_ALLOC) != 0
925 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
926 elf_section_data (p)->dynindx = ++dynsymcount;
927 else
928 elf_section_data (p)->dynindx = 0;
929 }
930 *section_sym_count = dynsymcount;
931
932 elf_link_hash_traverse (elf_hash_table (info),
933 elf_link_renumber_local_hash_table_dynsyms,
934 &dynsymcount);
935
936 if (elf_hash_table (info)->dynlocal)
937 {
938 struct elf_link_local_dynamic_entry *p;
939 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
940 p->dynindx = ++dynsymcount;
941 }
942 elf_hash_table (info)->local_dynsymcount = dynsymcount;
943
944 elf_link_hash_traverse (elf_hash_table (info),
945 elf_link_renumber_hash_table_dynsyms,
946 &dynsymcount);
947
948 /* There is an unused NULL entry at the head of the table which we
949 must account for in our count even if the table is empty since it
950 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
951 .dynamic section. */
952 dynsymcount++;
953
954 elf_hash_table (info)->dynsymcount = dynsymcount;
955 return dynsymcount;
956 }
957
958 /* Merge st_other field. */
959
960 static void
961 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
962 const Elf_Internal_Sym *isym, asection *sec,
963 bfd_boolean definition, bfd_boolean dynamic)
964 {
965 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
966
967 /* If st_other has a processor-specific meaning, specific
968 code might be needed here. */
969 if (bed->elf_backend_merge_symbol_attribute)
970 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
971 dynamic);
972
973 if (!dynamic)
974 {
975 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
976 unsigned hvis = ELF_ST_VISIBILITY (h->other);
977
978 /* Keep the most constraining visibility. Leave the remainder
979 of the st_other field to elf_backend_merge_symbol_attribute. */
980 if (symvis - 1 < hvis - 1)
981 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
982 }
983 else if (definition
984 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
985 && (sec->flags & SEC_READONLY) == 0)
986 h->protected_def = 1;
987 }
988
989 /* This function is called when we want to merge a new symbol with an
990 existing symbol. It handles the various cases which arise when we
991 find a definition in a dynamic object, or when there is already a
992 definition in a dynamic object. The new symbol is described by
993 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
994 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
995 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
996 of an old common symbol. We set OVERRIDE if the old symbol is
997 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
998 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
999 to change. By OK to change, we mean that we shouldn't warn if the
1000 type or size does change. */
1001
1002 static bfd_boolean
1003 _bfd_elf_merge_symbol (bfd *abfd,
1004 struct bfd_link_info *info,
1005 const char *name,
1006 Elf_Internal_Sym *sym,
1007 asection **psec,
1008 bfd_vma *pvalue,
1009 struct elf_link_hash_entry **sym_hash,
1010 bfd **poldbfd,
1011 bfd_boolean *pold_weak,
1012 unsigned int *pold_alignment,
1013 bfd_boolean *skip,
1014 bfd_boolean *override,
1015 bfd_boolean *type_change_ok,
1016 bfd_boolean *size_change_ok,
1017 bfd_boolean *matched)
1018 {
1019 asection *sec, *oldsec;
1020 struct elf_link_hash_entry *h;
1021 struct elf_link_hash_entry *hi;
1022 struct elf_link_hash_entry *flip;
1023 int bind;
1024 bfd *oldbfd;
1025 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1026 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1027 const struct elf_backend_data *bed;
1028 char *new_version;
1029
1030 *skip = FALSE;
1031 *override = FALSE;
1032
1033 sec = *psec;
1034 bind = ELF_ST_BIND (sym->st_info);
1035
1036 if (! bfd_is_und_section (sec))
1037 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1038 else
1039 h = ((struct elf_link_hash_entry *)
1040 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1041 if (h == NULL)
1042 return FALSE;
1043 *sym_hash = h;
1044
1045 bed = get_elf_backend_data (abfd);
1046
1047 /* NEW_VERSION is the symbol version of the new symbol. */
1048 if (h->versioned != unversioned)
1049 {
1050 /* Symbol version is unknown or versioned. */
1051 new_version = strrchr (name, ELF_VER_CHR);
1052 if (new_version)
1053 {
1054 if (h->versioned == unknown)
1055 {
1056 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1057 h->versioned = versioned_hidden;
1058 else
1059 h->versioned = versioned;
1060 }
1061 new_version += 1;
1062 if (new_version[0] == '\0')
1063 new_version = NULL;
1064 }
1065 else
1066 h->versioned = unversioned;
1067 }
1068 else
1069 new_version = NULL;
1070
1071 /* For merging, we only care about real symbols. But we need to make
1072 sure that indirect symbol dynamic flags are updated. */
1073 hi = h;
1074 while (h->root.type == bfd_link_hash_indirect
1075 || h->root.type == bfd_link_hash_warning)
1076 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1077
1078 if (!*matched)
1079 {
1080 if (hi == h || h->root.type == bfd_link_hash_new)
1081 *matched = TRUE;
1082 else
1083 {
1084 /* OLD_HIDDEN is true if the existing symbol is only visible
1085 to the symbol with the same symbol version. NEW_HIDDEN is
1086 true if the new symbol is only visible to the symbol with
1087 the same symbol version. */
1088 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1089 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1090 if (!old_hidden && !new_hidden)
1091 /* The new symbol matches the existing symbol if both
1092 aren't hidden. */
1093 *matched = TRUE;
1094 else
1095 {
1096 /* OLD_VERSION is the symbol version of the existing
1097 symbol. */
1098 char *old_version;
1099
1100 if (h->versioned >= versioned)
1101 old_version = strrchr (h->root.root.string,
1102 ELF_VER_CHR) + 1;
1103 else
1104 old_version = NULL;
1105
1106 /* The new symbol matches the existing symbol if they
1107 have the same symbol version. */
1108 *matched = (old_version == new_version
1109 || (old_version != NULL
1110 && new_version != NULL
1111 && strcmp (old_version, new_version) == 0));
1112 }
1113 }
1114 }
1115
1116 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1117 existing symbol. */
1118
1119 oldbfd = NULL;
1120 oldsec = NULL;
1121 switch (h->root.type)
1122 {
1123 default:
1124 break;
1125
1126 case bfd_link_hash_undefined:
1127 case bfd_link_hash_undefweak:
1128 oldbfd = h->root.u.undef.abfd;
1129 break;
1130
1131 case bfd_link_hash_defined:
1132 case bfd_link_hash_defweak:
1133 oldbfd = h->root.u.def.section->owner;
1134 oldsec = h->root.u.def.section;
1135 break;
1136
1137 case bfd_link_hash_common:
1138 oldbfd = h->root.u.c.p->section->owner;
1139 oldsec = h->root.u.c.p->section;
1140 if (pold_alignment)
1141 *pold_alignment = h->root.u.c.p->alignment_power;
1142 break;
1143 }
1144 if (poldbfd && *poldbfd == NULL)
1145 *poldbfd = oldbfd;
1146
1147 /* Differentiate strong and weak symbols. */
1148 newweak = bind == STB_WEAK;
1149 oldweak = (h->root.type == bfd_link_hash_defweak
1150 || h->root.type == bfd_link_hash_undefweak);
1151 if (pold_weak)
1152 *pold_weak = oldweak;
1153
1154 /* This code is for coping with dynamic objects, and is only useful
1155 if we are doing an ELF link. */
1156 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1157 return TRUE;
1158
1159 /* We have to check it for every instance since the first few may be
1160 references and not all compilers emit symbol type for undefined
1161 symbols. */
1162 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1163
1164 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1165 respectively, is from a dynamic object. */
1166
1167 newdyn = (abfd->flags & DYNAMIC) != 0;
1168
1169 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1170 syms and defined syms in dynamic libraries respectively.
1171 ref_dynamic on the other hand can be set for a symbol defined in
1172 a dynamic library, and def_dynamic may not be set; When the
1173 definition in a dynamic lib is overridden by a definition in the
1174 executable use of the symbol in the dynamic lib becomes a
1175 reference to the executable symbol. */
1176 if (newdyn)
1177 {
1178 if (bfd_is_und_section (sec))
1179 {
1180 if (bind != STB_WEAK)
1181 {
1182 h->ref_dynamic_nonweak = 1;
1183 hi->ref_dynamic_nonweak = 1;
1184 }
1185 }
1186 else
1187 {
1188 /* Update the existing symbol only if they match. */
1189 if (*matched)
1190 h->dynamic_def = 1;
1191 hi->dynamic_def = 1;
1192 }
1193 }
1194
1195 /* If we just created the symbol, mark it as being an ELF symbol.
1196 Other than that, there is nothing to do--there is no merge issue
1197 with a newly defined symbol--so we just return. */
1198
1199 if (h->root.type == bfd_link_hash_new)
1200 {
1201 h->non_elf = 0;
1202 return TRUE;
1203 }
1204
1205 /* In cases involving weak versioned symbols, we may wind up trying
1206 to merge a symbol with itself. Catch that here, to avoid the
1207 confusion that results if we try to override a symbol with
1208 itself. The additional tests catch cases like
1209 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1210 dynamic object, which we do want to handle here. */
1211 if (abfd == oldbfd
1212 && (newweak || oldweak)
1213 && ((abfd->flags & DYNAMIC) == 0
1214 || !h->def_regular))
1215 return TRUE;
1216
1217 olddyn = FALSE;
1218 if (oldbfd != NULL)
1219 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1220 else if (oldsec != NULL)
1221 {
1222 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1223 indices used by MIPS ELF. */
1224 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1225 }
1226
1227 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1228 respectively, appear to be a definition rather than reference. */
1229
1230 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1231
1232 olddef = (h->root.type != bfd_link_hash_undefined
1233 && h->root.type != bfd_link_hash_undefweak
1234 && h->root.type != bfd_link_hash_common);
1235
1236 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1237 respectively, appear to be a function. */
1238
1239 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1240 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1241
1242 oldfunc = (h->type != STT_NOTYPE
1243 && bed->is_function_type (h->type));
1244
1245 if (!(newfunc && oldfunc)
1246 && ELF_ST_TYPE (sym->st_info) != h->type
1247 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1248 && h->type != STT_NOTYPE
1249 && (newdef || bfd_is_com_section (sec))
1250 && (olddef || h->root.type == bfd_link_hash_common))
1251 {
1252 /* If creating a default indirect symbol ("foo" or "foo@") from
1253 a dynamic versioned definition ("foo@@") skip doing so if
1254 there is an existing regular definition with a different
1255 type. We don't want, for example, a "time" variable in the
1256 executable overriding a "time" function in a shared library. */
1257 if (newdyn
1258 && !olddyn)
1259 {
1260 *skip = TRUE;
1261 return TRUE;
1262 }
1263
1264 /* When adding a symbol from a regular object file after we have
1265 created indirect symbols, undo the indirection and any
1266 dynamic state. */
1267 if (hi != h
1268 && !newdyn
1269 && olddyn)
1270 {
1271 h = hi;
1272 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1273 h->forced_local = 0;
1274 h->ref_dynamic = 0;
1275 h->def_dynamic = 0;
1276 h->dynamic_def = 0;
1277 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1278 {
1279 h->root.type = bfd_link_hash_undefined;
1280 h->root.u.undef.abfd = abfd;
1281 }
1282 else
1283 {
1284 h->root.type = bfd_link_hash_new;
1285 h->root.u.undef.abfd = NULL;
1286 }
1287 return TRUE;
1288 }
1289 }
1290
1291 /* Check TLS symbols. We don't check undefined symbols introduced
1292 by "ld -u" which have no type (and oldbfd NULL), and we don't
1293 check symbols from plugins because they also have no type. */
1294 if (oldbfd != NULL
1295 && (oldbfd->flags & BFD_PLUGIN) == 0
1296 && (abfd->flags & BFD_PLUGIN) == 0
1297 && ELF_ST_TYPE (sym->st_info) != h->type
1298 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1299 {
1300 bfd *ntbfd, *tbfd;
1301 bfd_boolean ntdef, tdef;
1302 asection *ntsec, *tsec;
1303
1304 if (h->type == STT_TLS)
1305 {
1306 ntbfd = abfd;
1307 ntsec = sec;
1308 ntdef = newdef;
1309 tbfd = oldbfd;
1310 tsec = oldsec;
1311 tdef = olddef;
1312 }
1313 else
1314 {
1315 ntbfd = oldbfd;
1316 ntsec = oldsec;
1317 ntdef = olddef;
1318 tbfd = abfd;
1319 tsec = sec;
1320 tdef = newdef;
1321 }
1322
1323 if (tdef && ntdef)
1324 _bfd_error_handler
1325 /* xgettext:c-format */
1326 (_("%s: TLS definition in %B section %A "
1327 "mismatches non-TLS definition in %B section %A"),
1328 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1329 else if (!tdef && !ntdef)
1330 _bfd_error_handler
1331 /* xgettext:c-format */
1332 (_("%s: TLS reference in %B "
1333 "mismatches non-TLS reference in %B"),
1334 h->root.root.string, tbfd, ntbfd);
1335 else if (tdef)
1336 _bfd_error_handler
1337 /* xgettext:c-format */
1338 (_("%s: TLS definition in %B section %A "
1339 "mismatches non-TLS reference in %B"),
1340 h->root.root.string, tbfd, tsec, ntbfd);
1341 else
1342 _bfd_error_handler
1343 /* xgettext:c-format */
1344 (_("%s: TLS reference in %B "
1345 "mismatches non-TLS definition in %B section %A"),
1346 h->root.root.string, tbfd, ntbfd, ntsec);
1347
1348 bfd_set_error (bfd_error_bad_value);
1349 return FALSE;
1350 }
1351
1352 /* If the old symbol has non-default visibility, we ignore the new
1353 definition from a dynamic object. */
1354 if (newdyn
1355 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1356 && !bfd_is_und_section (sec))
1357 {
1358 *skip = TRUE;
1359 /* Make sure this symbol is dynamic. */
1360 h->ref_dynamic = 1;
1361 hi->ref_dynamic = 1;
1362 /* A protected symbol has external availability. Make sure it is
1363 recorded as dynamic.
1364
1365 FIXME: Should we check type and size for protected symbol? */
1366 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1367 return bfd_elf_link_record_dynamic_symbol (info, h);
1368 else
1369 return TRUE;
1370 }
1371 else if (!newdyn
1372 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1373 && h->def_dynamic)
1374 {
1375 /* If the new symbol with non-default visibility comes from a
1376 relocatable file and the old definition comes from a dynamic
1377 object, we remove the old definition. */
1378 if (hi->root.type == bfd_link_hash_indirect)
1379 {
1380 /* Handle the case where the old dynamic definition is
1381 default versioned. We need to copy the symbol info from
1382 the symbol with default version to the normal one if it
1383 was referenced before. */
1384 if (h->ref_regular)
1385 {
1386 hi->root.type = h->root.type;
1387 h->root.type = bfd_link_hash_indirect;
1388 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1389
1390 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1391 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1392 {
1393 /* If the new symbol is hidden or internal, completely undo
1394 any dynamic link state. */
1395 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1396 h->forced_local = 0;
1397 h->ref_dynamic = 0;
1398 }
1399 else
1400 h->ref_dynamic = 1;
1401
1402 h->def_dynamic = 0;
1403 /* FIXME: Should we check type and size for protected symbol? */
1404 h->size = 0;
1405 h->type = 0;
1406
1407 h = hi;
1408 }
1409 else
1410 h = hi;
1411 }
1412
1413 /* If the old symbol was undefined before, then it will still be
1414 on the undefs list. If the new symbol is undefined or
1415 common, we can't make it bfd_link_hash_new here, because new
1416 undefined or common symbols will be added to the undefs list
1417 by _bfd_generic_link_add_one_symbol. Symbols may not be
1418 added twice to the undefs list. Also, if the new symbol is
1419 undefweak then we don't want to lose the strong undef. */
1420 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1421 {
1422 h->root.type = bfd_link_hash_undefined;
1423 h->root.u.undef.abfd = abfd;
1424 }
1425 else
1426 {
1427 h->root.type = bfd_link_hash_new;
1428 h->root.u.undef.abfd = NULL;
1429 }
1430
1431 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1432 {
1433 /* If the new symbol is hidden or internal, completely undo
1434 any dynamic link state. */
1435 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1436 h->forced_local = 0;
1437 h->ref_dynamic = 0;
1438 }
1439 else
1440 h->ref_dynamic = 1;
1441 h->def_dynamic = 0;
1442 /* FIXME: Should we check type and size for protected symbol? */
1443 h->size = 0;
1444 h->type = 0;
1445 return TRUE;
1446 }
1447
1448 /* If a new weak symbol definition comes from a regular file and the
1449 old symbol comes from a dynamic library, we treat the new one as
1450 strong. Similarly, an old weak symbol definition from a regular
1451 file is treated as strong when the new symbol comes from a dynamic
1452 library. Further, an old weak symbol from a dynamic library is
1453 treated as strong if the new symbol is from a dynamic library.
1454 This reflects the way glibc's ld.so works.
1455
1456 Do this before setting *type_change_ok or *size_change_ok so that
1457 we warn properly when dynamic library symbols are overridden. */
1458
1459 if (newdef && !newdyn && olddyn)
1460 newweak = FALSE;
1461 if (olddef && newdyn)
1462 oldweak = FALSE;
1463
1464 /* Allow changes between different types of function symbol. */
1465 if (newfunc && oldfunc)
1466 *type_change_ok = TRUE;
1467
1468 /* It's OK to change the type if either the existing symbol or the
1469 new symbol is weak. A type change is also OK if the old symbol
1470 is undefined and the new symbol is defined. */
1471
1472 if (oldweak
1473 || newweak
1474 || (newdef
1475 && h->root.type == bfd_link_hash_undefined))
1476 *type_change_ok = TRUE;
1477
1478 /* It's OK to change the size if either the existing symbol or the
1479 new symbol is weak, or if the old symbol is undefined. */
1480
1481 if (*type_change_ok
1482 || h->root.type == bfd_link_hash_undefined)
1483 *size_change_ok = TRUE;
1484
1485 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1486 symbol, respectively, appears to be a common symbol in a dynamic
1487 object. If a symbol appears in an uninitialized section, and is
1488 not weak, and is not a function, then it may be a common symbol
1489 which was resolved when the dynamic object was created. We want
1490 to treat such symbols specially, because they raise special
1491 considerations when setting the symbol size: if the symbol
1492 appears as a common symbol in a regular object, and the size in
1493 the regular object is larger, we must make sure that we use the
1494 larger size. This problematic case can always be avoided in C,
1495 but it must be handled correctly when using Fortran shared
1496 libraries.
1497
1498 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1499 likewise for OLDDYNCOMMON and OLDDEF.
1500
1501 Note that this test is just a heuristic, and that it is quite
1502 possible to have an uninitialized symbol in a shared object which
1503 is really a definition, rather than a common symbol. This could
1504 lead to some minor confusion when the symbol really is a common
1505 symbol in some regular object. However, I think it will be
1506 harmless. */
1507
1508 if (newdyn
1509 && newdef
1510 && !newweak
1511 && (sec->flags & SEC_ALLOC) != 0
1512 && (sec->flags & SEC_LOAD) == 0
1513 && sym->st_size > 0
1514 && !newfunc)
1515 newdyncommon = TRUE;
1516 else
1517 newdyncommon = FALSE;
1518
1519 if (olddyn
1520 && olddef
1521 && h->root.type == bfd_link_hash_defined
1522 && h->def_dynamic
1523 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1524 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1525 && h->size > 0
1526 && !oldfunc)
1527 olddyncommon = TRUE;
1528 else
1529 olddyncommon = FALSE;
1530
1531 /* We now know everything about the old and new symbols. We ask the
1532 backend to check if we can merge them. */
1533 if (bed->merge_symbol != NULL)
1534 {
1535 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1536 return FALSE;
1537 sec = *psec;
1538 }
1539
1540 /* If both the old and the new symbols look like common symbols in a
1541 dynamic object, set the size of the symbol to the larger of the
1542 two. */
1543
1544 if (olddyncommon
1545 && newdyncommon
1546 && sym->st_size != h->size)
1547 {
1548 /* Since we think we have two common symbols, issue a multiple
1549 common warning if desired. Note that we only warn if the
1550 size is different. If the size is the same, we simply let
1551 the old symbol override the new one as normally happens with
1552 symbols defined in dynamic objects. */
1553
1554 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1555 bfd_link_hash_common, sym->st_size);
1556 if (sym->st_size > h->size)
1557 h->size = sym->st_size;
1558
1559 *size_change_ok = TRUE;
1560 }
1561
1562 /* If we are looking at a dynamic object, and we have found a
1563 definition, we need to see if the symbol was already defined by
1564 some other object. If so, we want to use the existing
1565 definition, and we do not want to report a multiple symbol
1566 definition error; we do this by clobbering *PSEC to be
1567 bfd_und_section_ptr.
1568
1569 We treat a common symbol as a definition if the symbol in the
1570 shared library is a function, since common symbols always
1571 represent variables; this can cause confusion in principle, but
1572 any such confusion would seem to indicate an erroneous program or
1573 shared library. We also permit a common symbol in a regular
1574 object to override a weak symbol in a shared object. */
1575
1576 if (newdyn
1577 && newdef
1578 && (olddef
1579 || (h->root.type == bfd_link_hash_common
1580 && (newweak || newfunc))))
1581 {
1582 *override = TRUE;
1583 newdef = FALSE;
1584 newdyncommon = FALSE;
1585
1586 *psec = sec = bfd_und_section_ptr;
1587 *size_change_ok = TRUE;
1588
1589 /* If we get here when the old symbol is a common symbol, then
1590 we are explicitly letting it override a weak symbol or
1591 function in a dynamic object, and we don't want to warn about
1592 a type change. If the old symbol is a defined symbol, a type
1593 change warning may still be appropriate. */
1594
1595 if (h->root.type == bfd_link_hash_common)
1596 *type_change_ok = TRUE;
1597 }
1598
1599 /* Handle the special case of an old common symbol merging with a
1600 new symbol which looks like a common symbol in a shared object.
1601 We change *PSEC and *PVALUE to make the new symbol look like a
1602 common symbol, and let _bfd_generic_link_add_one_symbol do the
1603 right thing. */
1604
1605 if (newdyncommon
1606 && h->root.type == bfd_link_hash_common)
1607 {
1608 *override = TRUE;
1609 newdef = FALSE;
1610 newdyncommon = FALSE;
1611 *pvalue = sym->st_size;
1612 *psec = sec = bed->common_section (oldsec);
1613 *size_change_ok = TRUE;
1614 }
1615
1616 /* Skip weak definitions of symbols that are already defined. */
1617 if (newdef && olddef && newweak)
1618 {
1619 /* Don't skip new non-IR weak syms. */
1620 if (!(oldbfd != NULL
1621 && (oldbfd->flags & BFD_PLUGIN) != 0
1622 && (abfd->flags & BFD_PLUGIN) == 0))
1623 {
1624 newdef = FALSE;
1625 *skip = TRUE;
1626 }
1627
1628 /* Merge st_other. If the symbol already has a dynamic index,
1629 but visibility says it should not be visible, turn it into a
1630 local symbol. */
1631 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1632 if (h->dynindx != -1)
1633 switch (ELF_ST_VISIBILITY (h->other))
1634 {
1635 case STV_INTERNAL:
1636 case STV_HIDDEN:
1637 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1638 break;
1639 }
1640 }
1641
1642 /* If the old symbol is from a dynamic object, and the new symbol is
1643 a definition which is not from a dynamic object, then the new
1644 symbol overrides the old symbol. Symbols from regular files
1645 always take precedence over symbols from dynamic objects, even if
1646 they are defined after the dynamic object in the link.
1647
1648 As above, we again permit a common symbol in a regular object to
1649 override a definition in a shared object if the shared object
1650 symbol is a function or is weak. */
1651
1652 flip = NULL;
1653 if (!newdyn
1654 && (newdef
1655 || (bfd_is_com_section (sec)
1656 && (oldweak || oldfunc)))
1657 && olddyn
1658 && olddef
1659 && h->def_dynamic)
1660 {
1661 /* Change the hash table entry to undefined, and let
1662 _bfd_generic_link_add_one_symbol do the right thing with the
1663 new definition. */
1664
1665 h->root.type = bfd_link_hash_undefined;
1666 h->root.u.undef.abfd = h->root.u.def.section->owner;
1667 *size_change_ok = TRUE;
1668
1669 olddef = FALSE;
1670 olddyncommon = FALSE;
1671
1672 /* We again permit a type change when a common symbol may be
1673 overriding a function. */
1674
1675 if (bfd_is_com_section (sec))
1676 {
1677 if (oldfunc)
1678 {
1679 /* If a common symbol overrides a function, make sure
1680 that it isn't defined dynamically nor has type
1681 function. */
1682 h->def_dynamic = 0;
1683 h->type = STT_NOTYPE;
1684 }
1685 *type_change_ok = TRUE;
1686 }
1687
1688 if (hi->root.type == bfd_link_hash_indirect)
1689 flip = hi;
1690 else
1691 /* This union may have been set to be non-NULL when this symbol
1692 was seen in a dynamic object. We must force the union to be
1693 NULL, so that it is correct for a regular symbol. */
1694 h->verinfo.vertree = NULL;
1695 }
1696
1697 /* Handle the special case of a new common symbol merging with an
1698 old symbol that looks like it might be a common symbol defined in
1699 a shared object. Note that we have already handled the case in
1700 which a new common symbol should simply override the definition
1701 in the shared library. */
1702
1703 if (! newdyn
1704 && bfd_is_com_section (sec)
1705 && olddyncommon)
1706 {
1707 /* It would be best if we could set the hash table entry to a
1708 common symbol, but we don't know what to use for the section
1709 or the alignment. */
1710 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1711 bfd_link_hash_common, sym->st_size);
1712
1713 /* If the presumed common symbol in the dynamic object is
1714 larger, pretend that the new symbol has its size. */
1715
1716 if (h->size > *pvalue)
1717 *pvalue = h->size;
1718
1719 /* We need to remember the alignment required by the symbol
1720 in the dynamic object. */
1721 BFD_ASSERT (pold_alignment);
1722 *pold_alignment = h->root.u.def.section->alignment_power;
1723
1724 olddef = FALSE;
1725 olddyncommon = FALSE;
1726
1727 h->root.type = bfd_link_hash_undefined;
1728 h->root.u.undef.abfd = h->root.u.def.section->owner;
1729
1730 *size_change_ok = TRUE;
1731 *type_change_ok = TRUE;
1732
1733 if (hi->root.type == bfd_link_hash_indirect)
1734 flip = hi;
1735 else
1736 h->verinfo.vertree = NULL;
1737 }
1738
1739 if (flip != NULL)
1740 {
1741 /* Handle the case where we had a versioned symbol in a dynamic
1742 library and now find a definition in a normal object. In this
1743 case, we make the versioned symbol point to the normal one. */
1744 flip->root.type = h->root.type;
1745 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1746 h->root.type = bfd_link_hash_indirect;
1747 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1748 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1749 if (h->def_dynamic)
1750 {
1751 h->def_dynamic = 0;
1752 flip->ref_dynamic = 1;
1753 }
1754 }
1755
1756 return TRUE;
1757 }
1758
1759 /* This function is called to create an indirect symbol from the
1760 default for the symbol with the default version if needed. The
1761 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1762 set DYNSYM if the new indirect symbol is dynamic. */
1763
1764 static bfd_boolean
1765 _bfd_elf_add_default_symbol (bfd *abfd,
1766 struct bfd_link_info *info,
1767 struct elf_link_hash_entry *h,
1768 const char *name,
1769 Elf_Internal_Sym *sym,
1770 asection *sec,
1771 bfd_vma value,
1772 bfd **poldbfd,
1773 bfd_boolean *dynsym)
1774 {
1775 bfd_boolean type_change_ok;
1776 bfd_boolean size_change_ok;
1777 bfd_boolean skip;
1778 char *shortname;
1779 struct elf_link_hash_entry *hi;
1780 struct bfd_link_hash_entry *bh;
1781 const struct elf_backend_data *bed;
1782 bfd_boolean collect;
1783 bfd_boolean dynamic;
1784 bfd_boolean override;
1785 char *p;
1786 size_t len, shortlen;
1787 asection *tmp_sec;
1788 bfd_boolean matched;
1789
1790 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1791 return TRUE;
1792
1793 /* If this symbol has a version, and it is the default version, we
1794 create an indirect symbol from the default name to the fully
1795 decorated name. This will cause external references which do not
1796 specify a version to be bound to this version of the symbol. */
1797 p = strchr (name, ELF_VER_CHR);
1798 if (h->versioned == unknown)
1799 {
1800 if (p == NULL)
1801 {
1802 h->versioned = unversioned;
1803 return TRUE;
1804 }
1805 else
1806 {
1807 if (p[1] != ELF_VER_CHR)
1808 {
1809 h->versioned = versioned_hidden;
1810 return TRUE;
1811 }
1812 else
1813 h->versioned = versioned;
1814 }
1815 }
1816 else
1817 {
1818 /* PR ld/19073: We may see an unversioned definition after the
1819 default version. */
1820 if (p == NULL)
1821 return TRUE;
1822 }
1823
1824 bed = get_elf_backend_data (abfd);
1825 collect = bed->collect;
1826 dynamic = (abfd->flags & DYNAMIC) != 0;
1827
1828 shortlen = p - name;
1829 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1830 if (shortname == NULL)
1831 return FALSE;
1832 memcpy (shortname, name, shortlen);
1833 shortname[shortlen] = '\0';
1834
1835 /* We are going to create a new symbol. Merge it with any existing
1836 symbol with this name. For the purposes of the merge, act as
1837 though we were defining the symbol we just defined, although we
1838 actually going to define an indirect symbol. */
1839 type_change_ok = FALSE;
1840 size_change_ok = FALSE;
1841 matched = TRUE;
1842 tmp_sec = sec;
1843 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1844 &hi, poldbfd, NULL, NULL, &skip, &override,
1845 &type_change_ok, &size_change_ok, &matched))
1846 return FALSE;
1847
1848 if (skip)
1849 goto nondefault;
1850
1851 if (hi->def_regular)
1852 {
1853 /* If the undecorated symbol will have a version added by a
1854 script different to H, then don't indirect to/from the
1855 undecorated symbol. This isn't ideal because we may not yet
1856 have seen symbol versions, if given by a script on the
1857 command line rather than via --version-script. */
1858 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1859 {
1860 bfd_boolean hide;
1861
1862 hi->verinfo.vertree
1863 = bfd_find_version_for_sym (info->version_info,
1864 hi->root.root.string, &hide);
1865 if (hi->verinfo.vertree != NULL && hide)
1866 {
1867 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1868 goto nondefault;
1869 }
1870 }
1871 if (hi->verinfo.vertree != NULL
1872 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1873 goto nondefault;
1874 }
1875
1876 if (! override)
1877 {
1878 /* Add the default symbol if not performing a relocatable link. */
1879 if (! bfd_link_relocatable (info))
1880 {
1881 bh = &hi->root;
1882 if (! (_bfd_generic_link_add_one_symbol
1883 (info, abfd, shortname, BSF_INDIRECT,
1884 bfd_ind_section_ptr,
1885 0, name, FALSE, collect, &bh)))
1886 return FALSE;
1887 hi = (struct elf_link_hash_entry *) bh;
1888 }
1889 }
1890 else
1891 {
1892 /* In this case the symbol named SHORTNAME is overriding the
1893 indirect symbol we want to add. We were planning on making
1894 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1895 is the name without a version. NAME is the fully versioned
1896 name, and it is the default version.
1897
1898 Overriding means that we already saw a definition for the
1899 symbol SHORTNAME in a regular object, and it is overriding
1900 the symbol defined in the dynamic object.
1901
1902 When this happens, we actually want to change NAME, the
1903 symbol we just added, to refer to SHORTNAME. This will cause
1904 references to NAME in the shared object to become references
1905 to SHORTNAME in the regular object. This is what we expect
1906 when we override a function in a shared object: that the
1907 references in the shared object will be mapped to the
1908 definition in the regular object. */
1909
1910 while (hi->root.type == bfd_link_hash_indirect
1911 || hi->root.type == bfd_link_hash_warning)
1912 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1913
1914 h->root.type = bfd_link_hash_indirect;
1915 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1916 if (h->def_dynamic)
1917 {
1918 h->def_dynamic = 0;
1919 hi->ref_dynamic = 1;
1920 if (hi->ref_regular
1921 || hi->def_regular)
1922 {
1923 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1924 return FALSE;
1925 }
1926 }
1927
1928 /* Now set HI to H, so that the following code will set the
1929 other fields correctly. */
1930 hi = h;
1931 }
1932
1933 /* Check if HI is a warning symbol. */
1934 if (hi->root.type == bfd_link_hash_warning)
1935 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1936
1937 /* If there is a duplicate definition somewhere, then HI may not
1938 point to an indirect symbol. We will have reported an error to
1939 the user in that case. */
1940
1941 if (hi->root.type == bfd_link_hash_indirect)
1942 {
1943 struct elf_link_hash_entry *ht;
1944
1945 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1946 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1947
1948 /* A reference to the SHORTNAME symbol from a dynamic library
1949 will be satisfied by the versioned symbol at runtime. In
1950 effect, we have a reference to the versioned symbol. */
1951 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1952 hi->dynamic_def |= ht->dynamic_def;
1953
1954 /* See if the new flags lead us to realize that the symbol must
1955 be dynamic. */
1956 if (! *dynsym)
1957 {
1958 if (! dynamic)
1959 {
1960 if (! bfd_link_executable (info)
1961 || hi->def_dynamic
1962 || hi->ref_dynamic)
1963 *dynsym = TRUE;
1964 }
1965 else
1966 {
1967 if (hi->ref_regular)
1968 *dynsym = TRUE;
1969 }
1970 }
1971 }
1972
1973 /* We also need to define an indirection from the nondefault version
1974 of the symbol. */
1975
1976 nondefault:
1977 len = strlen (name);
1978 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1979 if (shortname == NULL)
1980 return FALSE;
1981 memcpy (shortname, name, shortlen);
1982 memcpy (shortname + shortlen, p + 1, len - shortlen);
1983
1984 /* Once again, merge with any existing symbol. */
1985 type_change_ok = FALSE;
1986 size_change_ok = FALSE;
1987 tmp_sec = sec;
1988 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1989 &hi, poldbfd, NULL, NULL, &skip, &override,
1990 &type_change_ok, &size_change_ok, &matched))
1991 return FALSE;
1992
1993 if (skip)
1994 return TRUE;
1995
1996 if (override)
1997 {
1998 /* Here SHORTNAME is a versioned name, so we don't expect to see
1999 the type of override we do in the case above unless it is
2000 overridden by a versioned definition. */
2001 if (hi->root.type != bfd_link_hash_defined
2002 && hi->root.type != bfd_link_hash_defweak)
2003 _bfd_error_handler
2004 /* xgettext:c-format */
2005 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
2006 abfd, shortname);
2007 }
2008 else
2009 {
2010 bh = &hi->root;
2011 if (! (_bfd_generic_link_add_one_symbol
2012 (info, abfd, shortname, BSF_INDIRECT,
2013 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2014 return FALSE;
2015 hi = (struct elf_link_hash_entry *) bh;
2016
2017 /* If there is a duplicate definition somewhere, then HI may not
2018 point to an indirect symbol. We will have reported an error
2019 to the user in that case. */
2020
2021 if (hi->root.type == bfd_link_hash_indirect)
2022 {
2023 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2024 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2025 hi->dynamic_def |= h->dynamic_def;
2026
2027 /* See if the new flags lead us to realize that the symbol
2028 must be dynamic. */
2029 if (! *dynsym)
2030 {
2031 if (! dynamic)
2032 {
2033 if (! bfd_link_executable (info)
2034 || hi->ref_dynamic)
2035 *dynsym = TRUE;
2036 }
2037 else
2038 {
2039 if (hi->ref_regular)
2040 *dynsym = TRUE;
2041 }
2042 }
2043 }
2044 }
2045
2046 return TRUE;
2047 }
2048 \f
2049 /* This routine is used to export all defined symbols into the dynamic
2050 symbol table. It is called via elf_link_hash_traverse. */
2051
2052 static bfd_boolean
2053 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2054 {
2055 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2056
2057 /* Ignore indirect symbols. These are added by the versioning code. */
2058 if (h->root.type == bfd_link_hash_indirect)
2059 return TRUE;
2060
2061 /* Ignore this if we won't export it. */
2062 if (!eif->info->export_dynamic && !h->dynamic)
2063 return TRUE;
2064
2065 if (h->dynindx == -1
2066 && (h->def_regular || h->ref_regular)
2067 && ! bfd_hide_sym_by_version (eif->info->version_info,
2068 h->root.root.string))
2069 {
2070 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2071 {
2072 eif->failed = TRUE;
2073 return FALSE;
2074 }
2075 }
2076
2077 return TRUE;
2078 }
2079 \f
2080 /* Look through the symbols which are defined in other shared
2081 libraries and referenced here. Update the list of version
2082 dependencies. This will be put into the .gnu.version_r section.
2083 This function is called via elf_link_hash_traverse. */
2084
2085 static bfd_boolean
2086 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2087 void *data)
2088 {
2089 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2090 Elf_Internal_Verneed *t;
2091 Elf_Internal_Vernaux *a;
2092 bfd_size_type amt;
2093
2094 /* We only care about symbols defined in shared objects with version
2095 information. */
2096 if (!h->def_dynamic
2097 || h->def_regular
2098 || h->dynindx == -1
2099 || h->verinfo.verdef == NULL
2100 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2101 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2102 return TRUE;
2103
2104 /* See if we already know about this version. */
2105 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2106 t != NULL;
2107 t = t->vn_nextref)
2108 {
2109 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2110 continue;
2111
2112 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2113 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2114 return TRUE;
2115
2116 break;
2117 }
2118
2119 /* This is a new version. Add it to tree we are building. */
2120
2121 if (t == NULL)
2122 {
2123 amt = sizeof *t;
2124 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2125 if (t == NULL)
2126 {
2127 rinfo->failed = TRUE;
2128 return FALSE;
2129 }
2130
2131 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2132 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2133 elf_tdata (rinfo->info->output_bfd)->verref = t;
2134 }
2135
2136 amt = sizeof *a;
2137 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2138 if (a == NULL)
2139 {
2140 rinfo->failed = TRUE;
2141 return FALSE;
2142 }
2143
2144 /* Note that we are copying a string pointer here, and testing it
2145 above. If bfd_elf_string_from_elf_section is ever changed to
2146 discard the string data when low in memory, this will have to be
2147 fixed. */
2148 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2149
2150 a->vna_flags = h->verinfo.verdef->vd_flags;
2151 a->vna_nextptr = t->vn_auxptr;
2152
2153 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2154 ++rinfo->vers;
2155
2156 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2157
2158 t->vn_auxptr = a;
2159
2160 return TRUE;
2161 }
2162
2163 /* Figure out appropriate versions for all the symbols. We may not
2164 have the version number script until we have read all of the input
2165 files, so until that point we don't know which symbols should be
2166 local. This function is called via elf_link_hash_traverse. */
2167
2168 static bfd_boolean
2169 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2170 {
2171 struct elf_info_failed *sinfo;
2172 struct bfd_link_info *info;
2173 const struct elf_backend_data *bed;
2174 struct elf_info_failed eif;
2175 char *p;
2176
2177 sinfo = (struct elf_info_failed *) data;
2178 info = sinfo->info;
2179
2180 /* Fix the symbol flags. */
2181 eif.failed = FALSE;
2182 eif.info = info;
2183 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2184 {
2185 if (eif.failed)
2186 sinfo->failed = TRUE;
2187 return FALSE;
2188 }
2189
2190 /* We only need version numbers for symbols defined in regular
2191 objects. */
2192 if (!h->def_regular)
2193 return TRUE;
2194
2195 bed = get_elf_backend_data (info->output_bfd);
2196 p = strchr (h->root.root.string, ELF_VER_CHR);
2197 if (p != NULL && h->verinfo.vertree == NULL)
2198 {
2199 struct bfd_elf_version_tree *t;
2200
2201 ++p;
2202 if (*p == ELF_VER_CHR)
2203 ++p;
2204
2205 /* If there is no version string, we can just return out. */
2206 if (*p == '\0')
2207 return TRUE;
2208
2209 /* Look for the version. If we find it, it is no longer weak. */
2210 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2211 {
2212 if (strcmp (t->name, p) == 0)
2213 {
2214 size_t len;
2215 char *alc;
2216 struct bfd_elf_version_expr *d;
2217
2218 len = p - h->root.root.string;
2219 alc = (char *) bfd_malloc (len);
2220 if (alc == NULL)
2221 {
2222 sinfo->failed = TRUE;
2223 return FALSE;
2224 }
2225 memcpy (alc, h->root.root.string, len - 1);
2226 alc[len - 1] = '\0';
2227 if (alc[len - 2] == ELF_VER_CHR)
2228 alc[len - 2] = '\0';
2229
2230 h->verinfo.vertree = t;
2231 t->used = TRUE;
2232 d = NULL;
2233
2234 if (t->globals.list != NULL)
2235 d = (*t->match) (&t->globals, NULL, alc);
2236
2237 /* See if there is anything to force this symbol to
2238 local scope. */
2239 if (d == NULL && t->locals.list != NULL)
2240 {
2241 d = (*t->match) (&t->locals, NULL, alc);
2242 if (d != NULL
2243 && h->dynindx != -1
2244 && ! info->export_dynamic)
2245 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2246 }
2247
2248 free (alc);
2249 break;
2250 }
2251 }
2252
2253 /* If we are building an application, we need to create a
2254 version node for this version. */
2255 if (t == NULL && bfd_link_executable (info))
2256 {
2257 struct bfd_elf_version_tree **pp;
2258 int version_index;
2259
2260 /* If we aren't going to export this symbol, we don't need
2261 to worry about it. */
2262 if (h->dynindx == -1)
2263 return TRUE;
2264
2265 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2266 sizeof *t);
2267 if (t == NULL)
2268 {
2269 sinfo->failed = TRUE;
2270 return FALSE;
2271 }
2272
2273 t->name = p;
2274 t->name_indx = (unsigned int) -1;
2275 t->used = TRUE;
2276
2277 version_index = 1;
2278 /* Don't count anonymous version tag. */
2279 if (sinfo->info->version_info != NULL
2280 && sinfo->info->version_info->vernum == 0)
2281 version_index = 0;
2282 for (pp = &sinfo->info->version_info;
2283 *pp != NULL;
2284 pp = &(*pp)->next)
2285 ++version_index;
2286 t->vernum = version_index;
2287
2288 *pp = t;
2289
2290 h->verinfo.vertree = t;
2291 }
2292 else if (t == NULL)
2293 {
2294 /* We could not find the version for a symbol when
2295 generating a shared archive. Return an error. */
2296 _bfd_error_handler
2297 /* xgettext:c-format */
2298 (_("%B: version node not found for symbol %s"),
2299 info->output_bfd, h->root.root.string);
2300 bfd_set_error (bfd_error_bad_value);
2301 sinfo->failed = TRUE;
2302 return FALSE;
2303 }
2304 }
2305
2306 /* If we don't have a version for this symbol, see if we can find
2307 something. */
2308 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2309 {
2310 bfd_boolean hide;
2311
2312 h->verinfo.vertree
2313 = bfd_find_version_for_sym (sinfo->info->version_info,
2314 h->root.root.string, &hide);
2315 if (h->verinfo.vertree != NULL && hide)
2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2317 }
2318
2319 return TRUE;
2320 }
2321 \f
2322 /* Read and swap the relocs from the section indicated by SHDR. This
2323 may be either a REL or a RELA section. The relocations are
2324 translated into RELA relocations and stored in INTERNAL_RELOCS,
2325 which should have already been allocated to contain enough space.
2326 The EXTERNAL_RELOCS are a buffer where the external form of the
2327 relocations should be stored.
2328
2329 Returns FALSE if something goes wrong. */
2330
2331 static bfd_boolean
2332 elf_link_read_relocs_from_section (bfd *abfd,
2333 asection *sec,
2334 Elf_Internal_Shdr *shdr,
2335 void *external_relocs,
2336 Elf_Internal_Rela *internal_relocs)
2337 {
2338 const struct elf_backend_data *bed;
2339 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2340 const bfd_byte *erela;
2341 const bfd_byte *erelaend;
2342 Elf_Internal_Rela *irela;
2343 Elf_Internal_Shdr *symtab_hdr;
2344 size_t nsyms;
2345
2346 /* Position ourselves at the start of the section. */
2347 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2348 return FALSE;
2349
2350 /* Read the relocations. */
2351 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2352 return FALSE;
2353
2354 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2355 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2356
2357 bed = get_elf_backend_data (abfd);
2358
2359 /* Convert the external relocations to the internal format. */
2360 if (shdr->sh_entsize == bed->s->sizeof_rel)
2361 swap_in = bed->s->swap_reloc_in;
2362 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2363 swap_in = bed->s->swap_reloca_in;
2364 else
2365 {
2366 bfd_set_error (bfd_error_wrong_format);
2367 return FALSE;
2368 }
2369
2370 erela = (const bfd_byte *) external_relocs;
2371 erelaend = erela + shdr->sh_size;
2372 irela = internal_relocs;
2373 while (erela < erelaend)
2374 {
2375 bfd_vma r_symndx;
2376
2377 (*swap_in) (abfd, erela, irela);
2378 r_symndx = ELF32_R_SYM (irela->r_info);
2379 if (bed->s->arch_size == 64)
2380 r_symndx >>= 24;
2381 if (nsyms > 0)
2382 {
2383 if ((size_t) r_symndx >= nsyms)
2384 {
2385 _bfd_error_handler
2386 /* xgettext:c-format */
2387 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2388 " for offset 0x%lx in section `%A'"),
2389 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2390 irela->r_offset, sec);
2391 bfd_set_error (bfd_error_bad_value);
2392 return FALSE;
2393 }
2394 }
2395 else if (r_symndx != STN_UNDEF)
2396 {
2397 _bfd_error_handler
2398 /* xgettext:c-format */
2399 (_("%B: non-zero symbol index (0x%lx)"
2400 " for offset 0x%lx in section `%A'"
2401 " when the object file has no symbol table"),
2402 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2403 irela->r_offset, sec);
2404 bfd_set_error (bfd_error_bad_value);
2405 return FALSE;
2406 }
2407 irela += bed->s->int_rels_per_ext_rel;
2408 erela += shdr->sh_entsize;
2409 }
2410
2411 return TRUE;
2412 }
2413
2414 /* Read and swap the relocs for a section O. They may have been
2415 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2416 not NULL, they are used as buffers to read into. They are known to
2417 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2418 the return value is allocated using either malloc or bfd_alloc,
2419 according to the KEEP_MEMORY argument. If O has two relocation
2420 sections (both REL and RELA relocations), then the REL_HDR
2421 relocations will appear first in INTERNAL_RELOCS, followed by the
2422 RELA_HDR relocations. */
2423
2424 Elf_Internal_Rela *
2425 _bfd_elf_link_read_relocs (bfd *abfd,
2426 asection *o,
2427 void *external_relocs,
2428 Elf_Internal_Rela *internal_relocs,
2429 bfd_boolean keep_memory)
2430 {
2431 void *alloc1 = NULL;
2432 Elf_Internal_Rela *alloc2 = NULL;
2433 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2434 struct bfd_elf_section_data *esdo = elf_section_data (o);
2435 Elf_Internal_Rela *internal_rela_relocs;
2436
2437 if (esdo->relocs != NULL)
2438 return esdo->relocs;
2439
2440 if (o->reloc_count == 0)
2441 return NULL;
2442
2443 if (internal_relocs == NULL)
2444 {
2445 bfd_size_type size;
2446
2447 size = o->reloc_count;
2448 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2449 if (keep_memory)
2450 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2451 else
2452 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2453 if (internal_relocs == NULL)
2454 goto error_return;
2455 }
2456
2457 if (external_relocs == NULL)
2458 {
2459 bfd_size_type size = 0;
2460
2461 if (esdo->rel.hdr)
2462 size += esdo->rel.hdr->sh_size;
2463 if (esdo->rela.hdr)
2464 size += esdo->rela.hdr->sh_size;
2465
2466 alloc1 = bfd_malloc (size);
2467 if (alloc1 == NULL)
2468 goto error_return;
2469 external_relocs = alloc1;
2470 }
2471
2472 internal_rela_relocs = internal_relocs;
2473 if (esdo->rel.hdr)
2474 {
2475 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2476 external_relocs,
2477 internal_relocs))
2478 goto error_return;
2479 external_relocs = (((bfd_byte *) external_relocs)
2480 + esdo->rel.hdr->sh_size);
2481 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2482 * bed->s->int_rels_per_ext_rel);
2483 }
2484
2485 if (esdo->rela.hdr
2486 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2487 external_relocs,
2488 internal_rela_relocs)))
2489 goto error_return;
2490
2491 /* Cache the results for next time, if we can. */
2492 if (keep_memory)
2493 esdo->relocs = internal_relocs;
2494
2495 if (alloc1 != NULL)
2496 free (alloc1);
2497
2498 /* Don't free alloc2, since if it was allocated we are passing it
2499 back (under the name of internal_relocs). */
2500
2501 return internal_relocs;
2502
2503 error_return:
2504 if (alloc1 != NULL)
2505 free (alloc1);
2506 if (alloc2 != NULL)
2507 {
2508 if (keep_memory)
2509 bfd_release (abfd, alloc2);
2510 else
2511 free (alloc2);
2512 }
2513 return NULL;
2514 }
2515
2516 /* Compute the size of, and allocate space for, REL_HDR which is the
2517 section header for a section containing relocations for O. */
2518
2519 static bfd_boolean
2520 _bfd_elf_link_size_reloc_section (bfd *abfd,
2521 struct bfd_elf_section_reloc_data *reldata)
2522 {
2523 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2524
2525 /* That allows us to calculate the size of the section. */
2526 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2527
2528 /* The contents field must last into write_object_contents, so we
2529 allocate it with bfd_alloc rather than malloc. Also since we
2530 cannot be sure that the contents will actually be filled in,
2531 we zero the allocated space. */
2532 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2533 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2534 return FALSE;
2535
2536 if (reldata->hashes == NULL && reldata->count)
2537 {
2538 struct elf_link_hash_entry **p;
2539
2540 p = ((struct elf_link_hash_entry **)
2541 bfd_zmalloc (reldata->count * sizeof (*p)));
2542 if (p == NULL)
2543 return FALSE;
2544
2545 reldata->hashes = p;
2546 }
2547
2548 return TRUE;
2549 }
2550
2551 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2552 originated from the section given by INPUT_REL_HDR) to the
2553 OUTPUT_BFD. */
2554
2555 bfd_boolean
2556 _bfd_elf_link_output_relocs (bfd *output_bfd,
2557 asection *input_section,
2558 Elf_Internal_Shdr *input_rel_hdr,
2559 Elf_Internal_Rela *internal_relocs,
2560 struct elf_link_hash_entry **rel_hash
2561 ATTRIBUTE_UNUSED)
2562 {
2563 Elf_Internal_Rela *irela;
2564 Elf_Internal_Rela *irelaend;
2565 bfd_byte *erel;
2566 struct bfd_elf_section_reloc_data *output_reldata;
2567 asection *output_section;
2568 const struct elf_backend_data *bed;
2569 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2570 struct bfd_elf_section_data *esdo;
2571
2572 output_section = input_section->output_section;
2573
2574 bed = get_elf_backend_data (output_bfd);
2575 esdo = elf_section_data (output_section);
2576 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2577 {
2578 output_reldata = &esdo->rel;
2579 swap_out = bed->s->swap_reloc_out;
2580 }
2581 else if (esdo->rela.hdr
2582 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2583 {
2584 output_reldata = &esdo->rela;
2585 swap_out = bed->s->swap_reloca_out;
2586 }
2587 else
2588 {
2589 _bfd_error_handler
2590 /* xgettext:c-format */
2591 (_("%B: relocation size mismatch in %B section %A"),
2592 output_bfd, input_section->owner, input_section);
2593 bfd_set_error (bfd_error_wrong_format);
2594 return FALSE;
2595 }
2596
2597 erel = output_reldata->hdr->contents;
2598 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2599 irela = internal_relocs;
2600 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2601 * bed->s->int_rels_per_ext_rel);
2602 while (irela < irelaend)
2603 {
2604 (*swap_out) (output_bfd, irela, erel);
2605 irela += bed->s->int_rels_per_ext_rel;
2606 erel += input_rel_hdr->sh_entsize;
2607 }
2608
2609 /* Bump the counter, so that we know where to add the next set of
2610 relocations. */
2611 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2612
2613 return TRUE;
2614 }
2615 \f
2616 /* Make weak undefined symbols in PIE dynamic. */
2617
2618 bfd_boolean
2619 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2620 struct elf_link_hash_entry *h)
2621 {
2622 if (bfd_link_pie (info)
2623 && h->dynindx == -1
2624 && h->root.type == bfd_link_hash_undefweak)
2625 return bfd_elf_link_record_dynamic_symbol (info, h);
2626
2627 return TRUE;
2628 }
2629
2630 /* Fix up the flags for a symbol. This handles various cases which
2631 can only be fixed after all the input files are seen. This is
2632 currently called by both adjust_dynamic_symbol and
2633 assign_sym_version, which is unnecessary but perhaps more robust in
2634 the face of future changes. */
2635
2636 static bfd_boolean
2637 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2638 struct elf_info_failed *eif)
2639 {
2640 const struct elf_backend_data *bed;
2641
2642 /* If this symbol was mentioned in a non-ELF file, try to set
2643 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2644 permit a non-ELF file to correctly refer to a symbol defined in
2645 an ELF dynamic object. */
2646 if (h->non_elf)
2647 {
2648 while (h->root.type == bfd_link_hash_indirect)
2649 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2650
2651 if (h->root.type != bfd_link_hash_defined
2652 && h->root.type != bfd_link_hash_defweak)
2653 {
2654 h->ref_regular = 1;
2655 h->ref_regular_nonweak = 1;
2656 }
2657 else
2658 {
2659 if (h->root.u.def.section->owner != NULL
2660 && (bfd_get_flavour (h->root.u.def.section->owner)
2661 == bfd_target_elf_flavour))
2662 {
2663 h->ref_regular = 1;
2664 h->ref_regular_nonweak = 1;
2665 }
2666 else
2667 h->def_regular = 1;
2668 }
2669
2670 if (h->dynindx == -1
2671 && (h->def_dynamic
2672 || h->ref_dynamic))
2673 {
2674 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2675 {
2676 eif->failed = TRUE;
2677 return FALSE;
2678 }
2679 }
2680 }
2681 else
2682 {
2683 /* Unfortunately, NON_ELF is only correct if the symbol
2684 was first seen in a non-ELF file. Fortunately, if the symbol
2685 was first seen in an ELF file, we're probably OK unless the
2686 symbol was defined in a non-ELF file. Catch that case here.
2687 FIXME: We're still in trouble if the symbol was first seen in
2688 a dynamic object, and then later in a non-ELF regular object. */
2689 if ((h->root.type == bfd_link_hash_defined
2690 || h->root.type == bfd_link_hash_defweak)
2691 && !h->def_regular
2692 && (h->root.u.def.section->owner != NULL
2693 ? (bfd_get_flavour (h->root.u.def.section->owner)
2694 != bfd_target_elf_flavour)
2695 : (bfd_is_abs_section (h->root.u.def.section)
2696 && !h->def_dynamic)))
2697 h->def_regular = 1;
2698 }
2699
2700 /* Backend specific symbol fixup. */
2701 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2702 if (bed->elf_backend_fixup_symbol
2703 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2704 return FALSE;
2705
2706 /* If this is a final link, and the symbol was defined as a common
2707 symbol in a regular object file, and there was no definition in
2708 any dynamic object, then the linker will have allocated space for
2709 the symbol in a common section but the DEF_REGULAR
2710 flag will not have been set. */
2711 if (h->root.type == bfd_link_hash_defined
2712 && !h->def_regular
2713 && h->ref_regular
2714 && !h->def_dynamic
2715 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2716 h->def_regular = 1;
2717
2718 /* If a weak undefined symbol has non-default visibility, we also
2719 hide it from the dynamic linker. */
2720 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2721 && h->root.type == bfd_link_hash_undefweak)
2722 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2723
2724 /* A hidden versioned symbol in executable should be forced local if
2725 it is is locally defined, not referenced by shared library and not
2726 exported. */
2727 else if (bfd_link_executable (eif->info)
2728 && h->versioned == versioned_hidden
2729 && !eif->info->export_dynamic
2730 && !h->dynamic
2731 && !h->ref_dynamic
2732 && h->def_regular)
2733 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2734
2735 /* If -Bsymbolic was used (which means to bind references to global
2736 symbols to the definition within the shared object), and this
2737 symbol was defined in a regular object, then it actually doesn't
2738 need a PLT entry. Likewise, if the symbol has non-default
2739 visibility. If the symbol has hidden or internal visibility, we
2740 will force it local. */
2741 else if (h->needs_plt
2742 && bfd_link_pic (eif->info)
2743 && is_elf_hash_table (eif->info->hash)
2744 && (SYMBOLIC_BIND (eif->info, h)
2745 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2746 && h->def_regular)
2747 {
2748 bfd_boolean force_local;
2749
2750 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2751 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2752 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2753 }
2754
2755 /* If this is a weak defined symbol in a dynamic object, and we know
2756 the real definition in the dynamic object, copy interesting flags
2757 over to the real definition. */
2758 if (h->u.weakdef != NULL)
2759 {
2760 /* If the real definition is defined by a regular object file,
2761 don't do anything special. See the longer description in
2762 _bfd_elf_adjust_dynamic_symbol, below. */
2763 if (h->u.weakdef->def_regular)
2764 h->u.weakdef = NULL;
2765 else
2766 {
2767 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2768
2769 while (h->root.type == bfd_link_hash_indirect)
2770 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2771
2772 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2773 || h->root.type == bfd_link_hash_defweak);
2774 BFD_ASSERT (weakdef->def_dynamic);
2775 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2776 || weakdef->root.type == bfd_link_hash_defweak);
2777 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2778 }
2779 }
2780
2781 return TRUE;
2782 }
2783
2784 /* Make the backend pick a good value for a dynamic symbol. This is
2785 called via elf_link_hash_traverse, and also calls itself
2786 recursively. */
2787
2788 static bfd_boolean
2789 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2790 {
2791 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2792 bfd *dynobj;
2793 const struct elf_backend_data *bed;
2794
2795 if (! is_elf_hash_table (eif->info->hash))
2796 return FALSE;
2797
2798 /* Ignore indirect symbols. These are added by the versioning code. */
2799 if (h->root.type == bfd_link_hash_indirect)
2800 return TRUE;
2801
2802 /* Fix the symbol flags. */
2803 if (! _bfd_elf_fix_symbol_flags (h, eif))
2804 return FALSE;
2805
2806 if (h->root.type == bfd_link_hash_undefweak)
2807 {
2808 if (eif->info->dynamic_undefined_weak == 0)
2809 _bfd_elf_link_hash_hide_symbol (eif->info, h, TRUE);
2810 else if (eif->info->dynamic_undefined_weak > 0
2811 && h->ref_regular
2812 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2813 && !bfd_hide_sym_by_version (eif->info->version_info,
2814 h->root.root.string))
2815 {
2816 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2817 {
2818 eif->failed = TRUE;
2819 return FALSE;
2820 }
2821 }
2822 }
2823
2824 /* If this symbol does not require a PLT entry, and it is not
2825 defined by a dynamic object, or is not referenced by a regular
2826 object, ignore it. We do have to handle a weak defined symbol,
2827 even if no regular object refers to it, if we decided to add it
2828 to the dynamic symbol table. FIXME: Do we normally need to worry
2829 about symbols which are defined by one dynamic object and
2830 referenced by another one? */
2831 if (!h->needs_plt
2832 && h->type != STT_GNU_IFUNC
2833 && (h->def_regular
2834 || !h->def_dynamic
2835 || (!h->ref_regular
2836 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2837 {
2838 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2839 return TRUE;
2840 }
2841
2842 /* If we've already adjusted this symbol, don't do it again. This
2843 can happen via a recursive call. */
2844 if (h->dynamic_adjusted)
2845 return TRUE;
2846
2847 /* Don't look at this symbol again. Note that we must set this
2848 after checking the above conditions, because we may look at a
2849 symbol once, decide not to do anything, and then get called
2850 recursively later after REF_REGULAR is set below. */
2851 h->dynamic_adjusted = 1;
2852
2853 /* If this is a weak definition, and we know a real definition, and
2854 the real symbol is not itself defined by a regular object file,
2855 then get a good value for the real definition. We handle the
2856 real symbol first, for the convenience of the backend routine.
2857
2858 Note that there is a confusing case here. If the real definition
2859 is defined by a regular object file, we don't get the real symbol
2860 from the dynamic object, but we do get the weak symbol. If the
2861 processor backend uses a COPY reloc, then if some routine in the
2862 dynamic object changes the real symbol, we will not see that
2863 change in the corresponding weak symbol. This is the way other
2864 ELF linkers work as well, and seems to be a result of the shared
2865 library model.
2866
2867 I will clarify this issue. Most SVR4 shared libraries define the
2868 variable _timezone and define timezone as a weak synonym. The
2869 tzset call changes _timezone. If you write
2870 extern int timezone;
2871 int _timezone = 5;
2872 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2873 you might expect that, since timezone is a synonym for _timezone,
2874 the same number will print both times. However, if the processor
2875 backend uses a COPY reloc, then actually timezone will be copied
2876 into your process image, and, since you define _timezone
2877 yourself, _timezone will not. Thus timezone and _timezone will
2878 wind up at different memory locations. The tzset call will set
2879 _timezone, leaving timezone unchanged. */
2880
2881 if (h->u.weakdef != NULL)
2882 {
2883 /* If we get to this point, there is an implicit reference to
2884 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2885 h->u.weakdef->ref_regular = 1;
2886
2887 /* Ensure that the backend adjust_dynamic_symbol function sees
2888 H->U.WEAKDEF before H by recursively calling ourselves. */
2889 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2890 return FALSE;
2891 }
2892
2893 /* If a symbol has no type and no size and does not require a PLT
2894 entry, then we are probably about to do the wrong thing here: we
2895 are probably going to create a COPY reloc for an empty object.
2896 This case can arise when a shared object is built with assembly
2897 code, and the assembly code fails to set the symbol type. */
2898 if (h->size == 0
2899 && h->type == STT_NOTYPE
2900 && !h->needs_plt)
2901 _bfd_error_handler
2902 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2903 h->root.root.string);
2904
2905 dynobj = elf_hash_table (eif->info)->dynobj;
2906 bed = get_elf_backend_data (dynobj);
2907
2908 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2909 {
2910 eif->failed = TRUE;
2911 return FALSE;
2912 }
2913
2914 return TRUE;
2915 }
2916
2917 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2918 DYNBSS. */
2919
2920 bfd_boolean
2921 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2922 struct elf_link_hash_entry *h,
2923 asection *dynbss)
2924 {
2925 unsigned int power_of_two;
2926 bfd_vma mask;
2927 asection *sec = h->root.u.def.section;
2928
2929 /* The section aligment of definition is the maximum alignment
2930 requirement of symbols defined in the section. Since we don't
2931 know the symbol alignment requirement, we start with the
2932 maximum alignment and check low bits of the symbol address
2933 for the minimum alignment. */
2934 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2935 mask = ((bfd_vma) 1 << power_of_two) - 1;
2936 while ((h->root.u.def.value & mask) != 0)
2937 {
2938 mask >>= 1;
2939 --power_of_two;
2940 }
2941
2942 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2943 dynbss))
2944 {
2945 /* Adjust the section alignment if needed. */
2946 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2947 power_of_two))
2948 return FALSE;
2949 }
2950
2951 /* We make sure that the symbol will be aligned properly. */
2952 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2953
2954 /* Define the symbol as being at this point in DYNBSS. */
2955 h->root.u.def.section = dynbss;
2956 h->root.u.def.value = dynbss->size;
2957
2958 /* Increment the size of DYNBSS to make room for the symbol. */
2959 dynbss->size += h->size;
2960
2961 /* No error if extern_protected_data is true. */
2962 if (h->protected_def
2963 && (!info->extern_protected_data
2964 || (info->extern_protected_data < 0
2965 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2966 info->callbacks->einfo
2967 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2968 h->root.root.string);
2969
2970 return TRUE;
2971 }
2972
2973 /* Adjust all external symbols pointing into SEC_MERGE sections
2974 to reflect the object merging within the sections. */
2975
2976 static bfd_boolean
2977 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2978 {
2979 asection *sec;
2980
2981 if ((h->root.type == bfd_link_hash_defined
2982 || h->root.type == bfd_link_hash_defweak)
2983 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2984 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2985 {
2986 bfd *output_bfd = (bfd *) data;
2987
2988 h->root.u.def.value =
2989 _bfd_merged_section_offset (output_bfd,
2990 &h->root.u.def.section,
2991 elf_section_data (sec)->sec_info,
2992 h->root.u.def.value);
2993 }
2994
2995 return TRUE;
2996 }
2997
2998 /* Returns false if the symbol referred to by H should be considered
2999 to resolve local to the current module, and true if it should be
3000 considered to bind dynamically. */
3001
3002 bfd_boolean
3003 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3004 struct bfd_link_info *info,
3005 bfd_boolean not_local_protected)
3006 {
3007 bfd_boolean binding_stays_local_p;
3008 const struct elf_backend_data *bed;
3009 struct elf_link_hash_table *hash_table;
3010
3011 if (h == NULL)
3012 return FALSE;
3013
3014 while (h->root.type == bfd_link_hash_indirect
3015 || h->root.type == bfd_link_hash_warning)
3016 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3017
3018 /* If it was forced local, then clearly it's not dynamic. */
3019 if (h->dynindx == -1)
3020 return FALSE;
3021 if (h->forced_local)
3022 return FALSE;
3023
3024 /* Identify the cases where name binding rules say that a
3025 visible symbol resolves locally. */
3026 binding_stays_local_p = (bfd_link_executable (info)
3027 || SYMBOLIC_BIND (info, h));
3028
3029 switch (ELF_ST_VISIBILITY (h->other))
3030 {
3031 case STV_INTERNAL:
3032 case STV_HIDDEN:
3033 return FALSE;
3034
3035 case STV_PROTECTED:
3036 hash_table = elf_hash_table (info);
3037 if (!is_elf_hash_table (hash_table))
3038 return FALSE;
3039
3040 bed = get_elf_backend_data (hash_table->dynobj);
3041
3042 /* Proper resolution for function pointer equality may require
3043 that these symbols perhaps be resolved dynamically, even though
3044 we should be resolving them to the current module. */
3045 if (!not_local_protected || !bed->is_function_type (h->type))
3046 binding_stays_local_p = TRUE;
3047 break;
3048
3049 default:
3050 break;
3051 }
3052
3053 /* If it isn't defined locally, then clearly it's dynamic. */
3054 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3055 return TRUE;
3056
3057 /* Otherwise, the symbol is dynamic if binding rules don't tell
3058 us that it remains local. */
3059 return !binding_stays_local_p;
3060 }
3061
3062 /* Return true if the symbol referred to by H should be considered
3063 to resolve local to the current module, and false otherwise. Differs
3064 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3065 undefined symbols. The two functions are virtually identical except
3066 for the place where forced_local and dynindx == -1 are tested. If
3067 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
3068 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
3069 the symbol is local only for defined symbols.
3070 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3071 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3072 treatment of undefined weak symbols. For those that do not make
3073 undefined weak symbols dynamic, both functions may return false. */
3074
3075 bfd_boolean
3076 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3077 struct bfd_link_info *info,
3078 bfd_boolean local_protected)
3079 {
3080 const struct elf_backend_data *bed;
3081 struct elf_link_hash_table *hash_table;
3082
3083 /* If it's a local sym, of course we resolve locally. */
3084 if (h == NULL)
3085 return TRUE;
3086
3087 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3088 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3089 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3090 return TRUE;
3091
3092 /* Common symbols that become definitions don't get the DEF_REGULAR
3093 flag set, so test it first, and don't bail out. */
3094 if (ELF_COMMON_DEF_P (h))
3095 /* Do nothing. */;
3096 /* If we don't have a definition in a regular file, then we can't
3097 resolve locally. The sym is either undefined or dynamic. */
3098 else if (!h->def_regular)
3099 return FALSE;
3100
3101 /* Forced local symbols resolve locally. */
3102 if (h->forced_local)
3103 return TRUE;
3104
3105 /* As do non-dynamic symbols. */
3106 if (h->dynindx == -1)
3107 return TRUE;
3108
3109 /* At this point, we know the symbol is defined and dynamic. In an
3110 executable it must resolve locally, likewise when building symbolic
3111 shared libraries. */
3112 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3113 return TRUE;
3114
3115 /* Now deal with defined dynamic symbols in shared libraries. Ones
3116 with default visibility might not resolve locally. */
3117 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3118 return FALSE;
3119
3120 hash_table = elf_hash_table (info);
3121 if (!is_elf_hash_table (hash_table))
3122 return TRUE;
3123
3124 bed = get_elf_backend_data (hash_table->dynobj);
3125
3126 /* If extern_protected_data is false, STV_PROTECTED non-function
3127 symbols are local. */
3128 if ((!info->extern_protected_data
3129 || (info->extern_protected_data < 0
3130 && !bed->extern_protected_data))
3131 && !bed->is_function_type (h->type))
3132 return TRUE;
3133
3134 /* Function pointer equality tests may require that STV_PROTECTED
3135 symbols be treated as dynamic symbols. If the address of a
3136 function not defined in an executable is set to that function's
3137 plt entry in the executable, then the address of the function in
3138 a shared library must also be the plt entry in the executable. */
3139 return local_protected;
3140 }
3141
3142 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3143 aligned. Returns the first TLS output section. */
3144
3145 struct bfd_section *
3146 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3147 {
3148 struct bfd_section *sec, *tls;
3149 unsigned int align = 0;
3150
3151 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3152 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3153 break;
3154 tls = sec;
3155
3156 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3157 if (sec->alignment_power > align)
3158 align = sec->alignment_power;
3159
3160 elf_hash_table (info)->tls_sec = tls;
3161
3162 /* Ensure the alignment of the first section is the largest alignment,
3163 so that the tls segment starts aligned. */
3164 if (tls != NULL)
3165 tls->alignment_power = align;
3166
3167 return tls;
3168 }
3169
3170 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3171 static bfd_boolean
3172 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3173 Elf_Internal_Sym *sym)
3174 {
3175 const struct elf_backend_data *bed;
3176
3177 /* Local symbols do not count, but target specific ones might. */
3178 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3179 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3180 return FALSE;
3181
3182 bed = get_elf_backend_data (abfd);
3183 /* Function symbols do not count. */
3184 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3185 return FALSE;
3186
3187 /* If the section is undefined, then so is the symbol. */
3188 if (sym->st_shndx == SHN_UNDEF)
3189 return FALSE;
3190
3191 /* If the symbol is defined in the common section, then
3192 it is a common definition and so does not count. */
3193 if (bed->common_definition (sym))
3194 return FALSE;
3195
3196 /* If the symbol is in a target specific section then we
3197 must rely upon the backend to tell us what it is. */
3198 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3199 /* FIXME - this function is not coded yet:
3200
3201 return _bfd_is_global_symbol_definition (abfd, sym);
3202
3203 Instead for now assume that the definition is not global,
3204 Even if this is wrong, at least the linker will behave
3205 in the same way that it used to do. */
3206 return FALSE;
3207
3208 return TRUE;
3209 }
3210
3211 /* Search the symbol table of the archive element of the archive ABFD
3212 whose archive map contains a mention of SYMDEF, and determine if
3213 the symbol is defined in this element. */
3214 static bfd_boolean
3215 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3216 {
3217 Elf_Internal_Shdr * hdr;
3218 size_t symcount;
3219 size_t extsymcount;
3220 size_t extsymoff;
3221 Elf_Internal_Sym *isymbuf;
3222 Elf_Internal_Sym *isym;
3223 Elf_Internal_Sym *isymend;
3224 bfd_boolean result;
3225
3226 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3227 if (abfd == NULL)
3228 return FALSE;
3229
3230 if (! bfd_check_format (abfd, bfd_object))
3231 return FALSE;
3232
3233 /* Select the appropriate symbol table. If we don't know if the
3234 object file is an IR object, give linker LTO plugin a chance to
3235 get the correct symbol table. */
3236 if (abfd->plugin_format == bfd_plugin_yes
3237 #if BFD_SUPPORTS_PLUGINS
3238 || (abfd->plugin_format == bfd_plugin_unknown
3239 && bfd_link_plugin_object_p (abfd))
3240 #endif
3241 )
3242 {
3243 /* Use the IR symbol table if the object has been claimed by
3244 plugin. */
3245 abfd = abfd->plugin_dummy_bfd;
3246 hdr = &elf_tdata (abfd)->symtab_hdr;
3247 }
3248 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3249 hdr = &elf_tdata (abfd)->symtab_hdr;
3250 else
3251 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3252
3253 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3254
3255 /* The sh_info field of the symtab header tells us where the
3256 external symbols start. We don't care about the local symbols. */
3257 if (elf_bad_symtab (abfd))
3258 {
3259 extsymcount = symcount;
3260 extsymoff = 0;
3261 }
3262 else
3263 {
3264 extsymcount = symcount - hdr->sh_info;
3265 extsymoff = hdr->sh_info;
3266 }
3267
3268 if (extsymcount == 0)
3269 return FALSE;
3270
3271 /* Read in the symbol table. */
3272 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3273 NULL, NULL, NULL);
3274 if (isymbuf == NULL)
3275 return FALSE;
3276
3277 /* Scan the symbol table looking for SYMDEF. */
3278 result = FALSE;
3279 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3280 {
3281 const char *name;
3282
3283 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3284 isym->st_name);
3285 if (name == NULL)
3286 break;
3287
3288 if (strcmp (name, symdef->name) == 0)
3289 {
3290 result = is_global_data_symbol_definition (abfd, isym);
3291 break;
3292 }
3293 }
3294
3295 free (isymbuf);
3296
3297 return result;
3298 }
3299 \f
3300 /* Add an entry to the .dynamic table. */
3301
3302 bfd_boolean
3303 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3304 bfd_vma tag,
3305 bfd_vma val)
3306 {
3307 struct elf_link_hash_table *hash_table;
3308 const struct elf_backend_data *bed;
3309 asection *s;
3310 bfd_size_type newsize;
3311 bfd_byte *newcontents;
3312 Elf_Internal_Dyn dyn;
3313
3314 hash_table = elf_hash_table (info);
3315 if (! is_elf_hash_table (hash_table))
3316 return FALSE;
3317
3318 bed = get_elf_backend_data (hash_table->dynobj);
3319 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3320 BFD_ASSERT (s != NULL);
3321
3322 newsize = s->size + bed->s->sizeof_dyn;
3323 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3324 if (newcontents == NULL)
3325 return FALSE;
3326
3327 dyn.d_tag = tag;
3328 dyn.d_un.d_val = val;
3329 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3330
3331 s->size = newsize;
3332 s->contents = newcontents;
3333
3334 return TRUE;
3335 }
3336
3337 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3338 otherwise just check whether one already exists. Returns -1 on error,
3339 1 if a DT_NEEDED tag already exists, and 0 on success. */
3340
3341 static int
3342 elf_add_dt_needed_tag (bfd *abfd,
3343 struct bfd_link_info *info,
3344 const char *soname,
3345 bfd_boolean do_it)
3346 {
3347 struct elf_link_hash_table *hash_table;
3348 size_t strindex;
3349
3350 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3351 return -1;
3352
3353 hash_table = elf_hash_table (info);
3354 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3355 if (strindex == (size_t) -1)
3356 return -1;
3357
3358 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3359 {
3360 asection *sdyn;
3361 const struct elf_backend_data *bed;
3362 bfd_byte *extdyn;
3363
3364 bed = get_elf_backend_data (hash_table->dynobj);
3365 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3366 if (sdyn != NULL)
3367 for (extdyn = sdyn->contents;
3368 extdyn < sdyn->contents + sdyn->size;
3369 extdyn += bed->s->sizeof_dyn)
3370 {
3371 Elf_Internal_Dyn dyn;
3372
3373 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3374 if (dyn.d_tag == DT_NEEDED
3375 && dyn.d_un.d_val == strindex)
3376 {
3377 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3378 return 1;
3379 }
3380 }
3381 }
3382
3383 if (do_it)
3384 {
3385 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3386 return -1;
3387
3388 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3389 return -1;
3390 }
3391 else
3392 /* We were just checking for existence of the tag. */
3393 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3394
3395 return 0;
3396 }
3397
3398 /* Return true if SONAME is on the needed list between NEEDED and STOP
3399 (or the end of list if STOP is NULL), and needed by a library that
3400 will be loaded. */
3401
3402 static bfd_boolean
3403 on_needed_list (const char *soname,
3404 struct bfd_link_needed_list *needed,
3405 struct bfd_link_needed_list *stop)
3406 {
3407 struct bfd_link_needed_list *look;
3408 for (look = needed; look != stop; look = look->next)
3409 if (strcmp (soname, look->name) == 0
3410 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3411 /* If needed by a library that itself is not directly
3412 needed, recursively check whether that library is
3413 indirectly needed. Since we add DT_NEEDED entries to
3414 the end of the list, library dependencies appear after
3415 the library. Therefore search prior to the current
3416 LOOK, preventing possible infinite recursion. */
3417 || on_needed_list (elf_dt_name (look->by), needed, look)))
3418 return TRUE;
3419
3420 return FALSE;
3421 }
3422
3423 /* Sort symbol by value, section, and size. */
3424 static int
3425 elf_sort_symbol (const void *arg1, const void *arg2)
3426 {
3427 const struct elf_link_hash_entry *h1;
3428 const struct elf_link_hash_entry *h2;
3429 bfd_signed_vma vdiff;
3430
3431 h1 = *(const struct elf_link_hash_entry **) arg1;
3432 h2 = *(const struct elf_link_hash_entry **) arg2;
3433 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3434 if (vdiff != 0)
3435 return vdiff > 0 ? 1 : -1;
3436 else
3437 {
3438 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3439 if (sdiff != 0)
3440 return sdiff > 0 ? 1 : -1;
3441 }
3442 vdiff = h1->size - h2->size;
3443 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3444 }
3445
3446 /* This function is used to adjust offsets into .dynstr for
3447 dynamic symbols. This is called via elf_link_hash_traverse. */
3448
3449 static bfd_boolean
3450 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3451 {
3452 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3453
3454 if (h->dynindx != -1)
3455 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3456 return TRUE;
3457 }
3458
3459 /* Assign string offsets in .dynstr, update all structures referencing
3460 them. */
3461
3462 static bfd_boolean
3463 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3464 {
3465 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3466 struct elf_link_local_dynamic_entry *entry;
3467 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3468 bfd *dynobj = hash_table->dynobj;
3469 asection *sdyn;
3470 bfd_size_type size;
3471 const struct elf_backend_data *bed;
3472 bfd_byte *extdyn;
3473
3474 _bfd_elf_strtab_finalize (dynstr);
3475 size = _bfd_elf_strtab_size (dynstr);
3476
3477 bed = get_elf_backend_data (dynobj);
3478 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3479 BFD_ASSERT (sdyn != NULL);
3480
3481 /* Update all .dynamic entries referencing .dynstr strings. */
3482 for (extdyn = sdyn->contents;
3483 extdyn < sdyn->contents + sdyn->size;
3484 extdyn += bed->s->sizeof_dyn)
3485 {
3486 Elf_Internal_Dyn dyn;
3487
3488 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3489 switch (dyn.d_tag)
3490 {
3491 case DT_STRSZ:
3492 dyn.d_un.d_val = size;
3493 break;
3494 case DT_NEEDED:
3495 case DT_SONAME:
3496 case DT_RPATH:
3497 case DT_RUNPATH:
3498 case DT_FILTER:
3499 case DT_AUXILIARY:
3500 case DT_AUDIT:
3501 case DT_DEPAUDIT:
3502 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3503 break;
3504 default:
3505 continue;
3506 }
3507 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3508 }
3509
3510 /* Now update local dynamic symbols. */
3511 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3512 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3513 entry->isym.st_name);
3514
3515 /* And the rest of dynamic symbols. */
3516 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3517
3518 /* Adjust version definitions. */
3519 if (elf_tdata (output_bfd)->cverdefs)
3520 {
3521 asection *s;
3522 bfd_byte *p;
3523 size_t i;
3524 Elf_Internal_Verdef def;
3525 Elf_Internal_Verdaux defaux;
3526
3527 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3528 p = s->contents;
3529 do
3530 {
3531 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3532 &def);
3533 p += sizeof (Elf_External_Verdef);
3534 if (def.vd_aux != sizeof (Elf_External_Verdef))
3535 continue;
3536 for (i = 0; i < def.vd_cnt; ++i)
3537 {
3538 _bfd_elf_swap_verdaux_in (output_bfd,
3539 (Elf_External_Verdaux *) p, &defaux);
3540 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3541 defaux.vda_name);
3542 _bfd_elf_swap_verdaux_out (output_bfd,
3543 &defaux, (Elf_External_Verdaux *) p);
3544 p += sizeof (Elf_External_Verdaux);
3545 }
3546 }
3547 while (def.vd_next);
3548 }
3549
3550 /* Adjust version references. */
3551 if (elf_tdata (output_bfd)->verref)
3552 {
3553 asection *s;
3554 bfd_byte *p;
3555 size_t i;
3556 Elf_Internal_Verneed need;
3557 Elf_Internal_Vernaux needaux;
3558
3559 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3560 p = s->contents;
3561 do
3562 {
3563 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3564 &need);
3565 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3566 _bfd_elf_swap_verneed_out (output_bfd, &need,
3567 (Elf_External_Verneed *) p);
3568 p += sizeof (Elf_External_Verneed);
3569 for (i = 0; i < need.vn_cnt; ++i)
3570 {
3571 _bfd_elf_swap_vernaux_in (output_bfd,
3572 (Elf_External_Vernaux *) p, &needaux);
3573 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3574 needaux.vna_name);
3575 _bfd_elf_swap_vernaux_out (output_bfd,
3576 &needaux,
3577 (Elf_External_Vernaux *) p);
3578 p += sizeof (Elf_External_Vernaux);
3579 }
3580 }
3581 while (need.vn_next);
3582 }
3583
3584 return TRUE;
3585 }
3586 \f
3587 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3588 The default is to only match when the INPUT and OUTPUT are exactly
3589 the same target. */
3590
3591 bfd_boolean
3592 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3593 const bfd_target *output)
3594 {
3595 return input == output;
3596 }
3597
3598 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3599 This version is used when different targets for the same architecture
3600 are virtually identical. */
3601
3602 bfd_boolean
3603 _bfd_elf_relocs_compatible (const bfd_target *input,
3604 const bfd_target *output)
3605 {
3606 const struct elf_backend_data *obed, *ibed;
3607
3608 if (input == output)
3609 return TRUE;
3610
3611 ibed = xvec_get_elf_backend_data (input);
3612 obed = xvec_get_elf_backend_data (output);
3613
3614 if (ibed->arch != obed->arch)
3615 return FALSE;
3616
3617 /* If both backends are using this function, deem them compatible. */
3618 return ibed->relocs_compatible == obed->relocs_compatible;
3619 }
3620
3621 /* Make a special call to the linker "notice" function to tell it that
3622 we are about to handle an as-needed lib, or have finished
3623 processing the lib. */
3624
3625 bfd_boolean
3626 _bfd_elf_notice_as_needed (bfd *ibfd,
3627 struct bfd_link_info *info,
3628 enum notice_asneeded_action act)
3629 {
3630 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3631 }
3632
3633 /* Check relocations an ELF object file. */
3634
3635 bfd_boolean
3636 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3637 {
3638 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3639 struct elf_link_hash_table *htab = elf_hash_table (info);
3640
3641 /* If this object is the same format as the output object, and it is
3642 not a shared library, then let the backend look through the
3643 relocs.
3644
3645 This is required to build global offset table entries and to
3646 arrange for dynamic relocs. It is not required for the
3647 particular common case of linking non PIC code, even when linking
3648 against shared libraries, but unfortunately there is no way of
3649 knowing whether an object file has been compiled PIC or not.
3650 Looking through the relocs is not particularly time consuming.
3651 The problem is that we must either (1) keep the relocs in memory,
3652 which causes the linker to require additional runtime memory or
3653 (2) read the relocs twice from the input file, which wastes time.
3654 This would be a good case for using mmap.
3655
3656 I have no idea how to handle linking PIC code into a file of a
3657 different format. It probably can't be done. */
3658 if ((abfd->flags & DYNAMIC) == 0
3659 && is_elf_hash_table (htab)
3660 && bed->check_relocs != NULL
3661 && elf_object_id (abfd) == elf_hash_table_id (htab)
3662 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3663 {
3664 asection *o;
3665
3666 for (o = abfd->sections; o != NULL; o = o->next)
3667 {
3668 Elf_Internal_Rela *internal_relocs;
3669 bfd_boolean ok;
3670
3671 /* Don't check relocations in excluded sections. */
3672 if ((o->flags & SEC_RELOC) == 0
3673 || (o->flags & SEC_EXCLUDE) != 0
3674 || o->reloc_count == 0
3675 || ((info->strip == strip_all || info->strip == strip_debugger)
3676 && (o->flags & SEC_DEBUGGING) != 0)
3677 || bfd_is_abs_section (o->output_section))
3678 continue;
3679
3680 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3681 info->keep_memory);
3682 if (internal_relocs == NULL)
3683 return FALSE;
3684
3685 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3686
3687 if (elf_section_data (o)->relocs != internal_relocs)
3688 free (internal_relocs);
3689
3690 if (! ok)
3691 return FALSE;
3692 }
3693 }
3694
3695 return TRUE;
3696 }
3697
3698 /* Add symbols from an ELF object file to the linker hash table. */
3699
3700 static bfd_boolean
3701 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3702 {
3703 Elf_Internal_Ehdr *ehdr;
3704 Elf_Internal_Shdr *hdr;
3705 size_t symcount;
3706 size_t extsymcount;
3707 size_t extsymoff;
3708 struct elf_link_hash_entry **sym_hash;
3709 bfd_boolean dynamic;
3710 Elf_External_Versym *extversym = NULL;
3711 Elf_External_Versym *ever;
3712 struct elf_link_hash_entry *weaks;
3713 struct elf_link_hash_entry **nondeflt_vers = NULL;
3714 size_t nondeflt_vers_cnt = 0;
3715 Elf_Internal_Sym *isymbuf = NULL;
3716 Elf_Internal_Sym *isym;
3717 Elf_Internal_Sym *isymend;
3718 const struct elf_backend_data *bed;
3719 bfd_boolean add_needed;
3720 struct elf_link_hash_table *htab;
3721 bfd_size_type amt;
3722 void *alloc_mark = NULL;
3723 struct bfd_hash_entry **old_table = NULL;
3724 unsigned int old_size = 0;
3725 unsigned int old_count = 0;
3726 void *old_tab = NULL;
3727 void *old_ent;
3728 struct bfd_link_hash_entry *old_undefs = NULL;
3729 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3730 void *old_strtab = NULL;
3731 size_t tabsize = 0;
3732 asection *s;
3733 bfd_boolean just_syms;
3734
3735 htab = elf_hash_table (info);
3736 bed = get_elf_backend_data (abfd);
3737
3738 if ((abfd->flags & DYNAMIC) == 0)
3739 dynamic = FALSE;
3740 else
3741 {
3742 dynamic = TRUE;
3743
3744 /* You can't use -r against a dynamic object. Also, there's no
3745 hope of using a dynamic object which does not exactly match
3746 the format of the output file. */
3747 if (bfd_link_relocatable (info)
3748 || !is_elf_hash_table (htab)
3749 || info->output_bfd->xvec != abfd->xvec)
3750 {
3751 if (bfd_link_relocatable (info))
3752 bfd_set_error (bfd_error_invalid_operation);
3753 else
3754 bfd_set_error (bfd_error_wrong_format);
3755 goto error_return;
3756 }
3757 }
3758
3759 ehdr = elf_elfheader (abfd);
3760 if (info->warn_alternate_em
3761 && bed->elf_machine_code != ehdr->e_machine
3762 && ((bed->elf_machine_alt1 != 0
3763 && ehdr->e_machine == bed->elf_machine_alt1)
3764 || (bed->elf_machine_alt2 != 0
3765 && ehdr->e_machine == bed->elf_machine_alt2)))
3766 info->callbacks->einfo
3767 /* xgettext:c-format */
3768 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3769 ehdr->e_machine, abfd, bed->elf_machine_code);
3770
3771 /* As a GNU extension, any input sections which are named
3772 .gnu.warning.SYMBOL are treated as warning symbols for the given
3773 symbol. This differs from .gnu.warning sections, which generate
3774 warnings when they are included in an output file. */
3775 /* PR 12761: Also generate this warning when building shared libraries. */
3776 for (s = abfd->sections; s != NULL; s = s->next)
3777 {
3778 const char *name;
3779
3780 name = bfd_get_section_name (abfd, s);
3781 if (CONST_STRNEQ (name, ".gnu.warning."))
3782 {
3783 char *msg;
3784 bfd_size_type sz;
3785
3786 name += sizeof ".gnu.warning." - 1;
3787
3788 /* If this is a shared object, then look up the symbol
3789 in the hash table. If it is there, and it is already
3790 been defined, then we will not be using the entry
3791 from this shared object, so we don't need to warn.
3792 FIXME: If we see the definition in a regular object
3793 later on, we will warn, but we shouldn't. The only
3794 fix is to keep track of what warnings we are supposed
3795 to emit, and then handle them all at the end of the
3796 link. */
3797 if (dynamic)
3798 {
3799 struct elf_link_hash_entry *h;
3800
3801 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3802
3803 /* FIXME: What about bfd_link_hash_common? */
3804 if (h != NULL
3805 && (h->root.type == bfd_link_hash_defined
3806 || h->root.type == bfd_link_hash_defweak))
3807 continue;
3808 }
3809
3810 sz = s->size;
3811 msg = (char *) bfd_alloc (abfd, sz + 1);
3812 if (msg == NULL)
3813 goto error_return;
3814
3815 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3816 goto error_return;
3817
3818 msg[sz] = '\0';
3819
3820 if (! (_bfd_generic_link_add_one_symbol
3821 (info, abfd, name, BSF_WARNING, s, 0, msg,
3822 FALSE, bed->collect, NULL)))
3823 goto error_return;
3824
3825 if (bfd_link_executable (info))
3826 {
3827 /* Clobber the section size so that the warning does
3828 not get copied into the output file. */
3829 s->size = 0;
3830
3831 /* Also set SEC_EXCLUDE, so that symbols defined in
3832 the warning section don't get copied to the output. */
3833 s->flags |= SEC_EXCLUDE;
3834 }
3835 }
3836 }
3837
3838 just_syms = ((s = abfd->sections) != NULL
3839 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3840
3841 add_needed = TRUE;
3842 if (! dynamic)
3843 {
3844 /* If we are creating a shared library, create all the dynamic
3845 sections immediately. We need to attach them to something,
3846 so we attach them to this BFD, provided it is the right
3847 format and is not from ld --just-symbols. Always create the
3848 dynamic sections for -E/--dynamic-list. FIXME: If there
3849 are no input BFD's of the same format as the output, we can't
3850 make a shared library. */
3851 if (!just_syms
3852 && (bfd_link_pic (info)
3853 || (!bfd_link_relocatable (info)
3854 && (info->export_dynamic || info->dynamic)))
3855 && is_elf_hash_table (htab)
3856 && info->output_bfd->xvec == abfd->xvec
3857 && !htab->dynamic_sections_created)
3858 {
3859 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3860 goto error_return;
3861 }
3862 }
3863 else if (!is_elf_hash_table (htab))
3864 goto error_return;
3865 else
3866 {
3867 const char *soname = NULL;
3868 char *audit = NULL;
3869 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3870 const Elf_Internal_Phdr *phdr;
3871 int ret;
3872
3873 /* ld --just-symbols and dynamic objects don't mix very well.
3874 ld shouldn't allow it. */
3875 if (just_syms)
3876 abort ();
3877
3878 /* If this dynamic lib was specified on the command line with
3879 --as-needed in effect, then we don't want to add a DT_NEEDED
3880 tag unless the lib is actually used. Similary for libs brought
3881 in by another lib's DT_NEEDED. When --no-add-needed is used
3882 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3883 any dynamic library in DT_NEEDED tags in the dynamic lib at
3884 all. */
3885 add_needed = (elf_dyn_lib_class (abfd)
3886 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3887 | DYN_NO_NEEDED)) == 0;
3888
3889 s = bfd_get_section_by_name (abfd, ".dynamic");
3890 if (s != NULL)
3891 {
3892 bfd_byte *dynbuf;
3893 bfd_byte *extdyn;
3894 unsigned int elfsec;
3895 unsigned long shlink;
3896
3897 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3898 {
3899 error_free_dyn:
3900 free (dynbuf);
3901 goto error_return;
3902 }
3903
3904 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3905 if (elfsec == SHN_BAD)
3906 goto error_free_dyn;
3907 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3908
3909 for (extdyn = dynbuf;
3910 extdyn < dynbuf + s->size;
3911 extdyn += bed->s->sizeof_dyn)
3912 {
3913 Elf_Internal_Dyn dyn;
3914
3915 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3916 if (dyn.d_tag == DT_SONAME)
3917 {
3918 unsigned int tagv = dyn.d_un.d_val;
3919 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3920 if (soname == NULL)
3921 goto error_free_dyn;
3922 }
3923 if (dyn.d_tag == DT_NEEDED)
3924 {
3925 struct bfd_link_needed_list *n, **pn;
3926 char *fnm, *anm;
3927 unsigned int tagv = dyn.d_un.d_val;
3928
3929 amt = sizeof (struct bfd_link_needed_list);
3930 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3931 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3932 if (n == NULL || fnm == NULL)
3933 goto error_free_dyn;
3934 amt = strlen (fnm) + 1;
3935 anm = (char *) bfd_alloc (abfd, amt);
3936 if (anm == NULL)
3937 goto error_free_dyn;
3938 memcpy (anm, fnm, amt);
3939 n->name = anm;
3940 n->by = abfd;
3941 n->next = NULL;
3942 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3943 ;
3944 *pn = n;
3945 }
3946 if (dyn.d_tag == DT_RUNPATH)
3947 {
3948 struct bfd_link_needed_list *n, **pn;
3949 char *fnm, *anm;
3950 unsigned int tagv = dyn.d_un.d_val;
3951
3952 amt = sizeof (struct bfd_link_needed_list);
3953 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3954 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3955 if (n == NULL || fnm == NULL)
3956 goto error_free_dyn;
3957 amt = strlen (fnm) + 1;
3958 anm = (char *) bfd_alloc (abfd, amt);
3959 if (anm == NULL)
3960 goto error_free_dyn;
3961 memcpy (anm, fnm, amt);
3962 n->name = anm;
3963 n->by = abfd;
3964 n->next = NULL;
3965 for (pn = & runpath;
3966 *pn != NULL;
3967 pn = &(*pn)->next)
3968 ;
3969 *pn = n;
3970 }
3971 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3972 if (!runpath && dyn.d_tag == DT_RPATH)
3973 {
3974 struct bfd_link_needed_list *n, **pn;
3975 char *fnm, *anm;
3976 unsigned int tagv = dyn.d_un.d_val;
3977
3978 amt = sizeof (struct bfd_link_needed_list);
3979 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3980 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3981 if (n == NULL || fnm == NULL)
3982 goto error_free_dyn;
3983 amt = strlen (fnm) + 1;
3984 anm = (char *) bfd_alloc (abfd, amt);
3985 if (anm == NULL)
3986 goto error_free_dyn;
3987 memcpy (anm, fnm, amt);
3988 n->name = anm;
3989 n->by = abfd;
3990 n->next = NULL;
3991 for (pn = & rpath;
3992 *pn != NULL;
3993 pn = &(*pn)->next)
3994 ;
3995 *pn = n;
3996 }
3997 if (dyn.d_tag == DT_AUDIT)
3998 {
3999 unsigned int tagv = dyn.d_un.d_val;
4000 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4001 }
4002 }
4003
4004 free (dynbuf);
4005 }
4006
4007 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4008 frees all more recently bfd_alloc'd blocks as well. */
4009 if (runpath)
4010 rpath = runpath;
4011
4012 if (rpath)
4013 {
4014 struct bfd_link_needed_list **pn;
4015 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4016 ;
4017 *pn = rpath;
4018 }
4019
4020 /* If we have a PT_GNU_RELRO program header, mark as read-only
4021 all sections contained fully therein. This makes relro
4022 shared library sections appear as they will at run-time. */
4023 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4024 while (--phdr >= elf_tdata (abfd)->phdr)
4025 if (phdr->p_type == PT_GNU_RELRO)
4026 {
4027 for (s = abfd->sections; s != NULL; s = s->next)
4028 if ((s->flags & SEC_ALLOC) != 0
4029 && s->vma >= phdr->p_vaddr
4030 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4031 s->flags |= SEC_READONLY;
4032 break;
4033 }
4034
4035 /* We do not want to include any of the sections in a dynamic
4036 object in the output file. We hack by simply clobbering the
4037 list of sections in the BFD. This could be handled more
4038 cleanly by, say, a new section flag; the existing
4039 SEC_NEVER_LOAD flag is not the one we want, because that one
4040 still implies that the section takes up space in the output
4041 file. */
4042 bfd_section_list_clear (abfd);
4043
4044 /* Find the name to use in a DT_NEEDED entry that refers to this
4045 object. If the object has a DT_SONAME entry, we use it.
4046 Otherwise, if the generic linker stuck something in
4047 elf_dt_name, we use that. Otherwise, we just use the file
4048 name. */
4049 if (soname == NULL || *soname == '\0')
4050 {
4051 soname = elf_dt_name (abfd);
4052 if (soname == NULL || *soname == '\0')
4053 soname = bfd_get_filename (abfd);
4054 }
4055
4056 /* Save the SONAME because sometimes the linker emulation code
4057 will need to know it. */
4058 elf_dt_name (abfd) = soname;
4059
4060 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4061 if (ret < 0)
4062 goto error_return;
4063
4064 /* If we have already included this dynamic object in the
4065 link, just ignore it. There is no reason to include a
4066 particular dynamic object more than once. */
4067 if (ret > 0)
4068 return TRUE;
4069
4070 /* Save the DT_AUDIT entry for the linker emulation code. */
4071 elf_dt_audit (abfd) = audit;
4072 }
4073
4074 /* If this is a dynamic object, we always link against the .dynsym
4075 symbol table, not the .symtab symbol table. The dynamic linker
4076 will only see the .dynsym symbol table, so there is no reason to
4077 look at .symtab for a dynamic object. */
4078
4079 if (! dynamic || elf_dynsymtab (abfd) == 0)
4080 hdr = &elf_tdata (abfd)->symtab_hdr;
4081 else
4082 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4083
4084 symcount = hdr->sh_size / bed->s->sizeof_sym;
4085
4086 /* The sh_info field of the symtab header tells us where the
4087 external symbols start. We don't care about the local symbols at
4088 this point. */
4089 if (elf_bad_symtab (abfd))
4090 {
4091 extsymcount = symcount;
4092 extsymoff = 0;
4093 }
4094 else
4095 {
4096 extsymcount = symcount - hdr->sh_info;
4097 extsymoff = hdr->sh_info;
4098 }
4099
4100 sym_hash = elf_sym_hashes (abfd);
4101 if (extsymcount != 0)
4102 {
4103 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4104 NULL, NULL, NULL);
4105 if (isymbuf == NULL)
4106 goto error_return;
4107
4108 if (sym_hash == NULL)
4109 {
4110 /* We store a pointer to the hash table entry for each
4111 external symbol. */
4112 amt = extsymcount;
4113 amt *= sizeof (struct elf_link_hash_entry *);
4114 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4115 if (sym_hash == NULL)
4116 goto error_free_sym;
4117 elf_sym_hashes (abfd) = sym_hash;
4118 }
4119 }
4120
4121 if (dynamic)
4122 {
4123 /* Read in any version definitions. */
4124 if (!_bfd_elf_slurp_version_tables (abfd,
4125 info->default_imported_symver))
4126 goto error_free_sym;
4127
4128 /* Read in the symbol versions, but don't bother to convert them
4129 to internal format. */
4130 if (elf_dynversym (abfd) != 0)
4131 {
4132 Elf_Internal_Shdr *versymhdr;
4133
4134 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4135 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4136 if (extversym == NULL)
4137 goto error_free_sym;
4138 amt = versymhdr->sh_size;
4139 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4140 || bfd_bread (extversym, amt, abfd) != amt)
4141 goto error_free_vers;
4142 }
4143 }
4144
4145 /* If we are loading an as-needed shared lib, save the symbol table
4146 state before we start adding symbols. If the lib turns out
4147 to be unneeded, restore the state. */
4148 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4149 {
4150 unsigned int i;
4151 size_t entsize;
4152
4153 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4154 {
4155 struct bfd_hash_entry *p;
4156 struct elf_link_hash_entry *h;
4157
4158 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4159 {
4160 h = (struct elf_link_hash_entry *) p;
4161 entsize += htab->root.table.entsize;
4162 if (h->root.type == bfd_link_hash_warning)
4163 entsize += htab->root.table.entsize;
4164 }
4165 }
4166
4167 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4168 old_tab = bfd_malloc (tabsize + entsize);
4169 if (old_tab == NULL)
4170 goto error_free_vers;
4171
4172 /* Remember the current objalloc pointer, so that all mem for
4173 symbols added can later be reclaimed. */
4174 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4175 if (alloc_mark == NULL)
4176 goto error_free_vers;
4177
4178 /* Make a special call to the linker "notice" function to
4179 tell it that we are about to handle an as-needed lib. */
4180 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4181 goto error_free_vers;
4182
4183 /* Clone the symbol table. Remember some pointers into the
4184 symbol table, and dynamic symbol count. */
4185 old_ent = (char *) old_tab + tabsize;
4186 memcpy (old_tab, htab->root.table.table, tabsize);
4187 old_undefs = htab->root.undefs;
4188 old_undefs_tail = htab->root.undefs_tail;
4189 old_table = htab->root.table.table;
4190 old_size = htab->root.table.size;
4191 old_count = htab->root.table.count;
4192 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4193 if (old_strtab == NULL)
4194 goto error_free_vers;
4195
4196 for (i = 0; i < htab->root.table.size; i++)
4197 {
4198 struct bfd_hash_entry *p;
4199 struct elf_link_hash_entry *h;
4200
4201 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4202 {
4203 memcpy (old_ent, p, htab->root.table.entsize);
4204 old_ent = (char *) old_ent + htab->root.table.entsize;
4205 h = (struct elf_link_hash_entry *) p;
4206 if (h->root.type == bfd_link_hash_warning)
4207 {
4208 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4209 old_ent = (char *) old_ent + htab->root.table.entsize;
4210 }
4211 }
4212 }
4213 }
4214
4215 weaks = NULL;
4216 ever = extversym != NULL ? extversym + extsymoff : NULL;
4217 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4218 isym < isymend;
4219 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4220 {
4221 int bind;
4222 bfd_vma value;
4223 asection *sec, *new_sec;
4224 flagword flags;
4225 const char *name;
4226 struct elf_link_hash_entry *h;
4227 struct elf_link_hash_entry *hi;
4228 bfd_boolean definition;
4229 bfd_boolean size_change_ok;
4230 bfd_boolean type_change_ok;
4231 bfd_boolean new_weakdef;
4232 bfd_boolean new_weak;
4233 bfd_boolean old_weak;
4234 bfd_boolean override;
4235 bfd_boolean common;
4236 bfd_boolean discarded;
4237 unsigned int old_alignment;
4238 bfd *old_bfd;
4239 bfd_boolean matched;
4240
4241 override = FALSE;
4242
4243 flags = BSF_NO_FLAGS;
4244 sec = NULL;
4245 value = isym->st_value;
4246 common = bed->common_definition (isym);
4247 discarded = FALSE;
4248
4249 bind = ELF_ST_BIND (isym->st_info);
4250 switch (bind)
4251 {
4252 case STB_LOCAL:
4253 /* This should be impossible, since ELF requires that all
4254 global symbols follow all local symbols, and that sh_info
4255 point to the first global symbol. Unfortunately, Irix 5
4256 screws this up. */
4257 continue;
4258
4259 case STB_GLOBAL:
4260 if (isym->st_shndx != SHN_UNDEF && !common)
4261 flags = BSF_GLOBAL;
4262 break;
4263
4264 case STB_WEAK:
4265 flags = BSF_WEAK;
4266 break;
4267
4268 case STB_GNU_UNIQUE:
4269 flags = BSF_GNU_UNIQUE;
4270 break;
4271
4272 default:
4273 /* Leave it up to the processor backend. */
4274 break;
4275 }
4276
4277 if (isym->st_shndx == SHN_UNDEF)
4278 sec = bfd_und_section_ptr;
4279 else if (isym->st_shndx == SHN_ABS)
4280 sec = bfd_abs_section_ptr;
4281 else if (isym->st_shndx == SHN_COMMON)
4282 {
4283 sec = bfd_com_section_ptr;
4284 /* What ELF calls the size we call the value. What ELF
4285 calls the value we call the alignment. */
4286 value = isym->st_size;
4287 }
4288 else
4289 {
4290 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4291 if (sec == NULL)
4292 sec = bfd_abs_section_ptr;
4293 else if (discarded_section (sec))
4294 {
4295 /* Symbols from discarded section are undefined. We keep
4296 its visibility. */
4297 sec = bfd_und_section_ptr;
4298 discarded = TRUE;
4299 isym->st_shndx = SHN_UNDEF;
4300 }
4301 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4302 value -= sec->vma;
4303 }
4304
4305 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4306 isym->st_name);
4307 if (name == NULL)
4308 goto error_free_vers;
4309
4310 if (isym->st_shndx == SHN_COMMON
4311 && (abfd->flags & BFD_PLUGIN) != 0)
4312 {
4313 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4314
4315 if (xc == NULL)
4316 {
4317 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4318 | SEC_EXCLUDE);
4319 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4320 if (xc == NULL)
4321 goto error_free_vers;
4322 }
4323 sec = xc;
4324 }
4325 else if (isym->st_shndx == SHN_COMMON
4326 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4327 && !bfd_link_relocatable (info))
4328 {
4329 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4330
4331 if (tcomm == NULL)
4332 {
4333 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4334 | SEC_LINKER_CREATED);
4335 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4336 if (tcomm == NULL)
4337 goto error_free_vers;
4338 }
4339 sec = tcomm;
4340 }
4341 else if (bed->elf_add_symbol_hook)
4342 {
4343 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4344 &sec, &value))
4345 goto error_free_vers;
4346
4347 /* The hook function sets the name to NULL if this symbol
4348 should be skipped for some reason. */
4349 if (name == NULL)
4350 continue;
4351 }
4352
4353 /* Sanity check that all possibilities were handled. */
4354 if (sec == NULL)
4355 {
4356 bfd_set_error (bfd_error_bad_value);
4357 goto error_free_vers;
4358 }
4359
4360 /* Silently discard TLS symbols from --just-syms. There's
4361 no way to combine a static TLS block with a new TLS block
4362 for this executable. */
4363 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4364 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4365 continue;
4366
4367 if (bfd_is_und_section (sec)
4368 || bfd_is_com_section (sec))
4369 definition = FALSE;
4370 else
4371 definition = TRUE;
4372
4373 size_change_ok = FALSE;
4374 type_change_ok = bed->type_change_ok;
4375 old_weak = FALSE;
4376 matched = FALSE;
4377 old_alignment = 0;
4378 old_bfd = NULL;
4379 new_sec = sec;
4380
4381 if (is_elf_hash_table (htab))
4382 {
4383 Elf_Internal_Versym iver;
4384 unsigned int vernum = 0;
4385 bfd_boolean skip;
4386
4387 if (ever == NULL)
4388 {
4389 if (info->default_imported_symver)
4390 /* Use the default symbol version created earlier. */
4391 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4392 else
4393 iver.vs_vers = 0;
4394 }
4395 else
4396 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4397
4398 vernum = iver.vs_vers & VERSYM_VERSION;
4399
4400 /* If this is a hidden symbol, or if it is not version
4401 1, we append the version name to the symbol name.
4402 However, we do not modify a non-hidden absolute symbol
4403 if it is not a function, because it might be the version
4404 symbol itself. FIXME: What if it isn't? */
4405 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4406 || (vernum > 1
4407 && (!bfd_is_abs_section (sec)
4408 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4409 {
4410 const char *verstr;
4411 size_t namelen, verlen, newlen;
4412 char *newname, *p;
4413
4414 if (isym->st_shndx != SHN_UNDEF)
4415 {
4416 if (vernum > elf_tdata (abfd)->cverdefs)
4417 verstr = NULL;
4418 else if (vernum > 1)
4419 verstr =
4420 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4421 else
4422 verstr = "";
4423
4424 if (verstr == NULL)
4425 {
4426 _bfd_error_handler
4427 /* xgettext:c-format */
4428 (_("%B: %s: invalid version %u (max %d)"),
4429 abfd, name, vernum,
4430 elf_tdata (abfd)->cverdefs);
4431 bfd_set_error (bfd_error_bad_value);
4432 goto error_free_vers;
4433 }
4434 }
4435 else
4436 {
4437 /* We cannot simply test for the number of
4438 entries in the VERNEED section since the
4439 numbers for the needed versions do not start
4440 at 0. */
4441 Elf_Internal_Verneed *t;
4442
4443 verstr = NULL;
4444 for (t = elf_tdata (abfd)->verref;
4445 t != NULL;
4446 t = t->vn_nextref)
4447 {
4448 Elf_Internal_Vernaux *a;
4449
4450 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4451 {
4452 if (a->vna_other == vernum)
4453 {
4454 verstr = a->vna_nodename;
4455 break;
4456 }
4457 }
4458 if (a != NULL)
4459 break;
4460 }
4461 if (verstr == NULL)
4462 {
4463 _bfd_error_handler
4464 /* xgettext:c-format */
4465 (_("%B: %s: invalid needed version %d"),
4466 abfd, name, vernum);
4467 bfd_set_error (bfd_error_bad_value);
4468 goto error_free_vers;
4469 }
4470 }
4471
4472 namelen = strlen (name);
4473 verlen = strlen (verstr);
4474 newlen = namelen + verlen + 2;
4475 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4476 && isym->st_shndx != SHN_UNDEF)
4477 ++newlen;
4478
4479 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4480 if (newname == NULL)
4481 goto error_free_vers;
4482 memcpy (newname, name, namelen);
4483 p = newname + namelen;
4484 *p++ = ELF_VER_CHR;
4485 /* If this is a defined non-hidden version symbol,
4486 we add another @ to the name. This indicates the
4487 default version of the symbol. */
4488 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4489 && isym->st_shndx != SHN_UNDEF)
4490 *p++ = ELF_VER_CHR;
4491 memcpy (p, verstr, verlen + 1);
4492
4493 name = newname;
4494 }
4495
4496 /* If this symbol has default visibility and the user has
4497 requested we not re-export it, then mark it as hidden. */
4498 if (!bfd_is_und_section (sec)
4499 && !dynamic
4500 && abfd->no_export
4501 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4502 isym->st_other = (STV_HIDDEN
4503 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4504
4505 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4506 sym_hash, &old_bfd, &old_weak,
4507 &old_alignment, &skip, &override,
4508 &type_change_ok, &size_change_ok,
4509 &matched))
4510 goto error_free_vers;
4511
4512 if (skip)
4513 continue;
4514
4515 /* Override a definition only if the new symbol matches the
4516 existing one. */
4517 if (override && matched)
4518 definition = FALSE;
4519
4520 h = *sym_hash;
4521 while (h->root.type == bfd_link_hash_indirect
4522 || h->root.type == bfd_link_hash_warning)
4523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4524
4525 if (elf_tdata (abfd)->verdef != NULL
4526 && vernum > 1
4527 && definition)
4528 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4529 }
4530
4531 if (! (_bfd_generic_link_add_one_symbol
4532 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4533 (struct bfd_link_hash_entry **) sym_hash)))
4534 goto error_free_vers;
4535
4536 if ((flags & BSF_GNU_UNIQUE)
4537 && (abfd->flags & DYNAMIC) == 0
4538 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4539 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4540
4541 h = *sym_hash;
4542 /* We need to make sure that indirect symbol dynamic flags are
4543 updated. */
4544 hi = h;
4545 while (h->root.type == bfd_link_hash_indirect
4546 || h->root.type == bfd_link_hash_warning)
4547 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4548
4549 /* Setting the index to -3 tells elf_link_output_extsym that
4550 this symbol is defined in a discarded section. */
4551 if (discarded)
4552 h->indx = -3;
4553
4554 *sym_hash = h;
4555
4556 new_weak = (flags & BSF_WEAK) != 0;
4557 new_weakdef = FALSE;
4558 if (dynamic
4559 && definition
4560 && new_weak
4561 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4562 && is_elf_hash_table (htab)
4563 && h->u.weakdef == NULL)
4564 {
4565 /* Keep a list of all weak defined non function symbols from
4566 a dynamic object, using the weakdef field. Later in this
4567 function we will set the weakdef field to the correct
4568 value. We only put non-function symbols from dynamic
4569 objects on this list, because that happens to be the only
4570 time we need to know the normal symbol corresponding to a
4571 weak symbol, and the information is time consuming to
4572 figure out. If the weakdef field is not already NULL,
4573 then this symbol was already defined by some previous
4574 dynamic object, and we will be using that previous
4575 definition anyhow. */
4576
4577 h->u.weakdef = weaks;
4578 weaks = h;
4579 new_weakdef = TRUE;
4580 }
4581
4582 /* Set the alignment of a common symbol. */
4583 if ((common || bfd_is_com_section (sec))
4584 && h->root.type == bfd_link_hash_common)
4585 {
4586 unsigned int align;
4587
4588 if (common)
4589 align = bfd_log2 (isym->st_value);
4590 else
4591 {
4592 /* The new symbol is a common symbol in a shared object.
4593 We need to get the alignment from the section. */
4594 align = new_sec->alignment_power;
4595 }
4596 if (align > old_alignment)
4597 h->root.u.c.p->alignment_power = align;
4598 else
4599 h->root.u.c.p->alignment_power = old_alignment;
4600 }
4601
4602 if (is_elf_hash_table (htab))
4603 {
4604 /* Set a flag in the hash table entry indicating the type of
4605 reference or definition we just found. A dynamic symbol
4606 is one which is referenced or defined by both a regular
4607 object and a shared object. */
4608 bfd_boolean dynsym = FALSE;
4609
4610 /* Plugin symbols aren't normal. Don't set def_regular or
4611 ref_regular for them, or make them dynamic. */
4612 if ((abfd->flags & BFD_PLUGIN) != 0)
4613 ;
4614 else if (! dynamic)
4615 {
4616 if (! definition)
4617 {
4618 h->ref_regular = 1;
4619 if (bind != STB_WEAK)
4620 h->ref_regular_nonweak = 1;
4621 }
4622 else
4623 {
4624 h->def_regular = 1;
4625 if (h->def_dynamic)
4626 {
4627 h->def_dynamic = 0;
4628 h->ref_dynamic = 1;
4629 }
4630 }
4631
4632 /* If the indirect symbol has been forced local, don't
4633 make the real symbol dynamic. */
4634 if ((h == hi || !hi->forced_local)
4635 && (bfd_link_dll (info)
4636 || h->def_dynamic
4637 || h->ref_dynamic))
4638 dynsym = TRUE;
4639 }
4640 else
4641 {
4642 if (! definition)
4643 {
4644 h->ref_dynamic = 1;
4645 hi->ref_dynamic = 1;
4646 }
4647 else
4648 {
4649 h->def_dynamic = 1;
4650 hi->def_dynamic = 1;
4651 }
4652
4653 /* If the indirect symbol has been forced local, don't
4654 make the real symbol dynamic. */
4655 if ((h == hi || !hi->forced_local)
4656 && (h->def_regular
4657 || h->ref_regular
4658 || (h->u.weakdef != NULL
4659 && ! new_weakdef
4660 && h->u.weakdef->dynindx != -1)))
4661 dynsym = TRUE;
4662 }
4663
4664 /* Check to see if we need to add an indirect symbol for
4665 the default name. */
4666 if (definition
4667 || (!override && h->root.type == bfd_link_hash_common))
4668 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4669 sec, value, &old_bfd, &dynsym))
4670 goto error_free_vers;
4671
4672 /* Check the alignment when a common symbol is involved. This
4673 can change when a common symbol is overridden by a normal
4674 definition or a common symbol is ignored due to the old
4675 normal definition. We need to make sure the maximum
4676 alignment is maintained. */
4677 if ((old_alignment || common)
4678 && h->root.type != bfd_link_hash_common)
4679 {
4680 unsigned int common_align;
4681 unsigned int normal_align;
4682 unsigned int symbol_align;
4683 bfd *normal_bfd;
4684 bfd *common_bfd;
4685
4686 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4687 || h->root.type == bfd_link_hash_defweak);
4688
4689 symbol_align = ffs (h->root.u.def.value) - 1;
4690 if (h->root.u.def.section->owner != NULL
4691 && (h->root.u.def.section->owner->flags
4692 & (DYNAMIC | BFD_PLUGIN)) == 0)
4693 {
4694 normal_align = h->root.u.def.section->alignment_power;
4695 if (normal_align > symbol_align)
4696 normal_align = symbol_align;
4697 }
4698 else
4699 normal_align = symbol_align;
4700
4701 if (old_alignment)
4702 {
4703 common_align = old_alignment;
4704 common_bfd = old_bfd;
4705 normal_bfd = abfd;
4706 }
4707 else
4708 {
4709 common_align = bfd_log2 (isym->st_value);
4710 common_bfd = abfd;
4711 normal_bfd = old_bfd;
4712 }
4713
4714 if (normal_align < common_align)
4715 {
4716 /* PR binutils/2735 */
4717 if (normal_bfd == NULL)
4718 _bfd_error_handler
4719 /* xgettext:c-format */
4720 (_("Warning: alignment %u of common symbol `%s' in %B is"
4721 " greater than the alignment (%u) of its section %A"),
4722 1 << common_align, name, common_bfd,
4723 1 << normal_align, h->root.u.def.section);
4724 else
4725 _bfd_error_handler
4726 /* xgettext:c-format */
4727 (_("Warning: alignment %u of symbol `%s' in %B"
4728 " is smaller than %u in %B"),
4729 1 << normal_align, name, normal_bfd,
4730 1 << common_align, common_bfd);
4731 }
4732 }
4733
4734 /* Remember the symbol size if it isn't undefined. */
4735 if (isym->st_size != 0
4736 && isym->st_shndx != SHN_UNDEF
4737 && (definition || h->size == 0))
4738 {
4739 if (h->size != 0
4740 && h->size != isym->st_size
4741 && ! size_change_ok)
4742 _bfd_error_handler
4743 /* xgettext:c-format */
4744 (_("Warning: size of symbol `%s' changed"
4745 " from %lu in %B to %lu in %B"),
4746 name, (unsigned long) h->size, old_bfd,
4747 (unsigned long) isym->st_size, abfd);
4748
4749 h->size = isym->st_size;
4750 }
4751
4752 /* If this is a common symbol, then we always want H->SIZE
4753 to be the size of the common symbol. The code just above
4754 won't fix the size if a common symbol becomes larger. We
4755 don't warn about a size change here, because that is
4756 covered by --warn-common. Allow changes between different
4757 function types. */
4758 if (h->root.type == bfd_link_hash_common)
4759 h->size = h->root.u.c.size;
4760
4761 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4762 && ((definition && !new_weak)
4763 || (old_weak && h->root.type == bfd_link_hash_common)
4764 || h->type == STT_NOTYPE))
4765 {
4766 unsigned int type = ELF_ST_TYPE (isym->st_info);
4767
4768 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4769 symbol. */
4770 if (type == STT_GNU_IFUNC
4771 && (abfd->flags & DYNAMIC) != 0)
4772 type = STT_FUNC;
4773
4774 if (h->type != type)
4775 {
4776 if (h->type != STT_NOTYPE && ! type_change_ok)
4777 /* xgettext:c-format */
4778 _bfd_error_handler
4779 (_("Warning: type of symbol `%s' changed"
4780 " from %d to %d in %B"),
4781 name, h->type, type, abfd);
4782
4783 h->type = type;
4784 }
4785 }
4786
4787 /* Merge st_other field. */
4788 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4789
4790 /* We don't want to make debug symbol dynamic. */
4791 if (definition
4792 && (sec->flags & SEC_DEBUGGING)
4793 && !bfd_link_relocatable (info))
4794 dynsym = FALSE;
4795
4796 /* Nor should we make plugin symbols dynamic. */
4797 if ((abfd->flags & BFD_PLUGIN) != 0)
4798 dynsym = FALSE;
4799
4800 if (definition)
4801 {
4802 h->target_internal = isym->st_target_internal;
4803 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4804 }
4805
4806 if (definition && !dynamic)
4807 {
4808 char *p = strchr (name, ELF_VER_CHR);
4809 if (p != NULL && p[1] != ELF_VER_CHR)
4810 {
4811 /* Queue non-default versions so that .symver x, x@FOO
4812 aliases can be checked. */
4813 if (!nondeflt_vers)
4814 {
4815 amt = ((isymend - isym + 1)
4816 * sizeof (struct elf_link_hash_entry *));
4817 nondeflt_vers
4818 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4819 if (!nondeflt_vers)
4820 goto error_free_vers;
4821 }
4822 nondeflt_vers[nondeflt_vers_cnt++] = h;
4823 }
4824 }
4825
4826 if (dynsym && h->dynindx == -1)
4827 {
4828 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4829 goto error_free_vers;
4830 if (h->u.weakdef != NULL
4831 && ! new_weakdef
4832 && h->u.weakdef->dynindx == -1)
4833 {
4834 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4835 goto error_free_vers;
4836 }
4837 }
4838 else if (h->dynindx != -1)
4839 /* If the symbol already has a dynamic index, but
4840 visibility says it should not be visible, turn it into
4841 a local symbol. */
4842 switch (ELF_ST_VISIBILITY (h->other))
4843 {
4844 case STV_INTERNAL:
4845 case STV_HIDDEN:
4846 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4847 dynsym = FALSE;
4848 break;
4849 }
4850
4851 /* Don't add DT_NEEDED for references from the dummy bfd nor
4852 for unmatched symbol. */
4853 if (!add_needed
4854 && matched
4855 && definition
4856 && ((dynsym
4857 && h->ref_regular_nonweak
4858 && (old_bfd == NULL
4859 || (old_bfd->flags & BFD_PLUGIN) == 0))
4860 || (h->ref_dynamic_nonweak
4861 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4862 && !on_needed_list (elf_dt_name (abfd),
4863 htab->needed, NULL))))
4864 {
4865 int ret;
4866 const char *soname = elf_dt_name (abfd);
4867
4868 info->callbacks->minfo ("%!", soname, old_bfd,
4869 h->root.root.string);
4870
4871 /* A symbol from a library loaded via DT_NEEDED of some
4872 other library is referenced by a regular object.
4873 Add a DT_NEEDED entry for it. Issue an error if
4874 --no-add-needed is used and the reference was not
4875 a weak one. */
4876 if (old_bfd != NULL
4877 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4878 {
4879 _bfd_error_handler
4880 /* xgettext:c-format */
4881 (_("%B: undefined reference to symbol '%s'"),
4882 old_bfd, name);
4883 bfd_set_error (bfd_error_missing_dso);
4884 goto error_free_vers;
4885 }
4886
4887 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4888 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4889
4890 add_needed = TRUE;
4891 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4892 if (ret < 0)
4893 goto error_free_vers;
4894
4895 BFD_ASSERT (ret == 0);
4896 }
4897 }
4898 }
4899
4900 if (extversym != NULL)
4901 {
4902 free (extversym);
4903 extversym = NULL;
4904 }
4905
4906 if (isymbuf != NULL)
4907 {
4908 free (isymbuf);
4909 isymbuf = NULL;
4910 }
4911
4912 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4913 {
4914 unsigned int i;
4915
4916 /* Restore the symbol table. */
4917 old_ent = (char *) old_tab + tabsize;
4918 memset (elf_sym_hashes (abfd), 0,
4919 extsymcount * sizeof (struct elf_link_hash_entry *));
4920 htab->root.table.table = old_table;
4921 htab->root.table.size = old_size;
4922 htab->root.table.count = old_count;
4923 memcpy (htab->root.table.table, old_tab, tabsize);
4924 htab->root.undefs = old_undefs;
4925 htab->root.undefs_tail = old_undefs_tail;
4926 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4927 free (old_strtab);
4928 old_strtab = NULL;
4929 for (i = 0; i < htab->root.table.size; i++)
4930 {
4931 struct bfd_hash_entry *p;
4932 struct elf_link_hash_entry *h;
4933 bfd_size_type size;
4934 unsigned int alignment_power;
4935
4936 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4937 {
4938 h = (struct elf_link_hash_entry *) p;
4939 if (h->root.type == bfd_link_hash_warning)
4940 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4941
4942 /* Preserve the maximum alignment and size for common
4943 symbols even if this dynamic lib isn't on DT_NEEDED
4944 since it can still be loaded at run time by another
4945 dynamic lib. */
4946 if (h->root.type == bfd_link_hash_common)
4947 {
4948 size = h->root.u.c.size;
4949 alignment_power = h->root.u.c.p->alignment_power;
4950 }
4951 else
4952 {
4953 size = 0;
4954 alignment_power = 0;
4955 }
4956 memcpy (p, old_ent, htab->root.table.entsize);
4957 old_ent = (char *) old_ent + htab->root.table.entsize;
4958 h = (struct elf_link_hash_entry *) p;
4959 if (h->root.type == bfd_link_hash_warning)
4960 {
4961 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4962 old_ent = (char *) old_ent + htab->root.table.entsize;
4963 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4964 }
4965 if (h->root.type == bfd_link_hash_common)
4966 {
4967 if (size > h->root.u.c.size)
4968 h->root.u.c.size = size;
4969 if (alignment_power > h->root.u.c.p->alignment_power)
4970 h->root.u.c.p->alignment_power = alignment_power;
4971 }
4972 }
4973 }
4974
4975 /* Make a special call to the linker "notice" function to
4976 tell it that symbols added for crefs may need to be removed. */
4977 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4978 goto error_free_vers;
4979
4980 free (old_tab);
4981 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4982 alloc_mark);
4983 if (nondeflt_vers != NULL)
4984 free (nondeflt_vers);
4985 return TRUE;
4986 }
4987
4988 if (old_tab != NULL)
4989 {
4990 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4991 goto error_free_vers;
4992 free (old_tab);
4993 old_tab = NULL;
4994 }
4995
4996 /* Now that all the symbols from this input file are created, if
4997 not performing a relocatable link, handle .symver foo, foo@BAR
4998 such that any relocs against foo become foo@BAR. */
4999 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5000 {
5001 size_t cnt, symidx;
5002
5003 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5004 {
5005 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5006 char *shortname, *p;
5007
5008 p = strchr (h->root.root.string, ELF_VER_CHR);
5009 if (p == NULL
5010 || (h->root.type != bfd_link_hash_defined
5011 && h->root.type != bfd_link_hash_defweak))
5012 continue;
5013
5014 amt = p - h->root.root.string;
5015 shortname = (char *) bfd_malloc (amt + 1);
5016 if (!shortname)
5017 goto error_free_vers;
5018 memcpy (shortname, h->root.root.string, amt);
5019 shortname[amt] = '\0';
5020
5021 hi = (struct elf_link_hash_entry *)
5022 bfd_link_hash_lookup (&htab->root, shortname,
5023 FALSE, FALSE, FALSE);
5024 if (hi != NULL
5025 && hi->root.type == h->root.type
5026 && hi->root.u.def.value == h->root.u.def.value
5027 && hi->root.u.def.section == h->root.u.def.section)
5028 {
5029 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5030 hi->root.type = bfd_link_hash_indirect;
5031 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5032 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5033 sym_hash = elf_sym_hashes (abfd);
5034 if (sym_hash)
5035 for (symidx = 0; symidx < extsymcount; ++symidx)
5036 if (sym_hash[symidx] == hi)
5037 {
5038 sym_hash[symidx] = h;
5039 break;
5040 }
5041 }
5042 free (shortname);
5043 }
5044 free (nondeflt_vers);
5045 nondeflt_vers = NULL;
5046 }
5047
5048 /* Now set the weakdefs field correctly for all the weak defined
5049 symbols we found. The only way to do this is to search all the
5050 symbols. Since we only need the information for non functions in
5051 dynamic objects, that's the only time we actually put anything on
5052 the list WEAKS. We need this information so that if a regular
5053 object refers to a symbol defined weakly in a dynamic object, the
5054 real symbol in the dynamic object is also put in the dynamic
5055 symbols; we also must arrange for both symbols to point to the
5056 same memory location. We could handle the general case of symbol
5057 aliasing, but a general symbol alias can only be generated in
5058 assembler code, handling it correctly would be very time
5059 consuming, and other ELF linkers don't handle general aliasing
5060 either. */
5061 if (weaks != NULL)
5062 {
5063 struct elf_link_hash_entry **hpp;
5064 struct elf_link_hash_entry **hppend;
5065 struct elf_link_hash_entry **sorted_sym_hash;
5066 struct elf_link_hash_entry *h;
5067 size_t sym_count;
5068
5069 /* Since we have to search the whole symbol list for each weak
5070 defined symbol, search time for N weak defined symbols will be
5071 O(N^2). Binary search will cut it down to O(NlogN). */
5072 amt = extsymcount;
5073 amt *= sizeof (struct elf_link_hash_entry *);
5074 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5075 if (sorted_sym_hash == NULL)
5076 goto error_return;
5077 sym_hash = sorted_sym_hash;
5078 hpp = elf_sym_hashes (abfd);
5079 hppend = hpp + extsymcount;
5080 sym_count = 0;
5081 for (; hpp < hppend; hpp++)
5082 {
5083 h = *hpp;
5084 if (h != NULL
5085 && h->root.type == bfd_link_hash_defined
5086 && !bed->is_function_type (h->type))
5087 {
5088 *sym_hash = h;
5089 sym_hash++;
5090 sym_count++;
5091 }
5092 }
5093
5094 qsort (sorted_sym_hash, sym_count,
5095 sizeof (struct elf_link_hash_entry *),
5096 elf_sort_symbol);
5097
5098 while (weaks != NULL)
5099 {
5100 struct elf_link_hash_entry *hlook;
5101 asection *slook;
5102 bfd_vma vlook;
5103 size_t i, j, idx = 0;
5104
5105 hlook = weaks;
5106 weaks = hlook->u.weakdef;
5107 hlook->u.weakdef = NULL;
5108
5109 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5110 || hlook->root.type == bfd_link_hash_defweak
5111 || hlook->root.type == bfd_link_hash_common
5112 || hlook->root.type == bfd_link_hash_indirect);
5113 slook = hlook->root.u.def.section;
5114 vlook = hlook->root.u.def.value;
5115
5116 i = 0;
5117 j = sym_count;
5118 while (i != j)
5119 {
5120 bfd_signed_vma vdiff;
5121 idx = (i + j) / 2;
5122 h = sorted_sym_hash[idx];
5123 vdiff = vlook - h->root.u.def.value;
5124 if (vdiff < 0)
5125 j = idx;
5126 else if (vdiff > 0)
5127 i = idx + 1;
5128 else
5129 {
5130 int sdiff = slook->id - h->root.u.def.section->id;
5131 if (sdiff < 0)
5132 j = idx;
5133 else if (sdiff > 0)
5134 i = idx + 1;
5135 else
5136 break;
5137 }
5138 }
5139
5140 /* We didn't find a value/section match. */
5141 if (i == j)
5142 continue;
5143
5144 /* With multiple aliases, or when the weak symbol is already
5145 strongly defined, we have multiple matching symbols and
5146 the binary search above may land on any of them. Step
5147 one past the matching symbol(s). */
5148 while (++idx != j)
5149 {
5150 h = sorted_sym_hash[idx];
5151 if (h->root.u.def.section != slook
5152 || h->root.u.def.value != vlook)
5153 break;
5154 }
5155
5156 /* Now look back over the aliases. Since we sorted by size
5157 as well as value and section, we'll choose the one with
5158 the largest size. */
5159 while (idx-- != i)
5160 {
5161 h = sorted_sym_hash[idx];
5162
5163 /* Stop if value or section doesn't match. */
5164 if (h->root.u.def.section != slook
5165 || h->root.u.def.value != vlook)
5166 break;
5167 else if (h != hlook)
5168 {
5169 hlook->u.weakdef = h;
5170
5171 /* If the weak definition is in the list of dynamic
5172 symbols, make sure the real definition is put
5173 there as well. */
5174 if (hlook->dynindx != -1 && h->dynindx == -1)
5175 {
5176 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5177 {
5178 err_free_sym_hash:
5179 free (sorted_sym_hash);
5180 goto error_return;
5181 }
5182 }
5183
5184 /* If the real definition is in the list of dynamic
5185 symbols, make sure the weak definition is put
5186 there as well. If we don't do this, then the
5187 dynamic loader might not merge the entries for the
5188 real definition and the weak definition. */
5189 if (h->dynindx != -1 && hlook->dynindx == -1)
5190 {
5191 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5192 goto err_free_sym_hash;
5193 }
5194 break;
5195 }
5196 }
5197 }
5198
5199 free (sorted_sym_hash);
5200 }
5201
5202 if (bed->check_directives
5203 && !(*bed->check_directives) (abfd, info))
5204 return FALSE;
5205
5206 if (!info->check_relocs_after_open_input
5207 && !_bfd_elf_link_check_relocs (abfd, info))
5208 return FALSE;
5209
5210 /* If this is a non-traditional link, try to optimize the handling
5211 of the .stab/.stabstr sections. */
5212 if (! dynamic
5213 && ! info->traditional_format
5214 && is_elf_hash_table (htab)
5215 && (info->strip != strip_all && info->strip != strip_debugger))
5216 {
5217 asection *stabstr;
5218
5219 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5220 if (stabstr != NULL)
5221 {
5222 bfd_size_type string_offset = 0;
5223 asection *stab;
5224
5225 for (stab = abfd->sections; stab; stab = stab->next)
5226 if (CONST_STRNEQ (stab->name, ".stab")
5227 && (!stab->name[5] ||
5228 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5229 && (stab->flags & SEC_MERGE) == 0
5230 && !bfd_is_abs_section (stab->output_section))
5231 {
5232 struct bfd_elf_section_data *secdata;
5233
5234 secdata = elf_section_data (stab);
5235 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5236 stabstr, &secdata->sec_info,
5237 &string_offset))
5238 goto error_return;
5239 if (secdata->sec_info)
5240 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5241 }
5242 }
5243 }
5244
5245 if (is_elf_hash_table (htab) && add_needed)
5246 {
5247 /* Add this bfd to the loaded list. */
5248 struct elf_link_loaded_list *n;
5249
5250 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5251 if (n == NULL)
5252 goto error_return;
5253 n->abfd = abfd;
5254 n->next = htab->loaded;
5255 htab->loaded = n;
5256 }
5257
5258 return TRUE;
5259
5260 error_free_vers:
5261 if (old_tab != NULL)
5262 free (old_tab);
5263 if (old_strtab != NULL)
5264 free (old_strtab);
5265 if (nondeflt_vers != NULL)
5266 free (nondeflt_vers);
5267 if (extversym != NULL)
5268 free (extversym);
5269 error_free_sym:
5270 if (isymbuf != NULL)
5271 free (isymbuf);
5272 error_return:
5273 return FALSE;
5274 }
5275
5276 /* Return the linker hash table entry of a symbol that might be
5277 satisfied by an archive symbol. Return -1 on error. */
5278
5279 struct elf_link_hash_entry *
5280 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5281 struct bfd_link_info *info,
5282 const char *name)
5283 {
5284 struct elf_link_hash_entry *h;
5285 char *p, *copy;
5286 size_t len, first;
5287
5288 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5289 if (h != NULL)
5290 return h;
5291
5292 /* If this is a default version (the name contains @@), look up the
5293 symbol again with only one `@' as well as without the version.
5294 The effect is that references to the symbol with and without the
5295 version will be matched by the default symbol in the archive. */
5296
5297 p = strchr (name, ELF_VER_CHR);
5298 if (p == NULL || p[1] != ELF_VER_CHR)
5299 return h;
5300
5301 /* First check with only one `@'. */
5302 len = strlen (name);
5303 copy = (char *) bfd_alloc (abfd, len);
5304 if (copy == NULL)
5305 return (struct elf_link_hash_entry *) 0 - 1;
5306
5307 first = p - name + 1;
5308 memcpy (copy, name, first);
5309 memcpy (copy + first, name + first + 1, len - first);
5310
5311 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5312 if (h == NULL)
5313 {
5314 /* We also need to check references to the symbol without the
5315 version. */
5316 copy[first - 1] = '\0';
5317 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5318 FALSE, FALSE, TRUE);
5319 }
5320
5321 bfd_release (abfd, copy);
5322 return h;
5323 }
5324
5325 /* Add symbols from an ELF archive file to the linker hash table. We
5326 don't use _bfd_generic_link_add_archive_symbols because we need to
5327 handle versioned symbols.
5328
5329 Fortunately, ELF archive handling is simpler than that done by
5330 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5331 oddities. In ELF, if we find a symbol in the archive map, and the
5332 symbol is currently undefined, we know that we must pull in that
5333 object file.
5334
5335 Unfortunately, we do have to make multiple passes over the symbol
5336 table until nothing further is resolved. */
5337
5338 static bfd_boolean
5339 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5340 {
5341 symindex c;
5342 unsigned char *included = NULL;
5343 carsym *symdefs;
5344 bfd_boolean loop;
5345 bfd_size_type amt;
5346 const struct elf_backend_data *bed;
5347 struct elf_link_hash_entry * (*archive_symbol_lookup)
5348 (bfd *, struct bfd_link_info *, const char *);
5349
5350 if (! bfd_has_map (abfd))
5351 {
5352 /* An empty archive is a special case. */
5353 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5354 return TRUE;
5355 bfd_set_error (bfd_error_no_armap);
5356 return FALSE;
5357 }
5358
5359 /* Keep track of all symbols we know to be already defined, and all
5360 files we know to be already included. This is to speed up the
5361 second and subsequent passes. */
5362 c = bfd_ardata (abfd)->symdef_count;
5363 if (c == 0)
5364 return TRUE;
5365 amt = c;
5366 amt *= sizeof (*included);
5367 included = (unsigned char *) bfd_zmalloc (amt);
5368 if (included == NULL)
5369 return FALSE;
5370
5371 symdefs = bfd_ardata (abfd)->symdefs;
5372 bed = get_elf_backend_data (abfd);
5373 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5374
5375 do
5376 {
5377 file_ptr last;
5378 symindex i;
5379 carsym *symdef;
5380 carsym *symdefend;
5381
5382 loop = FALSE;
5383 last = -1;
5384
5385 symdef = symdefs;
5386 symdefend = symdef + c;
5387 for (i = 0; symdef < symdefend; symdef++, i++)
5388 {
5389 struct elf_link_hash_entry *h;
5390 bfd *element;
5391 struct bfd_link_hash_entry *undefs_tail;
5392 symindex mark;
5393
5394 if (included[i])
5395 continue;
5396 if (symdef->file_offset == last)
5397 {
5398 included[i] = TRUE;
5399 continue;
5400 }
5401
5402 h = archive_symbol_lookup (abfd, info, symdef->name);
5403 if (h == (struct elf_link_hash_entry *) 0 - 1)
5404 goto error_return;
5405
5406 if (h == NULL)
5407 continue;
5408
5409 if (h->root.type == bfd_link_hash_common)
5410 {
5411 /* We currently have a common symbol. The archive map contains
5412 a reference to this symbol, so we may want to include it. We
5413 only want to include it however, if this archive element
5414 contains a definition of the symbol, not just another common
5415 declaration of it.
5416
5417 Unfortunately some archivers (including GNU ar) will put
5418 declarations of common symbols into their archive maps, as
5419 well as real definitions, so we cannot just go by the archive
5420 map alone. Instead we must read in the element's symbol
5421 table and check that to see what kind of symbol definition
5422 this is. */
5423 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5424 continue;
5425 }
5426 else if (h->root.type != bfd_link_hash_undefined)
5427 {
5428 if (h->root.type != bfd_link_hash_undefweak)
5429 /* Symbol must be defined. Don't check it again. */
5430 included[i] = TRUE;
5431 continue;
5432 }
5433
5434 /* We need to include this archive member. */
5435 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5436 if (element == NULL)
5437 goto error_return;
5438
5439 if (! bfd_check_format (element, bfd_object))
5440 goto error_return;
5441
5442 undefs_tail = info->hash->undefs_tail;
5443
5444 if (!(*info->callbacks
5445 ->add_archive_element) (info, element, symdef->name, &element))
5446 continue;
5447 if (!bfd_link_add_symbols (element, info))
5448 goto error_return;
5449
5450 /* If there are any new undefined symbols, we need to make
5451 another pass through the archive in order to see whether
5452 they can be defined. FIXME: This isn't perfect, because
5453 common symbols wind up on undefs_tail and because an
5454 undefined symbol which is defined later on in this pass
5455 does not require another pass. This isn't a bug, but it
5456 does make the code less efficient than it could be. */
5457 if (undefs_tail != info->hash->undefs_tail)
5458 loop = TRUE;
5459
5460 /* Look backward to mark all symbols from this object file
5461 which we have already seen in this pass. */
5462 mark = i;
5463 do
5464 {
5465 included[mark] = TRUE;
5466 if (mark == 0)
5467 break;
5468 --mark;
5469 }
5470 while (symdefs[mark].file_offset == symdef->file_offset);
5471
5472 /* We mark subsequent symbols from this object file as we go
5473 on through the loop. */
5474 last = symdef->file_offset;
5475 }
5476 }
5477 while (loop);
5478
5479 free (included);
5480
5481 return TRUE;
5482
5483 error_return:
5484 if (included != NULL)
5485 free (included);
5486 return FALSE;
5487 }
5488
5489 /* Given an ELF BFD, add symbols to the global hash table as
5490 appropriate. */
5491
5492 bfd_boolean
5493 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5494 {
5495 switch (bfd_get_format (abfd))
5496 {
5497 case bfd_object:
5498 return elf_link_add_object_symbols (abfd, info);
5499 case bfd_archive:
5500 return elf_link_add_archive_symbols (abfd, info);
5501 default:
5502 bfd_set_error (bfd_error_wrong_format);
5503 return FALSE;
5504 }
5505 }
5506 \f
5507 struct hash_codes_info
5508 {
5509 unsigned long *hashcodes;
5510 bfd_boolean error;
5511 };
5512
5513 /* This function will be called though elf_link_hash_traverse to store
5514 all hash value of the exported symbols in an array. */
5515
5516 static bfd_boolean
5517 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5518 {
5519 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5520 const char *name;
5521 unsigned long ha;
5522 char *alc = NULL;
5523
5524 /* Ignore indirect symbols. These are added by the versioning code. */
5525 if (h->dynindx == -1)
5526 return TRUE;
5527
5528 name = h->root.root.string;
5529 if (h->versioned >= versioned)
5530 {
5531 char *p = strchr (name, ELF_VER_CHR);
5532 if (p != NULL)
5533 {
5534 alc = (char *) bfd_malloc (p - name + 1);
5535 if (alc == NULL)
5536 {
5537 inf->error = TRUE;
5538 return FALSE;
5539 }
5540 memcpy (alc, name, p - name);
5541 alc[p - name] = '\0';
5542 name = alc;
5543 }
5544 }
5545
5546 /* Compute the hash value. */
5547 ha = bfd_elf_hash (name);
5548
5549 /* Store the found hash value in the array given as the argument. */
5550 *(inf->hashcodes)++ = ha;
5551
5552 /* And store it in the struct so that we can put it in the hash table
5553 later. */
5554 h->u.elf_hash_value = ha;
5555
5556 if (alc != NULL)
5557 free (alc);
5558
5559 return TRUE;
5560 }
5561
5562 struct collect_gnu_hash_codes
5563 {
5564 bfd *output_bfd;
5565 const struct elf_backend_data *bed;
5566 unsigned long int nsyms;
5567 unsigned long int maskbits;
5568 unsigned long int *hashcodes;
5569 unsigned long int *hashval;
5570 unsigned long int *indx;
5571 unsigned long int *counts;
5572 bfd_vma *bitmask;
5573 bfd_byte *contents;
5574 long int min_dynindx;
5575 unsigned long int bucketcount;
5576 unsigned long int symindx;
5577 long int local_indx;
5578 long int shift1, shift2;
5579 unsigned long int mask;
5580 bfd_boolean error;
5581 };
5582
5583 /* This function will be called though elf_link_hash_traverse to store
5584 all hash value of the exported symbols in an array. */
5585
5586 static bfd_boolean
5587 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5588 {
5589 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5590 const char *name;
5591 unsigned long ha;
5592 char *alc = NULL;
5593
5594 /* Ignore indirect symbols. These are added by the versioning code. */
5595 if (h->dynindx == -1)
5596 return TRUE;
5597
5598 /* Ignore also local symbols and undefined symbols. */
5599 if (! (*s->bed->elf_hash_symbol) (h))
5600 return TRUE;
5601
5602 name = h->root.root.string;
5603 if (h->versioned >= versioned)
5604 {
5605 char *p = strchr (name, ELF_VER_CHR);
5606 if (p != NULL)
5607 {
5608 alc = (char *) bfd_malloc (p - name + 1);
5609 if (alc == NULL)
5610 {
5611 s->error = TRUE;
5612 return FALSE;
5613 }
5614 memcpy (alc, name, p - name);
5615 alc[p - name] = '\0';
5616 name = alc;
5617 }
5618 }
5619
5620 /* Compute the hash value. */
5621 ha = bfd_elf_gnu_hash (name);
5622
5623 /* Store the found hash value in the array for compute_bucket_count,
5624 and also for .dynsym reordering purposes. */
5625 s->hashcodes[s->nsyms] = ha;
5626 s->hashval[h->dynindx] = ha;
5627 ++s->nsyms;
5628 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5629 s->min_dynindx = h->dynindx;
5630
5631 if (alc != NULL)
5632 free (alc);
5633
5634 return TRUE;
5635 }
5636
5637 /* This function will be called though elf_link_hash_traverse to do
5638 final dynaminc symbol renumbering. */
5639
5640 static bfd_boolean
5641 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5642 {
5643 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5644 unsigned long int bucket;
5645 unsigned long int val;
5646
5647 /* Ignore indirect symbols. */
5648 if (h->dynindx == -1)
5649 return TRUE;
5650
5651 /* Ignore also local symbols and undefined symbols. */
5652 if (! (*s->bed->elf_hash_symbol) (h))
5653 {
5654 if (h->dynindx >= s->min_dynindx)
5655 h->dynindx = s->local_indx++;
5656 return TRUE;
5657 }
5658
5659 bucket = s->hashval[h->dynindx] % s->bucketcount;
5660 val = (s->hashval[h->dynindx] >> s->shift1)
5661 & ((s->maskbits >> s->shift1) - 1);
5662 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5663 s->bitmask[val]
5664 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5665 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5666 if (s->counts[bucket] == 1)
5667 /* Last element terminates the chain. */
5668 val |= 1;
5669 bfd_put_32 (s->output_bfd, val,
5670 s->contents + (s->indx[bucket] - s->symindx) * 4);
5671 --s->counts[bucket];
5672 h->dynindx = s->indx[bucket]++;
5673 return TRUE;
5674 }
5675
5676 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5677
5678 bfd_boolean
5679 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5680 {
5681 return !(h->forced_local
5682 || h->root.type == bfd_link_hash_undefined
5683 || h->root.type == bfd_link_hash_undefweak
5684 || ((h->root.type == bfd_link_hash_defined
5685 || h->root.type == bfd_link_hash_defweak)
5686 && h->root.u.def.section->output_section == NULL));
5687 }
5688
5689 /* Array used to determine the number of hash table buckets to use
5690 based on the number of symbols there are. If there are fewer than
5691 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5692 fewer than 37 we use 17 buckets, and so forth. We never use more
5693 than 32771 buckets. */
5694
5695 static const size_t elf_buckets[] =
5696 {
5697 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5698 16411, 32771, 0
5699 };
5700
5701 /* Compute bucket count for hashing table. We do not use a static set
5702 of possible tables sizes anymore. Instead we determine for all
5703 possible reasonable sizes of the table the outcome (i.e., the
5704 number of collisions etc) and choose the best solution. The
5705 weighting functions are not too simple to allow the table to grow
5706 without bounds. Instead one of the weighting factors is the size.
5707 Therefore the result is always a good payoff between few collisions
5708 (= short chain lengths) and table size. */
5709 static size_t
5710 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5711 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5712 unsigned long int nsyms,
5713 int gnu_hash)
5714 {
5715 size_t best_size = 0;
5716 unsigned long int i;
5717
5718 /* We have a problem here. The following code to optimize the table
5719 size requires an integer type with more the 32 bits. If
5720 BFD_HOST_U_64_BIT is set we know about such a type. */
5721 #ifdef BFD_HOST_U_64_BIT
5722 if (info->optimize)
5723 {
5724 size_t minsize;
5725 size_t maxsize;
5726 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5727 bfd *dynobj = elf_hash_table (info)->dynobj;
5728 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5729 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5730 unsigned long int *counts;
5731 bfd_size_type amt;
5732 unsigned int no_improvement_count = 0;
5733
5734 /* Possible optimization parameters: if we have NSYMS symbols we say
5735 that the hashing table must at least have NSYMS/4 and at most
5736 2*NSYMS buckets. */
5737 minsize = nsyms / 4;
5738 if (minsize == 0)
5739 minsize = 1;
5740 best_size = maxsize = nsyms * 2;
5741 if (gnu_hash)
5742 {
5743 if (minsize < 2)
5744 minsize = 2;
5745 if ((best_size & 31) == 0)
5746 ++best_size;
5747 }
5748
5749 /* Create array where we count the collisions in. We must use bfd_malloc
5750 since the size could be large. */
5751 amt = maxsize;
5752 amt *= sizeof (unsigned long int);
5753 counts = (unsigned long int *) bfd_malloc (amt);
5754 if (counts == NULL)
5755 return 0;
5756
5757 /* Compute the "optimal" size for the hash table. The criteria is a
5758 minimal chain length. The minor criteria is (of course) the size
5759 of the table. */
5760 for (i = minsize; i < maxsize; ++i)
5761 {
5762 /* Walk through the array of hashcodes and count the collisions. */
5763 BFD_HOST_U_64_BIT max;
5764 unsigned long int j;
5765 unsigned long int fact;
5766
5767 if (gnu_hash && (i & 31) == 0)
5768 continue;
5769
5770 memset (counts, '\0', i * sizeof (unsigned long int));
5771
5772 /* Determine how often each hash bucket is used. */
5773 for (j = 0; j < nsyms; ++j)
5774 ++counts[hashcodes[j] % i];
5775
5776 /* For the weight function we need some information about the
5777 pagesize on the target. This is information need not be 100%
5778 accurate. Since this information is not available (so far) we
5779 define it here to a reasonable default value. If it is crucial
5780 to have a better value some day simply define this value. */
5781 # ifndef BFD_TARGET_PAGESIZE
5782 # define BFD_TARGET_PAGESIZE (4096)
5783 # endif
5784
5785 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5786 and the chains. */
5787 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5788
5789 # if 1
5790 /* Variant 1: optimize for short chains. We add the squares
5791 of all the chain lengths (which favors many small chain
5792 over a few long chains). */
5793 for (j = 0; j < i; ++j)
5794 max += counts[j] * counts[j];
5795
5796 /* This adds penalties for the overall size of the table. */
5797 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5798 max *= fact * fact;
5799 # else
5800 /* Variant 2: Optimize a lot more for small table. Here we
5801 also add squares of the size but we also add penalties for
5802 empty slots (the +1 term). */
5803 for (j = 0; j < i; ++j)
5804 max += (1 + counts[j]) * (1 + counts[j]);
5805
5806 /* The overall size of the table is considered, but not as
5807 strong as in variant 1, where it is squared. */
5808 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5809 max *= fact;
5810 # endif
5811
5812 /* Compare with current best results. */
5813 if (max < best_chlen)
5814 {
5815 best_chlen = max;
5816 best_size = i;
5817 no_improvement_count = 0;
5818 }
5819 /* PR 11843: Avoid futile long searches for the best bucket size
5820 when there are a large number of symbols. */
5821 else if (++no_improvement_count == 100)
5822 break;
5823 }
5824
5825 free (counts);
5826 }
5827 else
5828 #endif /* defined (BFD_HOST_U_64_BIT) */
5829 {
5830 /* This is the fallback solution if no 64bit type is available or if we
5831 are not supposed to spend much time on optimizations. We select the
5832 bucket count using a fixed set of numbers. */
5833 for (i = 0; elf_buckets[i] != 0; i++)
5834 {
5835 best_size = elf_buckets[i];
5836 if (nsyms < elf_buckets[i + 1])
5837 break;
5838 }
5839 if (gnu_hash && best_size < 2)
5840 best_size = 2;
5841 }
5842
5843 return best_size;
5844 }
5845
5846 /* Size any SHT_GROUP section for ld -r. */
5847
5848 bfd_boolean
5849 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5850 {
5851 bfd *ibfd;
5852
5853 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5854 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5855 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5856 return FALSE;
5857 return TRUE;
5858 }
5859
5860 /* Set a default stack segment size. The value in INFO wins. If it
5861 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5862 undefined it is initialized. */
5863
5864 bfd_boolean
5865 bfd_elf_stack_segment_size (bfd *output_bfd,
5866 struct bfd_link_info *info,
5867 const char *legacy_symbol,
5868 bfd_vma default_size)
5869 {
5870 struct elf_link_hash_entry *h = NULL;
5871
5872 /* Look for legacy symbol. */
5873 if (legacy_symbol)
5874 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5875 FALSE, FALSE, FALSE);
5876 if (h && (h->root.type == bfd_link_hash_defined
5877 || h->root.type == bfd_link_hash_defweak)
5878 && h->def_regular
5879 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5880 {
5881 /* The symbol has no type if specified on the command line. */
5882 h->type = STT_OBJECT;
5883 if (info->stacksize)
5884 /* xgettext:c-format */
5885 _bfd_error_handler (_("%B: stack size specified and %s set"),
5886 output_bfd, legacy_symbol);
5887 else if (h->root.u.def.section != bfd_abs_section_ptr)
5888 /* xgettext:c-format */
5889 _bfd_error_handler (_("%B: %s not absolute"),
5890 output_bfd, legacy_symbol);
5891 else
5892 info->stacksize = h->root.u.def.value;
5893 }
5894
5895 if (!info->stacksize)
5896 /* If the user didn't set a size, or explicitly inhibit the
5897 size, set it now. */
5898 info->stacksize = default_size;
5899
5900 /* Provide the legacy symbol, if it is referenced. */
5901 if (h && (h->root.type == bfd_link_hash_undefined
5902 || h->root.type == bfd_link_hash_undefweak))
5903 {
5904 struct bfd_link_hash_entry *bh = NULL;
5905
5906 if (!(_bfd_generic_link_add_one_symbol
5907 (info, output_bfd, legacy_symbol,
5908 BSF_GLOBAL, bfd_abs_section_ptr,
5909 info->stacksize >= 0 ? info->stacksize : 0,
5910 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5911 return FALSE;
5912
5913 h = (struct elf_link_hash_entry *) bh;
5914 h->def_regular = 1;
5915 h->type = STT_OBJECT;
5916 }
5917
5918 return TRUE;
5919 }
5920
5921 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5922
5923 struct elf_gc_sweep_symbol_info
5924 {
5925 struct bfd_link_info *info;
5926 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5927 bfd_boolean);
5928 };
5929
5930 static bfd_boolean
5931 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5932 {
5933 if (!h->mark
5934 && (((h->root.type == bfd_link_hash_defined
5935 || h->root.type == bfd_link_hash_defweak)
5936 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5937 && h->root.u.def.section->gc_mark))
5938 || h->root.type == bfd_link_hash_undefined
5939 || h->root.type == bfd_link_hash_undefweak))
5940 {
5941 struct elf_gc_sweep_symbol_info *inf;
5942
5943 inf = (struct elf_gc_sweep_symbol_info *) data;
5944 (*inf->hide_symbol) (inf->info, h, TRUE);
5945 h->def_regular = 0;
5946 h->ref_regular = 0;
5947 h->ref_regular_nonweak = 0;
5948 }
5949
5950 return TRUE;
5951 }
5952
5953 /* Set up the sizes and contents of the ELF dynamic sections. This is
5954 called by the ELF linker emulation before_allocation routine. We
5955 must set the sizes of the sections before the linker sets the
5956 addresses of the various sections. */
5957
5958 bfd_boolean
5959 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5960 const char *soname,
5961 const char *rpath,
5962 const char *filter_shlib,
5963 const char *audit,
5964 const char *depaudit,
5965 const char * const *auxiliary_filters,
5966 struct bfd_link_info *info,
5967 asection **sinterpptr)
5968 {
5969 bfd *dynobj;
5970 const struct elf_backend_data *bed;
5971
5972 *sinterpptr = NULL;
5973
5974 if (!is_elf_hash_table (info->hash))
5975 return TRUE;
5976
5977 dynobj = elf_hash_table (info)->dynobj;
5978
5979 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5980 {
5981 struct bfd_elf_version_tree *verdefs;
5982 struct elf_info_failed asvinfo;
5983 struct bfd_elf_version_tree *t;
5984 struct bfd_elf_version_expr *d;
5985 struct elf_info_failed eif;
5986 bfd_boolean all_defined;
5987 asection *s;
5988 size_t soname_indx;
5989
5990 eif.info = info;
5991 eif.failed = FALSE;
5992
5993 /* If we are supposed to export all symbols into the dynamic symbol
5994 table (this is not the normal case), then do so. */
5995 if (info->export_dynamic
5996 || (bfd_link_executable (info) && info->dynamic))
5997 {
5998 elf_link_hash_traverse (elf_hash_table (info),
5999 _bfd_elf_export_symbol,
6000 &eif);
6001 if (eif.failed)
6002 return FALSE;
6003 }
6004
6005 if (soname != NULL)
6006 {
6007 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6008 soname, TRUE);
6009 if (soname_indx == (size_t) -1
6010 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6011 return FALSE;
6012 }
6013 else
6014 soname_indx = (size_t) -1;
6015
6016 /* Make all global versions with definition. */
6017 for (t = info->version_info; t != NULL; t = t->next)
6018 for (d = t->globals.list; d != NULL; d = d->next)
6019 if (!d->symver && d->literal)
6020 {
6021 const char *verstr, *name;
6022 size_t namelen, verlen, newlen;
6023 char *newname, *p, leading_char;
6024 struct elf_link_hash_entry *newh;
6025
6026 leading_char = bfd_get_symbol_leading_char (output_bfd);
6027 name = d->pattern;
6028 namelen = strlen (name) + (leading_char != '\0');
6029 verstr = t->name;
6030 verlen = strlen (verstr);
6031 newlen = namelen + verlen + 3;
6032
6033 newname = (char *) bfd_malloc (newlen);
6034 if (newname == NULL)
6035 return FALSE;
6036 newname[0] = leading_char;
6037 memcpy (newname + (leading_char != '\0'), name, namelen);
6038
6039 /* Check the hidden versioned definition. */
6040 p = newname + namelen;
6041 *p++ = ELF_VER_CHR;
6042 memcpy (p, verstr, verlen + 1);
6043 newh = elf_link_hash_lookup (elf_hash_table (info),
6044 newname, FALSE, FALSE,
6045 FALSE);
6046 if (newh == NULL
6047 || (newh->root.type != bfd_link_hash_defined
6048 && newh->root.type != bfd_link_hash_defweak))
6049 {
6050 /* Check the default versioned definition. */
6051 *p++ = ELF_VER_CHR;
6052 memcpy (p, verstr, verlen + 1);
6053 newh = elf_link_hash_lookup (elf_hash_table (info),
6054 newname, FALSE, FALSE,
6055 FALSE);
6056 }
6057 free (newname);
6058
6059 /* Mark this version if there is a definition and it is
6060 not defined in a shared object. */
6061 if (newh != NULL
6062 && !newh->def_dynamic
6063 && (newh->root.type == bfd_link_hash_defined
6064 || newh->root.type == bfd_link_hash_defweak))
6065 d->symver = 1;
6066 }
6067
6068 /* Attach all the symbols to their version information. */
6069 asvinfo.info = info;
6070 asvinfo.failed = FALSE;
6071
6072 elf_link_hash_traverse (elf_hash_table (info),
6073 _bfd_elf_link_assign_sym_version,
6074 &asvinfo);
6075 if (asvinfo.failed)
6076 return FALSE;
6077
6078 if (!info->allow_undefined_version)
6079 {
6080 /* Check if all global versions have a definition. */
6081 all_defined = TRUE;
6082 for (t = info->version_info; t != NULL; t = t->next)
6083 for (d = t->globals.list; d != NULL; d = d->next)
6084 if (d->literal && !d->symver && !d->script)
6085 {
6086 _bfd_error_handler
6087 (_("%s: undefined version: %s"),
6088 d->pattern, t->name);
6089 all_defined = FALSE;
6090 }
6091
6092 if (!all_defined)
6093 {
6094 bfd_set_error (bfd_error_bad_value);
6095 return FALSE;
6096 }
6097 }
6098
6099 /* Set up the version definition section. */
6100 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6101 BFD_ASSERT (s != NULL);
6102
6103 /* We may have created additional version definitions if we are
6104 just linking a regular application. */
6105 verdefs = info->version_info;
6106
6107 /* Skip anonymous version tag. */
6108 if (verdefs != NULL && verdefs->vernum == 0)
6109 verdefs = verdefs->next;
6110
6111 if (verdefs == NULL && !info->create_default_symver)
6112 s->flags |= SEC_EXCLUDE;
6113 else
6114 {
6115 unsigned int cdefs;
6116 bfd_size_type size;
6117 bfd_byte *p;
6118 Elf_Internal_Verdef def;
6119 Elf_Internal_Verdaux defaux;
6120 struct bfd_link_hash_entry *bh;
6121 struct elf_link_hash_entry *h;
6122 const char *name;
6123
6124 cdefs = 0;
6125 size = 0;
6126
6127 /* Make space for the base version. */
6128 size += sizeof (Elf_External_Verdef);
6129 size += sizeof (Elf_External_Verdaux);
6130 ++cdefs;
6131
6132 /* Make space for the default version. */
6133 if (info->create_default_symver)
6134 {
6135 size += sizeof (Elf_External_Verdef);
6136 ++cdefs;
6137 }
6138
6139 for (t = verdefs; t != NULL; t = t->next)
6140 {
6141 struct bfd_elf_version_deps *n;
6142
6143 /* Don't emit base version twice. */
6144 if (t->vernum == 0)
6145 continue;
6146
6147 size += sizeof (Elf_External_Verdef);
6148 size += sizeof (Elf_External_Verdaux);
6149 ++cdefs;
6150
6151 for (n = t->deps; n != NULL; n = n->next)
6152 size += sizeof (Elf_External_Verdaux);
6153 }
6154
6155 s->size = size;
6156 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6157 if (s->contents == NULL && s->size != 0)
6158 return FALSE;
6159
6160 /* Fill in the version definition section. */
6161
6162 p = s->contents;
6163
6164 def.vd_version = VER_DEF_CURRENT;
6165 def.vd_flags = VER_FLG_BASE;
6166 def.vd_ndx = 1;
6167 def.vd_cnt = 1;
6168 if (info->create_default_symver)
6169 {
6170 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6171 def.vd_next = sizeof (Elf_External_Verdef);
6172 }
6173 else
6174 {
6175 def.vd_aux = sizeof (Elf_External_Verdef);
6176 def.vd_next = (sizeof (Elf_External_Verdef)
6177 + sizeof (Elf_External_Verdaux));
6178 }
6179
6180 if (soname_indx != (size_t) -1)
6181 {
6182 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6183 soname_indx);
6184 def.vd_hash = bfd_elf_hash (soname);
6185 defaux.vda_name = soname_indx;
6186 name = soname;
6187 }
6188 else
6189 {
6190 size_t indx;
6191
6192 name = lbasename (output_bfd->filename);
6193 def.vd_hash = bfd_elf_hash (name);
6194 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6195 name, FALSE);
6196 if (indx == (size_t) -1)
6197 return FALSE;
6198 defaux.vda_name = indx;
6199 }
6200 defaux.vda_next = 0;
6201
6202 _bfd_elf_swap_verdef_out (output_bfd, &def,
6203 (Elf_External_Verdef *) p);
6204 p += sizeof (Elf_External_Verdef);
6205 if (info->create_default_symver)
6206 {
6207 /* Add a symbol representing this version. */
6208 bh = NULL;
6209 if (! (_bfd_generic_link_add_one_symbol
6210 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6211 0, NULL, FALSE,
6212 get_elf_backend_data (dynobj)->collect, &bh)))
6213 return FALSE;
6214 h = (struct elf_link_hash_entry *) bh;
6215 h->non_elf = 0;
6216 h->def_regular = 1;
6217 h->type = STT_OBJECT;
6218 h->verinfo.vertree = NULL;
6219
6220 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6221 return FALSE;
6222
6223 /* Create a duplicate of the base version with the same
6224 aux block, but different flags. */
6225 def.vd_flags = 0;
6226 def.vd_ndx = 2;
6227 def.vd_aux = sizeof (Elf_External_Verdef);
6228 if (verdefs)
6229 def.vd_next = (sizeof (Elf_External_Verdef)
6230 + sizeof (Elf_External_Verdaux));
6231 else
6232 def.vd_next = 0;
6233 _bfd_elf_swap_verdef_out (output_bfd, &def,
6234 (Elf_External_Verdef *) p);
6235 p += sizeof (Elf_External_Verdef);
6236 }
6237 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6238 (Elf_External_Verdaux *) p);
6239 p += sizeof (Elf_External_Verdaux);
6240
6241 for (t = verdefs; t != NULL; t = t->next)
6242 {
6243 unsigned int cdeps;
6244 struct bfd_elf_version_deps *n;
6245
6246 /* Don't emit the base version twice. */
6247 if (t->vernum == 0)
6248 continue;
6249
6250 cdeps = 0;
6251 for (n = t->deps; n != NULL; n = n->next)
6252 ++cdeps;
6253
6254 /* Add a symbol representing this version. */
6255 bh = NULL;
6256 if (! (_bfd_generic_link_add_one_symbol
6257 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6258 0, NULL, FALSE,
6259 get_elf_backend_data (dynobj)->collect, &bh)))
6260 return FALSE;
6261 h = (struct elf_link_hash_entry *) bh;
6262 h->non_elf = 0;
6263 h->def_regular = 1;
6264 h->type = STT_OBJECT;
6265 h->verinfo.vertree = t;
6266
6267 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6268 return FALSE;
6269
6270 def.vd_version = VER_DEF_CURRENT;
6271 def.vd_flags = 0;
6272 if (t->globals.list == NULL
6273 && t->locals.list == NULL
6274 && ! t->used)
6275 def.vd_flags |= VER_FLG_WEAK;
6276 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6277 def.vd_cnt = cdeps + 1;
6278 def.vd_hash = bfd_elf_hash (t->name);
6279 def.vd_aux = sizeof (Elf_External_Verdef);
6280 def.vd_next = 0;
6281
6282 /* If a basever node is next, it *must* be the last node in
6283 the chain, otherwise Verdef construction breaks. */
6284 if (t->next != NULL && t->next->vernum == 0)
6285 BFD_ASSERT (t->next->next == NULL);
6286
6287 if (t->next != NULL && t->next->vernum != 0)
6288 def.vd_next = (sizeof (Elf_External_Verdef)
6289 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6290
6291 _bfd_elf_swap_verdef_out (output_bfd, &def,
6292 (Elf_External_Verdef *) p);
6293 p += sizeof (Elf_External_Verdef);
6294
6295 defaux.vda_name = h->dynstr_index;
6296 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6297 h->dynstr_index);
6298 defaux.vda_next = 0;
6299 if (t->deps != NULL)
6300 defaux.vda_next = sizeof (Elf_External_Verdaux);
6301 t->name_indx = defaux.vda_name;
6302
6303 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6304 (Elf_External_Verdaux *) p);
6305 p += sizeof (Elf_External_Verdaux);
6306
6307 for (n = t->deps; n != NULL; n = n->next)
6308 {
6309 if (n->version_needed == NULL)
6310 {
6311 /* This can happen if there was an error in the
6312 version script. */
6313 defaux.vda_name = 0;
6314 }
6315 else
6316 {
6317 defaux.vda_name = n->version_needed->name_indx;
6318 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6319 defaux.vda_name);
6320 }
6321 if (n->next == NULL)
6322 defaux.vda_next = 0;
6323 else
6324 defaux.vda_next = sizeof (Elf_External_Verdaux);
6325
6326 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6327 (Elf_External_Verdaux *) p);
6328 p += sizeof (Elf_External_Verdaux);
6329 }
6330 }
6331
6332 elf_tdata (output_bfd)->cverdefs = cdefs;
6333 }
6334
6335 /* Work out the size of the version reference section. */
6336
6337 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6338 BFD_ASSERT (s != NULL);
6339 {
6340 struct elf_find_verdep_info sinfo;
6341
6342 sinfo.info = info;
6343 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6344 if (sinfo.vers == 0)
6345 sinfo.vers = 1;
6346 sinfo.failed = FALSE;
6347
6348 elf_link_hash_traverse (elf_hash_table (info),
6349 _bfd_elf_link_find_version_dependencies,
6350 &sinfo);
6351 if (sinfo.failed)
6352 return FALSE;
6353
6354 if (elf_tdata (output_bfd)->verref == NULL)
6355 s->flags |= SEC_EXCLUDE;
6356 else
6357 {
6358 Elf_Internal_Verneed *vn;
6359 unsigned int size;
6360 unsigned int crefs;
6361 bfd_byte *p;
6362
6363 /* Build the version dependency section. */
6364 size = 0;
6365 crefs = 0;
6366 for (vn = elf_tdata (output_bfd)->verref;
6367 vn != NULL;
6368 vn = vn->vn_nextref)
6369 {
6370 Elf_Internal_Vernaux *a;
6371
6372 size += sizeof (Elf_External_Verneed);
6373 ++crefs;
6374 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6375 size += sizeof (Elf_External_Vernaux);
6376 }
6377
6378 s->size = size;
6379 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6380 if (s->contents == NULL)
6381 return FALSE;
6382
6383 p = s->contents;
6384 for (vn = elf_tdata (output_bfd)->verref;
6385 vn != NULL;
6386 vn = vn->vn_nextref)
6387 {
6388 unsigned int caux;
6389 Elf_Internal_Vernaux *a;
6390 size_t indx;
6391
6392 caux = 0;
6393 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6394 ++caux;
6395
6396 vn->vn_version = VER_NEED_CURRENT;
6397 vn->vn_cnt = caux;
6398 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6399 elf_dt_name (vn->vn_bfd) != NULL
6400 ? elf_dt_name (vn->vn_bfd)
6401 : lbasename (vn->vn_bfd->filename),
6402 FALSE);
6403 if (indx == (size_t) -1)
6404 return FALSE;
6405 vn->vn_file = indx;
6406 vn->vn_aux = sizeof (Elf_External_Verneed);
6407 if (vn->vn_nextref == NULL)
6408 vn->vn_next = 0;
6409 else
6410 vn->vn_next = (sizeof (Elf_External_Verneed)
6411 + caux * sizeof (Elf_External_Vernaux));
6412
6413 _bfd_elf_swap_verneed_out (output_bfd, vn,
6414 (Elf_External_Verneed *) p);
6415 p += sizeof (Elf_External_Verneed);
6416
6417 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6418 {
6419 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6420 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6421 a->vna_nodename, FALSE);
6422 if (indx == (size_t) -1)
6423 return FALSE;
6424 a->vna_name = indx;
6425 if (a->vna_nextptr == NULL)
6426 a->vna_next = 0;
6427 else
6428 a->vna_next = sizeof (Elf_External_Vernaux);
6429
6430 _bfd_elf_swap_vernaux_out (output_bfd, a,
6431 (Elf_External_Vernaux *) p);
6432 p += sizeof (Elf_External_Vernaux);
6433 }
6434 }
6435
6436 elf_tdata (output_bfd)->cverrefs = crefs;
6437 }
6438 }
6439 }
6440
6441 bed = get_elf_backend_data (output_bfd);
6442
6443 if (info->gc_sections && bed->can_gc_sections)
6444 {
6445 struct elf_gc_sweep_symbol_info sweep_info;
6446 unsigned long section_sym_count;
6447
6448 /* Remove the symbols that were in the swept sections from the
6449 dynamic symbol table. GCFIXME: Anyone know how to get them
6450 out of the static symbol table as well? */
6451 sweep_info.info = info;
6452 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6453 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6454 &sweep_info);
6455
6456 _bfd_elf_link_renumber_dynsyms (output_bfd, info, &section_sym_count);
6457 }
6458
6459 /* Any syms created from now on start with -1 in
6460 got.refcount/offset and plt.refcount/offset. */
6461 elf_hash_table (info)->init_got_refcount
6462 = elf_hash_table (info)->init_got_offset;
6463 elf_hash_table (info)->init_plt_refcount
6464 = elf_hash_table (info)->init_plt_offset;
6465
6466 if (bfd_link_relocatable (info)
6467 && !_bfd_elf_size_group_sections (info))
6468 return FALSE;
6469
6470 /* The backend may have to create some sections regardless of whether
6471 we're dynamic or not. */
6472 if (bed->elf_backend_always_size_sections
6473 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6474 return FALSE;
6475
6476 /* Determine any GNU_STACK segment requirements, after the backend
6477 has had a chance to set a default segment size. */
6478 if (info->execstack)
6479 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6480 else if (info->noexecstack)
6481 elf_stack_flags (output_bfd) = PF_R | PF_W;
6482 else
6483 {
6484 bfd *inputobj;
6485 asection *notesec = NULL;
6486 int exec = 0;
6487
6488 for (inputobj = info->input_bfds;
6489 inputobj;
6490 inputobj = inputobj->link.next)
6491 {
6492 asection *s;
6493
6494 if (inputobj->flags
6495 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6496 continue;
6497 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6498 if (s)
6499 {
6500 if (s->flags & SEC_CODE)
6501 exec = PF_X;
6502 notesec = s;
6503 }
6504 else if (bed->default_execstack)
6505 exec = PF_X;
6506 }
6507 if (notesec || info->stacksize > 0)
6508 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6509 if (notesec && exec && bfd_link_relocatable (info)
6510 && notesec->output_section != bfd_abs_section_ptr)
6511 notesec->output_section->flags |= SEC_CODE;
6512 }
6513
6514 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6515 {
6516 struct elf_info_failed eif;
6517 struct elf_link_hash_entry *h;
6518 asection *dynstr;
6519 asection *s;
6520
6521 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6522 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6523
6524 if (info->symbolic)
6525 {
6526 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6527 return FALSE;
6528 info->flags |= DF_SYMBOLIC;
6529 }
6530
6531 if (rpath != NULL)
6532 {
6533 size_t indx;
6534 bfd_vma tag;
6535
6536 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6537 TRUE);
6538 if (indx == (size_t) -1)
6539 return FALSE;
6540
6541 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6542 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6543 return FALSE;
6544 }
6545
6546 if (filter_shlib != NULL)
6547 {
6548 size_t indx;
6549
6550 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6551 filter_shlib, TRUE);
6552 if (indx == (size_t) -1
6553 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6554 return FALSE;
6555 }
6556
6557 if (auxiliary_filters != NULL)
6558 {
6559 const char * const *p;
6560
6561 for (p = auxiliary_filters; *p != NULL; p++)
6562 {
6563 size_t indx;
6564
6565 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6566 *p, TRUE);
6567 if (indx == (size_t) -1
6568 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6569 return FALSE;
6570 }
6571 }
6572
6573 if (audit != NULL)
6574 {
6575 size_t indx;
6576
6577 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6578 TRUE);
6579 if (indx == (size_t) -1
6580 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6581 return FALSE;
6582 }
6583
6584 if (depaudit != NULL)
6585 {
6586 size_t indx;
6587
6588 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6589 TRUE);
6590 if (indx == (size_t) -1
6591 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6592 return FALSE;
6593 }
6594
6595 eif.info = info;
6596 eif.failed = FALSE;
6597
6598 /* Find all symbols which were defined in a dynamic object and make
6599 the backend pick a reasonable value for them. */
6600 elf_link_hash_traverse (elf_hash_table (info),
6601 _bfd_elf_adjust_dynamic_symbol,
6602 &eif);
6603 if (eif.failed)
6604 return FALSE;
6605
6606 /* Add some entries to the .dynamic section. We fill in some of the
6607 values later, in bfd_elf_final_link, but we must add the entries
6608 now so that we know the final size of the .dynamic section. */
6609
6610 /* If there are initialization and/or finalization functions to
6611 call then add the corresponding DT_INIT/DT_FINI entries. */
6612 h = (info->init_function
6613 ? elf_link_hash_lookup (elf_hash_table (info),
6614 info->init_function, FALSE,
6615 FALSE, FALSE)
6616 : NULL);
6617 if (h != NULL
6618 && (h->ref_regular
6619 || h->def_regular))
6620 {
6621 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6622 return FALSE;
6623 }
6624 h = (info->fini_function
6625 ? elf_link_hash_lookup (elf_hash_table (info),
6626 info->fini_function, FALSE,
6627 FALSE, FALSE)
6628 : NULL);
6629 if (h != NULL
6630 && (h->ref_regular
6631 || h->def_regular))
6632 {
6633 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6634 return FALSE;
6635 }
6636
6637 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6638 if (s != NULL && s->linker_has_input)
6639 {
6640 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6641 if (! bfd_link_executable (info))
6642 {
6643 bfd *sub;
6644 asection *o;
6645
6646 for (sub = info->input_bfds; sub != NULL;
6647 sub = sub->link.next)
6648 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6649 for (o = sub->sections; o != NULL; o = o->next)
6650 if (elf_section_data (o)->this_hdr.sh_type
6651 == SHT_PREINIT_ARRAY)
6652 {
6653 _bfd_error_handler
6654 (_("%B: .preinit_array section is not allowed in DSO"),
6655 sub);
6656 break;
6657 }
6658
6659 bfd_set_error (bfd_error_nonrepresentable_section);
6660 return FALSE;
6661 }
6662
6663 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6664 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6665 return FALSE;
6666 }
6667 s = bfd_get_section_by_name (output_bfd, ".init_array");
6668 if (s != NULL && s->linker_has_input)
6669 {
6670 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6671 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6672 return FALSE;
6673 }
6674 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6675 if (s != NULL && s->linker_has_input)
6676 {
6677 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6678 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6679 return FALSE;
6680 }
6681
6682 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6683 /* If .dynstr is excluded from the link, we don't want any of
6684 these tags. Strictly, we should be checking each section
6685 individually; This quick check covers for the case where
6686 someone does a /DISCARD/ : { *(*) }. */
6687 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6688 {
6689 bfd_size_type strsize;
6690
6691 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6692 if ((info->emit_hash
6693 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6694 || (info->emit_gnu_hash
6695 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6696 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6697 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6698 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6699 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6700 bed->s->sizeof_sym))
6701 return FALSE;
6702 }
6703 }
6704
6705 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6706 return FALSE;
6707
6708 /* The backend must work out the sizes of all the other dynamic
6709 sections. */
6710 if (dynobj != NULL
6711 && bed->elf_backend_size_dynamic_sections != NULL
6712 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6713 return FALSE;
6714
6715 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6716 {
6717 unsigned long section_sym_count;
6718
6719 if (elf_tdata (output_bfd)->cverdefs)
6720 {
6721 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6722
6723 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6724 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6725 return FALSE;
6726 }
6727
6728 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6729 {
6730 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6731 return FALSE;
6732 }
6733 else if (info->flags & DF_BIND_NOW)
6734 {
6735 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6736 return FALSE;
6737 }
6738
6739 if (info->flags_1)
6740 {
6741 if (bfd_link_executable (info))
6742 info->flags_1 &= ~ (DF_1_INITFIRST
6743 | DF_1_NODELETE
6744 | DF_1_NOOPEN);
6745 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6746 return FALSE;
6747 }
6748
6749 if (elf_tdata (output_bfd)->cverrefs)
6750 {
6751 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6752
6753 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6754 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6755 return FALSE;
6756 }
6757
6758 if ((elf_tdata (output_bfd)->cverrefs == 0
6759 && elf_tdata (output_bfd)->cverdefs == 0)
6760 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6761 &section_sym_count) == 0)
6762 {
6763 asection *s;
6764
6765 s = bfd_get_linker_section (dynobj, ".gnu.version");
6766 s->flags |= SEC_EXCLUDE;
6767 }
6768 }
6769 return TRUE;
6770 }
6771
6772 /* Find the first non-excluded output section. We'll use its
6773 section symbol for some emitted relocs. */
6774 void
6775 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6776 {
6777 asection *s;
6778
6779 for (s = output_bfd->sections; s != NULL; s = s->next)
6780 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6781 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6782 {
6783 elf_hash_table (info)->text_index_section = s;
6784 break;
6785 }
6786 }
6787
6788 /* Find two non-excluded output sections, one for code, one for data.
6789 We'll use their section symbols for some emitted relocs. */
6790 void
6791 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6792 {
6793 asection *s;
6794
6795 /* Data first, since setting text_index_section changes
6796 _bfd_elf_link_omit_section_dynsym. */
6797 for (s = output_bfd->sections; s != NULL; s = s->next)
6798 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6799 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6800 {
6801 elf_hash_table (info)->data_index_section = s;
6802 break;
6803 }
6804
6805 for (s = output_bfd->sections; s != NULL; s = s->next)
6806 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6807 == (SEC_ALLOC | SEC_READONLY))
6808 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6809 {
6810 elf_hash_table (info)->text_index_section = s;
6811 break;
6812 }
6813
6814 if (elf_hash_table (info)->text_index_section == NULL)
6815 elf_hash_table (info)->text_index_section
6816 = elf_hash_table (info)->data_index_section;
6817 }
6818
6819 bfd_boolean
6820 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6821 {
6822 const struct elf_backend_data *bed;
6823
6824 if (!is_elf_hash_table (info->hash))
6825 return TRUE;
6826
6827 bed = get_elf_backend_data (output_bfd);
6828 (*bed->elf_backend_init_index_section) (output_bfd, info);
6829
6830 if (elf_hash_table (info)->dynamic_sections_created)
6831 {
6832 bfd *dynobj;
6833 asection *s;
6834 bfd_size_type dynsymcount;
6835 unsigned long section_sym_count;
6836 unsigned int dtagcount;
6837
6838 dynobj = elf_hash_table (info)->dynobj;
6839
6840 /* Assign dynsym indicies. In a shared library we generate a
6841 section symbol for each output section, which come first.
6842 Next come all of the back-end allocated local dynamic syms,
6843 followed by the rest of the global symbols. */
6844
6845 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6846 &section_sym_count);
6847
6848 /* Work out the size of the symbol version section. */
6849 s = bfd_get_linker_section (dynobj, ".gnu.version");
6850 BFD_ASSERT (s != NULL);
6851 if ((s->flags & SEC_EXCLUDE) == 0)
6852 {
6853 s->size = dynsymcount * sizeof (Elf_External_Versym);
6854 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6855 if (s->contents == NULL)
6856 return FALSE;
6857
6858 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6859 return FALSE;
6860 }
6861
6862 /* Set the size of the .dynsym and .hash sections. We counted
6863 the number of dynamic symbols in elf_link_add_object_symbols.
6864 We will build the contents of .dynsym and .hash when we build
6865 the final symbol table, because until then we do not know the
6866 correct value to give the symbols. We built the .dynstr
6867 section as we went along in elf_link_add_object_symbols. */
6868 s = elf_hash_table (info)->dynsym;
6869 BFD_ASSERT (s != NULL);
6870 s->size = dynsymcount * bed->s->sizeof_sym;
6871
6872 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6873 if (s->contents == NULL)
6874 return FALSE;
6875
6876 /* The first entry in .dynsym is a dummy symbol. Clear all the
6877 section syms, in case we don't output them all. */
6878 ++section_sym_count;
6879 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6880
6881 elf_hash_table (info)->bucketcount = 0;
6882
6883 /* Compute the size of the hashing table. As a side effect this
6884 computes the hash values for all the names we export. */
6885 if (info->emit_hash)
6886 {
6887 unsigned long int *hashcodes;
6888 struct hash_codes_info hashinf;
6889 bfd_size_type amt;
6890 unsigned long int nsyms;
6891 size_t bucketcount;
6892 size_t hash_entry_size;
6893
6894 /* Compute the hash values for all exported symbols. At the same
6895 time store the values in an array so that we could use them for
6896 optimizations. */
6897 amt = dynsymcount * sizeof (unsigned long int);
6898 hashcodes = (unsigned long int *) bfd_malloc (amt);
6899 if (hashcodes == NULL)
6900 return FALSE;
6901 hashinf.hashcodes = hashcodes;
6902 hashinf.error = FALSE;
6903
6904 /* Put all hash values in HASHCODES. */
6905 elf_link_hash_traverse (elf_hash_table (info),
6906 elf_collect_hash_codes, &hashinf);
6907 if (hashinf.error)
6908 {
6909 free (hashcodes);
6910 return FALSE;
6911 }
6912
6913 nsyms = hashinf.hashcodes - hashcodes;
6914 bucketcount
6915 = compute_bucket_count (info, hashcodes, nsyms, 0);
6916 free (hashcodes);
6917
6918 if (bucketcount == 0)
6919 return FALSE;
6920
6921 elf_hash_table (info)->bucketcount = bucketcount;
6922
6923 s = bfd_get_linker_section (dynobj, ".hash");
6924 BFD_ASSERT (s != NULL);
6925 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6926 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6927 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6928 if (s->contents == NULL)
6929 return FALSE;
6930
6931 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6932 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6933 s->contents + hash_entry_size);
6934 }
6935
6936 if (info->emit_gnu_hash)
6937 {
6938 size_t i, cnt;
6939 unsigned char *contents;
6940 struct collect_gnu_hash_codes cinfo;
6941 bfd_size_type amt;
6942 size_t bucketcount;
6943
6944 memset (&cinfo, 0, sizeof (cinfo));
6945
6946 /* Compute the hash values for all exported symbols. At the same
6947 time store the values in an array so that we could use them for
6948 optimizations. */
6949 amt = dynsymcount * 2 * sizeof (unsigned long int);
6950 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6951 if (cinfo.hashcodes == NULL)
6952 return FALSE;
6953
6954 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6955 cinfo.min_dynindx = -1;
6956 cinfo.output_bfd = output_bfd;
6957 cinfo.bed = bed;
6958
6959 /* Put all hash values in HASHCODES. */
6960 elf_link_hash_traverse (elf_hash_table (info),
6961 elf_collect_gnu_hash_codes, &cinfo);
6962 if (cinfo.error)
6963 {
6964 free (cinfo.hashcodes);
6965 return FALSE;
6966 }
6967
6968 bucketcount
6969 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6970
6971 if (bucketcount == 0)
6972 {
6973 free (cinfo.hashcodes);
6974 return FALSE;
6975 }
6976
6977 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6978 BFD_ASSERT (s != NULL);
6979
6980 if (cinfo.nsyms == 0)
6981 {
6982 /* Empty .gnu.hash section is special. */
6983 BFD_ASSERT (cinfo.min_dynindx == -1);
6984 free (cinfo.hashcodes);
6985 s->size = 5 * 4 + bed->s->arch_size / 8;
6986 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6987 if (contents == NULL)
6988 return FALSE;
6989 s->contents = contents;
6990 /* 1 empty bucket. */
6991 bfd_put_32 (output_bfd, 1, contents);
6992 /* SYMIDX above the special symbol 0. */
6993 bfd_put_32 (output_bfd, 1, contents + 4);
6994 /* Just one word for bitmask. */
6995 bfd_put_32 (output_bfd, 1, contents + 8);
6996 /* Only hash fn bloom filter. */
6997 bfd_put_32 (output_bfd, 0, contents + 12);
6998 /* No hashes are valid - empty bitmask. */
6999 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7000 /* No hashes in the only bucket. */
7001 bfd_put_32 (output_bfd, 0,
7002 contents + 16 + bed->s->arch_size / 8);
7003 }
7004 else
7005 {
7006 unsigned long int maskwords, maskbitslog2, x;
7007 BFD_ASSERT (cinfo.min_dynindx != -1);
7008
7009 x = cinfo.nsyms;
7010 maskbitslog2 = 1;
7011 while ((x >>= 1) != 0)
7012 ++maskbitslog2;
7013 if (maskbitslog2 < 3)
7014 maskbitslog2 = 5;
7015 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7016 maskbitslog2 = maskbitslog2 + 3;
7017 else
7018 maskbitslog2 = maskbitslog2 + 2;
7019 if (bed->s->arch_size == 64)
7020 {
7021 if (maskbitslog2 == 5)
7022 maskbitslog2 = 6;
7023 cinfo.shift1 = 6;
7024 }
7025 else
7026 cinfo.shift1 = 5;
7027 cinfo.mask = (1 << cinfo.shift1) - 1;
7028 cinfo.shift2 = maskbitslog2;
7029 cinfo.maskbits = 1 << maskbitslog2;
7030 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7031 amt = bucketcount * sizeof (unsigned long int) * 2;
7032 amt += maskwords * sizeof (bfd_vma);
7033 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7034 if (cinfo.bitmask == NULL)
7035 {
7036 free (cinfo.hashcodes);
7037 return FALSE;
7038 }
7039
7040 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7041 cinfo.indx = cinfo.counts + bucketcount;
7042 cinfo.symindx = dynsymcount - cinfo.nsyms;
7043 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7044
7045 /* Determine how often each hash bucket is used. */
7046 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7047 for (i = 0; i < cinfo.nsyms; ++i)
7048 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7049
7050 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7051 if (cinfo.counts[i] != 0)
7052 {
7053 cinfo.indx[i] = cnt;
7054 cnt += cinfo.counts[i];
7055 }
7056 BFD_ASSERT (cnt == dynsymcount);
7057 cinfo.bucketcount = bucketcount;
7058 cinfo.local_indx = cinfo.min_dynindx;
7059
7060 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7061 s->size += cinfo.maskbits / 8;
7062 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7063 if (contents == NULL)
7064 {
7065 free (cinfo.bitmask);
7066 free (cinfo.hashcodes);
7067 return FALSE;
7068 }
7069
7070 s->contents = contents;
7071 bfd_put_32 (output_bfd, bucketcount, contents);
7072 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7073 bfd_put_32 (output_bfd, maskwords, contents + 8);
7074 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7075 contents += 16 + cinfo.maskbits / 8;
7076
7077 for (i = 0; i < bucketcount; ++i)
7078 {
7079 if (cinfo.counts[i] == 0)
7080 bfd_put_32 (output_bfd, 0, contents);
7081 else
7082 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7083 contents += 4;
7084 }
7085
7086 cinfo.contents = contents;
7087
7088 /* Renumber dynamic symbols, populate .gnu.hash section. */
7089 elf_link_hash_traverse (elf_hash_table (info),
7090 elf_renumber_gnu_hash_syms, &cinfo);
7091
7092 contents = s->contents + 16;
7093 for (i = 0; i < maskwords; ++i)
7094 {
7095 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7096 contents);
7097 contents += bed->s->arch_size / 8;
7098 }
7099
7100 free (cinfo.bitmask);
7101 free (cinfo.hashcodes);
7102 }
7103 }
7104
7105 s = bfd_get_linker_section (dynobj, ".dynstr");
7106 BFD_ASSERT (s != NULL);
7107
7108 elf_finalize_dynstr (output_bfd, info);
7109
7110 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7111
7112 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7113 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7114 return FALSE;
7115 }
7116
7117 return TRUE;
7118 }
7119 \f
7120 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7121
7122 static void
7123 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7124 asection *sec)
7125 {
7126 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7127 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7128 }
7129
7130 /* Finish SHF_MERGE section merging. */
7131
7132 bfd_boolean
7133 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7134 {
7135 bfd *ibfd;
7136 asection *sec;
7137
7138 if (!is_elf_hash_table (info->hash))
7139 return FALSE;
7140
7141 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7142 if ((ibfd->flags & DYNAMIC) == 0
7143 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7144 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7145 == get_elf_backend_data (obfd)->s->elfclass))
7146 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7147 if ((sec->flags & SEC_MERGE) != 0
7148 && !bfd_is_abs_section (sec->output_section))
7149 {
7150 struct bfd_elf_section_data *secdata;
7151
7152 secdata = elf_section_data (sec);
7153 if (! _bfd_add_merge_section (obfd,
7154 &elf_hash_table (info)->merge_info,
7155 sec, &secdata->sec_info))
7156 return FALSE;
7157 else if (secdata->sec_info)
7158 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7159 }
7160
7161 if (elf_hash_table (info)->merge_info != NULL)
7162 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7163 merge_sections_remove_hook);
7164 return TRUE;
7165 }
7166
7167 /* Create an entry in an ELF linker hash table. */
7168
7169 struct bfd_hash_entry *
7170 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7171 struct bfd_hash_table *table,
7172 const char *string)
7173 {
7174 /* Allocate the structure if it has not already been allocated by a
7175 subclass. */
7176 if (entry == NULL)
7177 {
7178 entry = (struct bfd_hash_entry *)
7179 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7180 if (entry == NULL)
7181 return entry;
7182 }
7183
7184 /* Call the allocation method of the superclass. */
7185 entry = _bfd_link_hash_newfunc (entry, table, string);
7186 if (entry != NULL)
7187 {
7188 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7189 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7190
7191 /* Set local fields. */
7192 ret->indx = -1;
7193 ret->dynindx = -1;
7194 ret->got = htab->init_got_refcount;
7195 ret->plt = htab->init_plt_refcount;
7196 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7197 - offsetof (struct elf_link_hash_entry, size)));
7198 /* Assume that we have been called by a non-ELF symbol reader.
7199 This flag is then reset by the code which reads an ELF input
7200 file. This ensures that a symbol created by a non-ELF symbol
7201 reader will have the flag set correctly. */
7202 ret->non_elf = 1;
7203 }
7204
7205 return entry;
7206 }
7207
7208 /* Copy data from an indirect symbol to its direct symbol, hiding the
7209 old indirect symbol. Also used for copying flags to a weakdef. */
7210
7211 void
7212 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7213 struct elf_link_hash_entry *dir,
7214 struct elf_link_hash_entry *ind)
7215 {
7216 struct elf_link_hash_table *htab;
7217
7218 /* Copy down any references that we may have already seen to the
7219 symbol which just became indirect. */
7220
7221 if (dir->versioned != versioned_hidden)
7222 dir->ref_dynamic |= ind->ref_dynamic;
7223 dir->ref_regular |= ind->ref_regular;
7224 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7225 dir->non_got_ref |= ind->non_got_ref;
7226 dir->needs_plt |= ind->needs_plt;
7227 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7228
7229 if (ind->root.type != bfd_link_hash_indirect)
7230 return;
7231
7232 /* Copy over the global and procedure linkage table refcount entries.
7233 These may have been already set up by a check_relocs routine. */
7234 htab = elf_hash_table (info);
7235 if (ind->got.refcount > htab->init_got_refcount.refcount)
7236 {
7237 if (dir->got.refcount < 0)
7238 dir->got.refcount = 0;
7239 dir->got.refcount += ind->got.refcount;
7240 ind->got.refcount = htab->init_got_refcount.refcount;
7241 }
7242
7243 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7244 {
7245 if (dir->plt.refcount < 0)
7246 dir->plt.refcount = 0;
7247 dir->plt.refcount += ind->plt.refcount;
7248 ind->plt.refcount = htab->init_plt_refcount.refcount;
7249 }
7250
7251 if (ind->dynindx != -1)
7252 {
7253 if (dir->dynindx != -1)
7254 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7255 dir->dynindx = ind->dynindx;
7256 dir->dynstr_index = ind->dynstr_index;
7257 ind->dynindx = -1;
7258 ind->dynstr_index = 0;
7259 }
7260 }
7261
7262 void
7263 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7264 struct elf_link_hash_entry *h,
7265 bfd_boolean force_local)
7266 {
7267 /* STT_GNU_IFUNC symbol must go through PLT. */
7268 if (h->type != STT_GNU_IFUNC)
7269 {
7270 h->plt = elf_hash_table (info)->init_plt_offset;
7271 h->needs_plt = 0;
7272 }
7273 if (force_local)
7274 {
7275 h->forced_local = 1;
7276 if (h->dynindx != -1)
7277 {
7278 h->dynindx = -1;
7279 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7280 h->dynstr_index);
7281 }
7282 }
7283 }
7284
7285 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7286 caller. */
7287
7288 bfd_boolean
7289 _bfd_elf_link_hash_table_init
7290 (struct elf_link_hash_table *table,
7291 bfd *abfd,
7292 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7293 struct bfd_hash_table *,
7294 const char *),
7295 unsigned int entsize,
7296 enum elf_target_id target_id)
7297 {
7298 bfd_boolean ret;
7299 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7300
7301 table->init_got_refcount.refcount = can_refcount - 1;
7302 table->init_plt_refcount.refcount = can_refcount - 1;
7303 table->init_got_offset.offset = -(bfd_vma) 1;
7304 table->init_plt_offset.offset = -(bfd_vma) 1;
7305 /* The first dynamic symbol is a dummy. */
7306 table->dynsymcount = 1;
7307
7308 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7309
7310 table->root.type = bfd_link_elf_hash_table;
7311 table->hash_table_id = target_id;
7312
7313 return ret;
7314 }
7315
7316 /* Create an ELF linker hash table. */
7317
7318 struct bfd_link_hash_table *
7319 _bfd_elf_link_hash_table_create (bfd *abfd)
7320 {
7321 struct elf_link_hash_table *ret;
7322 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7323
7324 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7325 if (ret == NULL)
7326 return NULL;
7327
7328 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7329 sizeof (struct elf_link_hash_entry),
7330 GENERIC_ELF_DATA))
7331 {
7332 free (ret);
7333 return NULL;
7334 }
7335 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7336
7337 return &ret->root;
7338 }
7339
7340 /* Destroy an ELF linker hash table. */
7341
7342 void
7343 _bfd_elf_link_hash_table_free (bfd *obfd)
7344 {
7345 struct elf_link_hash_table *htab;
7346
7347 htab = (struct elf_link_hash_table *) obfd->link.hash;
7348 if (htab->dynstr != NULL)
7349 _bfd_elf_strtab_free (htab->dynstr);
7350 _bfd_merge_sections_free (htab->merge_info);
7351 _bfd_generic_link_hash_table_free (obfd);
7352 }
7353
7354 /* This is a hook for the ELF emulation code in the generic linker to
7355 tell the backend linker what file name to use for the DT_NEEDED
7356 entry for a dynamic object. */
7357
7358 void
7359 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7360 {
7361 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7362 && bfd_get_format (abfd) == bfd_object)
7363 elf_dt_name (abfd) = name;
7364 }
7365
7366 int
7367 bfd_elf_get_dyn_lib_class (bfd *abfd)
7368 {
7369 int lib_class;
7370 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7371 && bfd_get_format (abfd) == bfd_object)
7372 lib_class = elf_dyn_lib_class (abfd);
7373 else
7374 lib_class = 0;
7375 return lib_class;
7376 }
7377
7378 void
7379 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7380 {
7381 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7382 && bfd_get_format (abfd) == bfd_object)
7383 elf_dyn_lib_class (abfd) = lib_class;
7384 }
7385
7386 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7387 the linker ELF emulation code. */
7388
7389 struct bfd_link_needed_list *
7390 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7391 struct bfd_link_info *info)
7392 {
7393 if (! is_elf_hash_table (info->hash))
7394 return NULL;
7395 return elf_hash_table (info)->needed;
7396 }
7397
7398 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7399 hook for the linker ELF emulation code. */
7400
7401 struct bfd_link_needed_list *
7402 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7403 struct bfd_link_info *info)
7404 {
7405 if (! is_elf_hash_table (info->hash))
7406 return NULL;
7407 return elf_hash_table (info)->runpath;
7408 }
7409
7410 /* Get the name actually used for a dynamic object for a link. This
7411 is the SONAME entry if there is one. Otherwise, it is the string
7412 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7413
7414 const char *
7415 bfd_elf_get_dt_soname (bfd *abfd)
7416 {
7417 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7418 && bfd_get_format (abfd) == bfd_object)
7419 return elf_dt_name (abfd);
7420 return NULL;
7421 }
7422
7423 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7424 the ELF linker emulation code. */
7425
7426 bfd_boolean
7427 bfd_elf_get_bfd_needed_list (bfd *abfd,
7428 struct bfd_link_needed_list **pneeded)
7429 {
7430 asection *s;
7431 bfd_byte *dynbuf = NULL;
7432 unsigned int elfsec;
7433 unsigned long shlink;
7434 bfd_byte *extdyn, *extdynend;
7435 size_t extdynsize;
7436 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7437
7438 *pneeded = NULL;
7439
7440 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7441 || bfd_get_format (abfd) != bfd_object)
7442 return TRUE;
7443
7444 s = bfd_get_section_by_name (abfd, ".dynamic");
7445 if (s == NULL || s->size == 0)
7446 return TRUE;
7447
7448 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7449 goto error_return;
7450
7451 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7452 if (elfsec == SHN_BAD)
7453 goto error_return;
7454
7455 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7456
7457 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7458 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7459
7460 extdyn = dynbuf;
7461 extdynend = extdyn + s->size;
7462 for (; extdyn < extdynend; extdyn += extdynsize)
7463 {
7464 Elf_Internal_Dyn dyn;
7465
7466 (*swap_dyn_in) (abfd, extdyn, &dyn);
7467
7468 if (dyn.d_tag == DT_NULL)
7469 break;
7470
7471 if (dyn.d_tag == DT_NEEDED)
7472 {
7473 const char *string;
7474 struct bfd_link_needed_list *l;
7475 unsigned int tagv = dyn.d_un.d_val;
7476 bfd_size_type amt;
7477
7478 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7479 if (string == NULL)
7480 goto error_return;
7481
7482 amt = sizeof *l;
7483 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7484 if (l == NULL)
7485 goto error_return;
7486
7487 l->by = abfd;
7488 l->name = string;
7489 l->next = *pneeded;
7490 *pneeded = l;
7491 }
7492 }
7493
7494 free (dynbuf);
7495
7496 return TRUE;
7497
7498 error_return:
7499 if (dynbuf != NULL)
7500 free (dynbuf);
7501 return FALSE;
7502 }
7503
7504 struct elf_symbuf_symbol
7505 {
7506 unsigned long st_name; /* Symbol name, index in string tbl */
7507 unsigned char st_info; /* Type and binding attributes */
7508 unsigned char st_other; /* Visibilty, and target specific */
7509 };
7510
7511 struct elf_symbuf_head
7512 {
7513 struct elf_symbuf_symbol *ssym;
7514 size_t count;
7515 unsigned int st_shndx;
7516 };
7517
7518 struct elf_symbol
7519 {
7520 union
7521 {
7522 Elf_Internal_Sym *isym;
7523 struct elf_symbuf_symbol *ssym;
7524 } u;
7525 const char *name;
7526 };
7527
7528 /* Sort references to symbols by ascending section number. */
7529
7530 static int
7531 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7532 {
7533 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7534 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7535
7536 return s1->st_shndx - s2->st_shndx;
7537 }
7538
7539 static int
7540 elf_sym_name_compare (const void *arg1, const void *arg2)
7541 {
7542 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7543 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7544 return strcmp (s1->name, s2->name);
7545 }
7546
7547 static struct elf_symbuf_head *
7548 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7549 {
7550 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7551 struct elf_symbuf_symbol *ssym;
7552 struct elf_symbuf_head *ssymbuf, *ssymhead;
7553 size_t i, shndx_count, total_size;
7554
7555 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7556 if (indbuf == NULL)
7557 return NULL;
7558
7559 for (ind = indbuf, i = 0; i < symcount; i++)
7560 if (isymbuf[i].st_shndx != SHN_UNDEF)
7561 *ind++ = &isymbuf[i];
7562 indbufend = ind;
7563
7564 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7565 elf_sort_elf_symbol);
7566
7567 shndx_count = 0;
7568 if (indbufend > indbuf)
7569 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7570 if (ind[0]->st_shndx != ind[1]->st_shndx)
7571 shndx_count++;
7572
7573 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7574 + (indbufend - indbuf) * sizeof (*ssym));
7575 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7576 if (ssymbuf == NULL)
7577 {
7578 free (indbuf);
7579 return NULL;
7580 }
7581
7582 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7583 ssymbuf->ssym = NULL;
7584 ssymbuf->count = shndx_count;
7585 ssymbuf->st_shndx = 0;
7586 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7587 {
7588 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7589 {
7590 ssymhead++;
7591 ssymhead->ssym = ssym;
7592 ssymhead->count = 0;
7593 ssymhead->st_shndx = (*ind)->st_shndx;
7594 }
7595 ssym->st_name = (*ind)->st_name;
7596 ssym->st_info = (*ind)->st_info;
7597 ssym->st_other = (*ind)->st_other;
7598 ssymhead->count++;
7599 }
7600 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7601 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7602 == total_size));
7603
7604 free (indbuf);
7605 return ssymbuf;
7606 }
7607
7608 /* Check if 2 sections define the same set of local and global
7609 symbols. */
7610
7611 static bfd_boolean
7612 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7613 struct bfd_link_info *info)
7614 {
7615 bfd *bfd1, *bfd2;
7616 const struct elf_backend_data *bed1, *bed2;
7617 Elf_Internal_Shdr *hdr1, *hdr2;
7618 size_t symcount1, symcount2;
7619 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7620 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7621 Elf_Internal_Sym *isym, *isymend;
7622 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7623 size_t count1, count2, i;
7624 unsigned int shndx1, shndx2;
7625 bfd_boolean result;
7626
7627 bfd1 = sec1->owner;
7628 bfd2 = sec2->owner;
7629
7630 /* Both sections have to be in ELF. */
7631 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7632 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7633 return FALSE;
7634
7635 if (elf_section_type (sec1) != elf_section_type (sec2))
7636 return FALSE;
7637
7638 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7639 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7640 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7641 return FALSE;
7642
7643 bed1 = get_elf_backend_data (bfd1);
7644 bed2 = get_elf_backend_data (bfd2);
7645 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7646 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7647 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7648 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7649
7650 if (symcount1 == 0 || symcount2 == 0)
7651 return FALSE;
7652
7653 result = FALSE;
7654 isymbuf1 = NULL;
7655 isymbuf2 = NULL;
7656 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7657 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7658
7659 if (ssymbuf1 == NULL)
7660 {
7661 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7662 NULL, NULL, NULL);
7663 if (isymbuf1 == NULL)
7664 goto done;
7665
7666 if (!info->reduce_memory_overheads)
7667 elf_tdata (bfd1)->symbuf = ssymbuf1
7668 = elf_create_symbuf (symcount1, isymbuf1);
7669 }
7670
7671 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7672 {
7673 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7674 NULL, NULL, NULL);
7675 if (isymbuf2 == NULL)
7676 goto done;
7677
7678 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7679 elf_tdata (bfd2)->symbuf = ssymbuf2
7680 = elf_create_symbuf (symcount2, isymbuf2);
7681 }
7682
7683 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7684 {
7685 /* Optimized faster version. */
7686 size_t lo, hi, mid;
7687 struct elf_symbol *symp;
7688 struct elf_symbuf_symbol *ssym, *ssymend;
7689
7690 lo = 0;
7691 hi = ssymbuf1->count;
7692 ssymbuf1++;
7693 count1 = 0;
7694 while (lo < hi)
7695 {
7696 mid = (lo + hi) / 2;
7697 if (shndx1 < ssymbuf1[mid].st_shndx)
7698 hi = mid;
7699 else if (shndx1 > ssymbuf1[mid].st_shndx)
7700 lo = mid + 1;
7701 else
7702 {
7703 count1 = ssymbuf1[mid].count;
7704 ssymbuf1 += mid;
7705 break;
7706 }
7707 }
7708
7709 lo = 0;
7710 hi = ssymbuf2->count;
7711 ssymbuf2++;
7712 count2 = 0;
7713 while (lo < hi)
7714 {
7715 mid = (lo + hi) / 2;
7716 if (shndx2 < ssymbuf2[mid].st_shndx)
7717 hi = mid;
7718 else if (shndx2 > ssymbuf2[mid].st_shndx)
7719 lo = mid + 1;
7720 else
7721 {
7722 count2 = ssymbuf2[mid].count;
7723 ssymbuf2 += mid;
7724 break;
7725 }
7726 }
7727
7728 if (count1 == 0 || count2 == 0 || count1 != count2)
7729 goto done;
7730
7731 symtable1
7732 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7733 symtable2
7734 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7735 if (symtable1 == NULL || symtable2 == NULL)
7736 goto done;
7737
7738 symp = symtable1;
7739 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7740 ssym < ssymend; ssym++, symp++)
7741 {
7742 symp->u.ssym = ssym;
7743 symp->name = bfd_elf_string_from_elf_section (bfd1,
7744 hdr1->sh_link,
7745 ssym->st_name);
7746 }
7747
7748 symp = symtable2;
7749 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7750 ssym < ssymend; ssym++, symp++)
7751 {
7752 symp->u.ssym = ssym;
7753 symp->name = bfd_elf_string_from_elf_section (bfd2,
7754 hdr2->sh_link,
7755 ssym->st_name);
7756 }
7757
7758 /* Sort symbol by name. */
7759 qsort (symtable1, count1, sizeof (struct elf_symbol),
7760 elf_sym_name_compare);
7761 qsort (symtable2, count1, sizeof (struct elf_symbol),
7762 elf_sym_name_compare);
7763
7764 for (i = 0; i < count1; i++)
7765 /* Two symbols must have the same binding, type and name. */
7766 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7767 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7768 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7769 goto done;
7770
7771 result = TRUE;
7772 goto done;
7773 }
7774
7775 symtable1 = (struct elf_symbol *)
7776 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7777 symtable2 = (struct elf_symbol *)
7778 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7779 if (symtable1 == NULL || symtable2 == NULL)
7780 goto done;
7781
7782 /* Count definitions in the section. */
7783 count1 = 0;
7784 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7785 if (isym->st_shndx == shndx1)
7786 symtable1[count1++].u.isym = isym;
7787
7788 count2 = 0;
7789 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7790 if (isym->st_shndx == shndx2)
7791 symtable2[count2++].u.isym = isym;
7792
7793 if (count1 == 0 || count2 == 0 || count1 != count2)
7794 goto done;
7795
7796 for (i = 0; i < count1; i++)
7797 symtable1[i].name
7798 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7799 symtable1[i].u.isym->st_name);
7800
7801 for (i = 0; i < count2; i++)
7802 symtable2[i].name
7803 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7804 symtable2[i].u.isym->st_name);
7805
7806 /* Sort symbol by name. */
7807 qsort (symtable1, count1, sizeof (struct elf_symbol),
7808 elf_sym_name_compare);
7809 qsort (symtable2, count1, sizeof (struct elf_symbol),
7810 elf_sym_name_compare);
7811
7812 for (i = 0; i < count1; i++)
7813 /* Two symbols must have the same binding, type and name. */
7814 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7815 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7816 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7817 goto done;
7818
7819 result = TRUE;
7820
7821 done:
7822 if (symtable1)
7823 free (symtable1);
7824 if (symtable2)
7825 free (symtable2);
7826 if (isymbuf1)
7827 free (isymbuf1);
7828 if (isymbuf2)
7829 free (isymbuf2);
7830
7831 return result;
7832 }
7833
7834 /* Return TRUE if 2 section types are compatible. */
7835
7836 bfd_boolean
7837 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7838 bfd *bbfd, const asection *bsec)
7839 {
7840 if (asec == NULL
7841 || bsec == NULL
7842 || abfd->xvec->flavour != bfd_target_elf_flavour
7843 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7844 return TRUE;
7845
7846 return elf_section_type (asec) == elf_section_type (bsec);
7847 }
7848 \f
7849 /* Final phase of ELF linker. */
7850
7851 /* A structure we use to avoid passing large numbers of arguments. */
7852
7853 struct elf_final_link_info
7854 {
7855 /* General link information. */
7856 struct bfd_link_info *info;
7857 /* Output BFD. */
7858 bfd *output_bfd;
7859 /* Symbol string table. */
7860 struct elf_strtab_hash *symstrtab;
7861 /* .hash section. */
7862 asection *hash_sec;
7863 /* symbol version section (.gnu.version). */
7864 asection *symver_sec;
7865 /* Buffer large enough to hold contents of any section. */
7866 bfd_byte *contents;
7867 /* Buffer large enough to hold external relocs of any section. */
7868 void *external_relocs;
7869 /* Buffer large enough to hold internal relocs of any section. */
7870 Elf_Internal_Rela *internal_relocs;
7871 /* Buffer large enough to hold external local symbols of any input
7872 BFD. */
7873 bfd_byte *external_syms;
7874 /* And a buffer for symbol section indices. */
7875 Elf_External_Sym_Shndx *locsym_shndx;
7876 /* Buffer large enough to hold internal local symbols of any input
7877 BFD. */
7878 Elf_Internal_Sym *internal_syms;
7879 /* Array large enough to hold a symbol index for each local symbol
7880 of any input BFD. */
7881 long *indices;
7882 /* Array large enough to hold a section pointer for each local
7883 symbol of any input BFD. */
7884 asection **sections;
7885 /* Buffer for SHT_SYMTAB_SHNDX section. */
7886 Elf_External_Sym_Shndx *symshndxbuf;
7887 /* Number of STT_FILE syms seen. */
7888 size_t filesym_count;
7889 };
7890
7891 /* This struct is used to pass information to elf_link_output_extsym. */
7892
7893 struct elf_outext_info
7894 {
7895 bfd_boolean failed;
7896 bfd_boolean localsyms;
7897 bfd_boolean file_sym_done;
7898 struct elf_final_link_info *flinfo;
7899 };
7900
7901
7902 /* Support for evaluating a complex relocation.
7903
7904 Complex relocations are generalized, self-describing relocations. The
7905 implementation of them consists of two parts: complex symbols, and the
7906 relocations themselves.
7907
7908 The relocations are use a reserved elf-wide relocation type code (R_RELC
7909 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7910 information (start bit, end bit, word width, etc) into the addend. This
7911 information is extracted from CGEN-generated operand tables within gas.
7912
7913 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7914 internal) representing prefix-notation expressions, including but not
7915 limited to those sorts of expressions normally encoded as addends in the
7916 addend field. The symbol mangling format is:
7917
7918 <node> := <literal>
7919 | <unary-operator> ':' <node>
7920 | <binary-operator> ':' <node> ':' <node>
7921 ;
7922
7923 <literal> := 's' <digits=N> ':' <N character symbol name>
7924 | 'S' <digits=N> ':' <N character section name>
7925 | '#' <hexdigits>
7926 ;
7927
7928 <binary-operator> := as in C
7929 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7930
7931 static void
7932 set_symbol_value (bfd *bfd_with_globals,
7933 Elf_Internal_Sym *isymbuf,
7934 size_t locsymcount,
7935 size_t symidx,
7936 bfd_vma val)
7937 {
7938 struct elf_link_hash_entry **sym_hashes;
7939 struct elf_link_hash_entry *h;
7940 size_t extsymoff = locsymcount;
7941
7942 if (symidx < locsymcount)
7943 {
7944 Elf_Internal_Sym *sym;
7945
7946 sym = isymbuf + symidx;
7947 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7948 {
7949 /* It is a local symbol: move it to the
7950 "absolute" section and give it a value. */
7951 sym->st_shndx = SHN_ABS;
7952 sym->st_value = val;
7953 return;
7954 }
7955 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7956 extsymoff = 0;
7957 }
7958
7959 /* It is a global symbol: set its link type
7960 to "defined" and give it a value. */
7961
7962 sym_hashes = elf_sym_hashes (bfd_with_globals);
7963 h = sym_hashes [symidx - extsymoff];
7964 while (h->root.type == bfd_link_hash_indirect
7965 || h->root.type == bfd_link_hash_warning)
7966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7967 h->root.type = bfd_link_hash_defined;
7968 h->root.u.def.value = val;
7969 h->root.u.def.section = bfd_abs_section_ptr;
7970 }
7971
7972 static bfd_boolean
7973 resolve_symbol (const char *name,
7974 bfd *input_bfd,
7975 struct elf_final_link_info *flinfo,
7976 bfd_vma *result,
7977 Elf_Internal_Sym *isymbuf,
7978 size_t locsymcount)
7979 {
7980 Elf_Internal_Sym *sym;
7981 struct bfd_link_hash_entry *global_entry;
7982 const char *candidate = NULL;
7983 Elf_Internal_Shdr *symtab_hdr;
7984 size_t i;
7985
7986 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7987
7988 for (i = 0; i < locsymcount; ++ i)
7989 {
7990 sym = isymbuf + i;
7991
7992 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7993 continue;
7994
7995 candidate = bfd_elf_string_from_elf_section (input_bfd,
7996 symtab_hdr->sh_link,
7997 sym->st_name);
7998 #ifdef DEBUG
7999 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8000 name, candidate, (unsigned long) sym->st_value);
8001 #endif
8002 if (candidate && strcmp (candidate, name) == 0)
8003 {
8004 asection *sec = flinfo->sections [i];
8005
8006 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8007 *result += sec->output_offset + sec->output_section->vma;
8008 #ifdef DEBUG
8009 printf ("Found symbol with value %8.8lx\n",
8010 (unsigned long) *result);
8011 #endif
8012 return TRUE;
8013 }
8014 }
8015
8016 /* Hmm, haven't found it yet. perhaps it is a global. */
8017 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8018 FALSE, FALSE, TRUE);
8019 if (!global_entry)
8020 return FALSE;
8021
8022 if (global_entry->type == bfd_link_hash_defined
8023 || global_entry->type == bfd_link_hash_defweak)
8024 {
8025 *result = (global_entry->u.def.value
8026 + global_entry->u.def.section->output_section->vma
8027 + global_entry->u.def.section->output_offset);
8028 #ifdef DEBUG
8029 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8030 global_entry->root.string, (unsigned long) *result);
8031 #endif
8032 return TRUE;
8033 }
8034
8035 return FALSE;
8036 }
8037
8038 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8039 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8040 names like "foo.end" which is the end address of section "foo". */
8041
8042 static bfd_boolean
8043 resolve_section (const char *name,
8044 asection *sections,
8045 bfd_vma *result,
8046 bfd * abfd)
8047 {
8048 asection *curr;
8049 unsigned int len;
8050
8051 for (curr = sections; curr; curr = curr->next)
8052 if (strcmp (curr->name, name) == 0)
8053 {
8054 *result = curr->vma;
8055 return TRUE;
8056 }
8057
8058 /* Hmm. still haven't found it. try pseudo-section names. */
8059 /* FIXME: This could be coded more efficiently... */
8060 for (curr = sections; curr; curr = curr->next)
8061 {
8062 len = strlen (curr->name);
8063 if (len > strlen (name))
8064 continue;
8065
8066 if (strncmp (curr->name, name, len) == 0)
8067 {
8068 if (strncmp (".end", name + len, 4) == 0)
8069 {
8070 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8071 return TRUE;
8072 }
8073
8074 /* Insert more pseudo-section names here, if you like. */
8075 }
8076 }
8077
8078 return FALSE;
8079 }
8080
8081 static void
8082 undefined_reference (const char *reftype, const char *name)
8083 {
8084 /* xgettext:c-format */
8085 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8086 reftype, name);
8087 }
8088
8089 static bfd_boolean
8090 eval_symbol (bfd_vma *result,
8091 const char **symp,
8092 bfd *input_bfd,
8093 struct elf_final_link_info *flinfo,
8094 bfd_vma dot,
8095 Elf_Internal_Sym *isymbuf,
8096 size_t locsymcount,
8097 int signed_p)
8098 {
8099 size_t len;
8100 size_t symlen;
8101 bfd_vma a;
8102 bfd_vma b;
8103 char symbuf[4096];
8104 const char *sym = *symp;
8105 const char *symend;
8106 bfd_boolean symbol_is_section = FALSE;
8107
8108 len = strlen (sym);
8109 symend = sym + len;
8110
8111 if (len < 1 || len > sizeof (symbuf))
8112 {
8113 bfd_set_error (bfd_error_invalid_operation);
8114 return FALSE;
8115 }
8116
8117 switch (* sym)
8118 {
8119 case '.':
8120 *result = dot;
8121 *symp = sym + 1;
8122 return TRUE;
8123
8124 case '#':
8125 ++sym;
8126 *result = strtoul (sym, (char **) symp, 16);
8127 return TRUE;
8128
8129 case 'S':
8130 symbol_is_section = TRUE;
8131 /* Fall through. */
8132 case 's':
8133 ++sym;
8134 symlen = strtol (sym, (char **) symp, 10);
8135 sym = *symp + 1; /* Skip the trailing ':'. */
8136
8137 if (symend < sym || symlen + 1 > sizeof (symbuf))
8138 {
8139 bfd_set_error (bfd_error_invalid_operation);
8140 return FALSE;
8141 }
8142
8143 memcpy (symbuf, sym, symlen);
8144 symbuf[symlen] = '\0';
8145 *symp = sym + symlen;
8146
8147 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8148 the symbol as a section, or vice-versa. so we're pretty liberal in our
8149 interpretation here; section means "try section first", not "must be a
8150 section", and likewise with symbol. */
8151
8152 if (symbol_is_section)
8153 {
8154 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8155 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8156 isymbuf, locsymcount))
8157 {
8158 undefined_reference ("section", symbuf);
8159 return FALSE;
8160 }
8161 }
8162 else
8163 {
8164 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8165 isymbuf, locsymcount)
8166 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8167 result, input_bfd))
8168 {
8169 undefined_reference ("symbol", symbuf);
8170 return FALSE;
8171 }
8172 }
8173
8174 return TRUE;
8175
8176 /* All that remains are operators. */
8177
8178 #define UNARY_OP(op) \
8179 if (strncmp (sym, #op, strlen (#op)) == 0) \
8180 { \
8181 sym += strlen (#op); \
8182 if (*sym == ':') \
8183 ++sym; \
8184 *symp = sym; \
8185 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8186 isymbuf, locsymcount, signed_p)) \
8187 return FALSE; \
8188 if (signed_p) \
8189 *result = op ((bfd_signed_vma) a); \
8190 else \
8191 *result = op a; \
8192 return TRUE; \
8193 }
8194
8195 #define BINARY_OP(op) \
8196 if (strncmp (sym, #op, strlen (#op)) == 0) \
8197 { \
8198 sym += strlen (#op); \
8199 if (*sym == ':') \
8200 ++sym; \
8201 *symp = sym; \
8202 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8203 isymbuf, locsymcount, signed_p)) \
8204 return FALSE; \
8205 ++*symp; \
8206 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8207 isymbuf, locsymcount, signed_p)) \
8208 return FALSE; \
8209 if (signed_p) \
8210 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8211 else \
8212 *result = a op b; \
8213 return TRUE; \
8214 }
8215
8216 default:
8217 UNARY_OP (0-);
8218 BINARY_OP (<<);
8219 BINARY_OP (>>);
8220 BINARY_OP (==);
8221 BINARY_OP (!=);
8222 BINARY_OP (<=);
8223 BINARY_OP (>=);
8224 BINARY_OP (&&);
8225 BINARY_OP (||);
8226 UNARY_OP (~);
8227 UNARY_OP (!);
8228 BINARY_OP (*);
8229 BINARY_OP (/);
8230 BINARY_OP (%);
8231 BINARY_OP (^);
8232 BINARY_OP (|);
8233 BINARY_OP (&);
8234 BINARY_OP (+);
8235 BINARY_OP (-);
8236 BINARY_OP (<);
8237 BINARY_OP (>);
8238 #undef UNARY_OP
8239 #undef BINARY_OP
8240 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8241 bfd_set_error (bfd_error_invalid_operation);
8242 return FALSE;
8243 }
8244 }
8245
8246 static void
8247 put_value (bfd_vma size,
8248 unsigned long chunksz,
8249 bfd *input_bfd,
8250 bfd_vma x,
8251 bfd_byte *location)
8252 {
8253 location += (size - chunksz);
8254
8255 for (; size; size -= chunksz, location -= chunksz)
8256 {
8257 switch (chunksz)
8258 {
8259 case 1:
8260 bfd_put_8 (input_bfd, x, location);
8261 x >>= 8;
8262 break;
8263 case 2:
8264 bfd_put_16 (input_bfd, x, location);
8265 x >>= 16;
8266 break;
8267 case 4:
8268 bfd_put_32 (input_bfd, x, location);
8269 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8270 x >>= 16;
8271 x >>= 16;
8272 break;
8273 #ifdef BFD64
8274 case 8:
8275 bfd_put_64 (input_bfd, x, location);
8276 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8277 x >>= 32;
8278 x >>= 32;
8279 break;
8280 #endif
8281 default:
8282 abort ();
8283 break;
8284 }
8285 }
8286 }
8287
8288 static bfd_vma
8289 get_value (bfd_vma size,
8290 unsigned long chunksz,
8291 bfd *input_bfd,
8292 bfd_byte *location)
8293 {
8294 int shift;
8295 bfd_vma x = 0;
8296
8297 /* Sanity checks. */
8298 BFD_ASSERT (chunksz <= sizeof (x)
8299 && size >= chunksz
8300 && chunksz != 0
8301 && (size % chunksz) == 0
8302 && input_bfd != NULL
8303 && location != NULL);
8304
8305 if (chunksz == sizeof (x))
8306 {
8307 BFD_ASSERT (size == chunksz);
8308
8309 /* Make sure that we do not perform an undefined shift operation.
8310 We know that size == chunksz so there will only be one iteration
8311 of the loop below. */
8312 shift = 0;
8313 }
8314 else
8315 shift = 8 * chunksz;
8316
8317 for (; size; size -= chunksz, location += chunksz)
8318 {
8319 switch (chunksz)
8320 {
8321 case 1:
8322 x = (x << shift) | bfd_get_8 (input_bfd, location);
8323 break;
8324 case 2:
8325 x = (x << shift) | bfd_get_16 (input_bfd, location);
8326 break;
8327 case 4:
8328 x = (x << shift) | bfd_get_32 (input_bfd, location);
8329 break;
8330 #ifdef BFD64
8331 case 8:
8332 x = (x << shift) | bfd_get_64 (input_bfd, location);
8333 break;
8334 #endif
8335 default:
8336 abort ();
8337 }
8338 }
8339 return x;
8340 }
8341
8342 static void
8343 decode_complex_addend (unsigned long *start, /* in bits */
8344 unsigned long *oplen, /* in bits */
8345 unsigned long *len, /* in bits */
8346 unsigned long *wordsz, /* in bytes */
8347 unsigned long *chunksz, /* in bytes */
8348 unsigned long *lsb0_p,
8349 unsigned long *signed_p,
8350 unsigned long *trunc_p,
8351 unsigned long encoded)
8352 {
8353 * start = encoded & 0x3F;
8354 * len = (encoded >> 6) & 0x3F;
8355 * oplen = (encoded >> 12) & 0x3F;
8356 * wordsz = (encoded >> 18) & 0xF;
8357 * chunksz = (encoded >> 22) & 0xF;
8358 * lsb0_p = (encoded >> 27) & 1;
8359 * signed_p = (encoded >> 28) & 1;
8360 * trunc_p = (encoded >> 29) & 1;
8361 }
8362
8363 bfd_reloc_status_type
8364 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8365 asection *input_section ATTRIBUTE_UNUSED,
8366 bfd_byte *contents,
8367 Elf_Internal_Rela *rel,
8368 bfd_vma relocation)
8369 {
8370 bfd_vma shift, x, mask;
8371 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8372 bfd_reloc_status_type r;
8373
8374 /* Perform this reloc, since it is complex.
8375 (this is not to say that it necessarily refers to a complex
8376 symbol; merely that it is a self-describing CGEN based reloc.
8377 i.e. the addend has the complete reloc information (bit start, end,
8378 word size, etc) encoded within it.). */
8379
8380 decode_complex_addend (&start, &oplen, &len, &wordsz,
8381 &chunksz, &lsb0_p, &signed_p,
8382 &trunc_p, rel->r_addend);
8383
8384 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8385
8386 if (lsb0_p)
8387 shift = (start + 1) - len;
8388 else
8389 shift = (8 * wordsz) - (start + len);
8390
8391 x = get_value (wordsz, chunksz, input_bfd,
8392 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8393
8394 #ifdef DEBUG
8395 printf ("Doing complex reloc: "
8396 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8397 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8398 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8399 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8400 oplen, (unsigned long) x, (unsigned long) mask,
8401 (unsigned long) relocation);
8402 #endif
8403
8404 r = bfd_reloc_ok;
8405 if (! trunc_p)
8406 /* Now do an overflow check. */
8407 r = bfd_check_overflow ((signed_p
8408 ? complain_overflow_signed
8409 : complain_overflow_unsigned),
8410 len, 0, (8 * wordsz),
8411 relocation);
8412
8413 /* Do the deed. */
8414 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8415
8416 #ifdef DEBUG
8417 printf (" relocation: %8.8lx\n"
8418 " shifted mask: %8.8lx\n"
8419 " shifted/masked reloc: %8.8lx\n"
8420 " result: %8.8lx\n",
8421 (unsigned long) relocation, (unsigned long) (mask << shift),
8422 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8423 #endif
8424 put_value (wordsz, chunksz, input_bfd, x,
8425 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8426 return r;
8427 }
8428
8429 /* Functions to read r_offset from external (target order) reloc
8430 entry. Faster than bfd_getl32 et al, because we let the compiler
8431 know the value is aligned. */
8432
8433 static bfd_vma
8434 ext32l_r_offset (const void *p)
8435 {
8436 union aligned32
8437 {
8438 uint32_t v;
8439 unsigned char c[4];
8440 };
8441 const union aligned32 *a
8442 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8443
8444 uint32_t aval = ( (uint32_t) a->c[0]
8445 | (uint32_t) a->c[1] << 8
8446 | (uint32_t) a->c[2] << 16
8447 | (uint32_t) a->c[3] << 24);
8448 return aval;
8449 }
8450
8451 static bfd_vma
8452 ext32b_r_offset (const void *p)
8453 {
8454 union aligned32
8455 {
8456 uint32_t v;
8457 unsigned char c[4];
8458 };
8459 const union aligned32 *a
8460 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8461
8462 uint32_t aval = ( (uint32_t) a->c[0] << 24
8463 | (uint32_t) a->c[1] << 16
8464 | (uint32_t) a->c[2] << 8
8465 | (uint32_t) a->c[3]);
8466 return aval;
8467 }
8468
8469 #ifdef BFD_HOST_64_BIT
8470 static bfd_vma
8471 ext64l_r_offset (const void *p)
8472 {
8473 union aligned64
8474 {
8475 uint64_t v;
8476 unsigned char c[8];
8477 };
8478 const union aligned64 *a
8479 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8480
8481 uint64_t aval = ( (uint64_t) a->c[0]
8482 | (uint64_t) a->c[1] << 8
8483 | (uint64_t) a->c[2] << 16
8484 | (uint64_t) a->c[3] << 24
8485 | (uint64_t) a->c[4] << 32
8486 | (uint64_t) a->c[5] << 40
8487 | (uint64_t) a->c[6] << 48
8488 | (uint64_t) a->c[7] << 56);
8489 return aval;
8490 }
8491
8492 static bfd_vma
8493 ext64b_r_offset (const void *p)
8494 {
8495 union aligned64
8496 {
8497 uint64_t v;
8498 unsigned char c[8];
8499 };
8500 const union aligned64 *a
8501 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8502
8503 uint64_t aval = ( (uint64_t) a->c[0] << 56
8504 | (uint64_t) a->c[1] << 48
8505 | (uint64_t) a->c[2] << 40
8506 | (uint64_t) a->c[3] << 32
8507 | (uint64_t) a->c[4] << 24
8508 | (uint64_t) a->c[5] << 16
8509 | (uint64_t) a->c[6] << 8
8510 | (uint64_t) a->c[7]);
8511 return aval;
8512 }
8513 #endif
8514
8515 /* When performing a relocatable link, the input relocations are
8516 preserved. But, if they reference global symbols, the indices
8517 referenced must be updated. Update all the relocations found in
8518 RELDATA. */
8519
8520 static bfd_boolean
8521 elf_link_adjust_relocs (bfd *abfd,
8522 asection *sec,
8523 struct bfd_elf_section_reloc_data *reldata,
8524 bfd_boolean sort)
8525 {
8526 unsigned int i;
8527 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8528 bfd_byte *erela;
8529 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8530 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8531 bfd_vma r_type_mask;
8532 int r_sym_shift;
8533 unsigned int count = reldata->count;
8534 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8535
8536 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8537 {
8538 swap_in = bed->s->swap_reloc_in;
8539 swap_out = bed->s->swap_reloc_out;
8540 }
8541 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8542 {
8543 swap_in = bed->s->swap_reloca_in;
8544 swap_out = bed->s->swap_reloca_out;
8545 }
8546 else
8547 abort ();
8548
8549 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8550 abort ();
8551
8552 if (bed->s->arch_size == 32)
8553 {
8554 r_type_mask = 0xff;
8555 r_sym_shift = 8;
8556 }
8557 else
8558 {
8559 r_type_mask = 0xffffffff;
8560 r_sym_shift = 32;
8561 }
8562
8563 erela = reldata->hdr->contents;
8564 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8565 {
8566 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8567 unsigned int j;
8568
8569 if (*rel_hash == NULL)
8570 continue;
8571
8572 BFD_ASSERT ((*rel_hash)->indx >= 0);
8573
8574 (*swap_in) (abfd, erela, irela);
8575 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8576 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8577 | (irela[j].r_info & r_type_mask));
8578 (*swap_out) (abfd, irela, erela);
8579 }
8580
8581 if (bed->elf_backend_update_relocs)
8582 (*bed->elf_backend_update_relocs) (sec, reldata);
8583
8584 if (sort && count != 0)
8585 {
8586 bfd_vma (*ext_r_off) (const void *);
8587 bfd_vma r_off;
8588 size_t elt_size;
8589 bfd_byte *base, *end, *p, *loc;
8590 bfd_byte *buf = NULL;
8591
8592 if (bed->s->arch_size == 32)
8593 {
8594 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8595 ext_r_off = ext32l_r_offset;
8596 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8597 ext_r_off = ext32b_r_offset;
8598 else
8599 abort ();
8600 }
8601 else
8602 {
8603 #ifdef BFD_HOST_64_BIT
8604 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8605 ext_r_off = ext64l_r_offset;
8606 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8607 ext_r_off = ext64b_r_offset;
8608 else
8609 #endif
8610 abort ();
8611 }
8612
8613 /* Must use a stable sort here. A modified insertion sort,
8614 since the relocs are mostly sorted already. */
8615 elt_size = reldata->hdr->sh_entsize;
8616 base = reldata->hdr->contents;
8617 end = base + count * elt_size;
8618 if (elt_size > sizeof (Elf64_External_Rela))
8619 abort ();
8620
8621 /* Ensure the first element is lowest. This acts as a sentinel,
8622 speeding the main loop below. */
8623 r_off = (*ext_r_off) (base);
8624 for (p = loc = base; (p += elt_size) < end; )
8625 {
8626 bfd_vma r_off2 = (*ext_r_off) (p);
8627 if (r_off > r_off2)
8628 {
8629 r_off = r_off2;
8630 loc = p;
8631 }
8632 }
8633 if (loc != base)
8634 {
8635 /* Don't just swap *base and *loc as that changes the order
8636 of the original base[0] and base[1] if they happen to
8637 have the same r_offset. */
8638 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8639 memcpy (onebuf, loc, elt_size);
8640 memmove (base + elt_size, base, loc - base);
8641 memcpy (base, onebuf, elt_size);
8642 }
8643
8644 for (p = base + elt_size; (p += elt_size) < end; )
8645 {
8646 /* base to p is sorted, *p is next to insert. */
8647 r_off = (*ext_r_off) (p);
8648 /* Search the sorted region for location to insert. */
8649 loc = p - elt_size;
8650 while (r_off < (*ext_r_off) (loc))
8651 loc -= elt_size;
8652 loc += elt_size;
8653 if (loc != p)
8654 {
8655 /* Chances are there is a run of relocs to insert here,
8656 from one of more input files. Files are not always
8657 linked in order due to the way elf_link_input_bfd is
8658 called. See pr17666. */
8659 size_t sortlen = p - loc;
8660 bfd_vma r_off2 = (*ext_r_off) (loc);
8661 size_t runlen = elt_size;
8662 size_t buf_size = 96 * 1024;
8663 while (p + runlen < end
8664 && (sortlen <= buf_size
8665 || runlen + elt_size <= buf_size)
8666 && r_off2 > (*ext_r_off) (p + runlen))
8667 runlen += elt_size;
8668 if (buf == NULL)
8669 {
8670 buf = bfd_malloc (buf_size);
8671 if (buf == NULL)
8672 return FALSE;
8673 }
8674 if (runlen < sortlen)
8675 {
8676 memcpy (buf, p, runlen);
8677 memmove (loc + runlen, loc, sortlen);
8678 memcpy (loc, buf, runlen);
8679 }
8680 else
8681 {
8682 memcpy (buf, loc, sortlen);
8683 memmove (loc, p, runlen);
8684 memcpy (loc + runlen, buf, sortlen);
8685 }
8686 p += runlen - elt_size;
8687 }
8688 }
8689 /* Hashes are no longer valid. */
8690 free (reldata->hashes);
8691 reldata->hashes = NULL;
8692 free (buf);
8693 }
8694 return TRUE;
8695 }
8696
8697 struct elf_link_sort_rela
8698 {
8699 union {
8700 bfd_vma offset;
8701 bfd_vma sym_mask;
8702 } u;
8703 enum elf_reloc_type_class type;
8704 /* We use this as an array of size int_rels_per_ext_rel. */
8705 Elf_Internal_Rela rela[1];
8706 };
8707
8708 static int
8709 elf_link_sort_cmp1 (const void *A, const void *B)
8710 {
8711 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8712 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8713 int relativea, relativeb;
8714
8715 relativea = a->type == reloc_class_relative;
8716 relativeb = b->type == reloc_class_relative;
8717
8718 if (relativea < relativeb)
8719 return 1;
8720 if (relativea > relativeb)
8721 return -1;
8722 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8723 return -1;
8724 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8725 return 1;
8726 if (a->rela->r_offset < b->rela->r_offset)
8727 return -1;
8728 if (a->rela->r_offset > b->rela->r_offset)
8729 return 1;
8730 return 0;
8731 }
8732
8733 static int
8734 elf_link_sort_cmp2 (const void *A, const void *B)
8735 {
8736 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8737 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8738
8739 if (a->type < b->type)
8740 return -1;
8741 if (a->type > b->type)
8742 return 1;
8743 if (a->u.offset < b->u.offset)
8744 return -1;
8745 if (a->u.offset > b->u.offset)
8746 return 1;
8747 if (a->rela->r_offset < b->rela->r_offset)
8748 return -1;
8749 if (a->rela->r_offset > b->rela->r_offset)
8750 return 1;
8751 return 0;
8752 }
8753
8754 static size_t
8755 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8756 {
8757 asection *dynamic_relocs;
8758 asection *rela_dyn;
8759 asection *rel_dyn;
8760 bfd_size_type count, size;
8761 size_t i, ret, sort_elt, ext_size;
8762 bfd_byte *sort, *s_non_relative, *p;
8763 struct elf_link_sort_rela *sq;
8764 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8765 int i2e = bed->s->int_rels_per_ext_rel;
8766 unsigned int opb = bfd_octets_per_byte (abfd);
8767 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8768 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8769 struct bfd_link_order *lo;
8770 bfd_vma r_sym_mask;
8771 bfd_boolean use_rela;
8772
8773 /* Find a dynamic reloc section. */
8774 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8775 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8776 if (rela_dyn != NULL && rela_dyn->size > 0
8777 && rel_dyn != NULL && rel_dyn->size > 0)
8778 {
8779 bfd_boolean use_rela_initialised = FALSE;
8780
8781 /* This is just here to stop gcc from complaining.
8782 Its initialization checking code is not perfect. */
8783 use_rela = TRUE;
8784
8785 /* Both sections are present. Examine the sizes
8786 of the indirect sections to help us choose. */
8787 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8788 if (lo->type == bfd_indirect_link_order)
8789 {
8790 asection *o = lo->u.indirect.section;
8791
8792 if ((o->size % bed->s->sizeof_rela) == 0)
8793 {
8794 if ((o->size % bed->s->sizeof_rel) == 0)
8795 /* Section size is divisible by both rel and rela sizes.
8796 It is of no help to us. */
8797 ;
8798 else
8799 {
8800 /* Section size is only divisible by rela. */
8801 if (use_rela_initialised && (use_rela == FALSE))
8802 {
8803 _bfd_error_handler (_("%B: Unable to sort relocs - "
8804 "they are in more than one size"),
8805 abfd);
8806 bfd_set_error (bfd_error_invalid_operation);
8807 return 0;
8808 }
8809 else
8810 {
8811 use_rela = TRUE;
8812 use_rela_initialised = TRUE;
8813 }
8814 }
8815 }
8816 else if ((o->size % bed->s->sizeof_rel) == 0)
8817 {
8818 /* Section size is only divisible by rel. */
8819 if (use_rela_initialised && (use_rela == TRUE))
8820 {
8821 _bfd_error_handler (_("%B: Unable to sort relocs - "
8822 "they are in more than one size"),
8823 abfd);
8824 bfd_set_error (bfd_error_invalid_operation);
8825 return 0;
8826 }
8827 else
8828 {
8829 use_rela = FALSE;
8830 use_rela_initialised = TRUE;
8831 }
8832 }
8833 else
8834 {
8835 /* The section size is not divisible by either -
8836 something is wrong. */
8837 _bfd_error_handler (_("%B: Unable to sort relocs - "
8838 "they are of an unknown size"), abfd);
8839 bfd_set_error (bfd_error_invalid_operation);
8840 return 0;
8841 }
8842 }
8843
8844 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8845 if (lo->type == bfd_indirect_link_order)
8846 {
8847 asection *o = lo->u.indirect.section;
8848
8849 if ((o->size % bed->s->sizeof_rela) == 0)
8850 {
8851 if ((o->size % bed->s->sizeof_rel) == 0)
8852 /* Section size is divisible by both rel and rela sizes.
8853 It is of no help to us. */
8854 ;
8855 else
8856 {
8857 /* Section size is only divisible by rela. */
8858 if (use_rela_initialised && (use_rela == FALSE))
8859 {
8860 _bfd_error_handler (_("%B: Unable to sort relocs - "
8861 "they are in more than one size"),
8862 abfd);
8863 bfd_set_error (bfd_error_invalid_operation);
8864 return 0;
8865 }
8866 else
8867 {
8868 use_rela = TRUE;
8869 use_rela_initialised = TRUE;
8870 }
8871 }
8872 }
8873 else if ((o->size % bed->s->sizeof_rel) == 0)
8874 {
8875 /* Section size is only divisible by rel. */
8876 if (use_rela_initialised && (use_rela == TRUE))
8877 {
8878 _bfd_error_handler (_("%B: Unable to sort relocs - "
8879 "they are in more than one size"),
8880 abfd);
8881 bfd_set_error (bfd_error_invalid_operation);
8882 return 0;
8883 }
8884 else
8885 {
8886 use_rela = FALSE;
8887 use_rela_initialised = TRUE;
8888 }
8889 }
8890 else
8891 {
8892 /* The section size is not divisible by either -
8893 something is wrong. */
8894 _bfd_error_handler (_("%B: Unable to sort relocs - "
8895 "they are of an unknown size"), abfd);
8896 bfd_set_error (bfd_error_invalid_operation);
8897 return 0;
8898 }
8899 }
8900
8901 if (! use_rela_initialised)
8902 /* Make a guess. */
8903 use_rela = TRUE;
8904 }
8905 else if (rela_dyn != NULL && rela_dyn->size > 0)
8906 use_rela = TRUE;
8907 else if (rel_dyn != NULL && rel_dyn->size > 0)
8908 use_rela = FALSE;
8909 else
8910 return 0;
8911
8912 if (use_rela)
8913 {
8914 dynamic_relocs = rela_dyn;
8915 ext_size = bed->s->sizeof_rela;
8916 swap_in = bed->s->swap_reloca_in;
8917 swap_out = bed->s->swap_reloca_out;
8918 }
8919 else
8920 {
8921 dynamic_relocs = rel_dyn;
8922 ext_size = bed->s->sizeof_rel;
8923 swap_in = bed->s->swap_reloc_in;
8924 swap_out = bed->s->swap_reloc_out;
8925 }
8926
8927 size = 0;
8928 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8929 if (lo->type == bfd_indirect_link_order)
8930 size += lo->u.indirect.section->size;
8931
8932 if (size != dynamic_relocs->size)
8933 return 0;
8934
8935 sort_elt = (sizeof (struct elf_link_sort_rela)
8936 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8937
8938 count = dynamic_relocs->size / ext_size;
8939 if (count == 0)
8940 return 0;
8941 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8942
8943 if (sort == NULL)
8944 {
8945 (*info->callbacks->warning)
8946 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8947 return 0;
8948 }
8949
8950 if (bed->s->arch_size == 32)
8951 r_sym_mask = ~(bfd_vma) 0xff;
8952 else
8953 r_sym_mask = ~(bfd_vma) 0xffffffff;
8954
8955 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8956 if (lo->type == bfd_indirect_link_order)
8957 {
8958 bfd_byte *erel, *erelend;
8959 asection *o = lo->u.indirect.section;
8960
8961 if (o->contents == NULL && o->size != 0)
8962 {
8963 /* This is a reloc section that is being handled as a normal
8964 section. See bfd_section_from_shdr. We can't combine
8965 relocs in this case. */
8966 free (sort);
8967 return 0;
8968 }
8969 erel = o->contents;
8970 erelend = o->contents + o->size;
8971 p = sort + o->output_offset * opb / ext_size * sort_elt;
8972
8973 while (erel < erelend)
8974 {
8975 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8976
8977 (*swap_in) (abfd, erel, s->rela);
8978 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8979 s->u.sym_mask = r_sym_mask;
8980 p += sort_elt;
8981 erel += ext_size;
8982 }
8983 }
8984
8985 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8986
8987 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8988 {
8989 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8990 if (s->type != reloc_class_relative)
8991 break;
8992 }
8993 ret = i;
8994 s_non_relative = p;
8995
8996 sq = (struct elf_link_sort_rela *) s_non_relative;
8997 for (; i < count; i++, p += sort_elt)
8998 {
8999 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9000 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9001 sq = sp;
9002 sp->u.offset = sq->rela->r_offset;
9003 }
9004
9005 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9006
9007 struct elf_link_hash_table *htab = elf_hash_table (info);
9008 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9009 {
9010 /* We have plt relocs in .rela.dyn. */
9011 sq = (struct elf_link_sort_rela *) sort;
9012 for (i = 0; i < count; i++)
9013 if (sq[count - i - 1].type != reloc_class_plt)
9014 break;
9015 if (i != 0 && htab->srelplt->size == i * ext_size)
9016 {
9017 struct bfd_link_order **plo;
9018 /* Put srelplt link_order last. This is so the output_offset
9019 set in the next loop is correct for DT_JMPREL. */
9020 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9021 if ((*plo)->type == bfd_indirect_link_order
9022 && (*plo)->u.indirect.section == htab->srelplt)
9023 {
9024 lo = *plo;
9025 *plo = lo->next;
9026 }
9027 else
9028 plo = &(*plo)->next;
9029 *plo = lo;
9030 lo->next = NULL;
9031 dynamic_relocs->map_tail.link_order = lo;
9032 }
9033 }
9034
9035 p = sort;
9036 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9037 if (lo->type == bfd_indirect_link_order)
9038 {
9039 bfd_byte *erel, *erelend;
9040 asection *o = lo->u.indirect.section;
9041
9042 erel = o->contents;
9043 erelend = o->contents + o->size;
9044 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9045 while (erel < erelend)
9046 {
9047 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9048 (*swap_out) (abfd, s->rela, erel);
9049 p += sort_elt;
9050 erel += ext_size;
9051 }
9052 }
9053
9054 free (sort);
9055 *psec = dynamic_relocs;
9056 return ret;
9057 }
9058
9059 /* Add a symbol to the output symbol string table. */
9060
9061 static int
9062 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9063 const char *name,
9064 Elf_Internal_Sym *elfsym,
9065 asection *input_sec,
9066 struct elf_link_hash_entry *h)
9067 {
9068 int (*output_symbol_hook)
9069 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9070 struct elf_link_hash_entry *);
9071 struct elf_link_hash_table *hash_table;
9072 const struct elf_backend_data *bed;
9073 bfd_size_type strtabsize;
9074
9075 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9076
9077 bed = get_elf_backend_data (flinfo->output_bfd);
9078 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9079 if (output_symbol_hook != NULL)
9080 {
9081 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9082 if (ret != 1)
9083 return ret;
9084 }
9085
9086 if (name == NULL
9087 || *name == '\0'
9088 || (input_sec->flags & SEC_EXCLUDE))
9089 elfsym->st_name = (unsigned long) -1;
9090 else
9091 {
9092 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9093 to get the final offset for st_name. */
9094 elfsym->st_name
9095 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9096 name, FALSE);
9097 if (elfsym->st_name == (unsigned long) -1)
9098 return 0;
9099 }
9100
9101 hash_table = elf_hash_table (flinfo->info);
9102 strtabsize = hash_table->strtabsize;
9103 if (strtabsize <= hash_table->strtabcount)
9104 {
9105 strtabsize += strtabsize;
9106 hash_table->strtabsize = strtabsize;
9107 strtabsize *= sizeof (*hash_table->strtab);
9108 hash_table->strtab
9109 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9110 strtabsize);
9111 if (hash_table->strtab == NULL)
9112 return 0;
9113 }
9114 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9115 hash_table->strtab[hash_table->strtabcount].dest_index
9116 = hash_table->strtabcount;
9117 hash_table->strtab[hash_table->strtabcount].destshndx_index
9118 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9119
9120 bfd_get_symcount (flinfo->output_bfd) += 1;
9121 hash_table->strtabcount += 1;
9122
9123 return 1;
9124 }
9125
9126 /* Swap symbols out to the symbol table and flush the output symbols to
9127 the file. */
9128
9129 static bfd_boolean
9130 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9131 {
9132 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9133 bfd_size_type amt;
9134 size_t i;
9135 const struct elf_backend_data *bed;
9136 bfd_byte *symbuf;
9137 Elf_Internal_Shdr *hdr;
9138 file_ptr pos;
9139 bfd_boolean ret;
9140
9141 if (!hash_table->strtabcount)
9142 return TRUE;
9143
9144 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9145
9146 bed = get_elf_backend_data (flinfo->output_bfd);
9147
9148 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9149 symbuf = (bfd_byte *) bfd_malloc (amt);
9150 if (symbuf == NULL)
9151 return FALSE;
9152
9153 if (flinfo->symshndxbuf)
9154 {
9155 amt = sizeof (Elf_External_Sym_Shndx);
9156 amt *= bfd_get_symcount (flinfo->output_bfd);
9157 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9158 if (flinfo->symshndxbuf == NULL)
9159 {
9160 free (symbuf);
9161 return FALSE;
9162 }
9163 }
9164
9165 for (i = 0; i < hash_table->strtabcount; i++)
9166 {
9167 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9168 if (elfsym->sym.st_name == (unsigned long) -1)
9169 elfsym->sym.st_name = 0;
9170 else
9171 elfsym->sym.st_name
9172 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9173 elfsym->sym.st_name);
9174 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9175 ((bfd_byte *) symbuf
9176 + (elfsym->dest_index
9177 * bed->s->sizeof_sym)),
9178 (flinfo->symshndxbuf
9179 + elfsym->destshndx_index));
9180 }
9181
9182 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9183 pos = hdr->sh_offset + hdr->sh_size;
9184 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9185 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9186 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9187 {
9188 hdr->sh_size += amt;
9189 ret = TRUE;
9190 }
9191 else
9192 ret = FALSE;
9193
9194 free (symbuf);
9195
9196 free (hash_table->strtab);
9197 hash_table->strtab = NULL;
9198
9199 return ret;
9200 }
9201
9202 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9203
9204 static bfd_boolean
9205 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9206 {
9207 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9208 && sym->st_shndx < SHN_LORESERVE)
9209 {
9210 /* The gABI doesn't support dynamic symbols in output sections
9211 beyond 64k. */
9212 _bfd_error_handler
9213 /* xgettext:c-format */
9214 (_("%B: Too many sections: %d (>= %d)"),
9215 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9216 bfd_set_error (bfd_error_nonrepresentable_section);
9217 return FALSE;
9218 }
9219 return TRUE;
9220 }
9221
9222 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9223 allowing an unsatisfied unversioned symbol in the DSO to match a
9224 versioned symbol that would normally require an explicit version.
9225 We also handle the case that a DSO references a hidden symbol
9226 which may be satisfied by a versioned symbol in another DSO. */
9227
9228 static bfd_boolean
9229 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9230 const struct elf_backend_data *bed,
9231 struct elf_link_hash_entry *h)
9232 {
9233 bfd *abfd;
9234 struct elf_link_loaded_list *loaded;
9235
9236 if (!is_elf_hash_table (info->hash))
9237 return FALSE;
9238
9239 /* Check indirect symbol. */
9240 while (h->root.type == bfd_link_hash_indirect)
9241 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9242
9243 switch (h->root.type)
9244 {
9245 default:
9246 abfd = NULL;
9247 break;
9248
9249 case bfd_link_hash_undefined:
9250 case bfd_link_hash_undefweak:
9251 abfd = h->root.u.undef.abfd;
9252 if (abfd == NULL
9253 || (abfd->flags & DYNAMIC) == 0
9254 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9255 return FALSE;
9256 break;
9257
9258 case bfd_link_hash_defined:
9259 case bfd_link_hash_defweak:
9260 abfd = h->root.u.def.section->owner;
9261 break;
9262
9263 case bfd_link_hash_common:
9264 abfd = h->root.u.c.p->section->owner;
9265 break;
9266 }
9267 BFD_ASSERT (abfd != NULL);
9268
9269 for (loaded = elf_hash_table (info)->loaded;
9270 loaded != NULL;
9271 loaded = loaded->next)
9272 {
9273 bfd *input;
9274 Elf_Internal_Shdr *hdr;
9275 size_t symcount;
9276 size_t extsymcount;
9277 size_t extsymoff;
9278 Elf_Internal_Shdr *versymhdr;
9279 Elf_Internal_Sym *isym;
9280 Elf_Internal_Sym *isymend;
9281 Elf_Internal_Sym *isymbuf;
9282 Elf_External_Versym *ever;
9283 Elf_External_Versym *extversym;
9284
9285 input = loaded->abfd;
9286
9287 /* We check each DSO for a possible hidden versioned definition. */
9288 if (input == abfd
9289 || (input->flags & DYNAMIC) == 0
9290 || elf_dynversym (input) == 0)
9291 continue;
9292
9293 hdr = &elf_tdata (input)->dynsymtab_hdr;
9294
9295 symcount = hdr->sh_size / bed->s->sizeof_sym;
9296 if (elf_bad_symtab (input))
9297 {
9298 extsymcount = symcount;
9299 extsymoff = 0;
9300 }
9301 else
9302 {
9303 extsymcount = symcount - hdr->sh_info;
9304 extsymoff = hdr->sh_info;
9305 }
9306
9307 if (extsymcount == 0)
9308 continue;
9309
9310 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9311 NULL, NULL, NULL);
9312 if (isymbuf == NULL)
9313 return FALSE;
9314
9315 /* Read in any version definitions. */
9316 versymhdr = &elf_tdata (input)->dynversym_hdr;
9317 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9318 if (extversym == NULL)
9319 goto error_ret;
9320
9321 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9322 || (bfd_bread (extversym, versymhdr->sh_size, input)
9323 != versymhdr->sh_size))
9324 {
9325 free (extversym);
9326 error_ret:
9327 free (isymbuf);
9328 return FALSE;
9329 }
9330
9331 ever = extversym + extsymoff;
9332 isymend = isymbuf + extsymcount;
9333 for (isym = isymbuf; isym < isymend; isym++, ever++)
9334 {
9335 const char *name;
9336 Elf_Internal_Versym iver;
9337 unsigned short version_index;
9338
9339 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9340 || isym->st_shndx == SHN_UNDEF)
9341 continue;
9342
9343 name = bfd_elf_string_from_elf_section (input,
9344 hdr->sh_link,
9345 isym->st_name);
9346 if (strcmp (name, h->root.root.string) != 0)
9347 continue;
9348
9349 _bfd_elf_swap_versym_in (input, ever, &iver);
9350
9351 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9352 && !(h->def_regular
9353 && h->forced_local))
9354 {
9355 /* If we have a non-hidden versioned sym, then it should
9356 have provided a definition for the undefined sym unless
9357 it is defined in a non-shared object and forced local.
9358 */
9359 abort ();
9360 }
9361
9362 version_index = iver.vs_vers & VERSYM_VERSION;
9363 if (version_index == 1 || version_index == 2)
9364 {
9365 /* This is the base or first version. We can use it. */
9366 free (extversym);
9367 free (isymbuf);
9368 return TRUE;
9369 }
9370 }
9371
9372 free (extversym);
9373 free (isymbuf);
9374 }
9375
9376 return FALSE;
9377 }
9378
9379 /* Convert ELF common symbol TYPE. */
9380
9381 static int
9382 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9383 {
9384 /* Commom symbol can only appear in relocatable link. */
9385 if (!bfd_link_relocatable (info))
9386 abort ();
9387 switch (info->elf_stt_common)
9388 {
9389 case unchanged:
9390 break;
9391 case elf_stt_common:
9392 type = STT_COMMON;
9393 break;
9394 case no_elf_stt_common:
9395 type = STT_OBJECT;
9396 break;
9397 }
9398 return type;
9399 }
9400
9401 /* Add an external symbol to the symbol table. This is called from
9402 the hash table traversal routine. When generating a shared object,
9403 we go through the symbol table twice. The first time we output
9404 anything that might have been forced to local scope in a version
9405 script. The second time we output the symbols that are still
9406 global symbols. */
9407
9408 static bfd_boolean
9409 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9410 {
9411 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9412 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9413 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9414 bfd_boolean strip;
9415 Elf_Internal_Sym sym;
9416 asection *input_sec;
9417 const struct elf_backend_data *bed;
9418 long indx;
9419 int ret;
9420 unsigned int type;
9421
9422 if (h->root.type == bfd_link_hash_warning)
9423 {
9424 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9425 if (h->root.type == bfd_link_hash_new)
9426 return TRUE;
9427 }
9428
9429 /* Decide whether to output this symbol in this pass. */
9430 if (eoinfo->localsyms)
9431 {
9432 if (!h->forced_local)
9433 return TRUE;
9434 }
9435 else
9436 {
9437 if (h->forced_local)
9438 return TRUE;
9439 }
9440
9441 bed = get_elf_backend_data (flinfo->output_bfd);
9442
9443 if (h->root.type == bfd_link_hash_undefined)
9444 {
9445 /* If we have an undefined symbol reference here then it must have
9446 come from a shared library that is being linked in. (Undefined
9447 references in regular files have already been handled unless
9448 they are in unreferenced sections which are removed by garbage
9449 collection). */
9450 bfd_boolean ignore_undef = FALSE;
9451
9452 /* Some symbols may be special in that the fact that they're
9453 undefined can be safely ignored - let backend determine that. */
9454 if (bed->elf_backend_ignore_undef_symbol)
9455 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9456
9457 /* If we are reporting errors for this situation then do so now. */
9458 if (!ignore_undef
9459 && h->ref_dynamic
9460 && (!h->ref_regular || flinfo->info->gc_sections)
9461 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9462 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9463 (*flinfo->info->callbacks->undefined_symbol)
9464 (flinfo->info, h->root.root.string,
9465 h->ref_regular ? NULL : h->root.u.undef.abfd,
9466 NULL, 0,
9467 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9468
9469 /* Strip a global symbol defined in a discarded section. */
9470 if (h->indx == -3)
9471 return TRUE;
9472 }
9473
9474 /* We should also warn if a forced local symbol is referenced from
9475 shared libraries. */
9476 if (bfd_link_executable (flinfo->info)
9477 && h->forced_local
9478 && h->ref_dynamic
9479 && h->def_regular
9480 && !h->dynamic_def
9481 && h->ref_dynamic_nonweak
9482 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9483 {
9484 bfd *def_bfd;
9485 const char *msg;
9486 struct elf_link_hash_entry *hi = h;
9487
9488 /* Check indirect symbol. */
9489 while (hi->root.type == bfd_link_hash_indirect)
9490 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9491
9492 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9493 /* xgettext:c-format */
9494 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9495 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9496 /* xgettext:c-format */
9497 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9498 else
9499 /* xgettext:c-format */
9500 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9501 def_bfd = flinfo->output_bfd;
9502 if (hi->root.u.def.section != bfd_abs_section_ptr)
9503 def_bfd = hi->root.u.def.section->owner;
9504 _bfd_error_handler (msg, flinfo->output_bfd,
9505 h->root.root.string, def_bfd);
9506 bfd_set_error (bfd_error_bad_value);
9507 eoinfo->failed = TRUE;
9508 return FALSE;
9509 }
9510
9511 /* We don't want to output symbols that have never been mentioned by
9512 a regular file, or that we have been told to strip. However, if
9513 h->indx is set to -2, the symbol is used by a reloc and we must
9514 output it. */
9515 strip = FALSE;
9516 if (h->indx == -2)
9517 ;
9518 else if ((h->def_dynamic
9519 || h->ref_dynamic
9520 || h->root.type == bfd_link_hash_new)
9521 && !h->def_regular
9522 && !h->ref_regular)
9523 strip = TRUE;
9524 else if (flinfo->info->strip == strip_all)
9525 strip = TRUE;
9526 else if (flinfo->info->strip == strip_some
9527 && bfd_hash_lookup (flinfo->info->keep_hash,
9528 h->root.root.string, FALSE, FALSE) == NULL)
9529 strip = TRUE;
9530 else if ((h->root.type == bfd_link_hash_defined
9531 || h->root.type == bfd_link_hash_defweak)
9532 && ((flinfo->info->strip_discarded
9533 && discarded_section (h->root.u.def.section))
9534 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9535 && h->root.u.def.section->owner != NULL
9536 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9537 strip = TRUE;
9538 else if ((h->root.type == bfd_link_hash_undefined
9539 || h->root.type == bfd_link_hash_undefweak)
9540 && h->root.u.undef.abfd != NULL
9541 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9542 strip = TRUE;
9543
9544 type = h->type;
9545
9546 /* If we're stripping it, and it's not a dynamic symbol, there's
9547 nothing else to do. However, if it is a forced local symbol or
9548 an ifunc symbol we need to give the backend finish_dynamic_symbol
9549 function a chance to make it dynamic. */
9550 if (strip
9551 && h->dynindx == -1
9552 && type != STT_GNU_IFUNC
9553 && !h->forced_local)
9554 return TRUE;
9555
9556 sym.st_value = 0;
9557 sym.st_size = h->size;
9558 sym.st_other = h->other;
9559 switch (h->root.type)
9560 {
9561 default:
9562 case bfd_link_hash_new:
9563 case bfd_link_hash_warning:
9564 abort ();
9565 return FALSE;
9566
9567 case bfd_link_hash_undefined:
9568 case bfd_link_hash_undefweak:
9569 input_sec = bfd_und_section_ptr;
9570 sym.st_shndx = SHN_UNDEF;
9571 break;
9572
9573 case bfd_link_hash_defined:
9574 case bfd_link_hash_defweak:
9575 {
9576 input_sec = h->root.u.def.section;
9577 if (input_sec->output_section != NULL)
9578 {
9579 sym.st_shndx =
9580 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9581 input_sec->output_section);
9582 if (sym.st_shndx == SHN_BAD)
9583 {
9584 _bfd_error_handler
9585 /* xgettext:c-format */
9586 (_("%B: could not find output section %A for input section %A"),
9587 flinfo->output_bfd, input_sec->output_section, input_sec);
9588 bfd_set_error (bfd_error_nonrepresentable_section);
9589 eoinfo->failed = TRUE;
9590 return FALSE;
9591 }
9592
9593 /* ELF symbols in relocatable files are section relative,
9594 but in nonrelocatable files they are virtual
9595 addresses. */
9596 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9597 if (!bfd_link_relocatable (flinfo->info))
9598 {
9599 sym.st_value += input_sec->output_section->vma;
9600 if (h->type == STT_TLS)
9601 {
9602 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9603 if (tls_sec != NULL)
9604 sym.st_value -= tls_sec->vma;
9605 }
9606 }
9607 }
9608 else
9609 {
9610 BFD_ASSERT (input_sec->owner == NULL
9611 || (input_sec->owner->flags & DYNAMIC) != 0);
9612 sym.st_shndx = SHN_UNDEF;
9613 input_sec = bfd_und_section_ptr;
9614 }
9615 }
9616 break;
9617
9618 case bfd_link_hash_common:
9619 input_sec = h->root.u.c.p->section;
9620 sym.st_shndx = bed->common_section_index (input_sec);
9621 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9622 break;
9623
9624 case bfd_link_hash_indirect:
9625 /* These symbols are created by symbol versioning. They point
9626 to the decorated version of the name. For example, if the
9627 symbol foo@@GNU_1.2 is the default, which should be used when
9628 foo is used with no version, then we add an indirect symbol
9629 foo which points to foo@@GNU_1.2. We ignore these symbols,
9630 since the indirected symbol is already in the hash table. */
9631 return TRUE;
9632 }
9633
9634 if (type == STT_COMMON || type == STT_OBJECT)
9635 switch (h->root.type)
9636 {
9637 case bfd_link_hash_common:
9638 type = elf_link_convert_common_type (flinfo->info, type);
9639 break;
9640 case bfd_link_hash_defined:
9641 case bfd_link_hash_defweak:
9642 if (bed->common_definition (&sym))
9643 type = elf_link_convert_common_type (flinfo->info, type);
9644 else
9645 type = STT_OBJECT;
9646 break;
9647 case bfd_link_hash_undefined:
9648 case bfd_link_hash_undefweak:
9649 break;
9650 default:
9651 abort ();
9652 }
9653
9654 if (h->forced_local)
9655 {
9656 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9657 /* Turn off visibility on local symbol. */
9658 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9659 }
9660 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9661 else if (h->unique_global && h->def_regular)
9662 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9663 else if (h->root.type == bfd_link_hash_undefweak
9664 || h->root.type == bfd_link_hash_defweak)
9665 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9666 else
9667 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9668 sym.st_target_internal = h->target_internal;
9669
9670 /* Give the processor backend a chance to tweak the symbol value,
9671 and also to finish up anything that needs to be done for this
9672 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9673 forced local syms when non-shared is due to a historical quirk.
9674 STT_GNU_IFUNC symbol must go through PLT. */
9675 if ((h->type == STT_GNU_IFUNC
9676 && h->def_regular
9677 && !bfd_link_relocatable (flinfo->info))
9678 || ((h->dynindx != -1
9679 || h->forced_local)
9680 && ((bfd_link_pic (flinfo->info)
9681 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9682 || h->root.type != bfd_link_hash_undefweak))
9683 || !h->forced_local)
9684 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9685 {
9686 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9687 (flinfo->output_bfd, flinfo->info, h, &sym)))
9688 {
9689 eoinfo->failed = TRUE;
9690 return FALSE;
9691 }
9692 }
9693
9694 /* If we are marking the symbol as undefined, and there are no
9695 non-weak references to this symbol from a regular object, then
9696 mark the symbol as weak undefined; if there are non-weak
9697 references, mark the symbol as strong. We can't do this earlier,
9698 because it might not be marked as undefined until the
9699 finish_dynamic_symbol routine gets through with it. */
9700 if (sym.st_shndx == SHN_UNDEF
9701 && h->ref_regular
9702 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9703 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9704 {
9705 int bindtype;
9706 type = ELF_ST_TYPE (sym.st_info);
9707
9708 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9709 if (type == STT_GNU_IFUNC)
9710 type = STT_FUNC;
9711
9712 if (h->ref_regular_nonweak)
9713 bindtype = STB_GLOBAL;
9714 else
9715 bindtype = STB_WEAK;
9716 sym.st_info = ELF_ST_INFO (bindtype, type);
9717 }
9718
9719 /* If this is a symbol defined in a dynamic library, don't use the
9720 symbol size from the dynamic library. Relinking an executable
9721 against a new library may introduce gratuitous changes in the
9722 executable's symbols if we keep the size. */
9723 if (sym.st_shndx == SHN_UNDEF
9724 && !h->def_regular
9725 && h->def_dynamic)
9726 sym.st_size = 0;
9727
9728 /* If a non-weak symbol with non-default visibility is not defined
9729 locally, it is a fatal error. */
9730 if (!bfd_link_relocatable (flinfo->info)
9731 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9732 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9733 && h->root.type == bfd_link_hash_undefined
9734 && !h->def_regular)
9735 {
9736 const char *msg;
9737
9738 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9739 /* xgettext:c-format */
9740 msg = _("%B: protected symbol `%s' isn't defined");
9741 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9742 /* xgettext:c-format */
9743 msg = _("%B: internal symbol `%s' isn't defined");
9744 else
9745 /* xgettext:c-format */
9746 msg = _("%B: hidden symbol `%s' isn't defined");
9747 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9748 bfd_set_error (bfd_error_bad_value);
9749 eoinfo->failed = TRUE;
9750 return FALSE;
9751 }
9752
9753 /* If this symbol should be put in the .dynsym section, then put it
9754 there now. We already know the symbol index. We also fill in
9755 the entry in the .hash section. */
9756 if (elf_hash_table (flinfo->info)->dynsym != NULL
9757 && h->dynindx != -1
9758 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9759 {
9760 bfd_byte *esym;
9761
9762 /* Since there is no version information in the dynamic string,
9763 if there is no version info in symbol version section, we will
9764 have a run-time problem if not linking executable, referenced
9765 by shared library, or not bound locally. */
9766 if (h->verinfo.verdef == NULL
9767 && (!bfd_link_executable (flinfo->info)
9768 || h->ref_dynamic
9769 || !h->def_regular))
9770 {
9771 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9772
9773 if (p && p [1] != '\0')
9774 {
9775 _bfd_error_handler
9776 /* xgettext:c-format */
9777 (_("%B: No symbol version section for versioned symbol `%s'"),
9778 flinfo->output_bfd, h->root.root.string);
9779 eoinfo->failed = TRUE;
9780 return FALSE;
9781 }
9782 }
9783
9784 sym.st_name = h->dynstr_index;
9785 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9786 + h->dynindx * bed->s->sizeof_sym);
9787 if (!check_dynsym (flinfo->output_bfd, &sym))
9788 {
9789 eoinfo->failed = TRUE;
9790 return FALSE;
9791 }
9792 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9793
9794 if (flinfo->hash_sec != NULL)
9795 {
9796 size_t hash_entry_size;
9797 bfd_byte *bucketpos;
9798 bfd_vma chain;
9799 size_t bucketcount;
9800 size_t bucket;
9801
9802 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9803 bucket = h->u.elf_hash_value % bucketcount;
9804
9805 hash_entry_size
9806 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9807 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9808 + (bucket + 2) * hash_entry_size);
9809 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9810 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9811 bucketpos);
9812 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9813 ((bfd_byte *) flinfo->hash_sec->contents
9814 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9815 }
9816
9817 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9818 {
9819 Elf_Internal_Versym iversym;
9820 Elf_External_Versym *eversym;
9821
9822 if (!h->def_regular)
9823 {
9824 if (h->verinfo.verdef == NULL
9825 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9826 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9827 iversym.vs_vers = 0;
9828 else
9829 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9830 }
9831 else
9832 {
9833 if (h->verinfo.vertree == NULL)
9834 iversym.vs_vers = 1;
9835 else
9836 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9837 if (flinfo->info->create_default_symver)
9838 iversym.vs_vers++;
9839 }
9840
9841 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9842 defined locally. */
9843 if (h->versioned == versioned_hidden && h->def_regular)
9844 iversym.vs_vers |= VERSYM_HIDDEN;
9845
9846 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9847 eversym += h->dynindx;
9848 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9849 }
9850 }
9851
9852 /* If the symbol is undefined, and we didn't output it to .dynsym,
9853 strip it from .symtab too. Obviously we can't do this for
9854 relocatable output or when needed for --emit-relocs. */
9855 else if (input_sec == bfd_und_section_ptr
9856 && h->indx != -2
9857 && !bfd_link_relocatable (flinfo->info))
9858 return TRUE;
9859 /* Also strip others that we couldn't earlier due to dynamic symbol
9860 processing. */
9861 if (strip)
9862 return TRUE;
9863 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9864 return TRUE;
9865
9866 /* Output a FILE symbol so that following locals are not associated
9867 with the wrong input file. We need one for forced local symbols
9868 if we've seen more than one FILE symbol or when we have exactly
9869 one FILE symbol but global symbols are present in a file other
9870 than the one with the FILE symbol. We also need one if linker
9871 defined symbols are present. In practice these conditions are
9872 always met, so just emit the FILE symbol unconditionally. */
9873 if (eoinfo->localsyms
9874 && !eoinfo->file_sym_done
9875 && eoinfo->flinfo->filesym_count != 0)
9876 {
9877 Elf_Internal_Sym fsym;
9878
9879 memset (&fsym, 0, sizeof (fsym));
9880 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9881 fsym.st_shndx = SHN_ABS;
9882 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9883 bfd_und_section_ptr, NULL))
9884 return FALSE;
9885
9886 eoinfo->file_sym_done = TRUE;
9887 }
9888
9889 indx = bfd_get_symcount (flinfo->output_bfd);
9890 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9891 input_sec, h);
9892 if (ret == 0)
9893 {
9894 eoinfo->failed = TRUE;
9895 return FALSE;
9896 }
9897 else if (ret == 1)
9898 h->indx = indx;
9899 else if (h->indx == -2)
9900 abort();
9901
9902 return TRUE;
9903 }
9904
9905 /* Return TRUE if special handling is done for relocs in SEC against
9906 symbols defined in discarded sections. */
9907
9908 static bfd_boolean
9909 elf_section_ignore_discarded_relocs (asection *sec)
9910 {
9911 const struct elf_backend_data *bed;
9912
9913 switch (sec->sec_info_type)
9914 {
9915 case SEC_INFO_TYPE_STABS:
9916 case SEC_INFO_TYPE_EH_FRAME:
9917 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9918 return TRUE;
9919 default:
9920 break;
9921 }
9922
9923 bed = get_elf_backend_data (sec->owner);
9924 if (bed->elf_backend_ignore_discarded_relocs != NULL
9925 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9926 return TRUE;
9927
9928 return FALSE;
9929 }
9930
9931 /* Return a mask saying how ld should treat relocations in SEC against
9932 symbols defined in discarded sections. If this function returns
9933 COMPLAIN set, ld will issue a warning message. If this function
9934 returns PRETEND set, and the discarded section was link-once and the
9935 same size as the kept link-once section, ld will pretend that the
9936 symbol was actually defined in the kept section. Otherwise ld will
9937 zero the reloc (at least that is the intent, but some cooperation by
9938 the target dependent code is needed, particularly for REL targets). */
9939
9940 unsigned int
9941 _bfd_elf_default_action_discarded (asection *sec)
9942 {
9943 if (sec->flags & SEC_DEBUGGING)
9944 return PRETEND;
9945
9946 if (strcmp (".eh_frame", sec->name) == 0)
9947 return 0;
9948
9949 if (strcmp (".gcc_except_table", sec->name) == 0)
9950 return 0;
9951
9952 return COMPLAIN | PRETEND;
9953 }
9954
9955 /* Find a match between a section and a member of a section group. */
9956
9957 static asection *
9958 match_group_member (asection *sec, asection *group,
9959 struct bfd_link_info *info)
9960 {
9961 asection *first = elf_next_in_group (group);
9962 asection *s = first;
9963
9964 while (s != NULL)
9965 {
9966 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9967 return s;
9968
9969 s = elf_next_in_group (s);
9970 if (s == first)
9971 break;
9972 }
9973
9974 return NULL;
9975 }
9976
9977 /* Check if the kept section of a discarded section SEC can be used
9978 to replace it. Return the replacement if it is OK. Otherwise return
9979 NULL. */
9980
9981 asection *
9982 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9983 {
9984 asection *kept;
9985
9986 kept = sec->kept_section;
9987 if (kept != NULL)
9988 {
9989 if ((kept->flags & SEC_GROUP) != 0)
9990 kept = match_group_member (sec, kept, info);
9991 if (kept != NULL
9992 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9993 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9994 kept = NULL;
9995 sec->kept_section = kept;
9996 }
9997 return kept;
9998 }
9999
10000 /* Link an input file into the linker output file. This function
10001 handles all the sections and relocations of the input file at once.
10002 This is so that we only have to read the local symbols once, and
10003 don't have to keep them in memory. */
10004
10005 static bfd_boolean
10006 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10007 {
10008 int (*relocate_section)
10009 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10010 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10011 bfd *output_bfd;
10012 Elf_Internal_Shdr *symtab_hdr;
10013 size_t locsymcount;
10014 size_t extsymoff;
10015 Elf_Internal_Sym *isymbuf;
10016 Elf_Internal_Sym *isym;
10017 Elf_Internal_Sym *isymend;
10018 long *pindex;
10019 asection **ppsection;
10020 asection *o;
10021 const struct elf_backend_data *bed;
10022 struct elf_link_hash_entry **sym_hashes;
10023 bfd_size_type address_size;
10024 bfd_vma r_type_mask;
10025 int r_sym_shift;
10026 bfd_boolean have_file_sym = FALSE;
10027
10028 output_bfd = flinfo->output_bfd;
10029 bed = get_elf_backend_data (output_bfd);
10030 relocate_section = bed->elf_backend_relocate_section;
10031
10032 /* If this is a dynamic object, we don't want to do anything here:
10033 we don't want the local symbols, and we don't want the section
10034 contents. */
10035 if ((input_bfd->flags & DYNAMIC) != 0)
10036 return TRUE;
10037
10038 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10039 if (elf_bad_symtab (input_bfd))
10040 {
10041 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10042 extsymoff = 0;
10043 }
10044 else
10045 {
10046 locsymcount = symtab_hdr->sh_info;
10047 extsymoff = symtab_hdr->sh_info;
10048 }
10049
10050 /* Read the local symbols. */
10051 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10052 if (isymbuf == NULL && locsymcount != 0)
10053 {
10054 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10055 flinfo->internal_syms,
10056 flinfo->external_syms,
10057 flinfo->locsym_shndx);
10058 if (isymbuf == NULL)
10059 return FALSE;
10060 }
10061
10062 /* Find local symbol sections and adjust values of symbols in
10063 SEC_MERGE sections. Write out those local symbols we know are
10064 going into the output file. */
10065 isymend = isymbuf + locsymcount;
10066 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10067 isym < isymend;
10068 isym++, pindex++, ppsection++)
10069 {
10070 asection *isec;
10071 const char *name;
10072 Elf_Internal_Sym osym;
10073 long indx;
10074 int ret;
10075
10076 *pindex = -1;
10077
10078 if (elf_bad_symtab (input_bfd))
10079 {
10080 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10081 {
10082 *ppsection = NULL;
10083 continue;
10084 }
10085 }
10086
10087 if (isym->st_shndx == SHN_UNDEF)
10088 isec = bfd_und_section_ptr;
10089 else if (isym->st_shndx == SHN_ABS)
10090 isec = bfd_abs_section_ptr;
10091 else if (isym->st_shndx == SHN_COMMON)
10092 isec = bfd_com_section_ptr;
10093 else
10094 {
10095 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10096 if (isec == NULL)
10097 {
10098 /* Don't attempt to output symbols with st_shnx in the
10099 reserved range other than SHN_ABS and SHN_COMMON. */
10100 *ppsection = NULL;
10101 continue;
10102 }
10103 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10104 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10105 isym->st_value =
10106 _bfd_merged_section_offset (output_bfd, &isec,
10107 elf_section_data (isec)->sec_info,
10108 isym->st_value);
10109 }
10110
10111 *ppsection = isec;
10112
10113 /* Don't output the first, undefined, symbol. In fact, don't
10114 output any undefined local symbol. */
10115 if (isec == bfd_und_section_ptr)
10116 continue;
10117
10118 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10119 {
10120 /* We never output section symbols. Instead, we use the
10121 section symbol of the corresponding section in the output
10122 file. */
10123 continue;
10124 }
10125
10126 /* If we are stripping all symbols, we don't want to output this
10127 one. */
10128 if (flinfo->info->strip == strip_all)
10129 continue;
10130
10131 /* If we are discarding all local symbols, we don't want to
10132 output this one. If we are generating a relocatable output
10133 file, then some of the local symbols may be required by
10134 relocs; we output them below as we discover that they are
10135 needed. */
10136 if (flinfo->info->discard == discard_all)
10137 continue;
10138
10139 /* If this symbol is defined in a section which we are
10140 discarding, we don't need to keep it. */
10141 if (isym->st_shndx != SHN_UNDEF
10142 && isym->st_shndx < SHN_LORESERVE
10143 && bfd_section_removed_from_list (output_bfd,
10144 isec->output_section))
10145 continue;
10146
10147 /* Get the name of the symbol. */
10148 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10149 isym->st_name);
10150 if (name == NULL)
10151 return FALSE;
10152
10153 /* See if we are discarding symbols with this name. */
10154 if ((flinfo->info->strip == strip_some
10155 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10156 == NULL))
10157 || (((flinfo->info->discard == discard_sec_merge
10158 && (isec->flags & SEC_MERGE)
10159 && !bfd_link_relocatable (flinfo->info))
10160 || flinfo->info->discard == discard_l)
10161 && bfd_is_local_label_name (input_bfd, name)))
10162 continue;
10163
10164 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10165 {
10166 if (input_bfd->lto_output)
10167 /* -flto puts a temp file name here. This means builds
10168 are not reproducible. Discard the symbol. */
10169 continue;
10170 have_file_sym = TRUE;
10171 flinfo->filesym_count += 1;
10172 }
10173 if (!have_file_sym)
10174 {
10175 /* In the absence of debug info, bfd_find_nearest_line uses
10176 FILE symbols to determine the source file for local
10177 function symbols. Provide a FILE symbol here if input
10178 files lack such, so that their symbols won't be
10179 associated with a previous input file. It's not the
10180 source file, but the best we can do. */
10181 have_file_sym = TRUE;
10182 flinfo->filesym_count += 1;
10183 memset (&osym, 0, sizeof (osym));
10184 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10185 osym.st_shndx = SHN_ABS;
10186 if (!elf_link_output_symstrtab (flinfo,
10187 (input_bfd->lto_output ? NULL
10188 : input_bfd->filename),
10189 &osym, bfd_abs_section_ptr,
10190 NULL))
10191 return FALSE;
10192 }
10193
10194 osym = *isym;
10195
10196 /* Adjust the section index for the output file. */
10197 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10198 isec->output_section);
10199 if (osym.st_shndx == SHN_BAD)
10200 return FALSE;
10201
10202 /* ELF symbols in relocatable files are section relative, but
10203 in executable files they are virtual addresses. Note that
10204 this code assumes that all ELF sections have an associated
10205 BFD section with a reasonable value for output_offset; below
10206 we assume that they also have a reasonable value for
10207 output_section. Any special sections must be set up to meet
10208 these requirements. */
10209 osym.st_value += isec->output_offset;
10210 if (!bfd_link_relocatable (flinfo->info))
10211 {
10212 osym.st_value += isec->output_section->vma;
10213 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10214 {
10215 /* STT_TLS symbols are relative to PT_TLS segment base. */
10216 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10217 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10218 }
10219 }
10220
10221 indx = bfd_get_symcount (output_bfd);
10222 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10223 if (ret == 0)
10224 return FALSE;
10225 else if (ret == 1)
10226 *pindex = indx;
10227 }
10228
10229 if (bed->s->arch_size == 32)
10230 {
10231 r_type_mask = 0xff;
10232 r_sym_shift = 8;
10233 address_size = 4;
10234 }
10235 else
10236 {
10237 r_type_mask = 0xffffffff;
10238 r_sym_shift = 32;
10239 address_size = 8;
10240 }
10241
10242 /* Relocate the contents of each section. */
10243 sym_hashes = elf_sym_hashes (input_bfd);
10244 for (o = input_bfd->sections; o != NULL; o = o->next)
10245 {
10246 bfd_byte *contents;
10247
10248 if (! o->linker_mark)
10249 {
10250 /* This section was omitted from the link. */
10251 continue;
10252 }
10253
10254 if (bfd_link_relocatable (flinfo->info)
10255 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10256 {
10257 /* Deal with the group signature symbol. */
10258 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10259 unsigned long symndx = sec_data->this_hdr.sh_info;
10260 asection *osec = o->output_section;
10261
10262 if (symndx >= locsymcount
10263 || (elf_bad_symtab (input_bfd)
10264 && flinfo->sections[symndx] == NULL))
10265 {
10266 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10267 while (h->root.type == bfd_link_hash_indirect
10268 || h->root.type == bfd_link_hash_warning)
10269 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10270 /* Arrange for symbol to be output. */
10271 h->indx = -2;
10272 elf_section_data (osec)->this_hdr.sh_info = -2;
10273 }
10274 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10275 {
10276 /* We'll use the output section target_index. */
10277 asection *sec = flinfo->sections[symndx]->output_section;
10278 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10279 }
10280 else
10281 {
10282 if (flinfo->indices[symndx] == -1)
10283 {
10284 /* Otherwise output the local symbol now. */
10285 Elf_Internal_Sym sym = isymbuf[symndx];
10286 asection *sec = flinfo->sections[symndx]->output_section;
10287 const char *name;
10288 long indx;
10289 int ret;
10290
10291 name = bfd_elf_string_from_elf_section (input_bfd,
10292 symtab_hdr->sh_link,
10293 sym.st_name);
10294 if (name == NULL)
10295 return FALSE;
10296
10297 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10298 sec);
10299 if (sym.st_shndx == SHN_BAD)
10300 return FALSE;
10301
10302 sym.st_value += o->output_offset;
10303
10304 indx = bfd_get_symcount (output_bfd);
10305 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10306 NULL);
10307 if (ret == 0)
10308 return FALSE;
10309 else if (ret == 1)
10310 flinfo->indices[symndx] = indx;
10311 else
10312 abort ();
10313 }
10314 elf_section_data (osec)->this_hdr.sh_info
10315 = flinfo->indices[symndx];
10316 }
10317 }
10318
10319 if ((o->flags & SEC_HAS_CONTENTS) == 0
10320 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10321 continue;
10322
10323 if ((o->flags & SEC_LINKER_CREATED) != 0)
10324 {
10325 /* Section was created by _bfd_elf_link_create_dynamic_sections
10326 or somesuch. */
10327 continue;
10328 }
10329
10330 /* Get the contents of the section. They have been cached by a
10331 relaxation routine. Note that o is a section in an input
10332 file, so the contents field will not have been set by any of
10333 the routines which work on output files. */
10334 if (elf_section_data (o)->this_hdr.contents != NULL)
10335 {
10336 contents = elf_section_data (o)->this_hdr.contents;
10337 if (bed->caches_rawsize
10338 && o->rawsize != 0
10339 && o->rawsize < o->size)
10340 {
10341 memcpy (flinfo->contents, contents, o->rawsize);
10342 contents = flinfo->contents;
10343 }
10344 }
10345 else
10346 {
10347 contents = flinfo->contents;
10348 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10349 return FALSE;
10350 }
10351
10352 if ((o->flags & SEC_RELOC) != 0)
10353 {
10354 Elf_Internal_Rela *internal_relocs;
10355 Elf_Internal_Rela *rel, *relend;
10356 int action_discarded;
10357 int ret;
10358
10359 /* Get the swapped relocs. */
10360 internal_relocs
10361 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10362 flinfo->internal_relocs, FALSE);
10363 if (internal_relocs == NULL
10364 && o->reloc_count > 0)
10365 return FALSE;
10366
10367 /* We need to reverse-copy input .ctors/.dtors sections if
10368 they are placed in .init_array/.finit_array for output. */
10369 if (o->size > address_size
10370 && ((strncmp (o->name, ".ctors", 6) == 0
10371 && strcmp (o->output_section->name,
10372 ".init_array") == 0)
10373 || (strncmp (o->name, ".dtors", 6) == 0
10374 && strcmp (o->output_section->name,
10375 ".fini_array") == 0))
10376 && (o->name[6] == 0 || o->name[6] == '.'))
10377 {
10378 if (o->size != o->reloc_count * address_size)
10379 {
10380 _bfd_error_handler
10381 /* xgettext:c-format */
10382 (_("error: %B: size of section %A is not "
10383 "multiple of address size"),
10384 input_bfd, o);
10385 bfd_set_error (bfd_error_on_input);
10386 return FALSE;
10387 }
10388 o->flags |= SEC_ELF_REVERSE_COPY;
10389 }
10390
10391 action_discarded = -1;
10392 if (!elf_section_ignore_discarded_relocs (o))
10393 action_discarded = (*bed->action_discarded) (o);
10394
10395 /* Run through the relocs evaluating complex reloc symbols and
10396 looking for relocs against symbols from discarded sections
10397 or section symbols from removed link-once sections.
10398 Complain about relocs against discarded sections. Zero
10399 relocs against removed link-once sections. */
10400
10401 rel = internal_relocs;
10402 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10403 for ( ; rel < relend; rel++)
10404 {
10405 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10406 unsigned int s_type;
10407 asection **ps, *sec;
10408 struct elf_link_hash_entry *h = NULL;
10409 const char *sym_name;
10410
10411 if (r_symndx == STN_UNDEF)
10412 continue;
10413
10414 if (r_symndx >= locsymcount
10415 || (elf_bad_symtab (input_bfd)
10416 && flinfo->sections[r_symndx] == NULL))
10417 {
10418 h = sym_hashes[r_symndx - extsymoff];
10419
10420 /* Badly formatted input files can contain relocs that
10421 reference non-existant symbols. Check here so that
10422 we do not seg fault. */
10423 if (h == NULL)
10424 {
10425 char buffer [32];
10426
10427 sprintf_vma (buffer, rel->r_info);
10428 _bfd_error_handler
10429 /* xgettext:c-format */
10430 (_("error: %B contains a reloc (0x%s) for section %A "
10431 "that references a non-existent global symbol"),
10432 input_bfd, buffer, o);
10433 bfd_set_error (bfd_error_bad_value);
10434 return FALSE;
10435 }
10436
10437 while (h->root.type == bfd_link_hash_indirect
10438 || h->root.type == bfd_link_hash_warning)
10439 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10440
10441 s_type = h->type;
10442
10443 /* If a plugin symbol is referenced from a non-IR file,
10444 mark the symbol as undefined. Note that the
10445 linker may attach linker created dynamic sections
10446 to the plugin bfd. Symbols defined in linker
10447 created sections are not plugin symbols. */
10448 if (h->root.non_ir_ref
10449 && (h->root.type == bfd_link_hash_defined
10450 || h->root.type == bfd_link_hash_defweak)
10451 && (h->root.u.def.section->flags
10452 & SEC_LINKER_CREATED) == 0
10453 && h->root.u.def.section->owner != NULL
10454 && (h->root.u.def.section->owner->flags
10455 & BFD_PLUGIN) != 0)
10456 {
10457 h->root.type = bfd_link_hash_undefined;
10458 h->root.u.undef.abfd = h->root.u.def.section->owner;
10459 }
10460
10461 ps = NULL;
10462 if (h->root.type == bfd_link_hash_defined
10463 || h->root.type == bfd_link_hash_defweak)
10464 ps = &h->root.u.def.section;
10465
10466 sym_name = h->root.root.string;
10467 }
10468 else
10469 {
10470 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10471
10472 s_type = ELF_ST_TYPE (sym->st_info);
10473 ps = &flinfo->sections[r_symndx];
10474 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10475 sym, *ps);
10476 }
10477
10478 if ((s_type == STT_RELC || s_type == STT_SRELC)
10479 && !bfd_link_relocatable (flinfo->info))
10480 {
10481 bfd_vma val;
10482 bfd_vma dot = (rel->r_offset
10483 + o->output_offset + o->output_section->vma);
10484 #ifdef DEBUG
10485 printf ("Encountered a complex symbol!");
10486 printf (" (input_bfd %s, section %s, reloc %ld\n",
10487 input_bfd->filename, o->name,
10488 (long) (rel - internal_relocs));
10489 printf (" symbol: idx %8.8lx, name %s\n",
10490 r_symndx, sym_name);
10491 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10492 (unsigned long) rel->r_info,
10493 (unsigned long) rel->r_offset);
10494 #endif
10495 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10496 isymbuf, locsymcount, s_type == STT_SRELC))
10497 return FALSE;
10498
10499 /* Symbol evaluated OK. Update to absolute value. */
10500 set_symbol_value (input_bfd, isymbuf, locsymcount,
10501 r_symndx, val);
10502 continue;
10503 }
10504
10505 if (action_discarded != -1 && ps != NULL)
10506 {
10507 /* Complain if the definition comes from a
10508 discarded section. */
10509 if ((sec = *ps) != NULL && discarded_section (sec))
10510 {
10511 BFD_ASSERT (r_symndx != STN_UNDEF);
10512 if (action_discarded & COMPLAIN)
10513 (*flinfo->info->callbacks->einfo)
10514 /* xgettext:c-format */
10515 (_("%X`%s' referenced in section `%A' of %B: "
10516 "defined in discarded section `%A' of %B\n"),
10517 sym_name, o, input_bfd, sec, sec->owner);
10518
10519 /* Try to do the best we can to support buggy old
10520 versions of gcc. Pretend that the symbol is
10521 really defined in the kept linkonce section.
10522 FIXME: This is quite broken. Modifying the
10523 symbol here means we will be changing all later
10524 uses of the symbol, not just in this section. */
10525 if (action_discarded & PRETEND)
10526 {
10527 asection *kept;
10528
10529 kept = _bfd_elf_check_kept_section (sec,
10530 flinfo->info);
10531 if (kept != NULL)
10532 {
10533 *ps = kept;
10534 continue;
10535 }
10536 }
10537 }
10538 }
10539 }
10540
10541 /* Relocate the section by invoking a back end routine.
10542
10543 The back end routine is responsible for adjusting the
10544 section contents as necessary, and (if using Rela relocs
10545 and generating a relocatable output file) adjusting the
10546 reloc addend as necessary.
10547
10548 The back end routine does not have to worry about setting
10549 the reloc address or the reloc symbol index.
10550
10551 The back end routine is given a pointer to the swapped in
10552 internal symbols, and can access the hash table entries
10553 for the external symbols via elf_sym_hashes (input_bfd).
10554
10555 When generating relocatable output, the back end routine
10556 must handle STB_LOCAL/STT_SECTION symbols specially. The
10557 output symbol is going to be a section symbol
10558 corresponding to the output section, which will require
10559 the addend to be adjusted. */
10560
10561 ret = (*relocate_section) (output_bfd, flinfo->info,
10562 input_bfd, o, contents,
10563 internal_relocs,
10564 isymbuf,
10565 flinfo->sections);
10566 if (!ret)
10567 return FALSE;
10568
10569 if (ret == 2
10570 || bfd_link_relocatable (flinfo->info)
10571 || flinfo->info->emitrelocations)
10572 {
10573 Elf_Internal_Rela *irela;
10574 Elf_Internal_Rela *irelaend, *irelamid;
10575 bfd_vma last_offset;
10576 struct elf_link_hash_entry **rel_hash;
10577 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10578 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10579 unsigned int next_erel;
10580 bfd_boolean rela_normal;
10581 struct bfd_elf_section_data *esdi, *esdo;
10582
10583 esdi = elf_section_data (o);
10584 esdo = elf_section_data (o->output_section);
10585 rela_normal = FALSE;
10586
10587 /* Adjust the reloc addresses and symbol indices. */
10588
10589 irela = internal_relocs;
10590 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10591 rel_hash = esdo->rel.hashes + esdo->rel.count;
10592 /* We start processing the REL relocs, if any. When we reach
10593 IRELAMID in the loop, we switch to the RELA relocs. */
10594 irelamid = irela;
10595 if (esdi->rel.hdr != NULL)
10596 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10597 * bed->s->int_rels_per_ext_rel);
10598 rel_hash_list = rel_hash;
10599 rela_hash_list = NULL;
10600 last_offset = o->output_offset;
10601 if (!bfd_link_relocatable (flinfo->info))
10602 last_offset += o->output_section->vma;
10603 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10604 {
10605 unsigned long r_symndx;
10606 asection *sec;
10607 Elf_Internal_Sym sym;
10608
10609 if (next_erel == bed->s->int_rels_per_ext_rel)
10610 {
10611 rel_hash++;
10612 next_erel = 0;
10613 }
10614
10615 if (irela == irelamid)
10616 {
10617 rel_hash = esdo->rela.hashes + esdo->rela.count;
10618 rela_hash_list = rel_hash;
10619 rela_normal = bed->rela_normal;
10620 }
10621
10622 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10623 flinfo->info, o,
10624 irela->r_offset);
10625 if (irela->r_offset >= (bfd_vma) -2)
10626 {
10627 /* This is a reloc for a deleted entry or somesuch.
10628 Turn it into an R_*_NONE reloc, at the same
10629 offset as the last reloc. elf_eh_frame.c and
10630 bfd_elf_discard_info rely on reloc offsets
10631 being ordered. */
10632 irela->r_offset = last_offset;
10633 irela->r_info = 0;
10634 irela->r_addend = 0;
10635 continue;
10636 }
10637
10638 irela->r_offset += o->output_offset;
10639
10640 /* Relocs in an executable have to be virtual addresses. */
10641 if (!bfd_link_relocatable (flinfo->info))
10642 irela->r_offset += o->output_section->vma;
10643
10644 last_offset = irela->r_offset;
10645
10646 r_symndx = irela->r_info >> r_sym_shift;
10647 if (r_symndx == STN_UNDEF)
10648 continue;
10649
10650 if (r_symndx >= locsymcount
10651 || (elf_bad_symtab (input_bfd)
10652 && flinfo->sections[r_symndx] == NULL))
10653 {
10654 struct elf_link_hash_entry *rh;
10655 unsigned long indx;
10656
10657 /* This is a reloc against a global symbol. We
10658 have not yet output all the local symbols, so
10659 we do not know the symbol index of any global
10660 symbol. We set the rel_hash entry for this
10661 reloc to point to the global hash table entry
10662 for this symbol. The symbol index is then
10663 set at the end of bfd_elf_final_link. */
10664 indx = r_symndx - extsymoff;
10665 rh = elf_sym_hashes (input_bfd)[indx];
10666 while (rh->root.type == bfd_link_hash_indirect
10667 || rh->root.type == bfd_link_hash_warning)
10668 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10669
10670 /* Setting the index to -2 tells
10671 elf_link_output_extsym that this symbol is
10672 used by a reloc. */
10673 BFD_ASSERT (rh->indx < 0);
10674 rh->indx = -2;
10675
10676 *rel_hash = rh;
10677
10678 continue;
10679 }
10680
10681 /* This is a reloc against a local symbol. */
10682
10683 *rel_hash = NULL;
10684 sym = isymbuf[r_symndx];
10685 sec = flinfo->sections[r_symndx];
10686 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10687 {
10688 /* I suppose the backend ought to fill in the
10689 section of any STT_SECTION symbol against a
10690 processor specific section. */
10691 r_symndx = STN_UNDEF;
10692 if (bfd_is_abs_section (sec))
10693 ;
10694 else if (sec == NULL || sec->owner == NULL)
10695 {
10696 bfd_set_error (bfd_error_bad_value);
10697 return FALSE;
10698 }
10699 else
10700 {
10701 asection *osec = sec->output_section;
10702
10703 /* If we have discarded a section, the output
10704 section will be the absolute section. In
10705 case of discarded SEC_MERGE sections, use
10706 the kept section. relocate_section should
10707 have already handled discarded linkonce
10708 sections. */
10709 if (bfd_is_abs_section (osec)
10710 && sec->kept_section != NULL
10711 && sec->kept_section->output_section != NULL)
10712 {
10713 osec = sec->kept_section->output_section;
10714 irela->r_addend -= osec->vma;
10715 }
10716
10717 if (!bfd_is_abs_section (osec))
10718 {
10719 r_symndx = osec->target_index;
10720 if (r_symndx == STN_UNDEF)
10721 {
10722 irela->r_addend += osec->vma;
10723 osec = _bfd_nearby_section (output_bfd, osec,
10724 osec->vma);
10725 irela->r_addend -= osec->vma;
10726 r_symndx = osec->target_index;
10727 }
10728 }
10729 }
10730
10731 /* Adjust the addend according to where the
10732 section winds up in the output section. */
10733 if (rela_normal)
10734 irela->r_addend += sec->output_offset;
10735 }
10736 else
10737 {
10738 if (flinfo->indices[r_symndx] == -1)
10739 {
10740 unsigned long shlink;
10741 const char *name;
10742 asection *osec;
10743 long indx;
10744
10745 if (flinfo->info->strip == strip_all)
10746 {
10747 /* You can't do ld -r -s. */
10748 bfd_set_error (bfd_error_invalid_operation);
10749 return FALSE;
10750 }
10751
10752 /* This symbol was skipped earlier, but
10753 since it is needed by a reloc, we
10754 must output it now. */
10755 shlink = symtab_hdr->sh_link;
10756 name = (bfd_elf_string_from_elf_section
10757 (input_bfd, shlink, sym.st_name));
10758 if (name == NULL)
10759 return FALSE;
10760
10761 osec = sec->output_section;
10762 sym.st_shndx =
10763 _bfd_elf_section_from_bfd_section (output_bfd,
10764 osec);
10765 if (sym.st_shndx == SHN_BAD)
10766 return FALSE;
10767
10768 sym.st_value += sec->output_offset;
10769 if (!bfd_link_relocatable (flinfo->info))
10770 {
10771 sym.st_value += osec->vma;
10772 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10773 {
10774 /* STT_TLS symbols are relative to PT_TLS
10775 segment base. */
10776 BFD_ASSERT (elf_hash_table (flinfo->info)
10777 ->tls_sec != NULL);
10778 sym.st_value -= (elf_hash_table (flinfo->info)
10779 ->tls_sec->vma);
10780 }
10781 }
10782
10783 indx = bfd_get_symcount (output_bfd);
10784 ret = elf_link_output_symstrtab (flinfo, name,
10785 &sym, sec,
10786 NULL);
10787 if (ret == 0)
10788 return FALSE;
10789 else if (ret == 1)
10790 flinfo->indices[r_symndx] = indx;
10791 else
10792 abort ();
10793 }
10794
10795 r_symndx = flinfo->indices[r_symndx];
10796 }
10797
10798 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10799 | (irela->r_info & r_type_mask));
10800 }
10801
10802 /* Swap out the relocs. */
10803 input_rel_hdr = esdi->rel.hdr;
10804 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10805 {
10806 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10807 input_rel_hdr,
10808 internal_relocs,
10809 rel_hash_list))
10810 return FALSE;
10811 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10812 * bed->s->int_rels_per_ext_rel);
10813 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10814 }
10815
10816 input_rela_hdr = esdi->rela.hdr;
10817 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10818 {
10819 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10820 input_rela_hdr,
10821 internal_relocs,
10822 rela_hash_list))
10823 return FALSE;
10824 }
10825 }
10826 }
10827
10828 /* Write out the modified section contents. */
10829 if (bed->elf_backend_write_section
10830 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10831 contents))
10832 {
10833 /* Section written out. */
10834 }
10835 else switch (o->sec_info_type)
10836 {
10837 case SEC_INFO_TYPE_STABS:
10838 if (! (_bfd_write_section_stabs
10839 (output_bfd,
10840 &elf_hash_table (flinfo->info)->stab_info,
10841 o, &elf_section_data (o)->sec_info, contents)))
10842 return FALSE;
10843 break;
10844 case SEC_INFO_TYPE_MERGE:
10845 if (! _bfd_write_merged_section (output_bfd, o,
10846 elf_section_data (o)->sec_info))
10847 return FALSE;
10848 break;
10849 case SEC_INFO_TYPE_EH_FRAME:
10850 {
10851 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10852 o, contents))
10853 return FALSE;
10854 }
10855 break;
10856 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10857 {
10858 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10859 flinfo->info,
10860 o, contents))
10861 return FALSE;
10862 }
10863 break;
10864 default:
10865 {
10866 if (! (o->flags & SEC_EXCLUDE))
10867 {
10868 file_ptr offset = (file_ptr) o->output_offset;
10869 bfd_size_type todo = o->size;
10870
10871 offset *= bfd_octets_per_byte (output_bfd);
10872
10873 if ((o->flags & SEC_ELF_REVERSE_COPY))
10874 {
10875 /* Reverse-copy input section to output. */
10876 do
10877 {
10878 todo -= address_size;
10879 if (! bfd_set_section_contents (output_bfd,
10880 o->output_section,
10881 contents + todo,
10882 offset,
10883 address_size))
10884 return FALSE;
10885 if (todo == 0)
10886 break;
10887 offset += address_size;
10888 }
10889 while (1);
10890 }
10891 else if (! bfd_set_section_contents (output_bfd,
10892 o->output_section,
10893 contents,
10894 offset, todo))
10895 return FALSE;
10896 }
10897 }
10898 break;
10899 }
10900 }
10901
10902 return TRUE;
10903 }
10904
10905 /* Generate a reloc when linking an ELF file. This is a reloc
10906 requested by the linker, and does not come from any input file. This
10907 is used to build constructor and destructor tables when linking
10908 with -Ur. */
10909
10910 static bfd_boolean
10911 elf_reloc_link_order (bfd *output_bfd,
10912 struct bfd_link_info *info,
10913 asection *output_section,
10914 struct bfd_link_order *link_order)
10915 {
10916 reloc_howto_type *howto;
10917 long indx;
10918 bfd_vma offset;
10919 bfd_vma addend;
10920 struct bfd_elf_section_reloc_data *reldata;
10921 struct elf_link_hash_entry **rel_hash_ptr;
10922 Elf_Internal_Shdr *rel_hdr;
10923 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10924 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10925 bfd_byte *erel;
10926 unsigned int i;
10927 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10928
10929 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10930 if (howto == NULL)
10931 {
10932 bfd_set_error (bfd_error_bad_value);
10933 return FALSE;
10934 }
10935
10936 addend = link_order->u.reloc.p->addend;
10937
10938 if (esdo->rel.hdr)
10939 reldata = &esdo->rel;
10940 else if (esdo->rela.hdr)
10941 reldata = &esdo->rela;
10942 else
10943 {
10944 reldata = NULL;
10945 BFD_ASSERT (0);
10946 }
10947
10948 /* Figure out the symbol index. */
10949 rel_hash_ptr = reldata->hashes + reldata->count;
10950 if (link_order->type == bfd_section_reloc_link_order)
10951 {
10952 indx = link_order->u.reloc.p->u.section->target_index;
10953 BFD_ASSERT (indx != 0);
10954 *rel_hash_ptr = NULL;
10955 }
10956 else
10957 {
10958 struct elf_link_hash_entry *h;
10959
10960 /* Treat a reloc against a defined symbol as though it were
10961 actually against the section. */
10962 h = ((struct elf_link_hash_entry *)
10963 bfd_wrapped_link_hash_lookup (output_bfd, info,
10964 link_order->u.reloc.p->u.name,
10965 FALSE, FALSE, TRUE));
10966 if (h != NULL
10967 && (h->root.type == bfd_link_hash_defined
10968 || h->root.type == bfd_link_hash_defweak))
10969 {
10970 asection *section;
10971
10972 section = h->root.u.def.section;
10973 indx = section->output_section->target_index;
10974 *rel_hash_ptr = NULL;
10975 /* It seems that we ought to add the symbol value to the
10976 addend here, but in practice it has already been added
10977 because it was passed to constructor_callback. */
10978 addend += section->output_section->vma + section->output_offset;
10979 }
10980 else if (h != NULL)
10981 {
10982 /* Setting the index to -2 tells elf_link_output_extsym that
10983 this symbol is used by a reloc. */
10984 h->indx = -2;
10985 *rel_hash_ptr = h;
10986 indx = 0;
10987 }
10988 else
10989 {
10990 (*info->callbacks->unattached_reloc)
10991 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
10992 indx = 0;
10993 }
10994 }
10995
10996 /* If this is an inplace reloc, we must write the addend into the
10997 object file. */
10998 if (howto->partial_inplace && addend != 0)
10999 {
11000 bfd_size_type size;
11001 bfd_reloc_status_type rstat;
11002 bfd_byte *buf;
11003 bfd_boolean ok;
11004 const char *sym_name;
11005
11006 size = (bfd_size_type) bfd_get_reloc_size (howto);
11007 buf = (bfd_byte *) bfd_zmalloc (size);
11008 if (buf == NULL && size != 0)
11009 return FALSE;
11010 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11011 switch (rstat)
11012 {
11013 case bfd_reloc_ok:
11014 break;
11015
11016 default:
11017 case bfd_reloc_outofrange:
11018 abort ();
11019
11020 case bfd_reloc_overflow:
11021 if (link_order->type == bfd_section_reloc_link_order)
11022 sym_name = bfd_section_name (output_bfd,
11023 link_order->u.reloc.p->u.section);
11024 else
11025 sym_name = link_order->u.reloc.p->u.name;
11026 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11027 howto->name, addend, NULL, NULL,
11028 (bfd_vma) 0);
11029 break;
11030 }
11031
11032 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11033 link_order->offset
11034 * bfd_octets_per_byte (output_bfd),
11035 size);
11036 free (buf);
11037 if (! ok)
11038 return FALSE;
11039 }
11040
11041 /* The address of a reloc is relative to the section in a
11042 relocatable file, and is a virtual address in an executable
11043 file. */
11044 offset = link_order->offset;
11045 if (! bfd_link_relocatable (info))
11046 offset += output_section->vma;
11047
11048 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11049 {
11050 irel[i].r_offset = offset;
11051 irel[i].r_info = 0;
11052 irel[i].r_addend = 0;
11053 }
11054 if (bed->s->arch_size == 32)
11055 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11056 else
11057 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11058
11059 rel_hdr = reldata->hdr;
11060 erel = rel_hdr->contents;
11061 if (rel_hdr->sh_type == SHT_REL)
11062 {
11063 erel += reldata->count * bed->s->sizeof_rel;
11064 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11065 }
11066 else
11067 {
11068 irel[0].r_addend = addend;
11069 erel += reldata->count * bed->s->sizeof_rela;
11070 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11071 }
11072
11073 ++reldata->count;
11074
11075 return TRUE;
11076 }
11077
11078
11079 /* Get the output vma of the section pointed to by the sh_link field. */
11080
11081 static bfd_vma
11082 elf_get_linked_section_vma (struct bfd_link_order *p)
11083 {
11084 Elf_Internal_Shdr **elf_shdrp;
11085 asection *s;
11086 int elfsec;
11087
11088 s = p->u.indirect.section;
11089 elf_shdrp = elf_elfsections (s->owner);
11090 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11091 elfsec = elf_shdrp[elfsec]->sh_link;
11092 /* PR 290:
11093 The Intel C compiler generates SHT_IA_64_UNWIND with
11094 SHF_LINK_ORDER. But it doesn't set the sh_link or
11095 sh_info fields. Hence we could get the situation
11096 where elfsec is 0. */
11097 if (elfsec == 0)
11098 {
11099 const struct elf_backend_data *bed
11100 = get_elf_backend_data (s->owner);
11101 if (bed->link_order_error_handler)
11102 bed->link_order_error_handler
11103 /* xgettext:c-format */
11104 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11105 return 0;
11106 }
11107 else
11108 {
11109 s = elf_shdrp[elfsec]->bfd_section;
11110 return s->output_section->vma + s->output_offset;
11111 }
11112 }
11113
11114
11115 /* Compare two sections based on the locations of the sections they are
11116 linked to. Used by elf_fixup_link_order. */
11117
11118 static int
11119 compare_link_order (const void * a, const void * b)
11120 {
11121 bfd_vma apos;
11122 bfd_vma bpos;
11123
11124 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11125 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11126 if (apos < bpos)
11127 return -1;
11128 return apos > bpos;
11129 }
11130
11131
11132 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11133 order as their linked sections. Returns false if this could not be done
11134 because an output section includes both ordered and unordered
11135 sections. Ideally we'd do this in the linker proper. */
11136
11137 static bfd_boolean
11138 elf_fixup_link_order (bfd *abfd, asection *o)
11139 {
11140 int seen_linkorder;
11141 int seen_other;
11142 int n;
11143 struct bfd_link_order *p;
11144 bfd *sub;
11145 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11146 unsigned elfsec;
11147 struct bfd_link_order **sections;
11148 asection *s, *other_sec, *linkorder_sec;
11149 bfd_vma offset;
11150
11151 other_sec = NULL;
11152 linkorder_sec = NULL;
11153 seen_other = 0;
11154 seen_linkorder = 0;
11155 for (p = o->map_head.link_order; p != NULL; p = p->next)
11156 {
11157 if (p->type == bfd_indirect_link_order)
11158 {
11159 s = p->u.indirect.section;
11160 sub = s->owner;
11161 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11162 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11163 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11164 && elfsec < elf_numsections (sub)
11165 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11166 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11167 {
11168 seen_linkorder++;
11169 linkorder_sec = s;
11170 }
11171 else
11172 {
11173 seen_other++;
11174 other_sec = s;
11175 }
11176 }
11177 else
11178 seen_other++;
11179
11180 if (seen_other && seen_linkorder)
11181 {
11182 if (other_sec && linkorder_sec)
11183 _bfd_error_handler
11184 /* xgettext:c-format */
11185 (_("%A has both ordered [`%A' in %B] "
11186 "and unordered [`%A' in %B] sections"),
11187 o, linkorder_sec, linkorder_sec->owner,
11188 other_sec, other_sec->owner);
11189 else
11190 _bfd_error_handler
11191 (_("%A has both ordered and unordered sections"), o);
11192 bfd_set_error (bfd_error_bad_value);
11193 return FALSE;
11194 }
11195 }
11196
11197 if (!seen_linkorder)
11198 return TRUE;
11199
11200 sections = (struct bfd_link_order **)
11201 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11202 if (sections == NULL)
11203 return FALSE;
11204 seen_linkorder = 0;
11205
11206 for (p = o->map_head.link_order; p != NULL; p = p->next)
11207 {
11208 sections[seen_linkorder++] = p;
11209 }
11210 /* Sort the input sections in the order of their linked section. */
11211 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11212 compare_link_order);
11213
11214 /* Change the offsets of the sections. */
11215 offset = 0;
11216 for (n = 0; n < seen_linkorder; n++)
11217 {
11218 s = sections[n]->u.indirect.section;
11219 offset &= ~(bfd_vma) 0 << s->alignment_power;
11220 s->output_offset = offset / bfd_octets_per_byte (abfd);
11221 sections[n]->offset = offset;
11222 offset += sections[n]->size;
11223 }
11224
11225 free (sections);
11226 return TRUE;
11227 }
11228
11229 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11230 Returns TRUE upon success, FALSE otherwise. */
11231
11232 static bfd_boolean
11233 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11234 {
11235 bfd_boolean ret = FALSE;
11236 bfd *implib_bfd;
11237 const struct elf_backend_data *bed;
11238 flagword flags;
11239 enum bfd_architecture arch;
11240 unsigned int mach;
11241 asymbol **sympp = NULL;
11242 long symsize;
11243 long symcount;
11244 long src_count;
11245 elf_symbol_type *osymbuf;
11246
11247 implib_bfd = info->out_implib_bfd;
11248 bed = get_elf_backend_data (abfd);
11249
11250 if (!bfd_set_format (implib_bfd, bfd_object))
11251 return FALSE;
11252
11253 flags = bfd_get_file_flags (abfd);
11254 flags &= ~HAS_RELOC;
11255 if (!bfd_set_start_address (implib_bfd, 0)
11256 || !bfd_set_file_flags (implib_bfd, flags))
11257 return FALSE;
11258
11259 /* Copy architecture of output file to import library file. */
11260 arch = bfd_get_arch (abfd);
11261 mach = bfd_get_mach (abfd);
11262 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11263 && (abfd->target_defaulted
11264 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11265 return FALSE;
11266
11267 /* Get symbol table size. */
11268 symsize = bfd_get_symtab_upper_bound (abfd);
11269 if (symsize < 0)
11270 return FALSE;
11271
11272 /* Read in the symbol table. */
11273 sympp = (asymbol **) xmalloc (symsize);
11274 symcount = bfd_canonicalize_symtab (abfd, sympp);
11275 if (symcount < 0)
11276 goto free_sym_buf;
11277
11278 /* Allow the BFD backend to copy any private header data it
11279 understands from the output BFD to the import library BFD. */
11280 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11281 goto free_sym_buf;
11282
11283 /* Filter symbols to appear in the import library. */
11284 if (bed->elf_backend_filter_implib_symbols)
11285 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11286 symcount);
11287 else
11288 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11289 if (symcount == 0)
11290 {
11291 bfd_set_error (bfd_error_no_symbols);
11292 _bfd_error_handler (_("%B: no symbol found for import library"),
11293 implib_bfd);
11294 goto free_sym_buf;
11295 }
11296
11297
11298 /* Make symbols absolute. */
11299 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11300 sizeof (*osymbuf));
11301 for (src_count = 0; src_count < symcount; src_count++)
11302 {
11303 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11304 sizeof (*osymbuf));
11305 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11306 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11307 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11308 osymbuf[src_count].internal_elf_sym.st_value =
11309 osymbuf[src_count].symbol.value;
11310 sympp[src_count] = &osymbuf[src_count].symbol;
11311 }
11312
11313 bfd_set_symtab (implib_bfd, sympp, symcount);
11314
11315 /* Allow the BFD backend to copy any private data it understands
11316 from the output BFD to the import library BFD. This is done last
11317 to permit the routine to look at the filtered symbol table. */
11318 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11319 goto free_sym_buf;
11320
11321 if (!bfd_close (implib_bfd))
11322 goto free_sym_buf;
11323
11324 ret = TRUE;
11325
11326 free_sym_buf:
11327 free (sympp);
11328 return ret;
11329 }
11330
11331 static void
11332 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11333 {
11334 asection *o;
11335
11336 if (flinfo->symstrtab != NULL)
11337 _bfd_elf_strtab_free (flinfo->symstrtab);
11338 if (flinfo->contents != NULL)
11339 free (flinfo->contents);
11340 if (flinfo->external_relocs != NULL)
11341 free (flinfo->external_relocs);
11342 if (flinfo->internal_relocs != NULL)
11343 free (flinfo->internal_relocs);
11344 if (flinfo->external_syms != NULL)
11345 free (flinfo->external_syms);
11346 if (flinfo->locsym_shndx != NULL)
11347 free (flinfo->locsym_shndx);
11348 if (flinfo->internal_syms != NULL)
11349 free (flinfo->internal_syms);
11350 if (flinfo->indices != NULL)
11351 free (flinfo->indices);
11352 if (flinfo->sections != NULL)
11353 free (flinfo->sections);
11354 if (flinfo->symshndxbuf != NULL)
11355 free (flinfo->symshndxbuf);
11356 for (o = obfd->sections; o != NULL; o = o->next)
11357 {
11358 struct bfd_elf_section_data *esdo = elf_section_data (o);
11359 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11360 free (esdo->rel.hashes);
11361 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11362 free (esdo->rela.hashes);
11363 }
11364 }
11365
11366 /* Do the final step of an ELF link. */
11367
11368 bfd_boolean
11369 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11370 {
11371 bfd_boolean dynamic;
11372 bfd_boolean emit_relocs;
11373 bfd *dynobj;
11374 struct elf_final_link_info flinfo;
11375 asection *o;
11376 struct bfd_link_order *p;
11377 bfd *sub;
11378 bfd_size_type max_contents_size;
11379 bfd_size_type max_external_reloc_size;
11380 bfd_size_type max_internal_reloc_count;
11381 bfd_size_type max_sym_count;
11382 bfd_size_type max_sym_shndx_count;
11383 Elf_Internal_Sym elfsym;
11384 unsigned int i;
11385 Elf_Internal_Shdr *symtab_hdr;
11386 Elf_Internal_Shdr *symtab_shndx_hdr;
11387 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11388 struct elf_outext_info eoinfo;
11389 bfd_boolean merged;
11390 size_t relativecount = 0;
11391 asection *reldyn = 0;
11392 bfd_size_type amt;
11393 asection *attr_section = NULL;
11394 bfd_vma attr_size = 0;
11395 const char *std_attrs_section;
11396 struct elf_link_hash_table *htab = elf_hash_table (info);
11397
11398 if (!is_elf_hash_table (htab))
11399 return FALSE;
11400
11401 if (bfd_link_pic (info))
11402 abfd->flags |= DYNAMIC;
11403
11404 dynamic = htab->dynamic_sections_created;
11405 dynobj = htab->dynobj;
11406
11407 emit_relocs = (bfd_link_relocatable (info)
11408 || info->emitrelocations);
11409
11410 flinfo.info = info;
11411 flinfo.output_bfd = abfd;
11412 flinfo.symstrtab = _bfd_elf_strtab_init ();
11413 if (flinfo.symstrtab == NULL)
11414 return FALSE;
11415
11416 if (! dynamic)
11417 {
11418 flinfo.hash_sec = NULL;
11419 flinfo.symver_sec = NULL;
11420 }
11421 else
11422 {
11423 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11424 /* Note that dynsym_sec can be NULL (on VMS). */
11425 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11426 /* Note that it is OK if symver_sec is NULL. */
11427 }
11428
11429 flinfo.contents = NULL;
11430 flinfo.external_relocs = NULL;
11431 flinfo.internal_relocs = NULL;
11432 flinfo.external_syms = NULL;
11433 flinfo.locsym_shndx = NULL;
11434 flinfo.internal_syms = NULL;
11435 flinfo.indices = NULL;
11436 flinfo.sections = NULL;
11437 flinfo.symshndxbuf = NULL;
11438 flinfo.filesym_count = 0;
11439
11440 /* The object attributes have been merged. Remove the input
11441 sections from the link, and set the contents of the output
11442 secton. */
11443 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11444 for (o = abfd->sections; o != NULL; o = o->next)
11445 {
11446 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11447 || strcmp (o->name, ".gnu.attributes") == 0)
11448 {
11449 for (p = o->map_head.link_order; p != NULL; p = p->next)
11450 {
11451 asection *input_section;
11452
11453 if (p->type != bfd_indirect_link_order)
11454 continue;
11455 input_section = p->u.indirect.section;
11456 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11457 elf_link_input_bfd ignores this section. */
11458 input_section->flags &= ~SEC_HAS_CONTENTS;
11459 }
11460
11461 attr_size = bfd_elf_obj_attr_size (abfd);
11462 if (attr_size)
11463 {
11464 bfd_set_section_size (abfd, o, attr_size);
11465 attr_section = o;
11466 /* Skip this section later on. */
11467 o->map_head.link_order = NULL;
11468 }
11469 else
11470 o->flags |= SEC_EXCLUDE;
11471 }
11472 }
11473
11474 /* Count up the number of relocations we will output for each output
11475 section, so that we know the sizes of the reloc sections. We
11476 also figure out some maximum sizes. */
11477 max_contents_size = 0;
11478 max_external_reloc_size = 0;
11479 max_internal_reloc_count = 0;
11480 max_sym_count = 0;
11481 max_sym_shndx_count = 0;
11482 merged = FALSE;
11483 for (o = abfd->sections; o != NULL; o = o->next)
11484 {
11485 struct bfd_elf_section_data *esdo = elf_section_data (o);
11486 o->reloc_count = 0;
11487
11488 for (p = o->map_head.link_order; p != NULL; p = p->next)
11489 {
11490 unsigned int reloc_count = 0;
11491 unsigned int additional_reloc_count = 0;
11492 struct bfd_elf_section_data *esdi = NULL;
11493
11494 if (p->type == bfd_section_reloc_link_order
11495 || p->type == bfd_symbol_reloc_link_order)
11496 reloc_count = 1;
11497 else if (p->type == bfd_indirect_link_order)
11498 {
11499 asection *sec;
11500
11501 sec = p->u.indirect.section;
11502
11503 /* Mark all sections which are to be included in the
11504 link. This will normally be every section. We need
11505 to do this so that we can identify any sections which
11506 the linker has decided to not include. */
11507 sec->linker_mark = TRUE;
11508
11509 if (sec->flags & SEC_MERGE)
11510 merged = TRUE;
11511
11512 if (sec->rawsize > max_contents_size)
11513 max_contents_size = sec->rawsize;
11514 if (sec->size > max_contents_size)
11515 max_contents_size = sec->size;
11516
11517 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11518 && (sec->owner->flags & DYNAMIC) == 0)
11519 {
11520 size_t sym_count;
11521
11522 /* We are interested in just local symbols, not all
11523 symbols. */
11524 if (elf_bad_symtab (sec->owner))
11525 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11526 / bed->s->sizeof_sym);
11527 else
11528 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11529
11530 if (sym_count > max_sym_count)
11531 max_sym_count = sym_count;
11532
11533 if (sym_count > max_sym_shndx_count
11534 && elf_symtab_shndx_list (sec->owner) != NULL)
11535 max_sym_shndx_count = sym_count;
11536
11537 if (esdo->this_hdr.sh_type == SHT_REL
11538 || esdo->this_hdr.sh_type == SHT_RELA)
11539 /* Some backends use reloc_count in relocation sections
11540 to count particular types of relocs. Of course,
11541 reloc sections themselves can't have relocations. */
11542 ;
11543 else if (emit_relocs)
11544 {
11545 reloc_count = sec->reloc_count;
11546 if (bed->elf_backend_count_additional_relocs)
11547 {
11548 int c;
11549 c = (*bed->elf_backend_count_additional_relocs) (sec);
11550 additional_reloc_count += c;
11551 }
11552 }
11553 else if (bed->elf_backend_count_relocs)
11554 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11555
11556 esdi = elf_section_data (sec);
11557
11558 if ((sec->flags & SEC_RELOC) != 0)
11559 {
11560 size_t ext_size = 0;
11561
11562 if (esdi->rel.hdr != NULL)
11563 ext_size = esdi->rel.hdr->sh_size;
11564 if (esdi->rela.hdr != NULL)
11565 ext_size += esdi->rela.hdr->sh_size;
11566
11567 if (ext_size > max_external_reloc_size)
11568 max_external_reloc_size = ext_size;
11569 if (sec->reloc_count > max_internal_reloc_count)
11570 max_internal_reloc_count = sec->reloc_count;
11571 }
11572 }
11573 }
11574
11575 if (reloc_count == 0)
11576 continue;
11577
11578 reloc_count += additional_reloc_count;
11579 o->reloc_count += reloc_count;
11580
11581 if (p->type == bfd_indirect_link_order && emit_relocs)
11582 {
11583 if (esdi->rel.hdr)
11584 {
11585 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11586 esdo->rel.count += additional_reloc_count;
11587 }
11588 if (esdi->rela.hdr)
11589 {
11590 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11591 esdo->rela.count += additional_reloc_count;
11592 }
11593 }
11594 else
11595 {
11596 if (o->use_rela_p)
11597 esdo->rela.count += reloc_count;
11598 else
11599 esdo->rel.count += reloc_count;
11600 }
11601 }
11602
11603 if (o->reloc_count > 0)
11604 o->flags |= SEC_RELOC;
11605 else
11606 {
11607 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11608 set it (this is probably a bug) and if it is set
11609 assign_section_numbers will create a reloc section. */
11610 o->flags &=~ SEC_RELOC;
11611 }
11612
11613 /* If the SEC_ALLOC flag is not set, force the section VMA to
11614 zero. This is done in elf_fake_sections as well, but forcing
11615 the VMA to 0 here will ensure that relocs against these
11616 sections are handled correctly. */
11617 if ((o->flags & SEC_ALLOC) == 0
11618 && ! o->user_set_vma)
11619 o->vma = 0;
11620 }
11621
11622 if (! bfd_link_relocatable (info) && merged)
11623 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11624
11625 /* Figure out the file positions for everything but the symbol table
11626 and the relocs. We set symcount to force assign_section_numbers
11627 to create a symbol table. */
11628 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11629 BFD_ASSERT (! abfd->output_has_begun);
11630 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11631 goto error_return;
11632
11633 /* Set sizes, and assign file positions for reloc sections. */
11634 for (o = abfd->sections; o != NULL; o = o->next)
11635 {
11636 struct bfd_elf_section_data *esdo = elf_section_data (o);
11637 if ((o->flags & SEC_RELOC) != 0)
11638 {
11639 if (esdo->rel.hdr
11640 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11641 goto error_return;
11642
11643 if (esdo->rela.hdr
11644 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11645 goto error_return;
11646 }
11647
11648 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11649 to count upwards while actually outputting the relocations. */
11650 esdo->rel.count = 0;
11651 esdo->rela.count = 0;
11652
11653 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11654 {
11655 /* Cache the section contents so that they can be compressed
11656 later. Use bfd_malloc since it will be freed by
11657 bfd_compress_section_contents. */
11658 unsigned char *contents = esdo->this_hdr.contents;
11659 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11660 abort ();
11661 contents
11662 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11663 if (contents == NULL)
11664 goto error_return;
11665 esdo->this_hdr.contents = contents;
11666 }
11667 }
11668
11669 /* We have now assigned file positions for all the sections except
11670 .symtab, .strtab, and non-loaded reloc sections. We start the
11671 .symtab section at the current file position, and write directly
11672 to it. We build the .strtab section in memory. */
11673 bfd_get_symcount (abfd) = 0;
11674 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11675 /* sh_name is set in prep_headers. */
11676 symtab_hdr->sh_type = SHT_SYMTAB;
11677 /* sh_flags, sh_addr and sh_size all start off zero. */
11678 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11679 /* sh_link is set in assign_section_numbers. */
11680 /* sh_info is set below. */
11681 /* sh_offset is set just below. */
11682 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11683
11684 if (max_sym_count < 20)
11685 max_sym_count = 20;
11686 htab->strtabsize = max_sym_count;
11687 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11688 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11689 if (htab->strtab == NULL)
11690 goto error_return;
11691 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11692 flinfo.symshndxbuf
11693 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11694 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11695
11696 if (info->strip != strip_all || emit_relocs)
11697 {
11698 file_ptr off = elf_next_file_pos (abfd);
11699
11700 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11701
11702 /* Note that at this point elf_next_file_pos (abfd) is
11703 incorrect. We do not yet know the size of the .symtab section.
11704 We correct next_file_pos below, after we do know the size. */
11705
11706 /* Start writing out the symbol table. The first symbol is always a
11707 dummy symbol. */
11708 elfsym.st_value = 0;
11709 elfsym.st_size = 0;
11710 elfsym.st_info = 0;
11711 elfsym.st_other = 0;
11712 elfsym.st_shndx = SHN_UNDEF;
11713 elfsym.st_target_internal = 0;
11714 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11715 bfd_und_section_ptr, NULL) != 1)
11716 goto error_return;
11717
11718 /* Output a symbol for each section. We output these even if we are
11719 discarding local symbols, since they are used for relocs. These
11720 symbols have no names. We store the index of each one in the
11721 index field of the section, so that we can find it again when
11722 outputting relocs. */
11723
11724 elfsym.st_size = 0;
11725 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11726 elfsym.st_other = 0;
11727 elfsym.st_value = 0;
11728 elfsym.st_target_internal = 0;
11729 for (i = 1; i < elf_numsections (abfd); i++)
11730 {
11731 o = bfd_section_from_elf_index (abfd, i);
11732 if (o != NULL)
11733 {
11734 o->target_index = bfd_get_symcount (abfd);
11735 elfsym.st_shndx = i;
11736 if (!bfd_link_relocatable (info))
11737 elfsym.st_value = o->vma;
11738 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11739 NULL) != 1)
11740 goto error_return;
11741 }
11742 }
11743 }
11744
11745 /* Allocate some memory to hold information read in from the input
11746 files. */
11747 if (max_contents_size != 0)
11748 {
11749 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11750 if (flinfo.contents == NULL)
11751 goto error_return;
11752 }
11753
11754 if (max_external_reloc_size != 0)
11755 {
11756 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11757 if (flinfo.external_relocs == NULL)
11758 goto error_return;
11759 }
11760
11761 if (max_internal_reloc_count != 0)
11762 {
11763 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11764 amt *= sizeof (Elf_Internal_Rela);
11765 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11766 if (flinfo.internal_relocs == NULL)
11767 goto error_return;
11768 }
11769
11770 if (max_sym_count != 0)
11771 {
11772 amt = max_sym_count * bed->s->sizeof_sym;
11773 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11774 if (flinfo.external_syms == NULL)
11775 goto error_return;
11776
11777 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11778 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11779 if (flinfo.internal_syms == NULL)
11780 goto error_return;
11781
11782 amt = max_sym_count * sizeof (long);
11783 flinfo.indices = (long int *) bfd_malloc (amt);
11784 if (flinfo.indices == NULL)
11785 goto error_return;
11786
11787 amt = max_sym_count * sizeof (asection *);
11788 flinfo.sections = (asection **) bfd_malloc (amt);
11789 if (flinfo.sections == NULL)
11790 goto error_return;
11791 }
11792
11793 if (max_sym_shndx_count != 0)
11794 {
11795 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11796 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11797 if (flinfo.locsym_shndx == NULL)
11798 goto error_return;
11799 }
11800
11801 if (htab->tls_sec)
11802 {
11803 bfd_vma base, end = 0;
11804 asection *sec;
11805
11806 for (sec = htab->tls_sec;
11807 sec && (sec->flags & SEC_THREAD_LOCAL);
11808 sec = sec->next)
11809 {
11810 bfd_size_type size = sec->size;
11811
11812 if (size == 0
11813 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11814 {
11815 struct bfd_link_order *ord = sec->map_tail.link_order;
11816
11817 if (ord != NULL)
11818 size = ord->offset + ord->size;
11819 }
11820 end = sec->vma + size;
11821 }
11822 base = htab->tls_sec->vma;
11823 /* Only align end of TLS section if static TLS doesn't have special
11824 alignment requirements. */
11825 if (bed->static_tls_alignment == 1)
11826 end = align_power (end, htab->tls_sec->alignment_power);
11827 htab->tls_size = end - base;
11828 }
11829
11830 /* Reorder SHF_LINK_ORDER sections. */
11831 for (o = abfd->sections; o != NULL; o = o->next)
11832 {
11833 if (!elf_fixup_link_order (abfd, o))
11834 return FALSE;
11835 }
11836
11837 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11838 return FALSE;
11839
11840 /* Since ELF permits relocations to be against local symbols, we
11841 must have the local symbols available when we do the relocations.
11842 Since we would rather only read the local symbols once, and we
11843 would rather not keep them in memory, we handle all the
11844 relocations for a single input file at the same time.
11845
11846 Unfortunately, there is no way to know the total number of local
11847 symbols until we have seen all of them, and the local symbol
11848 indices precede the global symbol indices. This means that when
11849 we are generating relocatable output, and we see a reloc against
11850 a global symbol, we can not know the symbol index until we have
11851 finished examining all the local symbols to see which ones we are
11852 going to output. To deal with this, we keep the relocations in
11853 memory, and don't output them until the end of the link. This is
11854 an unfortunate waste of memory, but I don't see a good way around
11855 it. Fortunately, it only happens when performing a relocatable
11856 link, which is not the common case. FIXME: If keep_memory is set
11857 we could write the relocs out and then read them again; I don't
11858 know how bad the memory loss will be. */
11859
11860 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11861 sub->output_has_begun = FALSE;
11862 for (o = abfd->sections; o != NULL; o = o->next)
11863 {
11864 for (p = o->map_head.link_order; p != NULL; p = p->next)
11865 {
11866 if (p->type == bfd_indirect_link_order
11867 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11868 == bfd_target_elf_flavour)
11869 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11870 {
11871 if (! sub->output_has_begun)
11872 {
11873 if (! elf_link_input_bfd (&flinfo, sub))
11874 goto error_return;
11875 sub->output_has_begun = TRUE;
11876 }
11877 }
11878 else if (p->type == bfd_section_reloc_link_order
11879 || p->type == bfd_symbol_reloc_link_order)
11880 {
11881 if (! elf_reloc_link_order (abfd, info, o, p))
11882 goto error_return;
11883 }
11884 else
11885 {
11886 if (! _bfd_default_link_order (abfd, info, o, p))
11887 {
11888 if (p->type == bfd_indirect_link_order
11889 && (bfd_get_flavour (sub)
11890 == bfd_target_elf_flavour)
11891 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11892 != bed->s->elfclass))
11893 {
11894 const char *iclass, *oclass;
11895
11896 switch (bed->s->elfclass)
11897 {
11898 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11899 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11900 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11901 default: abort ();
11902 }
11903
11904 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11905 {
11906 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11907 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11908 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11909 default: abort ();
11910 }
11911
11912 bfd_set_error (bfd_error_wrong_format);
11913 _bfd_error_handler
11914 /* xgettext:c-format */
11915 (_("%B: file class %s incompatible with %s"),
11916 sub, iclass, oclass);
11917 }
11918
11919 goto error_return;
11920 }
11921 }
11922 }
11923 }
11924
11925 /* Free symbol buffer if needed. */
11926 if (!info->reduce_memory_overheads)
11927 {
11928 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11929 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11930 && elf_tdata (sub)->symbuf)
11931 {
11932 free (elf_tdata (sub)->symbuf);
11933 elf_tdata (sub)->symbuf = NULL;
11934 }
11935 }
11936
11937 /* Output any global symbols that got converted to local in a
11938 version script or due to symbol visibility. We do this in a
11939 separate step since ELF requires all local symbols to appear
11940 prior to any global symbols. FIXME: We should only do this if
11941 some global symbols were, in fact, converted to become local.
11942 FIXME: Will this work correctly with the Irix 5 linker? */
11943 eoinfo.failed = FALSE;
11944 eoinfo.flinfo = &flinfo;
11945 eoinfo.localsyms = TRUE;
11946 eoinfo.file_sym_done = FALSE;
11947 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11948 if (eoinfo.failed)
11949 return FALSE;
11950
11951 /* If backend needs to output some local symbols not present in the hash
11952 table, do it now. */
11953 if (bed->elf_backend_output_arch_local_syms
11954 && (info->strip != strip_all || emit_relocs))
11955 {
11956 typedef int (*out_sym_func)
11957 (void *, const char *, Elf_Internal_Sym *, asection *,
11958 struct elf_link_hash_entry *);
11959
11960 if (! ((*bed->elf_backend_output_arch_local_syms)
11961 (abfd, info, &flinfo,
11962 (out_sym_func) elf_link_output_symstrtab)))
11963 return FALSE;
11964 }
11965
11966 /* That wrote out all the local symbols. Finish up the symbol table
11967 with the global symbols. Even if we want to strip everything we
11968 can, we still need to deal with those global symbols that got
11969 converted to local in a version script. */
11970
11971 /* The sh_info field records the index of the first non local symbol. */
11972 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11973
11974 if (dynamic
11975 && htab->dynsym != NULL
11976 && htab->dynsym->output_section != bfd_abs_section_ptr)
11977 {
11978 Elf_Internal_Sym sym;
11979 bfd_byte *dynsym = htab->dynsym->contents;
11980
11981 o = htab->dynsym->output_section;
11982 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
11983
11984 /* Write out the section symbols for the output sections. */
11985 if (bfd_link_pic (info)
11986 || htab->is_relocatable_executable)
11987 {
11988 asection *s;
11989
11990 sym.st_size = 0;
11991 sym.st_name = 0;
11992 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11993 sym.st_other = 0;
11994 sym.st_target_internal = 0;
11995
11996 for (s = abfd->sections; s != NULL; s = s->next)
11997 {
11998 int indx;
11999 bfd_byte *dest;
12000 long dynindx;
12001
12002 dynindx = elf_section_data (s)->dynindx;
12003 if (dynindx <= 0)
12004 continue;
12005 indx = elf_section_data (s)->this_idx;
12006 BFD_ASSERT (indx > 0);
12007 sym.st_shndx = indx;
12008 if (! check_dynsym (abfd, &sym))
12009 return FALSE;
12010 sym.st_value = s->vma;
12011 dest = dynsym + dynindx * bed->s->sizeof_sym;
12012 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12013 }
12014 }
12015
12016 /* Write out the local dynsyms. */
12017 if (htab->dynlocal)
12018 {
12019 struct elf_link_local_dynamic_entry *e;
12020 for (e = htab->dynlocal; e ; e = e->next)
12021 {
12022 asection *s;
12023 bfd_byte *dest;
12024
12025 /* Copy the internal symbol and turn off visibility.
12026 Note that we saved a word of storage and overwrote
12027 the original st_name with the dynstr_index. */
12028 sym = e->isym;
12029 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12030
12031 s = bfd_section_from_elf_index (e->input_bfd,
12032 e->isym.st_shndx);
12033 if (s != NULL)
12034 {
12035 sym.st_shndx =
12036 elf_section_data (s->output_section)->this_idx;
12037 if (! check_dynsym (abfd, &sym))
12038 return FALSE;
12039 sym.st_value = (s->output_section->vma
12040 + s->output_offset
12041 + e->isym.st_value);
12042 }
12043
12044 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12045 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12046 }
12047 }
12048 }
12049
12050 /* We get the global symbols from the hash table. */
12051 eoinfo.failed = FALSE;
12052 eoinfo.localsyms = FALSE;
12053 eoinfo.flinfo = &flinfo;
12054 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12055 if (eoinfo.failed)
12056 return FALSE;
12057
12058 /* If backend needs to output some symbols not present in the hash
12059 table, do it now. */
12060 if (bed->elf_backend_output_arch_syms
12061 && (info->strip != strip_all || emit_relocs))
12062 {
12063 typedef int (*out_sym_func)
12064 (void *, const char *, Elf_Internal_Sym *, asection *,
12065 struct elf_link_hash_entry *);
12066
12067 if (! ((*bed->elf_backend_output_arch_syms)
12068 (abfd, info, &flinfo,
12069 (out_sym_func) elf_link_output_symstrtab)))
12070 return FALSE;
12071 }
12072
12073 /* Finalize the .strtab section. */
12074 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12075
12076 /* Swap out the .strtab section. */
12077 if (!elf_link_swap_symbols_out (&flinfo))
12078 return FALSE;
12079
12080 /* Now we know the size of the symtab section. */
12081 if (bfd_get_symcount (abfd) > 0)
12082 {
12083 /* Finish up and write out the symbol string table (.strtab)
12084 section. */
12085 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12086 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12087
12088 if (elf_symtab_shndx_list (abfd))
12089 {
12090 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12091
12092 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12093 {
12094 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12095 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12096 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12097 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12098 symtab_shndx_hdr->sh_size = amt;
12099
12100 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12101 off, TRUE);
12102
12103 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12104 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12105 return FALSE;
12106 }
12107 }
12108
12109 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12110 /* sh_name was set in prep_headers. */
12111 symstrtab_hdr->sh_type = SHT_STRTAB;
12112 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12113 symstrtab_hdr->sh_addr = 0;
12114 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12115 symstrtab_hdr->sh_entsize = 0;
12116 symstrtab_hdr->sh_link = 0;
12117 symstrtab_hdr->sh_info = 0;
12118 /* sh_offset is set just below. */
12119 symstrtab_hdr->sh_addralign = 1;
12120
12121 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12122 off, TRUE);
12123 elf_next_file_pos (abfd) = off;
12124
12125 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12126 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12127 return FALSE;
12128 }
12129
12130 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12131 {
12132 _bfd_error_handler (_("%B: failed to generate import library"),
12133 info->out_implib_bfd);
12134 return FALSE;
12135 }
12136
12137 /* Adjust the relocs to have the correct symbol indices. */
12138 for (o = abfd->sections; o != NULL; o = o->next)
12139 {
12140 struct bfd_elf_section_data *esdo = elf_section_data (o);
12141 bfd_boolean sort;
12142 if ((o->flags & SEC_RELOC) == 0)
12143 continue;
12144
12145 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12146 if (esdo->rel.hdr != NULL
12147 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort))
12148 return FALSE;
12149 if (esdo->rela.hdr != NULL
12150 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort))
12151 return FALSE;
12152
12153 /* Set the reloc_count field to 0 to prevent write_relocs from
12154 trying to swap the relocs out itself. */
12155 o->reloc_count = 0;
12156 }
12157
12158 if (dynamic && info->combreloc && dynobj != NULL)
12159 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12160
12161 /* If we are linking against a dynamic object, or generating a
12162 shared library, finish up the dynamic linking information. */
12163 if (dynamic)
12164 {
12165 bfd_byte *dyncon, *dynconend;
12166
12167 /* Fix up .dynamic entries. */
12168 o = bfd_get_linker_section (dynobj, ".dynamic");
12169 BFD_ASSERT (o != NULL);
12170
12171 dyncon = o->contents;
12172 dynconend = o->contents + o->size;
12173 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12174 {
12175 Elf_Internal_Dyn dyn;
12176 const char *name;
12177 unsigned int type;
12178 bfd_size_type sh_size;
12179 bfd_vma sh_addr;
12180
12181 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12182
12183 switch (dyn.d_tag)
12184 {
12185 default:
12186 continue;
12187 case DT_NULL:
12188 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12189 {
12190 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12191 {
12192 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12193 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12194 default: continue;
12195 }
12196 dyn.d_un.d_val = relativecount;
12197 relativecount = 0;
12198 break;
12199 }
12200 continue;
12201
12202 case DT_INIT:
12203 name = info->init_function;
12204 goto get_sym;
12205 case DT_FINI:
12206 name = info->fini_function;
12207 get_sym:
12208 {
12209 struct elf_link_hash_entry *h;
12210
12211 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12212 if (h != NULL
12213 && (h->root.type == bfd_link_hash_defined
12214 || h->root.type == bfd_link_hash_defweak))
12215 {
12216 dyn.d_un.d_ptr = h->root.u.def.value;
12217 o = h->root.u.def.section;
12218 if (o->output_section != NULL)
12219 dyn.d_un.d_ptr += (o->output_section->vma
12220 + o->output_offset);
12221 else
12222 {
12223 /* The symbol is imported from another shared
12224 library and does not apply to this one. */
12225 dyn.d_un.d_ptr = 0;
12226 }
12227 break;
12228 }
12229 }
12230 continue;
12231
12232 case DT_PREINIT_ARRAYSZ:
12233 name = ".preinit_array";
12234 goto get_out_size;
12235 case DT_INIT_ARRAYSZ:
12236 name = ".init_array";
12237 goto get_out_size;
12238 case DT_FINI_ARRAYSZ:
12239 name = ".fini_array";
12240 get_out_size:
12241 o = bfd_get_section_by_name (abfd, name);
12242 if (o == NULL)
12243 {
12244 _bfd_error_handler
12245 (_("could not find section %s"), name);
12246 goto error_return;
12247 }
12248 if (o->size == 0)
12249 _bfd_error_handler
12250 (_("warning: %s section has zero size"), name);
12251 dyn.d_un.d_val = o->size;
12252 break;
12253
12254 case DT_PREINIT_ARRAY:
12255 name = ".preinit_array";
12256 goto get_out_vma;
12257 case DT_INIT_ARRAY:
12258 name = ".init_array";
12259 goto get_out_vma;
12260 case DT_FINI_ARRAY:
12261 name = ".fini_array";
12262 get_out_vma:
12263 o = bfd_get_section_by_name (abfd, name);
12264 goto do_vma;
12265
12266 case DT_HASH:
12267 name = ".hash";
12268 goto get_vma;
12269 case DT_GNU_HASH:
12270 name = ".gnu.hash";
12271 goto get_vma;
12272 case DT_STRTAB:
12273 name = ".dynstr";
12274 goto get_vma;
12275 case DT_SYMTAB:
12276 name = ".dynsym";
12277 goto get_vma;
12278 case DT_VERDEF:
12279 name = ".gnu.version_d";
12280 goto get_vma;
12281 case DT_VERNEED:
12282 name = ".gnu.version_r";
12283 goto get_vma;
12284 case DT_VERSYM:
12285 name = ".gnu.version";
12286 get_vma:
12287 o = bfd_get_linker_section (dynobj, name);
12288 do_vma:
12289 if (o == NULL)
12290 {
12291 _bfd_error_handler
12292 (_("could not find section %s"), name);
12293 goto error_return;
12294 }
12295 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12296 {
12297 _bfd_error_handler
12298 (_("warning: section '%s' is being made into a note"), name);
12299 bfd_set_error (bfd_error_nonrepresentable_section);
12300 goto error_return;
12301 }
12302 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12303 break;
12304
12305 case DT_REL:
12306 case DT_RELA:
12307 case DT_RELSZ:
12308 case DT_RELASZ:
12309 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12310 type = SHT_REL;
12311 else
12312 type = SHT_RELA;
12313 sh_size = 0;
12314 sh_addr = 0;
12315 for (i = 1; i < elf_numsections (abfd); i++)
12316 {
12317 Elf_Internal_Shdr *hdr;
12318
12319 hdr = elf_elfsections (abfd)[i];
12320 if (hdr->sh_type == type
12321 && (hdr->sh_flags & SHF_ALLOC) != 0)
12322 {
12323 sh_size += hdr->sh_size;
12324 if (sh_addr == 0
12325 || sh_addr > hdr->sh_addr)
12326 sh_addr = hdr->sh_addr;
12327 }
12328 }
12329
12330 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12331 {
12332 /* Don't count procedure linkage table relocs in the
12333 overall reloc count. */
12334 sh_size -= htab->srelplt->size;
12335 if (sh_size == 0)
12336 /* If the size is zero, make the address zero too.
12337 This is to avoid a glibc bug. If the backend
12338 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12339 zero, then we'll put DT_RELA at the end of
12340 DT_JMPREL. glibc will interpret the end of
12341 DT_RELA matching the end of DT_JMPREL as the
12342 case where DT_RELA includes DT_JMPREL, and for
12343 LD_BIND_NOW will decide that processing DT_RELA
12344 will process the PLT relocs too. Net result:
12345 No PLT relocs applied. */
12346 sh_addr = 0;
12347
12348 /* If .rela.plt is the first .rela section, exclude
12349 it from DT_RELA. */
12350 else if (sh_addr == (htab->srelplt->output_section->vma
12351 + htab->srelplt->output_offset))
12352 sh_addr += htab->srelplt->size;
12353 }
12354
12355 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12356 dyn.d_un.d_val = sh_size;
12357 else
12358 dyn.d_un.d_ptr = sh_addr;
12359 break;
12360 }
12361 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12362 }
12363 }
12364
12365 /* If we have created any dynamic sections, then output them. */
12366 if (dynobj != NULL)
12367 {
12368 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12369 goto error_return;
12370
12371 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12372 if (((info->warn_shared_textrel && bfd_link_pic (info))
12373 || info->error_textrel)
12374 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12375 {
12376 bfd_byte *dyncon, *dynconend;
12377
12378 dyncon = o->contents;
12379 dynconend = o->contents + o->size;
12380 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12381 {
12382 Elf_Internal_Dyn dyn;
12383
12384 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12385
12386 if (dyn.d_tag == DT_TEXTREL)
12387 {
12388 if (info->error_textrel)
12389 info->callbacks->einfo
12390 (_("%P%X: read-only segment has dynamic relocations.\n"));
12391 else
12392 info->callbacks->einfo
12393 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12394 break;
12395 }
12396 }
12397 }
12398
12399 for (o = dynobj->sections; o != NULL; o = o->next)
12400 {
12401 if ((o->flags & SEC_HAS_CONTENTS) == 0
12402 || o->size == 0
12403 || o->output_section == bfd_abs_section_ptr)
12404 continue;
12405 if ((o->flags & SEC_LINKER_CREATED) == 0)
12406 {
12407 /* At this point, we are only interested in sections
12408 created by _bfd_elf_link_create_dynamic_sections. */
12409 continue;
12410 }
12411 if (htab->stab_info.stabstr == o)
12412 continue;
12413 if (htab->eh_info.hdr_sec == o)
12414 continue;
12415 if (strcmp (o->name, ".dynstr") != 0)
12416 {
12417 if (! bfd_set_section_contents (abfd, o->output_section,
12418 o->contents,
12419 (file_ptr) o->output_offset
12420 * bfd_octets_per_byte (abfd),
12421 o->size))
12422 goto error_return;
12423 }
12424 else
12425 {
12426 /* The contents of the .dynstr section are actually in a
12427 stringtab. */
12428 file_ptr off;
12429
12430 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12431 if (bfd_seek (abfd, off, SEEK_SET) != 0
12432 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12433 goto error_return;
12434 }
12435 }
12436 }
12437
12438 if (bfd_link_relocatable (info))
12439 {
12440 bfd_boolean failed = FALSE;
12441
12442 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12443 if (failed)
12444 goto error_return;
12445 }
12446
12447 /* If we have optimized stabs strings, output them. */
12448 if (htab->stab_info.stabstr != NULL)
12449 {
12450 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12451 goto error_return;
12452 }
12453
12454 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12455 goto error_return;
12456
12457 elf_final_link_free (abfd, &flinfo);
12458
12459 elf_linker (abfd) = TRUE;
12460
12461 if (attr_section)
12462 {
12463 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12464 if (contents == NULL)
12465 return FALSE; /* Bail out and fail. */
12466 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12467 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12468 free (contents);
12469 }
12470
12471 return TRUE;
12472
12473 error_return:
12474 elf_final_link_free (abfd, &flinfo);
12475 return FALSE;
12476 }
12477 \f
12478 /* Initialize COOKIE for input bfd ABFD. */
12479
12480 static bfd_boolean
12481 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12482 struct bfd_link_info *info, bfd *abfd)
12483 {
12484 Elf_Internal_Shdr *symtab_hdr;
12485 const struct elf_backend_data *bed;
12486
12487 bed = get_elf_backend_data (abfd);
12488 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12489
12490 cookie->abfd = abfd;
12491 cookie->sym_hashes = elf_sym_hashes (abfd);
12492 cookie->bad_symtab = elf_bad_symtab (abfd);
12493 if (cookie->bad_symtab)
12494 {
12495 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12496 cookie->extsymoff = 0;
12497 }
12498 else
12499 {
12500 cookie->locsymcount = symtab_hdr->sh_info;
12501 cookie->extsymoff = symtab_hdr->sh_info;
12502 }
12503
12504 if (bed->s->arch_size == 32)
12505 cookie->r_sym_shift = 8;
12506 else
12507 cookie->r_sym_shift = 32;
12508
12509 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12510 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12511 {
12512 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12513 cookie->locsymcount, 0,
12514 NULL, NULL, NULL);
12515 if (cookie->locsyms == NULL)
12516 {
12517 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12518 return FALSE;
12519 }
12520 if (info->keep_memory)
12521 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12522 }
12523 return TRUE;
12524 }
12525
12526 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12527
12528 static void
12529 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12530 {
12531 Elf_Internal_Shdr *symtab_hdr;
12532
12533 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12534 if (cookie->locsyms != NULL
12535 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12536 free (cookie->locsyms);
12537 }
12538
12539 /* Initialize the relocation information in COOKIE for input section SEC
12540 of input bfd ABFD. */
12541
12542 static bfd_boolean
12543 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12544 struct bfd_link_info *info, bfd *abfd,
12545 asection *sec)
12546 {
12547 const struct elf_backend_data *bed;
12548
12549 if (sec->reloc_count == 0)
12550 {
12551 cookie->rels = NULL;
12552 cookie->relend = NULL;
12553 }
12554 else
12555 {
12556 bed = get_elf_backend_data (abfd);
12557
12558 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12559 info->keep_memory);
12560 if (cookie->rels == NULL)
12561 return FALSE;
12562 cookie->rel = cookie->rels;
12563 cookie->relend = (cookie->rels
12564 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12565 }
12566 cookie->rel = cookie->rels;
12567 return TRUE;
12568 }
12569
12570 /* Free the memory allocated by init_reloc_cookie_rels,
12571 if appropriate. */
12572
12573 static void
12574 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12575 asection *sec)
12576 {
12577 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12578 free (cookie->rels);
12579 }
12580
12581 /* Initialize the whole of COOKIE for input section SEC. */
12582
12583 static bfd_boolean
12584 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12585 struct bfd_link_info *info,
12586 asection *sec)
12587 {
12588 if (!init_reloc_cookie (cookie, info, sec->owner))
12589 goto error1;
12590 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12591 goto error2;
12592 return TRUE;
12593
12594 error2:
12595 fini_reloc_cookie (cookie, sec->owner);
12596 error1:
12597 return FALSE;
12598 }
12599
12600 /* Free the memory allocated by init_reloc_cookie_for_section,
12601 if appropriate. */
12602
12603 static void
12604 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12605 asection *sec)
12606 {
12607 fini_reloc_cookie_rels (cookie, sec);
12608 fini_reloc_cookie (cookie, sec->owner);
12609 }
12610 \f
12611 /* Garbage collect unused sections. */
12612
12613 /* Default gc_mark_hook. */
12614
12615 asection *
12616 _bfd_elf_gc_mark_hook (asection *sec,
12617 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12618 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12619 struct elf_link_hash_entry *h,
12620 Elf_Internal_Sym *sym)
12621 {
12622 if (h != NULL)
12623 {
12624 switch (h->root.type)
12625 {
12626 case bfd_link_hash_defined:
12627 case bfd_link_hash_defweak:
12628 return h->root.u.def.section;
12629
12630 case bfd_link_hash_common:
12631 return h->root.u.c.p->section;
12632
12633 default:
12634 break;
12635 }
12636 }
12637 else
12638 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12639
12640 return NULL;
12641 }
12642
12643 /* For undefined __start_<name> and __stop_<name> symbols, return the
12644 first input section matching <name>. Return NULL otherwise. */
12645
12646 asection *
12647 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12648 struct elf_link_hash_entry *h)
12649 {
12650 asection *s;
12651 const char *sec_name;
12652
12653 if (h->root.type != bfd_link_hash_undefined
12654 && h->root.type != bfd_link_hash_undefweak)
12655 return NULL;
12656
12657 s = h->root.u.undef.section;
12658 if (s != NULL)
12659 {
12660 if (s == (asection *) 0 - 1)
12661 return NULL;
12662 return s;
12663 }
12664
12665 sec_name = NULL;
12666 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12667 sec_name = h->root.root.string + 8;
12668 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12669 sec_name = h->root.root.string + 7;
12670
12671 if (sec_name != NULL && *sec_name != '\0')
12672 {
12673 bfd *i;
12674
12675 for (i = info->input_bfds; i != NULL; i = i->link.next)
12676 {
12677 s = bfd_get_section_by_name (i, sec_name);
12678 if (s != NULL)
12679 {
12680 h->root.u.undef.section = s;
12681 break;
12682 }
12683 }
12684 }
12685
12686 if (s == NULL)
12687 h->root.u.undef.section = (asection *) 0 - 1;
12688
12689 return s;
12690 }
12691
12692 /* COOKIE->rel describes a relocation against section SEC, which is
12693 a section we've decided to keep. Return the section that contains
12694 the relocation symbol, or NULL if no section contains it. */
12695
12696 asection *
12697 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12698 elf_gc_mark_hook_fn gc_mark_hook,
12699 struct elf_reloc_cookie *cookie,
12700 bfd_boolean *start_stop)
12701 {
12702 unsigned long r_symndx;
12703 struct elf_link_hash_entry *h;
12704
12705 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12706 if (r_symndx == STN_UNDEF)
12707 return NULL;
12708
12709 if (r_symndx >= cookie->locsymcount
12710 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12711 {
12712 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12713 if (h == NULL)
12714 {
12715 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12716 sec->owner);
12717 return NULL;
12718 }
12719 while (h->root.type == bfd_link_hash_indirect
12720 || h->root.type == bfd_link_hash_warning)
12721 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12722 h->mark = 1;
12723 /* If this symbol is weak and there is a non-weak definition, we
12724 keep the non-weak definition because many backends put
12725 dynamic reloc info on the non-weak definition for code
12726 handling copy relocs. */
12727 if (h->u.weakdef != NULL)
12728 h->u.weakdef->mark = 1;
12729
12730 if (start_stop != NULL)
12731 {
12732 /* To work around a glibc bug, mark all XXX input sections
12733 when there is an as yet undefined reference to __start_XXX
12734 or __stop_XXX symbols. The linker will later define such
12735 symbols for orphan input sections that have a name
12736 representable as a C identifier. */
12737 asection *s = _bfd_elf_is_start_stop (info, h);
12738
12739 if (s != NULL)
12740 {
12741 *start_stop = !s->gc_mark;
12742 return s;
12743 }
12744 }
12745
12746 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12747 }
12748
12749 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12750 &cookie->locsyms[r_symndx]);
12751 }
12752
12753 /* COOKIE->rel describes a relocation against section SEC, which is
12754 a section we've decided to keep. Mark the section that contains
12755 the relocation symbol. */
12756
12757 bfd_boolean
12758 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12759 asection *sec,
12760 elf_gc_mark_hook_fn gc_mark_hook,
12761 struct elf_reloc_cookie *cookie)
12762 {
12763 asection *rsec;
12764 bfd_boolean start_stop = FALSE;
12765
12766 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12767 while (rsec != NULL)
12768 {
12769 if (!rsec->gc_mark)
12770 {
12771 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12772 || (rsec->owner->flags & DYNAMIC) != 0)
12773 rsec->gc_mark = 1;
12774 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12775 return FALSE;
12776 }
12777 if (!start_stop)
12778 break;
12779 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12780 }
12781 return TRUE;
12782 }
12783
12784 /* The mark phase of garbage collection. For a given section, mark
12785 it and any sections in this section's group, and all the sections
12786 which define symbols to which it refers. */
12787
12788 bfd_boolean
12789 _bfd_elf_gc_mark (struct bfd_link_info *info,
12790 asection *sec,
12791 elf_gc_mark_hook_fn gc_mark_hook)
12792 {
12793 bfd_boolean ret;
12794 asection *group_sec, *eh_frame;
12795
12796 sec->gc_mark = 1;
12797
12798 /* Mark all the sections in the group. */
12799 group_sec = elf_section_data (sec)->next_in_group;
12800 if (group_sec && !group_sec->gc_mark)
12801 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12802 return FALSE;
12803
12804 /* Look through the section relocs. */
12805 ret = TRUE;
12806 eh_frame = elf_eh_frame_section (sec->owner);
12807 if ((sec->flags & SEC_RELOC) != 0
12808 && sec->reloc_count > 0
12809 && sec != eh_frame)
12810 {
12811 struct elf_reloc_cookie cookie;
12812
12813 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12814 ret = FALSE;
12815 else
12816 {
12817 for (; cookie.rel < cookie.relend; cookie.rel++)
12818 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12819 {
12820 ret = FALSE;
12821 break;
12822 }
12823 fini_reloc_cookie_for_section (&cookie, sec);
12824 }
12825 }
12826
12827 if (ret && eh_frame && elf_fde_list (sec))
12828 {
12829 struct elf_reloc_cookie cookie;
12830
12831 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12832 ret = FALSE;
12833 else
12834 {
12835 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12836 gc_mark_hook, &cookie))
12837 ret = FALSE;
12838 fini_reloc_cookie_for_section (&cookie, eh_frame);
12839 }
12840 }
12841
12842 eh_frame = elf_section_eh_frame_entry (sec);
12843 if (ret && eh_frame && !eh_frame->gc_mark)
12844 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12845 ret = FALSE;
12846
12847 return ret;
12848 }
12849
12850 /* Scan and mark sections in a special or debug section group. */
12851
12852 static void
12853 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12854 {
12855 /* Point to first section of section group. */
12856 asection *ssec;
12857 /* Used to iterate the section group. */
12858 asection *msec;
12859
12860 bfd_boolean is_special_grp = TRUE;
12861 bfd_boolean is_debug_grp = TRUE;
12862
12863 /* First scan to see if group contains any section other than debug
12864 and special section. */
12865 ssec = msec = elf_next_in_group (grp);
12866 do
12867 {
12868 if ((msec->flags & SEC_DEBUGGING) == 0)
12869 is_debug_grp = FALSE;
12870
12871 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12872 is_special_grp = FALSE;
12873
12874 msec = elf_next_in_group (msec);
12875 }
12876 while (msec != ssec);
12877
12878 /* If this is a pure debug section group or pure special section group,
12879 keep all sections in this group. */
12880 if (is_debug_grp || is_special_grp)
12881 {
12882 do
12883 {
12884 msec->gc_mark = 1;
12885 msec = elf_next_in_group (msec);
12886 }
12887 while (msec != ssec);
12888 }
12889 }
12890
12891 /* Keep debug and special sections. */
12892
12893 bfd_boolean
12894 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12895 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12896 {
12897 bfd *ibfd;
12898
12899 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12900 {
12901 asection *isec;
12902 bfd_boolean some_kept;
12903 bfd_boolean debug_frag_seen;
12904
12905 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12906 continue;
12907
12908 /* Ensure all linker created sections are kept,
12909 see if any other section is already marked,
12910 and note if we have any fragmented debug sections. */
12911 debug_frag_seen = some_kept = FALSE;
12912 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12913 {
12914 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12915 isec->gc_mark = 1;
12916 else if (isec->gc_mark)
12917 some_kept = TRUE;
12918
12919 if (debug_frag_seen == FALSE
12920 && (isec->flags & SEC_DEBUGGING)
12921 && CONST_STRNEQ (isec->name, ".debug_line."))
12922 debug_frag_seen = TRUE;
12923 }
12924
12925 /* If no section in this file will be kept, then we can
12926 toss out the debug and special sections. */
12927 if (!some_kept)
12928 continue;
12929
12930 /* Keep debug and special sections like .comment when they are
12931 not part of a group. Also keep section groups that contain
12932 just debug sections or special sections. */
12933 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12934 {
12935 if ((isec->flags & SEC_GROUP) != 0)
12936 _bfd_elf_gc_mark_debug_special_section_group (isec);
12937 else if (((isec->flags & SEC_DEBUGGING) != 0
12938 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12939 && elf_next_in_group (isec) == NULL)
12940 isec->gc_mark = 1;
12941 }
12942
12943 if (! debug_frag_seen)
12944 continue;
12945
12946 /* Look for CODE sections which are going to be discarded,
12947 and find and discard any fragmented debug sections which
12948 are associated with that code section. */
12949 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12950 if ((isec->flags & SEC_CODE) != 0
12951 && isec->gc_mark == 0)
12952 {
12953 unsigned int ilen;
12954 asection *dsec;
12955
12956 ilen = strlen (isec->name);
12957
12958 /* Association is determined by the name of the debug section
12959 containing the name of the code section as a suffix. For
12960 example .debug_line.text.foo is a debug section associated
12961 with .text.foo. */
12962 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12963 {
12964 unsigned int dlen;
12965
12966 if (dsec->gc_mark == 0
12967 || (dsec->flags & SEC_DEBUGGING) == 0)
12968 continue;
12969
12970 dlen = strlen (dsec->name);
12971
12972 if (dlen > ilen
12973 && strncmp (dsec->name + (dlen - ilen),
12974 isec->name, ilen) == 0)
12975 {
12976 dsec->gc_mark = 0;
12977 }
12978 }
12979 }
12980 }
12981 return TRUE;
12982 }
12983
12984 /* The sweep phase of garbage collection. Remove all garbage sections. */
12985
12986 typedef bfd_boolean (*gc_sweep_hook_fn)
12987 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12988
12989 static bfd_boolean
12990 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12991 {
12992 bfd *sub;
12993 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12994 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12995
12996 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12997 {
12998 asection *o;
12999
13000 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13001 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13002 continue;
13003
13004 for (o = sub->sections; o != NULL; o = o->next)
13005 {
13006 /* When any section in a section group is kept, we keep all
13007 sections in the section group. If the first member of
13008 the section group is excluded, we will also exclude the
13009 group section. */
13010 if (o->flags & SEC_GROUP)
13011 {
13012 asection *first = elf_next_in_group (o);
13013 o->gc_mark = first->gc_mark;
13014 }
13015
13016 if (o->gc_mark)
13017 continue;
13018
13019 /* Skip sweeping sections already excluded. */
13020 if (o->flags & SEC_EXCLUDE)
13021 continue;
13022
13023 /* Since this is early in the link process, it is simple
13024 to remove a section from the output. */
13025 o->flags |= SEC_EXCLUDE;
13026
13027 if (info->print_gc_sections && o->size != 0)
13028 /* xgettext:c-format */
13029 _bfd_error_handler (_("Removing unused section '%A' in file '%B'"),
13030 o, sub);
13031
13032 /* But we also have to update some of the relocation
13033 info we collected before. */
13034 if (gc_sweep_hook
13035 && (o->flags & SEC_RELOC) != 0
13036 && o->reloc_count != 0
13037 && !((info->strip == strip_all || info->strip == strip_debugger)
13038 && (o->flags & SEC_DEBUGGING) != 0)
13039 && !bfd_is_abs_section (o->output_section))
13040 {
13041 Elf_Internal_Rela *internal_relocs;
13042 bfd_boolean r;
13043
13044 internal_relocs
13045 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
13046 info->keep_memory);
13047 if (internal_relocs == NULL)
13048 return FALSE;
13049
13050 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
13051
13052 if (elf_section_data (o)->relocs != internal_relocs)
13053 free (internal_relocs);
13054
13055 if (!r)
13056 return FALSE;
13057 }
13058 }
13059 }
13060
13061 return TRUE;
13062 }
13063
13064 /* Propagate collected vtable information. This is called through
13065 elf_link_hash_traverse. */
13066
13067 static bfd_boolean
13068 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13069 {
13070 /* Those that are not vtables. */
13071 if (h->vtable == NULL || h->vtable->parent == NULL)
13072 return TRUE;
13073
13074 /* Those vtables that do not have parents, we cannot merge. */
13075 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
13076 return TRUE;
13077
13078 /* If we've already been done, exit. */
13079 if (h->vtable->used && h->vtable->used[-1])
13080 return TRUE;
13081
13082 /* Make sure the parent's table is up to date. */
13083 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
13084
13085 if (h->vtable->used == NULL)
13086 {
13087 /* None of this table's entries were referenced. Re-use the
13088 parent's table. */
13089 h->vtable->used = h->vtable->parent->vtable->used;
13090 h->vtable->size = h->vtable->parent->vtable->size;
13091 }
13092 else
13093 {
13094 size_t n;
13095 bfd_boolean *cu, *pu;
13096
13097 /* Or the parent's entries into ours. */
13098 cu = h->vtable->used;
13099 cu[-1] = TRUE;
13100 pu = h->vtable->parent->vtable->used;
13101 if (pu != NULL)
13102 {
13103 const struct elf_backend_data *bed;
13104 unsigned int log_file_align;
13105
13106 bed = get_elf_backend_data (h->root.u.def.section->owner);
13107 log_file_align = bed->s->log_file_align;
13108 n = h->vtable->parent->vtable->size >> log_file_align;
13109 while (n--)
13110 {
13111 if (*pu)
13112 *cu = TRUE;
13113 pu++;
13114 cu++;
13115 }
13116 }
13117 }
13118
13119 return TRUE;
13120 }
13121
13122 static bfd_boolean
13123 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13124 {
13125 asection *sec;
13126 bfd_vma hstart, hend;
13127 Elf_Internal_Rela *relstart, *relend, *rel;
13128 const struct elf_backend_data *bed;
13129 unsigned int log_file_align;
13130
13131 /* Take care of both those symbols that do not describe vtables as
13132 well as those that are not loaded. */
13133 if (h->vtable == NULL || h->vtable->parent == NULL)
13134 return TRUE;
13135
13136 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13137 || h->root.type == bfd_link_hash_defweak);
13138
13139 sec = h->root.u.def.section;
13140 hstart = h->root.u.def.value;
13141 hend = hstart + h->size;
13142
13143 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13144 if (!relstart)
13145 return *(bfd_boolean *) okp = FALSE;
13146 bed = get_elf_backend_data (sec->owner);
13147 log_file_align = bed->s->log_file_align;
13148
13149 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
13150
13151 for (rel = relstart; rel < relend; ++rel)
13152 if (rel->r_offset >= hstart && rel->r_offset < hend)
13153 {
13154 /* If the entry is in use, do nothing. */
13155 if (h->vtable->used
13156 && (rel->r_offset - hstart) < h->vtable->size)
13157 {
13158 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13159 if (h->vtable->used[entry])
13160 continue;
13161 }
13162 /* Otherwise, kill it. */
13163 rel->r_offset = rel->r_info = rel->r_addend = 0;
13164 }
13165
13166 return TRUE;
13167 }
13168
13169 /* Mark sections containing dynamically referenced symbols. When
13170 building shared libraries, we must assume that any visible symbol is
13171 referenced. */
13172
13173 bfd_boolean
13174 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13175 {
13176 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13177 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13178
13179 if ((h->root.type == bfd_link_hash_defined
13180 || h->root.type == bfd_link_hash_defweak)
13181 && (h->ref_dynamic
13182 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13183 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13184 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13185 && (!bfd_link_executable (info)
13186 || info->gc_keep_exported
13187 || info->export_dynamic
13188 || (h->dynamic
13189 && d != NULL
13190 && (*d->match) (&d->head, NULL, h->root.root.string)))
13191 && (h->versioned >= versioned
13192 || !bfd_hide_sym_by_version (info->version_info,
13193 h->root.root.string)))))
13194 h->root.u.def.section->flags |= SEC_KEEP;
13195
13196 return TRUE;
13197 }
13198
13199 /* Keep all sections containing symbols undefined on the command-line,
13200 and the section containing the entry symbol. */
13201
13202 void
13203 _bfd_elf_gc_keep (struct bfd_link_info *info)
13204 {
13205 struct bfd_sym_chain *sym;
13206
13207 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13208 {
13209 struct elf_link_hash_entry *h;
13210
13211 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13212 FALSE, FALSE, FALSE);
13213
13214 if (h != NULL
13215 && (h->root.type == bfd_link_hash_defined
13216 || h->root.type == bfd_link_hash_defweak)
13217 && !bfd_is_abs_section (h->root.u.def.section)
13218 && !bfd_is_und_section (h->root.u.def.section))
13219 h->root.u.def.section->flags |= SEC_KEEP;
13220 }
13221 }
13222
13223 bfd_boolean
13224 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13225 struct bfd_link_info *info)
13226 {
13227 bfd *ibfd = info->input_bfds;
13228
13229 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13230 {
13231 asection *sec;
13232 struct elf_reloc_cookie cookie;
13233
13234 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13235 continue;
13236
13237 if (!init_reloc_cookie (&cookie, info, ibfd))
13238 return FALSE;
13239
13240 for (sec = ibfd->sections; sec; sec = sec->next)
13241 {
13242 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13243 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13244 {
13245 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13246 fini_reloc_cookie_rels (&cookie, sec);
13247 }
13248 }
13249 }
13250 return TRUE;
13251 }
13252
13253 /* Do mark and sweep of unused sections. */
13254
13255 bfd_boolean
13256 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13257 {
13258 bfd_boolean ok = TRUE;
13259 bfd *sub;
13260 elf_gc_mark_hook_fn gc_mark_hook;
13261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13262 struct elf_link_hash_table *htab;
13263
13264 if (!bed->can_gc_sections
13265 || !is_elf_hash_table (info->hash))
13266 {
13267 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13268 return TRUE;
13269 }
13270
13271 bed->gc_keep (info);
13272 htab = elf_hash_table (info);
13273
13274 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13275 at the .eh_frame section if we can mark the FDEs individually. */
13276 for (sub = info->input_bfds;
13277 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13278 sub = sub->link.next)
13279 {
13280 asection *sec;
13281 struct elf_reloc_cookie cookie;
13282
13283 sec = bfd_get_section_by_name (sub, ".eh_frame");
13284 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13285 {
13286 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13287 if (elf_section_data (sec)->sec_info
13288 && (sec->flags & SEC_LINKER_CREATED) == 0)
13289 elf_eh_frame_section (sub) = sec;
13290 fini_reloc_cookie_for_section (&cookie, sec);
13291 sec = bfd_get_next_section_by_name (NULL, sec);
13292 }
13293 }
13294
13295 /* Apply transitive closure to the vtable entry usage info. */
13296 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13297 if (!ok)
13298 return FALSE;
13299
13300 /* Kill the vtable relocations that were not used. */
13301 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13302 if (!ok)
13303 return FALSE;
13304
13305 /* Mark dynamically referenced symbols. */
13306 if (htab->dynamic_sections_created || info->gc_keep_exported)
13307 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13308
13309 /* Grovel through relocs to find out who stays ... */
13310 gc_mark_hook = bed->gc_mark_hook;
13311 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13312 {
13313 asection *o;
13314
13315 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13316 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13317 continue;
13318
13319 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13320 Also treat note sections as a root, if the section is not part
13321 of a group. */
13322 for (o = sub->sections; o != NULL; o = o->next)
13323 if (!o->gc_mark
13324 && (o->flags & SEC_EXCLUDE) == 0
13325 && ((o->flags & SEC_KEEP) != 0
13326 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13327 && elf_next_in_group (o) == NULL )))
13328 {
13329 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13330 return FALSE;
13331 }
13332 }
13333
13334 /* Allow the backend to mark additional target specific sections. */
13335 bed->gc_mark_extra_sections (info, gc_mark_hook);
13336
13337 /* ... and mark SEC_EXCLUDE for those that go. */
13338 return elf_gc_sweep (abfd, info);
13339 }
13340 \f
13341 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13342
13343 bfd_boolean
13344 bfd_elf_gc_record_vtinherit (bfd *abfd,
13345 asection *sec,
13346 struct elf_link_hash_entry *h,
13347 bfd_vma offset)
13348 {
13349 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13350 struct elf_link_hash_entry **search, *child;
13351 size_t extsymcount;
13352 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13353
13354 /* The sh_info field of the symtab header tells us where the
13355 external symbols start. We don't care about the local symbols at
13356 this point. */
13357 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13358 if (!elf_bad_symtab (abfd))
13359 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13360
13361 sym_hashes = elf_sym_hashes (abfd);
13362 sym_hashes_end = sym_hashes + extsymcount;
13363
13364 /* Hunt down the child symbol, which is in this section at the same
13365 offset as the relocation. */
13366 for (search = sym_hashes; search != sym_hashes_end; ++search)
13367 {
13368 if ((child = *search) != NULL
13369 && (child->root.type == bfd_link_hash_defined
13370 || child->root.type == bfd_link_hash_defweak)
13371 && child->root.u.def.section == sec
13372 && child->root.u.def.value == offset)
13373 goto win;
13374 }
13375
13376 /* xgettext:c-format */
13377 _bfd_error_handler (_("%B: %A+%lu: No symbol found for INHERIT"),
13378 abfd, sec, (unsigned long) offset);
13379 bfd_set_error (bfd_error_invalid_operation);
13380 return FALSE;
13381
13382 win:
13383 if (!child->vtable)
13384 {
13385 child->vtable = ((struct elf_link_virtual_table_entry *)
13386 bfd_zalloc (abfd, sizeof (*child->vtable)));
13387 if (!child->vtable)
13388 return FALSE;
13389 }
13390 if (!h)
13391 {
13392 /* This *should* only be the absolute section. It could potentially
13393 be that someone has defined a non-global vtable though, which
13394 would be bad. It isn't worth paging in the local symbols to be
13395 sure though; that case should simply be handled by the assembler. */
13396
13397 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13398 }
13399 else
13400 child->vtable->parent = h;
13401
13402 return TRUE;
13403 }
13404
13405 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13406
13407 bfd_boolean
13408 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13409 asection *sec ATTRIBUTE_UNUSED,
13410 struct elf_link_hash_entry *h,
13411 bfd_vma addend)
13412 {
13413 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13414 unsigned int log_file_align = bed->s->log_file_align;
13415
13416 if (!h->vtable)
13417 {
13418 h->vtable = ((struct elf_link_virtual_table_entry *)
13419 bfd_zalloc (abfd, sizeof (*h->vtable)));
13420 if (!h->vtable)
13421 return FALSE;
13422 }
13423
13424 if (addend >= h->vtable->size)
13425 {
13426 size_t size, bytes, file_align;
13427 bfd_boolean *ptr = h->vtable->used;
13428
13429 /* While the symbol is undefined, we have to be prepared to handle
13430 a zero size. */
13431 file_align = 1 << log_file_align;
13432 if (h->root.type == bfd_link_hash_undefined)
13433 size = addend + file_align;
13434 else
13435 {
13436 size = h->size;
13437 if (addend >= size)
13438 {
13439 /* Oops! We've got a reference past the defined end of
13440 the table. This is probably a bug -- shall we warn? */
13441 size = addend + file_align;
13442 }
13443 }
13444 size = (size + file_align - 1) & -file_align;
13445
13446 /* Allocate one extra entry for use as a "done" flag for the
13447 consolidation pass. */
13448 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13449
13450 if (ptr)
13451 {
13452 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13453
13454 if (ptr != NULL)
13455 {
13456 size_t oldbytes;
13457
13458 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13459 * sizeof (bfd_boolean));
13460 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13461 }
13462 }
13463 else
13464 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13465
13466 if (ptr == NULL)
13467 return FALSE;
13468
13469 /* And arrange for that done flag to be at index -1. */
13470 h->vtable->used = ptr + 1;
13471 h->vtable->size = size;
13472 }
13473
13474 h->vtable->used[addend >> log_file_align] = TRUE;
13475
13476 return TRUE;
13477 }
13478
13479 /* Map an ELF section header flag to its corresponding string. */
13480 typedef struct
13481 {
13482 char *flag_name;
13483 flagword flag_value;
13484 } elf_flags_to_name_table;
13485
13486 static elf_flags_to_name_table elf_flags_to_names [] =
13487 {
13488 { "SHF_WRITE", SHF_WRITE },
13489 { "SHF_ALLOC", SHF_ALLOC },
13490 { "SHF_EXECINSTR", SHF_EXECINSTR },
13491 { "SHF_MERGE", SHF_MERGE },
13492 { "SHF_STRINGS", SHF_STRINGS },
13493 { "SHF_INFO_LINK", SHF_INFO_LINK},
13494 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13495 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13496 { "SHF_GROUP", SHF_GROUP },
13497 { "SHF_TLS", SHF_TLS },
13498 { "SHF_MASKOS", SHF_MASKOS },
13499 { "SHF_EXCLUDE", SHF_EXCLUDE },
13500 };
13501
13502 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13503 bfd_boolean
13504 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13505 struct flag_info *flaginfo,
13506 asection *section)
13507 {
13508 const bfd_vma sh_flags = elf_section_flags (section);
13509
13510 if (!flaginfo->flags_initialized)
13511 {
13512 bfd *obfd = info->output_bfd;
13513 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13514 struct flag_info_list *tf = flaginfo->flag_list;
13515 int with_hex = 0;
13516 int without_hex = 0;
13517
13518 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13519 {
13520 unsigned i;
13521 flagword (*lookup) (char *);
13522
13523 lookup = bed->elf_backend_lookup_section_flags_hook;
13524 if (lookup != NULL)
13525 {
13526 flagword hexval = (*lookup) ((char *) tf->name);
13527
13528 if (hexval != 0)
13529 {
13530 if (tf->with == with_flags)
13531 with_hex |= hexval;
13532 else if (tf->with == without_flags)
13533 without_hex |= hexval;
13534 tf->valid = TRUE;
13535 continue;
13536 }
13537 }
13538 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13539 {
13540 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13541 {
13542 if (tf->with == with_flags)
13543 with_hex |= elf_flags_to_names[i].flag_value;
13544 else if (tf->with == without_flags)
13545 without_hex |= elf_flags_to_names[i].flag_value;
13546 tf->valid = TRUE;
13547 break;
13548 }
13549 }
13550 if (!tf->valid)
13551 {
13552 info->callbacks->einfo
13553 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13554 return FALSE;
13555 }
13556 }
13557 flaginfo->flags_initialized = TRUE;
13558 flaginfo->only_with_flags |= with_hex;
13559 flaginfo->not_with_flags |= without_hex;
13560 }
13561
13562 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13563 return FALSE;
13564
13565 if ((flaginfo->not_with_flags & sh_flags) != 0)
13566 return FALSE;
13567
13568 return TRUE;
13569 }
13570
13571 struct alloc_got_off_arg {
13572 bfd_vma gotoff;
13573 struct bfd_link_info *info;
13574 };
13575
13576 /* We need a special top-level link routine to convert got reference counts
13577 to real got offsets. */
13578
13579 static bfd_boolean
13580 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13581 {
13582 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13583 bfd *obfd = gofarg->info->output_bfd;
13584 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13585
13586 if (h->got.refcount > 0)
13587 {
13588 h->got.offset = gofarg->gotoff;
13589 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13590 }
13591 else
13592 h->got.offset = (bfd_vma) -1;
13593
13594 return TRUE;
13595 }
13596
13597 /* And an accompanying bit to work out final got entry offsets once
13598 we're done. Should be called from final_link. */
13599
13600 bfd_boolean
13601 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13602 struct bfd_link_info *info)
13603 {
13604 bfd *i;
13605 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13606 bfd_vma gotoff;
13607 struct alloc_got_off_arg gofarg;
13608
13609 BFD_ASSERT (abfd == info->output_bfd);
13610
13611 if (! is_elf_hash_table (info->hash))
13612 return FALSE;
13613
13614 /* The GOT offset is relative to the .got section, but the GOT header is
13615 put into the .got.plt section, if the backend uses it. */
13616 if (bed->want_got_plt)
13617 gotoff = 0;
13618 else
13619 gotoff = bed->got_header_size;
13620
13621 /* Do the local .got entries first. */
13622 for (i = info->input_bfds; i; i = i->link.next)
13623 {
13624 bfd_signed_vma *local_got;
13625 size_t j, locsymcount;
13626 Elf_Internal_Shdr *symtab_hdr;
13627
13628 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13629 continue;
13630
13631 local_got = elf_local_got_refcounts (i);
13632 if (!local_got)
13633 continue;
13634
13635 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13636 if (elf_bad_symtab (i))
13637 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13638 else
13639 locsymcount = symtab_hdr->sh_info;
13640
13641 for (j = 0; j < locsymcount; ++j)
13642 {
13643 if (local_got[j] > 0)
13644 {
13645 local_got[j] = gotoff;
13646 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13647 }
13648 else
13649 local_got[j] = (bfd_vma) -1;
13650 }
13651 }
13652
13653 /* Then the global .got entries. .plt refcounts are handled by
13654 adjust_dynamic_symbol */
13655 gofarg.gotoff = gotoff;
13656 gofarg.info = info;
13657 elf_link_hash_traverse (elf_hash_table (info),
13658 elf_gc_allocate_got_offsets,
13659 &gofarg);
13660 return TRUE;
13661 }
13662
13663 /* Many folk need no more in the way of final link than this, once
13664 got entry reference counting is enabled. */
13665
13666 bfd_boolean
13667 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13668 {
13669 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13670 return FALSE;
13671
13672 /* Invoke the regular ELF backend linker to do all the work. */
13673 return bfd_elf_final_link (abfd, info);
13674 }
13675
13676 bfd_boolean
13677 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13678 {
13679 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13680
13681 if (rcookie->bad_symtab)
13682 rcookie->rel = rcookie->rels;
13683
13684 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13685 {
13686 unsigned long r_symndx;
13687
13688 if (! rcookie->bad_symtab)
13689 if (rcookie->rel->r_offset > offset)
13690 return FALSE;
13691 if (rcookie->rel->r_offset != offset)
13692 continue;
13693
13694 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13695 if (r_symndx == STN_UNDEF)
13696 return TRUE;
13697
13698 if (r_symndx >= rcookie->locsymcount
13699 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13700 {
13701 struct elf_link_hash_entry *h;
13702
13703 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13704
13705 while (h->root.type == bfd_link_hash_indirect
13706 || h->root.type == bfd_link_hash_warning)
13707 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13708
13709 if ((h->root.type == bfd_link_hash_defined
13710 || h->root.type == bfd_link_hash_defweak)
13711 && (h->root.u.def.section->owner != rcookie->abfd
13712 || h->root.u.def.section->kept_section != NULL
13713 || discarded_section (h->root.u.def.section)))
13714 return TRUE;
13715 }
13716 else
13717 {
13718 /* It's not a relocation against a global symbol,
13719 but it could be a relocation against a local
13720 symbol for a discarded section. */
13721 asection *isec;
13722 Elf_Internal_Sym *isym;
13723
13724 /* Need to: get the symbol; get the section. */
13725 isym = &rcookie->locsyms[r_symndx];
13726 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13727 if (isec != NULL
13728 && (isec->kept_section != NULL
13729 || discarded_section (isec)))
13730 return TRUE;
13731 }
13732 return FALSE;
13733 }
13734 return FALSE;
13735 }
13736
13737 /* Discard unneeded references to discarded sections.
13738 Returns -1 on error, 1 if any section's size was changed, 0 if
13739 nothing changed. This function assumes that the relocations are in
13740 sorted order, which is true for all known assemblers. */
13741
13742 int
13743 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13744 {
13745 struct elf_reloc_cookie cookie;
13746 asection *o;
13747 bfd *abfd;
13748 int changed = 0;
13749
13750 if (info->traditional_format
13751 || !is_elf_hash_table (info->hash))
13752 return 0;
13753
13754 o = bfd_get_section_by_name (output_bfd, ".stab");
13755 if (o != NULL)
13756 {
13757 asection *i;
13758
13759 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13760 {
13761 if (i->size == 0
13762 || i->reloc_count == 0
13763 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13764 continue;
13765
13766 abfd = i->owner;
13767 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13768 continue;
13769
13770 if (!init_reloc_cookie_for_section (&cookie, info, i))
13771 return -1;
13772
13773 if (_bfd_discard_section_stabs (abfd, i,
13774 elf_section_data (i)->sec_info,
13775 bfd_elf_reloc_symbol_deleted_p,
13776 &cookie))
13777 changed = 1;
13778
13779 fini_reloc_cookie_for_section (&cookie, i);
13780 }
13781 }
13782
13783 o = NULL;
13784 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13785 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13786 if (o != NULL)
13787 {
13788 asection *i;
13789
13790 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13791 {
13792 if (i->size == 0)
13793 continue;
13794
13795 abfd = i->owner;
13796 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13797 continue;
13798
13799 if (!init_reloc_cookie_for_section (&cookie, info, i))
13800 return -1;
13801
13802 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13803 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13804 bfd_elf_reloc_symbol_deleted_p,
13805 &cookie))
13806 changed = 1;
13807
13808 fini_reloc_cookie_for_section (&cookie, i);
13809 }
13810 }
13811
13812 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13813 {
13814 const struct elf_backend_data *bed;
13815
13816 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13817 continue;
13818
13819 bed = get_elf_backend_data (abfd);
13820
13821 if (bed->elf_backend_discard_info != NULL)
13822 {
13823 if (!init_reloc_cookie (&cookie, info, abfd))
13824 return -1;
13825
13826 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13827 changed = 1;
13828
13829 fini_reloc_cookie (&cookie, abfd);
13830 }
13831 }
13832
13833 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13834 _bfd_elf_end_eh_frame_parsing (info);
13835
13836 if (info->eh_frame_hdr_type
13837 && !bfd_link_relocatable (info)
13838 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13839 changed = 1;
13840
13841 return changed;
13842 }
13843
13844 bfd_boolean
13845 _bfd_elf_section_already_linked (bfd *abfd,
13846 asection *sec,
13847 struct bfd_link_info *info)
13848 {
13849 flagword flags;
13850 const char *name, *key;
13851 struct bfd_section_already_linked *l;
13852 struct bfd_section_already_linked_hash_entry *already_linked_list;
13853
13854 if (sec->output_section == bfd_abs_section_ptr)
13855 return FALSE;
13856
13857 flags = sec->flags;
13858
13859 /* Return if it isn't a linkonce section. A comdat group section
13860 also has SEC_LINK_ONCE set. */
13861 if ((flags & SEC_LINK_ONCE) == 0)
13862 return FALSE;
13863
13864 /* Don't put group member sections on our list of already linked
13865 sections. They are handled as a group via their group section. */
13866 if (elf_sec_group (sec) != NULL)
13867 return FALSE;
13868
13869 /* For a SHT_GROUP section, use the group signature as the key. */
13870 name = sec->name;
13871 if ((flags & SEC_GROUP) != 0
13872 && elf_next_in_group (sec) != NULL
13873 && elf_group_name (elf_next_in_group (sec)) != NULL)
13874 key = elf_group_name (elf_next_in_group (sec));
13875 else
13876 {
13877 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13878 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13879 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13880 key++;
13881 else
13882 /* Must be a user linkonce section that doesn't follow gcc's
13883 naming convention. In this case we won't be matching
13884 single member groups. */
13885 key = name;
13886 }
13887
13888 already_linked_list = bfd_section_already_linked_table_lookup (key);
13889
13890 for (l = already_linked_list->entry; l != NULL; l = l->next)
13891 {
13892 /* We may have 2 different types of sections on the list: group
13893 sections with a signature of <key> (<key> is some string),
13894 and linkonce sections named .gnu.linkonce.<type>.<key>.
13895 Match like sections. LTO plugin sections are an exception.
13896 They are always named .gnu.linkonce.t.<key> and match either
13897 type of section. */
13898 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13899 && ((flags & SEC_GROUP) != 0
13900 || strcmp (name, l->sec->name) == 0))
13901 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13902 {
13903 /* The section has already been linked. See if we should
13904 issue a warning. */
13905 if (!_bfd_handle_already_linked (sec, l, info))
13906 return FALSE;
13907
13908 if (flags & SEC_GROUP)
13909 {
13910 asection *first = elf_next_in_group (sec);
13911 asection *s = first;
13912
13913 while (s != NULL)
13914 {
13915 s->output_section = bfd_abs_section_ptr;
13916 /* Record which group discards it. */
13917 s->kept_section = l->sec;
13918 s = elf_next_in_group (s);
13919 /* These lists are circular. */
13920 if (s == first)
13921 break;
13922 }
13923 }
13924
13925 return TRUE;
13926 }
13927 }
13928
13929 /* A single member comdat group section may be discarded by a
13930 linkonce section and vice versa. */
13931 if ((flags & SEC_GROUP) != 0)
13932 {
13933 asection *first = elf_next_in_group (sec);
13934
13935 if (first != NULL && elf_next_in_group (first) == first)
13936 /* Check this single member group against linkonce sections. */
13937 for (l = already_linked_list->entry; l != NULL; l = l->next)
13938 if ((l->sec->flags & SEC_GROUP) == 0
13939 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13940 {
13941 first->output_section = bfd_abs_section_ptr;
13942 first->kept_section = l->sec;
13943 sec->output_section = bfd_abs_section_ptr;
13944 break;
13945 }
13946 }
13947 else
13948 /* Check this linkonce section against single member groups. */
13949 for (l = already_linked_list->entry; l != NULL; l = l->next)
13950 if (l->sec->flags & SEC_GROUP)
13951 {
13952 asection *first = elf_next_in_group (l->sec);
13953
13954 if (first != NULL
13955 && elf_next_in_group (first) == first
13956 && bfd_elf_match_symbols_in_sections (first, sec, info))
13957 {
13958 sec->output_section = bfd_abs_section_ptr;
13959 sec->kept_section = first;
13960 break;
13961 }
13962 }
13963
13964 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13965 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13966 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13967 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13968 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13969 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13970 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13971 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13972 The reverse order cannot happen as there is never a bfd with only the
13973 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13974 matter as here were are looking only for cross-bfd sections. */
13975
13976 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13977 for (l = already_linked_list->entry; l != NULL; l = l->next)
13978 if ((l->sec->flags & SEC_GROUP) == 0
13979 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13980 {
13981 if (abfd != l->sec->owner)
13982 sec->output_section = bfd_abs_section_ptr;
13983 break;
13984 }
13985
13986 /* This is the first section with this name. Record it. */
13987 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13988 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13989 return sec->output_section == bfd_abs_section_ptr;
13990 }
13991
13992 bfd_boolean
13993 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13994 {
13995 return sym->st_shndx == SHN_COMMON;
13996 }
13997
13998 unsigned int
13999 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14000 {
14001 return SHN_COMMON;
14002 }
14003
14004 asection *
14005 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14006 {
14007 return bfd_com_section_ptr;
14008 }
14009
14010 bfd_vma
14011 _bfd_elf_default_got_elt_size (bfd *abfd,
14012 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14013 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14014 bfd *ibfd ATTRIBUTE_UNUSED,
14015 unsigned long symndx ATTRIBUTE_UNUSED)
14016 {
14017 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14018 return bed->s->arch_size / 8;
14019 }
14020
14021 /* Routines to support the creation of dynamic relocs. */
14022
14023 /* Returns the name of the dynamic reloc section associated with SEC. */
14024
14025 static const char *
14026 get_dynamic_reloc_section_name (bfd * abfd,
14027 asection * sec,
14028 bfd_boolean is_rela)
14029 {
14030 char *name;
14031 const char *old_name = bfd_get_section_name (NULL, sec);
14032 const char *prefix = is_rela ? ".rela" : ".rel";
14033
14034 if (old_name == NULL)
14035 return NULL;
14036
14037 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14038 sprintf (name, "%s%s", prefix, old_name);
14039
14040 return name;
14041 }
14042
14043 /* Returns the dynamic reloc section associated with SEC.
14044 If necessary compute the name of the dynamic reloc section based
14045 on SEC's name (looked up in ABFD's string table) and the setting
14046 of IS_RELA. */
14047
14048 asection *
14049 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14050 asection * sec,
14051 bfd_boolean is_rela)
14052 {
14053 asection * reloc_sec = elf_section_data (sec)->sreloc;
14054
14055 if (reloc_sec == NULL)
14056 {
14057 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14058
14059 if (name != NULL)
14060 {
14061 reloc_sec = bfd_get_linker_section (abfd, name);
14062
14063 if (reloc_sec != NULL)
14064 elf_section_data (sec)->sreloc = reloc_sec;
14065 }
14066 }
14067
14068 return reloc_sec;
14069 }
14070
14071 /* Returns the dynamic reloc section associated with SEC. If the
14072 section does not exist it is created and attached to the DYNOBJ
14073 bfd and stored in the SRELOC field of SEC's elf_section_data
14074 structure.
14075
14076 ALIGNMENT is the alignment for the newly created section and
14077 IS_RELA defines whether the name should be .rela.<SEC's name>
14078 or .rel.<SEC's name>. The section name is looked up in the
14079 string table associated with ABFD. */
14080
14081 asection *
14082 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14083 bfd *dynobj,
14084 unsigned int alignment,
14085 bfd *abfd,
14086 bfd_boolean is_rela)
14087 {
14088 asection * reloc_sec = elf_section_data (sec)->sreloc;
14089
14090 if (reloc_sec == NULL)
14091 {
14092 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14093
14094 if (name == NULL)
14095 return NULL;
14096
14097 reloc_sec = bfd_get_linker_section (dynobj, name);
14098
14099 if (reloc_sec == NULL)
14100 {
14101 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14102 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14103 if ((sec->flags & SEC_ALLOC) != 0)
14104 flags |= SEC_ALLOC | SEC_LOAD;
14105
14106 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14107 if (reloc_sec != NULL)
14108 {
14109 /* _bfd_elf_get_sec_type_attr chooses a section type by
14110 name. Override as it may be wrong, eg. for a user
14111 section named "auto" we'll get ".relauto" which is
14112 seen to be a .rela section. */
14113 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14114 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14115 reloc_sec = NULL;
14116 }
14117 }
14118
14119 elf_section_data (sec)->sreloc = reloc_sec;
14120 }
14121
14122 return reloc_sec;
14123 }
14124
14125 /* Copy the ELF symbol type and other attributes for a linker script
14126 assignment from HSRC to HDEST. Generally this should be treated as
14127 if we found a strong non-dynamic definition for HDEST (except that
14128 ld ignores multiple definition errors). */
14129 void
14130 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14131 struct bfd_link_hash_entry *hdest,
14132 struct bfd_link_hash_entry *hsrc)
14133 {
14134 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14135 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14136 Elf_Internal_Sym isym;
14137
14138 ehdest->type = ehsrc->type;
14139 ehdest->target_internal = ehsrc->target_internal;
14140
14141 isym.st_other = ehsrc->other;
14142 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14143 }
14144
14145 /* Append a RELA relocation REL to section S in BFD. */
14146
14147 void
14148 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14149 {
14150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14151 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14152 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14153 bed->s->swap_reloca_out (abfd, rel, loc);
14154 }
14155
14156 /* Append a REL relocation REL to section S in BFD. */
14157
14158 void
14159 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14160 {
14161 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14162 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14163 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14164 bed->s->swap_reloc_out (abfd, rel, loc);
14165 }