]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.c
3c95b572151f2b3527e3e3698b0fdef5aba14bbd
[thirdparty/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->non_elf = 0;
90 h->type = STT_OBJECT;
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 bed = get_elf_backend_data (abfd);
94 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95 return h;
96 }
97
98 bfd_boolean
99 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100 {
101 flagword flags;
102 asection *s;
103 struct elf_link_hash_entry *h;
104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105 struct elf_link_hash_table *htab = elf_hash_table (info);
106
107 /* This function may be called more than once. */
108 s = bfd_get_section_by_name (abfd, ".got");
109 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
110 return TRUE;
111
112 flags = bed->dynamic_sec_flags;
113
114 s = bfd_make_section_with_flags (abfd,
115 (bed->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed->dynamic_sec_flags
118 | SEC_READONLY));
119 if (s == NULL
120 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121 return FALSE;
122 htab->srelgot = s;
123
124 s = bfd_make_section_with_flags (abfd, ".got", flags);
125 if (s == NULL
126 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127 return FALSE;
128 htab->sgot = s;
129
130 if (bed->want_got_plt)
131 {
132 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
133 if (s == NULL
134 || !bfd_set_section_alignment (abfd, s,
135 bed->s->log_file_align))
136 return FALSE;
137 htab->sgotplt = s;
138 }
139
140 /* The first bit of the global offset table is the header. */
141 s->size += bed->got_header_size;
142
143 if (bed->want_got_sym)
144 {
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h = _bfd_elf_define_linkage_sym (abfd, info, s,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info)->hgot = h;
152 if (h == NULL)
153 return FALSE;
154 }
155
156 return TRUE;
157 }
158 \f
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 {
163 struct elf_link_hash_table *hash_table;
164
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
168
169 if (hash_table->dynstr == NULL)
170 {
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
174 }
175 return TRUE;
176 }
177
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
184
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 {
188 flagword flags;
189 asection *s;
190 const struct elf_backend_data *bed;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259 return FALSE;
260
261 if (info->emit_hash)
262 {
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268 }
269
270 if (info->emit_gnu_hash)
271 {
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
284 }
285
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
291
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
293
294 return TRUE;
295 }
296
297 /* Create dynamic sections when linking against a dynamic object. */
298
299 bfd_boolean
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301 {
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
304 asection *s;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306 struct elf_link_hash_table *htab = elf_hash_table (info);
307
308 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309 .rel[a].bss sections. */
310 flags = bed->dynamic_sec_flags;
311
312 pltflags = flags;
313 if (bed->plt_not_loaded)
314 /* We do not clear SEC_ALLOC here because we still want the OS to
315 allocate space for the section; it's just that there's nothing
316 to read in from the object file. */
317 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
318 else
319 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
320 if (bed->plt_readonly)
321 pltflags |= SEC_READONLY;
322
323 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
324 if (s == NULL
325 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
326 return FALSE;
327 htab->splt = s;
328
329 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 .plt section. */
331 if (bed->want_plt_sym)
332 {
333 h = _bfd_elf_define_linkage_sym (abfd, info, s,
334 "_PROCEDURE_LINKAGE_TABLE_");
335 elf_hash_table (info)->hplt = h;
336 if (h == NULL)
337 return FALSE;
338 }
339
340 s = bfd_make_section_with_flags (abfd,
341 (bed->rela_plts_and_copies_p
342 ? ".rela.plt" : ".rel.plt"),
343 flags | SEC_READONLY);
344 if (s == NULL
345 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
346 return FALSE;
347 htab->srelplt = s;
348
349 if (! _bfd_elf_create_got_section (abfd, info))
350 return FALSE;
351
352 if (bed->want_dynbss)
353 {
354 /* The .dynbss section is a place to put symbols which are defined
355 by dynamic objects, are referenced by regular objects, and are
356 not functions. We must allocate space for them in the process
357 image and use a R_*_COPY reloc to tell the dynamic linker to
358 initialize them at run time. The linker script puts the .dynbss
359 section into the .bss section of the final image. */
360 s = bfd_make_section_with_flags (abfd, ".dynbss",
361 (SEC_ALLOC
362 | SEC_LINKER_CREATED));
363 if (s == NULL)
364 return FALSE;
365
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
376 copy relocs. */
377 if (! info->shared)
378 {
379 s = bfd_make_section_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
383 if (s == NULL
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385 return FALSE;
386 }
387 }
388
389 return TRUE;
390 }
391 \f
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
398 one. */
399
400 bfd_boolean
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
403 {
404 if (h->dynindx == -1)
405 {
406 struct elf_strtab_hash *dynstr;
407 char *p;
408 const char *name;
409 bfd_size_type indx;
410
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
416 {
417 case STV_INTERNAL:
418 case STV_HIDDEN:
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
421 {
422 h->forced_local = 1;
423 if (!elf_hash_table (info)->is_relocatable_executable)
424 return TRUE;
425 }
426
427 default:
428 break;
429 }
430
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
433
434 dynstr = elf_hash_table (info)->dynstr;
435 if (dynstr == NULL)
436 {
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439 if (dynstr == NULL)
440 return FALSE;
441 }
442
443 /* We don't put any version information in the dynamic string
444 table. */
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
447 if (p != NULL)
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
453 *p = 0;
454
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456
457 if (p != NULL)
458 *p = ELF_VER_CHR;
459
460 if (indx == (bfd_size_type) -1)
461 return FALSE;
462 h->dynstr_index = indx;
463 }
464
465 return TRUE;
466 }
467 \f
468 /* Mark a symbol dynamic. */
469
470 static void
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
474 {
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
476
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
479 return;
480
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
483 || (sym != NULL
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 || (d != NULL
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
488 h->dynamic = 1;
489 }
490
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
493
494 bfd_boolean
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
497 const char *name,
498 bfd_boolean provide,
499 bfd_boolean hidden)
500 {
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
504
505 if (!is_elf_hash_table (info->hash))
506 return TRUE;
507
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510 if (h == NULL)
511 return provide;
512
513 switch (h->root.type)
514 {
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
518 break;
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
527 break;
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530 h->non_elf = 0;
531 break;
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
536 hv = h;
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
541 later. */
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 break;
547 case bfd_link_hash_warning:
548 abort ();
549 break;
550 }
551
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
556 if (provide
557 && h->def_dynamic
558 && !h->def_regular)
559 h->root.type = bfd_link_hash_undefined;
560
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
565 if (!provide
566 && h->def_dynamic
567 && !h->def_regular)
568 h->verinfo.verdef = NULL;
569
570 h->def_regular = 1;
571
572 if (provide && hidden)
573 {
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = (size_t *) data;
723
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
749 if (!h->forced_local)
750 return TRUE;
751
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
754
755 return TRUE;
756 }
757
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
763 asection *p)
764 {
765 struct elf_link_hash_table *htab;
766
767 switch (elf_section_data (p)->this_hdr.sh_type)
768 {
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
777
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
780
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
784 {
785 asection *ip;
786
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
791 return TRUE;
792 }
793 return FALSE;
794
795 /* There shouldn't be section relative relocations
796 against any other section. */
797 default:
798 return TRUE;
799 }
800 }
801
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
806 symbols. */
807
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
812 {
813 unsigned long dynsymcount = 0;
814
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816 {
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818 asection *p;
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
824 else
825 elf_section_data (p)->dynindx = 0;
826 }
827 *section_sym_count = dynsymcount;
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
831 &dynsymcount);
832
833 if (elf_hash_table (info)->dynlocal)
834 {
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
838 }
839
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
842 &dynsymcount);
843
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
848 ++dynsymcount;
849
850 elf_hash_table (info)->dynsymcount = dynsymcount;
851 return dynsymcount;
852 }
853
854 /* Merge st_other field. */
855
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
859 bfd_boolean dynamic)
860 {
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 dynamic);
869
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
872 if (definition
873 && !dynamic
874 && (abfd->no_export
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881 {
882 unsigned char hvis, symvis, other, nvis;
883
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
887
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
891 if (! hvis)
892 nvis = symvis;
893 else if (! symvis)
894 nvis = hvis;
895 else
896 nvis = hvis < symvis ? hvis : symvis;
897
898 h->other = other | nvis;
899 }
900 }
901
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
913
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
917 const char *name,
918 Elf_Internal_Sym *sym,
919 asection **psec,
920 bfd_vma *pvalue,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
923 bfd_boolean *skip,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
927 {
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947 {
948 *skip = TRUE;
949 return TRUE;
950 }
951
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954 else
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957 if (h == NULL)
958 return FALSE;
959 *sym_hash = h;
960
961 bed = get_elf_backend_data (abfd);
962
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 return TRUE;
967
968 /* For merging, we only care about real symbols. */
969
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
973
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
976 symbols. */
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
982
983 if (h->root.type == bfd_link_hash_new)
984 {
985 h->non_elf = 0;
986 return TRUE;
987 }
988
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 existing symbol. */
991
992 switch (h->root.type)
993 {
994 default:
995 oldbfd = NULL;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1002 oldsec = NULL;
1003 break;
1004
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1009 break;
1010
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1014 break;
1015 }
1016
1017 /* Differentiate strong and weak symbols. */
1018 newweak = bind == STB_WEAK;
1019 oldweak = (h->root.type == bfd_link_hash_defweak
1020 || h->root.type == bfd_link_hash_undefweak);
1021
1022 /* In cases involving weak versioned symbols, we may wind up trying
1023 to merge a symbol with itself. Catch that here, to avoid the
1024 confusion that results if we try to override a symbol with
1025 itself. The additional tests catch cases like
1026 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1027 dynamic object, which we do want to handle here. */
1028 if (abfd == oldbfd
1029 && (newweak || oldweak)
1030 && ((abfd->flags & DYNAMIC) == 0
1031 || !h->def_regular))
1032 return TRUE;
1033
1034 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1035 respectively, is from a dynamic object. */
1036
1037 newdyn = (abfd->flags & DYNAMIC) != 0;
1038
1039 olddyn = FALSE;
1040 if (oldbfd != NULL)
1041 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1042 else if (oldsec != NULL)
1043 {
1044 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045 indices used by MIPS ELF. */
1046 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1047 }
1048
1049 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050 respectively, appear to be a definition rather than reference. */
1051
1052 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1053
1054 olddef = (h->root.type != bfd_link_hash_undefined
1055 && h->root.type != bfd_link_hash_undefweak
1056 && h->root.type != bfd_link_hash_common);
1057
1058 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059 respectively, appear to be a function. */
1060
1061 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1062 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1063
1064 oldfunc = (h->type != STT_NOTYPE
1065 && bed->is_function_type (h->type));
1066
1067 /* When we try to create a default indirect symbol from the dynamic
1068 definition with the default version, we skip it if its type and
1069 the type of existing regular definition mismatch. We only do it
1070 if the existing regular definition won't be dynamic. */
1071 if (pold_alignment == NULL
1072 && !info->shared
1073 && !info->export_dynamic
1074 && !h->ref_dynamic
1075 && newdyn
1076 && newdef
1077 && !olddyn
1078 && (olddef || h->root.type == bfd_link_hash_common)
1079 && ELF_ST_TYPE (sym->st_info) != h->type
1080 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1081 && h->type != STT_NOTYPE
1082 && !(newfunc && oldfunc))
1083 {
1084 *skip = TRUE;
1085 return TRUE;
1086 }
1087
1088 /* Check TLS symbol. We don't check undefined symbol introduced by
1089 "ld -u". */
1090 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1091 && ELF_ST_TYPE (sym->st_info) != h->type
1092 && oldbfd != NULL)
1093 {
1094 bfd *ntbfd, *tbfd;
1095 bfd_boolean ntdef, tdef;
1096 asection *ntsec, *tsec;
1097
1098 if (h->type == STT_TLS)
1099 {
1100 ntbfd = abfd;
1101 ntsec = sec;
1102 ntdef = newdef;
1103 tbfd = oldbfd;
1104 tsec = oldsec;
1105 tdef = olddef;
1106 }
1107 else
1108 {
1109 ntbfd = oldbfd;
1110 ntsec = oldsec;
1111 ntdef = olddef;
1112 tbfd = abfd;
1113 tsec = sec;
1114 tdef = newdef;
1115 }
1116
1117 if (tdef && ntdef)
1118 (*_bfd_error_handler)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1120 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1121 else if (!tdef && !ntdef)
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1124 tbfd, ntbfd, h->root.root.string);
1125 else if (tdef)
1126 (*_bfd_error_handler)
1127 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1128 tbfd, tsec, ntbfd, h->root.root.string);
1129 else
1130 (*_bfd_error_handler)
1131 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1132 tbfd, ntbfd, ntsec, h->root.root.string);
1133
1134 bfd_set_error (bfd_error_bad_value);
1135 return FALSE;
1136 }
1137
1138 /* We need to remember if a symbol has a definition in a dynamic
1139 object or is weak in all dynamic objects. Internal and hidden
1140 visibility will make it unavailable to dynamic objects. */
1141 if (newdyn && !h->dynamic_def)
1142 {
1143 if (!bfd_is_und_section (sec))
1144 h->dynamic_def = 1;
1145 else
1146 {
1147 /* Check if this symbol is weak in all dynamic objects. If it
1148 is the first time we see it in a dynamic object, we mark
1149 if it is weak. Otherwise, we clear it. */
1150 if (!h->ref_dynamic)
1151 {
1152 if (bind == STB_WEAK)
1153 h->dynamic_weak = 1;
1154 }
1155 else if (bind != STB_WEAK)
1156 h->dynamic_weak = 0;
1157 }
1158 }
1159
1160 /* If the old symbol has non-default visibility, we ignore the new
1161 definition from a dynamic object. */
1162 if (newdyn
1163 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1164 && !bfd_is_und_section (sec))
1165 {
1166 *skip = TRUE;
1167 /* Make sure this symbol is dynamic. */
1168 h->ref_dynamic = 1;
1169 /* A protected symbol has external availability. Make sure it is
1170 recorded as dynamic.
1171
1172 FIXME: Should we check type and size for protected symbol? */
1173 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1174 return bfd_elf_link_record_dynamic_symbol (info, h);
1175 else
1176 return TRUE;
1177 }
1178 else if (!newdyn
1179 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1180 && h->def_dynamic)
1181 {
1182 /* If the new symbol with non-default visibility comes from a
1183 relocatable file and the old definition comes from a dynamic
1184 object, we remove the old definition. */
1185 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1186 {
1187 /* Handle the case where the old dynamic definition is
1188 default versioned. We need to copy the symbol info from
1189 the symbol with default version to the normal one if it
1190 was referenced before. */
1191 if (h->ref_regular)
1192 {
1193 struct elf_link_hash_entry *vh = *sym_hash;
1194
1195 vh->root.type = h->root.type;
1196 h->root.type = bfd_link_hash_indirect;
1197 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1198 /* Protected symbols will override the dynamic definition
1199 with default version. */
1200 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1201 {
1202 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1203 vh->dynamic_def = 1;
1204 vh->ref_dynamic = 1;
1205 }
1206 else
1207 {
1208 h->root.type = vh->root.type;
1209 vh->ref_dynamic = 0;
1210 /* We have to hide it here since it was made dynamic
1211 global with extra bits when the symbol info was
1212 copied from the old dynamic definition. */
1213 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1214 }
1215 h = vh;
1216 }
1217 else
1218 h = *sym_hash;
1219 }
1220
1221 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1222 && bfd_is_und_section (sec))
1223 {
1224 /* If the new symbol is undefined and the old symbol was
1225 also undefined before, we need to make sure
1226 _bfd_generic_link_add_one_symbol doesn't mess
1227 up the linker hash table undefs list. Since the old
1228 definition came from a dynamic object, it is still on the
1229 undefs list. */
1230 h->root.type = bfd_link_hash_undefined;
1231 h->root.u.undef.abfd = abfd;
1232 }
1233 else
1234 {
1235 h->root.type = bfd_link_hash_new;
1236 h->root.u.undef.abfd = NULL;
1237 }
1238
1239 if (h->def_dynamic)
1240 {
1241 h->def_dynamic = 0;
1242 h->ref_dynamic = 1;
1243 h->dynamic_def = 1;
1244 }
1245 /* FIXME: Should we check type and size for protected symbol? */
1246 h->size = 0;
1247 h->type = 0;
1248 return TRUE;
1249 }
1250
1251 if (bind == STB_GNU_UNIQUE)
1252 h->unique_global = 1;
1253
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1261
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1264
1265 if (newdef && !newdyn && olddyn)
1266 newweak = FALSE;
1267 if (olddef && newdyn)
1268 oldweak = FALSE;
1269
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc && oldfunc)
1272 *type_change_ok = TRUE;
1273
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1277
1278 if (oldweak
1279 || newweak
1280 || (newdef
1281 && h->root.type == bfd_link_hash_undefined))
1282 *type_change_ok = TRUE;
1283
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1286
1287 if (*type_change_ok
1288 || h->root.type == bfd_link_hash_undefined)
1289 *size_change_ok = TRUE;
1290
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1302 libraries.
1303
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1306
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1312 harmless. */
1313
1314 if (newdyn
1315 && newdef
1316 && !newweak
1317 && (sec->flags & SEC_ALLOC) != 0
1318 && (sec->flags & SEC_LOAD) == 0
1319 && sym->st_size > 0
1320 && !newfunc)
1321 newdyncommon = TRUE;
1322 else
1323 newdyncommon = FALSE;
1324
1325 if (olddyn
1326 && olddef
1327 && h->root.type == bfd_link_hash_defined
1328 && h->def_dynamic
1329 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1330 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1331 && h->size > 0
1332 && !oldfunc)
1333 olddyncommon = TRUE;
1334 else
1335 olddyncommon = FALSE;
1336
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed->merge_symbol
1340 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1341 pold_alignment, skip, override,
1342 type_change_ok, size_change_ok,
1343 &newdyn, &newdef, &newdyncommon, &newweak,
1344 abfd, &sec,
1345 &olddyn, &olddef, &olddyncommon, &oldweak,
1346 oldbfd, &oldsec))
1347 return FALSE;
1348
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1351 two. */
1352
1353 if (olddyncommon
1354 && newdyncommon
1355 && sym->st_size != h->size)
1356 {
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1362
1363 if (! ((*info->callbacks->multiple_common)
1364 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1365 return FALSE;
1366
1367 if (sym->st_size > h->size)
1368 h->size = sym->st_size;
1369
1370 *size_change_ok = TRUE;
1371 }
1372
1373 /* If we are looking at a dynamic object, and we have found a
1374 definition, we need to see if the symbol was already defined by
1375 some other object. If so, we want to use the existing
1376 definition, and we do not want to report a multiple symbol
1377 definition error; we do this by clobbering *PSEC to be
1378 bfd_und_section_ptr.
1379
1380 We treat a common symbol as a definition if the symbol in the
1381 shared library is a function, since common symbols always
1382 represent variables; this can cause confusion in principle, but
1383 any such confusion would seem to indicate an erroneous program or
1384 shared library. We also permit a common symbol in a regular
1385 object to override a weak symbol in a shared object. */
1386
1387 if (newdyn
1388 && newdef
1389 && (olddef
1390 || (h->root.type == bfd_link_hash_common
1391 && (newweak || newfunc))))
1392 {
1393 *override = TRUE;
1394 newdef = FALSE;
1395 newdyncommon = FALSE;
1396
1397 *psec = sec = bfd_und_section_ptr;
1398 *size_change_ok = TRUE;
1399
1400 /* If we get here when the old symbol is a common symbol, then
1401 we are explicitly letting it override a weak symbol or
1402 function in a dynamic object, and we don't want to warn about
1403 a type change. If the old symbol is a defined symbol, a type
1404 change warning may still be appropriate. */
1405
1406 if (h->root.type == bfd_link_hash_common)
1407 *type_change_ok = TRUE;
1408 }
1409
1410 /* Handle the special case of an old common symbol merging with a
1411 new symbol which looks like a common symbol in a shared object.
1412 We change *PSEC and *PVALUE to make the new symbol look like a
1413 common symbol, and let _bfd_generic_link_add_one_symbol do the
1414 right thing. */
1415
1416 if (newdyncommon
1417 && h->root.type == bfd_link_hash_common)
1418 {
1419 *override = TRUE;
1420 newdef = FALSE;
1421 newdyncommon = FALSE;
1422 *pvalue = sym->st_size;
1423 *psec = sec = bed->common_section (oldsec);
1424 *size_change_ok = TRUE;
1425 }
1426
1427 /* Skip weak definitions of symbols that are already defined. */
1428 if (newdef && olddef && newweak)
1429 {
1430 *skip = TRUE;
1431
1432 /* Merge st_other. If the symbol already has a dynamic index,
1433 but visibility says it should not be visible, turn it into a
1434 local symbol. */
1435 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1436 if (h->dynindx != -1)
1437 switch (ELF_ST_VISIBILITY (h->other))
1438 {
1439 case STV_INTERNAL:
1440 case STV_HIDDEN:
1441 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1442 break;
1443 }
1444 }
1445
1446 /* If the old symbol is from a dynamic object, and the new symbol is
1447 a definition which is not from a dynamic object, then the new
1448 symbol overrides the old symbol. Symbols from regular files
1449 always take precedence over symbols from dynamic objects, even if
1450 they are defined after the dynamic object in the link.
1451
1452 As above, we again permit a common symbol in a regular object to
1453 override a definition in a shared object if the shared object
1454 symbol is a function or is weak. */
1455
1456 flip = NULL;
1457 if (!newdyn
1458 && (newdef
1459 || (bfd_is_com_section (sec)
1460 && (oldweak || oldfunc)))
1461 && olddyn
1462 && olddef
1463 && h->def_dynamic)
1464 {
1465 /* Change the hash table entry to undefined, and let
1466 _bfd_generic_link_add_one_symbol do the right thing with the
1467 new definition. */
1468
1469 h->root.type = bfd_link_hash_undefined;
1470 h->root.u.undef.abfd = h->root.u.def.section->owner;
1471 *size_change_ok = TRUE;
1472
1473 olddef = FALSE;
1474 olddyncommon = FALSE;
1475
1476 /* We again permit a type change when a common symbol may be
1477 overriding a function. */
1478
1479 if (bfd_is_com_section (sec))
1480 {
1481 if (oldfunc)
1482 {
1483 /* If a common symbol overrides a function, make sure
1484 that it isn't defined dynamically nor has type
1485 function. */
1486 h->def_dynamic = 0;
1487 h->type = STT_NOTYPE;
1488 }
1489 *type_change_ok = TRUE;
1490 }
1491
1492 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1493 flip = *sym_hash;
1494 else
1495 /* This union may have been set to be non-NULL when this symbol
1496 was seen in a dynamic object. We must force the union to be
1497 NULL, so that it is correct for a regular symbol. */
1498 h->verinfo.vertree = NULL;
1499 }
1500
1501 /* Handle the special case of a new common symbol merging with an
1502 old symbol that looks like it might be a common symbol defined in
1503 a shared object. Note that we have already handled the case in
1504 which a new common symbol should simply override the definition
1505 in the shared library. */
1506
1507 if (! newdyn
1508 && bfd_is_com_section (sec)
1509 && olddyncommon)
1510 {
1511 /* It would be best if we could set the hash table entry to a
1512 common symbol, but we don't know what to use for the section
1513 or the alignment. */
1514 if (! ((*info->callbacks->multiple_common)
1515 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1516 return FALSE;
1517
1518 /* If the presumed common symbol in the dynamic object is
1519 larger, pretend that the new symbol has its size. */
1520
1521 if (h->size > *pvalue)
1522 *pvalue = h->size;
1523
1524 /* We need to remember the alignment required by the symbol
1525 in the dynamic object. */
1526 BFD_ASSERT (pold_alignment);
1527 *pold_alignment = h->root.u.def.section->alignment_power;
1528
1529 olddef = FALSE;
1530 olddyncommon = FALSE;
1531
1532 h->root.type = bfd_link_hash_undefined;
1533 h->root.u.undef.abfd = h->root.u.def.section->owner;
1534
1535 *size_change_ok = TRUE;
1536 *type_change_ok = TRUE;
1537
1538 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1539 flip = *sym_hash;
1540 else
1541 h->verinfo.vertree = NULL;
1542 }
1543
1544 if (flip != NULL)
1545 {
1546 /* Handle the case where we had a versioned symbol in a dynamic
1547 library and now find a definition in a normal object. In this
1548 case, we make the versioned symbol point to the normal one. */
1549 flip->root.type = h->root.type;
1550 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1551 h->root.type = bfd_link_hash_indirect;
1552 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1553 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1554 if (h->def_dynamic)
1555 {
1556 h->def_dynamic = 0;
1557 flip->ref_dynamic = 1;
1558 }
1559 }
1560
1561 return TRUE;
1562 }
1563
1564 /* This function is called to create an indirect symbol from the
1565 default for the symbol with the default version if needed. The
1566 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1567 set DYNSYM if the new indirect symbol is dynamic. */
1568
1569 static bfd_boolean
1570 _bfd_elf_add_default_symbol (bfd *abfd,
1571 struct bfd_link_info *info,
1572 struct elf_link_hash_entry *h,
1573 const char *name,
1574 Elf_Internal_Sym *sym,
1575 asection **psec,
1576 bfd_vma *value,
1577 bfd_boolean *dynsym,
1578 bfd_boolean override)
1579 {
1580 bfd_boolean type_change_ok;
1581 bfd_boolean size_change_ok;
1582 bfd_boolean skip;
1583 char *shortname;
1584 struct elf_link_hash_entry *hi;
1585 struct bfd_link_hash_entry *bh;
1586 const struct elf_backend_data *bed;
1587 bfd_boolean collect;
1588 bfd_boolean dynamic;
1589 char *p;
1590 size_t len, shortlen;
1591 asection *sec;
1592
1593 /* If this symbol has a version, and it is the default version, we
1594 create an indirect symbol from the default name to the fully
1595 decorated name. This will cause external references which do not
1596 specify a version to be bound to this version of the symbol. */
1597 p = strchr (name, ELF_VER_CHR);
1598 if (p == NULL || p[1] != ELF_VER_CHR)
1599 return TRUE;
1600
1601 if (override)
1602 {
1603 /* We are overridden by an old definition. We need to check if we
1604 need to create the indirect symbol from the default name. */
1605 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1606 FALSE, FALSE);
1607 BFD_ASSERT (hi != NULL);
1608 if (hi == h)
1609 return TRUE;
1610 while (hi->root.type == bfd_link_hash_indirect
1611 || hi->root.type == bfd_link_hash_warning)
1612 {
1613 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1614 if (hi == h)
1615 return TRUE;
1616 }
1617 }
1618
1619 bed = get_elf_backend_data (abfd);
1620 collect = bed->collect;
1621 dynamic = (abfd->flags & DYNAMIC) != 0;
1622
1623 shortlen = p - name;
1624 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1625 if (shortname == NULL)
1626 return FALSE;
1627 memcpy (shortname, name, shortlen);
1628 shortname[shortlen] = '\0';
1629
1630 /* We are going to create a new symbol. Merge it with any existing
1631 symbol with this name. For the purposes of the merge, act as
1632 though we were defining the symbol we just defined, although we
1633 actually going to define an indirect symbol. */
1634 type_change_ok = FALSE;
1635 size_change_ok = FALSE;
1636 sec = *psec;
1637 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1638 NULL, &hi, &skip, &override,
1639 &type_change_ok, &size_change_ok))
1640 return FALSE;
1641
1642 if (skip)
1643 goto nondefault;
1644
1645 if (! override)
1646 {
1647 bh = &hi->root;
1648 if (! (_bfd_generic_link_add_one_symbol
1649 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1650 0, name, FALSE, collect, &bh)))
1651 return FALSE;
1652 hi = (struct elf_link_hash_entry *) bh;
1653 }
1654 else
1655 {
1656 /* In this case the symbol named SHORTNAME is overriding the
1657 indirect symbol we want to add. We were planning on making
1658 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1659 is the name without a version. NAME is the fully versioned
1660 name, and it is the default version.
1661
1662 Overriding means that we already saw a definition for the
1663 symbol SHORTNAME in a regular object, and it is overriding
1664 the symbol defined in the dynamic object.
1665
1666 When this happens, we actually want to change NAME, the
1667 symbol we just added, to refer to SHORTNAME. This will cause
1668 references to NAME in the shared object to become references
1669 to SHORTNAME in the regular object. This is what we expect
1670 when we override a function in a shared object: that the
1671 references in the shared object will be mapped to the
1672 definition in the regular object. */
1673
1674 while (hi->root.type == bfd_link_hash_indirect
1675 || hi->root.type == bfd_link_hash_warning)
1676 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1677
1678 h->root.type = bfd_link_hash_indirect;
1679 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1680 if (h->def_dynamic)
1681 {
1682 h->def_dynamic = 0;
1683 hi->ref_dynamic = 1;
1684 if (hi->ref_regular
1685 || hi->def_regular)
1686 {
1687 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1688 return FALSE;
1689 }
1690 }
1691
1692 /* Now set HI to H, so that the following code will set the
1693 other fields correctly. */
1694 hi = h;
1695 }
1696
1697 /* Check if HI is a warning symbol. */
1698 if (hi->root.type == bfd_link_hash_warning)
1699 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1700
1701 /* If there is a duplicate definition somewhere, then HI may not
1702 point to an indirect symbol. We will have reported an error to
1703 the user in that case. */
1704
1705 if (hi->root.type == bfd_link_hash_indirect)
1706 {
1707 struct elf_link_hash_entry *ht;
1708
1709 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1710 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1711
1712 /* See if the new flags lead us to realize that the symbol must
1713 be dynamic. */
1714 if (! *dynsym)
1715 {
1716 if (! dynamic)
1717 {
1718 if (! info->executable
1719 || hi->ref_dynamic)
1720 *dynsym = TRUE;
1721 }
1722 else
1723 {
1724 if (hi->ref_regular)
1725 *dynsym = TRUE;
1726 }
1727 }
1728 }
1729
1730 /* We also need to define an indirection from the nondefault version
1731 of the symbol. */
1732
1733 nondefault:
1734 len = strlen (name);
1735 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1736 if (shortname == NULL)
1737 return FALSE;
1738 memcpy (shortname, name, shortlen);
1739 memcpy (shortname + shortlen, p + 1, len - shortlen);
1740
1741 /* Once again, merge with any existing symbol. */
1742 type_change_ok = FALSE;
1743 size_change_ok = FALSE;
1744 sec = *psec;
1745 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1746 NULL, &hi, &skip, &override,
1747 &type_change_ok, &size_change_ok))
1748 return FALSE;
1749
1750 if (skip)
1751 return TRUE;
1752
1753 if (override)
1754 {
1755 /* Here SHORTNAME is a versioned name, so we don't expect to see
1756 the type of override we do in the case above unless it is
1757 overridden by a versioned definition. */
1758 if (hi->root.type != bfd_link_hash_defined
1759 && hi->root.type != bfd_link_hash_defweak)
1760 (*_bfd_error_handler)
1761 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1762 abfd, shortname);
1763 }
1764 else
1765 {
1766 bh = &hi->root;
1767 if (! (_bfd_generic_link_add_one_symbol
1768 (info, abfd, shortname, BSF_INDIRECT,
1769 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1770 return FALSE;
1771 hi = (struct elf_link_hash_entry *) bh;
1772
1773 /* If there is a duplicate definition somewhere, then HI may not
1774 point to an indirect symbol. We will have reported an error
1775 to the user in that case. */
1776
1777 if (hi->root.type == bfd_link_hash_indirect)
1778 {
1779 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1780
1781 /* See if the new flags lead us to realize that the symbol
1782 must be dynamic. */
1783 if (! *dynsym)
1784 {
1785 if (! dynamic)
1786 {
1787 if (! info->executable
1788 || hi->ref_dynamic)
1789 *dynsym = TRUE;
1790 }
1791 else
1792 {
1793 if (hi->ref_regular)
1794 *dynsym = TRUE;
1795 }
1796 }
1797 }
1798 }
1799
1800 return TRUE;
1801 }
1802 \f
1803 /* This routine is used to export all defined symbols into the dynamic
1804 symbol table. It is called via elf_link_hash_traverse. */
1805
1806 static bfd_boolean
1807 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1808 {
1809 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1810
1811 /* Ignore this if we won't export it. */
1812 if (!eif->info->export_dynamic && !h->dynamic)
1813 return TRUE;
1814
1815 /* Ignore indirect symbols. These are added by the versioning code. */
1816 if (h->root.type == bfd_link_hash_indirect)
1817 return TRUE;
1818
1819 if (h->root.type == bfd_link_hash_warning)
1820 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1821
1822 if (h->dynindx == -1
1823 && (h->def_regular
1824 || h->ref_regular))
1825 {
1826 bfd_boolean hide;
1827
1828 if (eif->verdefs == NULL
1829 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1830 && !hide))
1831 {
1832 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1833 {
1834 eif->failed = TRUE;
1835 return FALSE;
1836 }
1837 }
1838 }
1839
1840 return TRUE;
1841 }
1842 \f
1843 /* Look through the symbols which are defined in other shared
1844 libraries and referenced here. Update the list of version
1845 dependencies. This will be put into the .gnu.version_r section.
1846 This function is called via elf_link_hash_traverse. */
1847
1848 static bfd_boolean
1849 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1850 void *data)
1851 {
1852 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1853 Elf_Internal_Verneed *t;
1854 Elf_Internal_Vernaux *a;
1855 bfd_size_type amt;
1856
1857 if (h->root.type == bfd_link_hash_warning)
1858 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1859
1860 /* We only care about symbols defined in shared objects with version
1861 information. */
1862 if (!h->def_dynamic
1863 || h->def_regular
1864 || h->dynindx == -1
1865 || h->verinfo.verdef == NULL)
1866 return TRUE;
1867
1868 /* See if we already know about this version. */
1869 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1870 t != NULL;
1871 t = t->vn_nextref)
1872 {
1873 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1874 continue;
1875
1876 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1877 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1878 return TRUE;
1879
1880 break;
1881 }
1882
1883 /* This is a new version. Add it to tree we are building. */
1884
1885 if (t == NULL)
1886 {
1887 amt = sizeof *t;
1888 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1889 if (t == NULL)
1890 {
1891 rinfo->failed = TRUE;
1892 return FALSE;
1893 }
1894
1895 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1896 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1897 elf_tdata (rinfo->info->output_bfd)->verref = t;
1898 }
1899
1900 amt = sizeof *a;
1901 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1902 if (a == NULL)
1903 {
1904 rinfo->failed = TRUE;
1905 return FALSE;
1906 }
1907
1908 /* Note that we are copying a string pointer here, and testing it
1909 above. If bfd_elf_string_from_elf_section is ever changed to
1910 discard the string data when low in memory, this will have to be
1911 fixed. */
1912 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1913
1914 a->vna_flags = h->verinfo.verdef->vd_flags;
1915 a->vna_nextptr = t->vn_auxptr;
1916
1917 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1918 ++rinfo->vers;
1919
1920 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1921
1922 t->vn_auxptr = a;
1923
1924 return TRUE;
1925 }
1926
1927 /* Figure out appropriate versions for all the symbols. We may not
1928 have the version number script until we have read all of the input
1929 files, so until that point we don't know which symbols should be
1930 local. This function is called via elf_link_hash_traverse. */
1931
1932 static bfd_boolean
1933 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1934 {
1935 struct elf_info_failed *sinfo;
1936 struct bfd_link_info *info;
1937 const struct elf_backend_data *bed;
1938 struct elf_info_failed eif;
1939 char *p;
1940 bfd_size_type amt;
1941
1942 sinfo = (struct elf_info_failed *) data;
1943 info = sinfo->info;
1944
1945 if (h->root.type == bfd_link_hash_warning)
1946 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1947
1948 /* Fix the symbol flags. */
1949 eif.failed = FALSE;
1950 eif.info = info;
1951 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1952 {
1953 if (eif.failed)
1954 sinfo->failed = TRUE;
1955 return FALSE;
1956 }
1957
1958 /* We only need version numbers for symbols defined in regular
1959 objects. */
1960 if (!h->def_regular)
1961 return TRUE;
1962
1963 bed = get_elf_backend_data (info->output_bfd);
1964 p = strchr (h->root.root.string, ELF_VER_CHR);
1965 if (p != NULL && h->verinfo.vertree == NULL)
1966 {
1967 struct bfd_elf_version_tree *t;
1968 bfd_boolean hidden;
1969
1970 hidden = TRUE;
1971
1972 /* There are two consecutive ELF_VER_CHR characters if this is
1973 not a hidden symbol. */
1974 ++p;
1975 if (*p == ELF_VER_CHR)
1976 {
1977 hidden = FALSE;
1978 ++p;
1979 }
1980
1981 /* If there is no version string, we can just return out. */
1982 if (*p == '\0')
1983 {
1984 if (hidden)
1985 h->hidden = 1;
1986 return TRUE;
1987 }
1988
1989 /* Look for the version. If we find it, it is no longer weak. */
1990 for (t = sinfo->verdefs; t != NULL; t = t->next)
1991 {
1992 if (strcmp (t->name, p) == 0)
1993 {
1994 size_t len;
1995 char *alc;
1996 struct bfd_elf_version_expr *d;
1997
1998 len = p - h->root.root.string;
1999 alc = (char *) bfd_malloc (len);
2000 if (alc == NULL)
2001 {
2002 sinfo->failed = TRUE;
2003 return FALSE;
2004 }
2005 memcpy (alc, h->root.root.string, len - 1);
2006 alc[len - 1] = '\0';
2007 if (alc[len - 2] == ELF_VER_CHR)
2008 alc[len - 2] = '\0';
2009
2010 h->verinfo.vertree = t;
2011 t->used = TRUE;
2012 d = NULL;
2013
2014 if (t->globals.list != NULL)
2015 d = (*t->match) (&t->globals, NULL, alc);
2016
2017 /* See if there is anything to force this symbol to
2018 local scope. */
2019 if (d == NULL && t->locals.list != NULL)
2020 {
2021 d = (*t->match) (&t->locals, NULL, alc);
2022 if (d != NULL
2023 && h->dynindx != -1
2024 && ! info->export_dynamic)
2025 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2026 }
2027
2028 free (alc);
2029 break;
2030 }
2031 }
2032
2033 /* If we are building an application, we need to create a
2034 version node for this version. */
2035 if (t == NULL && info->executable)
2036 {
2037 struct bfd_elf_version_tree **pp;
2038 int version_index;
2039
2040 /* If we aren't going to export this symbol, we don't need
2041 to worry about it. */
2042 if (h->dynindx == -1)
2043 return TRUE;
2044
2045 amt = sizeof *t;
2046 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2047 if (t == NULL)
2048 {
2049 sinfo->failed = TRUE;
2050 return FALSE;
2051 }
2052
2053 t->name = p;
2054 t->name_indx = (unsigned int) -1;
2055 t->used = TRUE;
2056
2057 version_index = 1;
2058 /* Don't count anonymous version tag. */
2059 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2060 version_index = 0;
2061 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2062 ++version_index;
2063 t->vernum = version_index;
2064
2065 *pp = t;
2066
2067 h->verinfo.vertree = t;
2068 }
2069 else if (t == NULL)
2070 {
2071 /* We could not find the version for a symbol when
2072 generating a shared archive. Return an error. */
2073 (*_bfd_error_handler)
2074 (_("%B: version node not found for symbol %s"),
2075 info->output_bfd, h->root.root.string);
2076 bfd_set_error (bfd_error_bad_value);
2077 sinfo->failed = TRUE;
2078 return FALSE;
2079 }
2080
2081 if (hidden)
2082 h->hidden = 1;
2083 }
2084
2085 /* If we don't have a version for this symbol, see if we can find
2086 something. */
2087 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2088 {
2089 bfd_boolean hide;
2090
2091 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2092 h->root.root.string, &hide);
2093 if (h->verinfo.vertree != NULL && hide)
2094 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2095 }
2096
2097 return TRUE;
2098 }
2099 \f
2100 /* Read and swap the relocs from the section indicated by SHDR. This
2101 may be either a REL or a RELA section. The relocations are
2102 translated into RELA relocations and stored in INTERNAL_RELOCS,
2103 which should have already been allocated to contain enough space.
2104 The EXTERNAL_RELOCS are a buffer where the external form of the
2105 relocations should be stored.
2106
2107 Returns FALSE if something goes wrong. */
2108
2109 static bfd_boolean
2110 elf_link_read_relocs_from_section (bfd *abfd,
2111 asection *sec,
2112 Elf_Internal_Shdr *shdr,
2113 void *external_relocs,
2114 Elf_Internal_Rela *internal_relocs)
2115 {
2116 const struct elf_backend_data *bed;
2117 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2118 const bfd_byte *erela;
2119 const bfd_byte *erelaend;
2120 Elf_Internal_Rela *irela;
2121 Elf_Internal_Shdr *symtab_hdr;
2122 size_t nsyms;
2123
2124 /* Position ourselves at the start of the section. */
2125 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2126 return FALSE;
2127
2128 /* Read the relocations. */
2129 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2130 return FALSE;
2131
2132 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2133 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2134
2135 bed = get_elf_backend_data (abfd);
2136
2137 /* Convert the external relocations to the internal format. */
2138 if (shdr->sh_entsize == bed->s->sizeof_rel)
2139 swap_in = bed->s->swap_reloc_in;
2140 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2141 swap_in = bed->s->swap_reloca_in;
2142 else
2143 {
2144 bfd_set_error (bfd_error_wrong_format);
2145 return FALSE;
2146 }
2147
2148 erela = (const bfd_byte *) external_relocs;
2149 erelaend = erela + shdr->sh_size;
2150 irela = internal_relocs;
2151 while (erela < erelaend)
2152 {
2153 bfd_vma r_symndx;
2154
2155 (*swap_in) (abfd, erela, irela);
2156 r_symndx = ELF32_R_SYM (irela->r_info);
2157 if (bed->s->arch_size == 64)
2158 r_symndx >>= 24;
2159 if (nsyms > 0)
2160 {
2161 if ((size_t) r_symndx >= nsyms)
2162 {
2163 (*_bfd_error_handler)
2164 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2165 " for offset 0x%lx in section `%A'"),
2166 abfd, sec,
2167 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2168 bfd_set_error (bfd_error_bad_value);
2169 return FALSE;
2170 }
2171 }
2172 else if (r_symndx != STN_UNDEF)
2173 {
2174 (*_bfd_error_handler)
2175 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2176 " when the object file has no symbol table"),
2177 abfd, sec,
2178 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2179 bfd_set_error (bfd_error_bad_value);
2180 return FALSE;
2181 }
2182 irela += bed->s->int_rels_per_ext_rel;
2183 erela += shdr->sh_entsize;
2184 }
2185
2186 return TRUE;
2187 }
2188
2189 /* Read and swap the relocs for a section O. They may have been
2190 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2191 not NULL, they are used as buffers to read into. They are known to
2192 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2193 the return value is allocated using either malloc or bfd_alloc,
2194 according to the KEEP_MEMORY argument. If O has two relocation
2195 sections (both REL and RELA relocations), then the REL_HDR
2196 relocations will appear first in INTERNAL_RELOCS, followed by the
2197 RELA_HDR relocations. */
2198
2199 Elf_Internal_Rela *
2200 _bfd_elf_link_read_relocs (bfd *abfd,
2201 asection *o,
2202 void *external_relocs,
2203 Elf_Internal_Rela *internal_relocs,
2204 bfd_boolean keep_memory)
2205 {
2206 void *alloc1 = NULL;
2207 Elf_Internal_Rela *alloc2 = NULL;
2208 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2209 struct bfd_elf_section_data *esdo = elf_section_data (o);
2210 Elf_Internal_Rela *internal_rela_relocs;
2211
2212 if (esdo->relocs != NULL)
2213 return esdo->relocs;
2214
2215 if (o->reloc_count == 0)
2216 return NULL;
2217
2218 if (internal_relocs == NULL)
2219 {
2220 bfd_size_type size;
2221
2222 size = o->reloc_count;
2223 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2224 if (keep_memory)
2225 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2226 else
2227 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2228 if (internal_relocs == NULL)
2229 goto error_return;
2230 }
2231
2232 if (external_relocs == NULL)
2233 {
2234 bfd_size_type size = 0;
2235
2236 if (esdo->rel.hdr)
2237 size += esdo->rel.hdr->sh_size;
2238 if (esdo->rela.hdr)
2239 size += esdo->rela.hdr->sh_size;
2240
2241 alloc1 = bfd_malloc (size);
2242 if (alloc1 == NULL)
2243 goto error_return;
2244 external_relocs = alloc1;
2245 }
2246
2247 internal_rela_relocs = internal_relocs;
2248 if (esdo->rel.hdr)
2249 {
2250 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2251 external_relocs,
2252 internal_relocs))
2253 goto error_return;
2254 external_relocs = (((bfd_byte *) external_relocs)
2255 + esdo->rel.hdr->sh_size);
2256 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2257 * bed->s->int_rels_per_ext_rel);
2258 }
2259
2260 if (esdo->rela.hdr
2261 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2262 external_relocs,
2263 internal_rela_relocs)))
2264 goto error_return;
2265
2266 /* Cache the results for next time, if we can. */
2267 if (keep_memory)
2268 esdo->relocs = internal_relocs;
2269
2270 if (alloc1 != NULL)
2271 free (alloc1);
2272
2273 /* Don't free alloc2, since if it was allocated we are passing it
2274 back (under the name of internal_relocs). */
2275
2276 return internal_relocs;
2277
2278 error_return:
2279 if (alloc1 != NULL)
2280 free (alloc1);
2281 if (alloc2 != NULL)
2282 {
2283 if (keep_memory)
2284 bfd_release (abfd, alloc2);
2285 else
2286 free (alloc2);
2287 }
2288 return NULL;
2289 }
2290
2291 /* Compute the size of, and allocate space for, REL_HDR which is the
2292 section header for a section containing relocations for O. */
2293
2294 static bfd_boolean
2295 _bfd_elf_link_size_reloc_section (bfd *abfd,
2296 struct bfd_elf_section_reloc_data *reldata)
2297 {
2298 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2299
2300 /* That allows us to calculate the size of the section. */
2301 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2302
2303 /* The contents field must last into write_object_contents, so we
2304 allocate it with bfd_alloc rather than malloc. Also since we
2305 cannot be sure that the contents will actually be filled in,
2306 we zero the allocated space. */
2307 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2308 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2309 return FALSE;
2310
2311 if (reldata->hashes == NULL && reldata->count)
2312 {
2313 struct elf_link_hash_entry **p;
2314
2315 p = (struct elf_link_hash_entry **)
2316 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2317 if (p == NULL)
2318 return FALSE;
2319
2320 reldata->hashes = p;
2321 }
2322
2323 return TRUE;
2324 }
2325
2326 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2327 originated from the section given by INPUT_REL_HDR) to the
2328 OUTPUT_BFD. */
2329
2330 bfd_boolean
2331 _bfd_elf_link_output_relocs (bfd *output_bfd,
2332 asection *input_section,
2333 Elf_Internal_Shdr *input_rel_hdr,
2334 Elf_Internal_Rela *internal_relocs,
2335 struct elf_link_hash_entry **rel_hash
2336 ATTRIBUTE_UNUSED)
2337 {
2338 Elf_Internal_Rela *irela;
2339 Elf_Internal_Rela *irelaend;
2340 bfd_byte *erel;
2341 struct bfd_elf_section_reloc_data *output_reldata;
2342 asection *output_section;
2343 const struct elf_backend_data *bed;
2344 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2345 struct bfd_elf_section_data *esdo;
2346
2347 output_section = input_section->output_section;
2348
2349 bed = get_elf_backend_data (output_bfd);
2350 esdo = elf_section_data (output_section);
2351 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2352 {
2353 output_reldata = &esdo->rel;
2354 swap_out = bed->s->swap_reloc_out;
2355 }
2356 else if (esdo->rela.hdr
2357 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2358 {
2359 output_reldata = &esdo->rela;
2360 swap_out = bed->s->swap_reloca_out;
2361 }
2362 else
2363 {
2364 (*_bfd_error_handler)
2365 (_("%B: relocation size mismatch in %B section %A"),
2366 output_bfd, input_section->owner, input_section);
2367 bfd_set_error (bfd_error_wrong_format);
2368 return FALSE;
2369 }
2370
2371 erel = output_reldata->hdr->contents;
2372 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2373 irela = internal_relocs;
2374 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2375 * bed->s->int_rels_per_ext_rel);
2376 while (irela < irelaend)
2377 {
2378 (*swap_out) (output_bfd, irela, erel);
2379 irela += bed->s->int_rels_per_ext_rel;
2380 erel += input_rel_hdr->sh_entsize;
2381 }
2382
2383 /* Bump the counter, so that we know where to add the next set of
2384 relocations. */
2385 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2386
2387 return TRUE;
2388 }
2389 \f
2390 /* Make weak undefined symbols in PIE dynamic. */
2391
2392 bfd_boolean
2393 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2394 struct elf_link_hash_entry *h)
2395 {
2396 if (info->pie
2397 && h->dynindx == -1
2398 && h->root.type == bfd_link_hash_undefweak)
2399 return bfd_elf_link_record_dynamic_symbol (info, h);
2400
2401 return TRUE;
2402 }
2403
2404 /* Fix up the flags for a symbol. This handles various cases which
2405 can only be fixed after all the input files are seen. This is
2406 currently called by both adjust_dynamic_symbol and
2407 assign_sym_version, which is unnecessary but perhaps more robust in
2408 the face of future changes. */
2409
2410 static bfd_boolean
2411 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2412 struct elf_info_failed *eif)
2413 {
2414 const struct elf_backend_data *bed;
2415
2416 /* If this symbol was mentioned in a non-ELF file, try to set
2417 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2418 permit a non-ELF file to correctly refer to a symbol defined in
2419 an ELF dynamic object. */
2420 if (h->non_elf)
2421 {
2422 while (h->root.type == bfd_link_hash_indirect)
2423 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2424
2425 if (h->root.type != bfd_link_hash_defined
2426 && h->root.type != bfd_link_hash_defweak)
2427 {
2428 h->ref_regular = 1;
2429 h->ref_regular_nonweak = 1;
2430 }
2431 else
2432 {
2433 if (h->root.u.def.section->owner != NULL
2434 && (bfd_get_flavour (h->root.u.def.section->owner)
2435 == bfd_target_elf_flavour))
2436 {
2437 h->ref_regular = 1;
2438 h->ref_regular_nonweak = 1;
2439 }
2440 else
2441 h->def_regular = 1;
2442 }
2443
2444 if (h->dynindx == -1
2445 && (h->def_dynamic
2446 || h->ref_dynamic))
2447 {
2448 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2449 {
2450 eif->failed = TRUE;
2451 return FALSE;
2452 }
2453 }
2454 }
2455 else
2456 {
2457 /* Unfortunately, NON_ELF is only correct if the symbol
2458 was first seen in a non-ELF file. Fortunately, if the symbol
2459 was first seen in an ELF file, we're probably OK unless the
2460 symbol was defined in a non-ELF file. Catch that case here.
2461 FIXME: We're still in trouble if the symbol was first seen in
2462 a dynamic object, and then later in a non-ELF regular object. */
2463 if ((h->root.type == bfd_link_hash_defined
2464 || h->root.type == bfd_link_hash_defweak)
2465 && !h->def_regular
2466 && (h->root.u.def.section->owner != NULL
2467 ? (bfd_get_flavour (h->root.u.def.section->owner)
2468 != bfd_target_elf_flavour)
2469 : (bfd_is_abs_section (h->root.u.def.section)
2470 && !h->def_dynamic)))
2471 h->def_regular = 1;
2472 }
2473
2474 /* Backend specific symbol fixup. */
2475 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2476 if (bed->elf_backend_fixup_symbol
2477 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2478 return FALSE;
2479
2480 /* If this is a final link, and the symbol was defined as a common
2481 symbol in a regular object file, and there was no definition in
2482 any dynamic object, then the linker will have allocated space for
2483 the symbol in a common section but the DEF_REGULAR
2484 flag will not have been set. */
2485 if (h->root.type == bfd_link_hash_defined
2486 && !h->def_regular
2487 && h->ref_regular
2488 && !h->def_dynamic
2489 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2490 h->def_regular = 1;
2491
2492 /* If -Bsymbolic was used (which means to bind references to global
2493 symbols to the definition within the shared object), and this
2494 symbol was defined in a regular object, then it actually doesn't
2495 need a PLT entry. Likewise, if the symbol has non-default
2496 visibility. If the symbol has hidden or internal visibility, we
2497 will force it local. */
2498 if (h->needs_plt
2499 && eif->info->shared
2500 && is_elf_hash_table (eif->info->hash)
2501 && (SYMBOLIC_BIND (eif->info, h)
2502 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2503 && h->def_regular)
2504 {
2505 bfd_boolean force_local;
2506
2507 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2508 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2509 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2510 }
2511
2512 /* If a weak undefined symbol has non-default visibility, we also
2513 hide it from the dynamic linker. */
2514 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2515 && h->root.type == bfd_link_hash_undefweak)
2516 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2517
2518 /* If this is a weak defined symbol in a dynamic object, and we know
2519 the real definition in the dynamic object, copy interesting flags
2520 over to the real definition. */
2521 if (h->u.weakdef != NULL)
2522 {
2523 struct elf_link_hash_entry *weakdef;
2524
2525 weakdef = h->u.weakdef;
2526 if (h->root.type == bfd_link_hash_indirect)
2527 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2528
2529 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2530 || h->root.type == bfd_link_hash_defweak);
2531 BFD_ASSERT (weakdef->def_dynamic);
2532
2533 /* If the real definition is defined by a regular object file,
2534 don't do anything special. See the longer description in
2535 _bfd_elf_adjust_dynamic_symbol, below. */
2536 if (weakdef->def_regular)
2537 h->u.weakdef = NULL;
2538 else
2539 {
2540 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2541 || weakdef->root.type == bfd_link_hash_defweak);
2542 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2543 }
2544 }
2545
2546 return TRUE;
2547 }
2548
2549 /* Make the backend pick a good value for a dynamic symbol. This is
2550 called via elf_link_hash_traverse, and also calls itself
2551 recursively. */
2552
2553 static bfd_boolean
2554 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2555 {
2556 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2557 bfd *dynobj;
2558 const struct elf_backend_data *bed;
2559
2560 if (! is_elf_hash_table (eif->info->hash))
2561 return FALSE;
2562
2563 if (h->root.type == bfd_link_hash_warning)
2564 {
2565 h->got = elf_hash_table (eif->info)->init_got_offset;
2566 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2567
2568 /* When warning symbols are created, they **replace** the "real"
2569 entry in the hash table, thus we never get to see the real
2570 symbol in a hash traversal. So look at it now. */
2571 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2572 }
2573
2574 /* Ignore indirect symbols. These are added by the versioning code. */
2575 if (h->root.type == bfd_link_hash_indirect)
2576 return TRUE;
2577
2578 /* Fix the symbol flags. */
2579 if (! _bfd_elf_fix_symbol_flags (h, eif))
2580 return FALSE;
2581
2582 /* If this symbol does not require a PLT entry, and it is not
2583 defined by a dynamic object, or is not referenced by a regular
2584 object, ignore it. We do have to handle a weak defined symbol,
2585 even if no regular object refers to it, if we decided to add it
2586 to the dynamic symbol table. FIXME: Do we normally need to worry
2587 about symbols which are defined by one dynamic object and
2588 referenced by another one? */
2589 if (!h->needs_plt
2590 && h->type != STT_GNU_IFUNC
2591 && (h->def_regular
2592 || !h->def_dynamic
2593 || (!h->ref_regular
2594 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2595 {
2596 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2597 return TRUE;
2598 }
2599
2600 /* If we've already adjusted this symbol, don't do it again. This
2601 can happen via a recursive call. */
2602 if (h->dynamic_adjusted)
2603 return TRUE;
2604
2605 /* Don't look at this symbol again. Note that we must set this
2606 after checking the above conditions, because we may look at a
2607 symbol once, decide not to do anything, and then get called
2608 recursively later after REF_REGULAR is set below. */
2609 h->dynamic_adjusted = 1;
2610
2611 /* If this is a weak definition, and we know a real definition, and
2612 the real symbol is not itself defined by a regular object file,
2613 then get a good value for the real definition. We handle the
2614 real symbol first, for the convenience of the backend routine.
2615
2616 Note that there is a confusing case here. If the real definition
2617 is defined by a regular object file, we don't get the real symbol
2618 from the dynamic object, but we do get the weak symbol. If the
2619 processor backend uses a COPY reloc, then if some routine in the
2620 dynamic object changes the real symbol, we will not see that
2621 change in the corresponding weak symbol. This is the way other
2622 ELF linkers work as well, and seems to be a result of the shared
2623 library model.
2624
2625 I will clarify this issue. Most SVR4 shared libraries define the
2626 variable _timezone and define timezone as a weak synonym. The
2627 tzset call changes _timezone. If you write
2628 extern int timezone;
2629 int _timezone = 5;
2630 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2631 you might expect that, since timezone is a synonym for _timezone,
2632 the same number will print both times. However, if the processor
2633 backend uses a COPY reloc, then actually timezone will be copied
2634 into your process image, and, since you define _timezone
2635 yourself, _timezone will not. Thus timezone and _timezone will
2636 wind up at different memory locations. The tzset call will set
2637 _timezone, leaving timezone unchanged. */
2638
2639 if (h->u.weakdef != NULL)
2640 {
2641 /* If we get to this point, we know there is an implicit
2642 reference by a regular object file via the weak symbol H.
2643 FIXME: Is this really true? What if the traversal finds
2644 H->U.WEAKDEF before it finds H? */
2645 h->u.weakdef->ref_regular = 1;
2646
2647 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2648 return FALSE;
2649 }
2650
2651 /* If a symbol has no type and no size and does not require a PLT
2652 entry, then we are probably about to do the wrong thing here: we
2653 are probably going to create a COPY reloc for an empty object.
2654 This case can arise when a shared object is built with assembly
2655 code, and the assembly code fails to set the symbol type. */
2656 if (h->size == 0
2657 && h->type == STT_NOTYPE
2658 && !h->needs_plt)
2659 (*_bfd_error_handler)
2660 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2661 h->root.root.string);
2662
2663 dynobj = elf_hash_table (eif->info)->dynobj;
2664 bed = get_elf_backend_data (dynobj);
2665
2666 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2667 {
2668 eif->failed = TRUE;
2669 return FALSE;
2670 }
2671
2672 return TRUE;
2673 }
2674
2675 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2676 DYNBSS. */
2677
2678 bfd_boolean
2679 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2680 asection *dynbss)
2681 {
2682 unsigned int power_of_two;
2683 bfd_vma mask;
2684 asection *sec = h->root.u.def.section;
2685
2686 /* The section aligment of definition is the maximum alignment
2687 requirement of symbols defined in the section. Since we don't
2688 know the symbol alignment requirement, we start with the
2689 maximum alignment and check low bits of the symbol address
2690 for the minimum alignment. */
2691 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2692 mask = ((bfd_vma) 1 << power_of_two) - 1;
2693 while ((h->root.u.def.value & mask) != 0)
2694 {
2695 mask >>= 1;
2696 --power_of_two;
2697 }
2698
2699 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2700 dynbss))
2701 {
2702 /* Adjust the section alignment if needed. */
2703 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2704 power_of_two))
2705 return FALSE;
2706 }
2707
2708 /* We make sure that the symbol will be aligned properly. */
2709 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2710
2711 /* Define the symbol as being at this point in DYNBSS. */
2712 h->root.u.def.section = dynbss;
2713 h->root.u.def.value = dynbss->size;
2714
2715 /* Increment the size of DYNBSS to make room for the symbol. */
2716 dynbss->size += h->size;
2717
2718 return TRUE;
2719 }
2720
2721 /* Adjust all external symbols pointing into SEC_MERGE sections
2722 to reflect the object merging within the sections. */
2723
2724 static bfd_boolean
2725 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2726 {
2727 asection *sec;
2728
2729 if (h->root.type == bfd_link_hash_warning)
2730 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2731
2732 if ((h->root.type == bfd_link_hash_defined
2733 || h->root.type == bfd_link_hash_defweak)
2734 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2735 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2736 {
2737 bfd *output_bfd = (bfd *) data;
2738
2739 h->root.u.def.value =
2740 _bfd_merged_section_offset (output_bfd,
2741 &h->root.u.def.section,
2742 elf_section_data (sec)->sec_info,
2743 h->root.u.def.value);
2744 }
2745
2746 return TRUE;
2747 }
2748
2749 /* Returns false if the symbol referred to by H should be considered
2750 to resolve local to the current module, and true if it should be
2751 considered to bind dynamically. */
2752
2753 bfd_boolean
2754 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2755 struct bfd_link_info *info,
2756 bfd_boolean not_local_protected)
2757 {
2758 bfd_boolean binding_stays_local_p;
2759 const struct elf_backend_data *bed;
2760 struct elf_link_hash_table *hash_table;
2761
2762 if (h == NULL)
2763 return FALSE;
2764
2765 while (h->root.type == bfd_link_hash_indirect
2766 || h->root.type == bfd_link_hash_warning)
2767 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2768
2769 /* If it was forced local, then clearly it's not dynamic. */
2770 if (h->dynindx == -1)
2771 return FALSE;
2772 if (h->forced_local)
2773 return FALSE;
2774
2775 /* Identify the cases where name binding rules say that a
2776 visible symbol resolves locally. */
2777 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2778
2779 switch (ELF_ST_VISIBILITY (h->other))
2780 {
2781 case STV_INTERNAL:
2782 case STV_HIDDEN:
2783 return FALSE;
2784
2785 case STV_PROTECTED:
2786 hash_table = elf_hash_table (info);
2787 if (!is_elf_hash_table (hash_table))
2788 return FALSE;
2789
2790 bed = get_elf_backend_data (hash_table->dynobj);
2791
2792 /* Proper resolution for function pointer equality may require
2793 that these symbols perhaps be resolved dynamically, even though
2794 we should be resolving them to the current module. */
2795 if (!not_local_protected || !bed->is_function_type (h->type))
2796 binding_stays_local_p = TRUE;
2797 break;
2798
2799 default:
2800 break;
2801 }
2802
2803 /* If it isn't defined locally, then clearly it's dynamic. */
2804 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2805 return TRUE;
2806
2807 /* Otherwise, the symbol is dynamic if binding rules don't tell
2808 us that it remains local. */
2809 return !binding_stays_local_p;
2810 }
2811
2812 /* Return true if the symbol referred to by H should be considered
2813 to resolve local to the current module, and false otherwise. Differs
2814 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2815 undefined symbols. The two functions are virtually identical except
2816 for the place where forced_local and dynindx == -1 are tested. If
2817 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2818 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2819 the symbol is local only for defined symbols.
2820 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2821 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2822 treatment of undefined weak symbols. For those that do not make
2823 undefined weak symbols dynamic, both functions may return false. */
2824
2825 bfd_boolean
2826 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2827 struct bfd_link_info *info,
2828 bfd_boolean local_protected)
2829 {
2830 const struct elf_backend_data *bed;
2831 struct elf_link_hash_table *hash_table;
2832
2833 /* If it's a local sym, of course we resolve locally. */
2834 if (h == NULL)
2835 return TRUE;
2836
2837 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2838 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2839 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2840 return TRUE;
2841
2842 /* Common symbols that become definitions don't get the DEF_REGULAR
2843 flag set, so test it first, and don't bail out. */
2844 if (ELF_COMMON_DEF_P (h))
2845 /* Do nothing. */;
2846 /* If we don't have a definition in a regular file, then we can't
2847 resolve locally. The sym is either undefined or dynamic. */
2848 else if (!h->def_regular)
2849 return FALSE;
2850
2851 /* Forced local symbols resolve locally. */
2852 if (h->forced_local)
2853 return TRUE;
2854
2855 /* As do non-dynamic symbols. */
2856 if (h->dynindx == -1)
2857 return TRUE;
2858
2859 /* At this point, we know the symbol is defined and dynamic. In an
2860 executable it must resolve locally, likewise when building symbolic
2861 shared libraries. */
2862 if (info->executable || SYMBOLIC_BIND (info, h))
2863 return TRUE;
2864
2865 /* Now deal with defined dynamic symbols in shared libraries. Ones
2866 with default visibility might not resolve locally. */
2867 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2868 return FALSE;
2869
2870 hash_table = elf_hash_table (info);
2871 if (!is_elf_hash_table (hash_table))
2872 return TRUE;
2873
2874 bed = get_elf_backend_data (hash_table->dynobj);
2875
2876 /* STV_PROTECTED non-function symbols are local. */
2877 if (!bed->is_function_type (h->type))
2878 return TRUE;
2879
2880 /* Function pointer equality tests may require that STV_PROTECTED
2881 symbols be treated as dynamic symbols, even when we know that the
2882 dynamic linker will resolve them locally. */
2883 return local_protected;
2884 }
2885
2886 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2887 aligned. Returns the first TLS output section. */
2888
2889 struct bfd_section *
2890 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2891 {
2892 struct bfd_section *sec, *tls;
2893 unsigned int align = 0;
2894
2895 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2896 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2897 break;
2898 tls = sec;
2899
2900 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2901 if (sec->alignment_power > align)
2902 align = sec->alignment_power;
2903
2904 elf_hash_table (info)->tls_sec = tls;
2905
2906 /* Ensure the alignment of the first section is the largest alignment,
2907 so that the tls segment starts aligned. */
2908 if (tls != NULL)
2909 tls->alignment_power = align;
2910
2911 return tls;
2912 }
2913
2914 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2915 static bfd_boolean
2916 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2917 Elf_Internal_Sym *sym)
2918 {
2919 const struct elf_backend_data *bed;
2920
2921 /* Local symbols do not count, but target specific ones might. */
2922 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2923 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2924 return FALSE;
2925
2926 bed = get_elf_backend_data (abfd);
2927 /* Function symbols do not count. */
2928 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2929 return FALSE;
2930
2931 /* If the section is undefined, then so is the symbol. */
2932 if (sym->st_shndx == SHN_UNDEF)
2933 return FALSE;
2934
2935 /* If the symbol is defined in the common section, then
2936 it is a common definition and so does not count. */
2937 if (bed->common_definition (sym))
2938 return FALSE;
2939
2940 /* If the symbol is in a target specific section then we
2941 must rely upon the backend to tell us what it is. */
2942 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2943 /* FIXME - this function is not coded yet:
2944
2945 return _bfd_is_global_symbol_definition (abfd, sym);
2946
2947 Instead for now assume that the definition is not global,
2948 Even if this is wrong, at least the linker will behave
2949 in the same way that it used to do. */
2950 return FALSE;
2951
2952 return TRUE;
2953 }
2954
2955 /* Search the symbol table of the archive element of the archive ABFD
2956 whose archive map contains a mention of SYMDEF, and determine if
2957 the symbol is defined in this element. */
2958 static bfd_boolean
2959 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2960 {
2961 Elf_Internal_Shdr * hdr;
2962 bfd_size_type symcount;
2963 bfd_size_type extsymcount;
2964 bfd_size_type extsymoff;
2965 Elf_Internal_Sym *isymbuf;
2966 Elf_Internal_Sym *isym;
2967 Elf_Internal_Sym *isymend;
2968 bfd_boolean result;
2969
2970 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2971 if (abfd == NULL)
2972 return FALSE;
2973
2974 if (! bfd_check_format (abfd, bfd_object))
2975 return FALSE;
2976
2977 /* If we have already included the element containing this symbol in the
2978 link then we do not need to include it again. Just claim that any symbol
2979 it contains is not a definition, so that our caller will not decide to
2980 (re)include this element. */
2981 if (abfd->archive_pass)
2982 return FALSE;
2983
2984 /* Select the appropriate symbol table. */
2985 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2986 hdr = &elf_tdata (abfd)->symtab_hdr;
2987 else
2988 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2989
2990 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2991
2992 /* The sh_info field of the symtab header tells us where the
2993 external symbols start. We don't care about the local symbols. */
2994 if (elf_bad_symtab (abfd))
2995 {
2996 extsymcount = symcount;
2997 extsymoff = 0;
2998 }
2999 else
3000 {
3001 extsymcount = symcount - hdr->sh_info;
3002 extsymoff = hdr->sh_info;
3003 }
3004
3005 if (extsymcount == 0)
3006 return FALSE;
3007
3008 /* Read in the symbol table. */
3009 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3010 NULL, NULL, NULL);
3011 if (isymbuf == NULL)
3012 return FALSE;
3013
3014 /* Scan the symbol table looking for SYMDEF. */
3015 result = FALSE;
3016 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3017 {
3018 const char *name;
3019
3020 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3021 isym->st_name);
3022 if (name == NULL)
3023 break;
3024
3025 if (strcmp (name, symdef->name) == 0)
3026 {
3027 result = is_global_data_symbol_definition (abfd, isym);
3028 break;
3029 }
3030 }
3031
3032 free (isymbuf);
3033
3034 return result;
3035 }
3036 \f
3037 /* Add an entry to the .dynamic table. */
3038
3039 bfd_boolean
3040 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3041 bfd_vma tag,
3042 bfd_vma val)
3043 {
3044 struct elf_link_hash_table *hash_table;
3045 const struct elf_backend_data *bed;
3046 asection *s;
3047 bfd_size_type newsize;
3048 bfd_byte *newcontents;
3049 Elf_Internal_Dyn dyn;
3050
3051 hash_table = elf_hash_table (info);
3052 if (! is_elf_hash_table (hash_table))
3053 return FALSE;
3054
3055 bed = get_elf_backend_data (hash_table->dynobj);
3056 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3057 BFD_ASSERT (s != NULL);
3058
3059 newsize = s->size + bed->s->sizeof_dyn;
3060 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3061 if (newcontents == NULL)
3062 return FALSE;
3063
3064 dyn.d_tag = tag;
3065 dyn.d_un.d_val = val;
3066 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3067
3068 s->size = newsize;
3069 s->contents = newcontents;
3070
3071 return TRUE;
3072 }
3073
3074 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3075 otherwise just check whether one already exists. Returns -1 on error,
3076 1 if a DT_NEEDED tag already exists, and 0 on success. */
3077
3078 static int
3079 elf_add_dt_needed_tag (bfd *abfd,
3080 struct bfd_link_info *info,
3081 const char *soname,
3082 bfd_boolean do_it)
3083 {
3084 struct elf_link_hash_table *hash_table;
3085 bfd_size_type oldsize;
3086 bfd_size_type strindex;
3087
3088 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3089 return -1;
3090
3091 hash_table = elf_hash_table (info);
3092 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3093 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3094 if (strindex == (bfd_size_type) -1)
3095 return -1;
3096
3097 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3098 {
3099 asection *sdyn;
3100 const struct elf_backend_data *bed;
3101 bfd_byte *extdyn;
3102
3103 bed = get_elf_backend_data (hash_table->dynobj);
3104 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3105 if (sdyn != NULL)
3106 for (extdyn = sdyn->contents;
3107 extdyn < sdyn->contents + sdyn->size;
3108 extdyn += bed->s->sizeof_dyn)
3109 {
3110 Elf_Internal_Dyn dyn;
3111
3112 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3113 if (dyn.d_tag == DT_NEEDED
3114 && dyn.d_un.d_val == strindex)
3115 {
3116 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3117 return 1;
3118 }
3119 }
3120 }
3121
3122 if (do_it)
3123 {
3124 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3125 return -1;
3126
3127 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3128 return -1;
3129 }
3130 else
3131 /* We were just checking for existence of the tag. */
3132 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3133
3134 return 0;
3135 }
3136
3137 static bfd_boolean
3138 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3139 {
3140 for (; needed != NULL; needed = needed->next)
3141 if (strcmp (soname, needed->name) == 0)
3142 return TRUE;
3143
3144 return FALSE;
3145 }
3146
3147 /* Sort symbol by value and section. */
3148 static int
3149 elf_sort_symbol (const void *arg1, const void *arg2)
3150 {
3151 const struct elf_link_hash_entry *h1;
3152 const struct elf_link_hash_entry *h2;
3153 bfd_signed_vma vdiff;
3154
3155 h1 = *(const struct elf_link_hash_entry **) arg1;
3156 h2 = *(const struct elf_link_hash_entry **) arg2;
3157 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3158 if (vdiff != 0)
3159 return vdiff > 0 ? 1 : -1;
3160 else
3161 {
3162 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3163 if (sdiff != 0)
3164 return sdiff > 0 ? 1 : -1;
3165 }
3166 return 0;
3167 }
3168
3169 /* This function is used to adjust offsets into .dynstr for
3170 dynamic symbols. This is called via elf_link_hash_traverse. */
3171
3172 static bfd_boolean
3173 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3174 {
3175 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3176
3177 if (h->root.type == bfd_link_hash_warning)
3178 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3179
3180 if (h->dynindx != -1)
3181 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3182 return TRUE;
3183 }
3184
3185 /* Assign string offsets in .dynstr, update all structures referencing
3186 them. */
3187
3188 static bfd_boolean
3189 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3190 {
3191 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3192 struct elf_link_local_dynamic_entry *entry;
3193 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3194 bfd *dynobj = hash_table->dynobj;
3195 asection *sdyn;
3196 bfd_size_type size;
3197 const struct elf_backend_data *bed;
3198 bfd_byte *extdyn;
3199
3200 _bfd_elf_strtab_finalize (dynstr);
3201 size = _bfd_elf_strtab_size (dynstr);
3202
3203 bed = get_elf_backend_data (dynobj);
3204 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3205 BFD_ASSERT (sdyn != NULL);
3206
3207 /* Update all .dynamic entries referencing .dynstr strings. */
3208 for (extdyn = sdyn->contents;
3209 extdyn < sdyn->contents + sdyn->size;
3210 extdyn += bed->s->sizeof_dyn)
3211 {
3212 Elf_Internal_Dyn dyn;
3213
3214 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3215 switch (dyn.d_tag)
3216 {
3217 case DT_STRSZ:
3218 dyn.d_un.d_val = size;
3219 break;
3220 case DT_NEEDED:
3221 case DT_SONAME:
3222 case DT_RPATH:
3223 case DT_RUNPATH:
3224 case DT_FILTER:
3225 case DT_AUXILIARY:
3226 case DT_AUDIT:
3227 case DT_DEPAUDIT:
3228 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3229 break;
3230 default:
3231 continue;
3232 }
3233 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3234 }
3235
3236 /* Now update local dynamic symbols. */
3237 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3238 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3239 entry->isym.st_name);
3240
3241 /* And the rest of dynamic symbols. */
3242 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3243
3244 /* Adjust version definitions. */
3245 if (elf_tdata (output_bfd)->cverdefs)
3246 {
3247 asection *s;
3248 bfd_byte *p;
3249 bfd_size_type i;
3250 Elf_Internal_Verdef def;
3251 Elf_Internal_Verdaux defaux;
3252
3253 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3254 p = s->contents;
3255 do
3256 {
3257 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3258 &def);
3259 p += sizeof (Elf_External_Verdef);
3260 if (def.vd_aux != sizeof (Elf_External_Verdef))
3261 continue;
3262 for (i = 0; i < def.vd_cnt; ++i)
3263 {
3264 _bfd_elf_swap_verdaux_in (output_bfd,
3265 (Elf_External_Verdaux *) p, &defaux);
3266 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3267 defaux.vda_name);
3268 _bfd_elf_swap_verdaux_out (output_bfd,
3269 &defaux, (Elf_External_Verdaux *) p);
3270 p += sizeof (Elf_External_Verdaux);
3271 }
3272 }
3273 while (def.vd_next);
3274 }
3275
3276 /* Adjust version references. */
3277 if (elf_tdata (output_bfd)->verref)
3278 {
3279 asection *s;
3280 bfd_byte *p;
3281 bfd_size_type i;
3282 Elf_Internal_Verneed need;
3283 Elf_Internal_Vernaux needaux;
3284
3285 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3286 p = s->contents;
3287 do
3288 {
3289 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3290 &need);
3291 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3292 _bfd_elf_swap_verneed_out (output_bfd, &need,
3293 (Elf_External_Verneed *) p);
3294 p += sizeof (Elf_External_Verneed);
3295 for (i = 0; i < need.vn_cnt; ++i)
3296 {
3297 _bfd_elf_swap_vernaux_in (output_bfd,
3298 (Elf_External_Vernaux *) p, &needaux);
3299 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3300 needaux.vna_name);
3301 _bfd_elf_swap_vernaux_out (output_bfd,
3302 &needaux,
3303 (Elf_External_Vernaux *) p);
3304 p += sizeof (Elf_External_Vernaux);
3305 }
3306 }
3307 while (need.vn_next);
3308 }
3309
3310 return TRUE;
3311 }
3312 \f
3313 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3314 The default is to only match when the INPUT and OUTPUT are exactly
3315 the same target. */
3316
3317 bfd_boolean
3318 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3319 const bfd_target *output)
3320 {
3321 return input == output;
3322 }
3323
3324 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3325 This version is used when different targets for the same architecture
3326 are virtually identical. */
3327
3328 bfd_boolean
3329 _bfd_elf_relocs_compatible (const bfd_target *input,
3330 const bfd_target *output)
3331 {
3332 const struct elf_backend_data *obed, *ibed;
3333
3334 if (input == output)
3335 return TRUE;
3336
3337 ibed = xvec_get_elf_backend_data (input);
3338 obed = xvec_get_elf_backend_data (output);
3339
3340 if (ibed->arch != obed->arch)
3341 return FALSE;
3342
3343 /* If both backends are using this function, deem them compatible. */
3344 return ibed->relocs_compatible == obed->relocs_compatible;
3345 }
3346
3347 /* Add symbols from an ELF object file to the linker hash table. */
3348
3349 static bfd_boolean
3350 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3351 {
3352 Elf_Internal_Ehdr *ehdr;
3353 Elf_Internal_Shdr *hdr;
3354 bfd_size_type symcount;
3355 bfd_size_type extsymcount;
3356 bfd_size_type extsymoff;
3357 struct elf_link_hash_entry **sym_hash;
3358 bfd_boolean dynamic;
3359 Elf_External_Versym *extversym = NULL;
3360 Elf_External_Versym *ever;
3361 struct elf_link_hash_entry *weaks;
3362 struct elf_link_hash_entry **nondeflt_vers = NULL;
3363 bfd_size_type nondeflt_vers_cnt = 0;
3364 Elf_Internal_Sym *isymbuf = NULL;
3365 Elf_Internal_Sym *isym;
3366 Elf_Internal_Sym *isymend;
3367 const struct elf_backend_data *bed;
3368 bfd_boolean add_needed;
3369 struct elf_link_hash_table *htab;
3370 bfd_size_type amt;
3371 void *alloc_mark = NULL;
3372 struct bfd_hash_entry **old_table = NULL;
3373 unsigned int old_size = 0;
3374 unsigned int old_count = 0;
3375 void *old_tab = NULL;
3376 void *old_hash;
3377 void *old_ent;
3378 struct bfd_link_hash_entry *old_undefs = NULL;
3379 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3380 long old_dynsymcount = 0;
3381 size_t tabsize = 0;
3382 size_t hashsize = 0;
3383
3384 htab = elf_hash_table (info);
3385 bed = get_elf_backend_data (abfd);
3386
3387 if ((abfd->flags & DYNAMIC) == 0)
3388 dynamic = FALSE;
3389 else
3390 {
3391 dynamic = TRUE;
3392
3393 /* You can't use -r against a dynamic object. Also, there's no
3394 hope of using a dynamic object which does not exactly match
3395 the format of the output file. */
3396 if (info->relocatable
3397 || !is_elf_hash_table (htab)
3398 || info->output_bfd->xvec != abfd->xvec)
3399 {
3400 if (info->relocatable)
3401 bfd_set_error (bfd_error_invalid_operation);
3402 else
3403 bfd_set_error (bfd_error_wrong_format);
3404 goto error_return;
3405 }
3406 }
3407
3408 ehdr = elf_elfheader (abfd);
3409 if (info->warn_alternate_em
3410 && bed->elf_machine_code != ehdr->e_machine
3411 && ((bed->elf_machine_alt1 != 0
3412 && ehdr->e_machine == bed->elf_machine_alt1)
3413 || (bed->elf_machine_alt2 != 0
3414 && ehdr->e_machine == bed->elf_machine_alt2)))
3415 info->callbacks->einfo
3416 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3417 ehdr->e_machine, abfd, bed->elf_machine_code);
3418
3419 /* As a GNU extension, any input sections which are named
3420 .gnu.warning.SYMBOL are treated as warning symbols for the given
3421 symbol. This differs from .gnu.warning sections, which generate
3422 warnings when they are included in an output file. */
3423 if (info->executable)
3424 {
3425 asection *s;
3426
3427 for (s = abfd->sections; s != NULL; s = s->next)
3428 {
3429 const char *name;
3430
3431 name = bfd_get_section_name (abfd, s);
3432 if (CONST_STRNEQ (name, ".gnu.warning."))
3433 {
3434 char *msg;
3435 bfd_size_type sz;
3436
3437 name += sizeof ".gnu.warning." - 1;
3438
3439 /* If this is a shared object, then look up the symbol
3440 in the hash table. If it is there, and it is already
3441 been defined, then we will not be using the entry
3442 from this shared object, so we don't need to warn.
3443 FIXME: If we see the definition in a regular object
3444 later on, we will warn, but we shouldn't. The only
3445 fix is to keep track of what warnings we are supposed
3446 to emit, and then handle them all at the end of the
3447 link. */
3448 if (dynamic)
3449 {
3450 struct elf_link_hash_entry *h;
3451
3452 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3453
3454 /* FIXME: What about bfd_link_hash_common? */
3455 if (h != NULL
3456 && (h->root.type == bfd_link_hash_defined
3457 || h->root.type == bfd_link_hash_defweak))
3458 {
3459 /* We don't want to issue this warning. Clobber
3460 the section size so that the warning does not
3461 get copied into the output file. */
3462 s->size = 0;
3463 continue;
3464 }
3465 }
3466
3467 sz = s->size;
3468 msg = (char *) bfd_alloc (abfd, sz + 1);
3469 if (msg == NULL)
3470 goto error_return;
3471
3472 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3473 goto error_return;
3474
3475 msg[sz] = '\0';
3476
3477 if (! (_bfd_generic_link_add_one_symbol
3478 (info, abfd, name, BSF_WARNING, s, 0, msg,
3479 FALSE, bed->collect, NULL)))
3480 goto error_return;
3481
3482 if (! info->relocatable)
3483 {
3484 /* Clobber the section size so that the warning does
3485 not get copied into the output file. */
3486 s->size = 0;
3487
3488 /* Also set SEC_EXCLUDE, so that symbols defined in
3489 the warning section don't get copied to the output. */
3490 s->flags |= SEC_EXCLUDE;
3491 }
3492 }
3493 }
3494 }
3495
3496 add_needed = TRUE;
3497 if (! dynamic)
3498 {
3499 /* If we are creating a shared library, create all the dynamic
3500 sections immediately. We need to attach them to something,
3501 so we attach them to this BFD, provided it is the right
3502 format. FIXME: If there are no input BFD's of the same
3503 format as the output, we can't make a shared library. */
3504 if (info->shared
3505 && is_elf_hash_table (htab)
3506 && info->output_bfd->xvec == abfd->xvec
3507 && !htab->dynamic_sections_created)
3508 {
3509 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3510 goto error_return;
3511 }
3512 }
3513 else if (!is_elf_hash_table (htab))
3514 goto error_return;
3515 else
3516 {
3517 asection *s;
3518 const char *soname = NULL;
3519 char *audit = NULL;
3520 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3521 int ret;
3522
3523 /* ld --just-symbols and dynamic objects don't mix very well.
3524 ld shouldn't allow it. */
3525 if ((s = abfd->sections) != NULL
3526 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3527 abort ();
3528
3529 /* If this dynamic lib was specified on the command line with
3530 --as-needed in effect, then we don't want to add a DT_NEEDED
3531 tag unless the lib is actually used. Similary for libs brought
3532 in by another lib's DT_NEEDED. When --no-add-needed is used
3533 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3534 any dynamic library in DT_NEEDED tags in the dynamic lib at
3535 all. */
3536 add_needed = (elf_dyn_lib_class (abfd)
3537 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3538 | DYN_NO_NEEDED)) == 0;
3539
3540 s = bfd_get_section_by_name (abfd, ".dynamic");
3541 if (s != NULL)
3542 {
3543 bfd_byte *dynbuf;
3544 bfd_byte *extdyn;
3545 unsigned int elfsec;
3546 unsigned long shlink;
3547
3548 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3549 {
3550 error_free_dyn:
3551 free (dynbuf);
3552 goto error_return;
3553 }
3554
3555 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3556 if (elfsec == SHN_BAD)
3557 goto error_free_dyn;
3558 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3559
3560 for (extdyn = dynbuf;
3561 extdyn < dynbuf + s->size;
3562 extdyn += bed->s->sizeof_dyn)
3563 {
3564 Elf_Internal_Dyn dyn;
3565
3566 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3567 if (dyn.d_tag == DT_SONAME)
3568 {
3569 unsigned int tagv = dyn.d_un.d_val;
3570 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3571 if (soname == NULL)
3572 goto error_free_dyn;
3573 }
3574 if (dyn.d_tag == DT_NEEDED)
3575 {
3576 struct bfd_link_needed_list *n, **pn;
3577 char *fnm, *anm;
3578 unsigned int tagv = dyn.d_un.d_val;
3579
3580 amt = sizeof (struct bfd_link_needed_list);
3581 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3582 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3583 if (n == NULL || fnm == NULL)
3584 goto error_free_dyn;
3585 amt = strlen (fnm) + 1;
3586 anm = (char *) bfd_alloc (abfd, amt);
3587 if (anm == NULL)
3588 goto error_free_dyn;
3589 memcpy (anm, fnm, amt);
3590 n->name = anm;
3591 n->by = abfd;
3592 n->next = NULL;
3593 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3594 ;
3595 *pn = n;
3596 }
3597 if (dyn.d_tag == DT_RUNPATH)
3598 {
3599 struct bfd_link_needed_list *n, **pn;
3600 char *fnm, *anm;
3601 unsigned int tagv = dyn.d_un.d_val;
3602
3603 amt = sizeof (struct bfd_link_needed_list);
3604 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3605 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3606 if (n == NULL || fnm == NULL)
3607 goto error_free_dyn;
3608 amt = strlen (fnm) + 1;
3609 anm = (char *) bfd_alloc (abfd, amt);
3610 if (anm == NULL)
3611 goto error_free_dyn;
3612 memcpy (anm, fnm, amt);
3613 n->name = anm;
3614 n->by = abfd;
3615 n->next = NULL;
3616 for (pn = & runpath;
3617 *pn != NULL;
3618 pn = &(*pn)->next)
3619 ;
3620 *pn = n;
3621 }
3622 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3623 if (!runpath && dyn.d_tag == DT_RPATH)
3624 {
3625 struct bfd_link_needed_list *n, **pn;
3626 char *fnm, *anm;
3627 unsigned int tagv = dyn.d_un.d_val;
3628
3629 amt = sizeof (struct bfd_link_needed_list);
3630 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3631 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3632 if (n == NULL || fnm == NULL)
3633 goto error_free_dyn;
3634 amt = strlen (fnm) + 1;
3635 anm = (char *) bfd_alloc (abfd, amt);
3636 if (anm == NULL)
3637 goto error_free_dyn;
3638 memcpy (anm, fnm, amt);
3639 n->name = anm;
3640 n->by = abfd;
3641 n->next = NULL;
3642 for (pn = & rpath;
3643 *pn != NULL;
3644 pn = &(*pn)->next)
3645 ;
3646 *pn = n;
3647 }
3648 if (dyn.d_tag == DT_AUDIT)
3649 {
3650 unsigned int tagv = dyn.d_un.d_val;
3651 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3652 }
3653 }
3654
3655 free (dynbuf);
3656 }
3657
3658 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3659 frees all more recently bfd_alloc'd blocks as well. */
3660 if (runpath)
3661 rpath = runpath;
3662
3663 if (rpath)
3664 {
3665 struct bfd_link_needed_list **pn;
3666 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3667 ;
3668 *pn = rpath;
3669 }
3670
3671 /* We do not want to include any of the sections in a dynamic
3672 object in the output file. We hack by simply clobbering the
3673 list of sections in the BFD. This could be handled more
3674 cleanly by, say, a new section flag; the existing
3675 SEC_NEVER_LOAD flag is not the one we want, because that one
3676 still implies that the section takes up space in the output
3677 file. */
3678 bfd_section_list_clear (abfd);
3679
3680 /* Find the name to use in a DT_NEEDED entry that refers to this
3681 object. If the object has a DT_SONAME entry, we use it.
3682 Otherwise, if the generic linker stuck something in
3683 elf_dt_name, we use that. Otherwise, we just use the file
3684 name. */
3685 if (soname == NULL || *soname == '\0')
3686 {
3687 soname = elf_dt_name (abfd);
3688 if (soname == NULL || *soname == '\0')
3689 soname = bfd_get_filename (abfd);
3690 }
3691
3692 /* Save the SONAME because sometimes the linker emulation code
3693 will need to know it. */
3694 elf_dt_name (abfd) = soname;
3695
3696 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3697 if (ret < 0)
3698 goto error_return;
3699
3700 /* If we have already included this dynamic object in the
3701 link, just ignore it. There is no reason to include a
3702 particular dynamic object more than once. */
3703 if (ret > 0)
3704 return TRUE;
3705
3706 /* Save the DT_AUDIT entry for the linker emulation code. */
3707 elf_dt_audit (abfd) = audit;
3708 }
3709
3710 /* If this is a dynamic object, we always link against the .dynsym
3711 symbol table, not the .symtab symbol table. The dynamic linker
3712 will only see the .dynsym symbol table, so there is no reason to
3713 look at .symtab for a dynamic object. */
3714
3715 if (! dynamic || elf_dynsymtab (abfd) == 0)
3716 hdr = &elf_tdata (abfd)->symtab_hdr;
3717 else
3718 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3719
3720 symcount = hdr->sh_size / bed->s->sizeof_sym;
3721
3722 /* The sh_info field of the symtab header tells us where the
3723 external symbols start. We don't care about the local symbols at
3724 this point. */
3725 if (elf_bad_symtab (abfd))
3726 {
3727 extsymcount = symcount;
3728 extsymoff = 0;
3729 }
3730 else
3731 {
3732 extsymcount = symcount - hdr->sh_info;
3733 extsymoff = hdr->sh_info;
3734 }
3735
3736 sym_hash = NULL;
3737 if (extsymcount != 0)
3738 {
3739 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3740 NULL, NULL, NULL);
3741 if (isymbuf == NULL)
3742 goto error_return;
3743
3744 /* We store a pointer to the hash table entry for each external
3745 symbol. */
3746 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3747 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3748 if (sym_hash == NULL)
3749 goto error_free_sym;
3750 elf_sym_hashes (abfd) = sym_hash;
3751 }
3752
3753 if (dynamic)
3754 {
3755 /* Read in any version definitions. */
3756 if (!_bfd_elf_slurp_version_tables (abfd,
3757 info->default_imported_symver))
3758 goto error_free_sym;
3759
3760 /* Read in the symbol versions, but don't bother to convert them
3761 to internal format. */
3762 if (elf_dynversym (abfd) != 0)
3763 {
3764 Elf_Internal_Shdr *versymhdr;
3765
3766 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3767 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3768 if (extversym == NULL)
3769 goto error_free_sym;
3770 amt = versymhdr->sh_size;
3771 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3772 || bfd_bread (extversym, amt, abfd) != amt)
3773 goto error_free_vers;
3774 }
3775 }
3776
3777 /* If we are loading an as-needed shared lib, save the symbol table
3778 state before we start adding symbols. If the lib turns out
3779 to be unneeded, restore the state. */
3780 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3781 {
3782 unsigned int i;
3783 size_t entsize;
3784
3785 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3786 {
3787 struct bfd_hash_entry *p;
3788 struct elf_link_hash_entry *h;
3789
3790 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3791 {
3792 h = (struct elf_link_hash_entry *) p;
3793 entsize += htab->root.table.entsize;
3794 if (h->root.type == bfd_link_hash_warning)
3795 entsize += htab->root.table.entsize;
3796 }
3797 }
3798
3799 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3800 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3801 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3802 if (old_tab == NULL)
3803 goto error_free_vers;
3804
3805 /* Remember the current objalloc pointer, so that all mem for
3806 symbols added can later be reclaimed. */
3807 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3808 if (alloc_mark == NULL)
3809 goto error_free_vers;
3810
3811 /* Make a special call to the linker "notice" function to
3812 tell it that we are about to handle an as-needed lib. */
3813 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3814 notice_as_needed))
3815 goto error_free_vers;
3816
3817 /* Clone the symbol table and sym hashes. Remember some
3818 pointers into the symbol table, and dynamic symbol count. */
3819 old_hash = (char *) old_tab + tabsize;
3820 old_ent = (char *) old_hash + hashsize;
3821 memcpy (old_tab, htab->root.table.table, tabsize);
3822 memcpy (old_hash, sym_hash, hashsize);
3823 old_undefs = htab->root.undefs;
3824 old_undefs_tail = htab->root.undefs_tail;
3825 old_table = htab->root.table.table;
3826 old_size = htab->root.table.size;
3827 old_count = htab->root.table.count;
3828 old_dynsymcount = htab->dynsymcount;
3829
3830 for (i = 0; i < htab->root.table.size; i++)
3831 {
3832 struct bfd_hash_entry *p;
3833 struct elf_link_hash_entry *h;
3834
3835 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3836 {
3837 memcpy (old_ent, p, htab->root.table.entsize);
3838 old_ent = (char *) old_ent + htab->root.table.entsize;
3839 h = (struct elf_link_hash_entry *) p;
3840 if (h->root.type == bfd_link_hash_warning)
3841 {
3842 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3843 old_ent = (char *) old_ent + htab->root.table.entsize;
3844 }
3845 }
3846 }
3847 }
3848
3849 weaks = NULL;
3850 ever = extversym != NULL ? extversym + extsymoff : NULL;
3851 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3852 isym < isymend;
3853 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3854 {
3855 int bind;
3856 bfd_vma value;
3857 asection *sec, *new_sec;
3858 flagword flags;
3859 const char *name;
3860 struct elf_link_hash_entry *h;
3861 bfd_boolean definition;
3862 bfd_boolean size_change_ok;
3863 bfd_boolean type_change_ok;
3864 bfd_boolean new_weakdef;
3865 bfd_boolean override;
3866 bfd_boolean common;
3867 unsigned int old_alignment;
3868 bfd *old_bfd;
3869 bfd * undef_bfd = NULL;
3870
3871 override = FALSE;
3872
3873 flags = BSF_NO_FLAGS;
3874 sec = NULL;
3875 value = isym->st_value;
3876 *sym_hash = NULL;
3877 common = bed->common_definition (isym);
3878
3879 bind = ELF_ST_BIND (isym->st_info);
3880 switch (bind)
3881 {
3882 case STB_LOCAL:
3883 /* This should be impossible, since ELF requires that all
3884 global symbols follow all local symbols, and that sh_info
3885 point to the first global symbol. Unfortunately, Irix 5
3886 screws this up. */
3887 continue;
3888
3889 case STB_GLOBAL:
3890 if (isym->st_shndx != SHN_UNDEF && !common)
3891 flags = BSF_GLOBAL;
3892 break;
3893
3894 case STB_WEAK:
3895 flags = BSF_WEAK;
3896 break;
3897
3898 case STB_GNU_UNIQUE:
3899 flags = BSF_GNU_UNIQUE;
3900 break;
3901
3902 default:
3903 /* Leave it up to the processor backend. */
3904 break;
3905 }
3906
3907 if (isym->st_shndx == SHN_UNDEF)
3908 sec = bfd_und_section_ptr;
3909 else if (isym->st_shndx == SHN_ABS)
3910 sec = bfd_abs_section_ptr;
3911 else if (isym->st_shndx == SHN_COMMON)
3912 {
3913 sec = bfd_com_section_ptr;
3914 /* What ELF calls the size we call the value. What ELF
3915 calls the value we call the alignment. */
3916 value = isym->st_size;
3917 }
3918 else
3919 {
3920 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3921 if (sec == NULL)
3922 sec = bfd_abs_section_ptr;
3923 else if (sec->kept_section)
3924 {
3925 /* Symbols from discarded section are undefined. We keep
3926 its visibility. */
3927 sec = bfd_und_section_ptr;
3928 isym->st_shndx = SHN_UNDEF;
3929 }
3930 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3931 value -= sec->vma;
3932 }
3933
3934 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3935 isym->st_name);
3936 if (name == NULL)
3937 goto error_free_vers;
3938
3939 if (isym->st_shndx == SHN_COMMON
3940 && (abfd->flags & BFD_PLUGIN) != 0)
3941 {
3942 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3943
3944 if (xc == NULL)
3945 {
3946 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3947 | SEC_EXCLUDE);
3948 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3949 if (xc == NULL)
3950 goto error_free_vers;
3951 }
3952 sec = xc;
3953 }
3954 else if (isym->st_shndx == SHN_COMMON
3955 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3956 && !info->relocatable)
3957 {
3958 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3959
3960 if (tcomm == NULL)
3961 {
3962 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3963 | SEC_LINKER_CREATED);
3964 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3965 if (tcomm == NULL)
3966 goto error_free_vers;
3967 }
3968 sec = tcomm;
3969 }
3970 else if (bed->elf_add_symbol_hook)
3971 {
3972 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3973 &sec, &value))
3974 goto error_free_vers;
3975
3976 /* The hook function sets the name to NULL if this symbol
3977 should be skipped for some reason. */
3978 if (name == NULL)
3979 continue;
3980 }
3981
3982 /* Sanity check that all possibilities were handled. */
3983 if (sec == NULL)
3984 {
3985 bfd_set_error (bfd_error_bad_value);
3986 goto error_free_vers;
3987 }
3988
3989 if (bfd_is_und_section (sec)
3990 || bfd_is_com_section (sec))
3991 definition = FALSE;
3992 else
3993 definition = TRUE;
3994
3995 size_change_ok = FALSE;
3996 type_change_ok = bed->type_change_ok;
3997 old_alignment = 0;
3998 old_bfd = NULL;
3999 new_sec = sec;
4000
4001 if (is_elf_hash_table (htab))
4002 {
4003 Elf_Internal_Versym iver;
4004 unsigned int vernum = 0;
4005 bfd_boolean skip;
4006
4007 /* If this is a definition of a symbol which was previously
4008 referenced in a non-weak manner then make a note of the bfd
4009 that contained the reference. This is used if we need to
4010 refer to the source of the reference later on. */
4011 if (! bfd_is_und_section (sec))
4012 {
4013 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4014
4015 if (h != NULL
4016 && h->root.type == bfd_link_hash_undefined
4017 && h->root.u.undef.abfd)
4018 undef_bfd = h->root.u.undef.abfd;
4019 }
4020
4021 if (ever == NULL)
4022 {
4023 if (info->default_imported_symver)
4024 /* Use the default symbol version created earlier. */
4025 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4026 else
4027 iver.vs_vers = 0;
4028 }
4029 else
4030 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4031
4032 vernum = iver.vs_vers & VERSYM_VERSION;
4033
4034 /* If this is a hidden symbol, or if it is not version
4035 1, we append the version name to the symbol name.
4036 However, we do not modify a non-hidden absolute symbol
4037 if it is not a function, because it might be the version
4038 symbol itself. FIXME: What if it isn't? */
4039 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4040 || (vernum > 1
4041 && (!bfd_is_abs_section (sec)
4042 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4043 {
4044 const char *verstr;
4045 size_t namelen, verlen, newlen;
4046 char *newname, *p;
4047
4048 if (isym->st_shndx != SHN_UNDEF)
4049 {
4050 if (vernum > elf_tdata (abfd)->cverdefs)
4051 verstr = NULL;
4052 else if (vernum > 1)
4053 verstr =
4054 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4055 else
4056 verstr = "";
4057
4058 if (verstr == NULL)
4059 {
4060 (*_bfd_error_handler)
4061 (_("%B: %s: invalid version %u (max %d)"),
4062 abfd, name, vernum,
4063 elf_tdata (abfd)->cverdefs);
4064 bfd_set_error (bfd_error_bad_value);
4065 goto error_free_vers;
4066 }
4067 }
4068 else
4069 {
4070 /* We cannot simply test for the number of
4071 entries in the VERNEED section since the
4072 numbers for the needed versions do not start
4073 at 0. */
4074 Elf_Internal_Verneed *t;
4075
4076 verstr = NULL;
4077 for (t = elf_tdata (abfd)->verref;
4078 t != NULL;
4079 t = t->vn_nextref)
4080 {
4081 Elf_Internal_Vernaux *a;
4082
4083 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4084 {
4085 if (a->vna_other == vernum)
4086 {
4087 verstr = a->vna_nodename;
4088 break;
4089 }
4090 }
4091 if (a != NULL)
4092 break;
4093 }
4094 if (verstr == NULL)
4095 {
4096 (*_bfd_error_handler)
4097 (_("%B: %s: invalid needed version %d"),
4098 abfd, name, vernum);
4099 bfd_set_error (bfd_error_bad_value);
4100 goto error_free_vers;
4101 }
4102 }
4103
4104 namelen = strlen (name);
4105 verlen = strlen (verstr);
4106 newlen = namelen + verlen + 2;
4107 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4108 && isym->st_shndx != SHN_UNDEF)
4109 ++newlen;
4110
4111 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4112 if (newname == NULL)
4113 goto error_free_vers;
4114 memcpy (newname, name, namelen);
4115 p = newname + namelen;
4116 *p++ = ELF_VER_CHR;
4117 /* If this is a defined non-hidden version symbol,
4118 we add another @ to the name. This indicates the
4119 default version of the symbol. */
4120 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4121 && isym->st_shndx != SHN_UNDEF)
4122 *p++ = ELF_VER_CHR;
4123 memcpy (p, verstr, verlen + 1);
4124
4125 name = newname;
4126 }
4127
4128 /* If necessary, make a second attempt to locate the bfd
4129 containing an unresolved, non-weak reference to the
4130 current symbol. */
4131 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4132 {
4133 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4134
4135 if (h != NULL
4136 && h->root.type == bfd_link_hash_undefined
4137 && h->root.u.undef.abfd)
4138 undef_bfd = h->root.u.undef.abfd;
4139 }
4140
4141 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4142 &value, &old_alignment,
4143 sym_hash, &skip, &override,
4144 &type_change_ok, &size_change_ok))
4145 goto error_free_vers;
4146
4147 if (skip)
4148 continue;
4149
4150 if (override)
4151 definition = FALSE;
4152
4153 h = *sym_hash;
4154 while (h->root.type == bfd_link_hash_indirect
4155 || h->root.type == bfd_link_hash_warning)
4156 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4157
4158 /* Remember the old alignment if this is a common symbol, so
4159 that we don't reduce the alignment later on. We can't
4160 check later, because _bfd_generic_link_add_one_symbol
4161 will set a default for the alignment which we want to
4162 override. We also remember the old bfd where the existing
4163 definition comes from. */
4164 switch (h->root.type)
4165 {
4166 default:
4167 break;
4168
4169 case bfd_link_hash_defined:
4170 case bfd_link_hash_defweak:
4171 old_bfd = h->root.u.def.section->owner;
4172 break;
4173
4174 case bfd_link_hash_common:
4175 old_bfd = h->root.u.c.p->section->owner;
4176 old_alignment = h->root.u.c.p->alignment_power;
4177 break;
4178 }
4179
4180 if (elf_tdata (abfd)->verdef != NULL
4181 && ! override
4182 && vernum > 1
4183 && definition)
4184 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4185 }
4186
4187 if (! (_bfd_generic_link_add_one_symbol
4188 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4189 (struct bfd_link_hash_entry **) sym_hash)))
4190 goto error_free_vers;
4191
4192 h = *sym_hash;
4193 while (h->root.type == bfd_link_hash_indirect
4194 || h->root.type == bfd_link_hash_warning)
4195 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4196
4197 *sym_hash = h;
4198 if (is_elf_hash_table (htab))
4199 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4200
4201 new_weakdef = FALSE;
4202 if (dynamic
4203 && definition
4204 && (flags & BSF_WEAK) != 0
4205 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4206 && is_elf_hash_table (htab)
4207 && h->u.weakdef == NULL)
4208 {
4209 /* Keep a list of all weak defined non function symbols from
4210 a dynamic object, using the weakdef field. Later in this
4211 function we will set the weakdef field to the correct
4212 value. We only put non-function symbols from dynamic
4213 objects on this list, because that happens to be the only
4214 time we need to know the normal symbol corresponding to a
4215 weak symbol, and the information is time consuming to
4216 figure out. If the weakdef field is not already NULL,
4217 then this symbol was already defined by some previous
4218 dynamic object, and we will be using that previous
4219 definition anyhow. */
4220
4221 h->u.weakdef = weaks;
4222 weaks = h;
4223 new_weakdef = TRUE;
4224 }
4225
4226 /* Set the alignment of a common symbol. */
4227 if ((common || bfd_is_com_section (sec))
4228 && h->root.type == bfd_link_hash_common)
4229 {
4230 unsigned int align;
4231
4232 if (common)
4233 align = bfd_log2 (isym->st_value);
4234 else
4235 {
4236 /* The new symbol is a common symbol in a shared object.
4237 We need to get the alignment from the section. */
4238 align = new_sec->alignment_power;
4239 }
4240 if (align > old_alignment)
4241 h->root.u.c.p->alignment_power = align;
4242 else
4243 h->root.u.c.p->alignment_power = old_alignment;
4244 }
4245
4246 if (is_elf_hash_table (htab))
4247 {
4248 bfd_boolean dynsym;
4249
4250 /* Check the alignment when a common symbol is involved. This
4251 can change when a common symbol is overridden by a normal
4252 definition or a common symbol is ignored due to the old
4253 normal definition. We need to make sure the maximum
4254 alignment is maintained. */
4255 if ((old_alignment || common)
4256 && h->root.type != bfd_link_hash_common)
4257 {
4258 unsigned int common_align;
4259 unsigned int normal_align;
4260 unsigned int symbol_align;
4261 bfd *normal_bfd;
4262 bfd *common_bfd;
4263
4264 symbol_align = ffs (h->root.u.def.value) - 1;
4265 if (h->root.u.def.section->owner != NULL
4266 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4267 {
4268 normal_align = h->root.u.def.section->alignment_power;
4269 if (normal_align > symbol_align)
4270 normal_align = symbol_align;
4271 }
4272 else
4273 normal_align = symbol_align;
4274
4275 if (old_alignment)
4276 {
4277 common_align = old_alignment;
4278 common_bfd = old_bfd;
4279 normal_bfd = abfd;
4280 }
4281 else
4282 {
4283 common_align = bfd_log2 (isym->st_value);
4284 common_bfd = abfd;
4285 normal_bfd = old_bfd;
4286 }
4287
4288 if (normal_align < common_align)
4289 {
4290 /* PR binutils/2735 */
4291 if (normal_bfd == NULL)
4292 (*_bfd_error_handler)
4293 (_("Warning: alignment %u of common symbol `%s' in %B"
4294 " is greater than the alignment (%u) of its section %A"),
4295 common_bfd, h->root.u.def.section,
4296 1 << common_align, name, 1 << normal_align);
4297 else
4298 (*_bfd_error_handler)
4299 (_("Warning: alignment %u of symbol `%s' in %B"
4300 " is smaller than %u in %B"),
4301 normal_bfd, common_bfd,
4302 1 << normal_align, name, 1 << common_align);
4303 }
4304 }
4305
4306 /* Remember the symbol size if it isn't undefined. */
4307 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4308 && (definition || h->size == 0))
4309 {
4310 if (h->size != 0
4311 && h->size != isym->st_size
4312 && ! size_change_ok)
4313 (*_bfd_error_handler)
4314 (_("Warning: size of symbol `%s' changed"
4315 " from %lu in %B to %lu in %B"),
4316 old_bfd, abfd,
4317 name, (unsigned long) h->size,
4318 (unsigned long) isym->st_size);
4319
4320 h->size = isym->st_size;
4321 }
4322
4323 /* If this is a common symbol, then we always want H->SIZE
4324 to be the size of the common symbol. The code just above
4325 won't fix the size if a common symbol becomes larger. We
4326 don't warn about a size change here, because that is
4327 covered by --warn-common. Allow changed between different
4328 function types. */
4329 if (h->root.type == bfd_link_hash_common)
4330 h->size = h->root.u.c.size;
4331
4332 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4333 && (definition || h->type == STT_NOTYPE))
4334 {
4335 unsigned int type = ELF_ST_TYPE (isym->st_info);
4336
4337 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4338 symbol. */
4339 if (type == STT_GNU_IFUNC
4340 && (abfd->flags & DYNAMIC) != 0)
4341 type = STT_FUNC;
4342
4343 if (h->type != type)
4344 {
4345 if (h->type != STT_NOTYPE && ! type_change_ok)
4346 (*_bfd_error_handler)
4347 (_("Warning: type of symbol `%s' changed"
4348 " from %d to %d in %B"),
4349 abfd, name, h->type, type);
4350
4351 h->type = type;
4352 }
4353 }
4354
4355 /* Merge st_other field. */
4356 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4357
4358 /* Set a flag in the hash table entry indicating the type of
4359 reference or definition we just found. Keep a count of
4360 the number of dynamic symbols we find. A dynamic symbol
4361 is one which is referenced or defined by both a regular
4362 object and a shared object. */
4363 dynsym = FALSE;
4364 if (! dynamic)
4365 {
4366 if (! definition)
4367 {
4368 h->ref_regular = 1;
4369 if (bind != STB_WEAK)
4370 h->ref_regular_nonweak = 1;
4371 }
4372 else
4373 {
4374 h->def_regular = 1;
4375 if (h->def_dynamic)
4376 {
4377 h->def_dynamic = 0;
4378 h->ref_dynamic = 1;
4379 h->dynamic_def = 1;
4380 }
4381 }
4382 if (! info->executable
4383 || h->def_dynamic
4384 || h->ref_dynamic)
4385 dynsym = TRUE;
4386 }
4387 else
4388 {
4389 if (! definition)
4390 h->ref_dynamic = 1;
4391 else
4392 h->def_dynamic = 1;
4393 if (h->def_regular
4394 || h->ref_regular
4395 || (h->u.weakdef != NULL
4396 && ! new_weakdef
4397 && h->u.weakdef->dynindx != -1))
4398 dynsym = TRUE;
4399 }
4400
4401 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4402 {
4403 /* We don't want to make debug symbol dynamic. */
4404 dynsym = FALSE;
4405 }
4406
4407 if (definition)
4408 h->target_internal = isym->st_target_internal;
4409
4410 /* Check to see if we need to add an indirect symbol for
4411 the default name. */
4412 if (definition || h->root.type == bfd_link_hash_common)
4413 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4414 &sec, &value, &dynsym,
4415 override))
4416 goto error_free_vers;
4417
4418 if (definition && !dynamic)
4419 {
4420 char *p = strchr (name, ELF_VER_CHR);
4421 if (p != NULL && p[1] != ELF_VER_CHR)
4422 {
4423 /* Queue non-default versions so that .symver x, x@FOO
4424 aliases can be checked. */
4425 if (!nondeflt_vers)
4426 {
4427 amt = ((isymend - isym + 1)
4428 * sizeof (struct elf_link_hash_entry *));
4429 nondeflt_vers =
4430 (struct elf_link_hash_entry **) bfd_malloc (amt);
4431 if (!nondeflt_vers)
4432 goto error_free_vers;
4433 }
4434 nondeflt_vers[nondeflt_vers_cnt++] = h;
4435 }
4436 }
4437
4438 if (dynsym && h->dynindx == -1)
4439 {
4440 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4441 goto error_free_vers;
4442 if (h->u.weakdef != NULL
4443 && ! new_weakdef
4444 && h->u.weakdef->dynindx == -1)
4445 {
4446 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4447 goto error_free_vers;
4448 }
4449 }
4450 else if (dynsym && h->dynindx != -1)
4451 /* If the symbol already has a dynamic index, but
4452 visibility says it should not be visible, turn it into
4453 a local symbol. */
4454 switch (ELF_ST_VISIBILITY (h->other))
4455 {
4456 case STV_INTERNAL:
4457 case STV_HIDDEN:
4458 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4459 dynsym = FALSE;
4460 break;
4461 }
4462
4463 if (!add_needed
4464 && definition
4465 && ((dynsym
4466 && h->ref_regular)
4467 || (h->ref_dynamic
4468 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4469 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4470 {
4471 int ret;
4472 const char *soname = elf_dt_name (abfd);
4473
4474 /* A symbol from a library loaded via DT_NEEDED of some
4475 other library is referenced by a regular object.
4476 Add a DT_NEEDED entry for it. Issue an error if
4477 --no-add-needed is used and the reference was not
4478 a weak one. */
4479 if (undef_bfd != NULL
4480 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4481 {
4482 (*_bfd_error_handler)
4483 (_("%B: undefined reference to symbol '%s'"),
4484 undef_bfd, name);
4485 (*_bfd_error_handler)
4486 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4487 abfd, name);
4488 bfd_set_error (bfd_error_invalid_operation);
4489 goto error_free_vers;
4490 }
4491
4492 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4493 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4494
4495 add_needed = TRUE;
4496 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4497 if (ret < 0)
4498 goto error_free_vers;
4499
4500 BFD_ASSERT (ret == 0);
4501 }
4502 }
4503 }
4504
4505 if (extversym != NULL)
4506 {
4507 free (extversym);
4508 extversym = NULL;
4509 }
4510
4511 if (isymbuf != NULL)
4512 {
4513 free (isymbuf);
4514 isymbuf = NULL;
4515 }
4516
4517 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4518 {
4519 unsigned int i;
4520
4521 /* Restore the symbol table. */
4522 if (bed->as_needed_cleanup)
4523 (*bed->as_needed_cleanup) (abfd, info);
4524 old_hash = (char *) old_tab + tabsize;
4525 old_ent = (char *) old_hash + hashsize;
4526 sym_hash = elf_sym_hashes (abfd);
4527 htab->root.table.table = old_table;
4528 htab->root.table.size = old_size;
4529 htab->root.table.count = old_count;
4530 memcpy (htab->root.table.table, old_tab, tabsize);
4531 memcpy (sym_hash, old_hash, hashsize);
4532 htab->root.undefs = old_undefs;
4533 htab->root.undefs_tail = old_undefs_tail;
4534 for (i = 0; i < htab->root.table.size; i++)
4535 {
4536 struct bfd_hash_entry *p;
4537 struct elf_link_hash_entry *h;
4538
4539 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4540 {
4541 h = (struct elf_link_hash_entry *) p;
4542 if (h->root.type == bfd_link_hash_warning)
4543 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4544 if (h->dynindx >= old_dynsymcount)
4545 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4546
4547 memcpy (p, old_ent, htab->root.table.entsize);
4548 old_ent = (char *) old_ent + htab->root.table.entsize;
4549 h = (struct elf_link_hash_entry *) p;
4550 if (h->root.type == bfd_link_hash_warning)
4551 {
4552 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4553 old_ent = (char *) old_ent + htab->root.table.entsize;
4554 }
4555 }
4556 }
4557
4558 /* Make a special call to the linker "notice" function to
4559 tell it that symbols added for crefs may need to be removed. */
4560 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4561 notice_not_needed))
4562 goto error_free_vers;
4563
4564 free (old_tab);
4565 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4566 alloc_mark);
4567 if (nondeflt_vers != NULL)
4568 free (nondeflt_vers);
4569 return TRUE;
4570 }
4571
4572 if (old_tab != NULL)
4573 {
4574 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4575 notice_needed))
4576 goto error_free_vers;
4577 free (old_tab);
4578 old_tab = NULL;
4579 }
4580
4581 /* Now that all the symbols from this input file are created, handle
4582 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4583 if (nondeflt_vers != NULL)
4584 {
4585 bfd_size_type cnt, symidx;
4586
4587 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4588 {
4589 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4590 char *shortname, *p;
4591
4592 p = strchr (h->root.root.string, ELF_VER_CHR);
4593 if (p == NULL
4594 || (h->root.type != bfd_link_hash_defined
4595 && h->root.type != bfd_link_hash_defweak))
4596 continue;
4597
4598 amt = p - h->root.root.string;
4599 shortname = (char *) bfd_malloc (amt + 1);
4600 if (!shortname)
4601 goto error_free_vers;
4602 memcpy (shortname, h->root.root.string, amt);
4603 shortname[amt] = '\0';
4604
4605 hi = (struct elf_link_hash_entry *)
4606 bfd_link_hash_lookup (&htab->root, shortname,
4607 FALSE, FALSE, FALSE);
4608 if (hi != NULL
4609 && hi->root.type == h->root.type
4610 && hi->root.u.def.value == h->root.u.def.value
4611 && hi->root.u.def.section == h->root.u.def.section)
4612 {
4613 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4614 hi->root.type = bfd_link_hash_indirect;
4615 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4616 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4617 sym_hash = elf_sym_hashes (abfd);
4618 if (sym_hash)
4619 for (symidx = 0; symidx < extsymcount; ++symidx)
4620 if (sym_hash[symidx] == hi)
4621 {
4622 sym_hash[symidx] = h;
4623 break;
4624 }
4625 }
4626 free (shortname);
4627 }
4628 free (nondeflt_vers);
4629 nondeflt_vers = NULL;
4630 }
4631
4632 /* Now set the weakdefs field correctly for all the weak defined
4633 symbols we found. The only way to do this is to search all the
4634 symbols. Since we only need the information for non functions in
4635 dynamic objects, that's the only time we actually put anything on
4636 the list WEAKS. We need this information so that if a regular
4637 object refers to a symbol defined weakly in a dynamic object, the
4638 real symbol in the dynamic object is also put in the dynamic
4639 symbols; we also must arrange for both symbols to point to the
4640 same memory location. We could handle the general case of symbol
4641 aliasing, but a general symbol alias can only be generated in
4642 assembler code, handling it correctly would be very time
4643 consuming, and other ELF linkers don't handle general aliasing
4644 either. */
4645 if (weaks != NULL)
4646 {
4647 struct elf_link_hash_entry **hpp;
4648 struct elf_link_hash_entry **hppend;
4649 struct elf_link_hash_entry **sorted_sym_hash;
4650 struct elf_link_hash_entry *h;
4651 size_t sym_count;
4652
4653 /* Since we have to search the whole symbol list for each weak
4654 defined symbol, search time for N weak defined symbols will be
4655 O(N^2). Binary search will cut it down to O(NlogN). */
4656 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4657 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4658 if (sorted_sym_hash == NULL)
4659 goto error_return;
4660 sym_hash = sorted_sym_hash;
4661 hpp = elf_sym_hashes (abfd);
4662 hppend = hpp + extsymcount;
4663 sym_count = 0;
4664 for (; hpp < hppend; hpp++)
4665 {
4666 h = *hpp;
4667 if (h != NULL
4668 && h->root.type == bfd_link_hash_defined
4669 && !bed->is_function_type (h->type))
4670 {
4671 *sym_hash = h;
4672 sym_hash++;
4673 sym_count++;
4674 }
4675 }
4676
4677 qsort (sorted_sym_hash, sym_count,
4678 sizeof (struct elf_link_hash_entry *),
4679 elf_sort_symbol);
4680
4681 while (weaks != NULL)
4682 {
4683 struct elf_link_hash_entry *hlook;
4684 asection *slook;
4685 bfd_vma vlook;
4686 long ilook;
4687 size_t i, j, idx;
4688
4689 hlook = weaks;
4690 weaks = hlook->u.weakdef;
4691 hlook->u.weakdef = NULL;
4692
4693 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4694 || hlook->root.type == bfd_link_hash_defweak
4695 || hlook->root.type == bfd_link_hash_common
4696 || hlook->root.type == bfd_link_hash_indirect);
4697 slook = hlook->root.u.def.section;
4698 vlook = hlook->root.u.def.value;
4699
4700 ilook = -1;
4701 i = 0;
4702 j = sym_count;
4703 while (i < j)
4704 {
4705 bfd_signed_vma vdiff;
4706 idx = (i + j) / 2;
4707 h = sorted_sym_hash [idx];
4708 vdiff = vlook - h->root.u.def.value;
4709 if (vdiff < 0)
4710 j = idx;
4711 else if (vdiff > 0)
4712 i = idx + 1;
4713 else
4714 {
4715 long sdiff = slook->id - h->root.u.def.section->id;
4716 if (sdiff < 0)
4717 j = idx;
4718 else if (sdiff > 0)
4719 i = idx + 1;
4720 else
4721 {
4722 ilook = idx;
4723 break;
4724 }
4725 }
4726 }
4727
4728 /* We didn't find a value/section match. */
4729 if (ilook == -1)
4730 continue;
4731
4732 for (i = ilook; i < sym_count; i++)
4733 {
4734 h = sorted_sym_hash [i];
4735
4736 /* Stop if value or section doesn't match. */
4737 if (h->root.u.def.value != vlook
4738 || h->root.u.def.section != slook)
4739 break;
4740 else if (h != hlook)
4741 {
4742 hlook->u.weakdef = h;
4743
4744 /* If the weak definition is in the list of dynamic
4745 symbols, make sure the real definition is put
4746 there as well. */
4747 if (hlook->dynindx != -1 && h->dynindx == -1)
4748 {
4749 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4750 {
4751 err_free_sym_hash:
4752 free (sorted_sym_hash);
4753 goto error_return;
4754 }
4755 }
4756
4757 /* If the real definition is in the list of dynamic
4758 symbols, make sure the weak definition is put
4759 there as well. If we don't do this, then the
4760 dynamic loader might not merge the entries for the
4761 real definition and the weak definition. */
4762 if (h->dynindx != -1 && hlook->dynindx == -1)
4763 {
4764 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4765 goto err_free_sym_hash;
4766 }
4767 break;
4768 }
4769 }
4770 }
4771
4772 free (sorted_sym_hash);
4773 }
4774
4775 if (bed->check_directives
4776 && !(*bed->check_directives) (abfd, info))
4777 return FALSE;
4778
4779 /* If this object is the same format as the output object, and it is
4780 not a shared library, then let the backend look through the
4781 relocs.
4782
4783 This is required to build global offset table entries and to
4784 arrange for dynamic relocs. It is not required for the
4785 particular common case of linking non PIC code, even when linking
4786 against shared libraries, but unfortunately there is no way of
4787 knowing whether an object file has been compiled PIC or not.
4788 Looking through the relocs is not particularly time consuming.
4789 The problem is that we must either (1) keep the relocs in memory,
4790 which causes the linker to require additional runtime memory or
4791 (2) read the relocs twice from the input file, which wastes time.
4792 This would be a good case for using mmap.
4793
4794 I have no idea how to handle linking PIC code into a file of a
4795 different format. It probably can't be done. */
4796 if (! dynamic
4797 && is_elf_hash_table (htab)
4798 && bed->check_relocs != NULL
4799 && elf_object_id (abfd) == elf_hash_table_id (htab)
4800 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4801 {
4802 asection *o;
4803
4804 for (o = abfd->sections; o != NULL; o = o->next)
4805 {
4806 Elf_Internal_Rela *internal_relocs;
4807 bfd_boolean ok;
4808
4809 if ((o->flags & SEC_RELOC) == 0
4810 || o->reloc_count == 0
4811 || ((info->strip == strip_all || info->strip == strip_debugger)
4812 && (o->flags & SEC_DEBUGGING) != 0)
4813 || bfd_is_abs_section (o->output_section))
4814 continue;
4815
4816 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4817 info->keep_memory);
4818 if (internal_relocs == NULL)
4819 goto error_return;
4820
4821 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4822
4823 if (elf_section_data (o)->relocs != internal_relocs)
4824 free (internal_relocs);
4825
4826 if (! ok)
4827 goto error_return;
4828 }
4829 }
4830
4831 /* If this is a non-traditional link, try to optimize the handling
4832 of the .stab/.stabstr sections. */
4833 if (! dynamic
4834 && ! info->traditional_format
4835 && is_elf_hash_table (htab)
4836 && (info->strip != strip_all && info->strip != strip_debugger))
4837 {
4838 asection *stabstr;
4839
4840 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4841 if (stabstr != NULL)
4842 {
4843 bfd_size_type string_offset = 0;
4844 asection *stab;
4845
4846 for (stab = abfd->sections; stab; stab = stab->next)
4847 if (CONST_STRNEQ (stab->name, ".stab")
4848 && (!stab->name[5] ||
4849 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4850 && (stab->flags & SEC_MERGE) == 0
4851 && !bfd_is_abs_section (stab->output_section))
4852 {
4853 struct bfd_elf_section_data *secdata;
4854
4855 secdata = elf_section_data (stab);
4856 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4857 stabstr, &secdata->sec_info,
4858 &string_offset))
4859 goto error_return;
4860 if (secdata->sec_info)
4861 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4862 }
4863 }
4864 }
4865
4866 if (is_elf_hash_table (htab) && add_needed)
4867 {
4868 /* Add this bfd to the loaded list. */
4869 struct elf_link_loaded_list *n;
4870
4871 n = (struct elf_link_loaded_list *)
4872 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4873 if (n == NULL)
4874 goto error_return;
4875 n->abfd = abfd;
4876 n->next = htab->loaded;
4877 htab->loaded = n;
4878 }
4879
4880 return TRUE;
4881
4882 error_free_vers:
4883 if (old_tab != NULL)
4884 free (old_tab);
4885 if (nondeflt_vers != NULL)
4886 free (nondeflt_vers);
4887 if (extversym != NULL)
4888 free (extversym);
4889 error_free_sym:
4890 if (isymbuf != NULL)
4891 free (isymbuf);
4892 error_return:
4893 return FALSE;
4894 }
4895
4896 /* Return the linker hash table entry of a symbol that might be
4897 satisfied by an archive symbol. Return -1 on error. */
4898
4899 struct elf_link_hash_entry *
4900 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4901 struct bfd_link_info *info,
4902 const char *name)
4903 {
4904 struct elf_link_hash_entry *h;
4905 char *p, *copy;
4906 size_t len, first;
4907
4908 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4909 if (h != NULL)
4910 return h;
4911
4912 /* If this is a default version (the name contains @@), look up the
4913 symbol again with only one `@' as well as without the version.
4914 The effect is that references to the symbol with and without the
4915 version will be matched by the default symbol in the archive. */
4916
4917 p = strchr (name, ELF_VER_CHR);
4918 if (p == NULL || p[1] != ELF_VER_CHR)
4919 return h;
4920
4921 /* First check with only one `@'. */
4922 len = strlen (name);
4923 copy = (char *) bfd_alloc (abfd, len);
4924 if (copy == NULL)
4925 return (struct elf_link_hash_entry *) 0 - 1;
4926
4927 first = p - name + 1;
4928 memcpy (copy, name, first);
4929 memcpy (copy + first, name + first + 1, len - first);
4930
4931 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4932 if (h == NULL)
4933 {
4934 /* We also need to check references to the symbol without the
4935 version. */
4936 copy[first - 1] = '\0';
4937 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4938 FALSE, FALSE, FALSE);
4939 }
4940
4941 bfd_release (abfd, copy);
4942 return h;
4943 }
4944
4945 /* Add symbols from an ELF archive file to the linker hash table. We
4946 don't use _bfd_generic_link_add_archive_symbols because of a
4947 problem which arises on UnixWare. The UnixWare libc.so is an
4948 archive which includes an entry libc.so.1 which defines a bunch of
4949 symbols. The libc.so archive also includes a number of other
4950 object files, which also define symbols, some of which are the same
4951 as those defined in libc.so.1. Correct linking requires that we
4952 consider each object file in turn, and include it if it defines any
4953 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4954 this; it looks through the list of undefined symbols, and includes
4955 any object file which defines them. When this algorithm is used on
4956 UnixWare, it winds up pulling in libc.so.1 early and defining a
4957 bunch of symbols. This means that some of the other objects in the
4958 archive are not included in the link, which is incorrect since they
4959 precede libc.so.1 in the archive.
4960
4961 Fortunately, ELF archive handling is simpler than that done by
4962 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4963 oddities. In ELF, if we find a symbol in the archive map, and the
4964 symbol is currently undefined, we know that we must pull in that
4965 object file.
4966
4967 Unfortunately, we do have to make multiple passes over the symbol
4968 table until nothing further is resolved. */
4969
4970 static bfd_boolean
4971 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4972 {
4973 symindex c;
4974 bfd_boolean *defined = NULL;
4975 bfd_boolean *included = NULL;
4976 carsym *symdefs;
4977 bfd_boolean loop;
4978 bfd_size_type amt;
4979 const struct elf_backend_data *bed;
4980 struct elf_link_hash_entry * (*archive_symbol_lookup)
4981 (bfd *, struct bfd_link_info *, const char *);
4982
4983 if (! bfd_has_map (abfd))
4984 {
4985 /* An empty archive is a special case. */
4986 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4987 return TRUE;
4988 bfd_set_error (bfd_error_no_armap);
4989 return FALSE;
4990 }
4991
4992 /* Keep track of all symbols we know to be already defined, and all
4993 files we know to be already included. This is to speed up the
4994 second and subsequent passes. */
4995 c = bfd_ardata (abfd)->symdef_count;
4996 if (c == 0)
4997 return TRUE;
4998 amt = c;
4999 amt *= sizeof (bfd_boolean);
5000 defined = (bfd_boolean *) bfd_zmalloc (amt);
5001 included = (bfd_boolean *) bfd_zmalloc (amt);
5002 if (defined == NULL || included == NULL)
5003 goto error_return;
5004
5005 symdefs = bfd_ardata (abfd)->symdefs;
5006 bed = get_elf_backend_data (abfd);
5007 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5008
5009 do
5010 {
5011 file_ptr last;
5012 symindex i;
5013 carsym *symdef;
5014 carsym *symdefend;
5015
5016 loop = FALSE;
5017 last = -1;
5018
5019 symdef = symdefs;
5020 symdefend = symdef + c;
5021 for (i = 0; symdef < symdefend; symdef++, i++)
5022 {
5023 struct elf_link_hash_entry *h;
5024 bfd *element;
5025 struct bfd_link_hash_entry *undefs_tail;
5026 symindex mark;
5027
5028 if (defined[i] || included[i])
5029 continue;
5030 if (symdef->file_offset == last)
5031 {
5032 included[i] = TRUE;
5033 continue;
5034 }
5035
5036 h = archive_symbol_lookup (abfd, info, symdef->name);
5037 if (h == (struct elf_link_hash_entry *) 0 - 1)
5038 goto error_return;
5039
5040 if (h == NULL)
5041 continue;
5042
5043 if (h->root.type == bfd_link_hash_common)
5044 {
5045 /* We currently have a common symbol. The archive map contains
5046 a reference to this symbol, so we may want to include it. We
5047 only want to include it however, if this archive element
5048 contains a definition of the symbol, not just another common
5049 declaration of it.
5050
5051 Unfortunately some archivers (including GNU ar) will put
5052 declarations of common symbols into their archive maps, as
5053 well as real definitions, so we cannot just go by the archive
5054 map alone. Instead we must read in the element's symbol
5055 table and check that to see what kind of symbol definition
5056 this is. */
5057 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5058 continue;
5059 }
5060 else if (h->root.type != bfd_link_hash_undefined)
5061 {
5062 if (h->root.type != bfd_link_hash_undefweak)
5063 defined[i] = TRUE;
5064 continue;
5065 }
5066
5067 /* We need to include this archive member. */
5068 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5069 if (element == NULL)
5070 goto error_return;
5071
5072 if (! bfd_check_format (element, bfd_object))
5073 goto error_return;
5074
5075 /* Doublecheck that we have not included this object
5076 already--it should be impossible, but there may be
5077 something wrong with the archive. */
5078 if (element->archive_pass != 0)
5079 {
5080 bfd_set_error (bfd_error_bad_value);
5081 goto error_return;
5082 }
5083 element->archive_pass = 1;
5084
5085 undefs_tail = info->hash->undefs_tail;
5086
5087 if (!(*info->callbacks
5088 ->add_archive_element) (info, element, symdef->name, &element))
5089 goto error_return;
5090 if (!bfd_link_add_symbols (element, info))
5091 goto error_return;
5092
5093 /* If there are any new undefined symbols, we need to make
5094 another pass through the archive in order to see whether
5095 they can be defined. FIXME: This isn't perfect, because
5096 common symbols wind up on undefs_tail and because an
5097 undefined symbol which is defined later on in this pass
5098 does not require another pass. This isn't a bug, but it
5099 does make the code less efficient than it could be. */
5100 if (undefs_tail != info->hash->undefs_tail)
5101 loop = TRUE;
5102
5103 /* Look backward to mark all symbols from this object file
5104 which we have already seen in this pass. */
5105 mark = i;
5106 do
5107 {
5108 included[mark] = TRUE;
5109 if (mark == 0)
5110 break;
5111 --mark;
5112 }
5113 while (symdefs[mark].file_offset == symdef->file_offset);
5114
5115 /* We mark subsequent symbols from this object file as we go
5116 on through the loop. */
5117 last = symdef->file_offset;
5118 }
5119 }
5120 while (loop);
5121
5122 free (defined);
5123 free (included);
5124
5125 return TRUE;
5126
5127 error_return:
5128 if (defined != NULL)
5129 free (defined);
5130 if (included != NULL)
5131 free (included);
5132 return FALSE;
5133 }
5134
5135 /* Given an ELF BFD, add symbols to the global hash table as
5136 appropriate. */
5137
5138 bfd_boolean
5139 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5140 {
5141 switch (bfd_get_format (abfd))
5142 {
5143 case bfd_object:
5144 return elf_link_add_object_symbols (abfd, info);
5145 case bfd_archive:
5146 return elf_link_add_archive_symbols (abfd, info);
5147 default:
5148 bfd_set_error (bfd_error_wrong_format);
5149 return FALSE;
5150 }
5151 }
5152 \f
5153 struct hash_codes_info
5154 {
5155 unsigned long *hashcodes;
5156 bfd_boolean error;
5157 };
5158
5159 /* This function will be called though elf_link_hash_traverse to store
5160 all hash value of the exported symbols in an array. */
5161
5162 static bfd_boolean
5163 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5164 {
5165 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5166 const char *name;
5167 char *p;
5168 unsigned long ha;
5169 char *alc = NULL;
5170
5171 if (h->root.type == bfd_link_hash_warning)
5172 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5173
5174 /* Ignore indirect symbols. These are added by the versioning code. */
5175 if (h->dynindx == -1)
5176 return TRUE;
5177
5178 name = h->root.root.string;
5179 p = strchr (name, ELF_VER_CHR);
5180 if (p != NULL)
5181 {
5182 alc = (char *) bfd_malloc (p - name + 1);
5183 if (alc == NULL)
5184 {
5185 inf->error = TRUE;
5186 return FALSE;
5187 }
5188 memcpy (alc, name, p - name);
5189 alc[p - name] = '\0';
5190 name = alc;
5191 }
5192
5193 /* Compute the hash value. */
5194 ha = bfd_elf_hash (name);
5195
5196 /* Store the found hash value in the array given as the argument. */
5197 *(inf->hashcodes)++ = ha;
5198
5199 /* And store it in the struct so that we can put it in the hash table
5200 later. */
5201 h->u.elf_hash_value = ha;
5202
5203 if (alc != NULL)
5204 free (alc);
5205
5206 return TRUE;
5207 }
5208
5209 struct collect_gnu_hash_codes
5210 {
5211 bfd *output_bfd;
5212 const struct elf_backend_data *bed;
5213 unsigned long int nsyms;
5214 unsigned long int maskbits;
5215 unsigned long int *hashcodes;
5216 unsigned long int *hashval;
5217 unsigned long int *indx;
5218 unsigned long int *counts;
5219 bfd_vma *bitmask;
5220 bfd_byte *contents;
5221 long int min_dynindx;
5222 unsigned long int bucketcount;
5223 unsigned long int symindx;
5224 long int local_indx;
5225 long int shift1, shift2;
5226 unsigned long int mask;
5227 bfd_boolean error;
5228 };
5229
5230 /* This function will be called though elf_link_hash_traverse to store
5231 all hash value of the exported symbols in an array. */
5232
5233 static bfd_boolean
5234 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5235 {
5236 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5237 const char *name;
5238 char *p;
5239 unsigned long ha;
5240 char *alc = NULL;
5241
5242 if (h->root.type == bfd_link_hash_warning)
5243 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5244
5245 /* Ignore indirect symbols. These are added by the versioning code. */
5246 if (h->dynindx == -1)
5247 return TRUE;
5248
5249 /* Ignore also local symbols and undefined symbols. */
5250 if (! (*s->bed->elf_hash_symbol) (h))
5251 return TRUE;
5252
5253 name = h->root.root.string;
5254 p = strchr (name, ELF_VER_CHR);
5255 if (p != NULL)
5256 {
5257 alc = (char *) bfd_malloc (p - name + 1);
5258 if (alc == NULL)
5259 {
5260 s->error = TRUE;
5261 return FALSE;
5262 }
5263 memcpy (alc, name, p - name);
5264 alc[p - name] = '\0';
5265 name = alc;
5266 }
5267
5268 /* Compute the hash value. */
5269 ha = bfd_elf_gnu_hash (name);
5270
5271 /* Store the found hash value in the array for compute_bucket_count,
5272 and also for .dynsym reordering purposes. */
5273 s->hashcodes[s->nsyms] = ha;
5274 s->hashval[h->dynindx] = ha;
5275 ++s->nsyms;
5276 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5277 s->min_dynindx = h->dynindx;
5278
5279 if (alc != NULL)
5280 free (alc);
5281
5282 return TRUE;
5283 }
5284
5285 /* This function will be called though elf_link_hash_traverse to do
5286 final dynaminc symbol renumbering. */
5287
5288 static bfd_boolean
5289 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5290 {
5291 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5292 unsigned long int bucket;
5293 unsigned long int val;
5294
5295 if (h->root.type == bfd_link_hash_warning)
5296 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5297
5298 /* Ignore indirect symbols. */
5299 if (h->dynindx == -1)
5300 return TRUE;
5301
5302 /* Ignore also local symbols and undefined symbols. */
5303 if (! (*s->bed->elf_hash_symbol) (h))
5304 {
5305 if (h->dynindx >= s->min_dynindx)
5306 h->dynindx = s->local_indx++;
5307 return TRUE;
5308 }
5309
5310 bucket = s->hashval[h->dynindx] % s->bucketcount;
5311 val = (s->hashval[h->dynindx] >> s->shift1)
5312 & ((s->maskbits >> s->shift1) - 1);
5313 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5314 s->bitmask[val]
5315 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5316 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5317 if (s->counts[bucket] == 1)
5318 /* Last element terminates the chain. */
5319 val |= 1;
5320 bfd_put_32 (s->output_bfd, val,
5321 s->contents + (s->indx[bucket] - s->symindx) * 4);
5322 --s->counts[bucket];
5323 h->dynindx = s->indx[bucket]++;
5324 return TRUE;
5325 }
5326
5327 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5328
5329 bfd_boolean
5330 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5331 {
5332 return !(h->forced_local
5333 || h->root.type == bfd_link_hash_undefined
5334 || h->root.type == bfd_link_hash_undefweak
5335 || ((h->root.type == bfd_link_hash_defined
5336 || h->root.type == bfd_link_hash_defweak)
5337 && h->root.u.def.section->output_section == NULL));
5338 }
5339
5340 /* Array used to determine the number of hash table buckets to use
5341 based on the number of symbols there are. If there are fewer than
5342 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5343 fewer than 37 we use 17 buckets, and so forth. We never use more
5344 than 32771 buckets. */
5345
5346 static const size_t elf_buckets[] =
5347 {
5348 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5349 16411, 32771, 0
5350 };
5351
5352 /* Compute bucket count for hashing table. We do not use a static set
5353 of possible tables sizes anymore. Instead we determine for all
5354 possible reasonable sizes of the table the outcome (i.e., the
5355 number of collisions etc) and choose the best solution. The
5356 weighting functions are not too simple to allow the table to grow
5357 without bounds. Instead one of the weighting factors is the size.
5358 Therefore the result is always a good payoff between few collisions
5359 (= short chain lengths) and table size. */
5360 static size_t
5361 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5362 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5363 unsigned long int nsyms,
5364 int gnu_hash)
5365 {
5366 size_t best_size = 0;
5367 unsigned long int i;
5368
5369 /* We have a problem here. The following code to optimize the table
5370 size requires an integer type with more the 32 bits. If
5371 BFD_HOST_U_64_BIT is set we know about such a type. */
5372 #ifdef BFD_HOST_U_64_BIT
5373 if (info->optimize)
5374 {
5375 size_t minsize;
5376 size_t maxsize;
5377 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5378 bfd *dynobj = elf_hash_table (info)->dynobj;
5379 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5380 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5381 unsigned long int *counts;
5382 bfd_size_type amt;
5383 unsigned int no_improvement_count = 0;
5384
5385 /* Possible optimization parameters: if we have NSYMS symbols we say
5386 that the hashing table must at least have NSYMS/4 and at most
5387 2*NSYMS buckets. */
5388 minsize = nsyms / 4;
5389 if (minsize == 0)
5390 minsize = 1;
5391 best_size = maxsize = nsyms * 2;
5392 if (gnu_hash)
5393 {
5394 if (minsize < 2)
5395 minsize = 2;
5396 if ((best_size & 31) == 0)
5397 ++best_size;
5398 }
5399
5400 /* Create array where we count the collisions in. We must use bfd_malloc
5401 since the size could be large. */
5402 amt = maxsize;
5403 amt *= sizeof (unsigned long int);
5404 counts = (unsigned long int *) bfd_malloc (amt);
5405 if (counts == NULL)
5406 return 0;
5407
5408 /* Compute the "optimal" size for the hash table. The criteria is a
5409 minimal chain length. The minor criteria is (of course) the size
5410 of the table. */
5411 for (i = minsize; i < maxsize; ++i)
5412 {
5413 /* Walk through the array of hashcodes and count the collisions. */
5414 BFD_HOST_U_64_BIT max;
5415 unsigned long int j;
5416 unsigned long int fact;
5417
5418 if (gnu_hash && (i & 31) == 0)
5419 continue;
5420
5421 memset (counts, '\0', i * sizeof (unsigned long int));
5422
5423 /* Determine how often each hash bucket is used. */
5424 for (j = 0; j < nsyms; ++j)
5425 ++counts[hashcodes[j] % i];
5426
5427 /* For the weight function we need some information about the
5428 pagesize on the target. This is information need not be 100%
5429 accurate. Since this information is not available (so far) we
5430 define it here to a reasonable default value. If it is crucial
5431 to have a better value some day simply define this value. */
5432 # ifndef BFD_TARGET_PAGESIZE
5433 # define BFD_TARGET_PAGESIZE (4096)
5434 # endif
5435
5436 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5437 and the chains. */
5438 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5439
5440 # if 1
5441 /* Variant 1: optimize for short chains. We add the squares
5442 of all the chain lengths (which favors many small chain
5443 over a few long chains). */
5444 for (j = 0; j < i; ++j)
5445 max += counts[j] * counts[j];
5446
5447 /* This adds penalties for the overall size of the table. */
5448 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5449 max *= fact * fact;
5450 # else
5451 /* Variant 2: Optimize a lot more for small table. Here we
5452 also add squares of the size but we also add penalties for
5453 empty slots (the +1 term). */
5454 for (j = 0; j < i; ++j)
5455 max += (1 + counts[j]) * (1 + counts[j]);
5456
5457 /* The overall size of the table is considered, but not as
5458 strong as in variant 1, where it is squared. */
5459 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5460 max *= fact;
5461 # endif
5462
5463 /* Compare with current best results. */
5464 if (max < best_chlen)
5465 {
5466 best_chlen = max;
5467 best_size = i;
5468 no_improvement_count = 0;
5469 }
5470 /* PR 11843: Avoid futile long searches for the best bucket size
5471 when there are a large number of symbols. */
5472 else if (++no_improvement_count == 100)
5473 break;
5474 }
5475
5476 free (counts);
5477 }
5478 else
5479 #endif /* defined (BFD_HOST_U_64_BIT) */
5480 {
5481 /* This is the fallback solution if no 64bit type is available or if we
5482 are not supposed to spend much time on optimizations. We select the
5483 bucket count using a fixed set of numbers. */
5484 for (i = 0; elf_buckets[i] != 0; i++)
5485 {
5486 best_size = elf_buckets[i];
5487 if (nsyms < elf_buckets[i + 1])
5488 break;
5489 }
5490 if (gnu_hash && best_size < 2)
5491 best_size = 2;
5492 }
5493
5494 return best_size;
5495 }
5496
5497 /* Size any SHT_GROUP section for ld -r. */
5498
5499 bfd_boolean
5500 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5501 {
5502 bfd *ibfd;
5503
5504 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5505 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5506 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5507 return FALSE;
5508 return TRUE;
5509 }
5510
5511 /* Set up the sizes and contents of the ELF dynamic sections. This is
5512 called by the ELF linker emulation before_allocation routine. We
5513 must set the sizes of the sections before the linker sets the
5514 addresses of the various sections. */
5515
5516 bfd_boolean
5517 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5518 const char *soname,
5519 const char *rpath,
5520 const char *filter_shlib,
5521 const char *audit,
5522 const char *depaudit,
5523 const char * const *auxiliary_filters,
5524 struct bfd_link_info *info,
5525 asection **sinterpptr,
5526 struct bfd_elf_version_tree *verdefs)
5527 {
5528 bfd_size_type soname_indx;
5529 bfd *dynobj;
5530 const struct elf_backend_data *bed;
5531 struct elf_info_failed asvinfo;
5532
5533 *sinterpptr = NULL;
5534
5535 soname_indx = (bfd_size_type) -1;
5536
5537 if (!is_elf_hash_table (info->hash))
5538 return TRUE;
5539
5540 bed = get_elf_backend_data (output_bfd);
5541 if (info->execstack)
5542 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5543 else if (info->noexecstack)
5544 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5545 else
5546 {
5547 bfd *inputobj;
5548 asection *notesec = NULL;
5549 int exec = 0;
5550
5551 for (inputobj = info->input_bfds;
5552 inputobj;
5553 inputobj = inputobj->link_next)
5554 {
5555 asection *s;
5556
5557 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5558 continue;
5559 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5560 if (s)
5561 {
5562 if (s->flags & SEC_CODE)
5563 exec = PF_X;
5564 notesec = s;
5565 }
5566 else if (bed->default_execstack)
5567 exec = PF_X;
5568 }
5569 if (notesec)
5570 {
5571 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5572 if (exec && info->relocatable
5573 && notesec->output_section != bfd_abs_section_ptr)
5574 notesec->output_section->flags |= SEC_CODE;
5575 }
5576 }
5577
5578 /* Any syms created from now on start with -1 in
5579 got.refcount/offset and plt.refcount/offset. */
5580 elf_hash_table (info)->init_got_refcount
5581 = elf_hash_table (info)->init_got_offset;
5582 elf_hash_table (info)->init_plt_refcount
5583 = elf_hash_table (info)->init_plt_offset;
5584
5585 if (info->relocatable
5586 && !_bfd_elf_size_group_sections (info))
5587 return FALSE;
5588
5589 /* The backend may have to create some sections regardless of whether
5590 we're dynamic or not. */
5591 if (bed->elf_backend_always_size_sections
5592 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5593 return FALSE;
5594
5595 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5596 return FALSE;
5597
5598 dynobj = elf_hash_table (info)->dynobj;
5599
5600 /* If there were no dynamic objects in the link, there is nothing to
5601 do here. */
5602 if (dynobj == NULL)
5603 return TRUE;
5604
5605 if (elf_hash_table (info)->dynamic_sections_created)
5606 {
5607 struct elf_info_failed eif;
5608 struct elf_link_hash_entry *h;
5609 asection *dynstr;
5610 struct bfd_elf_version_tree *t;
5611 struct bfd_elf_version_expr *d;
5612 asection *s;
5613 bfd_boolean all_defined;
5614
5615 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5616 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5617
5618 if (soname != NULL)
5619 {
5620 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5621 soname, TRUE);
5622 if (soname_indx == (bfd_size_type) -1
5623 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5624 return FALSE;
5625 }
5626
5627 if (info->symbolic)
5628 {
5629 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5630 return FALSE;
5631 info->flags |= DF_SYMBOLIC;
5632 }
5633
5634 if (rpath != NULL)
5635 {
5636 bfd_size_type indx;
5637
5638 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5639 TRUE);
5640 if (indx == (bfd_size_type) -1
5641 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5642 return FALSE;
5643
5644 if (info->new_dtags)
5645 {
5646 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5647 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5648 return FALSE;
5649 }
5650 }
5651
5652 if (filter_shlib != NULL)
5653 {
5654 bfd_size_type indx;
5655
5656 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5657 filter_shlib, TRUE);
5658 if (indx == (bfd_size_type) -1
5659 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5660 return FALSE;
5661 }
5662
5663 if (auxiliary_filters != NULL)
5664 {
5665 const char * const *p;
5666
5667 for (p = auxiliary_filters; *p != NULL; p++)
5668 {
5669 bfd_size_type indx;
5670
5671 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5672 *p, TRUE);
5673 if (indx == (bfd_size_type) -1
5674 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5675 return FALSE;
5676 }
5677 }
5678
5679 if (audit != NULL)
5680 {
5681 bfd_size_type indx;
5682
5683 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5684 TRUE);
5685 if (indx == (bfd_size_type) -1
5686 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5687 return FALSE;
5688 }
5689
5690 if (depaudit != NULL)
5691 {
5692 bfd_size_type indx;
5693
5694 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5695 TRUE);
5696 if (indx == (bfd_size_type) -1
5697 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5698 return FALSE;
5699 }
5700
5701 eif.info = info;
5702 eif.verdefs = verdefs;
5703 eif.failed = FALSE;
5704
5705 /* If we are supposed to export all symbols into the dynamic symbol
5706 table (this is not the normal case), then do so. */
5707 if (info->export_dynamic
5708 || (info->executable && info->dynamic))
5709 {
5710 elf_link_hash_traverse (elf_hash_table (info),
5711 _bfd_elf_export_symbol,
5712 &eif);
5713 if (eif.failed)
5714 return FALSE;
5715 }
5716
5717 /* Make all global versions with definition. */
5718 for (t = verdefs; t != NULL; t = t->next)
5719 for (d = t->globals.list; d != NULL; d = d->next)
5720 if (!d->symver && d->literal)
5721 {
5722 const char *verstr, *name;
5723 size_t namelen, verlen, newlen;
5724 char *newname, *p, leading_char;
5725 struct elf_link_hash_entry *newh;
5726
5727 leading_char = bfd_get_symbol_leading_char (output_bfd);
5728 name = d->pattern;
5729 namelen = strlen (name) + (leading_char != '\0');
5730 verstr = t->name;
5731 verlen = strlen (verstr);
5732 newlen = namelen + verlen + 3;
5733
5734 newname = (char *) bfd_malloc (newlen);
5735 if (newname == NULL)
5736 return FALSE;
5737 newname[0] = leading_char;
5738 memcpy (newname + (leading_char != '\0'), name, namelen);
5739
5740 /* Check the hidden versioned definition. */
5741 p = newname + namelen;
5742 *p++ = ELF_VER_CHR;
5743 memcpy (p, verstr, verlen + 1);
5744 newh = elf_link_hash_lookup (elf_hash_table (info),
5745 newname, FALSE, FALSE,
5746 FALSE);
5747 if (newh == NULL
5748 || (newh->root.type != bfd_link_hash_defined
5749 && newh->root.type != bfd_link_hash_defweak))
5750 {
5751 /* Check the default versioned definition. */
5752 *p++ = ELF_VER_CHR;
5753 memcpy (p, verstr, verlen + 1);
5754 newh = elf_link_hash_lookup (elf_hash_table (info),
5755 newname, FALSE, FALSE,
5756 FALSE);
5757 }
5758 free (newname);
5759
5760 /* Mark this version if there is a definition and it is
5761 not defined in a shared object. */
5762 if (newh != NULL
5763 && !newh->def_dynamic
5764 && (newh->root.type == bfd_link_hash_defined
5765 || newh->root.type == bfd_link_hash_defweak))
5766 d->symver = 1;
5767 }
5768
5769 /* Attach all the symbols to their version information. */
5770 asvinfo.info = info;
5771 asvinfo.verdefs = verdefs;
5772 asvinfo.failed = FALSE;
5773
5774 elf_link_hash_traverse (elf_hash_table (info),
5775 _bfd_elf_link_assign_sym_version,
5776 &asvinfo);
5777 if (asvinfo.failed)
5778 return FALSE;
5779
5780 if (!info->allow_undefined_version)
5781 {
5782 /* Check if all global versions have a definition. */
5783 all_defined = TRUE;
5784 for (t = verdefs; t != NULL; t = t->next)
5785 for (d = t->globals.list; d != NULL; d = d->next)
5786 if (d->literal && !d->symver && !d->script)
5787 {
5788 (*_bfd_error_handler)
5789 (_("%s: undefined version: %s"),
5790 d->pattern, t->name);
5791 all_defined = FALSE;
5792 }
5793
5794 if (!all_defined)
5795 {
5796 bfd_set_error (bfd_error_bad_value);
5797 return FALSE;
5798 }
5799 }
5800
5801 /* Find all symbols which were defined in a dynamic object and make
5802 the backend pick a reasonable value for them. */
5803 elf_link_hash_traverse (elf_hash_table (info),
5804 _bfd_elf_adjust_dynamic_symbol,
5805 &eif);
5806 if (eif.failed)
5807 return FALSE;
5808
5809 /* Add some entries to the .dynamic section. We fill in some of the
5810 values later, in bfd_elf_final_link, but we must add the entries
5811 now so that we know the final size of the .dynamic section. */
5812
5813 /* If there are initialization and/or finalization functions to
5814 call then add the corresponding DT_INIT/DT_FINI entries. */
5815 h = (info->init_function
5816 ? elf_link_hash_lookup (elf_hash_table (info),
5817 info->init_function, FALSE,
5818 FALSE, FALSE)
5819 : NULL);
5820 if (h != NULL
5821 && (h->ref_regular
5822 || h->def_regular))
5823 {
5824 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5825 return FALSE;
5826 }
5827 h = (info->fini_function
5828 ? elf_link_hash_lookup (elf_hash_table (info),
5829 info->fini_function, FALSE,
5830 FALSE, FALSE)
5831 : NULL);
5832 if (h != NULL
5833 && (h->ref_regular
5834 || h->def_regular))
5835 {
5836 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5837 return FALSE;
5838 }
5839
5840 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5841 if (s != NULL && s->linker_has_input)
5842 {
5843 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5844 if (! info->executable)
5845 {
5846 bfd *sub;
5847 asection *o;
5848
5849 for (sub = info->input_bfds; sub != NULL;
5850 sub = sub->link_next)
5851 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5852 for (o = sub->sections; o != NULL; o = o->next)
5853 if (elf_section_data (o)->this_hdr.sh_type
5854 == SHT_PREINIT_ARRAY)
5855 {
5856 (*_bfd_error_handler)
5857 (_("%B: .preinit_array section is not allowed in DSO"),
5858 sub);
5859 break;
5860 }
5861
5862 bfd_set_error (bfd_error_nonrepresentable_section);
5863 return FALSE;
5864 }
5865
5866 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5867 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5868 return FALSE;
5869 }
5870 s = bfd_get_section_by_name (output_bfd, ".init_array");
5871 if (s != NULL && s->linker_has_input)
5872 {
5873 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5874 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5875 return FALSE;
5876 }
5877 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5878 if (s != NULL && s->linker_has_input)
5879 {
5880 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5881 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5882 return FALSE;
5883 }
5884
5885 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5886 /* If .dynstr is excluded from the link, we don't want any of
5887 these tags. Strictly, we should be checking each section
5888 individually; This quick check covers for the case where
5889 someone does a /DISCARD/ : { *(*) }. */
5890 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5891 {
5892 bfd_size_type strsize;
5893
5894 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5895 if ((info->emit_hash
5896 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5897 || (info->emit_gnu_hash
5898 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5899 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5900 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5901 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5902 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5903 bed->s->sizeof_sym))
5904 return FALSE;
5905 }
5906 }
5907
5908 /* The backend must work out the sizes of all the other dynamic
5909 sections. */
5910 if (bed->elf_backend_size_dynamic_sections
5911 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5912 return FALSE;
5913
5914 if (elf_hash_table (info)->dynamic_sections_created)
5915 {
5916 unsigned long section_sym_count;
5917 asection *s;
5918
5919 /* Set up the version definition section. */
5920 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5921 BFD_ASSERT (s != NULL);
5922
5923 /* We may have created additional version definitions if we are
5924 just linking a regular application. */
5925 verdefs = asvinfo.verdefs;
5926
5927 /* Skip anonymous version tag. */
5928 if (verdefs != NULL && verdefs->vernum == 0)
5929 verdefs = verdefs->next;
5930
5931 if (verdefs == NULL && !info->create_default_symver)
5932 s->flags |= SEC_EXCLUDE;
5933 else
5934 {
5935 unsigned int cdefs;
5936 bfd_size_type size;
5937 struct bfd_elf_version_tree *t;
5938 bfd_byte *p;
5939 Elf_Internal_Verdef def;
5940 Elf_Internal_Verdaux defaux;
5941 struct bfd_link_hash_entry *bh;
5942 struct elf_link_hash_entry *h;
5943 const char *name;
5944
5945 cdefs = 0;
5946 size = 0;
5947
5948 /* Make space for the base version. */
5949 size += sizeof (Elf_External_Verdef);
5950 size += sizeof (Elf_External_Verdaux);
5951 ++cdefs;
5952
5953 /* Make space for the default version. */
5954 if (info->create_default_symver)
5955 {
5956 size += sizeof (Elf_External_Verdef);
5957 ++cdefs;
5958 }
5959
5960 for (t = verdefs; t != NULL; t = t->next)
5961 {
5962 struct bfd_elf_version_deps *n;
5963
5964 /* Don't emit base version twice. */
5965 if (t->vernum == 0)
5966 continue;
5967
5968 size += sizeof (Elf_External_Verdef);
5969 size += sizeof (Elf_External_Verdaux);
5970 ++cdefs;
5971
5972 for (n = t->deps; n != NULL; n = n->next)
5973 size += sizeof (Elf_External_Verdaux);
5974 }
5975
5976 s->size = size;
5977 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5978 if (s->contents == NULL && s->size != 0)
5979 return FALSE;
5980
5981 /* Fill in the version definition section. */
5982
5983 p = s->contents;
5984
5985 def.vd_version = VER_DEF_CURRENT;
5986 def.vd_flags = VER_FLG_BASE;
5987 def.vd_ndx = 1;
5988 def.vd_cnt = 1;
5989 if (info->create_default_symver)
5990 {
5991 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5992 def.vd_next = sizeof (Elf_External_Verdef);
5993 }
5994 else
5995 {
5996 def.vd_aux = sizeof (Elf_External_Verdef);
5997 def.vd_next = (sizeof (Elf_External_Verdef)
5998 + sizeof (Elf_External_Verdaux));
5999 }
6000
6001 if (soname_indx != (bfd_size_type) -1)
6002 {
6003 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6004 soname_indx);
6005 def.vd_hash = bfd_elf_hash (soname);
6006 defaux.vda_name = soname_indx;
6007 name = soname;
6008 }
6009 else
6010 {
6011 bfd_size_type indx;
6012
6013 name = lbasename (output_bfd->filename);
6014 def.vd_hash = bfd_elf_hash (name);
6015 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6016 name, FALSE);
6017 if (indx == (bfd_size_type) -1)
6018 return FALSE;
6019 defaux.vda_name = indx;
6020 }
6021 defaux.vda_next = 0;
6022
6023 _bfd_elf_swap_verdef_out (output_bfd, &def,
6024 (Elf_External_Verdef *) p);
6025 p += sizeof (Elf_External_Verdef);
6026 if (info->create_default_symver)
6027 {
6028 /* Add a symbol representing this version. */
6029 bh = NULL;
6030 if (! (_bfd_generic_link_add_one_symbol
6031 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6032 0, NULL, FALSE,
6033 get_elf_backend_data (dynobj)->collect, &bh)))
6034 return FALSE;
6035 h = (struct elf_link_hash_entry *) bh;
6036 h->non_elf = 0;
6037 h->def_regular = 1;
6038 h->type = STT_OBJECT;
6039 h->verinfo.vertree = NULL;
6040
6041 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6042 return FALSE;
6043
6044 /* Create a duplicate of the base version with the same
6045 aux block, but different flags. */
6046 def.vd_flags = 0;
6047 def.vd_ndx = 2;
6048 def.vd_aux = sizeof (Elf_External_Verdef);
6049 if (verdefs)
6050 def.vd_next = (sizeof (Elf_External_Verdef)
6051 + sizeof (Elf_External_Verdaux));
6052 else
6053 def.vd_next = 0;
6054 _bfd_elf_swap_verdef_out (output_bfd, &def,
6055 (Elf_External_Verdef *) p);
6056 p += sizeof (Elf_External_Verdef);
6057 }
6058 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6059 (Elf_External_Verdaux *) p);
6060 p += sizeof (Elf_External_Verdaux);
6061
6062 for (t = verdefs; t != NULL; t = t->next)
6063 {
6064 unsigned int cdeps;
6065 struct bfd_elf_version_deps *n;
6066
6067 /* Don't emit the base version twice. */
6068 if (t->vernum == 0)
6069 continue;
6070
6071 cdeps = 0;
6072 for (n = t->deps; n != NULL; n = n->next)
6073 ++cdeps;
6074
6075 /* Add a symbol representing this version. */
6076 bh = NULL;
6077 if (! (_bfd_generic_link_add_one_symbol
6078 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6079 0, NULL, FALSE,
6080 get_elf_backend_data (dynobj)->collect, &bh)))
6081 return FALSE;
6082 h = (struct elf_link_hash_entry *) bh;
6083 h->non_elf = 0;
6084 h->def_regular = 1;
6085 h->type = STT_OBJECT;
6086 h->verinfo.vertree = t;
6087
6088 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6089 return FALSE;
6090
6091 def.vd_version = VER_DEF_CURRENT;
6092 def.vd_flags = 0;
6093 if (t->globals.list == NULL
6094 && t->locals.list == NULL
6095 && ! t->used)
6096 def.vd_flags |= VER_FLG_WEAK;
6097 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6098 def.vd_cnt = cdeps + 1;
6099 def.vd_hash = bfd_elf_hash (t->name);
6100 def.vd_aux = sizeof (Elf_External_Verdef);
6101 def.vd_next = 0;
6102
6103 /* If a basever node is next, it *must* be the last node in
6104 the chain, otherwise Verdef construction breaks. */
6105 if (t->next != NULL && t->next->vernum == 0)
6106 BFD_ASSERT (t->next->next == NULL);
6107
6108 if (t->next != NULL && t->next->vernum != 0)
6109 def.vd_next = (sizeof (Elf_External_Verdef)
6110 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6111
6112 _bfd_elf_swap_verdef_out (output_bfd, &def,
6113 (Elf_External_Verdef *) p);
6114 p += sizeof (Elf_External_Verdef);
6115
6116 defaux.vda_name = h->dynstr_index;
6117 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6118 h->dynstr_index);
6119 defaux.vda_next = 0;
6120 if (t->deps != NULL)
6121 defaux.vda_next = sizeof (Elf_External_Verdaux);
6122 t->name_indx = defaux.vda_name;
6123
6124 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6125 (Elf_External_Verdaux *) p);
6126 p += sizeof (Elf_External_Verdaux);
6127
6128 for (n = t->deps; n != NULL; n = n->next)
6129 {
6130 if (n->version_needed == NULL)
6131 {
6132 /* This can happen if there was an error in the
6133 version script. */
6134 defaux.vda_name = 0;
6135 }
6136 else
6137 {
6138 defaux.vda_name = n->version_needed->name_indx;
6139 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6140 defaux.vda_name);
6141 }
6142 if (n->next == NULL)
6143 defaux.vda_next = 0;
6144 else
6145 defaux.vda_next = sizeof (Elf_External_Verdaux);
6146
6147 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6148 (Elf_External_Verdaux *) p);
6149 p += sizeof (Elf_External_Verdaux);
6150 }
6151 }
6152
6153 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6154 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6155 return FALSE;
6156
6157 elf_tdata (output_bfd)->cverdefs = cdefs;
6158 }
6159
6160 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6161 {
6162 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6163 return FALSE;
6164 }
6165 else if (info->flags & DF_BIND_NOW)
6166 {
6167 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6168 return FALSE;
6169 }
6170
6171 if (info->flags_1)
6172 {
6173 if (info->executable)
6174 info->flags_1 &= ~ (DF_1_INITFIRST
6175 | DF_1_NODELETE
6176 | DF_1_NOOPEN);
6177 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6178 return FALSE;
6179 }
6180
6181 /* Work out the size of the version reference section. */
6182
6183 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6184 BFD_ASSERT (s != NULL);
6185 {
6186 struct elf_find_verdep_info sinfo;
6187
6188 sinfo.info = info;
6189 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6190 if (sinfo.vers == 0)
6191 sinfo.vers = 1;
6192 sinfo.failed = FALSE;
6193
6194 elf_link_hash_traverse (elf_hash_table (info),
6195 _bfd_elf_link_find_version_dependencies,
6196 &sinfo);
6197 if (sinfo.failed)
6198 return FALSE;
6199
6200 if (elf_tdata (output_bfd)->verref == NULL)
6201 s->flags |= SEC_EXCLUDE;
6202 else
6203 {
6204 Elf_Internal_Verneed *t;
6205 unsigned int size;
6206 unsigned int crefs;
6207 bfd_byte *p;
6208
6209 /* Build the version dependency section. */
6210 size = 0;
6211 crefs = 0;
6212 for (t = elf_tdata (output_bfd)->verref;
6213 t != NULL;
6214 t = t->vn_nextref)
6215 {
6216 Elf_Internal_Vernaux *a;
6217
6218 size += sizeof (Elf_External_Verneed);
6219 ++crefs;
6220 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6221 size += sizeof (Elf_External_Vernaux);
6222 }
6223
6224 s->size = size;
6225 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6226 if (s->contents == NULL)
6227 return FALSE;
6228
6229 p = s->contents;
6230 for (t = elf_tdata (output_bfd)->verref;
6231 t != NULL;
6232 t = t->vn_nextref)
6233 {
6234 unsigned int caux;
6235 Elf_Internal_Vernaux *a;
6236 bfd_size_type indx;
6237
6238 caux = 0;
6239 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6240 ++caux;
6241
6242 t->vn_version = VER_NEED_CURRENT;
6243 t->vn_cnt = caux;
6244 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6245 elf_dt_name (t->vn_bfd) != NULL
6246 ? elf_dt_name (t->vn_bfd)
6247 : lbasename (t->vn_bfd->filename),
6248 FALSE);
6249 if (indx == (bfd_size_type) -1)
6250 return FALSE;
6251 t->vn_file = indx;
6252 t->vn_aux = sizeof (Elf_External_Verneed);
6253 if (t->vn_nextref == NULL)
6254 t->vn_next = 0;
6255 else
6256 t->vn_next = (sizeof (Elf_External_Verneed)
6257 + caux * sizeof (Elf_External_Vernaux));
6258
6259 _bfd_elf_swap_verneed_out (output_bfd, t,
6260 (Elf_External_Verneed *) p);
6261 p += sizeof (Elf_External_Verneed);
6262
6263 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6264 {
6265 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6266 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6267 a->vna_nodename, FALSE);
6268 if (indx == (bfd_size_type) -1)
6269 return FALSE;
6270 a->vna_name = indx;
6271 if (a->vna_nextptr == NULL)
6272 a->vna_next = 0;
6273 else
6274 a->vna_next = sizeof (Elf_External_Vernaux);
6275
6276 _bfd_elf_swap_vernaux_out (output_bfd, a,
6277 (Elf_External_Vernaux *) p);
6278 p += sizeof (Elf_External_Vernaux);
6279 }
6280 }
6281
6282 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6283 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6284 return FALSE;
6285
6286 elf_tdata (output_bfd)->cverrefs = crefs;
6287 }
6288 }
6289
6290 if ((elf_tdata (output_bfd)->cverrefs == 0
6291 && elf_tdata (output_bfd)->cverdefs == 0)
6292 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6293 &section_sym_count) == 0)
6294 {
6295 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6296 s->flags |= SEC_EXCLUDE;
6297 }
6298 }
6299 return TRUE;
6300 }
6301
6302 /* Find the first non-excluded output section. We'll use its
6303 section symbol for some emitted relocs. */
6304 void
6305 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6306 {
6307 asection *s;
6308
6309 for (s = output_bfd->sections; s != NULL; s = s->next)
6310 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6311 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6312 {
6313 elf_hash_table (info)->text_index_section = s;
6314 break;
6315 }
6316 }
6317
6318 /* Find two non-excluded output sections, one for code, one for data.
6319 We'll use their section symbols for some emitted relocs. */
6320 void
6321 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6322 {
6323 asection *s;
6324
6325 /* Data first, since setting text_index_section changes
6326 _bfd_elf_link_omit_section_dynsym. */
6327 for (s = output_bfd->sections; s != NULL; s = s->next)
6328 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6329 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6330 {
6331 elf_hash_table (info)->data_index_section = s;
6332 break;
6333 }
6334
6335 for (s = output_bfd->sections; s != NULL; s = s->next)
6336 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6337 == (SEC_ALLOC | SEC_READONLY))
6338 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6339 {
6340 elf_hash_table (info)->text_index_section = s;
6341 break;
6342 }
6343
6344 if (elf_hash_table (info)->text_index_section == NULL)
6345 elf_hash_table (info)->text_index_section
6346 = elf_hash_table (info)->data_index_section;
6347 }
6348
6349 bfd_boolean
6350 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6351 {
6352 const struct elf_backend_data *bed;
6353
6354 if (!is_elf_hash_table (info->hash))
6355 return TRUE;
6356
6357 bed = get_elf_backend_data (output_bfd);
6358 (*bed->elf_backend_init_index_section) (output_bfd, info);
6359
6360 if (elf_hash_table (info)->dynamic_sections_created)
6361 {
6362 bfd *dynobj;
6363 asection *s;
6364 bfd_size_type dynsymcount;
6365 unsigned long section_sym_count;
6366 unsigned int dtagcount;
6367
6368 dynobj = elf_hash_table (info)->dynobj;
6369
6370 /* Assign dynsym indicies. In a shared library we generate a
6371 section symbol for each output section, which come first.
6372 Next come all of the back-end allocated local dynamic syms,
6373 followed by the rest of the global symbols. */
6374
6375 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6376 &section_sym_count);
6377
6378 /* Work out the size of the symbol version section. */
6379 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6380 BFD_ASSERT (s != NULL);
6381 if (dynsymcount != 0
6382 && (s->flags & SEC_EXCLUDE) == 0)
6383 {
6384 s->size = dynsymcount * sizeof (Elf_External_Versym);
6385 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6386 if (s->contents == NULL)
6387 return FALSE;
6388
6389 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6390 return FALSE;
6391 }
6392
6393 /* Set the size of the .dynsym and .hash sections. We counted
6394 the number of dynamic symbols in elf_link_add_object_symbols.
6395 We will build the contents of .dynsym and .hash when we build
6396 the final symbol table, because until then we do not know the
6397 correct value to give the symbols. We built the .dynstr
6398 section as we went along in elf_link_add_object_symbols. */
6399 s = bfd_get_section_by_name (dynobj, ".dynsym");
6400 BFD_ASSERT (s != NULL);
6401 s->size = dynsymcount * bed->s->sizeof_sym;
6402
6403 if (dynsymcount != 0)
6404 {
6405 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6406 if (s->contents == NULL)
6407 return FALSE;
6408
6409 /* The first entry in .dynsym is a dummy symbol.
6410 Clear all the section syms, in case we don't output them all. */
6411 ++section_sym_count;
6412 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6413 }
6414
6415 elf_hash_table (info)->bucketcount = 0;
6416
6417 /* Compute the size of the hashing table. As a side effect this
6418 computes the hash values for all the names we export. */
6419 if (info->emit_hash)
6420 {
6421 unsigned long int *hashcodes;
6422 struct hash_codes_info hashinf;
6423 bfd_size_type amt;
6424 unsigned long int nsyms;
6425 size_t bucketcount;
6426 size_t hash_entry_size;
6427
6428 /* Compute the hash values for all exported symbols. At the same
6429 time store the values in an array so that we could use them for
6430 optimizations. */
6431 amt = dynsymcount * sizeof (unsigned long int);
6432 hashcodes = (unsigned long int *) bfd_malloc (amt);
6433 if (hashcodes == NULL)
6434 return FALSE;
6435 hashinf.hashcodes = hashcodes;
6436 hashinf.error = FALSE;
6437
6438 /* Put all hash values in HASHCODES. */
6439 elf_link_hash_traverse (elf_hash_table (info),
6440 elf_collect_hash_codes, &hashinf);
6441 if (hashinf.error)
6442 {
6443 free (hashcodes);
6444 return FALSE;
6445 }
6446
6447 nsyms = hashinf.hashcodes - hashcodes;
6448 bucketcount
6449 = compute_bucket_count (info, hashcodes, nsyms, 0);
6450 free (hashcodes);
6451
6452 if (bucketcount == 0)
6453 return FALSE;
6454
6455 elf_hash_table (info)->bucketcount = bucketcount;
6456
6457 s = bfd_get_section_by_name (dynobj, ".hash");
6458 BFD_ASSERT (s != NULL);
6459 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6460 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6461 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6462 if (s->contents == NULL)
6463 return FALSE;
6464
6465 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6466 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6467 s->contents + hash_entry_size);
6468 }
6469
6470 if (info->emit_gnu_hash)
6471 {
6472 size_t i, cnt;
6473 unsigned char *contents;
6474 struct collect_gnu_hash_codes cinfo;
6475 bfd_size_type amt;
6476 size_t bucketcount;
6477
6478 memset (&cinfo, 0, sizeof (cinfo));
6479
6480 /* Compute the hash values for all exported symbols. At the same
6481 time store the values in an array so that we could use them for
6482 optimizations. */
6483 amt = dynsymcount * 2 * sizeof (unsigned long int);
6484 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6485 if (cinfo.hashcodes == NULL)
6486 return FALSE;
6487
6488 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6489 cinfo.min_dynindx = -1;
6490 cinfo.output_bfd = output_bfd;
6491 cinfo.bed = bed;
6492
6493 /* Put all hash values in HASHCODES. */
6494 elf_link_hash_traverse (elf_hash_table (info),
6495 elf_collect_gnu_hash_codes, &cinfo);
6496 if (cinfo.error)
6497 {
6498 free (cinfo.hashcodes);
6499 return FALSE;
6500 }
6501
6502 bucketcount
6503 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6504
6505 if (bucketcount == 0)
6506 {
6507 free (cinfo.hashcodes);
6508 return FALSE;
6509 }
6510
6511 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6512 BFD_ASSERT (s != NULL);
6513
6514 if (cinfo.nsyms == 0)
6515 {
6516 /* Empty .gnu.hash section is special. */
6517 BFD_ASSERT (cinfo.min_dynindx == -1);
6518 free (cinfo.hashcodes);
6519 s->size = 5 * 4 + bed->s->arch_size / 8;
6520 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6521 if (contents == NULL)
6522 return FALSE;
6523 s->contents = contents;
6524 /* 1 empty bucket. */
6525 bfd_put_32 (output_bfd, 1, contents);
6526 /* SYMIDX above the special symbol 0. */
6527 bfd_put_32 (output_bfd, 1, contents + 4);
6528 /* Just one word for bitmask. */
6529 bfd_put_32 (output_bfd, 1, contents + 8);
6530 /* Only hash fn bloom filter. */
6531 bfd_put_32 (output_bfd, 0, contents + 12);
6532 /* No hashes are valid - empty bitmask. */
6533 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6534 /* No hashes in the only bucket. */
6535 bfd_put_32 (output_bfd, 0,
6536 contents + 16 + bed->s->arch_size / 8);
6537 }
6538 else
6539 {
6540 unsigned long int maskwords, maskbitslog2;
6541 BFD_ASSERT (cinfo.min_dynindx != -1);
6542
6543 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6544 if (maskbitslog2 < 3)
6545 maskbitslog2 = 5;
6546 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6547 maskbitslog2 = maskbitslog2 + 3;
6548 else
6549 maskbitslog2 = maskbitslog2 + 2;
6550 if (bed->s->arch_size == 64)
6551 {
6552 if (maskbitslog2 == 5)
6553 maskbitslog2 = 6;
6554 cinfo.shift1 = 6;
6555 }
6556 else
6557 cinfo.shift1 = 5;
6558 cinfo.mask = (1 << cinfo.shift1) - 1;
6559 cinfo.shift2 = maskbitslog2;
6560 cinfo.maskbits = 1 << maskbitslog2;
6561 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6562 amt = bucketcount * sizeof (unsigned long int) * 2;
6563 amt += maskwords * sizeof (bfd_vma);
6564 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6565 if (cinfo.bitmask == NULL)
6566 {
6567 free (cinfo.hashcodes);
6568 return FALSE;
6569 }
6570
6571 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6572 cinfo.indx = cinfo.counts + bucketcount;
6573 cinfo.symindx = dynsymcount - cinfo.nsyms;
6574 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6575
6576 /* Determine how often each hash bucket is used. */
6577 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6578 for (i = 0; i < cinfo.nsyms; ++i)
6579 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6580
6581 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6582 if (cinfo.counts[i] != 0)
6583 {
6584 cinfo.indx[i] = cnt;
6585 cnt += cinfo.counts[i];
6586 }
6587 BFD_ASSERT (cnt == dynsymcount);
6588 cinfo.bucketcount = bucketcount;
6589 cinfo.local_indx = cinfo.min_dynindx;
6590
6591 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6592 s->size += cinfo.maskbits / 8;
6593 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6594 if (contents == NULL)
6595 {
6596 free (cinfo.bitmask);
6597 free (cinfo.hashcodes);
6598 return FALSE;
6599 }
6600
6601 s->contents = contents;
6602 bfd_put_32 (output_bfd, bucketcount, contents);
6603 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6604 bfd_put_32 (output_bfd, maskwords, contents + 8);
6605 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6606 contents += 16 + cinfo.maskbits / 8;
6607
6608 for (i = 0; i < bucketcount; ++i)
6609 {
6610 if (cinfo.counts[i] == 0)
6611 bfd_put_32 (output_bfd, 0, contents);
6612 else
6613 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6614 contents += 4;
6615 }
6616
6617 cinfo.contents = contents;
6618
6619 /* Renumber dynamic symbols, populate .gnu.hash section. */
6620 elf_link_hash_traverse (elf_hash_table (info),
6621 elf_renumber_gnu_hash_syms, &cinfo);
6622
6623 contents = s->contents + 16;
6624 for (i = 0; i < maskwords; ++i)
6625 {
6626 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6627 contents);
6628 contents += bed->s->arch_size / 8;
6629 }
6630
6631 free (cinfo.bitmask);
6632 free (cinfo.hashcodes);
6633 }
6634 }
6635
6636 s = bfd_get_section_by_name (dynobj, ".dynstr");
6637 BFD_ASSERT (s != NULL);
6638
6639 elf_finalize_dynstr (output_bfd, info);
6640
6641 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6642
6643 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6644 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6645 return FALSE;
6646 }
6647
6648 return TRUE;
6649 }
6650 \f
6651 /* Indicate that we are only retrieving symbol values from this
6652 section. */
6653
6654 void
6655 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6656 {
6657 if (is_elf_hash_table (info->hash))
6658 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6659 _bfd_generic_link_just_syms (sec, info);
6660 }
6661
6662 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6663
6664 static void
6665 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6666 asection *sec)
6667 {
6668 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6669 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6670 }
6671
6672 /* Finish SHF_MERGE section merging. */
6673
6674 bfd_boolean
6675 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6676 {
6677 bfd *ibfd;
6678 asection *sec;
6679
6680 if (!is_elf_hash_table (info->hash))
6681 return FALSE;
6682
6683 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6684 if ((ibfd->flags & DYNAMIC) == 0)
6685 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6686 if ((sec->flags & SEC_MERGE) != 0
6687 && !bfd_is_abs_section (sec->output_section))
6688 {
6689 struct bfd_elf_section_data *secdata;
6690
6691 secdata = elf_section_data (sec);
6692 if (! _bfd_add_merge_section (abfd,
6693 &elf_hash_table (info)->merge_info,
6694 sec, &secdata->sec_info))
6695 return FALSE;
6696 else if (secdata->sec_info)
6697 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6698 }
6699
6700 if (elf_hash_table (info)->merge_info != NULL)
6701 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6702 merge_sections_remove_hook);
6703 return TRUE;
6704 }
6705
6706 /* Create an entry in an ELF linker hash table. */
6707
6708 struct bfd_hash_entry *
6709 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6710 struct bfd_hash_table *table,
6711 const char *string)
6712 {
6713 /* Allocate the structure if it has not already been allocated by a
6714 subclass. */
6715 if (entry == NULL)
6716 {
6717 entry = (struct bfd_hash_entry *)
6718 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6719 if (entry == NULL)
6720 return entry;
6721 }
6722
6723 /* Call the allocation method of the superclass. */
6724 entry = _bfd_link_hash_newfunc (entry, table, string);
6725 if (entry != NULL)
6726 {
6727 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6728 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6729
6730 /* Set local fields. */
6731 ret->indx = -1;
6732 ret->dynindx = -1;
6733 ret->got = htab->init_got_refcount;
6734 ret->plt = htab->init_plt_refcount;
6735 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6736 - offsetof (struct elf_link_hash_entry, size)));
6737 /* Assume that we have been called by a non-ELF symbol reader.
6738 This flag is then reset by the code which reads an ELF input
6739 file. This ensures that a symbol created by a non-ELF symbol
6740 reader will have the flag set correctly. */
6741 ret->non_elf = 1;
6742 }
6743
6744 return entry;
6745 }
6746
6747 /* Copy data from an indirect symbol to its direct symbol, hiding the
6748 old indirect symbol. Also used for copying flags to a weakdef. */
6749
6750 void
6751 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6752 struct elf_link_hash_entry *dir,
6753 struct elf_link_hash_entry *ind)
6754 {
6755 struct elf_link_hash_table *htab;
6756
6757 /* Copy down any references that we may have already seen to the
6758 symbol which just became indirect. */
6759
6760 dir->ref_dynamic |= ind->ref_dynamic;
6761 dir->ref_regular |= ind->ref_regular;
6762 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6763 dir->non_got_ref |= ind->non_got_ref;
6764 dir->needs_plt |= ind->needs_plt;
6765 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6766
6767 if (ind->root.type != bfd_link_hash_indirect)
6768 return;
6769
6770 /* Copy over the global and procedure linkage table refcount entries.
6771 These may have been already set up by a check_relocs routine. */
6772 htab = elf_hash_table (info);
6773 if (ind->got.refcount > htab->init_got_refcount.refcount)
6774 {
6775 if (dir->got.refcount < 0)
6776 dir->got.refcount = 0;
6777 dir->got.refcount += ind->got.refcount;
6778 ind->got.refcount = htab->init_got_refcount.refcount;
6779 }
6780
6781 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6782 {
6783 if (dir->plt.refcount < 0)
6784 dir->plt.refcount = 0;
6785 dir->plt.refcount += ind->plt.refcount;
6786 ind->plt.refcount = htab->init_plt_refcount.refcount;
6787 }
6788
6789 if (ind->dynindx != -1)
6790 {
6791 if (dir->dynindx != -1)
6792 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6793 dir->dynindx = ind->dynindx;
6794 dir->dynstr_index = ind->dynstr_index;
6795 ind->dynindx = -1;
6796 ind->dynstr_index = 0;
6797 }
6798 }
6799
6800 void
6801 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6802 struct elf_link_hash_entry *h,
6803 bfd_boolean force_local)
6804 {
6805 /* STT_GNU_IFUNC symbol must go through PLT. */
6806 if (h->type != STT_GNU_IFUNC)
6807 {
6808 h->plt = elf_hash_table (info)->init_plt_offset;
6809 h->needs_plt = 0;
6810 }
6811 if (force_local)
6812 {
6813 h->forced_local = 1;
6814 if (h->dynindx != -1)
6815 {
6816 h->dynindx = -1;
6817 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6818 h->dynstr_index);
6819 }
6820 }
6821 }
6822
6823 /* Initialize an ELF linker hash table. */
6824
6825 bfd_boolean
6826 _bfd_elf_link_hash_table_init
6827 (struct elf_link_hash_table *table,
6828 bfd *abfd,
6829 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6830 struct bfd_hash_table *,
6831 const char *),
6832 unsigned int entsize,
6833 enum elf_target_id target_id)
6834 {
6835 bfd_boolean ret;
6836 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6837
6838 memset (table, 0, sizeof * table);
6839 table->init_got_refcount.refcount = can_refcount - 1;
6840 table->init_plt_refcount.refcount = can_refcount - 1;
6841 table->init_got_offset.offset = -(bfd_vma) 1;
6842 table->init_plt_offset.offset = -(bfd_vma) 1;
6843 /* The first dynamic symbol is a dummy. */
6844 table->dynsymcount = 1;
6845
6846 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6847
6848 table->root.type = bfd_link_elf_hash_table;
6849 table->hash_table_id = target_id;
6850
6851 return ret;
6852 }
6853
6854 /* Create an ELF linker hash table. */
6855
6856 struct bfd_link_hash_table *
6857 _bfd_elf_link_hash_table_create (bfd *abfd)
6858 {
6859 struct elf_link_hash_table *ret;
6860 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6861
6862 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6863 if (ret == NULL)
6864 return NULL;
6865
6866 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6867 sizeof (struct elf_link_hash_entry),
6868 GENERIC_ELF_DATA))
6869 {
6870 free (ret);
6871 return NULL;
6872 }
6873
6874 return &ret->root;
6875 }
6876
6877 /* This is a hook for the ELF emulation code in the generic linker to
6878 tell the backend linker what file name to use for the DT_NEEDED
6879 entry for a dynamic object. */
6880
6881 void
6882 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6883 {
6884 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6885 && bfd_get_format (abfd) == bfd_object)
6886 elf_dt_name (abfd) = name;
6887 }
6888
6889 int
6890 bfd_elf_get_dyn_lib_class (bfd *abfd)
6891 {
6892 int lib_class;
6893 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6894 && bfd_get_format (abfd) == bfd_object)
6895 lib_class = elf_dyn_lib_class (abfd);
6896 else
6897 lib_class = 0;
6898 return lib_class;
6899 }
6900
6901 void
6902 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6903 {
6904 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6905 && bfd_get_format (abfd) == bfd_object)
6906 elf_dyn_lib_class (abfd) = lib_class;
6907 }
6908
6909 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6910 the linker ELF emulation code. */
6911
6912 struct bfd_link_needed_list *
6913 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6914 struct bfd_link_info *info)
6915 {
6916 if (! is_elf_hash_table (info->hash))
6917 return NULL;
6918 return elf_hash_table (info)->needed;
6919 }
6920
6921 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6922 hook for the linker ELF emulation code. */
6923
6924 struct bfd_link_needed_list *
6925 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6926 struct bfd_link_info *info)
6927 {
6928 if (! is_elf_hash_table (info->hash))
6929 return NULL;
6930 return elf_hash_table (info)->runpath;
6931 }
6932
6933 /* Get the name actually used for a dynamic object for a link. This
6934 is the SONAME entry if there is one. Otherwise, it is the string
6935 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6936
6937 const char *
6938 bfd_elf_get_dt_soname (bfd *abfd)
6939 {
6940 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6941 && bfd_get_format (abfd) == bfd_object)
6942 return elf_dt_name (abfd);
6943 return NULL;
6944 }
6945
6946 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6947 the ELF linker emulation code. */
6948
6949 bfd_boolean
6950 bfd_elf_get_bfd_needed_list (bfd *abfd,
6951 struct bfd_link_needed_list **pneeded)
6952 {
6953 asection *s;
6954 bfd_byte *dynbuf = NULL;
6955 unsigned int elfsec;
6956 unsigned long shlink;
6957 bfd_byte *extdyn, *extdynend;
6958 size_t extdynsize;
6959 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6960
6961 *pneeded = NULL;
6962
6963 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6964 || bfd_get_format (abfd) != bfd_object)
6965 return TRUE;
6966
6967 s = bfd_get_section_by_name (abfd, ".dynamic");
6968 if (s == NULL || s->size == 0)
6969 return TRUE;
6970
6971 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6972 goto error_return;
6973
6974 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6975 if (elfsec == SHN_BAD)
6976 goto error_return;
6977
6978 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6979
6980 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6981 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6982
6983 extdyn = dynbuf;
6984 extdynend = extdyn + s->size;
6985 for (; extdyn < extdynend; extdyn += extdynsize)
6986 {
6987 Elf_Internal_Dyn dyn;
6988
6989 (*swap_dyn_in) (abfd, extdyn, &dyn);
6990
6991 if (dyn.d_tag == DT_NULL)
6992 break;
6993
6994 if (dyn.d_tag == DT_NEEDED)
6995 {
6996 const char *string;
6997 struct bfd_link_needed_list *l;
6998 unsigned int tagv = dyn.d_un.d_val;
6999 bfd_size_type amt;
7000
7001 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7002 if (string == NULL)
7003 goto error_return;
7004
7005 amt = sizeof *l;
7006 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7007 if (l == NULL)
7008 goto error_return;
7009
7010 l->by = abfd;
7011 l->name = string;
7012 l->next = *pneeded;
7013 *pneeded = l;
7014 }
7015 }
7016
7017 free (dynbuf);
7018
7019 return TRUE;
7020
7021 error_return:
7022 if (dynbuf != NULL)
7023 free (dynbuf);
7024 return FALSE;
7025 }
7026
7027 struct elf_symbuf_symbol
7028 {
7029 unsigned long st_name; /* Symbol name, index in string tbl */
7030 unsigned char st_info; /* Type and binding attributes */
7031 unsigned char st_other; /* Visibilty, and target specific */
7032 };
7033
7034 struct elf_symbuf_head
7035 {
7036 struct elf_symbuf_symbol *ssym;
7037 bfd_size_type count;
7038 unsigned int st_shndx;
7039 };
7040
7041 struct elf_symbol
7042 {
7043 union
7044 {
7045 Elf_Internal_Sym *isym;
7046 struct elf_symbuf_symbol *ssym;
7047 } u;
7048 const char *name;
7049 };
7050
7051 /* Sort references to symbols by ascending section number. */
7052
7053 static int
7054 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7055 {
7056 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7057 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7058
7059 return s1->st_shndx - s2->st_shndx;
7060 }
7061
7062 static int
7063 elf_sym_name_compare (const void *arg1, const void *arg2)
7064 {
7065 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7066 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7067 return strcmp (s1->name, s2->name);
7068 }
7069
7070 static struct elf_symbuf_head *
7071 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7072 {
7073 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7074 struct elf_symbuf_symbol *ssym;
7075 struct elf_symbuf_head *ssymbuf, *ssymhead;
7076 bfd_size_type i, shndx_count, total_size;
7077
7078 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7079 if (indbuf == NULL)
7080 return NULL;
7081
7082 for (ind = indbuf, i = 0; i < symcount; i++)
7083 if (isymbuf[i].st_shndx != SHN_UNDEF)
7084 *ind++ = &isymbuf[i];
7085 indbufend = ind;
7086
7087 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7088 elf_sort_elf_symbol);
7089
7090 shndx_count = 0;
7091 if (indbufend > indbuf)
7092 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7093 if (ind[0]->st_shndx != ind[1]->st_shndx)
7094 shndx_count++;
7095
7096 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7097 + (indbufend - indbuf) * sizeof (*ssym));
7098 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7099 if (ssymbuf == NULL)
7100 {
7101 free (indbuf);
7102 return NULL;
7103 }
7104
7105 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7106 ssymbuf->ssym = NULL;
7107 ssymbuf->count = shndx_count;
7108 ssymbuf->st_shndx = 0;
7109 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7110 {
7111 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7112 {
7113 ssymhead++;
7114 ssymhead->ssym = ssym;
7115 ssymhead->count = 0;
7116 ssymhead->st_shndx = (*ind)->st_shndx;
7117 }
7118 ssym->st_name = (*ind)->st_name;
7119 ssym->st_info = (*ind)->st_info;
7120 ssym->st_other = (*ind)->st_other;
7121 ssymhead->count++;
7122 }
7123 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7124 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7125 == total_size));
7126
7127 free (indbuf);
7128 return ssymbuf;
7129 }
7130
7131 /* Check if 2 sections define the same set of local and global
7132 symbols. */
7133
7134 static bfd_boolean
7135 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7136 struct bfd_link_info *info)
7137 {
7138 bfd *bfd1, *bfd2;
7139 const struct elf_backend_data *bed1, *bed2;
7140 Elf_Internal_Shdr *hdr1, *hdr2;
7141 bfd_size_type symcount1, symcount2;
7142 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7143 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7144 Elf_Internal_Sym *isym, *isymend;
7145 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7146 bfd_size_type count1, count2, i;
7147 unsigned int shndx1, shndx2;
7148 bfd_boolean result;
7149
7150 bfd1 = sec1->owner;
7151 bfd2 = sec2->owner;
7152
7153 /* Both sections have to be in ELF. */
7154 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7155 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7156 return FALSE;
7157
7158 if (elf_section_type (sec1) != elf_section_type (sec2))
7159 return FALSE;
7160
7161 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7162 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7163 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7164 return FALSE;
7165
7166 bed1 = get_elf_backend_data (bfd1);
7167 bed2 = get_elf_backend_data (bfd2);
7168 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7169 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7170 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7171 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7172
7173 if (symcount1 == 0 || symcount2 == 0)
7174 return FALSE;
7175
7176 result = FALSE;
7177 isymbuf1 = NULL;
7178 isymbuf2 = NULL;
7179 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7180 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7181
7182 if (ssymbuf1 == NULL)
7183 {
7184 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7185 NULL, NULL, NULL);
7186 if (isymbuf1 == NULL)
7187 goto done;
7188
7189 if (!info->reduce_memory_overheads)
7190 elf_tdata (bfd1)->symbuf = ssymbuf1
7191 = elf_create_symbuf (symcount1, isymbuf1);
7192 }
7193
7194 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7195 {
7196 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7197 NULL, NULL, NULL);
7198 if (isymbuf2 == NULL)
7199 goto done;
7200
7201 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7202 elf_tdata (bfd2)->symbuf = ssymbuf2
7203 = elf_create_symbuf (symcount2, isymbuf2);
7204 }
7205
7206 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7207 {
7208 /* Optimized faster version. */
7209 bfd_size_type lo, hi, mid;
7210 struct elf_symbol *symp;
7211 struct elf_symbuf_symbol *ssym, *ssymend;
7212
7213 lo = 0;
7214 hi = ssymbuf1->count;
7215 ssymbuf1++;
7216 count1 = 0;
7217 while (lo < hi)
7218 {
7219 mid = (lo + hi) / 2;
7220 if (shndx1 < ssymbuf1[mid].st_shndx)
7221 hi = mid;
7222 else if (shndx1 > ssymbuf1[mid].st_shndx)
7223 lo = mid + 1;
7224 else
7225 {
7226 count1 = ssymbuf1[mid].count;
7227 ssymbuf1 += mid;
7228 break;
7229 }
7230 }
7231
7232 lo = 0;
7233 hi = ssymbuf2->count;
7234 ssymbuf2++;
7235 count2 = 0;
7236 while (lo < hi)
7237 {
7238 mid = (lo + hi) / 2;
7239 if (shndx2 < ssymbuf2[mid].st_shndx)
7240 hi = mid;
7241 else if (shndx2 > ssymbuf2[mid].st_shndx)
7242 lo = mid + 1;
7243 else
7244 {
7245 count2 = ssymbuf2[mid].count;
7246 ssymbuf2 += mid;
7247 break;
7248 }
7249 }
7250
7251 if (count1 == 0 || count2 == 0 || count1 != count2)
7252 goto done;
7253
7254 symtable1 = (struct elf_symbol *)
7255 bfd_malloc (count1 * sizeof (struct elf_symbol));
7256 symtable2 = (struct elf_symbol *)
7257 bfd_malloc (count2 * sizeof (struct elf_symbol));
7258 if (symtable1 == NULL || symtable2 == NULL)
7259 goto done;
7260
7261 symp = symtable1;
7262 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7263 ssym < ssymend; ssym++, symp++)
7264 {
7265 symp->u.ssym = ssym;
7266 symp->name = bfd_elf_string_from_elf_section (bfd1,
7267 hdr1->sh_link,
7268 ssym->st_name);
7269 }
7270
7271 symp = symtable2;
7272 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7273 ssym < ssymend; ssym++, symp++)
7274 {
7275 symp->u.ssym = ssym;
7276 symp->name = bfd_elf_string_from_elf_section (bfd2,
7277 hdr2->sh_link,
7278 ssym->st_name);
7279 }
7280
7281 /* Sort symbol by name. */
7282 qsort (symtable1, count1, sizeof (struct elf_symbol),
7283 elf_sym_name_compare);
7284 qsort (symtable2, count1, sizeof (struct elf_symbol),
7285 elf_sym_name_compare);
7286
7287 for (i = 0; i < count1; i++)
7288 /* Two symbols must have the same binding, type and name. */
7289 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7290 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7291 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7292 goto done;
7293
7294 result = TRUE;
7295 goto done;
7296 }
7297
7298 symtable1 = (struct elf_symbol *)
7299 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7300 symtable2 = (struct elf_symbol *)
7301 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7302 if (symtable1 == NULL || symtable2 == NULL)
7303 goto done;
7304
7305 /* Count definitions in the section. */
7306 count1 = 0;
7307 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7308 if (isym->st_shndx == shndx1)
7309 symtable1[count1++].u.isym = isym;
7310
7311 count2 = 0;
7312 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7313 if (isym->st_shndx == shndx2)
7314 symtable2[count2++].u.isym = isym;
7315
7316 if (count1 == 0 || count2 == 0 || count1 != count2)
7317 goto done;
7318
7319 for (i = 0; i < count1; i++)
7320 symtable1[i].name
7321 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7322 symtable1[i].u.isym->st_name);
7323
7324 for (i = 0; i < count2; i++)
7325 symtable2[i].name
7326 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7327 symtable2[i].u.isym->st_name);
7328
7329 /* Sort symbol by name. */
7330 qsort (symtable1, count1, sizeof (struct elf_symbol),
7331 elf_sym_name_compare);
7332 qsort (symtable2, count1, sizeof (struct elf_symbol),
7333 elf_sym_name_compare);
7334
7335 for (i = 0; i < count1; i++)
7336 /* Two symbols must have the same binding, type and name. */
7337 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7338 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7339 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7340 goto done;
7341
7342 result = TRUE;
7343
7344 done:
7345 if (symtable1)
7346 free (symtable1);
7347 if (symtable2)
7348 free (symtable2);
7349 if (isymbuf1)
7350 free (isymbuf1);
7351 if (isymbuf2)
7352 free (isymbuf2);
7353
7354 return result;
7355 }
7356
7357 /* Return TRUE if 2 section types are compatible. */
7358
7359 bfd_boolean
7360 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7361 bfd *bbfd, const asection *bsec)
7362 {
7363 if (asec == NULL
7364 || bsec == NULL
7365 || abfd->xvec->flavour != bfd_target_elf_flavour
7366 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7367 return TRUE;
7368
7369 return elf_section_type (asec) == elf_section_type (bsec);
7370 }
7371 \f
7372 /* Final phase of ELF linker. */
7373
7374 /* A structure we use to avoid passing large numbers of arguments. */
7375
7376 struct elf_final_link_info
7377 {
7378 /* General link information. */
7379 struct bfd_link_info *info;
7380 /* Output BFD. */
7381 bfd *output_bfd;
7382 /* Symbol string table. */
7383 struct bfd_strtab_hash *symstrtab;
7384 /* .dynsym section. */
7385 asection *dynsym_sec;
7386 /* .hash section. */
7387 asection *hash_sec;
7388 /* symbol version section (.gnu.version). */
7389 asection *symver_sec;
7390 /* Buffer large enough to hold contents of any section. */
7391 bfd_byte *contents;
7392 /* Buffer large enough to hold external relocs of any section. */
7393 void *external_relocs;
7394 /* Buffer large enough to hold internal relocs of any section. */
7395 Elf_Internal_Rela *internal_relocs;
7396 /* Buffer large enough to hold external local symbols of any input
7397 BFD. */
7398 bfd_byte *external_syms;
7399 /* And a buffer for symbol section indices. */
7400 Elf_External_Sym_Shndx *locsym_shndx;
7401 /* Buffer large enough to hold internal local symbols of any input
7402 BFD. */
7403 Elf_Internal_Sym *internal_syms;
7404 /* Array large enough to hold a symbol index for each local symbol
7405 of any input BFD. */
7406 long *indices;
7407 /* Array large enough to hold a section pointer for each local
7408 symbol of any input BFD. */
7409 asection **sections;
7410 /* Buffer to hold swapped out symbols. */
7411 bfd_byte *symbuf;
7412 /* And one for symbol section indices. */
7413 Elf_External_Sym_Shndx *symshndxbuf;
7414 /* Number of swapped out symbols in buffer. */
7415 size_t symbuf_count;
7416 /* Number of symbols which fit in symbuf. */
7417 size_t symbuf_size;
7418 /* And same for symshndxbuf. */
7419 size_t shndxbuf_size;
7420 };
7421
7422 /* This struct is used to pass information to elf_link_output_extsym. */
7423
7424 struct elf_outext_info
7425 {
7426 bfd_boolean failed;
7427 bfd_boolean localsyms;
7428 struct elf_final_link_info *finfo;
7429 };
7430
7431
7432 /* Support for evaluating a complex relocation.
7433
7434 Complex relocations are generalized, self-describing relocations. The
7435 implementation of them consists of two parts: complex symbols, and the
7436 relocations themselves.
7437
7438 The relocations are use a reserved elf-wide relocation type code (R_RELC
7439 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7440 information (start bit, end bit, word width, etc) into the addend. This
7441 information is extracted from CGEN-generated operand tables within gas.
7442
7443 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7444 internal) representing prefix-notation expressions, including but not
7445 limited to those sorts of expressions normally encoded as addends in the
7446 addend field. The symbol mangling format is:
7447
7448 <node> := <literal>
7449 | <unary-operator> ':' <node>
7450 | <binary-operator> ':' <node> ':' <node>
7451 ;
7452
7453 <literal> := 's' <digits=N> ':' <N character symbol name>
7454 | 'S' <digits=N> ':' <N character section name>
7455 | '#' <hexdigits>
7456 ;
7457
7458 <binary-operator> := as in C
7459 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7460
7461 static void
7462 set_symbol_value (bfd *bfd_with_globals,
7463 Elf_Internal_Sym *isymbuf,
7464 size_t locsymcount,
7465 size_t symidx,
7466 bfd_vma val)
7467 {
7468 struct elf_link_hash_entry **sym_hashes;
7469 struct elf_link_hash_entry *h;
7470 size_t extsymoff = locsymcount;
7471
7472 if (symidx < locsymcount)
7473 {
7474 Elf_Internal_Sym *sym;
7475
7476 sym = isymbuf + symidx;
7477 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7478 {
7479 /* It is a local symbol: move it to the
7480 "absolute" section and give it a value. */
7481 sym->st_shndx = SHN_ABS;
7482 sym->st_value = val;
7483 return;
7484 }
7485 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7486 extsymoff = 0;
7487 }
7488
7489 /* It is a global symbol: set its link type
7490 to "defined" and give it a value. */
7491
7492 sym_hashes = elf_sym_hashes (bfd_with_globals);
7493 h = sym_hashes [symidx - extsymoff];
7494 while (h->root.type == bfd_link_hash_indirect
7495 || h->root.type == bfd_link_hash_warning)
7496 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7497 h->root.type = bfd_link_hash_defined;
7498 h->root.u.def.value = val;
7499 h->root.u.def.section = bfd_abs_section_ptr;
7500 }
7501
7502 static bfd_boolean
7503 resolve_symbol (const char *name,
7504 bfd *input_bfd,
7505 struct elf_final_link_info *finfo,
7506 bfd_vma *result,
7507 Elf_Internal_Sym *isymbuf,
7508 size_t locsymcount)
7509 {
7510 Elf_Internal_Sym *sym;
7511 struct bfd_link_hash_entry *global_entry;
7512 const char *candidate = NULL;
7513 Elf_Internal_Shdr *symtab_hdr;
7514 size_t i;
7515
7516 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7517
7518 for (i = 0; i < locsymcount; ++ i)
7519 {
7520 sym = isymbuf + i;
7521
7522 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7523 continue;
7524
7525 candidate = bfd_elf_string_from_elf_section (input_bfd,
7526 symtab_hdr->sh_link,
7527 sym->st_name);
7528 #ifdef DEBUG
7529 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7530 name, candidate, (unsigned long) sym->st_value);
7531 #endif
7532 if (candidate && strcmp (candidate, name) == 0)
7533 {
7534 asection *sec = finfo->sections [i];
7535
7536 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7537 *result += sec->output_offset + sec->output_section->vma;
7538 #ifdef DEBUG
7539 printf ("Found symbol with value %8.8lx\n",
7540 (unsigned long) *result);
7541 #endif
7542 return TRUE;
7543 }
7544 }
7545
7546 /* Hmm, haven't found it yet. perhaps it is a global. */
7547 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7548 FALSE, FALSE, TRUE);
7549 if (!global_entry)
7550 return FALSE;
7551
7552 if (global_entry->type == bfd_link_hash_defined
7553 || global_entry->type == bfd_link_hash_defweak)
7554 {
7555 *result = (global_entry->u.def.value
7556 + global_entry->u.def.section->output_section->vma
7557 + global_entry->u.def.section->output_offset);
7558 #ifdef DEBUG
7559 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7560 global_entry->root.string, (unsigned long) *result);
7561 #endif
7562 return TRUE;
7563 }
7564
7565 return FALSE;
7566 }
7567
7568 static bfd_boolean
7569 resolve_section (const char *name,
7570 asection *sections,
7571 bfd_vma *result)
7572 {
7573 asection *curr;
7574 unsigned int len;
7575
7576 for (curr = sections; curr; curr = curr->next)
7577 if (strcmp (curr->name, name) == 0)
7578 {
7579 *result = curr->vma;
7580 return TRUE;
7581 }
7582
7583 /* Hmm. still haven't found it. try pseudo-section names. */
7584 for (curr = sections; curr; curr = curr->next)
7585 {
7586 len = strlen (curr->name);
7587 if (len > strlen (name))
7588 continue;
7589
7590 if (strncmp (curr->name, name, len) == 0)
7591 {
7592 if (strncmp (".end", name + len, 4) == 0)
7593 {
7594 *result = curr->vma + curr->size;
7595 return TRUE;
7596 }
7597
7598 /* Insert more pseudo-section names here, if you like. */
7599 }
7600 }
7601
7602 return FALSE;
7603 }
7604
7605 static void
7606 undefined_reference (const char *reftype, const char *name)
7607 {
7608 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7609 reftype, name);
7610 }
7611
7612 static bfd_boolean
7613 eval_symbol (bfd_vma *result,
7614 const char **symp,
7615 bfd *input_bfd,
7616 struct elf_final_link_info *finfo,
7617 bfd_vma dot,
7618 Elf_Internal_Sym *isymbuf,
7619 size_t locsymcount,
7620 int signed_p)
7621 {
7622 size_t len;
7623 size_t symlen;
7624 bfd_vma a;
7625 bfd_vma b;
7626 char symbuf[4096];
7627 const char *sym = *symp;
7628 const char *symend;
7629 bfd_boolean symbol_is_section = FALSE;
7630
7631 len = strlen (sym);
7632 symend = sym + len;
7633
7634 if (len < 1 || len > sizeof (symbuf))
7635 {
7636 bfd_set_error (bfd_error_invalid_operation);
7637 return FALSE;
7638 }
7639
7640 switch (* sym)
7641 {
7642 case '.':
7643 *result = dot;
7644 *symp = sym + 1;
7645 return TRUE;
7646
7647 case '#':
7648 ++sym;
7649 *result = strtoul (sym, (char **) symp, 16);
7650 return TRUE;
7651
7652 case 'S':
7653 symbol_is_section = TRUE;
7654 case 's':
7655 ++sym;
7656 symlen = strtol (sym, (char **) symp, 10);
7657 sym = *symp + 1; /* Skip the trailing ':'. */
7658
7659 if (symend < sym || symlen + 1 > sizeof (symbuf))
7660 {
7661 bfd_set_error (bfd_error_invalid_operation);
7662 return FALSE;
7663 }
7664
7665 memcpy (symbuf, sym, symlen);
7666 symbuf[symlen] = '\0';
7667 *symp = sym + symlen;
7668
7669 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7670 the symbol as a section, or vice-versa. so we're pretty liberal in our
7671 interpretation here; section means "try section first", not "must be a
7672 section", and likewise with symbol. */
7673
7674 if (symbol_is_section)
7675 {
7676 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7677 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7678 isymbuf, locsymcount))
7679 {
7680 undefined_reference ("section", symbuf);
7681 return FALSE;
7682 }
7683 }
7684 else
7685 {
7686 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7687 isymbuf, locsymcount)
7688 && !resolve_section (symbuf, finfo->output_bfd->sections,
7689 result))
7690 {
7691 undefined_reference ("symbol", symbuf);
7692 return FALSE;
7693 }
7694 }
7695
7696 return TRUE;
7697
7698 /* All that remains are operators. */
7699
7700 #define UNARY_OP(op) \
7701 if (strncmp (sym, #op, strlen (#op)) == 0) \
7702 { \
7703 sym += strlen (#op); \
7704 if (*sym == ':') \
7705 ++sym; \
7706 *symp = sym; \
7707 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7708 isymbuf, locsymcount, signed_p)) \
7709 return FALSE; \
7710 if (signed_p) \
7711 *result = op ((bfd_signed_vma) a); \
7712 else \
7713 *result = op a; \
7714 return TRUE; \
7715 }
7716
7717 #define BINARY_OP(op) \
7718 if (strncmp (sym, #op, strlen (#op)) == 0) \
7719 { \
7720 sym += strlen (#op); \
7721 if (*sym == ':') \
7722 ++sym; \
7723 *symp = sym; \
7724 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7725 isymbuf, locsymcount, signed_p)) \
7726 return FALSE; \
7727 ++*symp; \
7728 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7729 isymbuf, locsymcount, signed_p)) \
7730 return FALSE; \
7731 if (signed_p) \
7732 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7733 else \
7734 *result = a op b; \
7735 return TRUE; \
7736 }
7737
7738 default:
7739 UNARY_OP (0-);
7740 BINARY_OP (<<);
7741 BINARY_OP (>>);
7742 BINARY_OP (==);
7743 BINARY_OP (!=);
7744 BINARY_OP (<=);
7745 BINARY_OP (>=);
7746 BINARY_OP (&&);
7747 BINARY_OP (||);
7748 UNARY_OP (~);
7749 UNARY_OP (!);
7750 BINARY_OP (*);
7751 BINARY_OP (/);
7752 BINARY_OP (%);
7753 BINARY_OP (^);
7754 BINARY_OP (|);
7755 BINARY_OP (&);
7756 BINARY_OP (+);
7757 BINARY_OP (-);
7758 BINARY_OP (<);
7759 BINARY_OP (>);
7760 #undef UNARY_OP
7761 #undef BINARY_OP
7762 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7763 bfd_set_error (bfd_error_invalid_operation);
7764 return FALSE;
7765 }
7766 }
7767
7768 static void
7769 put_value (bfd_vma size,
7770 unsigned long chunksz,
7771 bfd *input_bfd,
7772 bfd_vma x,
7773 bfd_byte *location)
7774 {
7775 location += (size - chunksz);
7776
7777 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7778 {
7779 switch (chunksz)
7780 {
7781 default:
7782 case 0:
7783 abort ();
7784 case 1:
7785 bfd_put_8 (input_bfd, x, location);
7786 break;
7787 case 2:
7788 bfd_put_16 (input_bfd, x, location);
7789 break;
7790 case 4:
7791 bfd_put_32 (input_bfd, x, location);
7792 break;
7793 case 8:
7794 #ifdef BFD64
7795 bfd_put_64 (input_bfd, x, location);
7796 #else
7797 abort ();
7798 #endif
7799 break;
7800 }
7801 }
7802 }
7803
7804 static bfd_vma
7805 get_value (bfd_vma size,
7806 unsigned long chunksz,
7807 bfd *input_bfd,
7808 bfd_byte *location)
7809 {
7810 bfd_vma x = 0;
7811
7812 for (; size; size -= chunksz, location += chunksz)
7813 {
7814 switch (chunksz)
7815 {
7816 default:
7817 case 0:
7818 abort ();
7819 case 1:
7820 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7821 break;
7822 case 2:
7823 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7824 break;
7825 case 4:
7826 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7827 break;
7828 case 8:
7829 #ifdef BFD64
7830 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7831 #else
7832 abort ();
7833 #endif
7834 break;
7835 }
7836 }
7837 return x;
7838 }
7839
7840 static void
7841 decode_complex_addend (unsigned long *start, /* in bits */
7842 unsigned long *oplen, /* in bits */
7843 unsigned long *len, /* in bits */
7844 unsigned long *wordsz, /* in bytes */
7845 unsigned long *chunksz, /* in bytes */
7846 unsigned long *lsb0_p,
7847 unsigned long *signed_p,
7848 unsigned long *trunc_p,
7849 unsigned long encoded)
7850 {
7851 * start = encoded & 0x3F;
7852 * len = (encoded >> 6) & 0x3F;
7853 * oplen = (encoded >> 12) & 0x3F;
7854 * wordsz = (encoded >> 18) & 0xF;
7855 * chunksz = (encoded >> 22) & 0xF;
7856 * lsb0_p = (encoded >> 27) & 1;
7857 * signed_p = (encoded >> 28) & 1;
7858 * trunc_p = (encoded >> 29) & 1;
7859 }
7860
7861 bfd_reloc_status_type
7862 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7863 asection *input_section ATTRIBUTE_UNUSED,
7864 bfd_byte *contents,
7865 Elf_Internal_Rela *rel,
7866 bfd_vma relocation)
7867 {
7868 bfd_vma shift, x, mask;
7869 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7870 bfd_reloc_status_type r;
7871
7872 /* Perform this reloc, since it is complex.
7873 (this is not to say that it necessarily refers to a complex
7874 symbol; merely that it is a self-describing CGEN based reloc.
7875 i.e. the addend has the complete reloc information (bit start, end,
7876 word size, etc) encoded within it.). */
7877
7878 decode_complex_addend (&start, &oplen, &len, &wordsz,
7879 &chunksz, &lsb0_p, &signed_p,
7880 &trunc_p, rel->r_addend);
7881
7882 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7883
7884 if (lsb0_p)
7885 shift = (start + 1) - len;
7886 else
7887 shift = (8 * wordsz) - (start + len);
7888
7889 /* FIXME: octets_per_byte. */
7890 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7891
7892 #ifdef DEBUG
7893 printf ("Doing complex reloc: "
7894 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7895 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7896 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7897 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7898 oplen, (unsigned long) x, (unsigned long) mask,
7899 (unsigned long) relocation);
7900 #endif
7901
7902 r = bfd_reloc_ok;
7903 if (! trunc_p)
7904 /* Now do an overflow check. */
7905 r = bfd_check_overflow ((signed_p
7906 ? complain_overflow_signed
7907 : complain_overflow_unsigned),
7908 len, 0, (8 * wordsz),
7909 relocation);
7910
7911 /* Do the deed. */
7912 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7913
7914 #ifdef DEBUG
7915 printf (" relocation: %8.8lx\n"
7916 " shifted mask: %8.8lx\n"
7917 " shifted/masked reloc: %8.8lx\n"
7918 " result: %8.8lx\n",
7919 (unsigned long) relocation, (unsigned long) (mask << shift),
7920 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7921 #endif
7922 /* FIXME: octets_per_byte. */
7923 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7924 return r;
7925 }
7926
7927 /* When performing a relocatable link, the input relocations are
7928 preserved. But, if they reference global symbols, the indices
7929 referenced must be updated. Update all the relocations found in
7930 RELDATA. */
7931
7932 static void
7933 elf_link_adjust_relocs (bfd *abfd,
7934 struct bfd_elf_section_reloc_data *reldata)
7935 {
7936 unsigned int i;
7937 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7938 bfd_byte *erela;
7939 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7940 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7941 bfd_vma r_type_mask;
7942 int r_sym_shift;
7943 unsigned int count = reldata->count;
7944 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7945
7946 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7947 {
7948 swap_in = bed->s->swap_reloc_in;
7949 swap_out = bed->s->swap_reloc_out;
7950 }
7951 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7952 {
7953 swap_in = bed->s->swap_reloca_in;
7954 swap_out = bed->s->swap_reloca_out;
7955 }
7956 else
7957 abort ();
7958
7959 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7960 abort ();
7961
7962 if (bed->s->arch_size == 32)
7963 {
7964 r_type_mask = 0xff;
7965 r_sym_shift = 8;
7966 }
7967 else
7968 {
7969 r_type_mask = 0xffffffff;
7970 r_sym_shift = 32;
7971 }
7972
7973 erela = reldata->hdr->contents;
7974 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7975 {
7976 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7977 unsigned int j;
7978
7979 if (*rel_hash == NULL)
7980 continue;
7981
7982 BFD_ASSERT ((*rel_hash)->indx >= 0);
7983
7984 (*swap_in) (abfd, erela, irela);
7985 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7986 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7987 | (irela[j].r_info & r_type_mask));
7988 (*swap_out) (abfd, irela, erela);
7989 }
7990 }
7991
7992 struct elf_link_sort_rela
7993 {
7994 union {
7995 bfd_vma offset;
7996 bfd_vma sym_mask;
7997 } u;
7998 enum elf_reloc_type_class type;
7999 /* We use this as an array of size int_rels_per_ext_rel. */
8000 Elf_Internal_Rela rela[1];
8001 };
8002
8003 static int
8004 elf_link_sort_cmp1 (const void *A, const void *B)
8005 {
8006 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8007 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8008 int relativea, relativeb;
8009
8010 relativea = a->type == reloc_class_relative;
8011 relativeb = b->type == reloc_class_relative;
8012
8013 if (relativea < relativeb)
8014 return 1;
8015 if (relativea > relativeb)
8016 return -1;
8017 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8018 return -1;
8019 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8020 return 1;
8021 if (a->rela->r_offset < b->rela->r_offset)
8022 return -1;
8023 if (a->rela->r_offset > b->rela->r_offset)
8024 return 1;
8025 return 0;
8026 }
8027
8028 static int
8029 elf_link_sort_cmp2 (const void *A, const void *B)
8030 {
8031 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8032 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8033 int copya, copyb;
8034
8035 if (a->u.offset < b->u.offset)
8036 return -1;
8037 if (a->u.offset > b->u.offset)
8038 return 1;
8039 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8040 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8041 if (copya < copyb)
8042 return -1;
8043 if (copya > copyb)
8044 return 1;
8045 if (a->rela->r_offset < b->rela->r_offset)
8046 return -1;
8047 if (a->rela->r_offset > b->rela->r_offset)
8048 return 1;
8049 return 0;
8050 }
8051
8052 static size_t
8053 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8054 {
8055 asection *dynamic_relocs;
8056 asection *rela_dyn;
8057 asection *rel_dyn;
8058 bfd_size_type count, size;
8059 size_t i, ret, sort_elt, ext_size;
8060 bfd_byte *sort, *s_non_relative, *p;
8061 struct elf_link_sort_rela *sq;
8062 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8063 int i2e = bed->s->int_rels_per_ext_rel;
8064 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8065 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8066 struct bfd_link_order *lo;
8067 bfd_vma r_sym_mask;
8068 bfd_boolean use_rela;
8069
8070 /* Find a dynamic reloc section. */
8071 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8072 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8073 if (rela_dyn != NULL && rela_dyn->size > 0
8074 && rel_dyn != NULL && rel_dyn->size > 0)
8075 {
8076 bfd_boolean use_rela_initialised = FALSE;
8077
8078 /* This is just here to stop gcc from complaining.
8079 It's initialization checking code is not perfect. */
8080 use_rela = TRUE;
8081
8082 /* Both sections are present. Examine the sizes
8083 of the indirect sections to help us choose. */
8084 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8085 if (lo->type == bfd_indirect_link_order)
8086 {
8087 asection *o = lo->u.indirect.section;
8088
8089 if ((o->size % bed->s->sizeof_rela) == 0)
8090 {
8091 if ((o->size % bed->s->sizeof_rel) == 0)
8092 /* Section size is divisible by both rel and rela sizes.
8093 It is of no help to us. */
8094 ;
8095 else
8096 {
8097 /* Section size is only divisible by rela. */
8098 if (use_rela_initialised && (use_rela == FALSE))
8099 {
8100 _bfd_error_handler
8101 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8102 bfd_set_error (bfd_error_invalid_operation);
8103 return 0;
8104 }
8105 else
8106 {
8107 use_rela = TRUE;
8108 use_rela_initialised = TRUE;
8109 }
8110 }
8111 }
8112 else if ((o->size % bed->s->sizeof_rel) == 0)
8113 {
8114 /* Section size is only divisible by rel. */
8115 if (use_rela_initialised && (use_rela == TRUE))
8116 {
8117 _bfd_error_handler
8118 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8119 bfd_set_error (bfd_error_invalid_operation);
8120 return 0;
8121 }
8122 else
8123 {
8124 use_rela = FALSE;
8125 use_rela_initialised = TRUE;
8126 }
8127 }
8128 else
8129 {
8130 /* The section size is not divisible by either - something is wrong. */
8131 _bfd_error_handler
8132 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8133 bfd_set_error (bfd_error_invalid_operation);
8134 return 0;
8135 }
8136 }
8137
8138 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8139 if (lo->type == bfd_indirect_link_order)
8140 {
8141 asection *o = lo->u.indirect.section;
8142
8143 if ((o->size % bed->s->sizeof_rela) == 0)
8144 {
8145 if ((o->size % bed->s->sizeof_rel) == 0)
8146 /* Section size is divisible by both rel and rela sizes.
8147 It is of no help to us. */
8148 ;
8149 else
8150 {
8151 /* Section size is only divisible by rela. */
8152 if (use_rela_initialised && (use_rela == FALSE))
8153 {
8154 _bfd_error_handler
8155 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8156 bfd_set_error (bfd_error_invalid_operation);
8157 return 0;
8158 }
8159 else
8160 {
8161 use_rela = TRUE;
8162 use_rela_initialised = TRUE;
8163 }
8164 }
8165 }
8166 else if ((o->size % bed->s->sizeof_rel) == 0)
8167 {
8168 /* Section size is only divisible by rel. */
8169 if (use_rela_initialised && (use_rela == TRUE))
8170 {
8171 _bfd_error_handler
8172 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8173 bfd_set_error (bfd_error_invalid_operation);
8174 return 0;
8175 }
8176 else
8177 {
8178 use_rela = FALSE;
8179 use_rela_initialised = TRUE;
8180 }
8181 }
8182 else
8183 {
8184 /* The section size is not divisible by either - something is wrong. */
8185 _bfd_error_handler
8186 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8187 bfd_set_error (bfd_error_invalid_operation);
8188 return 0;
8189 }
8190 }
8191
8192 if (! use_rela_initialised)
8193 /* Make a guess. */
8194 use_rela = TRUE;
8195 }
8196 else if (rela_dyn != NULL && rela_dyn->size > 0)
8197 use_rela = TRUE;
8198 else if (rel_dyn != NULL && rel_dyn->size > 0)
8199 use_rela = FALSE;
8200 else
8201 return 0;
8202
8203 if (use_rela)
8204 {
8205 dynamic_relocs = rela_dyn;
8206 ext_size = bed->s->sizeof_rela;
8207 swap_in = bed->s->swap_reloca_in;
8208 swap_out = bed->s->swap_reloca_out;
8209 }
8210 else
8211 {
8212 dynamic_relocs = rel_dyn;
8213 ext_size = bed->s->sizeof_rel;
8214 swap_in = bed->s->swap_reloc_in;
8215 swap_out = bed->s->swap_reloc_out;
8216 }
8217
8218 size = 0;
8219 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8220 if (lo->type == bfd_indirect_link_order)
8221 size += lo->u.indirect.section->size;
8222
8223 if (size != dynamic_relocs->size)
8224 return 0;
8225
8226 sort_elt = (sizeof (struct elf_link_sort_rela)
8227 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8228
8229 count = dynamic_relocs->size / ext_size;
8230 if (count == 0)
8231 return 0;
8232 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8233
8234 if (sort == NULL)
8235 {
8236 (*info->callbacks->warning)
8237 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8238 return 0;
8239 }
8240
8241 if (bed->s->arch_size == 32)
8242 r_sym_mask = ~(bfd_vma) 0xff;
8243 else
8244 r_sym_mask = ~(bfd_vma) 0xffffffff;
8245
8246 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8247 if (lo->type == bfd_indirect_link_order)
8248 {
8249 bfd_byte *erel, *erelend;
8250 asection *o = lo->u.indirect.section;
8251
8252 if (o->contents == NULL && o->size != 0)
8253 {
8254 /* This is a reloc section that is being handled as a normal
8255 section. See bfd_section_from_shdr. We can't combine
8256 relocs in this case. */
8257 free (sort);
8258 return 0;
8259 }
8260 erel = o->contents;
8261 erelend = o->contents + o->size;
8262 /* FIXME: octets_per_byte. */
8263 p = sort + o->output_offset / ext_size * sort_elt;
8264
8265 while (erel < erelend)
8266 {
8267 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8268
8269 (*swap_in) (abfd, erel, s->rela);
8270 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8271 s->u.sym_mask = r_sym_mask;
8272 p += sort_elt;
8273 erel += ext_size;
8274 }
8275 }
8276
8277 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8278
8279 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8280 {
8281 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8282 if (s->type != reloc_class_relative)
8283 break;
8284 }
8285 ret = i;
8286 s_non_relative = p;
8287
8288 sq = (struct elf_link_sort_rela *) s_non_relative;
8289 for (; i < count; i++, p += sort_elt)
8290 {
8291 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8292 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8293 sq = sp;
8294 sp->u.offset = sq->rela->r_offset;
8295 }
8296
8297 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8298
8299 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8300 if (lo->type == bfd_indirect_link_order)
8301 {
8302 bfd_byte *erel, *erelend;
8303 asection *o = lo->u.indirect.section;
8304
8305 erel = o->contents;
8306 erelend = o->contents + o->size;
8307 /* FIXME: octets_per_byte. */
8308 p = sort + o->output_offset / ext_size * sort_elt;
8309 while (erel < erelend)
8310 {
8311 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8312 (*swap_out) (abfd, s->rela, erel);
8313 p += sort_elt;
8314 erel += ext_size;
8315 }
8316 }
8317
8318 free (sort);
8319 *psec = dynamic_relocs;
8320 return ret;
8321 }
8322
8323 /* Flush the output symbols to the file. */
8324
8325 static bfd_boolean
8326 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8327 const struct elf_backend_data *bed)
8328 {
8329 if (finfo->symbuf_count > 0)
8330 {
8331 Elf_Internal_Shdr *hdr;
8332 file_ptr pos;
8333 bfd_size_type amt;
8334
8335 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8336 pos = hdr->sh_offset + hdr->sh_size;
8337 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8338 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8339 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8340 return FALSE;
8341
8342 hdr->sh_size += amt;
8343 finfo->symbuf_count = 0;
8344 }
8345
8346 return TRUE;
8347 }
8348
8349 /* Add a symbol to the output symbol table. */
8350
8351 static int
8352 elf_link_output_sym (struct elf_final_link_info *finfo,
8353 const char *name,
8354 Elf_Internal_Sym *elfsym,
8355 asection *input_sec,
8356 struct elf_link_hash_entry *h)
8357 {
8358 bfd_byte *dest;
8359 Elf_External_Sym_Shndx *destshndx;
8360 int (*output_symbol_hook)
8361 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8362 struct elf_link_hash_entry *);
8363 const struct elf_backend_data *bed;
8364
8365 bed = get_elf_backend_data (finfo->output_bfd);
8366 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8367 if (output_symbol_hook != NULL)
8368 {
8369 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8370 if (ret != 1)
8371 return ret;
8372 }
8373
8374 if (name == NULL || *name == '\0')
8375 elfsym->st_name = 0;
8376 else if (input_sec->flags & SEC_EXCLUDE)
8377 elfsym->st_name = 0;
8378 else
8379 {
8380 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8381 name, TRUE, FALSE);
8382 if (elfsym->st_name == (unsigned long) -1)
8383 return 0;
8384 }
8385
8386 if (finfo->symbuf_count >= finfo->symbuf_size)
8387 {
8388 if (! elf_link_flush_output_syms (finfo, bed))
8389 return 0;
8390 }
8391
8392 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8393 destshndx = finfo->symshndxbuf;
8394 if (destshndx != NULL)
8395 {
8396 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8397 {
8398 bfd_size_type amt;
8399
8400 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8401 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8402 amt * 2);
8403 if (destshndx == NULL)
8404 return 0;
8405 finfo->symshndxbuf = destshndx;
8406 memset ((char *) destshndx + amt, 0, amt);
8407 finfo->shndxbuf_size *= 2;
8408 }
8409 destshndx += bfd_get_symcount (finfo->output_bfd);
8410 }
8411
8412 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8413 finfo->symbuf_count += 1;
8414 bfd_get_symcount (finfo->output_bfd) += 1;
8415
8416 return 1;
8417 }
8418
8419 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8420
8421 static bfd_boolean
8422 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8423 {
8424 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8425 && sym->st_shndx < SHN_LORESERVE)
8426 {
8427 /* The gABI doesn't support dynamic symbols in output sections
8428 beyond 64k. */
8429 (*_bfd_error_handler)
8430 (_("%B: Too many sections: %d (>= %d)"),
8431 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8432 bfd_set_error (bfd_error_nonrepresentable_section);
8433 return FALSE;
8434 }
8435 return TRUE;
8436 }
8437
8438 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8439 allowing an unsatisfied unversioned symbol in the DSO to match a
8440 versioned symbol that would normally require an explicit version.
8441 We also handle the case that a DSO references a hidden symbol
8442 which may be satisfied by a versioned symbol in another DSO. */
8443
8444 static bfd_boolean
8445 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8446 const struct elf_backend_data *bed,
8447 struct elf_link_hash_entry *h)
8448 {
8449 bfd *abfd;
8450 struct elf_link_loaded_list *loaded;
8451
8452 if (!is_elf_hash_table (info->hash))
8453 return FALSE;
8454
8455 switch (h->root.type)
8456 {
8457 default:
8458 abfd = NULL;
8459 break;
8460
8461 case bfd_link_hash_undefined:
8462 case bfd_link_hash_undefweak:
8463 abfd = h->root.u.undef.abfd;
8464 if ((abfd->flags & DYNAMIC) == 0
8465 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8466 return FALSE;
8467 break;
8468
8469 case bfd_link_hash_defined:
8470 case bfd_link_hash_defweak:
8471 abfd = h->root.u.def.section->owner;
8472 break;
8473
8474 case bfd_link_hash_common:
8475 abfd = h->root.u.c.p->section->owner;
8476 break;
8477 }
8478 BFD_ASSERT (abfd != NULL);
8479
8480 for (loaded = elf_hash_table (info)->loaded;
8481 loaded != NULL;
8482 loaded = loaded->next)
8483 {
8484 bfd *input;
8485 Elf_Internal_Shdr *hdr;
8486 bfd_size_type symcount;
8487 bfd_size_type extsymcount;
8488 bfd_size_type extsymoff;
8489 Elf_Internal_Shdr *versymhdr;
8490 Elf_Internal_Sym *isym;
8491 Elf_Internal_Sym *isymend;
8492 Elf_Internal_Sym *isymbuf;
8493 Elf_External_Versym *ever;
8494 Elf_External_Versym *extversym;
8495
8496 input = loaded->abfd;
8497
8498 /* We check each DSO for a possible hidden versioned definition. */
8499 if (input == abfd
8500 || (input->flags & DYNAMIC) == 0
8501 || elf_dynversym (input) == 0)
8502 continue;
8503
8504 hdr = &elf_tdata (input)->dynsymtab_hdr;
8505
8506 symcount = hdr->sh_size / bed->s->sizeof_sym;
8507 if (elf_bad_symtab (input))
8508 {
8509 extsymcount = symcount;
8510 extsymoff = 0;
8511 }
8512 else
8513 {
8514 extsymcount = symcount - hdr->sh_info;
8515 extsymoff = hdr->sh_info;
8516 }
8517
8518 if (extsymcount == 0)
8519 continue;
8520
8521 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8522 NULL, NULL, NULL);
8523 if (isymbuf == NULL)
8524 return FALSE;
8525
8526 /* Read in any version definitions. */
8527 versymhdr = &elf_tdata (input)->dynversym_hdr;
8528 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8529 if (extversym == NULL)
8530 goto error_ret;
8531
8532 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8533 || (bfd_bread (extversym, versymhdr->sh_size, input)
8534 != versymhdr->sh_size))
8535 {
8536 free (extversym);
8537 error_ret:
8538 free (isymbuf);
8539 return FALSE;
8540 }
8541
8542 ever = extversym + extsymoff;
8543 isymend = isymbuf + extsymcount;
8544 for (isym = isymbuf; isym < isymend; isym++, ever++)
8545 {
8546 const char *name;
8547 Elf_Internal_Versym iver;
8548 unsigned short version_index;
8549
8550 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8551 || isym->st_shndx == SHN_UNDEF)
8552 continue;
8553
8554 name = bfd_elf_string_from_elf_section (input,
8555 hdr->sh_link,
8556 isym->st_name);
8557 if (strcmp (name, h->root.root.string) != 0)
8558 continue;
8559
8560 _bfd_elf_swap_versym_in (input, ever, &iver);
8561
8562 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8563 && !(h->def_regular
8564 && h->forced_local))
8565 {
8566 /* If we have a non-hidden versioned sym, then it should
8567 have provided a definition for the undefined sym unless
8568 it is defined in a non-shared object and forced local.
8569 */
8570 abort ();
8571 }
8572
8573 version_index = iver.vs_vers & VERSYM_VERSION;
8574 if (version_index == 1 || version_index == 2)
8575 {
8576 /* This is the base or first version. We can use it. */
8577 free (extversym);
8578 free (isymbuf);
8579 return TRUE;
8580 }
8581 }
8582
8583 free (extversym);
8584 free (isymbuf);
8585 }
8586
8587 return FALSE;
8588 }
8589
8590 /* Add an external symbol to the symbol table. This is called from
8591 the hash table traversal routine. When generating a shared object,
8592 we go through the symbol table twice. The first time we output
8593 anything that might have been forced to local scope in a version
8594 script. The second time we output the symbols that are still
8595 global symbols. */
8596
8597 static bfd_boolean
8598 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8599 {
8600 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8601 struct elf_final_link_info *finfo = eoinfo->finfo;
8602 bfd_boolean strip;
8603 Elf_Internal_Sym sym;
8604 asection *input_sec;
8605 const struct elf_backend_data *bed;
8606 long indx;
8607 int ret;
8608
8609 if (h->root.type == bfd_link_hash_warning)
8610 {
8611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8612 if (h->root.type == bfd_link_hash_new)
8613 return TRUE;
8614 }
8615
8616 /* Decide whether to output this symbol in this pass. */
8617 if (eoinfo->localsyms)
8618 {
8619 if (!h->forced_local)
8620 return TRUE;
8621 }
8622 else
8623 {
8624 if (h->forced_local)
8625 return TRUE;
8626 }
8627
8628 bed = get_elf_backend_data (finfo->output_bfd);
8629
8630 if (h->root.type == bfd_link_hash_undefined)
8631 {
8632 /* If we have an undefined symbol reference here then it must have
8633 come from a shared library that is being linked in. (Undefined
8634 references in regular files have already been handled unless
8635 they are in unreferenced sections which are removed by garbage
8636 collection). */
8637 bfd_boolean ignore_undef = FALSE;
8638
8639 /* Some symbols may be special in that the fact that they're
8640 undefined can be safely ignored - let backend determine that. */
8641 if (bed->elf_backend_ignore_undef_symbol)
8642 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8643
8644 /* If we are reporting errors for this situation then do so now. */
8645 if (!ignore_undef
8646 && h->ref_dynamic
8647 && (!h->ref_regular || finfo->info->gc_sections)
8648 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8649 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8650 {
8651 if (! (finfo->info->callbacks->undefined_symbol
8652 (finfo->info, h->root.root.string,
8653 h->ref_regular ? NULL : h->root.u.undef.abfd,
8654 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8655 {
8656 bfd_set_error (bfd_error_bad_value);
8657 eoinfo->failed = TRUE;
8658 return FALSE;
8659 }
8660 }
8661 }
8662
8663 /* We should also warn if a forced local symbol is referenced from
8664 shared libraries. */
8665 if (! finfo->info->relocatable
8666 && (! finfo->info->shared)
8667 && h->forced_local
8668 && h->ref_dynamic
8669 && !h->dynamic_def
8670 && !h->dynamic_weak
8671 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8672 {
8673 bfd *def_bfd;
8674 const char *msg;
8675
8676 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8677 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8678 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8679 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8680 else
8681 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8682 def_bfd = finfo->output_bfd;
8683 if (h->root.u.def.section != bfd_abs_section_ptr)
8684 def_bfd = h->root.u.def.section->owner;
8685 (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8686 h->root.root.string);
8687 bfd_set_error (bfd_error_bad_value);
8688 eoinfo->failed = TRUE;
8689 return FALSE;
8690 }
8691
8692 /* We don't want to output symbols that have never been mentioned by
8693 a regular file, or that we have been told to strip. However, if
8694 h->indx is set to -2, the symbol is used by a reloc and we must
8695 output it. */
8696 if (h->indx == -2)
8697 strip = FALSE;
8698 else if ((h->def_dynamic
8699 || h->ref_dynamic
8700 || h->root.type == bfd_link_hash_new)
8701 && !h->def_regular
8702 && !h->ref_regular)
8703 strip = TRUE;
8704 else if (finfo->info->strip == strip_all)
8705 strip = TRUE;
8706 else if (finfo->info->strip == strip_some
8707 && bfd_hash_lookup (finfo->info->keep_hash,
8708 h->root.root.string, FALSE, FALSE) == NULL)
8709 strip = TRUE;
8710 else if (finfo->info->strip_discarded
8711 && (h->root.type == bfd_link_hash_defined
8712 || h->root.type == bfd_link_hash_defweak)
8713 && elf_discarded_section (h->root.u.def.section))
8714 strip = TRUE;
8715 else if ((h->root.type == bfd_link_hash_undefined
8716 || h->root.type == bfd_link_hash_undefweak)
8717 && h->root.u.undef.abfd != NULL
8718 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8719 strip = TRUE;
8720 else
8721 strip = FALSE;
8722
8723 /* If we're stripping it, and it's not a dynamic symbol, there's
8724 nothing else to do unless it is a forced local symbol or a
8725 STT_GNU_IFUNC symbol. */
8726 if (strip
8727 && h->dynindx == -1
8728 && h->type != STT_GNU_IFUNC
8729 && !h->forced_local)
8730 return TRUE;
8731
8732 sym.st_value = 0;
8733 sym.st_size = h->size;
8734 sym.st_other = h->other;
8735 if (h->forced_local)
8736 {
8737 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8738 /* Turn off visibility on local symbol. */
8739 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8740 }
8741 else if (h->unique_global)
8742 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8743 else if (h->root.type == bfd_link_hash_undefweak
8744 || h->root.type == bfd_link_hash_defweak)
8745 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8746 else
8747 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8748 sym.st_target_internal = h->target_internal;
8749
8750 switch (h->root.type)
8751 {
8752 default:
8753 case bfd_link_hash_new:
8754 case bfd_link_hash_warning:
8755 abort ();
8756 return FALSE;
8757
8758 case bfd_link_hash_undefined:
8759 case bfd_link_hash_undefweak:
8760 input_sec = bfd_und_section_ptr;
8761 sym.st_shndx = SHN_UNDEF;
8762 break;
8763
8764 case bfd_link_hash_defined:
8765 case bfd_link_hash_defweak:
8766 {
8767 input_sec = h->root.u.def.section;
8768 if (input_sec->output_section != NULL)
8769 {
8770 sym.st_shndx =
8771 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8772 input_sec->output_section);
8773 if (sym.st_shndx == SHN_BAD)
8774 {
8775 (*_bfd_error_handler)
8776 (_("%B: could not find output section %A for input section %A"),
8777 finfo->output_bfd, input_sec->output_section, input_sec);
8778 bfd_set_error (bfd_error_nonrepresentable_section);
8779 eoinfo->failed = TRUE;
8780 return FALSE;
8781 }
8782
8783 /* ELF symbols in relocatable files are section relative,
8784 but in nonrelocatable files they are virtual
8785 addresses. */
8786 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8787 if (! finfo->info->relocatable)
8788 {
8789 sym.st_value += input_sec->output_section->vma;
8790 if (h->type == STT_TLS)
8791 {
8792 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8793 if (tls_sec != NULL)
8794 sym.st_value -= tls_sec->vma;
8795 else
8796 {
8797 /* The TLS section may have been garbage collected. */
8798 BFD_ASSERT (finfo->info->gc_sections
8799 && !input_sec->gc_mark);
8800 }
8801 }
8802 }
8803 }
8804 else
8805 {
8806 BFD_ASSERT (input_sec->owner == NULL
8807 || (input_sec->owner->flags & DYNAMIC) != 0);
8808 sym.st_shndx = SHN_UNDEF;
8809 input_sec = bfd_und_section_ptr;
8810 }
8811 }
8812 break;
8813
8814 case bfd_link_hash_common:
8815 input_sec = h->root.u.c.p->section;
8816 sym.st_shndx = bed->common_section_index (input_sec);
8817 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8818 break;
8819
8820 case bfd_link_hash_indirect:
8821 /* These symbols are created by symbol versioning. They point
8822 to the decorated version of the name. For example, if the
8823 symbol foo@@GNU_1.2 is the default, which should be used when
8824 foo is used with no version, then we add an indirect symbol
8825 foo which points to foo@@GNU_1.2. We ignore these symbols,
8826 since the indirected symbol is already in the hash table. */
8827 return TRUE;
8828 }
8829
8830 /* Give the processor backend a chance to tweak the symbol value,
8831 and also to finish up anything that needs to be done for this
8832 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8833 forced local syms when non-shared is due to a historical quirk.
8834 STT_GNU_IFUNC symbol must go through PLT. */
8835 if ((h->type == STT_GNU_IFUNC
8836 && h->def_regular
8837 && !finfo->info->relocatable)
8838 || ((h->dynindx != -1
8839 || h->forced_local)
8840 && ((finfo->info->shared
8841 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8842 || h->root.type != bfd_link_hash_undefweak))
8843 || !h->forced_local)
8844 && elf_hash_table (finfo->info)->dynamic_sections_created))
8845 {
8846 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8847 (finfo->output_bfd, finfo->info, h, &sym)))
8848 {
8849 eoinfo->failed = TRUE;
8850 return FALSE;
8851 }
8852 }
8853
8854 /* If we are marking the symbol as undefined, and there are no
8855 non-weak references to this symbol from a regular object, then
8856 mark the symbol as weak undefined; if there are non-weak
8857 references, mark the symbol as strong. We can't do this earlier,
8858 because it might not be marked as undefined until the
8859 finish_dynamic_symbol routine gets through with it. */
8860 if (sym.st_shndx == SHN_UNDEF
8861 && h->ref_regular
8862 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8863 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8864 {
8865 int bindtype;
8866 unsigned int type = ELF_ST_TYPE (sym.st_info);
8867
8868 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8869 if (type == STT_GNU_IFUNC)
8870 type = STT_FUNC;
8871
8872 if (h->ref_regular_nonweak)
8873 bindtype = STB_GLOBAL;
8874 else
8875 bindtype = STB_WEAK;
8876 sym.st_info = ELF_ST_INFO (bindtype, type);
8877 }
8878
8879 /* If this is a symbol defined in a dynamic library, don't use the
8880 symbol size from the dynamic library. Relinking an executable
8881 against a new library may introduce gratuitous changes in the
8882 executable's symbols if we keep the size. */
8883 if (sym.st_shndx == SHN_UNDEF
8884 && !h->def_regular
8885 && h->def_dynamic)
8886 sym.st_size = 0;
8887
8888 /* If a non-weak symbol with non-default visibility is not defined
8889 locally, it is a fatal error. */
8890 if (! finfo->info->relocatable
8891 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8892 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8893 && h->root.type == bfd_link_hash_undefined
8894 && !h->def_regular)
8895 {
8896 const char *msg;
8897
8898 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8899 msg = _("%B: protected symbol `%s' isn't defined");
8900 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8901 msg = _("%B: internal symbol `%s' isn't defined");
8902 else
8903 msg = _("%B: hidden symbol `%s' isn't defined");
8904 (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8905 bfd_set_error (bfd_error_bad_value);
8906 eoinfo->failed = TRUE;
8907 return FALSE;
8908 }
8909
8910 /* If this symbol should be put in the .dynsym section, then put it
8911 there now. We already know the symbol index. We also fill in
8912 the entry in the .hash section. */
8913 if (h->dynindx != -1
8914 && elf_hash_table (finfo->info)->dynamic_sections_created)
8915 {
8916 bfd_byte *esym;
8917
8918 sym.st_name = h->dynstr_index;
8919 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8920 if (! check_dynsym (finfo->output_bfd, &sym))
8921 {
8922 eoinfo->failed = TRUE;
8923 return FALSE;
8924 }
8925 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8926
8927 if (finfo->hash_sec != NULL)
8928 {
8929 size_t hash_entry_size;
8930 bfd_byte *bucketpos;
8931 bfd_vma chain;
8932 size_t bucketcount;
8933 size_t bucket;
8934
8935 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8936 bucket = h->u.elf_hash_value % bucketcount;
8937
8938 hash_entry_size
8939 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8940 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8941 + (bucket + 2) * hash_entry_size);
8942 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8943 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8944 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8945 ((bfd_byte *) finfo->hash_sec->contents
8946 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8947 }
8948
8949 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8950 {
8951 Elf_Internal_Versym iversym;
8952 Elf_External_Versym *eversym;
8953
8954 if (!h->def_regular)
8955 {
8956 if (h->verinfo.verdef == NULL)
8957 iversym.vs_vers = 0;
8958 else
8959 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8960 }
8961 else
8962 {
8963 if (h->verinfo.vertree == NULL)
8964 iversym.vs_vers = 1;
8965 else
8966 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8967 if (finfo->info->create_default_symver)
8968 iversym.vs_vers++;
8969 }
8970
8971 if (h->hidden)
8972 iversym.vs_vers |= VERSYM_HIDDEN;
8973
8974 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8975 eversym += h->dynindx;
8976 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8977 }
8978 }
8979
8980 /* If we're stripping it, then it was just a dynamic symbol, and
8981 there's nothing else to do. */
8982 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8983 return TRUE;
8984
8985 indx = bfd_get_symcount (finfo->output_bfd);
8986 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8987 if (ret == 0)
8988 {
8989 eoinfo->failed = TRUE;
8990 return FALSE;
8991 }
8992 else if (ret == 1)
8993 h->indx = indx;
8994 else if (h->indx == -2)
8995 abort();
8996
8997 return TRUE;
8998 }
8999
9000 /* Return TRUE if special handling is done for relocs in SEC against
9001 symbols defined in discarded sections. */
9002
9003 static bfd_boolean
9004 elf_section_ignore_discarded_relocs (asection *sec)
9005 {
9006 const struct elf_backend_data *bed;
9007
9008 switch (sec->sec_info_type)
9009 {
9010 case ELF_INFO_TYPE_STABS:
9011 case ELF_INFO_TYPE_EH_FRAME:
9012 return TRUE;
9013 default:
9014 break;
9015 }
9016
9017 bed = get_elf_backend_data (sec->owner);
9018 if (bed->elf_backend_ignore_discarded_relocs != NULL
9019 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9020 return TRUE;
9021
9022 return FALSE;
9023 }
9024
9025 /* Return a mask saying how ld should treat relocations in SEC against
9026 symbols defined in discarded sections. If this function returns
9027 COMPLAIN set, ld will issue a warning message. If this function
9028 returns PRETEND set, and the discarded section was link-once and the
9029 same size as the kept link-once section, ld will pretend that the
9030 symbol was actually defined in the kept section. Otherwise ld will
9031 zero the reloc (at least that is the intent, but some cooperation by
9032 the target dependent code is needed, particularly for REL targets). */
9033
9034 unsigned int
9035 _bfd_elf_default_action_discarded (asection *sec)
9036 {
9037 if (sec->flags & SEC_DEBUGGING)
9038 return PRETEND;
9039
9040 if (strcmp (".eh_frame", sec->name) == 0)
9041 return 0;
9042
9043 if (strcmp (".gcc_except_table", sec->name) == 0)
9044 return 0;
9045
9046 return COMPLAIN | PRETEND;
9047 }
9048
9049 /* Find a match between a section and a member of a section group. */
9050
9051 static asection *
9052 match_group_member (asection *sec, asection *group,
9053 struct bfd_link_info *info)
9054 {
9055 asection *first = elf_next_in_group (group);
9056 asection *s = first;
9057
9058 while (s != NULL)
9059 {
9060 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9061 return s;
9062
9063 s = elf_next_in_group (s);
9064 if (s == first)
9065 break;
9066 }
9067
9068 return NULL;
9069 }
9070
9071 /* Check if the kept section of a discarded section SEC can be used
9072 to replace it. Return the replacement if it is OK. Otherwise return
9073 NULL. */
9074
9075 asection *
9076 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9077 {
9078 asection *kept;
9079
9080 kept = sec->kept_section;
9081 if (kept != NULL)
9082 {
9083 if ((kept->flags & SEC_GROUP) != 0)
9084 kept = match_group_member (sec, kept, info);
9085 if (kept != NULL
9086 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9087 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9088 kept = NULL;
9089 sec->kept_section = kept;
9090 }
9091 return kept;
9092 }
9093
9094 /* Link an input file into the linker output file. This function
9095 handles all the sections and relocations of the input file at once.
9096 This is so that we only have to read the local symbols once, and
9097 don't have to keep them in memory. */
9098
9099 static bfd_boolean
9100 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9101 {
9102 int (*relocate_section)
9103 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9104 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9105 bfd *output_bfd;
9106 Elf_Internal_Shdr *symtab_hdr;
9107 size_t locsymcount;
9108 size_t extsymoff;
9109 Elf_Internal_Sym *isymbuf;
9110 Elf_Internal_Sym *isym;
9111 Elf_Internal_Sym *isymend;
9112 long *pindex;
9113 asection **ppsection;
9114 asection *o;
9115 const struct elf_backend_data *bed;
9116 struct elf_link_hash_entry **sym_hashes;
9117
9118 output_bfd = finfo->output_bfd;
9119 bed = get_elf_backend_data (output_bfd);
9120 relocate_section = bed->elf_backend_relocate_section;
9121
9122 /* If this is a dynamic object, we don't want to do anything here:
9123 we don't want the local symbols, and we don't want the section
9124 contents. */
9125 if ((input_bfd->flags & DYNAMIC) != 0)
9126 return TRUE;
9127
9128 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9129 if (elf_bad_symtab (input_bfd))
9130 {
9131 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9132 extsymoff = 0;
9133 }
9134 else
9135 {
9136 locsymcount = symtab_hdr->sh_info;
9137 extsymoff = symtab_hdr->sh_info;
9138 }
9139
9140 /* Read the local symbols. */
9141 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9142 if (isymbuf == NULL && locsymcount != 0)
9143 {
9144 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9145 finfo->internal_syms,
9146 finfo->external_syms,
9147 finfo->locsym_shndx);
9148 if (isymbuf == NULL)
9149 return FALSE;
9150 }
9151
9152 /* Find local symbol sections and adjust values of symbols in
9153 SEC_MERGE sections. Write out those local symbols we know are
9154 going into the output file. */
9155 isymend = isymbuf + locsymcount;
9156 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9157 isym < isymend;
9158 isym++, pindex++, ppsection++)
9159 {
9160 asection *isec;
9161 const char *name;
9162 Elf_Internal_Sym osym;
9163 long indx;
9164 int ret;
9165
9166 *pindex = -1;
9167
9168 if (elf_bad_symtab (input_bfd))
9169 {
9170 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9171 {
9172 *ppsection = NULL;
9173 continue;
9174 }
9175 }
9176
9177 if (isym->st_shndx == SHN_UNDEF)
9178 isec = bfd_und_section_ptr;
9179 else if (isym->st_shndx == SHN_ABS)
9180 isec = bfd_abs_section_ptr;
9181 else if (isym->st_shndx == SHN_COMMON)
9182 isec = bfd_com_section_ptr;
9183 else
9184 {
9185 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9186 if (isec == NULL)
9187 {
9188 /* Don't attempt to output symbols with st_shnx in the
9189 reserved range other than SHN_ABS and SHN_COMMON. */
9190 *ppsection = NULL;
9191 continue;
9192 }
9193 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9194 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9195 isym->st_value =
9196 _bfd_merged_section_offset (output_bfd, &isec,
9197 elf_section_data (isec)->sec_info,
9198 isym->st_value);
9199 }
9200
9201 *ppsection = isec;
9202
9203 /* Don't output the first, undefined, symbol. */
9204 if (ppsection == finfo->sections)
9205 continue;
9206
9207 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9208 {
9209 /* We never output section symbols. Instead, we use the
9210 section symbol of the corresponding section in the output
9211 file. */
9212 continue;
9213 }
9214
9215 /* If we are stripping all symbols, we don't want to output this
9216 one. */
9217 if (finfo->info->strip == strip_all)
9218 continue;
9219
9220 /* If we are discarding all local symbols, we don't want to
9221 output this one. If we are generating a relocatable output
9222 file, then some of the local symbols may be required by
9223 relocs; we output them below as we discover that they are
9224 needed. */
9225 if (finfo->info->discard == discard_all)
9226 continue;
9227
9228 /* If this symbol is defined in a section which we are
9229 discarding, we don't need to keep it. */
9230 if (isym->st_shndx != SHN_UNDEF
9231 && isym->st_shndx < SHN_LORESERVE
9232 && bfd_section_removed_from_list (output_bfd,
9233 isec->output_section))
9234 continue;
9235
9236 /* Get the name of the symbol. */
9237 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9238 isym->st_name);
9239 if (name == NULL)
9240 return FALSE;
9241
9242 /* See if we are discarding symbols with this name. */
9243 if ((finfo->info->strip == strip_some
9244 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9245 == NULL))
9246 || (((finfo->info->discard == discard_sec_merge
9247 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9248 || finfo->info->discard == discard_l)
9249 && bfd_is_local_label_name (input_bfd, name)))
9250 continue;
9251
9252 osym = *isym;
9253
9254 /* Adjust the section index for the output file. */
9255 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9256 isec->output_section);
9257 if (osym.st_shndx == SHN_BAD)
9258 return FALSE;
9259
9260 /* ELF symbols in relocatable files are section relative, but
9261 in executable files they are virtual addresses. Note that
9262 this code assumes that all ELF sections have an associated
9263 BFD section with a reasonable value for output_offset; below
9264 we assume that they also have a reasonable value for
9265 output_section. Any special sections must be set up to meet
9266 these requirements. */
9267 osym.st_value += isec->output_offset;
9268 if (! finfo->info->relocatable)
9269 {
9270 osym.st_value += isec->output_section->vma;
9271 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9272 {
9273 /* STT_TLS symbols are relative to PT_TLS segment base. */
9274 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9275 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9276 }
9277 }
9278
9279 indx = bfd_get_symcount (output_bfd);
9280 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9281 if (ret == 0)
9282 return FALSE;
9283 else if (ret == 1)
9284 *pindex = indx;
9285 }
9286
9287 /* Relocate the contents of each section. */
9288 sym_hashes = elf_sym_hashes (input_bfd);
9289 for (o = input_bfd->sections; o != NULL; o = o->next)
9290 {
9291 bfd_byte *contents;
9292
9293 if (! o->linker_mark)
9294 {
9295 /* This section was omitted from the link. */
9296 continue;
9297 }
9298
9299 if (finfo->info->relocatable
9300 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9301 {
9302 /* Deal with the group signature symbol. */
9303 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9304 unsigned long symndx = sec_data->this_hdr.sh_info;
9305 asection *osec = o->output_section;
9306
9307 if (symndx >= locsymcount
9308 || (elf_bad_symtab (input_bfd)
9309 && finfo->sections[symndx] == NULL))
9310 {
9311 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9312 while (h->root.type == bfd_link_hash_indirect
9313 || h->root.type == bfd_link_hash_warning)
9314 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9315 /* Arrange for symbol to be output. */
9316 h->indx = -2;
9317 elf_section_data (osec)->this_hdr.sh_info = -2;
9318 }
9319 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9320 {
9321 /* We'll use the output section target_index. */
9322 asection *sec = finfo->sections[symndx]->output_section;
9323 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9324 }
9325 else
9326 {
9327 if (finfo->indices[symndx] == -1)
9328 {
9329 /* Otherwise output the local symbol now. */
9330 Elf_Internal_Sym sym = isymbuf[symndx];
9331 asection *sec = finfo->sections[symndx]->output_section;
9332 const char *name;
9333 long indx;
9334 int ret;
9335
9336 name = bfd_elf_string_from_elf_section (input_bfd,
9337 symtab_hdr->sh_link,
9338 sym.st_name);
9339 if (name == NULL)
9340 return FALSE;
9341
9342 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9343 sec);
9344 if (sym.st_shndx == SHN_BAD)
9345 return FALSE;
9346
9347 sym.st_value += o->output_offset;
9348
9349 indx = bfd_get_symcount (output_bfd);
9350 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9351 if (ret == 0)
9352 return FALSE;
9353 else if (ret == 1)
9354 finfo->indices[symndx] = indx;
9355 else
9356 abort ();
9357 }
9358 elf_section_data (osec)->this_hdr.sh_info
9359 = finfo->indices[symndx];
9360 }
9361 }
9362
9363 if ((o->flags & SEC_HAS_CONTENTS) == 0
9364 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9365 continue;
9366
9367 if ((o->flags & SEC_LINKER_CREATED) != 0)
9368 {
9369 /* Section was created by _bfd_elf_link_create_dynamic_sections
9370 or somesuch. */
9371 continue;
9372 }
9373
9374 /* Get the contents of the section. They have been cached by a
9375 relaxation routine. Note that o is a section in an input
9376 file, so the contents field will not have been set by any of
9377 the routines which work on output files. */
9378 if (elf_section_data (o)->this_hdr.contents != NULL)
9379 contents = elf_section_data (o)->this_hdr.contents;
9380 else
9381 {
9382 contents = finfo->contents;
9383 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9384 return FALSE;
9385 }
9386
9387 if ((o->flags & SEC_RELOC) != 0)
9388 {
9389 Elf_Internal_Rela *internal_relocs;
9390 Elf_Internal_Rela *rel, *relend;
9391 bfd_vma r_type_mask;
9392 int r_sym_shift;
9393 int action_discarded;
9394 int ret;
9395
9396 /* Get the swapped relocs. */
9397 internal_relocs
9398 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9399 finfo->internal_relocs, FALSE);
9400 if (internal_relocs == NULL
9401 && o->reloc_count > 0)
9402 return FALSE;
9403
9404 if (bed->s->arch_size == 32)
9405 {
9406 r_type_mask = 0xff;
9407 r_sym_shift = 8;
9408 }
9409 else
9410 {
9411 r_type_mask = 0xffffffff;
9412 r_sym_shift = 32;
9413 }
9414
9415 action_discarded = -1;
9416 if (!elf_section_ignore_discarded_relocs (o))
9417 action_discarded = (*bed->action_discarded) (o);
9418
9419 /* Run through the relocs evaluating complex reloc symbols and
9420 looking for relocs against symbols from discarded sections
9421 or section symbols from removed link-once sections.
9422 Complain about relocs against discarded sections. Zero
9423 relocs against removed link-once sections. */
9424
9425 rel = internal_relocs;
9426 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9427 for ( ; rel < relend; rel++)
9428 {
9429 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9430 unsigned int s_type;
9431 asection **ps, *sec;
9432 struct elf_link_hash_entry *h = NULL;
9433 const char *sym_name;
9434
9435 if (r_symndx == STN_UNDEF)
9436 continue;
9437
9438 if (r_symndx >= locsymcount
9439 || (elf_bad_symtab (input_bfd)
9440 && finfo->sections[r_symndx] == NULL))
9441 {
9442 h = sym_hashes[r_symndx - extsymoff];
9443
9444 /* Badly formatted input files can contain relocs that
9445 reference non-existant symbols. Check here so that
9446 we do not seg fault. */
9447 if (h == NULL)
9448 {
9449 char buffer [32];
9450
9451 sprintf_vma (buffer, rel->r_info);
9452 (*_bfd_error_handler)
9453 (_("error: %B contains a reloc (0x%s) for section %A "
9454 "that references a non-existent global symbol"),
9455 input_bfd, o, buffer);
9456 bfd_set_error (bfd_error_bad_value);
9457 return FALSE;
9458 }
9459
9460 while (h->root.type == bfd_link_hash_indirect
9461 || h->root.type == bfd_link_hash_warning)
9462 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9463
9464 s_type = h->type;
9465
9466 ps = NULL;
9467 if (h->root.type == bfd_link_hash_defined
9468 || h->root.type == bfd_link_hash_defweak)
9469 ps = &h->root.u.def.section;
9470
9471 sym_name = h->root.root.string;
9472 }
9473 else
9474 {
9475 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9476
9477 s_type = ELF_ST_TYPE (sym->st_info);
9478 ps = &finfo->sections[r_symndx];
9479 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9480 sym, *ps);
9481 }
9482
9483 if ((s_type == STT_RELC || s_type == STT_SRELC)
9484 && !finfo->info->relocatable)
9485 {
9486 bfd_vma val;
9487 bfd_vma dot = (rel->r_offset
9488 + o->output_offset + o->output_section->vma);
9489 #ifdef DEBUG
9490 printf ("Encountered a complex symbol!");
9491 printf (" (input_bfd %s, section %s, reloc %ld\n",
9492 input_bfd->filename, o->name,
9493 (long) (rel - internal_relocs));
9494 printf (" symbol: idx %8.8lx, name %s\n",
9495 r_symndx, sym_name);
9496 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9497 (unsigned long) rel->r_info,
9498 (unsigned long) rel->r_offset);
9499 #endif
9500 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9501 isymbuf, locsymcount, s_type == STT_SRELC))
9502 return FALSE;
9503
9504 /* Symbol evaluated OK. Update to absolute value. */
9505 set_symbol_value (input_bfd, isymbuf, locsymcount,
9506 r_symndx, val);
9507 continue;
9508 }
9509
9510 if (action_discarded != -1 && ps != NULL)
9511 {
9512 /* Complain if the definition comes from a
9513 discarded section. */
9514 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9515 {
9516 BFD_ASSERT (r_symndx != STN_UNDEF);
9517 if (action_discarded & COMPLAIN)
9518 (*finfo->info->callbacks->einfo)
9519 (_("%X`%s' referenced in section `%A' of %B: "
9520 "defined in discarded section `%A' of %B\n"),
9521 sym_name, o, input_bfd, sec, sec->owner);
9522
9523 /* Try to do the best we can to support buggy old
9524 versions of gcc. Pretend that the symbol is
9525 really defined in the kept linkonce section.
9526 FIXME: This is quite broken. Modifying the
9527 symbol here means we will be changing all later
9528 uses of the symbol, not just in this section. */
9529 if (action_discarded & PRETEND)
9530 {
9531 asection *kept;
9532
9533 kept = _bfd_elf_check_kept_section (sec,
9534 finfo->info);
9535 if (kept != NULL)
9536 {
9537 *ps = kept;
9538 continue;
9539 }
9540 }
9541 }
9542 }
9543 }
9544
9545 /* Relocate the section by invoking a back end routine.
9546
9547 The back end routine is responsible for adjusting the
9548 section contents as necessary, and (if using Rela relocs
9549 and generating a relocatable output file) adjusting the
9550 reloc addend as necessary.
9551
9552 The back end routine does not have to worry about setting
9553 the reloc address or the reloc symbol index.
9554
9555 The back end routine is given a pointer to the swapped in
9556 internal symbols, and can access the hash table entries
9557 for the external symbols via elf_sym_hashes (input_bfd).
9558
9559 When generating relocatable output, the back end routine
9560 must handle STB_LOCAL/STT_SECTION symbols specially. The
9561 output symbol is going to be a section symbol
9562 corresponding to the output section, which will require
9563 the addend to be adjusted. */
9564
9565 ret = (*relocate_section) (output_bfd, finfo->info,
9566 input_bfd, o, contents,
9567 internal_relocs,
9568 isymbuf,
9569 finfo->sections);
9570 if (!ret)
9571 return FALSE;
9572
9573 if (ret == 2
9574 || finfo->info->relocatable
9575 || finfo->info->emitrelocations)
9576 {
9577 Elf_Internal_Rela *irela;
9578 Elf_Internal_Rela *irelaend, *irelamid;
9579 bfd_vma last_offset;
9580 struct elf_link_hash_entry **rel_hash;
9581 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9582 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9583 unsigned int next_erel;
9584 bfd_boolean rela_normal;
9585 struct bfd_elf_section_data *esdi, *esdo;
9586
9587 esdi = elf_section_data (o);
9588 esdo = elf_section_data (o->output_section);
9589 rela_normal = FALSE;
9590
9591 /* Adjust the reloc addresses and symbol indices. */
9592
9593 irela = internal_relocs;
9594 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9595 rel_hash = esdo->rel.hashes + esdo->rel.count;
9596 /* We start processing the REL relocs, if any. When we reach
9597 IRELAMID in the loop, we switch to the RELA relocs. */
9598 irelamid = irela;
9599 if (esdi->rel.hdr != NULL)
9600 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9601 * bed->s->int_rels_per_ext_rel);
9602 rel_hash_list = rel_hash;
9603 rela_hash_list = NULL;
9604 last_offset = o->output_offset;
9605 if (!finfo->info->relocatable)
9606 last_offset += o->output_section->vma;
9607 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9608 {
9609 unsigned long r_symndx;
9610 asection *sec;
9611 Elf_Internal_Sym sym;
9612
9613 if (next_erel == bed->s->int_rels_per_ext_rel)
9614 {
9615 rel_hash++;
9616 next_erel = 0;
9617 }
9618
9619 if (irela == irelamid)
9620 {
9621 rel_hash = esdo->rela.hashes + esdo->rela.count;
9622 rela_hash_list = rel_hash;
9623 rela_normal = bed->rela_normal;
9624 }
9625
9626 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9627 finfo->info, o,
9628 irela->r_offset);
9629 if (irela->r_offset >= (bfd_vma) -2)
9630 {
9631 /* This is a reloc for a deleted entry or somesuch.
9632 Turn it into an R_*_NONE reloc, at the same
9633 offset as the last reloc. elf_eh_frame.c and
9634 bfd_elf_discard_info rely on reloc offsets
9635 being ordered. */
9636 irela->r_offset = last_offset;
9637 irela->r_info = 0;
9638 irela->r_addend = 0;
9639 continue;
9640 }
9641
9642 irela->r_offset += o->output_offset;
9643
9644 /* Relocs in an executable have to be virtual addresses. */
9645 if (!finfo->info->relocatable)
9646 irela->r_offset += o->output_section->vma;
9647
9648 last_offset = irela->r_offset;
9649
9650 r_symndx = irela->r_info >> r_sym_shift;
9651 if (r_symndx == STN_UNDEF)
9652 continue;
9653
9654 if (r_symndx >= locsymcount
9655 || (elf_bad_symtab (input_bfd)
9656 && finfo->sections[r_symndx] == NULL))
9657 {
9658 struct elf_link_hash_entry *rh;
9659 unsigned long indx;
9660
9661 /* This is a reloc against a global symbol. We
9662 have not yet output all the local symbols, so
9663 we do not know the symbol index of any global
9664 symbol. We set the rel_hash entry for this
9665 reloc to point to the global hash table entry
9666 for this symbol. The symbol index is then
9667 set at the end of bfd_elf_final_link. */
9668 indx = r_symndx - extsymoff;
9669 rh = elf_sym_hashes (input_bfd)[indx];
9670 while (rh->root.type == bfd_link_hash_indirect
9671 || rh->root.type == bfd_link_hash_warning)
9672 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9673
9674 /* Setting the index to -2 tells
9675 elf_link_output_extsym that this symbol is
9676 used by a reloc. */
9677 BFD_ASSERT (rh->indx < 0);
9678 rh->indx = -2;
9679
9680 *rel_hash = rh;
9681
9682 continue;
9683 }
9684
9685 /* This is a reloc against a local symbol. */
9686
9687 *rel_hash = NULL;
9688 sym = isymbuf[r_symndx];
9689 sec = finfo->sections[r_symndx];
9690 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9691 {
9692 /* I suppose the backend ought to fill in the
9693 section of any STT_SECTION symbol against a
9694 processor specific section. */
9695 r_symndx = STN_UNDEF;
9696 if (bfd_is_abs_section (sec))
9697 ;
9698 else if (sec == NULL || sec->owner == NULL)
9699 {
9700 bfd_set_error (bfd_error_bad_value);
9701 return FALSE;
9702 }
9703 else
9704 {
9705 asection *osec = sec->output_section;
9706
9707 /* If we have discarded a section, the output
9708 section will be the absolute section. In
9709 case of discarded SEC_MERGE sections, use
9710 the kept section. relocate_section should
9711 have already handled discarded linkonce
9712 sections. */
9713 if (bfd_is_abs_section (osec)
9714 && sec->kept_section != NULL
9715 && sec->kept_section->output_section != NULL)
9716 {
9717 osec = sec->kept_section->output_section;
9718 irela->r_addend -= osec->vma;
9719 }
9720
9721 if (!bfd_is_abs_section (osec))
9722 {
9723 r_symndx = osec->target_index;
9724 if (r_symndx == STN_UNDEF)
9725 {
9726 struct elf_link_hash_table *htab;
9727 asection *oi;
9728
9729 htab = elf_hash_table (finfo->info);
9730 oi = htab->text_index_section;
9731 if ((osec->flags & SEC_READONLY) == 0
9732 && htab->data_index_section != NULL)
9733 oi = htab->data_index_section;
9734
9735 if (oi != NULL)
9736 {
9737 irela->r_addend += osec->vma - oi->vma;
9738 r_symndx = oi->target_index;
9739 }
9740 }
9741
9742 BFD_ASSERT (r_symndx != STN_UNDEF);
9743 }
9744 }
9745
9746 /* Adjust the addend according to where the
9747 section winds up in the output section. */
9748 if (rela_normal)
9749 irela->r_addend += sec->output_offset;
9750 }
9751 else
9752 {
9753 if (finfo->indices[r_symndx] == -1)
9754 {
9755 unsigned long shlink;
9756 const char *name;
9757 asection *osec;
9758 long indx;
9759
9760 if (finfo->info->strip == strip_all)
9761 {
9762 /* You can't do ld -r -s. */
9763 bfd_set_error (bfd_error_invalid_operation);
9764 return FALSE;
9765 }
9766
9767 /* This symbol was skipped earlier, but
9768 since it is needed by a reloc, we
9769 must output it now. */
9770 shlink = symtab_hdr->sh_link;
9771 name = (bfd_elf_string_from_elf_section
9772 (input_bfd, shlink, sym.st_name));
9773 if (name == NULL)
9774 return FALSE;
9775
9776 osec = sec->output_section;
9777 sym.st_shndx =
9778 _bfd_elf_section_from_bfd_section (output_bfd,
9779 osec);
9780 if (sym.st_shndx == SHN_BAD)
9781 return FALSE;
9782
9783 sym.st_value += sec->output_offset;
9784 if (! finfo->info->relocatable)
9785 {
9786 sym.st_value += osec->vma;
9787 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9788 {
9789 /* STT_TLS symbols are relative to PT_TLS
9790 segment base. */
9791 BFD_ASSERT (elf_hash_table (finfo->info)
9792 ->tls_sec != NULL);
9793 sym.st_value -= (elf_hash_table (finfo->info)
9794 ->tls_sec->vma);
9795 }
9796 }
9797
9798 indx = bfd_get_symcount (output_bfd);
9799 ret = elf_link_output_sym (finfo, name, &sym, sec,
9800 NULL);
9801 if (ret == 0)
9802 return FALSE;
9803 else if (ret == 1)
9804 finfo->indices[r_symndx] = indx;
9805 else
9806 abort ();
9807 }
9808
9809 r_symndx = finfo->indices[r_symndx];
9810 }
9811
9812 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9813 | (irela->r_info & r_type_mask));
9814 }
9815
9816 /* Swap out the relocs. */
9817 input_rel_hdr = esdi->rel.hdr;
9818 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9819 {
9820 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9821 input_rel_hdr,
9822 internal_relocs,
9823 rel_hash_list))
9824 return FALSE;
9825 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9826 * bed->s->int_rels_per_ext_rel);
9827 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9828 }
9829
9830 input_rela_hdr = esdi->rela.hdr;
9831 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9832 {
9833 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9834 input_rela_hdr,
9835 internal_relocs,
9836 rela_hash_list))
9837 return FALSE;
9838 }
9839 }
9840 }
9841
9842 /* Write out the modified section contents. */
9843 if (bed->elf_backend_write_section
9844 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9845 contents))
9846 {
9847 /* Section written out. */
9848 }
9849 else switch (o->sec_info_type)
9850 {
9851 case ELF_INFO_TYPE_STABS:
9852 if (! (_bfd_write_section_stabs
9853 (output_bfd,
9854 &elf_hash_table (finfo->info)->stab_info,
9855 o, &elf_section_data (o)->sec_info, contents)))
9856 return FALSE;
9857 break;
9858 case ELF_INFO_TYPE_MERGE:
9859 if (! _bfd_write_merged_section (output_bfd, o,
9860 elf_section_data (o)->sec_info))
9861 return FALSE;
9862 break;
9863 case ELF_INFO_TYPE_EH_FRAME:
9864 {
9865 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9866 o, contents))
9867 return FALSE;
9868 }
9869 break;
9870 default:
9871 {
9872 /* FIXME: octets_per_byte. */
9873 if (! (o->flags & SEC_EXCLUDE)
9874 && ! bfd_set_section_contents (output_bfd, o->output_section,
9875 contents,
9876 (file_ptr) o->output_offset,
9877 o->size))
9878 return FALSE;
9879 }
9880 break;
9881 }
9882 }
9883
9884 return TRUE;
9885 }
9886
9887 /* Generate a reloc when linking an ELF file. This is a reloc
9888 requested by the linker, and does not come from any input file. This
9889 is used to build constructor and destructor tables when linking
9890 with -Ur. */
9891
9892 static bfd_boolean
9893 elf_reloc_link_order (bfd *output_bfd,
9894 struct bfd_link_info *info,
9895 asection *output_section,
9896 struct bfd_link_order *link_order)
9897 {
9898 reloc_howto_type *howto;
9899 long indx;
9900 bfd_vma offset;
9901 bfd_vma addend;
9902 struct bfd_elf_section_reloc_data *reldata;
9903 struct elf_link_hash_entry **rel_hash_ptr;
9904 Elf_Internal_Shdr *rel_hdr;
9905 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9906 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9907 bfd_byte *erel;
9908 unsigned int i;
9909 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9910
9911 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9912 if (howto == NULL)
9913 {
9914 bfd_set_error (bfd_error_bad_value);
9915 return FALSE;
9916 }
9917
9918 addend = link_order->u.reloc.p->addend;
9919
9920 if (esdo->rel.hdr)
9921 reldata = &esdo->rel;
9922 else if (esdo->rela.hdr)
9923 reldata = &esdo->rela;
9924 else
9925 {
9926 reldata = NULL;
9927 BFD_ASSERT (0);
9928 }
9929
9930 /* Figure out the symbol index. */
9931 rel_hash_ptr = reldata->hashes + reldata->count;
9932 if (link_order->type == bfd_section_reloc_link_order)
9933 {
9934 indx = link_order->u.reloc.p->u.section->target_index;
9935 BFD_ASSERT (indx != 0);
9936 *rel_hash_ptr = NULL;
9937 }
9938 else
9939 {
9940 struct elf_link_hash_entry *h;
9941
9942 /* Treat a reloc against a defined symbol as though it were
9943 actually against the section. */
9944 h = ((struct elf_link_hash_entry *)
9945 bfd_wrapped_link_hash_lookup (output_bfd, info,
9946 link_order->u.reloc.p->u.name,
9947 FALSE, FALSE, TRUE));
9948 if (h != NULL
9949 && (h->root.type == bfd_link_hash_defined
9950 || h->root.type == bfd_link_hash_defweak))
9951 {
9952 asection *section;
9953
9954 section = h->root.u.def.section;
9955 indx = section->output_section->target_index;
9956 *rel_hash_ptr = NULL;
9957 /* It seems that we ought to add the symbol value to the
9958 addend here, but in practice it has already been added
9959 because it was passed to constructor_callback. */
9960 addend += section->output_section->vma + section->output_offset;
9961 }
9962 else if (h != NULL)
9963 {
9964 /* Setting the index to -2 tells elf_link_output_extsym that
9965 this symbol is used by a reloc. */
9966 h->indx = -2;
9967 *rel_hash_ptr = h;
9968 indx = 0;
9969 }
9970 else
9971 {
9972 if (! ((*info->callbacks->unattached_reloc)
9973 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9974 return FALSE;
9975 indx = 0;
9976 }
9977 }
9978
9979 /* If this is an inplace reloc, we must write the addend into the
9980 object file. */
9981 if (howto->partial_inplace && addend != 0)
9982 {
9983 bfd_size_type size;
9984 bfd_reloc_status_type rstat;
9985 bfd_byte *buf;
9986 bfd_boolean ok;
9987 const char *sym_name;
9988
9989 size = (bfd_size_type) bfd_get_reloc_size (howto);
9990 buf = (bfd_byte *) bfd_zmalloc (size);
9991 if (buf == NULL)
9992 return FALSE;
9993 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9994 switch (rstat)
9995 {
9996 case bfd_reloc_ok:
9997 break;
9998
9999 default:
10000 case bfd_reloc_outofrange:
10001 abort ();
10002
10003 case bfd_reloc_overflow:
10004 if (link_order->type == bfd_section_reloc_link_order)
10005 sym_name = bfd_section_name (output_bfd,
10006 link_order->u.reloc.p->u.section);
10007 else
10008 sym_name = link_order->u.reloc.p->u.name;
10009 if (! ((*info->callbacks->reloc_overflow)
10010 (info, NULL, sym_name, howto->name, addend, NULL,
10011 NULL, (bfd_vma) 0)))
10012 {
10013 free (buf);
10014 return FALSE;
10015 }
10016 break;
10017 }
10018 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10019 link_order->offset, size);
10020 free (buf);
10021 if (! ok)
10022 return FALSE;
10023 }
10024
10025 /* The address of a reloc is relative to the section in a
10026 relocatable file, and is a virtual address in an executable
10027 file. */
10028 offset = link_order->offset;
10029 if (! info->relocatable)
10030 offset += output_section->vma;
10031
10032 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10033 {
10034 irel[i].r_offset = offset;
10035 irel[i].r_info = 0;
10036 irel[i].r_addend = 0;
10037 }
10038 if (bed->s->arch_size == 32)
10039 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10040 else
10041 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10042
10043 rel_hdr = reldata->hdr;
10044 erel = rel_hdr->contents;
10045 if (rel_hdr->sh_type == SHT_REL)
10046 {
10047 erel += reldata->count * bed->s->sizeof_rel;
10048 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10049 }
10050 else
10051 {
10052 irel[0].r_addend = addend;
10053 erel += reldata->count * bed->s->sizeof_rela;
10054 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10055 }
10056
10057 ++reldata->count;
10058
10059 return TRUE;
10060 }
10061
10062
10063 /* Get the output vma of the section pointed to by the sh_link field. */
10064
10065 static bfd_vma
10066 elf_get_linked_section_vma (struct bfd_link_order *p)
10067 {
10068 Elf_Internal_Shdr **elf_shdrp;
10069 asection *s;
10070 int elfsec;
10071
10072 s = p->u.indirect.section;
10073 elf_shdrp = elf_elfsections (s->owner);
10074 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10075 elfsec = elf_shdrp[elfsec]->sh_link;
10076 /* PR 290:
10077 The Intel C compiler generates SHT_IA_64_UNWIND with
10078 SHF_LINK_ORDER. But it doesn't set the sh_link or
10079 sh_info fields. Hence we could get the situation
10080 where elfsec is 0. */
10081 if (elfsec == 0)
10082 {
10083 const struct elf_backend_data *bed
10084 = get_elf_backend_data (s->owner);
10085 if (bed->link_order_error_handler)
10086 bed->link_order_error_handler
10087 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10088 return 0;
10089 }
10090 else
10091 {
10092 s = elf_shdrp[elfsec]->bfd_section;
10093 return s->output_section->vma + s->output_offset;
10094 }
10095 }
10096
10097
10098 /* Compare two sections based on the locations of the sections they are
10099 linked to. Used by elf_fixup_link_order. */
10100
10101 static int
10102 compare_link_order (const void * a, const void * b)
10103 {
10104 bfd_vma apos;
10105 bfd_vma bpos;
10106
10107 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10108 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10109 if (apos < bpos)
10110 return -1;
10111 return apos > bpos;
10112 }
10113
10114
10115 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10116 order as their linked sections. Returns false if this could not be done
10117 because an output section includes both ordered and unordered
10118 sections. Ideally we'd do this in the linker proper. */
10119
10120 static bfd_boolean
10121 elf_fixup_link_order (bfd *abfd, asection *o)
10122 {
10123 int seen_linkorder;
10124 int seen_other;
10125 int n;
10126 struct bfd_link_order *p;
10127 bfd *sub;
10128 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10129 unsigned elfsec;
10130 struct bfd_link_order **sections;
10131 asection *s, *other_sec, *linkorder_sec;
10132 bfd_vma offset;
10133
10134 other_sec = NULL;
10135 linkorder_sec = NULL;
10136 seen_other = 0;
10137 seen_linkorder = 0;
10138 for (p = o->map_head.link_order; p != NULL; p = p->next)
10139 {
10140 if (p->type == bfd_indirect_link_order)
10141 {
10142 s = p->u.indirect.section;
10143 sub = s->owner;
10144 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10145 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10146 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10147 && elfsec < elf_numsections (sub)
10148 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10149 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10150 {
10151 seen_linkorder++;
10152 linkorder_sec = s;
10153 }
10154 else
10155 {
10156 seen_other++;
10157 other_sec = s;
10158 }
10159 }
10160 else
10161 seen_other++;
10162
10163 if (seen_other && seen_linkorder)
10164 {
10165 if (other_sec && linkorder_sec)
10166 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10167 o, linkorder_sec,
10168 linkorder_sec->owner, other_sec,
10169 other_sec->owner);
10170 else
10171 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10172 o);
10173 bfd_set_error (bfd_error_bad_value);
10174 return FALSE;
10175 }
10176 }
10177
10178 if (!seen_linkorder)
10179 return TRUE;
10180
10181 sections = (struct bfd_link_order **)
10182 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10183 if (sections == NULL)
10184 return FALSE;
10185 seen_linkorder = 0;
10186
10187 for (p = o->map_head.link_order; p != NULL; p = p->next)
10188 {
10189 sections[seen_linkorder++] = p;
10190 }
10191 /* Sort the input sections in the order of their linked section. */
10192 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10193 compare_link_order);
10194
10195 /* Change the offsets of the sections. */
10196 offset = 0;
10197 for (n = 0; n < seen_linkorder; n++)
10198 {
10199 s = sections[n]->u.indirect.section;
10200 offset &= ~(bfd_vma) 0 << s->alignment_power;
10201 s->output_offset = offset;
10202 sections[n]->offset = offset;
10203 /* FIXME: octets_per_byte. */
10204 offset += sections[n]->size;
10205 }
10206
10207 free (sections);
10208 return TRUE;
10209 }
10210
10211
10212 /* Do the final step of an ELF link. */
10213
10214 bfd_boolean
10215 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10216 {
10217 bfd_boolean dynamic;
10218 bfd_boolean emit_relocs;
10219 bfd *dynobj;
10220 struct elf_final_link_info finfo;
10221 asection *o;
10222 struct bfd_link_order *p;
10223 bfd *sub;
10224 bfd_size_type max_contents_size;
10225 bfd_size_type max_external_reloc_size;
10226 bfd_size_type max_internal_reloc_count;
10227 bfd_size_type max_sym_count;
10228 bfd_size_type max_sym_shndx_count;
10229 file_ptr off;
10230 Elf_Internal_Sym elfsym;
10231 unsigned int i;
10232 Elf_Internal_Shdr *symtab_hdr;
10233 Elf_Internal_Shdr *symtab_shndx_hdr;
10234 Elf_Internal_Shdr *symstrtab_hdr;
10235 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10236 struct elf_outext_info eoinfo;
10237 bfd_boolean merged;
10238 size_t relativecount = 0;
10239 asection *reldyn = 0;
10240 bfd_size_type amt;
10241 asection *attr_section = NULL;
10242 bfd_vma attr_size = 0;
10243 const char *std_attrs_section;
10244
10245 if (! is_elf_hash_table (info->hash))
10246 return FALSE;
10247
10248 if (info->shared)
10249 abfd->flags |= DYNAMIC;
10250
10251 dynamic = elf_hash_table (info)->dynamic_sections_created;
10252 dynobj = elf_hash_table (info)->dynobj;
10253
10254 emit_relocs = (info->relocatable
10255 || info->emitrelocations);
10256
10257 finfo.info = info;
10258 finfo.output_bfd = abfd;
10259 finfo.symstrtab = _bfd_elf_stringtab_init ();
10260 if (finfo.symstrtab == NULL)
10261 return FALSE;
10262
10263 if (! dynamic)
10264 {
10265 finfo.dynsym_sec = NULL;
10266 finfo.hash_sec = NULL;
10267 finfo.symver_sec = NULL;
10268 }
10269 else
10270 {
10271 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10272 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10273 BFD_ASSERT (finfo.dynsym_sec != NULL);
10274 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10275 /* Note that it is OK if symver_sec is NULL. */
10276 }
10277
10278 finfo.contents = NULL;
10279 finfo.external_relocs = NULL;
10280 finfo.internal_relocs = NULL;
10281 finfo.external_syms = NULL;
10282 finfo.locsym_shndx = NULL;
10283 finfo.internal_syms = NULL;
10284 finfo.indices = NULL;
10285 finfo.sections = NULL;
10286 finfo.symbuf = NULL;
10287 finfo.symshndxbuf = NULL;
10288 finfo.symbuf_count = 0;
10289 finfo.shndxbuf_size = 0;
10290
10291 /* The object attributes have been merged. Remove the input
10292 sections from the link, and set the contents of the output
10293 secton. */
10294 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10295 for (o = abfd->sections; o != NULL; o = o->next)
10296 {
10297 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10298 || strcmp (o->name, ".gnu.attributes") == 0)
10299 {
10300 for (p = o->map_head.link_order; p != NULL; p = p->next)
10301 {
10302 asection *input_section;
10303
10304 if (p->type != bfd_indirect_link_order)
10305 continue;
10306 input_section = p->u.indirect.section;
10307 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10308 elf_link_input_bfd ignores this section. */
10309 input_section->flags &= ~SEC_HAS_CONTENTS;
10310 }
10311
10312 attr_size = bfd_elf_obj_attr_size (abfd);
10313 if (attr_size)
10314 {
10315 bfd_set_section_size (abfd, o, attr_size);
10316 attr_section = o;
10317 /* Skip this section later on. */
10318 o->map_head.link_order = NULL;
10319 }
10320 else
10321 o->flags |= SEC_EXCLUDE;
10322 }
10323 }
10324
10325 /* Count up the number of relocations we will output for each output
10326 section, so that we know the sizes of the reloc sections. We
10327 also figure out some maximum sizes. */
10328 max_contents_size = 0;
10329 max_external_reloc_size = 0;
10330 max_internal_reloc_count = 0;
10331 max_sym_count = 0;
10332 max_sym_shndx_count = 0;
10333 merged = FALSE;
10334 for (o = abfd->sections; o != NULL; o = o->next)
10335 {
10336 struct bfd_elf_section_data *esdo = elf_section_data (o);
10337 o->reloc_count = 0;
10338
10339 for (p = o->map_head.link_order; p != NULL; p = p->next)
10340 {
10341 unsigned int reloc_count = 0;
10342 struct bfd_elf_section_data *esdi = NULL;
10343
10344 if (p->type == bfd_section_reloc_link_order
10345 || p->type == bfd_symbol_reloc_link_order)
10346 reloc_count = 1;
10347 else if (p->type == bfd_indirect_link_order)
10348 {
10349 asection *sec;
10350
10351 sec = p->u.indirect.section;
10352 esdi = elf_section_data (sec);
10353
10354 /* Mark all sections which are to be included in the
10355 link. This will normally be every section. We need
10356 to do this so that we can identify any sections which
10357 the linker has decided to not include. */
10358 sec->linker_mark = TRUE;
10359
10360 if (sec->flags & SEC_MERGE)
10361 merged = TRUE;
10362
10363 if (info->relocatable || info->emitrelocations)
10364 reloc_count = sec->reloc_count;
10365 else if (bed->elf_backend_count_relocs)
10366 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10367
10368 if (sec->rawsize > max_contents_size)
10369 max_contents_size = sec->rawsize;
10370 if (sec->size > max_contents_size)
10371 max_contents_size = sec->size;
10372
10373 /* We are interested in just local symbols, not all
10374 symbols. */
10375 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10376 && (sec->owner->flags & DYNAMIC) == 0)
10377 {
10378 size_t sym_count;
10379
10380 if (elf_bad_symtab (sec->owner))
10381 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10382 / bed->s->sizeof_sym);
10383 else
10384 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10385
10386 if (sym_count > max_sym_count)
10387 max_sym_count = sym_count;
10388
10389 if (sym_count > max_sym_shndx_count
10390 && elf_symtab_shndx (sec->owner) != 0)
10391 max_sym_shndx_count = sym_count;
10392
10393 if ((sec->flags & SEC_RELOC) != 0)
10394 {
10395 size_t ext_size = 0;
10396
10397 if (esdi->rel.hdr != NULL)
10398 ext_size = esdi->rel.hdr->sh_size;
10399 if (esdi->rela.hdr != NULL)
10400 ext_size += esdi->rela.hdr->sh_size;
10401
10402 if (ext_size > max_external_reloc_size)
10403 max_external_reloc_size = ext_size;
10404 if (sec->reloc_count > max_internal_reloc_count)
10405 max_internal_reloc_count = sec->reloc_count;
10406 }
10407 }
10408 }
10409
10410 if (reloc_count == 0)
10411 continue;
10412
10413 o->reloc_count += reloc_count;
10414
10415 if (p->type == bfd_indirect_link_order
10416 && (info->relocatable || info->emitrelocations))
10417 {
10418 if (esdi->rel.hdr)
10419 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10420 if (esdi->rela.hdr)
10421 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10422 }
10423 else
10424 {
10425 if (o->use_rela_p)
10426 esdo->rela.count += reloc_count;
10427 else
10428 esdo->rel.count += reloc_count;
10429 }
10430 }
10431
10432 if (o->reloc_count > 0)
10433 o->flags |= SEC_RELOC;
10434 else
10435 {
10436 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10437 set it (this is probably a bug) and if it is set
10438 assign_section_numbers will create a reloc section. */
10439 o->flags &=~ SEC_RELOC;
10440 }
10441
10442 /* If the SEC_ALLOC flag is not set, force the section VMA to
10443 zero. This is done in elf_fake_sections as well, but forcing
10444 the VMA to 0 here will ensure that relocs against these
10445 sections are handled correctly. */
10446 if ((o->flags & SEC_ALLOC) == 0
10447 && ! o->user_set_vma)
10448 o->vma = 0;
10449 }
10450
10451 if (! info->relocatable && merged)
10452 elf_link_hash_traverse (elf_hash_table (info),
10453 _bfd_elf_link_sec_merge_syms, abfd);
10454
10455 /* Figure out the file positions for everything but the symbol table
10456 and the relocs. We set symcount to force assign_section_numbers
10457 to create a symbol table. */
10458 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10459 BFD_ASSERT (! abfd->output_has_begun);
10460 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10461 goto error_return;
10462
10463 /* Set sizes, and assign file positions for reloc sections. */
10464 for (o = abfd->sections; o != NULL; o = o->next)
10465 {
10466 struct bfd_elf_section_data *esdo = elf_section_data (o);
10467 if ((o->flags & SEC_RELOC) != 0)
10468 {
10469 if (esdo->rel.hdr
10470 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10471 goto error_return;
10472
10473 if (esdo->rela.hdr
10474 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10475 goto error_return;
10476 }
10477
10478 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10479 to count upwards while actually outputting the relocations. */
10480 esdo->rel.count = 0;
10481 esdo->rela.count = 0;
10482 }
10483
10484 _bfd_elf_assign_file_positions_for_relocs (abfd);
10485
10486 /* We have now assigned file positions for all the sections except
10487 .symtab and .strtab. We start the .symtab section at the current
10488 file position, and write directly to it. We build the .strtab
10489 section in memory. */
10490 bfd_get_symcount (abfd) = 0;
10491 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10492 /* sh_name is set in prep_headers. */
10493 symtab_hdr->sh_type = SHT_SYMTAB;
10494 /* sh_flags, sh_addr and sh_size all start off zero. */
10495 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10496 /* sh_link is set in assign_section_numbers. */
10497 /* sh_info is set below. */
10498 /* sh_offset is set just below. */
10499 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10500
10501 off = elf_tdata (abfd)->next_file_pos;
10502 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10503
10504 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10505 incorrect. We do not yet know the size of the .symtab section.
10506 We correct next_file_pos below, after we do know the size. */
10507
10508 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10509 continuously seeking to the right position in the file. */
10510 if (! info->keep_memory || max_sym_count < 20)
10511 finfo.symbuf_size = 20;
10512 else
10513 finfo.symbuf_size = max_sym_count;
10514 amt = finfo.symbuf_size;
10515 amt *= bed->s->sizeof_sym;
10516 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10517 if (finfo.symbuf == NULL)
10518 goto error_return;
10519 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10520 {
10521 /* Wild guess at number of output symbols. realloc'd as needed. */
10522 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10523 finfo.shndxbuf_size = amt;
10524 amt *= sizeof (Elf_External_Sym_Shndx);
10525 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10526 if (finfo.symshndxbuf == NULL)
10527 goto error_return;
10528 }
10529
10530 /* Start writing out the symbol table. The first symbol is always a
10531 dummy symbol. */
10532 if (info->strip != strip_all
10533 || emit_relocs)
10534 {
10535 elfsym.st_value = 0;
10536 elfsym.st_size = 0;
10537 elfsym.st_info = 0;
10538 elfsym.st_other = 0;
10539 elfsym.st_shndx = SHN_UNDEF;
10540 elfsym.st_target_internal = 0;
10541 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10542 NULL) != 1)
10543 goto error_return;
10544 }
10545
10546 /* Output a symbol for each section. We output these even if we are
10547 discarding local symbols, since they are used for relocs. These
10548 symbols have no names. We store the index of each one in the
10549 index field of the section, so that we can find it again when
10550 outputting relocs. */
10551 if (info->strip != strip_all
10552 || emit_relocs)
10553 {
10554 elfsym.st_size = 0;
10555 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10556 elfsym.st_other = 0;
10557 elfsym.st_value = 0;
10558 elfsym.st_target_internal = 0;
10559 for (i = 1; i < elf_numsections (abfd); i++)
10560 {
10561 o = bfd_section_from_elf_index (abfd, i);
10562 if (o != NULL)
10563 {
10564 o->target_index = bfd_get_symcount (abfd);
10565 elfsym.st_shndx = i;
10566 if (!info->relocatable)
10567 elfsym.st_value = o->vma;
10568 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10569 goto error_return;
10570 }
10571 }
10572 }
10573
10574 /* Allocate some memory to hold information read in from the input
10575 files. */
10576 if (max_contents_size != 0)
10577 {
10578 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10579 if (finfo.contents == NULL)
10580 goto error_return;
10581 }
10582
10583 if (max_external_reloc_size != 0)
10584 {
10585 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10586 if (finfo.external_relocs == NULL)
10587 goto error_return;
10588 }
10589
10590 if (max_internal_reloc_count != 0)
10591 {
10592 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10593 amt *= sizeof (Elf_Internal_Rela);
10594 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10595 if (finfo.internal_relocs == NULL)
10596 goto error_return;
10597 }
10598
10599 if (max_sym_count != 0)
10600 {
10601 amt = max_sym_count * bed->s->sizeof_sym;
10602 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10603 if (finfo.external_syms == NULL)
10604 goto error_return;
10605
10606 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10607 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10608 if (finfo.internal_syms == NULL)
10609 goto error_return;
10610
10611 amt = max_sym_count * sizeof (long);
10612 finfo.indices = (long int *) bfd_malloc (amt);
10613 if (finfo.indices == NULL)
10614 goto error_return;
10615
10616 amt = max_sym_count * sizeof (asection *);
10617 finfo.sections = (asection **) bfd_malloc (amt);
10618 if (finfo.sections == NULL)
10619 goto error_return;
10620 }
10621
10622 if (max_sym_shndx_count != 0)
10623 {
10624 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10625 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10626 if (finfo.locsym_shndx == NULL)
10627 goto error_return;
10628 }
10629
10630 if (elf_hash_table (info)->tls_sec)
10631 {
10632 bfd_vma base, end = 0;
10633 asection *sec;
10634
10635 for (sec = elf_hash_table (info)->tls_sec;
10636 sec && (sec->flags & SEC_THREAD_LOCAL);
10637 sec = sec->next)
10638 {
10639 bfd_size_type size = sec->size;
10640
10641 if (size == 0
10642 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10643 {
10644 struct bfd_link_order *ord = sec->map_tail.link_order;
10645
10646 if (ord != NULL)
10647 size = ord->offset + ord->size;
10648 }
10649 end = sec->vma + size;
10650 }
10651 base = elf_hash_table (info)->tls_sec->vma;
10652 /* Only align end of TLS section if static TLS doesn't have special
10653 alignment requirements. */
10654 if (bed->static_tls_alignment == 1)
10655 end = align_power (end,
10656 elf_hash_table (info)->tls_sec->alignment_power);
10657 elf_hash_table (info)->tls_size = end - base;
10658 }
10659
10660 /* Reorder SHF_LINK_ORDER sections. */
10661 for (o = abfd->sections; o != NULL; o = o->next)
10662 {
10663 if (!elf_fixup_link_order (abfd, o))
10664 return FALSE;
10665 }
10666
10667 /* Since ELF permits relocations to be against local symbols, we
10668 must have the local symbols available when we do the relocations.
10669 Since we would rather only read the local symbols once, and we
10670 would rather not keep them in memory, we handle all the
10671 relocations for a single input file at the same time.
10672
10673 Unfortunately, there is no way to know the total number of local
10674 symbols until we have seen all of them, and the local symbol
10675 indices precede the global symbol indices. This means that when
10676 we are generating relocatable output, and we see a reloc against
10677 a global symbol, we can not know the symbol index until we have
10678 finished examining all the local symbols to see which ones we are
10679 going to output. To deal with this, we keep the relocations in
10680 memory, and don't output them until the end of the link. This is
10681 an unfortunate waste of memory, but I don't see a good way around
10682 it. Fortunately, it only happens when performing a relocatable
10683 link, which is not the common case. FIXME: If keep_memory is set
10684 we could write the relocs out and then read them again; I don't
10685 know how bad the memory loss will be. */
10686
10687 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10688 sub->output_has_begun = FALSE;
10689 for (o = abfd->sections; o != NULL; o = o->next)
10690 {
10691 for (p = o->map_head.link_order; p != NULL; p = p->next)
10692 {
10693 if (p->type == bfd_indirect_link_order
10694 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10695 == bfd_target_elf_flavour)
10696 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10697 {
10698 if (! sub->output_has_begun)
10699 {
10700 if (! elf_link_input_bfd (&finfo, sub))
10701 goto error_return;
10702 sub->output_has_begun = TRUE;
10703 }
10704 }
10705 else if (p->type == bfd_section_reloc_link_order
10706 || p->type == bfd_symbol_reloc_link_order)
10707 {
10708 if (! elf_reloc_link_order (abfd, info, o, p))
10709 goto error_return;
10710 }
10711 else
10712 {
10713 if (! _bfd_default_link_order (abfd, info, o, p))
10714 {
10715 if (p->type == bfd_indirect_link_order
10716 && (bfd_get_flavour (sub)
10717 == bfd_target_elf_flavour)
10718 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10719 != bed->s->elfclass))
10720 {
10721 const char *iclass, *oclass;
10722
10723 if (bed->s->elfclass == ELFCLASS64)
10724 {
10725 iclass = "ELFCLASS32";
10726 oclass = "ELFCLASS64";
10727 }
10728 else
10729 {
10730 iclass = "ELFCLASS64";
10731 oclass = "ELFCLASS32";
10732 }
10733
10734 bfd_set_error (bfd_error_wrong_format);
10735 (*_bfd_error_handler)
10736 (_("%B: file class %s incompatible with %s"),
10737 sub, iclass, oclass);
10738 }
10739
10740 goto error_return;
10741 }
10742 }
10743 }
10744 }
10745
10746 /* Free symbol buffer if needed. */
10747 if (!info->reduce_memory_overheads)
10748 {
10749 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10750 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10751 && elf_tdata (sub)->symbuf)
10752 {
10753 free (elf_tdata (sub)->symbuf);
10754 elf_tdata (sub)->symbuf = NULL;
10755 }
10756 }
10757
10758 /* Output any global symbols that got converted to local in a
10759 version script or due to symbol visibility. We do this in a
10760 separate step since ELF requires all local symbols to appear
10761 prior to any global symbols. FIXME: We should only do this if
10762 some global symbols were, in fact, converted to become local.
10763 FIXME: Will this work correctly with the Irix 5 linker? */
10764 eoinfo.failed = FALSE;
10765 eoinfo.finfo = &finfo;
10766 eoinfo.localsyms = TRUE;
10767 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10768 &eoinfo);
10769 if (eoinfo.failed)
10770 return FALSE;
10771
10772 /* If backend needs to output some local symbols not present in the hash
10773 table, do it now. */
10774 if (bed->elf_backend_output_arch_local_syms)
10775 {
10776 typedef int (*out_sym_func)
10777 (void *, const char *, Elf_Internal_Sym *, asection *,
10778 struct elf_link_hash_entry *);
10779
10780 if (! ((*bed->elf_backend_output_arch_local_syms)
10781 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10782 return FALSE;
10783 }
10784
10785 /* That wrote out all the local symbols. Finish up the symbol table
10786 with the global symbols. Even if we want to strip everything we
10787 can, we still need to deal with those global symbols that got
10788 converted to local in a version script. */
10789
10790 /* The sh_info field records the index of the first non local symbol. */
10791 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10792
10793 if (dynamic
10794 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10795 {
10796 Elf_Internal_Sym sym;
10797 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10798 long last_local = 0;
10799
10800 /* Write out the section symbols for the output sections. */
10801 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10802 {
10803 asection *s;
10804
10805 sym.st_size = 0;
10806 sym.st_name = 0;
10807 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10808 sym.st_other = 0;
10809 sym.st_target_internal = 0;
10810
10811 for (s = abfd->sections; s != NULL; s = s->next)
10812 {
10813 int indx;
10814 bfd_byte *dest;
10815 long dynindx;
10816
10817 dynindx = elf_section_data (s)->dynindx;
10818 if (dynindx <= 0)
10819 continue;
10820 indx = elf_section_data (s)->this_idx;
10821 BFD_ASSERT (indx > 0);
10822 sym.st_shndx = indx;
10823 if (! check_dynsym (abfd, &sym))
10824 return FALSE;
10825 sym.st_value = s->vma;
10826 dest = dynsym + dynindx * bed->s->sizeof_sym;
10827 if (last_local < dynindx)
10828 last_local = dynindx;
10829 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10830 }
10831 }
10832
10833 /* Write out the local dynsyms. */
10834 if (elf_hash_table (info)->dynlocal)
10835 {
10836 struct elf_link_local_dynamic_entry *e;
10837 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10838 {
10839 asection *s;
10840 bfd_byte *dest;
10841
10842 /* Copy the internal symbol and turn off visibility.
10843 Note that we saved a word of storage and overwrote
10844 the original st_name with the dynstr_index. */
10845 sym = e->isym;
10846 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10847
10848 s = bfd_section_from_elf_index (e->input_bfd,
10849 e->isym.st_shndx);
10850 if (s != NULL)
10851 {
10852 sym.st_shndx =
10853 elf_section_data (s->output_section)->this_idx;
10854 if (! check_dynsym (abfd, &sym))
10855 return FALSE;
10856 sym.st_value = (s->output_section->vma
10857 + s->output_offset
10858 + e->isym.st_value);
10859 }
10860
10861 if (last_local < e->dynindx)
10862 last_local = e->dynindx;
10863
10864 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10865 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10866 }
10867 }
10868
10869 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10870 last_local + 1;
10871 }
10872
10873 /* We get the global symbols from the hash table. */
10874 eoinfo.failed = FALSE;
10875 eoinfo.localsyms = FALSE;
10876 eoinfo.finfo = &finfo;
10877 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10878 &eoinfo);
10879 if (eoinfo.failed)
10880 return FALSE;
10881
10882 /* If backend needs to output some symbols not present in the hash
10883 table, do it now. */
10884 if (bed->elf_backend_output_arch_syms)
10885 {
10886 typedef int (*out_sym_func)
10887 (void *, const char *, Elf_Internal_Sym *, asection *,
10888 struct elf_link_hash_entry *);
10889
10890 if (! ((*bed->elf_backend_output_arch_syms)
10891 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10892 return FALSE;
10893 }
10894
10895 /* Flush all symbols to the file. */
10896 if (! elf_link_flush_output_syms (&finfo, bed))
10897 return FALSE;
10898
10899 /* Now we know the size of the symtab section. */
10900 off += symtab_hdr->sh_size;
10901
10902 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10903 if (symtab_shndx_hdr->sh_name != 0)
10904 {
10905 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10906 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10907 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10908 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10909 symtab_shndx_hdr->sh_size = amt;
10910
10911 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10912 off, TRUE);
10913
10914 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10915 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10916 return FALSE;
10917 }
10918
10919
10920 /* Finish up and write out the symbol string table (.strtab)
10921 section. */
10922 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10923 /* sh_name was set in prep_headers. */
10924 symstrtab_hdr->sh_type = SHT_STRTAB;
10925 symstrtab_hdr->sh_flags = 0;
10926 symstrtab_hdr->sh_addr = 0;
10927 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10928 symstrtab_hdr->sh_entsize = 0;
10929 symstrtab_hdr->sh_link = 0;
10930 symstrtab_hdr->sh_info = 0;
10931 /* sh_offset is set just below. */
10932 symstrtab_hdr->sh_addralign = 1;
10933
10934 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10935 elf_tdata (abfd)->next_file_pos = off;
10936
10937 if (bfd_get_symcount (abfd) > 0)
10938 {
10939 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10940 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10941 return FALSE;
10942 }
10943
10944 /* Adjust the relocs to have the correct symbol indices. */
10945 for (o = abfd->sections; o != NULL; o = o->next)
10946 {
10947 struct bfd_elf_section_data *esdo = elf_section_data (o);
10948 if ((o->flags & SEC_RELOC) == 0)
10949 continue;
10950
10951 if (esdo->rel.hdr != NULL)
10952 elf_link_adjust_relocs (abfd, &esdo->rel);
10953 if (esdo->rela.hdr != NULL)
10954 elf_link_adjust_relocs (abfd, &esdo->rela);
10955
10956 /* Set the reloc_count field to 0 to prevent write_relocs from
10957 trying to swap the relocs out itself. */
10958 o->reloc_count = 0;
10959 }
10960
10961 if (dynamic && info->combreloc && dynobj != NULL)
10962 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10963
10964 /* If we are linking against a dynamic object, or generating a
10965 shared library, finish up the dynamic linking information. */
10966 if (dynamic)
10967 {
10968 bfd_byte *dyncon, *dynconend;
10969
10970 /* Fix up .dynamic entries. */
10971 o = bfd_get_section_by_name (dynobj, ".dynamic");
10972 BFD_ASSERT (o != NULL);
10973
10974 dyncon = o->contents;
10975 dynconend = o->contents + o->size;
10976 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10977 {
10978 Elf_Internal_Dyn dyn;
10979 const char *name;
10980 unsigned int type;
10981
10982 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10983
10984 switch (dyn.d_tag)
10985 {
10986 default:
10987 continue;
10988 case DT_NULL:
10989 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10990 {
10991 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10992 {
10993 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10994 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10995 default: continue;
10996 }
10997 dyn.d_un.d_val = relativecount;
10998 relativecount = 0;
10999 break;
11000 }
11001 continue;
11002
11003 case DT_INIT:
11004 name = info->init_function;
11005 goto get_sym;
11006 case DT_FINI:
11007 name = info->fini_function;
11008 get_sym:
11009 {
11010 struct elf_link_hash_entry *h;
11011
11012 h = elf_link_hash_lookup (elf_hash_table (info), name,
11013 FALSE, FALSE, TRUE);
11014 if (h != NULL
11015 && (h->root.type == bfd_link_hash_defined
11016 || h->root.type == bfd_link_hash_defweak))
11017 {
11018 dyn.d_un.d_ptr = h->root.u.def.value;
11019 o = h->root.u.def.section;
11020 if (o->output_section != NULL)
11021 dyn.d_un.d_ptr += (o->output_section->vma
11022 + o->output_offset);
11023 else
11024 {
11025 /* The symbol is imported from another shared
11026 library and does not apply to this one. */
11027 dyn.d_un.d_ptr = 0;
11028 }
11029 break;
11030 }
11031 }
11032 continue;
11033
11034 case DT_PREINIT_ARRAYSZ:
11035 name = ".preinit_array";
11036 goto get_size;
11037 case DT_INIT_ARRAYSZ:
11038 name = ".init_array";
11039 goto get_size;
11040 case DT_FINI_ARRAYSZ:
11041 name = ".fini_array";
11042 get_size:
11043 o = bfd_get_section_by_name (abfd, name);
11044 if (o == NULL)
11045 {
11046 (*_bfd_error_handler)
11047 (_("%B: could not find output section %s"), abfd, name);
11048 goto error_return;
11049 }
11050 if (o->size == 0)
11051 (*_bfd_error_handler)
11052 (_("warning: %s section has zero size"), name);
11053 dyn.d_un.d_val = o->size;
11054 break;
11055
11056 case DT_PREINIT_ARRAY:
11057 name = ".preinit_array";
11058 goto get_vma;
11059 case DT_INIT_ARRAY:
11060 name = ".init_array";
11061 goto get_vma;
11062 case DT_FINI_ARRAY:
11063 name = ".fini_array";
11064 goto get_vma;
11065
11066 case DT_HASH:
11067 name = ".hash";
11068 goto get_vma;
11069 case DT_GNU_HASH:
11070 name = ".gnu.hash";
11071 goto get_vma;
11072 case DT_STRTAB:
11073 name = ".dynstr";
11074 goto get_vma;
11075 case DT_SYMTAB:
11076 name = ".dynsym";
11077 goto get_vma;
11078 case DT_VERDEF:
11079 name = ".gnu.version_d";
11080 goto get_vma;
11081 case DT_VERNEED:
11082 name = ".gnu.version_r";
11083 goto get_vma;
11084 case DT_VERSYM:
11085 name = ".gnu.version";
11086 get_vma:
11087 o = bfd_get_section_by_name (abfd, name);
11088 if (o == NULL)
11089 {
11090 (*_bfd_error_handler)
11091 (_("%B: could not find output section %s"), abfd, name);
11092 goto error_return;
11093 }
11094 dyn.d_un.d_ptr = o->vma;
11095 break;
11096
11097 case DT_REL:
11098 case DT_RELA:
11099 case DT_RELSZ:
11100 case DT_RELASZ:
11101 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11102 type = SHT_REL;
11103 else
11104 type = SHT_RELA;
11105 dyn.d_un.d_val = 0;
11106 dyn.d_un.d_ptr = 0;
11107 for (i = 1; i < elf_numsections (abfd); i++)
11108 {
11109 Elf_Internal_Shdr *hdr;
11110
11111 hdr = elf_elfsections (abfd)[i];
11112 if (hdr->sh_type == type
11113 && (hdr->sh_flags & SHF_ALLOC) != 0)
11114 {
11115 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11116 dyn.d_un.d_val += hdr->sh_size;
11117 else
11118 {
11119 if (dyn.d_un.d_ptr == 0
11120 || hdr->sh_addr < dyn.d_un.d_ptr)
11121 dyn.d_un.d_ptr = hdr->sh_addr;
11122 }
11123 }
11124 }
11125 break;
11126 }
11127 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11128 }
11129 }
11130
11131 /* If we have created any dynamic sections, then output them. */
11132 if (dynobj != NULL)
11133 {
11134 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11135 goto error_return;
11136
11137 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11138 if (info->warn_shared_textrel && info->shared)
11139 {
11140 bfd_byte *dyncon, *dynconend;
11141
11142 /* Fix up .dynamic entries. */
11143 o = bfd_get_section_by_name (dynobj, ".dynamic");
11144 BFD_ASSERT (o != NULL);
11145
11146 dyncon = o->contents;
11147 dynconend = o->contents + o->size;
11148 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11149 {
11150 Elf_Internal_Dyn dyn;
11151
11152 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11153
11154 if (dyn.d_tag == DT_TEXTREL)
11155 {
11156 info->callbacks->einfo
11157 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11158 break;
11159 }
11160 }
11161 }
11162
11163 for (o = dynobj->sections; o != NULL; o = o->next)
11164 {
11165 if ((o->flags & SEC_HAS_CONTENTS) == 0
11166 || o->size == 0
11167 || o->output_section == bfd_abs_section_ptr)
11168 continue;
11169 if ((o->flags & SEC_LINKER_CREATED) == 0)
11170 {
11171 /* At this point, we are only interested in sections
11172 created by _bfd_elf_link_create_dynamic_sections. */
11173 continue;
11174 }
11175 if (elf_hash_table (info)->stab_info.stabstr == o)
11176 continue;
11177 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11178 continue;
11179 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11180 != SHT_STRTAB)
11181 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11182 {
11183 /* FIXME: octets_per_byte. */
11184 if (! bfd_set_section_contents (abfd, o->output_section,
11185 o->contents,
11186 (file_ptr) o->output_offset,
11187 o->size))
11188 goto error_return;
11189 }
11190 else
11191 {
11192 /* The contents of the .dynstr section are actually in a
11193 stringtab. */
11194 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11195 if (bfd_seek (abfd, off, SEEK_SET) != 0
11196 || ! _bfd_elf_strtab_emit (abfd,
11197 elf_hash_table (info)->dynstr))
11198 goto error_return;
11199 }
11200 }
11201 }
11202
11203 if (info->relocatable)
11204 {
11205 bfd_boolean failed = FALSE;
11206
11207 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11208 if (failed)
11209 goto error_return;
11210 }
11211
11212 /* If we have optimized stabs strings, output them. */
11213 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11214 {
11215 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11216 goto error_return;
11217 }
11218
11219 if (info->eh_frame_hdr)
11220 {
11221 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11222 goto error_return;
11223 }
11224
11225 if (finfo.symstrtab != NULL)
11226 _bfd_stringtab_free (finfo.symstrtab);
11227 if (finfo.contents != NULL)
11228 free (finfo.contents);
11229 if (finfo.external_relocs != NULL)
11230 free (finfo.external_relocs);
11231 if (finfo.internal_relocs != NULL)
11232 free (finfo.internal_relocs);
11233 if (finfo.external_syms != NULL)
11234 free (finfo.external_syms);
11235 if (finfo.locsym_shndx != NULL)
11236 free (finfo.locsym_shndx);
11237 if (finfo.internal_syms != NULL)
11238 free (finfo.internal_syms);
11239 if (finfo.indices != NULL)
11240 free (finfo.indices);
11241 if (finfo.sections != NULL)
11242 free (finfo.sections);
11243 if (finfo.symbuf != NULL)
11244 free (finfo.symbuf);
11245 if (finfo.symshndxbuf != NULL)
11246 free (finfo.symshndxbuf);
11247 for (o = abfd->sections; o != NULL; o = o->next)
11248 {
11249 struct bfd_elf_section_data *esdo = elf_section_data (o);
11250 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11251 free (esdo->rel.hashes);
11252 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11253 free (esdo->rela.hashes);
11254 }
11255
11256 elf_tdata (abfd)->linker = TRUE;
11257
11258 if (attr_section)
11259 {
11260 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11261 if (contents == NULL)
11262 return FALSE; /* Bail out and fail. */
11263 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11264 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11265 free (contents);
11266 }
11267
11268 return TRUE;
11269
11270 error_return:
11271 if (finfo.symstrtab != NULL)
11272 _bfd_stringtab_free (finfo.symstrtab);
11273 if (finfo.contents != NULL)
11274 free (finfo.contents);
11275 if (finfo.external_relocs != NULL)
11276 free (finfo.external_relocs);
11277 if (finfo.internal_relocs != NULL)
11278 free (finfo.internal_relocs);
11279 if (finfo.external_syms != NULL)
11280 free (finfo.external_syms);
11281 if (finfo.locsym_shndx != NULL)
11282 free (finfo.locsym_shndx);
11283 if (finfo.internal_syms != NULL)
11284 free (finfo.internal_syms);
11285 if (finfo.indices != NULL)
11286 free (finfo.indices);
11287 if (finfo.sections != NULL)
11288 free (finfo.sections);
11289 if (finfo.symbuf != NULL)
11290 free (finfo.symbuf);
11291 if (finfo.symshndxbuf != NULL)
11292 free (finfo.symshndxbuf);
11293 for (o = abfd->sections; o != NULL; o = o->next)
11294 {
11295 struct bfd_elf_section_data *esdo = elf_section_data (o);
11296 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11297 free (esdo->rel.hashes);
11298 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11299 free (esdo->rela.hashes);
11300 }
11301
11302 return FALSE;
11303 }
11304 \f
11305 /* Initialize COOKIE for input bfd ABFD. */
11306
11307 static bfd_boolean
11308 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11309 struct bfd_link_info *info, bfd *abfd)
11310 {
11311 Elf_Internal_Shdr *symtab_hdr;
11312 const struct elf_backend_data *bed;
11313
11314 bed = get_elf_backend_data (abfd);
11315 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11316
11317 cookie->abfd = abfd;
11318 cookie->sym_hashes = elf_sym_hashes (abfd);
11319 cookie->bad_symtab = elf_bad_symtab (abfd);
11320 if (cookie->bad_symtab)
11321 {
11322 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11323 cookie->extsymoff = 0;
11324 }
11325 else
11326 {
11327 cookie->locsymcount = symtab_hdr->sh_info;
11328 cookie->extsymoff = symtab_hdr->sh_info;
11329 }
11330
11331 if (bed->s->arch_size == 32)
11332 cookie->r_sym_shift = 8;
11333 else
11334 cookie->r_sym_shift = 32;
11335
11336 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11337 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11338 {
11339 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11340 cookie->locsymcount, 0,
11341 NULL, NULL, NULL);
11342 if (cookie->locsyms == NULL)
11343 {
11344 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11345 return FALSE;
11346 }
11347 if (info->keep_memory)
11348 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11349 }
11350 return TRUE;
11351 }
11352
11353 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11354
11355 static void
11356 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11357 {
11358 Elf_Internal_Shdr *symtab_hdr;
11359
11360 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11361 if (cookie->locsyms != NULL
11362 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11363 free (cookie->locsyms);
11364 }
11365
11366 /* Initialize the relocation information in COOKIE for input section SEC
11367 of input bfd ABFD. */
11368
11369 static bfd_boolean
11370 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11371 struct bfd_link_info *info, bfd *abfd,
11372 asection *sec)
11373 {
11374 const struct elf_backend_data *bed;
11375
11376 if (sec->reloc_count == 0)
11377 {
11378 cookie->rels = NULL;
11379 cookie->relend = NULL;
11380 }
11381 else
11382 {
11383 bed = get_elf_backend_data (abfd);
11384
11385 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11386 info->keep_memory);
11387 if (cookie->rels == NULL)
11388 return FALSE;
11389 cookie->rel = cookie->rels;
11390 cookie->relend = (cookie->rels
11391 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11392 }
11393 cookie->rel = cookie->rels;
11394 return TRUE;
11395 }
11396
11397 /* Free the memory allocated by init_reloc_cookie_rels,
11398 if appropriate. */
11399
11400 static void
11401 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11402 asection *sec)
11403 {
11404 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11405 free (cookie->rels);
11406 }
11407
11408 /* Initialize the whole of COOKIE for input section SEC. */
11409
11410 static bfd_boolean
11411 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11412 struct bfd_link_info *info,
11413 asection *sec)
11414 {
11415 if (!init_reloc_cookie (cookie, info, sec->owner))
11416 goto error1;
11417 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11418 goto error2;
11419 return TRUE;
11420
11421 error2:
11422 fini_reloc_cookie (cookie, sec->owner);
11423 error1:
11424 return FALSE;
11425 }
11426
11427 /* Free the memory allocated by init_reloc_cookie_for_section,
11428 if appropriate. */
11429
11430 static void
11431 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11432 asection *sec)
11433 {
11434 fini_reloc_cookie_rels (cookie, sec);
11435 fini_reloc_cookie (cookie, sec->owner);
11436 }
11437 \f
11438 /* Garbage collect unused sections. */
11439
11440 /* Default gc_mark_hook. */
11441
11442 asection *
11443 _bfd_elf_gc_mark_hook (asection *sec,
11444 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11445 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11446 struct elf_link_hash_entry *h,
11447 Elf_Internal_Sym *sym)
11448 {
11449 const char *sec_name;
11450
11451 if (h != NULL)
11452 {
11453 switch (h->root.type)
11454 {
11455 case bfd_link_hash_defined:
11456 case bfd_link_hash_defweak:
11457 return h->root.u.def.section;
11458
11459 case bfd_link_hash_common:
11460 return h->root.u.c.p->section;
11461
11462 case bfd_link_hash_undefined:
11463 case bfd_link_hash_undefweak:
11464 /* To work around a glibc bug, keep all XXX input sections
11465 when there is an as yet undefined reference to __start_XXX
11466 or __stop_XXX symbols. The linker will later define such
11467 symbols for orphan input sections that have a name
11468 representable as a C identifier. */
11469 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11470 sec_name = h->root.root.string + 8;
11471 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11472 sec_name = h->root.root.string + 7;
11473 else
11474 sec_name = NULL;
11475
11476 if (sec_name && *sec_name != '\0')
11477 {
11478 bfd *i;
11479
11480 for (i = info->input_bfds; i; i = i->link_next)
11481 {
11482 sec = bfd_get_section_by_name (i, sec_name);
11483 if (sec)
11484 sec->flags |= SEC_KEEP;
11485 }
11486 }
11487 break;
11488
11489 default:
11490 break;
11491 }
11492 }
11493 else
11494 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11495
11496 return NULL;
11497 }
11498
11499 /* COOKIE->rel describes a relocation against section SEC, which is
11500 a section we've decided to keep. Return the section that contains
11501 the relocation symbol, or NULL if no section contains it. */
11502
11503 asection *
11504 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11505 elf_gc_mark_hook_fn gc_mark_hook,
11506 struct elf_reloc_cookie *cookie)
11507 {
11508 unsigned long r_symndx;
11509 struct elf_link_hash_entry *h;
11510
11511 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11512 if (r_symndx == STN_UNDEF)
11513 return NULL;
11514
11515 if (r_symndx >= cookie->locsymcount
11516 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11517 {
11518 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11519 while (h->root.type == bfd_link_hash_indirect
11520 || h->root.type == bfd_link_hash_warning)
11521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11522 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11523 }
11524
11525 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11526 &cookie->locsyms[r_symndx]);
11527 }
11528
11529 /* COOKIE->rel describes a relocation against section SEC, which is
11530 a section we've decided to keep. Mark the section that contains
11531 the relocation symbol. */
11532
11533 bfd_boolean
11534 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11535 asection *sec,
11536 elf_gc_mark_hook_fn gc_mark_hook,
11537 struct elf_reloc_cookie *cookie)
11538 {
11539 asection *rsec;
11540
11541 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11542 if (rsec && !rsec->gc_mark)
11543 {
11544 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11545 rsec->gc_mark = 1;
11546 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11547 return FALSE;
11548 }
11549 return TRUE;
11550 }
11551
11552 /* The mark phase of garbage collection. For a given section, mark
11553 it and any sections in this section's group, and all the sections
11554 which define symbols to which it refers. */
11555
11556 bfd_boolean
11557 _bfd_elf_gc_mark (struct bfd_link_info *info,
11558 asection *sec,
11559 elf_gc_mark_hook_fn gc_mark_hook)
11560 {
11561 bfd_boolean ret;
11562 asection *group_sec, *eh_frame;
11563
11564 sec->gc_mark = 1;
11565
11566 /* Mark all the sections in the group. */
11567 group_sec = elf_section_data (sec)->next_in_group;
11568 if (group_sec && !group_sec->gc_mark)
11569 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11570 return FALSE;
11571
11572 /* Look through the section relocs. */
11573 ret = TRUE;
11574 eh_frame = elf_eh_frame_section (sec->owner);
11575 if ((sec->flags & SEC_RELOC) != 0
11576 && sec->reloc_count > 0
11577 && sec != eh_frame)
11578 {
11579 struct elf_reloc_cookie cookie;
11580
11581 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11582 ret = FALSE;
11583 else
11584 {
11585 for (; cookie.rel < cookie.relend; cookie.rel++)
11586 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11587 {
11588 ret = FALSE;
11589 break;
11590 }
11591 fini_reloc_cookie_for_section (&cookie, sec);
11592 }
11593 }
11594
11595 if (ret && eh_frame && elf_fde_list (sec))
11596 {
11597 struct elf_reloc_cookie cookie;
11598
11599 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11600 ret = FALSE;
11601 else
11602 {
11603 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11604 gc_mark_hook, &cookie))
11605 ret = FALSE;
11606 fini_reloc_cookie_for_section (&cookie, eh_frame);
11607 }
11608 }
11609
11610 return ret;
11611 }
11612
11613 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11614
11615 struct elf_gc_sweep_symbol_info
11616 {
11617 struct bfd_link_info *info;
11618 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11619 bfd_boolean);
11620 };
11621
11622 static bfd_boolean
11623 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11624 {
11625 if (h->root.type == bfd_link_hash_warning)
11626 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11627
11628 if ((h->root.type == bfd_link_hash_defined
11629 || h->root.type == bfd_link_hash_defweak)
11630 && !h->root.u.def.section->gc_mark
11631 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11632 {
11633 struct elf_gc_sweep_symbol_info *inf =
11634 (struct elf_gc_sweep_symbol_info *) data;
11635 (*inf->hide_symbol) (inf->info, h, TRUE);
11636 }
11637
11638 return TRUE;
11639 }
11640
11641 /* The sweep phase of garbage collection. Remove all garbage sections. */
11642
11643 typedef bfd_boolean (*gc_sweep_hook_fn)
11644 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11645
11646 static bfd_boolean
11647 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11648 {
11649 bfd *sub;
11650 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11651 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11652 unsigned long section_sym_count;
11653 struct elf_gc_sweep_symbol_info sweep_info;
11654
11655 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11656 {
11657 asection *o;
11658
11659 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11660 continue;
11661
11662 for (o = sub->sections; o != NULL; o = o->next)
11663 {
11664 /* When any section in a section group is kept, we keep all
11665 sections in the section group. If the first member of
11666 the section group is excluded, we will also exclude the
11667 group section. */
11668 if (o->flags & SEC_GROUP)
11669 {
11670 asection *first = elf_next_in_group (o);
11671 o->gc_mark = first->gc_mark;
11672 }
11673 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11674 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11675 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11676 {
11677 /* Keep debug, special and SHT_NOTE sections. */
11678 o->gc_mark = 1;
11679 }
11680
11681 if (o->gc_mark)
11682 continue;
11683
11684 /* Skip sweeping sections already excluded. */
11685 if (o->flags & SEC_EXCLUDE)
11686 continue;
11687
11688 /* Since this is early in the link process, it is simple
11689 to remove a section from the output. */
11690 o->flags |= SEC_EXCLUDE;
11691
11692 if (info->print_gc_sections && o->size != 0)
11693 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11694
11695 /* But we also have to update some of the relocation
11696 info we collected before. */
11697 if (gc_sweep_hook
11698 && (o->flags & SEC_RELOC) != 0
11699 && o->reloc_count > 0
11700 && !bfd_is_abs_section (o->output_section))
11701 {
11702 Elf_Internal_Rela *internal_relocs;
11703 bfd_boolean r;
11704
11705 internal_relocs
11706 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11707 info->keep_memory);
11708 if (internal_relocs == NULL)
11709 return FALSE;
11710
11711 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11712
11713 if (elf_section_data (o)->relocs != internal_relocs)
11714 free (internal_relocs);
11715
11716 if (!r)
11717 return FALSE;
11718 }
11719 }
11720 }
11721
11722 /* Remove the symbols that were in the swept sections from the dynamic
11723 symbol table. GCFIXME: Anyone know how to get them out of the
11724 static symbol table as well? */
11725 sweep_info.info = info;
11726 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11727 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11728 &sweep_info);
11729
11730 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11731 return TRUE;
11732 }
11733
11734 /* Propagate collected vtable information. This is called through
11735 elf_link_hash_traverse. */
11736
11737 static bfd_boolean
11738 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11739 {
11740 if (h->root.type == bfd_link_hash_warning)
11741 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11742
11743 /* Those that are not vtables. */
11744 if (h->vtable == NULL || h->vtable->parent == NULL)
11745 return TRUE;
11746
11747 /* Those vtables that do not have parents, we cannot merge. */
11748 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11749 return TRUE;
11750
11751 /* If we've already been done, exit. */
11752 if (h->vtable->used && h->vtable->used[-1])
11753 return TRUE;
11754
11755 /* Make sure the parent's table is up to date. */
11756 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11757
11758 if (h->vtable->used == NULL)
11759 {
11760 /* None of this table's entries were referenced. Re-use the
11761 parent's table. */
11762 h->vtable->used = h->vtable->parent->vtable->used;
11763 h->vtable->size = h->vtable->parent->vtable->size;
11764 }
11765 else
11766 {
11767 size_t n;
11768 bfd_boolean *cu, *pu;
11769
11770 /* Or the parent's entries into ours. */
11771 cu = h->vtable->used;
11772 cu[-1] = TRUE;
11773 pu = h->vtable->parent->vtable->used;
11774 if (pu != NULL)
11775 {
11776 const struct elf_backend_data *bed;
11777 unsigned int log_file_align;
11778
11779 bed = get_elf_backend_data (h->root.u.def.section->owner);
11780 log_file_align = bed->s->log_file_align;
11781 n = h->vtable->parent->vtable->size >> log_file_align;
11782 while (n--)
11783 {
11784 if (*pu)
11785 *cu = TRUE;
11786 pu++;
11787 cu++;
11788 }
11789 }
11790 }
11791
11792 return TRUE;
11793 }
11794
11795 static bfd_boolean
11796 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11797 {
11798 asection *sec;
11799 bfd_vma hstart, hend;
11800 Elf_Internal_Rela *relstart, *relend, *rel;
11801 const struct elf_backend_data *bed;
11802 unsigned int log_file_align;
11803
11804 if (h->root.type == bfd_link_hash_warning)
11805 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11806
11807 /* Take care of both those symbols that do not describe vtables as
11808 well as those that are not loaded. */
11809 if (h->vtable == NULL || h->vtable->parent == NULL)
11810 return TRUE;
11811
11812 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11813 || h->root.type == bfd_link_hash_defweak);
11814
11815 sec = h->root.u.def.section;
11816 hstart = h->root.u.def.value;
11817 hend = hstart + h->size;
11818
11819 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11820 if (!relstart)
11821 return *(bfd_boolean *) okp = FALSE;
11822 bed = get_elf_backend_data (sec->owner);
11823 log_file_align = bed->s->log_file_align;
11824
11825 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11826
11827 for (rel = relstart; rel < relend; ++rel)
11828 if (rel->r_offset >= hstart && rel->r_offset < hend)
11829 {
11830 /* If the entry is in use, do nothing. */
11831 if (h->vtable->used
11832 && (rel->r_offset - hstart) < h->vtable->size)
11833 {
11834 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11835 if (h->vtable->used[entry])
11836 continue;
11837 }
11838 /* Otherwise, kill it. */
11839 rel->r_offset = rel->r_info = rel->r_addend = 0;
11840 }
11841
11842 return TRUE;
11843 }
11844
11845 /* Mark sections containing dynamically referenced symbols. When
11846 building shared libraries, we must assume that any visible symbol is
11847 referenced. */
11848
11849 bfd_boolean
11850 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11851 {
11852 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11853
11854 if (h->root.type == bfd_link_hash_warning)
11855 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11856
11857 if ((h->root.type == bfd_link_hash_defined
11858 || h->root.type == bfd_link_hash_defweak)
11859 && (h->ref_dynamic
11860 || (!info->executable
11861 && h->def_regular
11862 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11863 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11864 h->root.u.def.section->flags |= SEC_KEEP;
11865
11866 return TRUE;
11867 }
11868
11869 /* Keep all sections containing symbols undefined on the command-line,
11870 and the section containing the entry symbol. */
11871
11872 void
11873 _bfd_elf_gc_keep (struct bfd_link_info *info)
11874 {
11875 struct bfd_sym_chain *sym;
11876
11877 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11878 {
11879 struct elf_link_hash_entry *h;
11880
11881 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11882 FALSE, FALSE, FALSE);
11883
11884 if (h != NULL
11885 && (h->root.type == bfd_link_hash_defined
11886 || h->root.type == bfd_link_hash_defweak)
11887 && !bfd_is_abs_section (h->root.u.def.section))
11888 h->root.u.def.section->flags |= SEC_KEEP;
11889 }
11890 }
11891
11892 /* Do mark and sweep of unused sections. */
11893
11894 bfd_boolean
11895 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11896 {
11897 bfd_boolean ok = TRUE;
11898 bfd *sub;
11899 elf_gc_mark_hook_fn gc_mark_hook;
11900 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11901
11902 if (!bed->can_gc_sections
11903 || !is_elf_hash_table (info->hash))
11904 {
11905 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11906 return TRUE;
11907 }
11908
11909 bed->gc_keep (info);
11910
11911 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11912 at the .eh_frame section if we can mark the FDEs individually. */
11913 _bfd_elf_begin_eh_frame_parsing (info);
11914 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11915 {
11916 asection *sec;
11917 struct elf_reloc_cookie cookie;
11918
11919 sec = bfd_get_section_by_name (sub, ".eh_frame");
11920 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11921 {
11922 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11923 if (elf_section_data (sec)->sec_info)
11924 elf_eh_frame_section (sub) = sec;
11925 fini_reloc_cookie_for_section (&cookie, sec);
11926 }
11927 }
11928 _bfd_elf_end_eh_frame_parsing (info);
11929
11930 /* Apply transitive closure to the vtable entry usage info. */
11931 elf_link_hash_traverse (elf_hash_table (info),
11932 elf_gc_propagate_vtable_entries_used,
11933 &ok);
11934 if (!ok)
11935 return FALSE;
11936
11937 /* Kill the vtable relocations that were not used. */
11938 elf_link_hash_traverse (elf_hash_table (info),
11939 elf_gc_smash_unused_vtentry_relocs,
11940 &ok);
11941 if (!ok)
11942 return FALSE;
11943
11944 /* Mark dynamically referenced symbols. */
11945 if (elf_hash_table (info)->dynamic_sections_created)
11946 elf_link_hash_traverse (elf_hash_table (info),
11947 bed->gc_mark_dynamic_ref,
11948 info);
11949
11950 /* Grovel through relocs to find out who stays ... */
11951 gc_mark_hook = bed->gc_mark_hook;
11952 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11953 {
11954 asection *o;
11955
11956 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11957 continue;
11958
11959 for (o = sub->sections; o != NULL; o = o->next)
11960 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11961 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11962 return FALSE;
11963 }
11964
11965 /* Allow the backend to mark additional target specific sections. */
11966 if (bed->gc_mark_extra_sections)
11967 bed->gc_mark_extra_sections (info, gc_mark_hook);
11968
11969 /* ... and mark SEC_EXCLUDE for those that go. */
11970 return elf_gc_sweep (abfd, info);
11971 }
11972 \f
11973 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11974
11975 bfd_boolean
11976 bfd_elf_gc_record_vtinherit (bfd *abfd,
11977 asection *sec,
11978 struct elf_link_hash_entry *h,
11979 bfd_vma offset)
11980 {
11981 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11982 struct elf_link_hash_entry **search, *child;
11983 bfd_size_type extsymcount;
11984 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11985
11986 /* The sh_info field of the symtab header tells us where the
11987 external symbols start. We don't care about the local symbols at
11988 this point. */
11989 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11990 if (!elf_bad_symtab (abfd))
11991 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11992
11993 sym_hashes = elf_sym_hashes (abfd);
11994 sym_hashes_end = sym_hashes + extsymcount;
11995
11996 /* Hunt down the child symbol, which is in this section at the same
11997 offset as the relocation. */
11998 for (search = sym_hashes; search != sym_hashes_end; ++search)
11999 {
12000 if ((child = *search) != NULL
12001 && (child->root.type == bfd_link_hash_defined
12002 || child->root.type == bfd_link_hash_defweak)
12003 && child->root.u.def.section == sec
12004 && child->root.u.def.value == offset)
12005 goto win;
12006 }
12007
12008 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12009 abfd, sec, (unsigned long) offset);
12010 bfd_set_error (bfd_error_invalid_operation);
12011 return FALSE;
12012
12013 win:
12014 if (!child->vtable)
12015 {
12016 child->vtable = (struct elf_link_virtual_table_entry *)
12017 bfd_zalloc (abfd, sizeof (*child->vtable));
12018 if (!child->vtable)
12019 return FALSE;
12020 }
12021 if (!h)
12022 {
12023 /* This *should* only be the absolute section. It could potentially
12024 be that someone has defined a non-global vtable though, which
12025 would be bad. It isn't worth paging in the local symbols to be
12026 sure though; that case should simply be handled by the assembler. */
12027
12028 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12029 }
12030 else
12031 child->vtable->parent = h;
12032
12033 return TRUE;
12034 }
12035
12036 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12037
12038 bfd_boolean
12039 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12040 asection *sec ATTRIBUTE_UNUSED,
12041 struct elf_link_hash_entry *h,
12042 bfd_vma addend)
12043 {
12044 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12045 unsigned int log_file_align = bed->s->log_file_align;
12046
12047 if (!h->vtable)
12048 {
12049 h->vtable = (struct elf_link_virtual_table_entry *)
12050 bfd_zalloc (abfd, sizeof (*h->vtable));
12051 if (!h->vtable)
12052 return FALSE;
12053 }
12054
12055 if (addend >= h->vtable->size)
12056 {
12057 size_t size, bytes, file_align;
12058 bfd_boolean *ptr = h->vtable->used;
12059
12060 /* While the symbol is undefined, we have to be prepared to handle
12061 a zero size. */
12062 file_align = 1 << log_file_align;
12063 if (h->root.type == bfd_link_hash_undefined)
12064 size = addend + file_align;
12065 else
12066 {
12067 size = h->size;
12068 if (addend >= size)
12069 {
12070 /* Oops! We've got a reference past the defined end of
12071 the table. This is probably a bug -- shall we warn? */
12072 size = addend + file_align;
12073 }
12074 }
12075 size = (size + file_align - 1) & -file_align;
12076
12077 /* Allocate one extra entry for use as a "done" flag for the
12078 consolidation pass. */
12079 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12080
12081 if (ptr)
12082 {
12083 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12084
12085 if (ptr != NULL)
12086 {
12087 size_t oldbytes;
12088
12089 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12090 * sizeof (bfd_boolean));
12091 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12092 }
12093 }
12094 else
12095 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12096
12097 if (ptr == NULL)
12098 return FALSE;
12099
12100 /* And arrange for that done flag to be at index -1. */
12101 h->vtable->used = ptr + 1;
12102 h->vtable->size = size;
12103 }
12104
12105 h->vtable->used[addend >> log_file_align] = TRUE;
12106
12107 return TRUE;
12108 }
12109
12110 struct alloc_got_off_arg {
12111 bfd_vma gotoff;
12112 struct bfd_link_info *info;
12113 };
12114
12115 /* We need a special top-level link routine to convert got reference counts
12116 to real got offsets. */
12117
12118 static bfd_boolean
12119 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12120 {
12121 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12122 bfd *obfd = gofarg->info->output_bfd;
12123 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12124
12125 if (h->root.type == bfd_link_hash_warning)
12126 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12127
12128 if (h->got.refcount > 0)
12129 {
12130 h->got.offset = gofarg->gotoff;
12131 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12132 }
12133 else
12134 h->got.offset = (bfd_vma) -1;
12135
12136 return TRUE;
12137 }
12138
12139 /* And an accompanying bit to work out final got entry offsets once
12140 we're done. Should be called from final_link. */
12141
12142 bfd_boolean
12143 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12144 struct bfd_link_info *info)
12145 {
12146 bfd *i;
12147 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12148 bfd_vma gotoff;
12149 struct alloc_got_off_arg gofarg;
12150
12151 BFD_ASSERT (abfd == info->output_bfd);
12152
12153 if (! is_elf_hash_table (info->hash))
12154 return FALSE;
12155
12156 /* The GOT offset is relative to the .got section, but the GOT header is
12157 put into the .got.plt section, if the backend uses it. */
12158 if (bed->want_got_plt)
12159 gotoff = 0;
12160 else
12161 gotoff = bed->got_header_size;
12162
12163 /* Do the local .got entries first. */
12164 for (i = info->input_bfds; i; i = i->link_next)
12165 {
12166 bfd_signed_vma *local_got;
12167 bfd_size_type j, locsymcount;
12168 Elf_Internal_Shdr *symtab_hdr;
12169
12170 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12171 continue;
12172
12173 local_got = elf_local_got_refcounts (i);
12174 if (!local_got)
12175 continue;
12176
12177 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12178 if (elf_bad_symtab (i))
12179 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12180 else
12181 locsymcount = symtab_hdr->sh_info;
12182
12183 for (j = 0; j < locsymcount; ++j)
12184 {
12185 if (local_got[j] > 0)
12186 {
12187 local_got[j] = gotoff;
12188 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12189 }
12190 else
12191 local_got[j] = (bfd_vma) -1;
12192 }
12193 }
12194
12195 /* Then the global .got entries. .plt refcounts are handled by
12196 adjust_dynamic_symbol */
12197 gofarg.gotoff = gotoff;
12198 gofarg.info = info;
12199 elf_link_hash_traverse (elf_hash_table (info),
12200 elf_gc_allocate_got_offsets,
12201 &gofarg);
12202 return TRUE;
12203 }
12204
12205 /* Many folk need no more in the way of final link than this, once
12206 got entry reference counting is enabled. */
12207
12208 bfd_boolean
12209 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12210 {
12211 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12212 return FALSE;
12213
12214 /* Invoke the regular ELF backend linker to do all the work. */
12215 return bfd_elf_final_link (abfd, info);
12216 }
12217
12218 bfd_boolean
12219 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12220 {
12221 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12222
12223 if (rcookie->bad_symtab)
12224 rcookie->rel = rcookie->rels;
12225
12226 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12227 {
12228 unsigned long r_symndx;
12229
12230 if (! rcookie->bad_symtab)
12231 if (rcookie->rel->r_offset > offset)
12232 return FALSE;
12233 if (rcookie->rel->r_offset != offset)
12234 continue;
12235
12236 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12237 if (r_symndx == STN_UNDEF)
12238 return TRUE;
12239
12240 if (r_symndx >= rcookie->locsymcount
12241 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12242 {
12243 struct elf_link_hash_entry *h;
12244
12245 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12246
12247 while (h->root.type == bfd_link_hash_indirect
12248 || h->root.type == bfd_link_hash_warning)
12249 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12250
12251 if ((h->root.type == bfd_link_hash_defined
12252 || h->root.type == bfd_link_hash_defweak)
12253 && elf_discarded_section (h->root.u.def.section))
12254 return TRUE;
12255 else
12256 return FALSE;
12257 }
12258 else
12259 {
12260 /* It's not a relocation against a global symbol,
12261 but it could be a relocation against a local
12262 symbol for a discarded section. */
12263 asection *isec;
12264 Elf_Internal_Sym *isym;
12265
12266 /* Need to: get the symbol; get the section. */
12267 isym = &rcookie->locsyms[r_symndx];
12268 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12269 if (isec != NULL && elf_discarded_section (isec))
12270 return TRUE;
12271 }
12272 return FALSE;
12273 }
12274 return FALSE;
12275 }
12276
12277 /* Discard unneeded references to discarded sections.
12278 Returns TRUE if any section's size was changed. */
12279 /* This function assumes that the relocations are in sorted order,
12280 which is true for all known assemblers. */
12281
12282 bfd_boolean
12283 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12284 {
12285 struct elf_reloc_cookie cookie;
12286 asection *stab, *eh;
12287 const struct elf_backend_data *bed;
12288 bfd *abfd;
12289 bfd_boolean ret = FALSE;
12290
12291 if (info->traditional_format
12292 || !is_elf_hash_table (info->hash))
12293 return FALSE;
12294
12295 _bfd_elf_begin_eh_frame_parsing (info);
12296 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12297 {
12298 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12299 continue;
12300
12301 bed = get_elf_backend_data (abfd);
12302
12303 if ((abfd->flags & DYNAMIC) != 0)
12304 continue;
12305
12306 eh = NULL;
12307 if (!info->relocatable)
12308 {
12309 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12310 if (eh != NULL
12311 && (eh->size == 0
12312 || bfd_is_abs_section (eh->output_section)))
12313 eh = NULL;
12314 }
12315
12316 stab = bfd_get_section_by_name (abfd, ".stab");
12317 if (stab != NULL
12318 && (stab->size == 0
12319 || bfd_is_abs_section (stab->output_section)
12320 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12321 stab = NULL;
12322
12323 if (stab == NULL
12324 && eh == NULL
12325 && bed->elf_backend_discard_info == NULL)
12326 continue;
12327
12328 if (!init_reloc_cookie (&cookie, info, abfd))
12329 return FALSE;
12330
12331 if (stab != NULL
12332 && stab->reloc_count > 0
12333 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12334 {
12335 if (_bfd_discard_section_stabs (abfd, stab,
12336 elf_section_data (stab)->sec_info,
12337 bfd_elf_reloc_symbol_deleted_p,
12338 &cookie))
12339 ret = TRUE;
12340 fini_reloc_cookie_rels (&cookie, stab);
12341 }
12342
12343 if (eh != NULL
12344 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12345 {
12346 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12347 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12348 bfd_elf_reloc_symbol_deleted_p,
12349 &cookie))
12350 ret = TRUE;
12351 fini_reloc_cookie_rels (&cookie, eh);
12352 }
12353
12354 if (bed->elf_backend_discard_info != NULL
12355 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12356 ret = TRUE;
12357
12358 fini_reloc_cookie (&cookie, abfd);
12359 }
12360 _bfd_elf_end_eh_frame_parsing (info);
12361
12362 if (info->eh_frame_hdr
12363 && !info->relocatable
12364 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12365 ret = TRUE;
12366
12367 return ret;
12368 }
12369
12370 /* For a SHT_GROUP section, return the group signature. For other
12371 sections, return the normal section name. */
12372
12373 static const char *
12374 section_signature (asection *sec)
12375 {
12376 if ((sec->flags & SEC_GROUP) != 0
12377 && elf_next_in_group (sec) != NULL
12378 && elf_group_name (elf_next_in_group (sec)) != NULL)
12379 return elf_group_name (elf_next_in_group (sec));
12380 return sec->name;
12381 }
12382
12383 void
12384 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12385 struct bfd_link_info *info)
12386 {
12387 flagword flags;
12388 const char *name, *p;
12389 struct bfd_section_already_linked *l;
12390 struct bfd_section_already_linked_hash_entry *already_linked_list;
12391
12392 if (sec->output_section == bfd_abs_section_ptr)
12393 return;
12394
12395 flags = sec->flags;
12396
12397 /* Return if it isn't a linkonce section. A comdat group section
12398 also has SEC_LINK_ONCE set. */
12399 if ((flags & SEC_LINK_ONCE) == 0)
12400 return;
12401
12402 /* Don't put group member sections on our list of already linked
12403 sections. They are handled as a group via their group section. */
12404 if (elf_sec_group (sec) != NULL)
12405 return;
12406
12407 /* FIXME: When doing a relocatable link, we may have trouble
12408 copying relocations in other sections that refer to local symbols
12409 in the section being discarded. Those relocations will have to
12410 be converted somehow; as of this writing I'm not sure that any of
12411 the backends handle that correctly.
12412
12413 It is tempting to instead not discard link once sections when
12414 doing a relocatable link (technically, they should be discarded
12415 whenever we are building constructors). However, that fails,
12416 because the linker winds up combining all the link once sections
12417 into a single large link once section, which defeats the purpose
12418 of having link once sections in the first place.
12419
12420 Also, not merging link once sections in a relocatable link
12421 causes trouble for MIPS ELF, which relies on link once semantics
12422 to handle the .reginfo section correctly. */
12423
12424 name = section_signature (sec);
12425
12426 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12427 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12428 p++;
12429 else
12430 p = name;
12431
12432 already_linked_list = bfd_section_already_linked_table_lookup (p);
12433
12434 for (l = already_linked_list->entry; l != NULL; l = l->next)
12435 {
12436 /* We may have 2 different types of sections on the list: group
12437 sections and linkonce sections. Match like sections. */
12438 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12439 && strcmp (name, section_signature (l->sec)) == 0
12440 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12441 {
12442 /* The section has already been linked. See if we should
12443 issue a warning. */
12444 switch (flags & SEC_LINK_DUPLICATES)
12445 {
12446 default:
12447 abort ();
12448
12449 case SEC_LINK_DUPLICATES_DISCARD:
12450 break;
12451
12452 case SEC_LINK_DUPLICATES_ONE_ONLY:
12453 (*_bfd_error_handler)
12454 (_("%B: ignoring duplicate section `%A'"),
12455 abfd, sec);
12456 break;
12457
12458 case SEC_LINK_DUPLICATES_SAME_SIZE:
12459 if (sec->size != l->sec->size)
12460 (*_bfd_error_handler)
12461 (_("%B: duplicate section `%A' has different size"),
12462 abfd, sec);
12463 break;
12464
12465 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12466 if (sec->size != l->sec->size)
12467 (*_bfd_error_handler)
12468 (_("%B: duplicate section `%A' has different size"),
12469 abfd, sec);
12470 else if (sec->size != 0)
12471 {
12472 bfd_byte *sec_contents, *l_sec_contents;
12473
12474 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12475 (*_bfd_error_handler)
12476 (_("%B: warning: could not read contents of section `%A'"),
12477 abfd, sec);
12478 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12479 &l_sec_contents))
12480 (*_bfd_error_handler)
12481 (_("%B: warning: could not read contents of section `%A'"),
12482 l->sec->owner, l->sec);
12483 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12484 (*_bfd_error_handler)
12485 (_("%B: warning: duplicate section `%A' has different contents"),
12486 abfd, sec);
12487
12488 if (sec_contents)
12489 free (sec_contents);
12490 if (l_sec_contents)
12491 free (l_sec_contents);
12492 }
12493 break;
12494 }
12495
12496 /* Set the output_section field so that lang_add_section
12497 does not create a lang_input_section structure for this
12498 section. Since there might be a symbol in the section
12499 being discarded, we must retain a pointer to the section
12500 which we are really going to use. */
12501 sec->output_section = bfd_abs_section_ptr;
12502 sec->kept_section = l->sec;
12503
12504 if (flags & SEC_GROUP)
12505 {
12506 asection *first = elf_next_in_group (sec);
12507 asection *s = first;
12508
12509 while (s != NULL)
12510 {
12511 s->output_section = bfd_abs_section_ptr;
12512 /* Record which group discards it. */
12513 s->kept_section = l->sec;
12514 s = elf_next_in_group (s);
12515 /* These lists are circular. */
12516 if (s == first)
12517 break;
12518 }
12519 }
12520
12521 return;
12522 }
12523 }
12524
12525 /* A single member comdat group section may be discarded by a
12526 linkonce section and vice versa. */
12527
12528 if ((flags & SEC_GROUP) != 0)
12529 {
12530 asection *first = elf_next_in_group (sec);
12531
12532 if (first != NULL && elf_next_in_group (first) == first)
12533 /* Check this single member group against linkonce sections. */
12534 for (l = already_linked_list->entry; l != NULL; l = l->next)
12535 if ((l->sec->flags & SEC_GROUP) == 0
12536 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12537 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12538 {
12539 first->output_section = bfd_abs_section_ptr;
12540 first->kept_section = l->sec;
12541 sec->output_section = bfd_abs_section_ptr;
12542 break;
12543 }
12544 }
12545 else
12546 /* Check this linkonce section against single member groups. */
12547 for (l = already_linked_list->entry; l != NULL; l = l->next)
12548 if (l->sec->flags & SEC_GROUP)
12549 {
12550 asection *first = elf_next_in_group (l->sec);
12551
12552 if (first != NULL
12553 && elf_next_in_group (first) == first
12554 && bfd_elf_match_symbols_in_sections (first, sec, info))
12555 {
12556 sec->output_section = bfd_abs_section_ptr;
12557 sec->kept_section = first;
12558 break;
12559 }
12560 }
12561
12562 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12563 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12564 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12565 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12566 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12567 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12568 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12569 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12570 The reverse order cannot happen as there is never a bfd with only the
12571 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12572 matter as here were are looking only for cross-bfd sections. */
12573
12574 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12575 for (l = already_linked_list->entry; l != NULL; l = l->next)
12576 if ((l->sec->flags & SEC_GROUP) == 0
12577 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12578 {
12579 if (abfd != l->sec->owner)
12580 sec->output_section = bfd_abs_section_ptr;
12581 break;
12582 }
12583
12584 /* This is the first section with this name. Record it. */
12585 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12586 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12587 }
12588
12589 bfd_boolean
12590 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12591 {
12592 return sym->st_shndx == SHN_COMMON;
12593 }
12594
12595 unsigned int
12596 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12597 {
12598 return SHN_COMMON;
12599 }
12600
12601 asection *
12602 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12603 {
12604 return bfd_com_section_ptr;
12605 }
12606
12607 bfd_vma
12608 _bfd_elf_default_got_elt_size (bfd *abfd,
12609 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12610 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12611 bfd *ibfd ATTRIBUTE_UNUSED,
12612 unsigned long symndx ATTRIBUTE_UNUSED)
12613 {
12614 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12615 return bed->s->arch_size / 8;
12616 }
12617
12618 /* Routines to support the creation of dynamic relocs. */
12619
12620 /* Returns the name of the dynamic reloc section associated with SEC. */
12621
12622 static const char *
12623 get_dynamic_reloc_section_name (bfd * abfd,
12624 asection * sec,
12625 bfd_boolean is_rela)
12626 {
12627 char *name;
12628 const char *old_name = bfd_get_section_name (NULL, sec);
12629 const char *prefix = is_rela ? ".rela" : ".rel";
12630
12631 if (old_name == NULL)
12632 return NULL;
12633
12634 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12635 sprintf (name, "%s%s", prefix, old_name);
12636
12637 return name;
12638 }
12639
12640 /* Returns the dynamic reloc section associated with SEC.
12641 If necessary compute the name of the dynamic reloc section based
12642 on SEC's name (looked up in ABFD's string table) and the setting
12643 of IS_RELA. */
12644
12645 asection *
12646 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12647 asection * sec,
12648 bfd_boolean is_rela)
12649 {
12650 asection * reloc_sec = elf_section_data (sec)->sreloc;
12651
12652 if (reloc_sec == NULL)
12653 {
12654 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12655
12656 if (name != NULL)
12657 {
12658 reloc_sec = bfd_get_section_by_name (abfd, name);
12659
12660 if (reloc_sec != NULL)
12661 elf_section_data (sec)->sreloc = reloc_sec;
12662 }
12663 }
12664
12665 return reloc_sec;
12666 }
12667
12668 /* Returns the dynamic reloc section associated with SEC. If the
12669 section does not exist it is created and attached to the DYNOBJ
12670 bfd and stored in the SRELOC field of SEC's elf_section_data
12671 structure.
12672
12673 ALIGNMENT is the alignment for the newly created section and
12674 IS_RELA defines whether the name should be .rela.<SEC's name>
12675 or .rel.<SEC's name>. The section name is looked up in the
12676 string table associated with ABFD. */
12677
12678 asection *
12679 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12680 bfd * dynobj,
12681 unsigned int alignment,
12682 bfd * abfd,
12683 bfd_boolean is_rela)
12684 {
12685 asection * reloc_sec = elf_section_data (sec)->sreloc;
12686
12687 if (reloc_sec == NULL)
12688 {
12689 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12690
12691 if (name == NULL)
12692 return NULL;
12693
12694 reloc_sec = bfd_get_section_by_name (dynobj, name);
12695
12696 if (reloc_sec == NULL)
12697 {
12698 flagword flags;
12699
12700 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12701 if ((sec->flags & SEC_ALLOC) != 0)
12702 flags |= SEC_ALLOC | SEC_LOAD;
12703
12704 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12705 if (reloc_sec != NULL)
12706 {
12707 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12708 reloc_sec = NULL;
12709 }
12710 }
12711
12712 elf_section_data (sec)->sreloc = reloc_sec;
12713 }
12714
12715 return reloc_sec;
12716 }
12717
12718 /* Copy the ELF symbol type associated with a linker hash entry. */
12719 void
12720 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12721 struct bfd_link_hash_entry * hdest,
12722 struct bfd_link_hash_entry * hsrc)
12723 {
12724 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12725 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12726
12727 ehdest->type = ehsrc->type;
12728 ehdest->target_internal = ehsrc->target_internal;
12729 }
12730
12731 /* Append a RELA relocation REL to section S in BFD. */
12732
12733 void
12734 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12735 {
12736 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12737 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12738 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12739 bed->s->swap_reloca_out (abfd, rel, loc);
12740 }
12741
12742 /* Append a REL relocation REL to section S in BFD. */
12743
12744 void
12745 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12746 {
12747 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12748 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12749 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12750 bed->s->swap_reloca_out (abfd, rel, loc);
12751 }