]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elflink.c
PR26002 undefined symbol VER_NDX_GLOBAL vs. VER_NDX_LOCAL
[thirdparty/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2021 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 #ifdef HAVE_LIMITS_H
36 #include <limits.h>
37 #endif
38 #ifndef CHAR_BIT
39 #define CHAR_BIT 8
40 #endif
41
42 /* This struct is used to pass information to routines called via
43 elf_link_hash_traverse which must return failure. */
44
45 struct elf_info_failed
46 {
47 struct bfd_link_info *info;
48 bfd_boolean failed;
49 };
50
51 /* This structure is used to pass information to
52 _bfd_elf_link_find_version_dependencies. */
53
54 struct elf_find_verdep_info
55 {
56 /* General link information. */
57 struct bfd_link_info *info;
58 /* The number of dependencies. */
59 unsigned int vers;
60 /* Whether we had a failure. */
61 bfd_boolean failed;
62 };
63
64 static bfd_boolean _bfd_elf_fix_symbol_flags
65 (struct elf_link_hash_entry *, struct elf_info_failed *);
66
67 asection *
68 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
69 unsigned long r_symndx,
70 bfd_boolean discard)
71 {
72 if (r_symndx >= cookie->locsymcount
73 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
74 {
75 struct elf_link_hash_entry *h;
76
77 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
78
79 while (h->root.type == bfd_link_hash_indirect
80 || h->root.type == bfd_link_hash_warning)
81 h = (struct elf_link_hash_entry *) h->root.u.i.link;
82
83 if ((h->root.type == bfd_link_hash_defined
84 || h->root.type == bfd_link_hash_defweak)
85 && discarded_section (h->root.u.def.section))
86 return h->root.u.def.section;
87 else
88 return NULL;
89 }
90 else
91 {
92 /* It's not a relocation against a global symbol,
93 but it could be a relocation against a local
94 symbol for a discarded section. */
95 asection *isec;
96 Elf_Internal_Sym *isym;
97
98 /* Need to: get the symbol; get the section. */
99 isym = &cookie->locsyms[r_symndx];
100 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
101 if (isec != NULL
102 && discard ? discarded_section (isec) : 1)
103 return isec;
104 }
105 return NULL;
106 }
107
108 /* Define a symbol in a dynamic linkage section. */
109
110 struct elf_link_hash_entry *
111 _bfd_elf_define_linkage_sym (bfd *abfd,
112 struct bfd_link_info *info,
113 asection *sec,
114 const char *name)
115 {
116 struct elf_link_hash_entry *h;
117 struct bfd_link_hash_entry *bh;
118 const struct elf_backend_data *bed;
119
120 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
121 if (h != NULL)
122 {
123 /* Zap symbol defined in an as-needed lib that wasn't linked.
124 This is a symptom of a larger problem: Absolute symbols
125 defined in shared libraries can't be overridden, because we
126 lose the link to the bfd which is via the symbol section. */
127 h->root.type = bfd_link_hash_new;
128 bh = &h->root;
129 }
130 else
131 bh = NULL;
132
133 bed = get_elf_backend_data (abfd);
134 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
135 sec, 0, NULL, FALSE, bed->collect,
136 &bh))
137 return NULL;
138 h = (struct elf_link_hash_entry *) bh;
139 BFD_ASSERT (h != NULL);
140 h->def_regular = 1;
141 h->non_elf = 0;
142 h->root.linker_def = 1;
143 h->type = STT_OBJECT;
144 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
145 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
146
147 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
148 return h;
149 }
150
151 bfd_boolean
152 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
153 {
154 flagword flags;
155 asection *s;
156 struct elf_link_hash_entry *h;
157 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
158 struct elf_link_hash_table *htab = elf_hash_table (info);
159
160 /* This function may be called more than once. */
161 if (htab->sgot != NULL)
162 return TRUE;
163
164 flags = bed->dynamic_sec_flags;
165
166 s = bfd_make_section_anyway_with_flags (abfd,
167 (bed->rela_plts_and_copies_p
168 ? ".rela.got" : ".rel.got"),
169 (bed->dynamic_sec_flags
170 | SEC_READONLY));
171 if (s == NULL
172 || !bfd_set_section_alignment (s, bed->s->log_file_align))
173 return FALSE;
174 htab->srelgot = s;
175
176 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
177 if (s == NULL
178 || !bfd_set_section_alignment (s, bed->s->log_file_align))
179 return FALSE;
180 htab->sgot = s;
181
182 if (bed->want_got_plt)
183 {
184 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
185 if (s == NULL
186 || !bfd_set_section_alignment (s, bed->s->log_file_align))
187 return FALSE;
188 htab->sgotplt = s;
189 }
190
191 /* The first bit of the global offset table is the header. */
192 s->size += bed->got_header_size;
193
194 if (bed->want_got_sym)
195 {
196 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
197 (or .got.plt) section. We don't do this in the linker script
198 because we don't want to define the symbol if we are not creating
199 a global offset table. */
200 h = _bfd_elf_define_linkage_sym (abfd, info, s,
201 "_GLOBAL_OFFSET_TABLE_");
202 elf_hash_table (info)->hgot = h;
203 if (h == NULL)
204 return FALSE;
205 }
206
207 return TRUE;
208 }
209 \f
210 /* Create a strtab to hold the dynamic symbol names. */
211 static bfd_boolean
212 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
213 {
214 struct elf_link_hash_table *hash_table;
215
216 hash_table = elf_hash_table (info);
217 if (hash_table->dynobj == NULL)
218 {
219 /* We may not set dynobj, an input file holding linker created
220 dynamic sections to abfd, which may be a dynamic object with
221 its own dynamic sections. We need to find a normal input file
222 to hold linker created sections if possible. */
223 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
224 {
225 bfd *ibfd;
226 asection *s;
227 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
228 if ((ibfd->flags
229 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
230 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
231 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
232 && !((s = ibfd->sections) != NULL
233 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
234 {
235 abfd = ibfd;
236 break;
237 }
238 }
239 hash_table->dynobj = abfd;
240 }
241
242 if (hash_table->dynstr == NULL)
243 {
244 hash_table->dynstr = _bfd_elf_strtab_init ();
245 if (hash_table->dynstr == NULL)
246 return FALSE;
247 }
248 return TRUE;
249 }
250
251 /* Create some sections which will be filled in with dynamic linking
252 information. ABFD is an input file which requires dynamic sections
253 to be created. The dynamic sections take up virtual memory space
254 when the final executable is run, so we need to create them before
255 addresses are assigned to the output sections. We work out the
256 actual contents and size of these sections later. */
257
258 bfd_boolean
259 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
260 {
261 flagword flags;
262 asection *s;
263 const struct elf_backend_data *bed;
264 struct elf_link_hash_entry *h;
265
266 if (! is_elf_hash_table (info->hash))
267 return FALSE;
268
269 if (elf_hash_table (info)->dynamic_sections_created)
270 return TRUE;
271
272 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
273 return FALSE;
274
275 abfd = elf_hash_table (info)->dynobj;
276 bed = get_elf_backend_data (abfd);
277
278 flags = bed->dynamic_sec_flags;
279
280 /* A dynamically linked executable has a .interp section, but a
281 shared library does not. */
282 if (bfd_link_executable (info) && !info->nointerp)
283 {
284 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
285 flags | SEC_READONLY);
286 if (s == NULL)
287 return FALSE;
288 }
289
290 /* Create sections to hold version informations. These are removed
291 if they are not needed. */
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || !bfd_set_section_alignment (s, bed->s->log_file_align))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || !bfd_set_section_alignment (s, 1))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || !bfd_set_section_alignment (s, bed->s->log_file_align))
308 return FALSE;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
311 flags | SEC_READONLY);
312 if (s == NULL
313 || !bfd_set_section_alignment (s, bed->s->log_file_align))
314 return FALSE;
315 elf_hash_table (info)->dynsym = s;
316
317 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
318 flags | SEC_READONLY);
319 if (s == NULL)
320 return FALSE;
321
322 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
323 if (s == NULL
324 || !bfd_set_section_alignment (s, bed->s->log_file_align))
325 return FALSE;
326
327 /* The special symbol _DYNAMIC is always set to the start of the
328 .dynamic section. We could set _DYNAMIC in a linker script, but we
329 only want to define it if we are, in fact, creating a .dynamic
330 section. We don't want to define it if there is no .dynamic
331 section, since on some ELF platforms the start up code examines it
332 to decide how to initialize the process. */
333 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
334 elf_hash_table (info)->hdynamic = h;
335 if (h == NULL)
336 return FALSE;
337
338 if (info->emit_hash)
339 {
340 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
341 flags | SEC_READONLY);
342 if (s == NULL
343 || !bfd_set_section_alignment (s, bed->s->log_file_align))
344 return FALSE;
345 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
346 }
347
348 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
349 {
350 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
351 flags | SEC_READONLY);
352 if (s == NULL
353 || !bfd_set_section_alignment (s, bed->s->log_file_align))
354 return FALSE;
355 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
356 4 32-bit words followed by variable count of 64-bit words, then
357 variable count of 32-bit words. */
358 if (bed->s->arch_size == 64)
359 elf_section_data (s)->this_hdr.sh_entsize = 0;
360 else
361 elf_section_data (s)->this_hdr.sh_entsize = 4;
362 }
363
364 /* Let the backend create the rest of the sections. This lets the
365 backend set the right flags. The backend will normally create
366 the .got and .plt sections. */
367 if (bed->elf_backend_create_dynamic_sections == NULL
368 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
369 return FALSE;
370
371 elf_hash_table (info)->dynamic_sections_created = TRUE;
372
373 return TRUE;
374 }
375
376 /* Create dynamic sections when linking against a dynamic object. */
377
378 bfd_boolean
379 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
380 {
381 flagword flags, pltflags;
382 struct elf_link_hash_entry *h;
383 asection *s;
384 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
385 struct elf_link_hash_table *htab = elf_hash_table (info);
386
387 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
388 .rel[a].bss sections. */
389 flags = bed->dynamic_sec_flags;
390
391 pltflags = flags;
392 if (bed->plt_not_loaded)
393 /* We do not clear SEC_ALLOC here because we still want the OS to
394 allocate space for the section; it's just that there's nothing
395 to read in from the object file. */
396 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
397 else
398 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
399 if (bed->plt_readonly)
400 pltflags |= SEC_READONLY;
401
402 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
403 if (s == NULL
404 || !bfd_set_section_alignment (s, bed->plt_alignment))
405 return FALSE;
406 htab->splt = s;
407
408 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
409 .plt section. */
410 if (bed->want_plt_sym)
411 {
412 h = _bfd_elf_define_linkage_sym (abfd, info, s,
413 "_PROCEDURE_LINKAGE_TABLE_");
414 elf_hash_table (info)->hplt = h;
415 if (h == NULL)
416 return FALSE;
417 }
418
419 s = bfd_make_section_anyway_with_flags (abfd,
420 (bed->rela_plts_and_copies_p
421 ? ".rela.plt" : ".rel.plt"),
422 flags | SEC_READONLY);
423 if (s == NULL
424 || !bfd_set_section_alignment (s, bed->s->log_file_align))
425 return FALSE;
426 htab->srelplt = s;
427
428 if (! _bfd_elf_create_got_section (abfd, info))
429 return FALSE;
430
431 if (bed->want_dynbss)
432 {
433 /* The .dynbss section is a place to put symbols which are defined
434 by dynamic objects, are referenced by regular objects, and are
435 not functions. We must allocate space for them in the process
436 image and use a R_*_COPY reloc to tell the dynamic linker to
437 initialize them at run time. The linker script puts the .dynbss
438 section into the .bss section of the final image. */
439 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
440 SEC_ALLOC | SEC_LINKER_CREATED);
441 if (s == NULL)
442 return FALSE;
443 htab->sdynbss = s;
444
445 if (bed->want_dynrelro)
446 {
447 /* Similarly, but for symbols that were originally in read-only
448 sections. This section doesn't really need to have contents,
449 but make it like other .data.rel.ro sections. */
450 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
451 flags);
452 if (s == NULL)
453 return FALSE;
454 htab->sdynrelro = s;
455 }
456
457 /* The .rel[a].bss section holds copy relocs. This section is not
458 normally needed. We need to create it here, though, so that the
459 linker will map it to an output section. We can't just create it
460 only if we need it, because we will not know whether we need it
461 until we have seen all the input files, and the first time the
462 main linker code calls BFD after examining all the input files
463 (size_dynamic_sections) the input sections have already been
464 mapped to the output sections. If the section turns out not to
465 be needed, we can discard it later. We will never need this
466 section when generating a shared object, since they do not use
467 copy relocs. */
468 if (bfd_link_executable (info))
469 {
470 s = bfd_make_section_anyway_with_flags (abfd,
471 (bed->rela_plts_and_copies_p
472 ? ".rela.bss" : ".rel.bss"),
473 flags | SEC_READONLY);
474 if (s == NULL
475 || !bfd_set_section_alignment (s, bed->s->log_file_align))
476 return FALSE;
477 htab->srelbss = s;
478
479 if (bed->want_dynrelro)
480 {
481 s = (bfd_make_section_anyway_with_flags
482 (abfd, (bed->rela_plts_and_copies_p
483 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
484 flags | SEC_READONLY));
485 if (s == NULL
486 || !bfd_set_section_alignment (s, bed->s->log_file_align))
487 return FALSE;
488 htab->sreldynrelro = s;
489 }
490 }
491 }
492
493 return TRUE;
494 }
495 \f
496 /* Record a new dynamic symbol. We record the dynamic symbols as we
497 read the input files, since we need to have a list of all of them
498 before we can determine the final sizes of the output sections.
499 Note that we may actually call this function even though we are not
500 going to output any dynamic symbols; in some cases we know that a
501 symbol should be in the dynamic symbol table, but only if there is
502 one. */
503
504 bfd_boolean
505 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
506 struct elf_link_hash_entry *h)
507 {
508 if (h->dynindx == -1)
509 {
510 struct elf_strtab_hash *dynstr;
511 char *p;
512 const char *name;
513 size_t indx;
514
515 if (h->root.type == bfd_link_hash_defined
516 || h->root.type == bfd_link_hash_defweak)
517 {
518 /* An IR symbol should not be made dynamic. */
519 if (h->root.u.def.section != NULL
520 && h->root.u.def.section->owner != NULL
521 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)
522 return TRUE;
523 }
524
525 /* XXX: The ABI draft says the linker must turn hidden and
526 internal symbols into STB_LOCAL symbols when producing the
527 DSO. However, if ld.so honors st_other in the dynamic table,
528 this would not be necessary. */
529 switch (ELF_ST_VISIBILITY (h->other))
530 {
531 case STV_INTERNAL:
532 case STV_HIDDEN:
533 if (h->root.type != bfd_link_hash_undefined
534 && h->root.type != bfd_link_hash_undefweak)
535 {
536 h->forced_local = 1;
537 if (!elf_hash_table (info)->is_relocatable_executable
538 || ((h->root.type == bfd_link_hash_defined
539 || h->root.type == bfd_link_hash_defweak)
540 && h->root.u.def.section->owner->no_export)
541 || (h->root.type == bfd_link_hash_common
542 && h->root.u.c.p->section->owner->no_export))
543 return TRUE;
544 }
545
546 default:
547 break;
548 }
549
550 h->dynindx = elf_hash_table (info)->dynsymcount;
551 ++elf_hash_table (info)->dynsymcount;
552
553 dynstr = elf_hash_table (info)->dynstr;
554 if (dynstr == NULL)
555 {
556 /* Create a strtab to hold the dynamic symbol names. */
557 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
558 if (dynstr == NULL)
559 return FALSE;
560 }
561
562 /* We don't put any version information in the dynamic string
563 table. */
564 name = h->root.root.string;
565 p = strchr (name, ELF_VER_CHR);
566 if (p != NULL)
567 /* We know that the p points into writable memory. In fact,
568 there are only a few symbols that have read-only names, being
569 those like _GLOBAL_OFFSET_TABLE_ that are created specially
570 by the backends. Most symbols will have names pointing into
571 an ELF string table read from a file, or to objalloc memory. */
572 *p = 0;
573
574 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
575
576 if (p != NULL)
577 *p = ELF_VER_CHR;
578
579 if (indx == (size_t) -1)
580 return FALSE;
581 h->dynstr_index = indx;
582 }
583
584 return TRUE;
585 }
586 \f
587 /* Mark a symbol dynamic. */
588
589 static void
590 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
591 struct elf_link_hash_entry *h,
592 Elf_Internal_Sym *sym)
593 {
594 struct bfd_elf_dynamic_list *d = info->dynamic_list;
595
596 /* It may be called more than once on the same H. */
597 if(h->dynamic || bfd_link_relocatable (info))
598 return;
599
600 if ((info->dynamic_data
601 && (h->type == STT_OBJECT
602 || h->type == STT_COMMON
603 || (sym != NULL
604 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
605 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
606 || (d != NULL
607 && h->non_elf
608 && (*d->match) (&d->head, NULL, h->root.root.string)))
609 {
610 h->dynamic = 1;
611 /* NB: If a symbol is made dynamic by --dynamic-list, it has
612 non-IR reference. */
613 h->root.non_ir_ref_dynamic = 1;
614 }
615 }
616
617 /* Record an assignment to a symbol made by a linker script. We need
618 this in case some dynamic object refers to this symbol. */
619
620 bfd_boolean
621 bfd_elf_record_link_assignment (bfd *output_bfd,
622 struct bfd_link_info *info,
623 const char *name,
624 bfd_boolean provide,
625 bfd_boolean hidden)
626 {
627 struct elf_link_hash_entry *h, *hv;
628 struct elf_link_hash_table *htab;
629 const struct elf_backend_data *bed;
630
631 if (!is_elf_hash_table (info->hash))
632 return TRUE;
633
634 htab = elf_hash_table (info);
635 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
636 if (h == NULL)
637 return provide;
638
639 if (h->root.type == bfd_link_hash_warning)
640 h = (struct elf_link_hash_entry *) h->root.u.i.link;
641
642 if (h->versioned == unknown)
643 {
644 /* Set versioned if symbol version is unknown. */
645 char *version = strrchr (name, ELF_VER_CHR);
646 if (version)
647 {
648 if (version > name && version[-1] != ELF_VER_CHR)
649 h->versioned = versioned_hidden;
650 else
651 h->versioned = versioned;
652 }
653 }
654
655 /* Symbols defined in a linker script but not referenced anywhere
656 else will have non_elf set. */
657 if (h->non_elf)
658 {
659 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
660 h->non_elf = 0;
661 }
662
663 switch (h->root.type)
664 {
665 case bfd_link_hash_defined:
666 case bfd_link_hash_defweak:
667 case bfd_link_hash_common:
668 break;
669 case bfd_link_hash_undefweak:
670 case bfd_link_hash_undefined:
671 /* Since we're defining the symbol, don't let it seem to have not
672 been defined. record_dynamic_symbol and size_dynamic_sections
673 may depend on this. */
674 h->root.type = bfd_link_hash_new;
675 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
676 bfd_link_repair_undef_list (&htab->root);
677 break;
678 case bfd_link_hash_new:
679 break;
680 case bfd_link_hash_indirect:
681 /* We had a versioned symbol in a dynamic library. We make the
682 the versioned symbol point to this one. */
683 bed = get_elf_backend_data (output_bfd);
684 hv = h;
685 while (hv->root.type == bfd_link_hash_indirect
686 || hv->root.type == bfd_link_hash_warning)
687 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
688 /* We don't need to update h->root.u since linker will set them
689 later. */
690 h->root.type = bfd_link_hash_undefined;
691 hv->root.type = bfd_link_hash_indirect;
692 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
693 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
694 break;
695 default:
696 BFD_FAIL ();
697 return FALSE;
698 }
699
700 /* If this symbol is being provided by the linker script, and it is
701 currently defined by a dynamic object, but not by a regular
702 object, then mark it as undefined so that the generic linker will
703 force the correct value. */
704 if (provide
705 && h->def_dynamic
706 && !h->def_regular)
707 h->root.type = bfd_link_hash_undefined;
708
709 /* If this symbol is currently defined by a dynamic object, but not
710 by a regular object, then clear out any version information because
711 the symbol will not be associated with the dynamic object any
712 more. */
713 if (h->def_dynamic && !h->def_regular)
714 h->verinfo.verdef = NULL;
715
716 /* Make sure this symbol is not garbage collected. */
717 h->mark = 1;
718
719 h->def_regular = 1;
720
721 if (hidden)
722 {
723 bed = get_elf_backend_data (output_bfd);
724 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
725 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
726 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
727 }
728
729 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
730 and executables. */
731 if (!bfd_link_relocatable (info)
732 && h->dynindx != -1
733 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
734 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
735 h->forced_local = 1;
736
737 if ((h->def_dynamic
738 || h->ref_dynamic
739 || bfd_link_dll (info)
740 || elf_hash_table (info)->is_relocatable_executable)
741 && !h->forced_local
742 && h->dynindx == -1)
743 {
744 if (! bfd_elf_link_record_dynamic_symbol (info, h))
745 return FALSE;
746
747 /* If this is a weak defined symbol, and we know a corresponding
748 real symbol from the same dynamic object, make sure the real
749 symbol is also made into a dynamic symbol. */
750 if (h->is_weakalias)
751 {
752 struct elf_link_hash_entry *def = weakdef (h);
753
754 if (def->dynindx == -1
755 && !bfd_elf_link_record_dynamic_symbol (info, def))
756 return FALSE;
757 }
758 }
759
760 return TRUE;
761 }
762
763 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
764 success, and 2 on a failure caused by attempting to record a symbol
765 in a discarded section, eg. a discarded link-once section symbol. */
766
767 int
768 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
769 bfd *input_bfd,
770 long input_indx)
771 {
772 size_t amt;
773 struct elf_link_local_dynamic_entry *entry;
774 struct elf_link_hash_table *eht;
775 struct elf_strtab_hash *dynstr;
776 size_t dynstr_index;
777 char *name;
778 Elf_External_Sym_Shndx eshndx;
779 char esym[sizeof (Elf64_External_Sym)];
780
781 if (! is_elf_hash_table (info->hash))
782 return 0;
783
784 /* See if the entry exists already. */
785 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
786 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
787 return 1;
788
789 amt = sizeof (*entry);
790 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
791 if (entry == NULL)
792 return 0;
793
794 /* Go find the symbol, so that we can find it's name. */
795 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
796 1, input_indx, &entry->isym, esym, &eshndx))
797 {
798 bfd_release (input_bfd, entry);
799 return 0;
800 }
801
802 if (entry->isym.st_shndx != SHN_UNDEF
803 && entry->isym.st_shndx < SHN_LORESERVE)
804 {
805 asection *s;
806
807 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
808 if (s == NULL || bfd_is_abs_section (s->output_section))
809 {
810 /* We can still bfd_release here as nothing has done another
811 bfd_alloc. We can't do this later in this function. */
812 bfd_release (input_bfd, entry);
813 return 2;
814 }
815 }
816
817 name = (bfd_elf_string_from_elf_section
818 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
819 entry->isym.st_name));
820
821 dynstr = elf_hash_table (info)->dynstr;
822 if (dynstr == NULL)
823 {
824 /* Create a strtab to hold the dynamic symbol names. */
825 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
826 if (dynstr == NULL)
827 return 0;
828 }
829
830 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
831 if (dynstr_index == (size_t) -1)
832 return 0;
833 entry->isym.st_name = dynstr_index;
834
835 eht = elf_hash_table (info);
836
837 entry->next = eht->dynlocal;
838 eht->dynlocal = entry;
839 entry->input_bfd = input_bfd;
840 entry->input_indx = input_indx;
841 eht->dynsymcount++;
842
843 /* Whatever binding the symbol had before, it's now local. */
844 entry->isym.st_info
845 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
846
847 /* The dynindx will be set at the end of size_dynamic_sections. */
848
849 return 1;
850 }
851
852 /* Return the dynindex of a local dynamic symbol. */
853
854 long
855 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
856 bfd *input_bfd,
857 long input_indx)
858 {
859 struct elf_link_local_dynamic_entry *e;
860
861 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
862 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
863 return e->dynindx;
864 return -1;
865 }
866
867 /* This function is used to renumber the dynamic symbols, if some of
868 them are removed because they are marked as local. This is called
869 via elf_link_hash_traverse. */
870
871 static bfd_boolean
872 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
873 void *data)
874 {
875 size_t *count = (size_t *) data;
876
877 if (h->forced_local)
878 return TRUE;
879
880 if (h->dynindx != -1)
881 h->dynindx = ++(*count);
882
883 return TRUE;
884 }
885
886
887 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
888 STB_LOCAL binding. */
889
890 static bfd_boolean
891 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
892 void *data)
893 {
894 size_t *count = (size_t *) data;
895
896 if (!h->forced_local)
897 return TRUE;
898
899 if (h->dynindx != -1)
900 h->dynindx = ++(*count);
901
902 return TRUE;
903 }
904
905 /* Return true if the dynamic symbol for a given section should be
906 omitted when creating a shared library. */
907 bfd_boolean
908 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
909 struct bfd_link_info *info,
910 asection *p)
911 {
912 struct elf_link_hash_table *htab;
913 asection *ip;
914
915 switch (elf_section_data (p)->this_hdr.sh_type)
916 {
917 case SHT_PROGBITS:
918 case SHT_NOBITS:
919 /* If sh_type is yet undecided, assume it could be
920 SHT_PROGBITS/SHT_NOBITS. */
921 case SHT_NULL:
922 htab = elf_hash_table (info);
923 if (htab->text_index_section != NULL)
924 return p != htab->text_index_section && p != htab->data_index_section;
925
926 return (htab->dynobj != NULL
927 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
928 && ip->output_section == p);
929
930 /* There shouldn't be section relative relocations
931 against any other section. */
932 default:
933 return TRUE;
934 }
935 }
936
937 bfd_boolean
938 _bfd_elf_omit_section_dynsym_all
939 (bfd *output_bfd ATTRIBUTE_UNUSED,
940 struct bfd_link_info *info ATTRIBUTE_UNUSED,
941 asection *p ATTRIBUTE_UNUSED)
942 {
943 return TRUE;
944 }
945
946 /* Assign dynsym indices. In a shared library we generate a section
947 symbol for each output section, which come first. Next come symbols
948 which have been forced to local binding. Then all of the back-end
949 allocated local dynamic syms, followed by the rest of the global
950 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
951 (This prevents the early call before elf_backend_init_index_section
952 and strip_excluded_output_sections setting dynindx for sections
953 that are stripped.) */
954
955 static unsigned long
956 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
957 struct bfd_link_info *info,
958 unsigned long *section_sym_count)
959 {
960 unsigned long dynsymcount = 0;
961 bfd_boolean do_sec = section_sym_count != NULL;
962
963 if (bfd_link_pic (info)
964 || elf_hash_table (info)->is_relocatable_executable)
965 {
966 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
967 asection *p;
968 for (p = output_bfd->sections; p ; p = p->next)
969 if ((p->flags & SEC_EXCLUDE) == 0
970 && (p->flags & SEC_ALLOC) != 0
971 && elf_hash_table (info)->dynamic_relocs
972 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
973 {
974 ++dynsymcount;
975 if (do_sec)
976 elf_section_data (p)->dynindx = dynsymcount;
977 }
978 else if (do_sec)
979 elf_section_data (p)->dynindx = 0;
980 }
981 if (do_sec)
982 *section_sym_count = dynsymcount;
983
984 elf_link_hash_traverse (elf_hash_table (info),
985 elf_link_renumber_local_hash_table_dynsyms,
986 &dynsymcount);
987
988 if (elf_hash_table (info)->dynlocal)
989 {
990 struct elf_link_local_dynamic_entry *p;
991 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
992 p->dynindx = ++dynsymcount;
993 }
994 elf_hash_table (info)->local_dynsymcount = dynsymcount;
995
996 elf_link_hash_traverse (elf_hash_table (info),
997 elf_link_renumber_hash_table_dynsyms,
998 &dynsymcount);
999
1000 /* There is an unused NULL entry at the head of the table which we
1001 must account for in our count even if the table is empty since it
1002 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
1003 .dynamic section. */
1004 dynsymcount++;
1005
1006 elf_hash_table (info)->dynsymcount = dynsymcount;
1007 return dynsymcount;
1008 }
1009
1010 /* Merge st_other field. */
1011
1012 static void
1013 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
1014 unsigned int st_other, asection *sec,
1015 bfd_boolean definition, bfd_boolean dynamic)
1016 {
1017 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1018
1019 /* If st_other has a processor-specific meaning, specific
1020 code might be needed here. */
1021 if (bed->elf_backend_merge_symbol_attribute)
1022 (*bed->elf_backend_merge_symbol_attribute) (h, st_other, definition,
1023 dynamic);
1024
1025 if (!dynamic)
1026 {
1027 unsigned symvis = ELF_ST_VISIBILITY (st_other);
1028 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1029
1030 /* Keep the most constraining visibility. Leave the remainder
1031 of the st_other field to elf_backend_merge_symbol_attribute. */
1032 if (symvis - 1 < hvis - 1)
1033 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1034 }
1035 else if (definition
1036 && ELF_ST_VISIBILITY (st_other) != STV_DEFAULT
1037 && (sec->flags & SEC_READONLY) == 0)
1038 h->protected_def = 1;
1039 }
1040
1041 /* This function is called when we want to merge a new symbol with an
1042 existing symbol. It handles the various cases which arise when we
1043 find a definition in a dynamic object, or when there is already a
1044 definition in a dynamic object. The new symbol is described by
1045 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1046 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1047 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1048 of an old common symbol. We set OVERRIDE if the old symbol is
1049 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1050 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1051 to change. By OK to change, we mean that we shouldn't warn if the
1052 type or size does change. */
1053
1054 static bfd_boolean
1055 _bfd_elf_merge_symbol (bfd *abfd,
1056 struct bfd_link_info *info,
1057 const char *name,
1058 Elf_Internal_Sym *sym,
1059 asection **psec,
1060 bfd_vma *pvalue,
1061 struct elf_link_hash_entry **sym_hash,
1062 bfd **poldbfd,
1063 bfd_boolean *pold_weak,
1064 unsigned int *pold_alignment,
1065 bfd_boolean *skip,
1066 bfd **override,
1067 bfd_boolean *type_change_ok,
1068 bfd_boolean *size_change_ok,
1069 bfd_boolean *matched)
1070 {
1071 asection *sec, *oldsec;
1072 struct elf_link_hash_entry *h;
1073 struct elf_link_hash_entry *hi;
1074 struct elf_link_hash_entry *flip;
1075 int bind;
1076 bfd *oldbfd;
1077 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1078 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1079 const struct elf_backend_data *bed;
1080 char *new_version;
1081 bfd_boolean default_sym = *matched;
1082
1083 *skip = FALSE;
1084 *override = NULL;
1085
1086 sec = *psec;
1087 bind = ELF_ST_BIND (sym->st_info);
1088
1089 if (! bfd_is_und_section (sec))
1090 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1091 else
1092 h = ((struct elf_link_hash_entry *)
1093 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1094 if (h == NULL)
1095 return FALSE;
1096 *sym_hash = h;
1097
1098 bed = get_elf_backend_data (abfd);
1099
1100 /* NEW_VERSION is the symbol version of the new symbol. */
1101 if (h->versioned != unversioned)
1102 {
1103 /* Symbol version is unknown or versioned. */
1104 new_version = strrchr (name, ELF_VER_CHR);
1105 if (new_version)
1106 {
1107 if (h->versioned == unknown)
1108 {
1109 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1110 h->versioned = versioned_hidden;
1111 else
1112 h->versioned = versioned;
1113 }
1114 new_version += 1;
1115 if (new_version[0] == '\0')
1116 new_version = NULL;
1117 }
1118 else
1119 h->versioned = unversioned;
1120 }
1121 else
1122 new_version = NULL;
1123
1124 /* For merging, we only care about real symbols. But we need to make
1125 sure that indirect symbol dynamic flags are updated. */
1126 hi = h;
1127 while (h->root.type == bfd_link_hash_indirect
1128 || h->root.type == bfd_link_hash_warning)
1129 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1130
1131 if (!*matched)
1132 {
1133 if (hi == h || h->root.type == bfd_link_hash_new)
1134 *matched = TRUE;
1135 else
1136 {
1137 /* OLD_HIDDEN is true if the existing symbol is only visible
1138 to the symbol with the same symbol version. NEW_HIDDEN is
1139 true if the new symbol is only visible to the symbol with
1140 the same symbol version. */
1141 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1142 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1143 if (!old_hidden && !new_hidden)
1144 /* The new symbol matches the existing symbol if both
1145 aren't hidden. */
1146 *matched = TRUE;
1147 else
1148 {
1149 /* OLD_VERSION is the symbol version of the existing
1150 symbol. */
1151 char *old_version;
1152
1153 if (h->versioned >= versioned)
1154 old_version = strrchr (h->root.root.string,
1155 ELF_VER_CHR) + 1;
1156 else
1157 old_version = NULL;
1158
1159 /* The new symbol matches the existing symbol if they
1160 have the same symbol version. */
1161 *matched = (old_version == new_version
1162 || (old_version != NULL
1163 && new_version != NULL
1164 && strcmp (old_version, new_version) == 0));
1165 }
1166 }
1167 }
1168
1169 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1170 existing symbol. */
1171
1172 oldbfd = NULL;
1173 oldsec = NULL;
1174 switch (h->root.type)
1175 {
1176 default:
1177 break;
1178
1179 case bfd_link_hash_undefined:
1180 case bfd_link_hash_undefweak:
1181 oldbfd = h->root.u.undef.abfd;
1182 break;
1183
1184 case bfd_link_hash_defined:
1185 case bfd_link_hash_defweak:
1186 oldbfd = h->root.u.def.section->owner;
1187 oldsec = h->root.u.def.section;
1188 break;
1189
1190 case bfd_link_hash_common:
1191 oldbfd = h->root.u.c.p->section->owner;
1192 oldsec = h->root.u.c.p->section;
1193 if (pold_alignment)
1194 *pold_alignment = h->root.u.c.p->alignment_power;
1195 break;
1196 }
1197 if (poldbfd && *poldbfd == NULL)
1198 *poldbfd = oldbfd;
1199
1200 /* Differentiate strong and weak symbols. */
1201 newweak = bind == STB_WEAK;
1202 oldweak = (h->root.type == bfd_link_hash_defweak
1203 || h->root.type == bfd_link_hash_undefweak);
1204 if (pold_weak)
1205 *pold_weak = oldweak;
1206
1207 /* We have to check it for every instance since the first few may be
1208 references and not all compilers emit symbol type for undefined
1209 symbols. */
1210 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1211
1212 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1213 respectively, is from a dynamic object. */
1214
1215 newdyn = (abfd->flags & DYNAMIC) != 0;
1216
1217 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1218 syms and defined syms in dynamic libraries respectively.
1219 ref_dynamic on the other hand can be set for a symbol defined in
1220 a dynamic library, and def_dynamic may not be set; When the
1221 definition in a dynamic lib is overridden by a definition in the
1222 executable use of the symbol in the dynamic lib becomes a
1223 reference to the executable symbol. */
1224 if (newdyn)
1225 {
1226 if (bfd_is_und_section (sec))
1227 {
1228 if (bind != STB_WEAK)
1229 {
1230 h->ref_dynamic_nonweak = 1;
1231 hi->ref_dynamic_nonweak = 1;
1232 }
1233 }
1234 else
1235 {
1236 /* Update the existing symbol only if they match. */
1237 if (*matched)
1238 h->dynamic_def = 1;
1239 hi->dynamic_def = 1;
1240 }
1241 }
1242
1243 /* If we just created the symbol, mark it as being an ELF symbol.
1244 Other than that, there is nothing to do--there is no merge issue
1245 with a newly defined symbol--so we just return. */
1246
1247 if (h->root.type == bfd_link_hash_new)
1248 {
1249 h->non_elf = 0;
1250 return TRUE;
1251 }
1252
1253 /* In cases involving weak versioned symbols, we may wind up trying
1254 to merge a symbol with itself. Catch that here, to avoid the
1255 confusion that results if we try to override a symbol with
1256 itself. The additional tests catch cases like
1257 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1258 dynamic object, which we do want to handle here. */
1259 if (abfd == oldbfd
1260 && (newweak || oldweak)
1261 && ((abfd->flags & DYNAMIC) == 0
1262 || !h->def_regular))
1263 return TRUE;
1264
1265 olddyn = FALSE;
1266 if (oldbfd != NULL)
1267 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1268 else if (oldsec != NULL)
1269 {
1270 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1271 indices used by MIPS ELF. */
1272 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1273 }
1274
1275 /* Handle a case where plugin_notice won't be called and thus won't
1276 set the non_ir_ref flags on the first pass over symbols. */
1277 if (oldbfd != NULL
1278 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1279 && newdyn != olddyn)
1280 {
1281 h->root.non_ir_ref_dynamic = TRUE;
1282 hi->root.non_ir_ref_dynamic = TRUE;
1283 }
1284
1285 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1286 respectively, appear to be a definition rather than reference. */
1287
1288 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1289
1290 olddef = (h->root.type != bfd_link_hash_undefined
1291 && h->root.type != bfd_link_hash_undefweak
1292 && h->root.type != bfd_link_hash_common);
1293
1294 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1295 respectively, appear to be a function. */
1296
1297 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1298 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1299
1300 oldfunc = (h->type != STT_NOTYPE
1301 && bed->is_function_type (h->type));
1302
1303 if (!(newfunc && oldfunc)
1304 && ELF_ST_TYPE (sym->st_info) != h->type
1305 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1306 && h->type != STT_NOTYPE
1307 && (newdef || bfd_is_com_section (sec))
1308 && (olddef || h->root.type == bfd_link_hash_common))
1309 {
1310 /* If creating a default indirect symbol ("foo" or "foo@") from
1311 a dynamic versioned definition ("foo@@") skip doing so if
1312 there is an existing regular definition with a different
1313 type. We don't want, for example, a "time" variable in the
1314 executable overriding a "time" function in a shared library. */
1315 if (newdyn
1316 && !olddyn)
1317 {
1318 *skip = TRUE;
1319 return TRUE;
1320 }
1321
1322 /* When adding a symbol from a regular object file after we have
1323 created indirect symbols, undo the indirection and any
1324 dynamic state. */
1325 if (hi != h
1326 && !newdyn
1327 && olddyn)
1328 {
1329 h = hi;
1330 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1331 h->forced_local = 0;
1332 h->ref_dynamic = 0;
1333 h->def_dynamic = 0;
1334 h->dynamic_def = 0;
1335 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1336 {
1337 h->root.type = bfd_link_hash_undefined;
1338 h->root.u.undef.abfd = abfd;
1339 }
1340 else
1341 {
1342 h->root.type = bfd_link_hash_new;
1343 h->root.u.undef.abfd = NULL;
1344 }
1345 return TRUE;
1346 }
1347 }
1348
1349 /* Check TLS symbols. We don't check undefined symbols introduced
1350 by "ld -u" which have no type (and oldbfd NULL), and we don't
1351 check symbols from plugins because they also have no type. */
1352 if (oldbfd != NULL
1353 && (oldbfd->flags & BFD_PLUGIN) == 0
1354 && (abfd->flags & BFD_PLUGIN) == 0
1355 && ELF_ST_TYPE (sym->st_info) != h->type
1356 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1357 {
1358 bfd *ntbfd, *tbfd;
1359 bfd_boolean ntdef, tdef;
1360 asection *ntsec, *tsec;
1361
1362 if (h->type == STT_TLS)
1363 {
1364 ntbfd = abfd;
1365 ntsec = sec;
1366 ntdef = newdef;
1367 tbfd = oldbfd;
1368 tsec = oldsec;
1369 tdef = olddef;
1370 }
1371 else
1372 {
1373 ntbfd = oldbfd;
1374 ntsec = oldsec;
1375 ntdef = olddef;
1376 tbfd = abfd;
1377 tsec = sec;
1378 tdef = newdef;
1379 }
1380
1381 if (tdef && ntdef)
1382 _bfd_error_handler
1383 /* xgettext:c-format */
1384 (_("%s: TLS definition in %pB section %pA "
1385 "mismatches non-TLS definition in %pB section %pA"),
1386 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1387 else if (!tdef && !ntdef)
1388 _bfd_error_handler
1389 /* xgettext:c-format */
1390 (_("%s: TLS reference in %pB "
1391 "mismatches non-TLS reference in %pB"),
1392 h->root.root.string, tbfd, ntbfd);
1393 else if (tdef)
1394 _bfd_error_handler
1395 /* xgettext:c-format */
1396 (_("%s: TLS definition in %pB section %pA "
1397 "mismatches non-TLS reference in %pB"),
1398 h->root.root.string, tbfd, tsec, ntbfd);
1399 else
1400 _bfd_error_handler
1401 /* xgettext:c-format */
1402 (_("%s: TLS reference in %pB "
1403 "mismatches non-TLS definition in %pB section %pA"),
1404 h->root.root.string, tbfd, ntbfd, ntsec);
1405
1406 bfd_set_error (bfd_error_bad_value);
1407 return FALSE;
1408 }
1409
1410 /* If the old symbol has non-default visibility, we ignore the new
1411 definition from a dynamic object. */
1412 if (newdyn
1413 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1414 && !bfd_is_und_section (sec))
1415 {
1416 *skip = TRUE;
1417 /* Make sure this symbol is dynamic. */
1418 h->ref_dynamic = 1;
1419 hi->ref_dynamic = 1;
1420 /* A protected symbol has external availability. Make sure it is
1421 recorded as dynamic.
1422
1423 FIXME: Should we check type and size for protected symbol? */
1424 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1425 return bfd_elf_link_record_dynamic_symbol (info, h);
1426 else
1427 return TRUE;
1428 }
1429 else if (!newdyn
1430 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1431 && h->def_dynamic)
1432 {
1433 /* If the new symbol with non-default visibility comes from a
1434 relocatable file and the old definition comes from a dynamic
1435 object, we remove the old definition. */
1436 if (hi->root.type == bfd_link_hash_indirect)
1437 {
1438 /* Handle the case where the old dynamic definition is
1439 default versioned. We need to copy the symbol info from
1440 the symbol with default version to the normal one if it
1441 was referenced before. */
1442 if (h->ref_regular)
1443 {
1444 hi->root.type = h->root.type;
1445 h->root.type = bfd_link_hash_indirect;
1446 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1447
1448 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1449 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1450 {
1451 /* If the new symbol is hidden or internal, completely undo
1452 any dynamic link state. */
1453 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1454 h->forced_local = 0;
1455 h->ref_dynamic = 0;
1456 }
1457 else
1458 h->ref_dynamic = 1;
1459
1460 h->def_dynamic = 0;
1461 /* FIXME: Should we check type and size for protected symbol? */
1462 h->size = 0;
1463 h->type = 0;
1464
1465 h = hi;
1466 }
1467 else
1468 h = hi;
1469 }
1470
1471 /* If the old symbol was undefined before, then it will still be
1472 on the undefs list. If the new symbol is undefined or
1473 common, we can't make it bfd_link_hash_new here, because new
1474 undefined or common symbols will be added to the undefs list
1475 by _bfd_generic_link_add_one_symbol. Symbols may not be
1476 added twice to the undefs list. Also, if the new symbol is
1477 undefweak then we don't want to lose the strong undef. */
1478 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1479 {
1480 h->root.type = bfd_link_hash_undefined;
1481 h->root.u.undef.abfd = abfd;
1482 }
1483 else
1484 {
1485 h->root.type = bfd_link_hash_new;
1486 h->root.u.undef.abfd = NULL;
1487 }
1488
1489 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1490 {
1491 /* If the new symbol is hidden or internal, completely undo
1492 any dynamic link state. */
1493 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1494 h->forced_local = 0;
1495 h->ref_dynamic = 0;
1496 }
1497 else
1498 h->ref_dynamic = 1;
1499 h->def_dynamic = 0;
1500 /* FIXME: Should we check type and size for protected symbol? */
1501 h->size = 0;
1502 h->type = 0;
1503 return TRUE;
1504 }
1505
1506 /* If a new weak symbol definition comes from a regular file and the
1507 old symbol comes from a dynamic library, we treat the new one as
1508 strong. Similarly, an old weak symbol definition from a regular
1509 file is treated as strong when the new symbol comes from a dynamic
1510 library. Further, an old weak symbol from a dynamic library is
1511 treated as strong if the new symbol is from a dynamic library.
1512 This reflects the way glibc's ld.so works.
1513
1514 Also allow a weak symbol to override a linker script symbol
1515 defined by an early pass over the script. This is done so the
1516 linker knows the symbol is defined in an object file, for the
1517 DEFINED script function.
1518
1519 Do this before setting *type_change_ok or *size_change_ok so that
1520 we warn properly when dynamic library symbols are overridden. */
1521
1522 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1523 newweak = FALSE;
1524 if (olddef && newdyn)
1525 oldweak = FALSE;
1526
1527 /* Allow changes between different types of function symbol. */
1528 if (newfunc && oldfunc)
1529 *type_change_ok = TRUE;
1530
1531 /* It's OK to change the type if either the existing symbol or the
1532 new symbol is weak. A type change is also OK if the old symbol
1533 is undefined and the new symbol is defined. */
1534
1535 if (oldweak
1536 || newweak
1537 || (newdef
1538 && h->root.type == bfd_link_hash_undefined))
1539 *type_change_ok = TRUE;
1540
1541 /* It's OK to change the size if either the existing symbol or the
1542 new symbol is weak, or if the old symbol is undefined. */
1543
1544 if (*type_change_ok
1545 || h->root.type == bfd_link_hash_undefined)
1546 *size_change_ok = TRUE;
1547
1548 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1549 symbol, respectively, appears to be a common symbol in a dynamic
1550 object. If a symbol appears in an uninitialized section, and is
1551 not weak, and is not a function, then it may be a common symbol
1552 which was resolved when the dynamic object was created. We want
1553 to treat such symbols specially, because they raise special
1554 considerations when setting the symbol size: if the symbol
1555 appears as a common symbol in a regular object, and the size in
1556 the regular object is larger, we must make sure that we use the
1557 larger size. This problematic case can always be avoided in C,
1558 but it must be handled correctly when using Fortran shared
1559 libraries.
1560
1561 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1562 likewise for OLDDYNCOMMON and OLDDEF.
1563
1564 Note that this test is just a heuristic, and that it is quite
1565 possible to have an uninitialized symbol in a shared object which
1566 is really a definition, rather than a common symbol. This could
1567 lead to some minor confusion when the symbol really is a common
1568 symbol in some regular object. However, I think it will be
1569 harmless. */
1570
1571 if (newdyn
1572 && newdef
1573 && !newweak
1574 && (sec->flags & SEC_ALLOC) != 0
1575 && (sec->flags & SEC_LOAD) == 0
1576 && sym->st_size > 0
1577 && !newfunc)
1578 newdyncommon = TRUE;
1579 else
1580 newdyncommon = FALSE;
1581
1582 if (olddyn
1583 && olddef
1584 && h->root.type == bfd_link_hash_defined
1585 && h->def_dynamic
1586 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1587 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1588 && h->size > 0
1589 && !oldfunc)
1590 olddyncommon = TRUE;
1591 else
1592 olddyncommon = FALSE;
1593
1594 /* We now know everything about the old and new symbols. We ask the
1595 backend to check if we can merge them. */
1596 if (bed->merge_symbol != NULL)
1597 {
1598 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1599 return FALSE;
1600 sec = *psec;
1601 }
1602
1603 /* There are multiple definitions of a normal symbol. Skip the
1604 default symbol as well as definition from an IR object. */
1605 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1606 && !default_sym && h->def_regular
1607 && !(oldbfd != NULL
1608 && (oldbfd->flags & BFD_PLUGIN) != 0
1609 && (abfd->flags & BFD_PLUGIN) == 0))
1610 {
1611 /* Handle a multiple definition. */
1612 (*info->callbacks->multiple_definition) (info, &h->root,
1613 abfd, sec, *pvalue);
1614 *skip = TRUE;
1615 return TRUE;
1616 }
1617
1618 /* If both the old and the new symbols look like common symbols in a
1619 dynamic object, set the size of the symbol to the larger of the
1620 two. */
1621
1622 if (olddyncommon
1623 && newdyncommon
1624 && sym->st_size != h->size)
1625 {
1626 /* Since we think we have two common symbols, issue a multiple
1627 common warning if desired. Note that we only warn if the
1628 size is different. If the size is the same, we simply let
1629 the old symbol override the new one as normally happens with
1630 symbols defined in dynamic objects. */
1631
1632 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1633 bfd_link_hash_common, sym->st_size);
1634 if (sym->st_size > h->size)
1635 h->size = sym->st_size;
1636
1637 *size_change_ok = TRUE;
1638 }
1639
1640 /* If we are looking at a dynamic object, and we have found a
1641 definition, we need to see if the symbol was already defined by
1642 some other object. If so, we want to use the existing
1643 definition, and we do not want to report a multiple symbol
1644 definition error; we do this by clobbering *PSEC to be
1645 bfd_und_section_ptr.
1646
1647 We treat a common symbol as a definition if the symbol in the
1648 shared library is a function, since common symbols always
1649 represent variables; this can cause confusion in principle, but
1650 any such confusion would seem to indicate an erroneous program or
1651 shared library. We also permit a common symbol in a regular
1652 object to override a weak symbol in a shared object. */
1653
1654 if (newdyn
1655 && newdef
1656 && (olddef
1657 || (h->root.type == bfd_link_hash_common
1658 && (newweak || newfunc))))
1659 {
1660 *override = abfd;
1661 newdef = FALSE;
1662 newdyncommon = FALSE;
1663
1664 *psec = sec = bfd_und_section_ptr;
1665 *size_change_ok = TRUE;
1666
1667 /* If we get here when the old symbol is a common symbol, then
1668 we are explicitly letting it override a weak symbol or
1669 function in a dynamic object, and we don't want to warn about
1670 a type change. If the old symbol is a defined symbol, a type
1671 change warning may still be appropriate. */
1672
1673 if (h->root.type == bfd_link_hash_common)
1674 *type_change_ok = TRUE;
1675 }
1676
1677 /* Handle the special case of an old common symbol merging with a
1678 new symbol which looks like a common symbol in a shared object.
1679 We change *PSEC and *PVALUE to make the new symbol look like a
1680 common symbol, and let _bfd_generic_link_add_one_symbol do the
1681 right thing. */
1682
1683 if (newdyncommon
1684 && h->root.type == bfd_link_hash_common)
1685 {
1686 *override = oldbfd;
1687 newdef = FALSE;
1688 newdyncommon = FALSE;
1689 *pvalue = sym->st_size;
1690 *psec = sec = bed->common_section (oldsec);
1691 *size_change_ok = TRUE;
1692 }
1693
1694 /* Skip weak definitions of symbols that are already defined. */
1695 if (newdef && olddef && newweak)
1696 {
1697 /* Don't skip new non-IR weak syms. */
1698 if (!(oldbfd != NULL
1699 && (oldbfd->flags & BFD_PLUGIN) != 0
1700 && (abfd->flags & BFD_PLUGIN) == 0))
1701 {
1702 newdef = FALSE;
1703 *skip = TRUE;
1704 }
1705
1706 /* Merge st_other. If the symbol already has a dynamic index,
1707 but visibility says it should not be visible, turn it into a
1708 local symbol. */
1709 elf_merge_st_other (abfd, h, sym->st_other, sec, newdef, newdyn);
1710 if (h->dynindx != -1)
1711 switch (ELF_ST_VISIBILITY (h->other))
1712 {
1713 case STV_INTERNAL:
1714 case STV_HIDDEN:
1715 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1716 break;
1717 }
1718 }
1719
1720 /* If the old symbol is from a dynamic object, and the new symbol is
1721 a definition which is not from a dynamic object, then the new
1722 symbol overrides the old symbol. Symbols from regular files
1723 always take precedence over symbols from dynamic objects, even if
1724 they are defined after the dynamic object in the link.
1725
1726 As above, we again permit a common symbol in a regular object to
1727 override a definition in a shared object if the shared object
1728 symbol is a function or is weak. */
1729
1730 flip = NULL;
1731 if (!newdyn
1732 && (newdef
1733 || (bfd_is_com_section (sec)
1734 && (oldweak || oldfunc)))
1735 && olddyn
1736 && olddef
1737 && h->def_dynamic)
1738 {
1739 /* Change the hash table entry to undefined, and let
1740 _bfd_generic_link_add_one_symbol do the right thing with the
1741 new definition. */
1742
1743 h->root.type = bfd_link_hash_undefined;
1744 h->root.u.undef.abfd = h->root.u.def.section->owner;
1745 *size_change_ok = TRUE;
1746
1747 olddef = FALSE;
1748 olddyncommon = FALSE;
1749
1750 /* We again permit a type change when a common symbol may be
1751 overriding a function. */
1752
1753 if (bfd_is_com_section (sec))
1754 {
1755 if (oldfunc)
1756 {
1757 /* If a common symbol overrides a function, make sure
1758 that it isn't defined dynamically nor has type
1759 function. */
1760 h->def_dynamic = 0;
1761 h->type = STT_NOTYPE;
1762 }
1763 *type_change_ok = TRUE;
1764 }
1765
1766 if (hi->root.type == bfd_link_hash_indirect)
1767 flip = hi;
1768 else
1769 /* This union may have been set to be non-NULL when this symbol
1770 was seen in a dynamic object. We must force the union to be
1771 NULL, so that it is correct for a regular symbol. */
1772 h->verinfo.vertree = NULL;
1773 }
1774
1775 /* Handle the special case of a new common symbol merging with an
1776 old symbol that looks like it might be a common symbol defined in
1777 a shared object. Note that we have already handled the case in
1778 which a new common symbol should simply override the definition
1779 in the shared library. */
1780
1781 if (! newdyn
1782 && bfd_is_com_section (sec)
1783 && olddyncommon)
1784 {
1785 /* It would be best if we could set the hash table entry to a
1786 common symbol, but we don't know what to use for the section
1787 or the alignment. */
1788 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1789 bfd_link_hash_common, sym->st_size);
1790
1791 /* If the presumed common symbol in the dynamic object is
1792 larger, pretend that the new symbol has its size. */
1793
1794 if (h->size > *pvalue)
1795 *pvalue = h->size;
1796
1797 /* We need to remember the alignment required by the symbol
1798 in the dynamic object. */
1799 BFD_ASSERT (pold_alignment);
1800 *pold_alignment = h->root.u.def.section->alignment_power;
1801
1802 olddef = FALSE;
1803 olddyncommon = FALSE;
1804
1805 h->root.type = bfd_link_hash_undefined;
1806 h->root.u.undef.abfd = h->root.u.def.section->owner;
1807
1808 *size_change_ok = TRUE;
1809 *type_change_ok = TRUE;
1810
1811 if (hi->root.type == bfd_link_hash_indirect)
1812 flip = hi;
1813 else
1814 h->verinfo.vertree = NULL;
1815 }
1816
1817 if (flip != NULL)
1818 {
1819 /* Handle the case where we had a versioned symbol in a dynamic
1820 library and now find a definition in a normal object. In this
1821 case, we make the versioned symbol point to the normal one. */
1822 flip->root.type = h->root.type;
1823 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1824 h->root.type = bfd_link_hash_indirect;
1825 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1826 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1827 if (h->def_dynamic)
1828 {
1829 h->def_dynamic = 0;
1830 flip->ref_dynamic = 1;
1831 }
1832 }
1833
1834 return TRUE;
1835 }
1836
1837 /* This function is called to create an indirect symbol from the
1838 default for the symbol with the default version if needed. The
1839 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1840 set DYNSYM if the new indirect symbol is dynamic. */
1841
1842 static bfd_boolean
1843 _bfd_elf_add_default_symbol (bfd *abfd,
1844 struct bfd_link_info *info,
1845 struct elf_link_hash_entry *h,
1846 const char *name,
1847 Elf_Internal_Sym *sym,
1848 asection *sec,
1849 bfd_vma value,
1850 bfd **poldbfd,
1851 bfd_boolean *dynsym)
1852 {
1853 bfd_boolean type_change_ok;
1854 bfd_boolean size_change_ok;
1855 bfd_boolean skip;
1856 char *shortname;
1857 struct elf_link_hash_entry *hi;
1858 struct bfd_link_hash_entry *bh;
1859 const struct elf_backend_data *bed;
1860 bfd_boolean collect;
1861 bfd_boolean dynamic;
1862 bfd *override;
1863 char *p;
1864 size_t len, shortlen;
1865 asection *tmp_sec;
1866 bfd_boolean matched;
1867
1868 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1869 return TRUE;
1870
1871 /* If this symbol has a version, and it is the default version, we
1872 create an indirect symbol from the default name to the fully
1873 decorated name. This will cause external references which do not
1874 specify a version to be bound to this version of the symbol. */
1875 p = strchr (name, ELF_VER_CHR);
1876 if (h->versioned == unknown)
1877 {
1878 if (p == NULL)
1879 {
1880 h->versioned = unversioned;
1881 return TRUE;
1882 }
1883 else
1884 {
1885 if (p[1] != ELF_VER_CHR)
1886 {
1887 h->versioned = versioned_hidden;
1888 return TRUE;
1889 }
1890 else
1891 h->versioned = versioned;
1892 }
1893 }
1894 else
1895 {
1896 /* PR ld/19073: We may see an unversioned definition after the
1897 default version. */
1898 if (p == NULL)
1899 return TRUE;
1900 }
1901
1902 bed = get_elf_backend_data (abfd);
1903 collect = bed->collect;
1904 dynamic = (abfd->flags & DYNAMIC) != 0;
1905
1906 shortlen = p - name;
1907 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1908 if (shortname == NULL)
1909 return FALSE;
1910 memcpy (shortname, name, shortlen);
1911 shortname[shortlen] = '\0';
1912
1913 /* We are going to create a new symbol. Merge it with any existing
1914 symbol with this name. For the purposes of the merge, act as
1915 though we were defining the symbol we just defined, although we
1916 actually going to define an indirect symbol. */
1917 type_change_ok = FALSE;
1918 size_change_ok = FALSE;
1919 matched = TRUE;
1920 tmp_sec = sec;
1921 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1922 &hi, poldbfd, NULL, NULL, &skip, &override,
1923 &type_change_ok, &size_change_ok, &matched))
1924 return FALSE;
1925
1926 if (skip)
1927 goto nondefault;
1928
1929 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1930 {
1931 /* If the undecorated symbol will have a version added by a
1932 script different to H, then don't indirect to/from the
1933 undecorated symbol. This isn't ideal because we may not yet
1934 have seen symbol versions, if given by a script on the
1935 command line rather than via --version-script. */
1936 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1937 {
1938 bfd_boolean hide;
1939
1940 hi->verinfo.vertree
1941 = bfd_find_version_for_sym (info->version_info,
1942 hi->root.root.string, &hide);
1943 if (hi->verinfo.vertree != NULL && hide)
1944 {
1945 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1946 goto nondefault;
1947 }
1948 }
1949 if (hi->verinfo.vertree != NULL
1950 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1951 goto nondefault;
1952 }
1953
1954 if (! override)
1955 {
1956 /* Add the default symbol if not performing a relocatable link. */
1957 if (! bfd_link_relocatable (info))
1958 {
1959 bh = &hi->root;
1960 if (bh->type == bfd_link_hash_defined
1961 && bh->u.def.section->owner != NULL
1962 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1963 {
1964 /* Mark the previous definition from IR object as
1965 undefined so that the generic linker will override
1966 it. */
1967 bh->type = bfd_link_hash_undefined;
1968 bh->u.undef.abfd = bh->u.def.section->owner;
1969 }
1970 if (! (_bfd_generic_link_add_one_symbol
1971 (info, abfd, shortname, BSF_INDIRECT,
1972 bfd_ind_section_ptr,
1973 0, name, FALSE, collect, &bh)))
1974 return FALSE;
1975 hi = (struct elf_link_hash_entry *) bh;
1976 }
1977 }
1978 else
1979 {
1980 /* In this case the symbol named SHORTNAME is overriding the
1981 indirect symbol we want to add. We were planning on making
1982 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1983 is the name without a version. NAME is the fully versioned
1984 name, and it is the default version.
1985
1986 Overriding means that we already saw a definition for the
1987 symbol SHORTNAME in a regular object, and it is overriding
1988 the symbol defined in the dynamic object.
1989
1990 When this happens, we actually want to change NAME, the
1991 symbol we just added, to refer to SHORTNAME. This will cause
1992 references to NAME in the shared object to become references
1993 to SHORTNAME in the regular object. This is what we expect
1994 when we override a function in a shared object: that the
1995 references in the shared object will be mapped to the
1996 definition in the regular object. */
1997
1998 while (hi->root.type == bfd_link_hash_indirect
1999 || hi->root.type == bfd_link_hash_warning)
2000 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2001
2002 h->root.type = bfd_link_hash_indirect;
2003 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
2004 if (h->def_dynamic)
2005 {
2006 h->def_dynamic = 0;
2007 hi->ref_dynamic = 1;
2008 if (hi->ref_regular
2009 || hi->def_regular)
2010 {
2011 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
2012 return FALSE;
2013 }
2014 }
2015
2016 /* Now set HI to H, so that the following code will set the
2017 other fields correctly. */
2018 hi = h;
2019 }
2020
2021 /* Check if HI is a warning symbol. */
2022 if (hi->root.type == bfd_link_hash_warning)
2023 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2024
2025 /* If there is a duplicate definition somewhere, then HI may not
2026 point to an indirect symbol. We will have reported an error to
2027 the user in that case. */
2028
2029 if (hi->root.type == bfd_link_hash_indirect)
2030 {
2031 struct elf_link_hash_entry *ht;
2032
2033 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2034 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2035
2036 /* If we first saw a reference to SHORTNAME with non-default
2037 visibility, merge that visibility to the @@VER symbol. */
2038 elf_merge_st_other (abfd, ht, hi->other, sec, TRUE, dynamic);
2039
2040 /* A reference to the SHORTNAME symbol from a dynamic library
2041 will be satisfied by the versioned symbol at runtime. In
2042 effect, we have a reference to the versioned symbol. */
2043 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2044 hi->dynamic_def |= ht->dynamic_def;
2045
2046 /* See if the new flags lead us to realize that the symbol must
2047 be dynamic. */
2048 if (! *dynsym)
2049 {
2050 if (! dynamic)
2051 {
2052 if (! bfd_link_executable (info)
2053 || hi->def_dynamic
2054 || hi->ref_dynamic)
2055 *dynsym = TRUE;
2056 }
2057 else
2058 {
2059 if (hi->ref_regular)
2060 *dynsym = TRUE;
2061 }
2062 }
2063 }
2064
2065 /* We also need to define an indirection from the nondefault version
2066 of the symbol. */
2067
2068 nondefault:
2069 len = strlen (name);
2070 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2071 if (shortname == NULL)
2072 return FALSE;
2073 memcpy (shortname, name, shortlen);
2074 memcpy (shortname + shortlen, p + 1, len - shortlen);
2075
2076 /* Once again, merge with any existing symbol. */
2077 type_change_ok = FALSE;
2078 size_change_ok = FALSE;
2079 tmp_sec = sec;
2080 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2081 &hi, poldbfd, NULL, NULL, &skip, &override,
2082 &type_change_ok, &size_change_ok, &matched))
2083 return FALSE;
2084
2085 if (skip)
2086 {
2087 if (!dynamic
2088 && h->root.type == bfd_link_hash_defweak
2089 && hi->root.type == bfd_link_hash_defined)
2090 {
2091 /* We are handling a weak sym@@ver and attempting to define
2092 a weak sym@ver, but _bfd_elf_merge_symbol said to skip the
2093 new weak sym@ver because there is already a strong sym@ver.
2094 However, sym@ver and sym@@ver are really the same symbol.
2095 The existing strong sym@ver ought to override sym@@ver. */
2096 h->root.type = bfd_link_hash_defined;
2097 h->root.u.def.section = hi->root.u.def.section;
2098 h->root.u.def.value = hi->root.u.def.value;
2099 hi->root.type = bfd_link_hash_indirect;
2100 hi->root.u.i.link = &h->root;
2101 }
2102 else
2103 return TRUE;
2104 }
2105 else if (override)
2106 {
2107 /* Here SHORTNAME is a versioned name, so we don't expect to see
2108 the type of override we do in the case above unless it is
2109 overridden by a versioned definition. */
2110 if (hi->root.type != bfd_link_hash_defined
2111 && hi->root.type != bfd_link_hash_defweak)
2112 _bfd_error_handler
2113 /* xgettext:c-format */
2114 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2115 abfd, shortname);
2116 return TRUE;
2117 }
2118 else
2119 {
2120 bh = &hi->root;
2121 if (! (_bfd_generic_link_add_one_symbol
2122 (info, abfd, shortname, BSF_INDIRECT,
2123 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2124 return FALSE;
2125 hi = (struct elf_link_hash_entry *) bh;
2126 }
2127
2128 /* If there is a duplicate definition somewhere, then HI may not
2129 point to an indirect symbol. We will have reported an error
2130 to the user in that case. */
2131 if (hi->root.type == bfd_link_hash_indirect)
2132 {
2133 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2134 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2135 hi->dynamic_def |= h->dynamic_def;
2136
2137 /* If we first saw a reference to @VER symbol with
2138 non-default visibility, merge that visibility to the
2139 @@VER symbol. */
2140 elf_merge_st_other (abfd, h, hi->other, sec, TRUE, dynamic);
2141
2142 /* See if the new flags lead us to realize that the symbol
2143 must be dynamic. */
2144 if (! *dynsym)
2145 {
2146 if (! dynamic)
2147 {
2148 if (! bfd_link_executable (info)
2149 || hi->ref_dynamic)
2150 *dynsym = TRUE;
2151 }
2152 else
2153 {
2154 if (hi->ref_regular)
2155 *dynsym = TRUE;
2156 }
2157 }
2158 }
2159
2160 return TRUE;
2161 }
2162 \f
2163 /* This routine is used to export all defined symbols into the dynamic
2164 symbol table. It is called via elf_link_hash_traverse. */
2165
2166 static bfd_boolean
2167 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2168 {
2169 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2170
2171 /* Ignore indirect symbols. These are added by the versioning code. */
2172 if (h->root.type == bfd_link_hash_indirect)
2173 return TRUE;
2174
2175 /* Ignore this if we won't export it. */
2176 if (!eif->info->export_dynamic && !h->dynamic)
2177 return TRUE;
2178
2179 if (h->dynindx == -1
2180 && (h->def_regular || h->ref_regular)
2181 && ! bfd_hide_sym_by_version (eif->info->version_info,
2182 h->root.root.string))
2183 {
2184 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2185 {
2186 eif->failed = TRUE;
2187 return FALSE;
2188 }
2189 }
2190
2191 return TRUE;
2192 }
2193 \f
2194 /* Look through the symbols which are defined in other shared
2195 libraries and referenced here. Update the list of version
2196 dependencies. This will be put into the .gnu.version_r section.
2197 This function is called via elf_link_hash_traverse. */
2198
2199 static bfd_boolean
2200 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2201 void *data)
2202 {
2203 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2204 Elf_Internal_Verneed *t;
2205 Elf_Internal_Vernaux *a;
2206 size_t amt;
2207
2208 /* We only care about symbols defined in shared objects with version
2209 information. */
2210 if (!h->def_dynamic
2211 || h->def_regular
2212 || h->dynindx == -1
2213 || h->verinfo.verdef == NULL
2214 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2215 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2216 return TRUE;
2217
2218 /* See if we already know about this version. */
2219 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2220 t != NULL;
2221 t = t->vn_nextref)
2222 {
2223 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2224 continue;
2225
2226 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2227 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2228 return TRUE;
2229
2230 break;
2231 }
2232
2233 /* This is a new version. Add it to tree we are building. */
2234
2235 if (t == NULL)
2236 {
2237 amt = sizeof *t;
2238 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2239 if (t == NULL)
2240 {
2241 rinfo->failed = TRUE;
2242 return FALSE;
2243 }
2244
2245 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2246 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2247 elf_tdata (rinfo->info->output_bfd)->verref = t;
2248 }
2249
2250 amt = sizeof *a;
2251 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2252 if (a == NULL)
2253 {
2254 rinfo->failed = TRUE;
2255 return FALSE;
2256 }
2257
2258 /* Note that we are copying a string pointer here, and testing it
2259 above. If bfd_elf_string_from_elf_section is ever changed to
2260 discard the string data when low in memory, this will have to be
2261 fixed. */
2262 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2263
2264 a->vna_flags = h->verinfo.verdef->vd_flags;
2265 a->vna_nextptr = t->vn_auxptr;
2266
2267 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2268 ++rinfo->vers;
2269
2270 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2271
2272 t->vn_auxptr = a;
2273
2274 return TRUE;
2275 }
2276
2277 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2278 hidden. Set *T_P to NULL if there is no match. */
2279
2280 static bfd_boolean
2281 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2282 struct elf_link_hash_entry *h,
2283 const char *version_p,
2284 struct bfd_elf_version_tree **t_p,
2285 bfd_boolean *hide)
2286 {
2287 struct bfd_elf_version_tree *t;
2288
2289 /* Look for the version. If we find it, it is no longer weak. */
2290 for (t = info->version_info; t != NULL; t = t->next)
2291 {
2292 if (strcmp (t->name, version_p) == 0)
2293 {
2294 size_t len;
2295 char *alc;
2296 struct bfd_elf_version_expr *d;
2297
2298 len = version_p - h->root.root.string;
2299 alc = (char *) bfd_malloc (len);
2300 if (alc == NULL)
2301 return FALSE;
2302 memcpy (alc, h->root.root.string, len - 1);
2303 alc[len - 1] = '\0';
2304 if (alc[len - 2] == ELF_VER_CHR)
2305 alc[len - 2] = '\0';
2306
2307 h->verinfo.vertree = t;
2308 t->used = TRUE;
2309 d = NULL;
2310
2311 if (t->globals.list != NULL)
2312 d = (*t->match) (&t->globals, NULL, alc);
2313
2314 /* See if there is anything to force this symbol to
2315 local scope. */
2316 if (d == NULL && t->locals.list != NULL)
2317 {
2318 d = (*t->match) (&t->locals, NULL, alc);
2319 if (d != NULL
2320 && h->dynindx != -1
2321 && ! info->export_dynamic)
2322 *hide = TRUE;
2323 }
2324
2325 free (alc);
2326 break;
2327 }
2328 }
2329
2330 *t_p = t;
2331
2332 return TRUE;
2333 }
2334
2335 /* Return TRUE if the symbol H is hidden by version script. */
2336
2337 bfd_boolean
2338 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2339 struct elf_link_hash_entry *h)
2340 {
2341 const char *p;
2342 bfd_boolean hide = FALSE;
2343 const struct elf_backend_data *bed
2344 = get_elf_backend_data (info->output_bfd);
2345
2346 /* Version script only hides symbols defined in regular objects. */
2347 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2348 return TRUE;
2349
2350 p = strchr (h->root.root.string, ELF_VER_CHR);
2351 if (p != NULL && h->verinfo.vertree == NULL)
2352 {
2353 struct bfd_elf_version_tree *t;
2354
2355 ++p;
2356 if (*p == ELF_VER_CHR)
2357 ++p;
2358
2359 if (*p != '\0'
2360 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2361 && hide)
2362 {
2363 if (hide)
2364 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2365 return TRUE;
2366 }
2367 }
2368
2369 /* If we don't have a version for this symbol, see if we can find
2370 something. */
2371 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2372 {
2373 h->verinfo.vertree
2374 = bfd_find_version_for_sym (info->version_info,
2375 h->root.root.string, &hide);
2376 if (h->verinfo.vertree != NULL && hide)
2377 {
2378 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2379 return TRUE;
2380 }
2381 }
2382
2383 return FALSE;
2384 }
2385
2386 /* Figure out appropriate versions for all the symbols. We may not
2387 have the version number script until we have read all of the input
2388 files, so until that point we don't know which symbols should be
2389 local. This function is called via elf_link_hash_traverse. */
2390
2391 static bfd_boolean
2392 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2393 {
2394 struct elf_info_failed *sinfo;
2395 struct bfd_link_info *info;
2396 const struct elf_backend_data *bed;
2397 struct elf_info_failed eif;
2398 char *p;
2399 bfd_boolean hide;
2400
2401 sinfo = (struct elf_info_failed *) data;
2402 info = sinfo->info;
2403
2404 /* Fix the symbol flags. */
2405 eif.failed = FALSE;
2406 eif.info = info;
2407 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2408 {
2409 if (eif.failed)
2410 sinfo->failed = TRUE;
2411 return FALSE;
2412 }
2413
2414 bed = get_elf_backend_data (info->output_bfd);
2415
2416 /* We only need version numbers for symbols defined in regular
2417 objects. */
2418 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2419 {
2420 /* Hide symbols defined in discarded input sections. */
2421 if ((h->root.type == bfd_link_hash_defined
2422 || h->root.type == bfd_link_hash_defweak)
2423 && discarded_section (h->root.u.def.section))
2424 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2425 return TRUE;
2426 }
2427
2428 hide = FALSE;
2429 p = strchr (h->root.root.string, ELF_VER_CHR);
2430 if (p != NULL && h->verinfo.vertree == NULL)
2431 {
2432 struct bfd_elf_version_tree *t;
2433
2434 ++p;
2435 if (*p == ELF_VER_CHR)
2436 ++p;
2437
2438 /* If there is no version string, we can just return out. */
2439 if (*p == '\0')
2440 return TRUE;
2441
2442 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2443 {
2444 sinfo->failed = TRUE;
2445 return FALSE;
2446 }
2447
2448 if (hide)
2449 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2450
2451 /* If we are building an application, we need to create a
2452 version node for this version. */
2453 if (t == NULL && bfd_link_executable (info))
2454 {
2455 struct bfd_elf_version_tree **pp;
2456 int version_index;
2457
2458 /* If we aren't going to export this symbol, we don't need
2459 to worry about it. */
2460 if (h->dynindx == -1)
2461 return TRUE;
2462
2463 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2464 sizeof *t);
2465 if (t == NULL)
2466 {
2467 sinfo->failed = TRUE;
2468 return FALSE;
2469 }
2470
2471 t->name = p;
2472 t->name_indx = (unsigned int) -1;
2473 t->used = TRUE;
2474
2475 version_index = 1;
2476 /* Don't count anonymous version tag. */
2477 if (sinfo->info->version_info != NULL
2478 && sinfo->info->version_info->vernum == 0)
2479 version_index = 0;
2480 for (pp = &sinfo->info->version_info;
2481 *pp != NULL;
2482 pp = &(*pp)->next)
2483 ++version_index;
2484 t->vernum = version_index;
2485
2486 *pp = t;
2487
2488 h->verinfo.vertree = t;
2489 }
2490 else if (t == NULL)
2491 {
2492 /* We could not find the version for a symbol when
2493 generating a shared archive. Return an error. */
2494 _bfd_error_handler
2495 /* xgettext:c-format */
2496 (_("%pB: version node not found for symbol %s"),
2497 info->output_bfd, h->root.root.string);
2498 bfd_set_error (bfd_error_bad_value);
2499 sinfo->failed = TRUE;
2500 return FALSE;
2501 }
2502 }
2503
2504 /* If we don't have a version for this symbol, see if we can find
2505 something. */
2506 if (!hide
2507 && h->verinfo.vertree == NULL
2508 && sinfo->info->version_info != NULL)
2509 {
2510 h->verinfo.vertree
2511 = bfd_find_version_for_sym (sinfo->info->version_info,
2512 h->root.root.string, &hide);
2513 if (h->verinfo.vertree != NULL && hide)
2514 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2515 }
2516
2517 return TRUE;
2518 }
2519 \f
2520 /* Read and swap the relocs from the section indicated by SHDR. This
2521 may be either a REL or a RELA section. The relocations are
2522 translated into RELA relocations and stored in INTERNAL_RELOCS,
2523 which should have already been allocated to contain enough space.
2524 The EXTERNAL_RELOCS are a buffer where the external form of the
2525 relocations should be stored.
2526
2527 Returns FALSE if something goes wrong. */
2528
2529 static bfd_boolean
2530 elf_link_read_relocs_from_section (bfd *abfd,
2531 asection *sec,
2532 Elf_Internal_Shdr *shdr,
2533 void *external_relocs,
2534 Elf_Internal_Rela *internal_relocs)
2535 {
2536 const struct elf_backend_data *bed;
2537 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2538 const bfd_byte *erela;
2539 const bfd_byte *erelaend;
2540 Elf_Internal_Rela *irela;
2541 Elf_Internal_Shdr *symtab_hdr;
2542 size_t nsyms;
2543
2544 /* Position ourselves at the start of the section. */
2545 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2546 return FALSE;
2547
2548 /* Read the relocations. */
2549 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2550 return FALSE;
2551
2552 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2553 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2554
2555 bed = get_elf_backend_data (abfd);
2556
2557 /* Convert the external relocations to the internal format. */
2558 if (shdr->sh_entsize == bed->s->sizeof_rel)
2559 swap_in = bed->s->swap_reloc_in;
2560 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2561 swap_in = bed->s->swap_reloca_in;
2562 else
2563 {
2564 bfd_set_error (bfd_error_wrong_format);
2565 return FALSE;
2566 }
2567
2568 erela = (const bfd_byte *) external_relocs;
2569 /* Setting erelaend like this and comparing with <= handles case of
2570 a fuzzed object with sh_size not a multiple of sh_entsize. */
2571 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2572 irela = internal_relocs;
2573 while (erela <= erelaend)
2574 {
2575 bfd_vma r_symndx;
2576
2577 (*swap_in) (abfd, erela, irela);
2578 r_symndx = ELF32_R_SYM (irela->r_info);
2579 if (bed->s->arch_size == 64)
2580 r_symndx >>= 24;
2581 if (nsyms > 0)
2582 {
2583 if ((size_t) r_symndx >= nsyms)
2584 {
2585 _bfd_error_handler
2586 /* xgettext:c-format */
2587 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2588 " for offset %#" PRIx64 " in section `%pA'"),
2589 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2590 (uint64_t) irela->r_offset, sec);
2591 bfd_set_error (bfd_error_bad_value);
2592 return FALSE;
2593 }
2594 }
2595 else if (r_symndx != STN_UNDEF)
2596 {
2597 _bfd_error_handler
2598 /* xgettext:c-format */
2599 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2600 " for offset %#" PRIx64 " in section `%pA'"
2601 " when the object file has no symbol table"),
2602 abfd, (uint64_t) r_symndx,
2603 (uint64_t) irela->r_offset, sec);
2604 bfd_set_error (bfd_error_bad_value);
2605 return FALSE;
2606 }
2607 irela += bed->s->int_rels_per_ext_rel;
2608 erela += shdr->sh_entsize;
2609 }
2610
2611 return TRUE;
2612 }
2613
2614 /* Read and swap the relocs for a section O. They may have been
2615 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2616 not NULL, they are used as buffers to read into. They are known to
2617 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2618 the return value is allocated using either malloc or bfd_alloc,
2619 according to the KEEP_MEMORY argument. If O has two relocation
2620 sections (both REL and RELA relocations), then the REL_HDR
2621 relocations will appear first in INTERNAL_RELOCS, followed by the
2622 RELA_HDR relocations. */
2623
2624 Elf_Internal_Rela *
2625 _bfd_elf_link_read_relocs (bfd *abfd,
2626 asection *o,
2627 void *external_relocs,
2628 Elf_Internal_Rela *internal_relocs,
2629 bfd_boolean keep_memory)
2630 {
2631 void *alloc1 = NULL;
2632 Elf_Internal_Rela *alloc2 = NULL;
2633 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2634 struct bfd_elf_section_data *esdo = elf_section_data (o);
2635 Elf_Internal_Rela *internal_rela_relocs;
2636
2637 if (esdo->relocs != NULL)
2638 return esdo->relocs;
2639
2640 if (o->reloc_count == 0)
2641 return NULL;
2642
2643 if (internal_relocs == NULL)
2644 {
2645 bfd_size_type size;
2646
2647 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2648 if (keep_memory)
2649 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2650 else
2651 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2652 if (internal_relocs == NULL)
2653 goto error_return;
2654 }
2655
2656 if (external_relocs == NULL)
2657 {
2658 bfd_size_type size = 0;
2659
2660 if (esdo->rel.hdr)
2661 size += esdo->rel.hdr->sh_size;
2662 if (esdo->rela.hdr)
2663 size += esdo->rela.hdr->sh_size;
2664
2665 alloc1 = bfd_malloc (size);
2666 if (alloc1 == NULL)
2667 goto error_return;
2668 external_relocs = alloc1;
2669 }
2670
2671 internal_rela_relocs = internal_relocs;
2672 if (esdo->rel.hdr)
2673 {
2674 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2675 external_relocs,
2676 internal_relocs))
2677 goto error_return;
2678 external_relocs = (((bfd_byte *) external_relocs)
2679 + esdo->rel.hdr->sh_size);
2680 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2681 * bed->s->int_rels_per_ext_rel);
2682 }
2683
2684 if (esdo->rela.hdr
2685 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2686 external_relocs,
2687 internal_rela_relocs)))
2688 goto error_return;
2689
2690 /* Cache the results for next time, if we can. */
2691 if (keep_memory)
2692 esdo->relocs = internal_relocs;
2693
2694 free (alloc1);
2695
2696 /* Don't free alloc2, since if it was allocated we are passing it
2697 back (under the name of internal_relocs). */
2698
2699 return internal_relocs;
2700
2701 error_return:
2702 free (alloc1);
2703 if (alloc2 != NULL)
2704 {
2705 if (keep_memory)
2706 bfd_release (abfd, alloc2);
2707 else
2708 free (alloc2);
2709 }
2710 return NULL;
2711 }
2712
2713 /* Compute the size of, and allocate space for, REL_HDR which is the
2714 section header for a section containing relocations for O. */
2715
2716 static bfd_boolean
2717 _bfd_elf_link_size_reloc_section (bfd *abfd,
2718 struct bfd_elf_section_reloc_data *reldata)
2719 {
2720 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2721
2722 /* That allows us to calculate the size of the section. */
2723 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2724
2725 /* The contents field must last into write_object_contents, so we
2726 allocate it with bfd_alloc rather than malloc. Also since we
2727 cannot be sure that the contents will actually be filled in,
2728 we zero the allocated space. */
2729 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2730 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2731 return FALSE;
2732
2733 if (reldata->hashes == NULL && reldata->count)
2734 {
2735 struct elf_link_hash_entry **p;
2736
2737 p = ((struct elf_link_hash_entry **)
2738 bfd_zmalloc (reldata->count * sizeof (*p)));
2739 if (p == NULL)
2740 return FALSE;
2741
2742 reldata->hashes = p;
2743 }
2744
2745 return TRUE;
2746 }
2747
2748 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2749 originated from the section given by INPUT_REL_HDR) to the
2750 OUTPUT_BFD. */
2751
2752 bfd_boolean
2753 _bfd_elf_link_output_relocs (bfd *output_bfd,
2754 asection *input_section,
2755 Elf_Internal_Shdr *input_rel_hdr,
2756 Elf_Internal_Rela *internal_relocs,
2757 struct elf_link_hash_entry **rel_hash
2758 ATTRIBUTE_UNUSED)
2759 {
2760 Elf_Internal_Rela *irela;
2761 Elf_Internal_Rela *irelaend;
2762 bfd_byte *erel;
2763 struct bfd_elf_section_reloc_data *output_reldata;
2764 asection *output_section;
2765 const struct elf_backend_data *bed;
2766 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2767 struct bfd_elf_section_data *esdo;
2768
2769 output_section = input_section->output_section;
2770
2771 bed = get_elf_backend_data (output_bfd);
2772 esdo = elf_section_data (output_section);
2773 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2774 {
2775 output_reldata = &esdo->rel;
2776 swap_out = bed->s->swap_reloc_out;
2777 }
2778 else if (esdo->rela.hdr
2779 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2780 {
2781 output_reldata = &esdo->rela;
2782 swap_out = bed->s->swap_reloca_out;
2783 }
2784 else
2785 {
2786 _bfd_error_handler
2787 /* xgettext:c-format */
2788 (_("%pB: relocation size mismatch in %pB section %pA"),
2789 output_bfd, input_section->owner, input_section);
2790 bfd_set_error (bfd_error_wrong_format);
2791 return FALSE;
2792 }
2793
2794 erel = output_reldata->hdr->contents;
2795 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2796 irela = internal_relocs;
2797 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2798 * bed->s->int_rels_per_ext_rel);
2799 while (irela < irelaend)
2800 {
2801 (*swap_out) (output_bfd, irela, erel);
2802 irela += bed->s->int_rels_per_ext_rel;
2803 erel += input_rel_hdr->sh_entsize;
2804 }
2805
2806 /* Bump the counter, so that we know where to add the next set of
2807 relocations. */
2808 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2809
2810 return TRUE;
2811 }
2812 \f
2813 /* Make weak undefined symbols in PIE dynamic. */
2814
2815 bfd_boolean
2816 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2817 struct elf_link_hash_entry *h)
2818 {
2819 if (bfd_link_pie (info)
2820 && h->dynindx == -1
2821 && h->root.type == bfd_link_hash_undefweak)
2822 return bfd_elf_link_record_dynamic_symbol (info, h);
2823
2824 return TRUE;
2825 }
2826
2827 /* Fix up the flags for a symbol. This handles various cases which
2828 can only be fixed after all the input files are seen. This is
2829 currently called by both adjust_dynamic_symbol and
2830 assign_sym_version, which is unnecessary but perhaps more robust in
2831 the face of future changes. */
2832
2833 static bfd_boolean
2834 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2835 struct elf_info_failed *eif)
2836 {
2837 const struct elf_backend_data *bed;
2838
2839 /* If this symbol was mentioned in a non-ELF file, try to set
2840 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2841 permit a non-ELF file to correctly refer to a symbol defined in
2842 an ELF dynamic object. */
2843 if (h->non_elf)
2844 {
2845 while (h->root.type == bfd_link_hash_indirect)
2846 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2847
2848 if (h->root.type != bfd_link_hash_defined
2849 && h->root.type != bfd_link_hash_defweak)
2850 {
2851 h->ref_regular = 1;
2852 h->ref_regular_nonweak = 1;
2853 }
2854 else
2855 {
2856 if (h->root.u.def.section->owner != NULL
2857 && (bfd_get_flavour (h->root.u.def.section->owner)
2858 == bfd_target_elf_flavour))
2859 {
2860 h->ref_regular = 1;
2861 h->ref_regular_nonweak = 1;
2862 }
2863 else
2864 h->def_regular = 1;
2865 }
2866
2867 if (h->dynindx == -1
2868 && (h->def_dynamic
2869 || h->ref_dynamic))
2870 {
2871 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2872 {
2873 eif->failed = TRUE;
2874 return FALSE;
2875 }
2876 }
2877 }
2878 else
2879 {
2880 /* Unfortunately, NON_ELF is only correct if the symbol
2881 was first seen in a non-ELF file. Fortunately, if the symbol
2882 was first seen in an ELF file, we're probably OK unless the
2883 symbol was defined in a non-ELF file. Catch that case here.
2884 FIXME: We're still in trouble if the symbol was first seen in
2885 a dynamic object, and then later in a non-ELF regular object. */
2886 if ((h->root.type == bfd_link_hash_defined
2887 || h->root.type == bfd_link_hash_defweak)
2888 && !h->def_regular
2889 && (h->root.u.def.section->owner != NULL
2890 ? (bfd_get_flavour (h->root.u.def.section->owner)
2891 != bfd_target_elf_flavour)
2892 : (bfd_is_abs_section (h->root.u.def.section)
2893 && !h->def_dynamic)))
2894 h->def_regular = 1;
2895 }
2896
2897 /* Backend specific symbol fixup. */
2898 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2899 if (bed->elf_backend_fixup_symbol
2900 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2901 return FALSE;
2902
2903 /* If this is a final link, and the symbol was defined as a common
2904 symbol in a regular object file, and there was no definition in
2905 any dynamic object, then the linker will have allocated space for
2906 the symbol in a common section but the DEF_REGULAR
2907 flag will not have been set. */
2908 if (h->root.type == bfd_link_hash_defined
2909 && !h->def_regular
2910 && h->ref_regular
2911 && !h->def_dynamic
2912 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2913 h->def_regular = 1;
2914
2915 /* Symbols defined in discarded sections shouldn't be dynamic. */
2916 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2917 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2918
2919 /* If a weak undefined symbol has non-default visibility, we also
2920 hide it from the dynamic linker. */
2921 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2922 && h->root.type == bfd_link_hash_undefweak)
2923 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2924
2925 /* A hidden versioned symbol in executable should be forced local if
2926 it is is locally defined, not referenced by shared library and not
2927 exported. */
2928 else if (bfd_link_executable (eif->info)
2929 && h->versioned == versioned_hidden
2930 && !eif->info->export_dynamic
2931 && !h->dynamic
2932 && !h->ref_dynamic
2933 && h->def_regular)
2934 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2935
2936 /* If -Bsymbolic was used (which means to bind references to global
2937 symbols to the definition within the shared object), and this
2938 symbol was defined in a regular object, then it actually doesn't
2939 need a PLT entry. Likewise, if the symbol has non-default
2940 visibility. If the symbol has hidden or internal visibility, we
2941 will force it local. */
2942 else if (h->needs_plt
2943 && bfd_link_pic (eif->info)
2944 && is_elf_hash_table (eif->info->hash)
2945 && (SYMBOLIC_BIND (eif->info, h)
2946 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2947 && h->def_regular)
2948 {
2949 bfd_boolean force_local;
2950
2951 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2952 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2953 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2954 }
2955
2956 /* If this is a weak defined symbol in a dynamic object, and we know
2957 the real definition in the dynamic object, copy interesting flags
2958 over to the real definition. */
2959 if (h->is_weakalias)
2960 {
2961 struct elf_link_hash_entry *def = weakdef (h);
2962
2963 /* If the real definition is defined by a regular object file,
2964 don't do anything special. See the longer description in
2965 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2966 bfd_link_hash_defined as it was when put on the alias list
2967 then it must have originally been a versioned symbol (for
2968 which a non-versioned indirect symbol is created) and later
2969 a definition for the non-versioned symbol is found. In that
2970 case the indirection is flipped with the versioned symbol
2971 becoming an indirect pointing at the non-versioned symbol.
2972 Thus, not an alias any more. */
2973 if (def->def_regular
2974 || def->root.type != bfd_link_hash_defined)
2975 {
2976 h = def;
2977 while ((h = h->u.alias) != def)
2978 h->is_weakalias = 0;
2979 }
2980 else
2981 {
2982 while (h->root.type == bfd_link_hash_indirect)
2983 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2984 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2985 || h->root.type == bfd_link_hash_defweak);
2986 BFD_ASSERT (def->def_dynamic);
2987 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2988 }
2989 }
2990
2991 return TRUE;
2992 }
2993
2994 /* Make the backend pick a good value for a dynamic symbol. This is
2995 called via elf_link_hash_traverse, and also calls itself
2996 recursively. */
2997
2998 static bfd_boolean
2999 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
3000 {
3001 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3002 struct elf_link_hash_table *htab;
3003 const struct elf_backend_data *bed;
3004
3005 if (! is_elf_hash_table (eif->info->hash))
3006 return FALSE;
3007
3008 /* Ignore indirect symbols. These are added by the versioning code. */
3009 if (h->root.type == bfd_link_hash_indirect)
3010 return TRUE;
3011
3012 /* Fix the symbol flags. */
3013 if (! _bfd_elf_fix_symbol_flags (h, eif))
3014 return FALSE;
3015
3016 htab = elf_hash_table (eif->info);
3017 bed = get_elf_backend_data (htab->dynobj);
3018
3019 if (h->root.type == bfd_link_hash_undefweak)
3020 {
3021 if (eif->info->dynamic_undefined_weak == 0)
3022 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
3023 else if (eif->info->dynamic_undefined_weak > 0
3024 && h->ref_regular
3025 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3026 && !bfd_hide_sym_by_version (eif->info->version_info,
3027 h->root.root.string))
3028 {
3029 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
3030 {
3031 eif->failed = TRUE;
3032 return FALSE;
3033 }
3034 }
3035 }
3036
3037 /* If this symbol does not require a PLT entry, and it is not
3038 defined by a dynamic object, or is not referenced by a regular
3039 object, ignore it. We do have to handle a weak defined symbol,
3040 even if no regular object refers to it, if we decided to add it
3041 to the dynamic symbol table. FIXME: Do we normally need to worry
3042 about symbols which are defined by one dynamic object and
3043 referenced by another one? */
3044 if (!h->needs_plt
3045 && h->type != STT_GNU_IFUNC
3046 && (h->def_regular
3047 || !h->def_dynamic
3048 || (!h->ref_regular
3049 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3050 {
3051 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3052 return TRUE;
3053 }
3054
3055 /* If we've already adjusted this symbol, don't do it again. This
3056 can happen via a recursive call. */
3057 if (h->dynamic_adjusted)
3058 return TRUE;
3059
3060 /* Don't look at this symbol again. Note that we must set this
3061 after checking the above conditions, because we may look at a
3062 symbol once, decide not to do anything, and then get called
3063 recursively later after REF_REGULAR is set below. */
3064 h->dynamic_adjusted = 1;
3065
3066 /* If this is a weak definition, and we know a real definition, and
3067 the real symbol is not itself defined by a regular object file,
3068 then get a good value for the real definition. We handle the
3069 real symbol first, for the convenience of the backend routine.
3070
3071 Note that there is a confusing case here. If the real definition
3072 is defined by a regular object file, we don't get the real symbol
3073 from the dynamic object, but we do get the weak symbol. If the
3074 processor backend uses a COPY reloc, then if some routine in the
3075 dynamic object changes the real symbol, we will not see that
3076 change in the corresponding weak symbol. This is the way other
3077 ELF linkers work as well, and seems to be a result of the shared
3078 library model.
3079
3080 I will clarify this issue. Most SVR4 shared libraries define the
3081 variable _timezone and define timezone as a weak synonym. The
3082 tzset call changes _timezone. If you write
3083 extern int timezone;
3084 int _timezone = 5;
3085 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3086 you might expect that, since timezone is a synonym for _timezone,
3087 the same number will print both times. However, if the processor
3088 backend uses a COPY reloc, then actually timezone will be copied
3089 into your process image, and, since you define _timezone
3090 yourself, _timezone will not. Thus timezone and _timezone will
3091 wind up at different memory locations. The tzset call will set
3092 _timezone, leaving timezone unchanged. */
3093
3094 if (h->is_weakalias)
3095 {
3096 struct elf_link_hash_entry *def = weakdef (h);
3097
3098 /* If we get to this point, there is an implicit reference to
3099 the alias by a regular object file via the weak symbol H. */
3100 def->ref_regular = 1;
3101
3102 /* Ensure that the backend adjust_dynamic_symbol function sees
3103 the strong alias before H by recursively calling ourselves. */
3104 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3105 return FALSE;
3106 }
3107
3108 /* If a symbol has no type and no size and does not require a PLT
3109 entry, then we are probably about to do the wrong thing here: we
3110 are probably going to create a COPY reloc for an empty object.
3111 This case can arise when a shared object is built with assembly
3112 code, and the assembly code fails to set the symbol type. */
3113 if (h->size == 0
3114 && h->type == STT_NOTYPE
3115 && !h->needs_plt)
3116 _bfd_error_handler
3117 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3118 h->root.root.string);
3119
3120 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3121 {
3122 eif->failed = TRUE;
3123 return FALSE;
3124 }
3125
3126 return TRUE;
3127 }
3128
3129 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3130 DYNBSS. */
3131
3132 bfd_boolean
3133 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3134 struct elf_link_hash_entry *h,
3135 asection *dynbss)
3136 {
3137 unsigned int power_of_two;
3138 bfd_vma mask;
3139 asection *sec = h->root.u.def.section;
3140
3141 /* The section alignment of the definition is the maximum alignment
3142 requirement of symbols defined in the section. Since we don't
3143 know the symbol alignment requirement, we start with the
3144 maximum alignment and check low bits of the symbol address
3145 for the minimum alignment. */
3146 power_of_two = bfd_section_alignment (sec);
3147 mask = ((bfd_vma) 1 << power_of_two) - 1;
3148 while ((h->root.u.def.value & mask) != 0)
3149 {
3150 mask >>= 1;
3151 --power_of_two;
3152 }
3153
3154 if (power_of_two > bfd_section_alignment (dynbss))
3155 {
3156 /* Adjust the section alignment if needed. */
3157 if (!bfd_set_section_alignment (dynbss, power_of_two))
3158 return FALSE;
3159 }
3160
3161 /* We make sure that the symbol will be aligned properly. */
3162 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3163
3164 /* Define the symbol as being at this point in DYNBSS. */
3165 h->root.u.def.section = dynbss;
3166 h->root.u.def.value = dynbss->size;
3167
3168 /* Increment the size of DYNBSS to make room for the symbol. */
3169 dynbss->size += h->size;
3170
3171 /* No error if extern_protected_data is true. */
3172 if (h->protected_def
3173 && (!info->extern_protected_data
3174 || (info->extern_protected_data < 0
3175 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3176 info->callbacks->einfo
3177 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3178 h->root.root.string);
3179
3180 return TRUE;
3181 }
3182
3183 /* Adjust all external symbols pointing into SEC_MERGE sections
3184 to reflect the object merging within the sections. */
3185
3186 static bfd_boolean
3187 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3188 {
3189 asection *sec;
3190
3191 if ((h->root.type == bfd_link_hash_defined
3192 || h->root.type == bfd_link_hash_defweak)
3193 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3194 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3195 {
3196 bfd *output_bfd = (bfd *) data;
3197
3198 h->root.u.def.value =
3199 _bfd_merged_section_offset (output_bfd,
3200 &h->root.u.def.section,
3201 elf_section_data (sec)->sec_info,
3202 h->root.u.def.value);
3203 }
3204
3205 return TRUE;
3206 }
3207
3208 /* Returns false if the symbol referred to by H should be considered
3209 to resolve local to the current module, and true if it should be
3210 considered to bind dynamically. */
3211
3212 bfd_boolean
3213 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3214 struct bfd_link_info *info,
3215 bfd_boolean not_local_protected)
3216 {
3217 bfd_boolean binding_stays_local_p;
3218 const struct elf_backend_data *bed;
3219 struct elf_link_hash_table *hash_table;
3220
3221 if (h == NULL)
3222 return FALSE;
3223
3224 while (h->root.type == bfd_link_hash_indirect
3225 || h->root.type == bfd_link_hash_warning)
3226 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3227
3228 /* If it was forced local, then clearly it's not dynamic. */
3229 if (h->dynindx == -1)
3230 return FALSE;
3231 if (h->forced_local)
3232 return FALSE;
3233
3234 /* Identify the cases where name binding rules say that a
3235 visible symbol resolves locally. */
3236 binding_stays_local_p = (bfd_link_executable (info)
3237 || SYMBOLIC_BIND (info, h));
3238
3239 switch (ELF_ST_VISIBILITY (h->other))
3240 {
3241 case STV_INTERNAL:
3242 case STV_HIDDEN:
3243 return FALSE;
3244
3245 case STV_PROTECTED:
3246 hash_table = elf_hash_table (info);
3247 if (!is_elf_hash_table (hash_table))
3248 return FALSE;
3249
3250 bed = get_elf_backend_data (hash_table->dynobj);
3251
3252 /* Proper resolution for function pointer equality may require
3253 that these symbols perhaps be resolved dynamically, even though
3254 we should be resolving them to the current module. */
3255 if (!not_local_protected || !bed->is_function_type (h->type))
3256 binding_stays_local_p = TRUE;
3257 break;
3258
3259 default:
3260 break;
3261 }
3262
3263 /* If it isn't defined locally, then clearly it's dynamic. */
3264 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3265 return TRUE;
3266
3267 /* Otherwise, the symbol is dynamic if binding rules don't tell
3268 us that it remains local. */
3269 return !binding_stays_local_p;
3270 }
3271
3272 /* Return true if the symbol referred to by H should be considered
3273 to resolve local to the current module, and false otherwise. Differs
3274 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3275 undefined symbols. The two functions are virtually identical except
3276 for the place where dynindx == -1 is tested. If that test is true,
3277 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3278 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3279 defined symbols.
3280 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3281 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3282 treatment of undefined weak symbols. For those that do not make
3283 undefined weak symbols dynamic, both functions may return false. */
3284
3285 bfd_boolean
3286 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3287 struct bfd_link_info *info,
3288 bfd_boolean local_protected)
3289 {
3290 const struct elf_backend_data *bed;
3291 struct elf_link_hash_table *hash_table;
3292
3293 /* If it's a local sym, of course we resolve locally. */
3294 if (h == NULL)
3295 return TRUE;
3296
3297 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3298 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3299 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3300 return TRUE;
3301
3302 /* Forced local symbols resolve locally. */
3303 if (h->forced_local)
3304 return TRUE;
3305
3306 /* Common symbols that become definitions don't get the DEF_REGULAR
3307 flag set, so test it first, and don't bail out. */
3308 if (ELF_COMMON_DEF_P (h))
3309 /* Do nothing. */;
3310 /* If we don't have a definition in a regular file, then we can't
3311 resolve locally. The sym is either undefined or dynamic. */
3312 else if (!h->def_regular)
3313 return FALSE;
3314
3315 /* Non-dynamic symbols resolve locally. */
3316 if (h->dynindx == -1)
3317 return TRUE;
3318
3319 /* At this point, we know the symbol is defined and dynamic. In an
3320 executable it must resolve locally, likewise when building symbolic
3321 shared libraries. */
3322 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3323 return TRUE;
3324
3325 /* Now deal with defined dynamic symbols in shared libraries. Ones
3326 with default visibility might not resolve locally. */
3327 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3328 return FALSE;
3329
3330 hash_table = elf_hash_table (info);
3331 if (!is_elf_hash_table (hash_table))
3332 return TRUE;
3333
3334 bed = get_elf_backend_data (hash_table->dynobj);
3335
3336 /* If extern_protected_data is false, STV_PROTECTED non-function
3337 symbols are local. */
3338 if ((!info->extern_protected_data
3339 || (info->extern_protected_data < 0
3340 && !bed->extern_protected_data))
3341 && !bed->is_function_type (h->type))
3342 return TRUE;
3343
3344 /* Function pointer equality tests may require that STV_PROTECTED
3345 symbols be treated as dynamic symbols. If the address of a
3346 function not defined in an executable is set to that function's
3347 plt entry in the executable, then the address of the function in
3348 a shared library must also be the plt entry in the executable. */
3349 return local_protected;
3350 }
3351
3352 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3353 aligned. Returns the first TLS output section. */
3354
3355 struct bfd_section *
3356 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3357 {
3358 struct bfd_section *sec, *tls;
3359 unsigned int align = 0;
3360
3361 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3362 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3363 break;
3364 tls = sec;
3365
3366 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3367 if (sec->alignment_power > align)
3368 align = sec->alignment_power;
3369
3370 elf_hash_table (info)->tls_sec = tls;
3371
3372 /* Ensure the alignment of the first section (usually .tdata) is the largest
3373 alignment, so that the tls segment starts aligned. */
3374 if (tls != NULL)
3375 tls->alignment_power = align;
3376
3377 return tls;
3378 }
3379
3380 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3381 static bfd_boolean
3382 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3383 Elf_Internal_Sym *sym)
3384 {
3385 const struct elf_backend_data *bed;
3386
3387 /* Local symbols do not count, but target specific ones might. */
3388 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3389 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3390 return FALSE;
3391
3392 bed = get_elf_backend_data (abfd);
3393 /* Function symbols do not count. */
3394 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3395 return FALSE;
3396
3397 /* If the section is undefined, then so is the symbol. */
3398 if (sym->st_shndx == SHN_UNDEF)
3399 return FALSE;
3400
3401 /* If the symbol is defined in the common section, then
3402 it is a common definition and so does not count. */
3403 if (bed->common_definition (sym))
3404 return FALSE;
3405
3406 /* If the symbol is in a target specific section then we
3407 must rely upon the backend to tell us what it is. */
3408 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3409 /* FIXME - this function is not coded yet:
3410
3411 return _bfd_is_global_symbol_definition (abfd, sym);
3412
3413 Instead for now assume that the definition is not global,
3414 Even if this is wrong, at least the linker will behave
3415 in the same way that it used to do. */
3416 return FALSE;
3417
3418 return TRUE;
3419 }
3420
3421 /* Search the symbol table of the archive element of the archive ABFD
3422 whose archive map contains a mention of SYMDEF, and determine if
3423 the symbol is defined in this element. */
3424 static bfd_boolean
3425 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3426 {
3427 Elf_Internal_Shdr * hdr;
3428 size_t symcount;
3429 size_t extsymcount;
3430 size_t extsymoff;
3431 Elf_Internal_Sym *isymbuf;
3432 Elf_Internal_Sym *isym;
3433 Elf_Internal_Sym *isymend;
3434 bfd_boolean result;
3435
3436 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3437 if (abfd == NULL)
3438 return FALSE;
3439
3440 if (! bfd_check_format (abfd, bfd_object))
3441 return FALSE;
3442
3443 /* Select the appropriate symbol table. If we don't know if the
3444 object file is an IR object, give linker LTO plugin a chance to
3445 get the correct symbol table. */
3446 if (abfd->plugin_format == bfd_plugin_yes
3447 #if BFD_SUPPORTS_PLUGINS
3448 || (abfd->plugin_format == bfd_plugin_unknown
3449 && bfd_link_plugin_object_p (abfd))
3450 #endif
3451 )
3452 {
3453 /* Use the IR symbol table if the object has been claimed by
3454 plugin. */
3455 abfd = abfd->plugin_dummy_bfd;
3456 hdr = &elf_tdata (abfd)->symtab_hdr;
3457 }
3458 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3459 hdr = &elf_tdata (abfd)->symtab_hdr;
3460 else
3461 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3462
3463 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3464
3465 /* The sh_info field of the symtab header tells us where the
3466 external symbols start. We don't care about the local symbols. */
3467 if (elf_bad_symtab (abfd))
3468 {
3469 extsymcount = symcount;
3470 extsymoff = 0;
3471 }
3472 else
3473 {
3474 extsymcount = symcount - hdr->sh_info;
3475 extsymoff = hdr->sh_info;
3476 }
3477
3478 if (extsymcount == 0)
3479 return FALSE;
3480
3481 /* Read in the symbol table. */
3482 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3483 NULL, NULL, NULL);
3484 if (isymbuf == NULL)
3485 return FALSE;
3486
3487 /* Scan the symbol table looking for SYMDEF. */
3488 result = FALSE;
3489 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3490 {
3491 const char *name;
3492
3493 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3494 isym->st_name);
3495 if (name == NULL)
3496 break;
3497
3498 if (strcmp (name, symdef->name) == 0)
3499 {
3500 result = is_global_data_symbol_definition (abfd, isym);
3501 break;
3502 }
3503 }
3504
3505 free (isymbuf);
3506
3507 return result;
3508 }
3509 \f
3510 /* Add an entry to the .dynamic table. */
3511
3512 bfd_boolean
3513 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3514 bfd_vma tag,
3515 bfd_vma val)
3516 {
3517 struct elf_link_hash_table *hash_table;
3518 const struct elf_backend_data *bed;
3519 asection *s;
3520 bfd_size_type newsize;
3521 bfd_byte *newcontents;
3522 Elf_Internal_Dyn dyn;
3523
3524 hash_table = elf_hash_table (info);
3525 if (! is_elf_hash_table (hash_table))
3526 return FALSE;
3527
3528 if (tag == DT_RELA || tag == DT_REL)
3529 hash_table->dynamic_relocs = TRUE;
3530
3531 bed = get_elf_backend_data (hash_table->dynobj);
3532 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3533 BFD_ASSERT (s != NULL);
3534
3535 newsize = s->size + bed->s->sizeof_dyn;
3536 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3537 if (newcontents == NULL)
3538 return FALSE;
3539
3540 dyn.d_tag = tag;
3541 dyn.d_un.d_val = val;
3542 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3543
3544 s->size = newsize;
3545 s->contents = newcontents;
3546
3547 return TRUE;
3548 }
3549
3550 /* Strip zero-sized dynamic sections. */
3551
3552 bfd_boolean
3553 _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info)
3554 {
3555 struct elf_link_hash_table *hash_table;
3556 const struct elf_backend_data *bed;
3557 asection *s, *sdynamic, **pp;
3558 asection *rela_dyn, *rel_dyn;
3559 Elf_Internal_Dyn dyn;
3560 bfd_byte *extdyn, *next;
3561 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3562 bfd_boolean strip_zero_sized;
3563 bfd_boolean strip_zero_sized_plt;
3564
3565 if (bfd_link_relocatable (info))
3566 return TRUE;
3567
3568 hash_table = elf_hash_table (info);
3569 if (!is_elf_hash_table (hash_table))
3570 return FALSE;
3571
3572 if (!hash_table->dynobj)
3573 return TRUE;
3574
3575 sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3576 if (!sdynamic)
3577 return TRUE;
3578
3579 bed = get_elf_backend_data (hash_table->dynobj);
3580 swap_dyn_in = bed->s->swap_dyn_in;
3581
3582 strip_zero_sized = FALSE;
3583 strip_zero_sized_plt = FALSE;
3584
3585 /* Strip zero-sized dynamic sections. */
3586 rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn");
3587 rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn");
3588 for (pp = &info->output_bfd->sections; (s = *pp) != NULL;)
3589 if (s->size == 0
3590 && (s == rela_dyn
3591 || s == rel_dyn
3592 || s == hash_table->srelplt->output_section
3593 || s == hash_table->splt->output_section))
3594 {
3595 *pp = s->next;
3596 info->output_bfd->section_count--;
3597 strip_zero_sized = TRUE;
3598 if (s == rela_dyn)
3599 s = rela_dyn;
3600 if (s == rel_dyn)
3601 s = rel_dyn;
3602 else if (s == hash_table->splt->output_section)
3603 {
3604 s = hash_table->splt;
3605 strip_zero_sized_plt = TRUE;
3606 }
3607 else
3608 s = hash_table->srelplt;
3609 s->flags |= SEC_EXCLUDE;
3610 s->output_section = bfd_abs_section_ptr;
3611 }
3612 else
3613 pp = &s->next;
3614
3615 if (strip_zero_sized_plt)
3616 for (extdyn = sdynamic->contents;
3617 extdyn < sdynamic->contents + sdynamic->size;
3618 extdyn = next)
3619 {
3620 next = extdyn + bed->s->sizeof_dyn;
3621 swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3622 switch (dyn.d_tag)
3623 {
3624 default:
3625 break;
3626 case DT_JMPREL:
3627 case DT_PLTRELSZ:
3628 case DT_PLTREL:
3629 /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if
3630 the procedure linkage table (the .plt section) has been
3631 removed. */
3632 memmove (extdyn, next,
3633 sdynamic->size - (next - sdynamic->contents));
3634 next = extdyn;
3635 }
3636 }
3637
3638 if (strip_zero_sized)
3639 {
3640 /* Regenerate program headers. */
3641 elf_seg_map (info->output_bfd) = NULL;
3642 return _bfd_elf_map_sections_to_segments (info->output_bfd, info);
3643 }
3644
3645 return TRUE;
3646 }
3647
3648 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3649 1 if a DT_NEEDED tag already exists, and 0 on success. */
3650
3651 int
3652 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info)
3653 {
3654 struct elf_link_hash_table *hash_table;
3655 size_t strindex;
3656 const char *soname;
3657
3658 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3659 return -1;
3660
3661 hash_table = elf_hash_table (info);
3662 soname = elf_dt_name (abfd);
3663 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3664 if (strindex == (size_t) -1)
3665 return -1;
3666
3667 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3668 {
3669 asection *sdyn;
3670 const struct elf_backend_data *bed;
3671 bfd_byte *extdyn;
3672
3673 bed = get_elf_backend_data (hash_table->dynobj);
3674 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3675 if (sdyn != NULL)
3676 for (extdyn = sdyn->contents;
3677 extdyn < sdyn->contents + sdyn->size;
3678 extdyn += bed->s->sizeof_dyn)
3679 {
3680 Elf_Internal_Dyn dyn;
3681
3682 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3683 if (dyn.d_tag == DT_NEEDED
3684 && dyn.d_un.d_val == strindex)
3685 {
3686 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3687 return 1;
3688 }
3689 }
3690 }
3691
3692 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3693 return -1;
3694
3695 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3696 return -1;
3697
3698 return 0;
3699 }
3700
3701 /* Return true if SONAME is on the needed list between NEEDED and STOP
3702 (or the end of list if STOP is NULL), and needed by a library that
3703 will be loaded. */
3704
3705 static bfd_boolean
3706 on_needed_list (const char *soname,
3707 struct bfd_link_needed_list *needed,
3708 struct bfd_link_needed_list *stop)
3709 {
3710 struct bfd_link_needed_list *look;
3711 for (look = needed; look != stop; look = look->next)
3712 if (strcmp (soname, look->name) == 0
3713 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3714 /* If needed by a library that itself is not directly
3715 needed, recursively check whether that library is
3716 indirectly needed. Since we add DT_NEEDED entries to
3717 the end of the list, library dependencies appear after
3718 the library. Therefore search prior to the current
3719 LOOK, preventing possible infinite recursion. */
3720 || on_needed_list (elf_dt_name (look->by), needed, look)))
3721 return TRUE;
3722
3723 return FALSE;
3724 }
3725
3726 /* Sort symbol by value, section, size, and type. */
3727 static int
3728 elf_sort_symbol (const void *arg1, const void *arg2)
3729 {
3730 const struct elf_link_hash_entry *h1;
3731 const struct elf_link_hash_entry *h2;
3732 bfd_signed_vma vdiff;
3733 int sdiff;
3734 const char *n1;
3735 const char *n2;
3736
3737 h1 = *(const struct elf_link_hash_entry **) arg1;
3738 h2 = *(const struct elf_link_hash_entry **) arg2;
3739 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3740 if (vdiff != 0)
3741 return vdiff > 0 ? 1 : -1;
3742
3743 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3744 if (sdiff != 0)
3745 return sdiff;
3746
3747 /* Sort so that sized symbols are selected over zero size symbols. */
3748 vdiff = h1->size - h2->size;
3749 if (vdiff != 0)
3750 return vdiff > 0 ? 1 : -1;
3751
3752 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3753 if (h1->type != h2->type)
3754 return h1->type - h2->type;
3755
3756 /* If symbols are properly sized and typed, and multiple strong
3757 aliases are not defined in a shared library by the user we
3758 shouldn't get here. Unfortunately linker script symbols like
3759 __bss_start sometimes match a user symbol defined at the start of
3760 .bss without proper size and type. We'd like to preference the
3761 user symbol over reserved system symbols. Sort on leading
3762 underscores. */
3763 n1 = h1->root.root.string;
3764 n2 = h2->root.root.string;
3765 while (*n1 == *n2)
3766 {
3767 if (*n1 == 0)
3768 break;
3769 ++n1;
3770 ++n2;
3771 }
3772 if (*n1 == '_')
3773 return -1;
3774 if (*n2 == '_')
3775 return 1;
3776
3777 /* Final sort on name selects user symbols like '_u' over reserved
3778 system symbols like '_Z' and also will avoid qsort instability. */
3779 return *n1 - *n2;
3780 }
3781
3782 /* This function is used to adjust offsets into .dynstr for
3783 dynamic symbols. This is called via elf_link_hash_traverse. */
3784
3785 static bfd_boolean
3786 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3787 {
3788 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3789
3790 if (h->dynindx != -1)
3791 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3792 return TRUE;
3793 }
3794
3795 /* Assign string offsets in .dynstr, update all structures referencing
3796 them. */
3797
3798 static bfd_boolean
3799 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3800 {
3801 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3802 struct elf_link_local_dynamic_entry *entry;
3803 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3804 bfd *dynobj = hash_table->dynobj;
3805 asection *sdyn;
3806 bfd_size_type size;
3807 const struct elf_backend_data *bed;
3808 bfd_byte *extdyn;
3809
3810 _bfd_elf_strtab_finalize (dynstr);
3811 size = _bfd_elf_strtab_size (dynstr);
3812
3813 /* Allow the linker to examine the dynsymtab now it's fully populated. */
3814
3815 if (info->callbacks->examine_strtab)
3816 info->callbacks->examine_strtab (dynstr);
3817
3818 bed = get_elf_backend_data (dynobj);
3819 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3820 BFD_ASSERT (sdyn != NULL);
3821
3822 /* Update all .dynamic entries referencing .dynstr strings. */
3823 for (extdyn = sdyn->contents;
3824 extdyn < sdyn->contents + sdyn->size;
3825 extdyn += bed->s->sizeof_dyn)
3826 {
3827 Elf_Internal_Dyn dyn;
3828
3829 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3830 switch (dyn.d_tag)
3831 {
3832 case DT_STRSZ:
3833 dyn.d_un.d_val = size;
3834 break;
3835 case DT_NEEDED:
3836 case DT_SONAME:
3837 case DT_RPATH:
3838 case DT_RUNPATH:
3839 case DT_FILTER:
3840 case DT_AUXILIARY:
3841 case DT_AUDIT:
3842 case DT_DEPAUDIT:
3843 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3844 break;
3845 default:
3846 continue;
3847 }
3848 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3849 }
3850
3851 /* Now update local dynamic symbols. */
3852 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3853 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3854 entry->isym.st_name);
3855
3856 /* And the rest of dynamic symbols. */
3857 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3858
3859 /* Adjust version definitions. */
3860 if (elf_tdata (output_bfd)->cverdefs)
3861 {
3862 asection *s;
3863 bfd_byte *p;
3864 size_t i;
3865 Elf_Internal_Verdef def;
3866 Elf_Internal_Verdaux defaux;
3867
3868 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3869 p = s->contents;
3870 do
3871 {
3872 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3873 &def);
3874 p += sizeof (Elf_External_Verdef);
3875 if (def.vd_aux != sizeof (Elf_External_Verdef))
3876 continue;
3877 for (i = 0; i < def.vd_cnt; ++i)
3878 {
3879 _bfd_elf_swap_verdaux_in (output_bfd,
3880 (Elf_External_Verdaux *) p, &defaux);
3881 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3882 defaux.vda_name);
3883 _bfd_elf_swap_verdaux_out (output_bfd,
3884 &defaux, (Elf_External_Verdaux *) p);
3885 p += sizeof (Elf_External_Verdaux);
3886 }
3887 }
3888 while (def.vd_next);
3889 }
3890
3891 /* Adjust version references. */
3892 if (elf_tdata (output_bfd)->verref)
3893 {
3894 asection *s;
3895 bfd_byte *p;
3896 size_t i;
3897 Elf_Internal_Verneed need;
3898 Elf_Internal_Vernaux needaux;
3899
3900 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3901 p = s->contents;
3902 do
3903 {
3904 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3905 &need);
3906 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3907 _bfd_elf_swap_verneed_out (output_bfd, &need,
3908 (Elf_External_Verneed *) p);
3909 p += sizeof (Elf_External_Verneed);
3910 for (i = 0; i < need.vn_cnt; ++i)
3911 {
3912 _bfd_elf_swap_vernaux_in (output_bfd,
3913 (Elf_External_Vernaux *) p, &needaux);
3914 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3915 needaux.vna_name);
3916 _bfd_elf_swap_vernaux_out (output_bfd,
3917 &needaux,
3918 (Elf_External_Vernaux *) p);
3919 p += sizeof (Elf_External_Vernaux);
3920 }
3921 }
3922 while (need.vn_next);
3923 }
3924
3925 return TRUE;
3926 }
3927 \f
3928 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3929 The default is to only match when the INPUT and OUTPUT are exactly
3930 the same target. */
3931
3932 bfd_boolean
3933 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3934 const bfd_target *output)
3935 {
3936 return input == output;
3937 }
3938
3939 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3940 This version is used when different targets for the same architecture
3941 are virtually identical. */
3942
3943 bfd_boolean
3944 _bfd_elf_relocs_compatible (const bfd_target *input,
3945 const bfd_target *output)
3946 {
3947 const struct elf_backend_data *obed, *ibed;
3948
3949 if (input == output)
3950 return TRUE;
3951
3952 ibed = xvec_get_elf_backend_data (input);
3953 obed = xvec_get_elf_backend_data (output);
3954
3955 if (ibed->arch != obed->arch)
3956 return FALSE;
3957
3958 /* If both backends are using this function, deem them compatible. */
3959 return ibed->relocs_compatible == obed->relocs_compatible;
3960 }
3961
3962 /* Make a special call to the linker "notice" function to tell it that
3963 we are about to handle an as-needed lib, or have finished
3964 processing the lib. */
3965
3966 bfd_boolean
3967 _bfd_elf_notice_as_needed (bfd *ibfd,
3968 struct bfd_link_info *info,
3969 enum notice_asneeded_action act)
3970 {
3971 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3972 }
3973
3974 /* Check relocations an ELF object file. */
3975
3976 bfd_boolean
3977 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3978 {
3979 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3980 struct elf_link_hash_table *htab = elf_hash_table (info);
3981
3982 /* If this object is the same format as the output object, and it is
3983 not a shared library, then let the backend look through the
3984 relocs.
3985
3986 This is required to build global offset table entries and to
3987 arrange for dynamic relocs. It is not required for the
3988 particular common case of linking non PIC code, even when linking
3989 against shared libraries, but unfortunately there is no way of
3990 knowing whether an object file has been compiled PIC or not.
3991 Looking through the relocs is not particularly time consuming.
3992 The problem is that we must either (1) keep the relocs in memory,
3993 which causes the linker to require additional runtime memory or
3994 (2) read the relocs twice from the input file, which wastes time.
3995 This would be a good case for using mmap.
3996
3997 I have no idea how to handle linking PIC code into a file of a
3998 different format. It probably can't be done. */
3999 if ((abfd->flags & DYNAMIC) == 0
4000 && is_elf_hash_table (htab)
4001 && bed->check_relocs != NULL
4002 && elf_object_id (abfd) == elf_hash_table_id (htab)
4003 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4004 {
4005 asection *o;
4006
4007 for (o = abfd->sections; o != NULL; o = o->next)
4008 {
4009 Elf_Internal_Rela *internal_relocs;
4010 bfd_boolean ok;
4011
4012 /* Don't check relocations in excluded sections. Don't do
4013 anything special with non-loaded, non-alloced sections.
4014 In particular, any relocs in such sections should not
4015 affect GOT and PLT reference counting (ie. we don't
4016 allow them to create GOT or PLT entries), there's no
4017 possibility or desire to optimize TLS relocs, and
4018 there's not much point in propagating relocs to shared
4019 libs that the dynamic linker won't relocate. */
4020 if ((o->flags & SEC_ALLOC) == 0
4021 || (o->flags & SEC_RELOC) == 0
4022 || (o->flags & SEC_EXCLUDE) != 0
4023 || o->reloc_count == 0
4024 || ((info->strip == strip_all || info->strip == strip_debugger)
4025 && (o->flags & SEC_DEBUGGING) != 0)
4026 || bfd_is_abs_section (o->output_section))
4027 continue;
4028
4029 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4030 info->keep_memory);
4031 if (internal_relocs == NULL)
4032 return FALSE;
4033
4034 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4035
4036 if (elf_section_data (o)->relocs != internal_relocs)
4037 free (internal_relocs);
4038
4039 if (! ok)
4040 return FALSE;
4041 }
4042 }
4043
4044 return TRUE;
4045 }
4046
4047 /* Add symbols from an ELF object file to the linker hash table. */
4048
4049 static bfd_boolean
4050 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
4051 {
4052 Elf_Internal_Ehdr *ehdr;
4053 Elf_Internal_Shdr *hdr;
4054 size_t symcount;
4055 size_t extsymcount;
4056 size_t extsymoff;
4057 struct elf_link_hash_entry **sym_hash;
4058 bfd_boolean dynamic;
4059 Elf_External_Versym *extversym = NULL;
4060 Elf_External_Versym *extversym_end = NULL;
4061 Elf_External_Versym *ever;
4062 struct elf_link_hash_entry *weaks;
4063 struct elf_link_hash_entry **nondeflt_vers = NULL;
4064 size_t nondeflt_vers_cnt = 0;
4065 Elf_Internal_Sym *isymbuf = NULL;
4066 Elf_Internal_Sym *isym;
4067 Elf_Internal_Sym *isymend;
4068 const struct elf_backend_data *bed;
4069 bfd_boolean add_needed;
4070 struct elf_link_hash_table *htab;
4071 void *alloc_mark = NULL;
4072 struct bfd_hash_entry **old_table = NULL;
4073 unsigned int old_size = 0;
4074 unsigned int old_count = 0;
4075 void *old_tab = NULL;
4076 void *old_ent;
4077 struct bfd_link_hash_entry *old_undefs = NULL;
4078 struct bfd_link_hash_entry *old_undefs_tail = NULL;
4079 void *old_strtab = NULL;
4080 size_t tabsize = 0;
4081 asection *s;
4082 bfd_boolean just_syms;
4083
4084 htab = elf_hash_table (info);
4085 bed = get_elf_backend_data (abfd);
4086
4087 if ((abfd->flags & DYNAMIC) == 0)
4088 dynamic = FALSE;
4089 else
4090 {
4091 dynamic = TRUE;
4092
4093 /* You can't use -r against a dynamic object. Also, there's no
4094 hope of using a dynamic object which does not exactly match
4095 the format of the output file. */
4096 if (bfd_link_relocatable (info)
4097 || !is_elf_hash_table (htab)
4098 || info->output_bfd->xvec != abfd->xvec)
4099 {
4100 if (bfd_link_relocatable (info))
4101 bfd_set_error (bfd_error_invalid_operation);
4102 else
4103 bfd_set_error (bfd_error_wrong_format);
4104 goto error_return;
4105 }
4106 }
4107
4108 ehdr = elf_elfheader (abfd);
4109 if (info->warn_alternate_em
4110 && bed->elf_machine_code != ehdr->e_machine
4111 && ((bed->elf_machine_alt1 != 0
4112 && ehdr->e_machine == bed->elf_machine_alt1)
4113 || (bed->elf_machine_alt2 != 0
4114 && ehdr->e_machine == bed->elf_machine_alt2)))
4115 _bfd_error_handler
4116 /* xgettext:c-format */
4117 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
4118 ehdr->e_machine, abfd, bed->elf_machine_code);
4119
4120 /* As a GNU extension, any input sections which are named
4121 .gnu.warning.SYMBOL are treated as warning symbols for the given
4122 symbol. This differs from .gnu.warning sections, which generate
4123 warnings when they are included in an output file. */
4124 /* PR 12761: Also generate this warning when building shared libraries. */
4125 for (s = abfd->sections; s != NULL; s = s->next)
4126 {
4127 const char *name;
4128
4129 name = bfd_section_name (s);
4130 if (CONST_STRNEQ (name, ".gnu.warning."))
4131 {
4132 char *msg;
4133 bfd_size_type sz;
4134
4135 name += sizeof ".gnu.warning." - 1;
4136
4137 /* If this is a shared object, then look up the symbol
4138 in the hash table. If it is there, and it is already
4139 been defined, then we will not be using the entry
4140 from this shared object, so we don't need to warn.
4141 FIXME: If we see the definition in a regular object
4142 later on, we will warn, but we shouldn't. The only
4143 fix is to keep track of what warnings we are supposed
4144 to emit, and then handle them all at the end of the
4145 link. */
4146 if (dynamic)
4147 {
4148 struct elf_link_hash_entry *h;
4149
4150 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4151
4152 /* FIXME: What about bfd_link_hash_common? */
4153 if (h != NULL
4154 && (h->root.type == bfd_link_hash_defined
4155 || h->root.type == bfd_link_hash_defweak))
4156 continue;
4157 }
4158
4159 sz = s->size;
4160 msg = (char *) bfd_alloc (abfd, sz + 1);
4161 if (msg == NULL)
4162 goto error_return;
4163
4164 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4165 goto error_return;
4166
4167 msg[sz] = '\0';
4168
4169 if (! (_bfd_generic_link_add_one_symbol
4170 (info, abfd, name, BSF_WARNING, s, 0, msg,
4171 FALSE, bed->collect, NULL)))
4172 goto error_return;
4173
4174 if (bfd_link_executable (info))
4175 {
4176 /* Clobber the section size so that the warning does
4177 not get copied into the output file. */
4178 s->size = 0;
4179
4180 /* Also set SEC_EXCLUDE, so that symbols defined in
4181 the warning section don't get copied to the output. */
4182 s->flags |= SEC_EXCLUDE;
4183 }
4184 }
4185 }
4186
4187 just_syms = ((s = abfd->sections) != NULL
4188 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4189
4190 add_needed = TRUE;
4191 if (! dynamic)
4192 {
4193 /* If we are creating a shared library, create all the dynamic
4194 sections immediately. We need to attach them to something,
4195 so we attach them to this BFD, provided it is the right
4196 format and is not from ld --just-symbols. Always create the
4197 dynamic sections for -E/--dynamic-list. FIXME: If there
4198 are no input BFD's of the same format as the output, we can't
4199 make a shared library. */
4200 if (!just_syms
4201 && (bfd_link_pic (info)
4202 || (!bfd_link_relocatable (info)
4203 && info->nointerp
4204 && (info->export_dynamic || info->dynamic)))
4205 && is_elf_hash_table (htab)
4206 && info->output_bfd->xvec == abfd->xvec
4207 && !htab->dynamic_sections_created)
4208 {
4209 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4210 goto error_return;
4211 }
4212 }
4213 else if (!is_elf_hash_table (htab))
4214 goto error_return;
4215 else
4216 {
4217 const char *soname = NULL;
4218 char *audit = NULL;
4219 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4220 const Elf_Internal_Phdr *phdr;
4221 struct elf_link_loaded_list *loaded_lib;
4222
4223 /* ld --just-symbols and dynamic objects don't mix very well.
4224 ld shouldn't allow it. */
4225 if (just_syms)
4226 abort ();
4227
4228 /* If this dynamic lib was specified on the command line with
4229 --as-needed in effect, then we don't want to add a DT_NEEDED
4230 tag unless the lib is actually used. Similary for libs brought
4231 in by another lib's DT_NEEDED. When --no-add-needed is used
4232 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4233 any dynamic library in DT_NEEDED tags in the dynamic lib at
4234 all. */
4235 add_needed = (elf_dyn_lib_class (abfd)
4236 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4237 | DYN_NO_NEEDED)) == 0;
4238
4239 s = bfd_get_section_by_name (abfd, ".dynamic");
4240 if (s != NULL)
4241 {
4242 bfd_byte *dynbuf;
4243 bfd_byte *extdyn;
4244 unsigned int elfsec;
4245 unsigned long shlink;
4246
4247 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4248 {
4249 error_free_dyn:
4250 free (dynbuf);
4251 goto error_return;
4252 }
4253
4254 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4255 if (elfsec == SHN_BAD)
4256 goto error_free_dyn;
4257 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4258
4259 for (extdyn = dynbuf;
4260 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4261 extdyn += bed->s->sizeof_dyn)
4262 {
4263 Elf_Internal_Dyn dyn;
4264
4265 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4266 if (dyn.d_tag == DT_SONAME)
4267 {
4268 unsigned int tagv = dyn.d_un.d_val;
4269 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4270 if (soname == NULL)
4271 goto error_free_dyn;
4272 }
4273 if (dyn.d_tag == DT_NEEDED)
4274 {
4275 struct bfd_link_needed_list *n, **pn;
4276 char *fnm, *anm;
4277 unsigned int tagv = dyn.d_un.d_val;
4278 size_t amt = sizeof (struct bfd_link_needed_list);
4279
4280 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4281 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4282 if (n == NULL || fnm == NULL)
4283 goto error_free_dyn;
4284 amt = strlen (fnm) + 1;
4285 anm = (char *) bfd_alloc (abfd, amt);
4286 if (anm == NULL)
4287 goto error_free_dyn;
4288 memcpy (anm, fnm, amt);
4289 n->name = anm;
4290 n->by = abfd;
4291 n->next = NULL;
4292 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4293 ;
4294 *pn = n;
4295 }
4296 if (dyn.d_tag == DT_RUNPATH)
4297 {
4298 struct bfd_link_needed_list *n, **pn;
4299 char *fnm, *anm;
4300 unsigned int tagv = dyn.d_un.d_val;
4301 size_t amt = sizeof (struct bfd_link_needed_list);
4302
4303 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4304 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4305 if (n == NULL || fnm == NULL)
4306 goto error_free_dyn;
4307 amt = strlen (fnm) + 1;
4308 anm = (char *) bfd_alloc (abfd, amt);
4309 if (anm == NULL)
4310 goto error_free_dyn;
4311 memcpy (anm, fnm, amt);
4312 n->name = anm;
4313 n->by = abfd;
4314 n->next = NULL;
4315 for (pn = & runpath;
4316 *pn != NULL;
4317 pn = &(*pn)->next)
4318 ;
4319 *pn = n;
4320 }
4321 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4322 if (!runpath && dyn.d_tag == DT_RPATH)
4323 {
4324 struct bfd_link_needed_list *n, **pn;
4325 char *fnm, *anm;
4326 unsigned int tagv = dyn.d_un.d_val;
4327 size_t amt = sizeof (struct bfd_link_needed_list);
4328
4329 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4330 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4331 if (n == NULL || fnm == NULL)
4332 goto error_free_dyn;
4333 amt = strlen (fnm) + 1;
4334 anm = (char *) bfd_alloc (abfd, amt);
4335 if (anm == NULL)
4336 goto error_free_dyn;
4337 memcpy (anm, fnm, amt);
4338 n->name = anm;
4339 n->by = abfd;
4340 n->next = NULL;
4341 for (pn = & rpath;
4342 *pn != NULL;
4343 pn = &(*pn)->next)
4344 ;
4345 *pn = n;
4346 }
4347 if (dyn.d_tag == DT_AUDIT)
4348 {
4349 unsigned int tagv = dyn.d_un.d_val;
4350 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4351 }
4352 }
4353
4354 free (dynbuf);
4355 }
4356
4357 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4358 frees all more recently bfd_alloc'd blocks as well. */
4359 if (runpath)
4360 rpath = runpath;
4361
4362 if (rpath)
4363 {
4364 struct bfd_link_needed_list **pn;
4365 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4366 ;
4367 *pn = rpath;
4368 }
4369
4370 /* If we have a PT_GNU_RELRO program header, mark as read-only
4371 all sections contained fully therein. This makes relro
4372 shared library sections appear as they will at run-time. */
4373 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4374 while (phdr-- > elf_tdata (abfd)->phdr)
4375 if (phdr->p_type == PT_GNU_RELRO)
4376 {
4377 for (s = abfd->sections; s != NULL; s = s->next)
4378 {
4379 unsigned int opb = bfd_octets_per_byte (abfd, s);
4380
4381 if ((s->flags & SEC_ALLOC) != 0
4382 && s->vma * opb >= phdr->p_vaddr
4383 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz)
4384 s->flags |= SEC_READONLY;
4385 }
4386 break;
4387 }
4388
4389 /* We do not want to include any of the sections in a dynamic
4390 object in the output file. We hack by simply clobbering the
4391 list of sections in the BFD. This could be handled more
4392 cleanly by, say, a new section flag; the existing
4393 SEC_NEVER_LOAD flag is not the one we want, because that one
4394 still implies that the section takes up space in the output
4395 file. */
4396 bfd_section_list_clear (abfd);
4397
4398 /* Find the name to use in a DT_NEEDED entry that refers to this
4399 object. If the object has a DT_SONAME entry, we use it.
4400 Otherwise, if the generic linker stuck something in
4401 elf_dt_name, we use that. Otherwise, we just use the file
4402 name. */
4403 if (soname == NULL || *soname == '\0')
4404 {
4405 soname = elf_dt_name (abfd);
4406 if (soname == NULL || *soname == '\0')
4407 soname = bfd_get_filename (abfd);
4408 }
4409
4410 /* Save the SONAME because sometimes the linker emulation code
4411 will need to know it. */
4412 elf_dt_name (abfd) = soname;
4413
4414 /* If we have already included this dynamic object in the
4415 link, just ignore it. There is no reason to include a
4416 particular dynamic object more than once. */
4417 for (loaded_lib = htab->dyn_loaded;
4418 loaded_lib != NULL;
4419 loaded_lib = loaded_lib->next)
4420 {
4421 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0)
4422 return TRUE;
4423 }
4424
4425 /* Create dynamic sections for backends that require that be done
4426 before setup_gnu_properties. */
4427 if (add_needed
4428 && !_bfd_elf_link_create_dynamic_sections (abfd, info))
4429 return FALSE;
4430
4431 /* Save the DT_AUDIT entry for the linker emulation code. */
4432 elf_dt_audit (abfd) = audit;
4433 }
4434
4435 /* If this is a dynamic object, we always link against the .dynsym
4436 symbol table, not the .symtab symbol table. The dynamic linker
4437 will only see the .dynsym symbol table, so there is no reason to
4438 look at .symtab for a dynamic object. */
4439
4440 if (! dynamic || elf_dynsymtab (abfd) == 0)
4441 hdr = &elf_tdata (abfd)->symtab_hdr;
4442 else
4443 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4444
4445 symcount = hdr->sh_size / bed->s->sizeof_sym;
4446
4447 /* The sh_info field of the symtab header tells us where the
4448 external symbols start. We don't care about the local symbols at
4449 this point. */
4450 if (elf_bad_symtab (abfd))
4451 {
4452 extsymcount = symcount;
4453 extsymoff = 0;
4454 }
4455 else
4456 {
4457 extsymcount = symcount - hdr->sh_info;
4458 extsymoff = hdr->sh_info;
4459 }
4460
4461 sym_hash = elf_sym_hashes (abfd);
4462 if (extsymcount != 0)
4463 {
4464 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4465 NULL, NULL, NULL);
4466 if (isymbuf == NULL)
4467 goto error_return;
4468
4469 if (sym_hash == NULL)
4470 {
4471 /* We store a pointer to the hash table entry for each
4472 external symbol. */
4473 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4474 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4475 if (sym_hash == NULL)
4476 goto error_free_sym;
4477 elf_sym_hashes (abfd) = sym_hash;
4478 }
4479 }
4480
4481 if (dynamic)
4482 {
4483 /* Read in any version definitions. */
4484 if (!_bfd_elf_slurp_version_tables (abfd,
4485 info->default_imported_symver))
4486 goto error_free_sym;
4487
4488 /* Read in the symbol versions, but don't bother to convert them
4489 to internal format. */
4490 if (elf_dynversym (abfd) != 0)
4491 {
4492 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4493 bfd_size_type amt = versymhdr->sh_size;
4494
4495 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4496 goto error_free_sym;
4497 extversym = (Elf_External_Versym *)
4498 _bfd_malloc_and_read (abfd, amt, amt);
4499 if (extversym == NULL)
4500 goto error_free_sym;
4501 extversym_end = extversym + amt / sizeof (*extversym);
4502 }
4503 }
4504
4505 /* If we are loading an as-needed shared lib, save the symbol table
4506 state before we start adding symbols. If the lib turns out
4507 to be unneeded, restore the state. */
4508 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4509 {
4510 unsigned int i;
4511 size_t entsize;
4512
4513 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4514 {
4515 struct bfd_hash_entry *p;
4516 struct elf_link_hash_entry *h;
4517
4518 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4519 {
4520 h = (struct elf_link_hash_entry *) p;
4521 entsize += htab->root.table.entsize;
4522 if (h->root.type == bfd_link_hash_warning)
4523 {
4524 entsize += htab->root.table.entsize;
4525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4526 }
4527 if (h->root.type == bfd_link_hash_common)
4528 entsize += sizeof (*h->root.u.c.p);
4529 }
4530 }
4531
4532 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4533 old_tab = bfd_malloc (tabsize + entsize);
4534 if (old_tab == NULL)
4535 goto error_free_vers;
4536
4537 /* Remember the current objalloc pointer, so that all mem for
4538 symbols added can later be reclaimed. */
4539 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4540 if (alloc_mark == NULL)
4541 goto error_free_vers;
4542
4543 /* Make a special call to the linker "notice" function to
4544 tell it that we are about to handle an as-needed lib. */
4545 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4546 goto error_free_vers;
4547
4548 /* Clone the symbol table. Remember some pointers into the
4549 symbol table, and dynamic symbol count. */
4550 old_ent = (char *) old_tab + tabsize;
4551 memcpy (old_tab, htab->root.table.table, tabsize);
4552 old_undefs = htab->root.undefs;
4553 old_undefs_tail = htab->root.undefs_tail;
4554 old_table = htab->root.table.table;
4555 old_size = htab->root.table.size;
4556 old_count = htab->root.table.count;
4557 old_strtab = NULL;
4558 if (htab->dynstr != NULL)
4559 {
4560 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4561 if (old_strtab == NULL)
4562 goto error_free_vers;
4563 }
4564
4565 for (i = 0; i < htab->root.table.size; i++)
4566 {
4567 struct bfd_hash_entry *p;
4568 struct elf_link_hash_entry *h;
4569
4570 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4571 {
4572 h = (struct elf_link_hash_entry *) p;
4573 memcpy (old_ent, h, htab->root.table.entsize);
4574 old_ent = (char *) old_ent + htab->root.table.entsize;
4575 if (h->root.type == bfd_link_hash_warning)
4576 {
4577 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4578 memcpy (old_ent, h, htab->root.table.entsize);
4579 old_ent = (char *) old_ent + htab->root.table.entsize;
4580 }
4581 if (h->root.type == bfd_link_hash_common)
4582 {
4583 memcpy (old_ent, h->root.u.c.p, sizeof (*h->root.u.c.p));
4584 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
4585 }
4586 }
4587 }
4588 }
4589
4590 weaks = NULL;
4591 if (extversym == NULL)
4592 ever = NULL;
4593 else if (extversym + extsymoff < extversym_end)
4594 ever = extversym + extsymoff;
4595 else
4596 {
4597 /* xgettext:c-format */
4598 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4599 abfd, (long) extsymoff,
4600 (long) (extversym_end - extversym) / sizeof (* extversym));
4601 bfd_set_error (bfd_error_bad_value);
4602 goto error_free_vers;
4603 }
4604
4605 if (!bfd_link_relocatable (info)
4606 && abfd->lto_slim_object)
4607 {
4608 _bfd_error_handler
4609 (_("%pB: plugin needed to handle lto object"), abfd);
4610 }
4611
4612 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4613 isym < isymend;
4614 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4615 {
4616 int bind;
4617 bfd_vma value;
4618 asection *sec, *new_sec;
4619 flagword flags;
4620 const char *name;
4621 struct elf_link_hash_entry *h;
4622 struct elf_link_hash_entry *hi;
4623 bfd_boolean definition;
4624 bfd_boolean size_change_ok;
4625 bfd_boolean type_change_ok;
4626 bfd_boolean new_weak;
4627 bfd_boolean old_weak;
4628 bfd *override;
4629 bfd_boolean common;
4630 bfd_boolean discarded;
4631 unsigned int old_alignment;
4632 unsigned int shindex;
4633 bfd *old_bfd;
4634 bfd_boolean matched;
4635
4636 override = NULL;
4637
4638 flags = BSF_NO_FLAGS;
4639 sec = NULL;
4640 value = isym->st_value;
4641 common = bed->common_definition (isym);
4642 if (common && info->inhibit_common_definition)
4643 {
4644 /* Treat common symbol as undefined for --no-define-common. */
4645 isym->st_shndx = SHN_UNDEF;
4646 common = FALSE;
4647 }
4648 discarded = FALSE;
4649
4650 bind = ELF_ST_BIND (isym->st_info);
4651 switch (bind)
4652 {
4653 case STB_LOCAL:
4654 /* This should be impossible, since ELF requires that all
4655 global symbols follow all local symbols, and that sh_info
4656 point to the first global symbol. Unfortunately, Irix 5
4657 screws this up. */
4658 if (elf_bad_symtab (abfd))
4659 continue;
4660
4661 /* If we aren't prepared to handle locals within the globals
4662 then we'll likely segfault on a NULL symbol hash if the
4663 symbol is ever referenced in relocations. */
4664 shindex = elf_elfheader (abfd)->e_shstrndx;
4665 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4666 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4667 " (>= sh_info of %lu)"),
4668 abfd, name, (long) (isym - isymbuf + extsymoff),
4669 (long) extsymoff);
4670
4671 /* Dynamic object relocations are not processed by ld, so
4672 ld won't run into the problem mentioned above. */
4673 if (dynamic)
4674 continue;
4675 bfd_set_error (bfd_error_bad_value);
4676 goto error_free_vers;
4677
4678 case STB_GLOBAL:
4679 if (isym->st_shndx != SHN_UNDEF && !common)
4680 flags = BSF_GLOBAL;
4681 break;
4682
4683 case STB_WEAK:
4684 flags = BSF_WEAK;
4685 break;
4686
4687 case STB_GNU_UNIQUE:
4688 flags = BSF_GNU_UNIQUE;
4689 break;
4690
4691 default:
4692 /* Leave it up to the processor backend. */
4693 break;
4694 }
4695
4696 if (isym->st_shndx == SHN_UNDEF)
4697 sec = bfd_und_section_ptr;
4698 else if (isym->st_shndx == SHN_ABS)
4699 sec = bfd_abs_section_ptr;
4700 else if (isym->st_shndx == SHN_COMMON)
4701 {
4702 sec = bfd_com_section_ptr;
4703 /* What ELF calls the size we call the value. What ELF
4704 calls the value we call the alignment. */
4705 value = isym->st_size;
4706 }
4707 else
4708 {
4709 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4710 if (sec == NULL)
4711 sec = bfd_abs_section_ptr;
4712 else if (discarded_section (sec))
4713 {
4714 /* Symbols from discarded section are undefined. We keep
4715 its visibility. */
4716 sec = bfd_und_section_ptr;
4717 discarded = TRUE;
4718 isym->st_shndx = SHN_UNDEF;
4719 }
4720 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4721 value -= sec->vma;
4722 }
4723
4724 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4725 isym->st_name);
4726 if (name == NULL)
4727 goto error_free_vers;
4728
4729 if (isym->st_shndx == SHN_COMMON
4730 && (abfd->flags & BFD_PLUGIN) != 0)
4731 {
4732 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4733
4734 if (xc == NULL)
4735 {
4736 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4737 | SEC_EXCLUDE);
4738 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4739 if (xc == NULL)
4740 goto error_free_vers;
4741 }
4742 sec = xc;
4743 }
4744 else if (isym->st_shndx == SHN_COMMON
4745 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4746 && !bfd_link_relocatable (info))
4747 {
4748 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4749
4750 if (tcomm == NULL)
4751 {
4752 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4753 | SEC_LINKER_CREATED);
4754 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4755 if (tcomm == NULL)
4756 goto error_free_vers;
4757 }
4758 sec = tcomm;
4759 }
4760 else if (bed->elf_add_symbol_hook)
4761 {
4762 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4763 &sec, &value))
4764 goto error_free_vers;
4765
4766 /* The hook function sets the name to NULL if this symbol
4767 should be skipped for some reason. */
4768 if (name == NULL)
4769 continue;
4770 }
4771
4772 /* Sanity check that all possibilities were handled. */
4773 if (sec == NULL)
4774 abort ();
4775
4776 /* Silently discard TLS symbols from --just-syms. There's
4777 no way to combine a static TLS block with a new TLS block
4778 for this executable. */
4779 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4780 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4781 continue;
4782
4783 if (bfd_is_und_section (sec)
4784 || bfd_is_com_section (sec))
4785 definition = FALSE;
4786 else
4787 definition = TRUE;
4788
4789 size_change_ok = FALSE;
4790 type_change_ok = bed->type_change_ok;
4791 old_weak = FALSE;
4792 matched = FALSE;
4793 old_alignment = 0;
4794 old_bfd = NULL;
4795 new_sec = sec;
4796
4797 if (is_elf_hash_table (htab))
4798 {
4799 Elf_Internal_Versym iver;
4800 unsigned int vernum = 0;
4801 bfd_boolean skip;
4802
4803 if (ever == NULL)
4804 {
4805 if (info->default_imported_symver)
4806 /* Use the default symbol version created earlier. */
4807 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4808 else
4809 iver.vs_vers = 0;
4810 }
4811 else if (ever >= extversym_end)
4812 {
4813 /* xgettext:c-format */
4814 _bfd_error_handler (_("%pB: not enough version information"),
4815 abfd);
4816 bfd_set_error (bfd_error_bad_value);
4817 goto error_free_vers;
4818 }
4819 else
4820 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4821
4822 vernum = iver.vs_vers & VERSYM_VERSION;
4823
4824 /* If this is a hidden symbol, or if it is not version
4825 1, we append the version name to the symbol name.
4826 However, we do not modify a non-hidden absolute symbol
4827 if it is not a function, because it might be the version
4828 symbol itself. FIXME: What if it isn't? */
4829 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4830 || (vernum > 1
4831 && (!bfd_is_abs_section (sec)
4832 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4833 {
4834 const char *verstr;
4835 size_t namelen, verlen, newlen;
4836 char *newname, *p;
4837
4838 if (isym->st_shndx != SHN_UNDEF)
4839 {
4840 if (vernum > elf_tdata (abfd)->cverdefs)
4841 verstr = NULL;
4842 else if (vernum > 1)
4843 verstr =
4844 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4845 else
4846 verstr = "";
4847
4848 if (verstr == NULL)
4849 {
4850 _bfd_error_handler
4851 /* xgettext:c-format */
4852 (_("%pB: %s: invalid version %u (max %d)"),
4853 abfd, name, vernum,
4854 elf_tdata (abfd)->cverdefs);
4855 bfd_set_error (bfd_error_bad_value);
4856 goto error_free_vers;
4857 }
4858 }
4859 else
4860 {
4861 /* We cannot simply test for the number of
4862 entries in the VERNEED section since the
4863 numbers for the needed versions do not start
4864 at 0. */
4865 Elf_Internal_Verneed *t;
4866
4867 verstr = NULL;
4868 for (t = elf_tdata (abfd)->verref;
4869 t != NULL;
4870 t = t->vn_nextref)
4871 {
4872 Elf_Internal_Vernaux *a;
4873
4874 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4875 {
4876 if (a->vna_other == vernum)
4877 {
4878 verstr = a->vna_nodename;
4879 break;
4880 }
4881 }
4882 if (a != NULL)
4883 break;
4884 }
4885 if (verstr == NULL)
4886 {
4887 _bfd_error_handler
4888 /* xgettext:c-format */
4889 (_("%pB: %s: invalid needed version %d"),
4890 abfd, name, vernum);
4891 bfd_set_error (bfd_error_bad_value);
4892 goto error_free_vers;
4893 }
4894 }
4895
4896 namelen = strlen (name);
4897 verlen = strlen (verstr);
4898 newlen = namelen + verlen + 2;
4899 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4900 && isym->st_shndx != SHN_UNDEF)
4901 ++newlen;
4902
4903 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4904 if (newname == NULL)
4905 goto error_free_vers;
4906 memcpy (newname, name, namelen);
4907 p = newname + namelen;
4908 *p++ = ELF_VER_CHR;
4909 /* If this is a defined non-hidden version symbol,
4910 we add another @ to the name. This indicates the
4911 default version of the symbol. */
4912 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4913 && isym->st_shndx != SHN_UNDEF)
4914 *p++ = ELF_VER_CHR;
4915 memcpy (p, verstr, verlen + 1);
4916
4917 name = newname;
4918 }
4919
4920 /* If this symbol has default visibility and the user has
4921 requested we not re-export it, then mark it as hidden. */
4922 if (!bfd_is_und_section (sec)
4923 && !dynamic
4924 && abfd->no_export
4925 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4926 isym->st_other = (STV_HIDDEN
4927 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4928
4929 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4930 sym_hash, &old_bfd, &old_weak,
4931 &old_alignment, &skip, &override,
4932 &type_change_ok, &size_change_ok,
4933 &matched))
4934 goto error_free_vers;
4935
4936 if (skip)
4937 continue;
4938
4939 /* Override a definition only if the new symbol matches the
4940 existing one. */
4941 if (override && matched)
4942 definition = FALSE;
4943
4944 h = *sym_hash;
4945 while (h->root.type == bfd_link_hash_indirect
4946 || h->root.type == bfd_link_hash_warning)
4947 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4948
4949 if (elf_tdata (abfd)->verdef != NULL
4950 && vernum > 1
4951 && definition)
4952 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4953 }
4954
4955 if (! (_bfd_generic_link_add_one_symbol
4956 (info, override ? override : abfd, name, flags, sec, value,
4957 NULL, FALSE, bed->collect,
4958 (struct bfd_link_hash_entry **) sym_hash)))
4959 goto error_free_vers;
4960
4961 h = *sym_hash;
4962 /* We need to make sure that indirect symbol dynamic flags are
4963 updated. */
4964 hi = h;
4965 while (h->root.type == bfd_link_hash_indirect
4966 || h->root.type == bfd_link_hash_warning)
4967 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4968
4969 /* Setting the index to -3 tells elf_link_output_extsym that
4970 this symbol is defined in a discarded section. */
4971 if (discarded)
4972 h->indx = -3;
4973
4974 *sym_hash = h;
4975
4976 new_weak = (flags & BSF_WEAK) != 0;
4977 if (dynamic
4978 && definition
4979 && new_weak
4980 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4981 && is_elf_hash_table (htab)
4982 && h->u.alias == NULL)
4983 {
4984 /* Keep a list of all weak defined non function symbols from
4985 a dynamic object, using the alias field. Later in this
4986 function we will set the alias field to the correct
4987 value. We only put non-function symbols from dynamic
4988 objects on this list, because that happens to be the only
4989 time we need to know the normal symbol corresponding to a
4990 weak symbol, and the information is time consuming to
4991 figure out. If the alias field is not already NULL,
4992 then this symbol was already defined by some previous
4993 dynamic object, and we will be using that previous
4994 definition anyhow. */
4995
4996 h->u.alias = weaks;
4997 weaks = h;
4998 }
4999
5000 /* Set the alignment of a common symbol. */
5001 if ((common || bfd_is_com_section (sec))
5002 && h->root.type == bfd_link_hash_common)
5003 {
5004 unsigned int align;
5005
5006 if (common)
5007 align = bfd_log2 (isym->st_value);
5008 else
5009 {
5010 /* The new symbol is a common symbol in a shared object.
5011 We need to get the alignment from the section. */
5012 align = new_sec->alignment_power;
5013 }
5014 if (align > old_alignment)
5015 h->root.u.c.p->alignment_power = align;
5016 else
5017 h->root.u.c.p->alignment_power = old_alignment;
5018 }
5019
5020 if (is_elf_hash_table (htab))
5021 {
5022 /* Set a flag in the hash table entry indicating the type of
5023 reference or definition we just found. A dynamic symbol
5024 is one which is referenced or defined by both a regular
5025 object and a shared object. */
5026 bfd_boolean dynsym = FALSE;
5027
5028 /* Plugin symbols aren't normal. Don't set def/ref flags. */
5029 if ((abfd->flags & BFD_PLUGIN) != 0)
5030 ;
5031 else if (!dynamic)
5032 {
5033 if (! definition)
5034 {
5035 h->ref_regular = 1;
5036 if (bind != STB_WEAK)
5037 h->ref_regular_nonweak = 1;
5038 }
5039 else
5040 {
5041 h->def_regular = 1;
5042 if (h->def_dynamic)
5043 {
5044 h->def_dynamic = 0;
5045 h->ref_dynamic = 1;
5046 }
5047 }
5048 }
5049 else
5050 {
5051 if (! definition)
5052 {
5053 h->ref_dynamic = 1;
5054 hi->ref_dynamic = 1;
5055 }
5056 else
5057 {
5058 h->def_dynamic = 1;
5059 hi->def_dynamic = 1;
5060 }
5061 }
5062
5063 /* If an indirect symbol has been forced local, don't
5064 make the real symbol dynamic. */
5065 if (h != hi && hi->forced_local)
5066 ;
5067 else if (!dynamic)
5068 {
5069 if (bfd_link_dll (info)
5070 || h->def_dynamic
5071 || h->ref_dynamic)
5072 dynsym = TRUE;
5073 }
5074 else
5075 {
5076 if (h->def_regular
5077 || h->ref_regular
5078 || (h->is_weakalias
5079 && weakdef (h)->dynindx != -1))
5080 dynsym = TRUE;
5081 }
5082
5083 /* Check to see if we need to add an indirect symbol for
5084 the default name. */
5085 if ((definition
5086 || (!override && h->root.type == bfd_link_hash_common))
5087 && !(hi != h
5088 && hi->versioned == versioned_hidden))
5089 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
5090 sec, value, &old_bfd, &dynsym))
5091 goto error_free_vers;
5092
5093 /* Check the alignment when a common symbol is involved. This
5094 can change when a common symbol is overridden by a normal
5095 definition or a common symbol is ignored due to the old
5096 normal definition. We need to make sure the maximum
5097 alignment is maintained. */
5098 if ((old_alignment || common)
5099 && h->root.type != bfd_link_hash_common)
5100 {
5101 unsigned int common_align;
5102 unsigned int normal_align;
5103 unsigned int symbol_align;
5104 bfd *normal_bfd;
5105 bfd *common_bfd;
5106
5107 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5108 || h->root.type == bfd_link_hash_defweak);
5109
5110 symbol_align = ffs (h->root.u.def.value) - 1;
5111 if (h->root.u.def.section->owner != NULL
5112 && (h->root.u.def.section->owner->flags
5113 & (DYNAMIC | BFD_PLUGIN)) == 0)
5114 {
5115 normal_align = h->root.u.def.section->alignment_power;
5116 if (normal_align > symbol_align)
5117 normal_align = symbol_align;
5118 }
5119 else
5120 normal_align = symbol_align;
5121
5122 if (old_alignment)
5123 {
5124 common_align = old_alignment;
5125 common_bfd = old_bfd;
5126 normal_bfd = abfd;
5127 }
5128 else
5129 {
5130 common_align = bfd_log2 (isym->st_value);
5131 common_bfd = abfd;
5132 normal_bfd = old_bfd;
5133 }
5134
5135 if (normal_align < common_align)
5136 {
5137 /* PR binutils/2735 */
5138 if (normal_bfd == NULL)
5139 _bfd_error_handler
5140 /* xgettext:c-format */
5141 (_("warning: alignment %u of common symbol `%s' in %pB is"
5142 " greater than the alignment (%u) of its section %pA"),
5143 1 << common_align, name, common_bfd,
5144 1 << normal_align, h->root.u.def.section);
5145 else
5146 _bfd_error_handler
5147 /* xgettext:c-format */
5148 (_("warning: alignment %u of symbol `%s' in %pB"
5149 " is smaller than %u in %pB"),
5150 1 << normal_align, name, normal_bfd,
5151 1 << common_align, common_bfd);
5152 }
5153 }
5154
5155 /* Remember the symbol size if it isn't undefined. */
5156 if (isym->st_size != 0
5157 && isym->st_shndx != SHN_UNDEF
5158 && (definition || h->size == 0))
5159 {
5160 if (h->size != 0
5161 && h->size != isym->st_size
5162 && ! size_change_ok)
5163 _bfd_error_handler
5164 /* xgettext:c-format */
5165 (_("warning: size of symbol `%s' changed"
5166 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
5167 name, (uint64_t) h->size, old_bfd,
5168 (uint64_t) isym->st_size, abfd);
5169
5170 h->size = isym->st_size;
5171 }
5172
5173 /* If this is a common symbol, then we always want H->SIZE
5174 to be the size of the common symbol. The code just above
5175 won't fix the size if a common symbol becomes larger. We
5176 don't warn about a size change here, because that is
5177 covered by --warn-common. Allow changes between different
5178 function types. */
5179 if (h->root.type == bfd_link_hash_common)
5180 h->size = h->root.u.c.size;
5181
5182 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5183 && ((definition && !new_weak)
5184 || (old_weak && h->root.type == bfd_link_hash_common)
5185 || h->type == STT_NOTYPE))
5186 {
5187 unsigned int type = ELF_ST_TYPE (isym->st_info);
5188
5189 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5190 symbol. */
5191 if (type == STT_GNU_IFUNC
5192 && (abfd->flags & DYNAMIC) != 0)
5193 type = STT_FUNC;
5194
5195 if (h->type != type)
5196 {
5197 if (h->type != STT_NOTYPE && ! type_change_ok)
5198 /* xgettext:c-format */
5199 _bfd_error_handler
5200 (_("warning: type of symbol `%s' changed"
5201 " from %d to %d in %pB"),
5202 name, h->type, type, abfd);
5203
5204 h->type = type;
5205 }
5206 }
5207
5208 /* Merge st_other field. */
5209 elf_merge_st_other (abfd, h, isym->st_other, sec,
5210 definition, dynamic);
5211
5212 /* We don't want to make debug symbol dynamic. */
5213 if (definition
5214 && (sec->flags & SEC_DEBUGGING)
5215 && !bfd_link_relocatable (info))
5216 dynsym = FALSE;
5217
5218 /* Nor should we make plugin symbols dynamic. */
5219 if ((abfd->flags & BFD_PLUGIN) != 0)
5220 dynsym = FALSE;
5221
5222 if (definition)
5223 {
5224 h->target_internal = isym->st_target_internal;
5225 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5226 }
5227
5228 if (definition && !dynamic)
5229 {
5230 char *p = strchr (name, ELF_VER_CHR);
5231 if (p != NULL && p[1] != ELF_VER_CHR)
5232 {
5233 /* Queue non-default versions so that .symver x, x@FOO
5234 aliases can be checked. */
5235 if (!nondeflt_vers)
5236 {
5237 size_t amt = ((isymend - isym + 1)
5238 * sizeof (struct elf_link_hash_entry *));
5239 nondeflt_vers
5240 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5241 if (!nondeflt_vers)
5242 goto error_free_vers;
5243 }
5244 nondeflt_vers[nondeflt_vers_cnt++] = h;
5245 }
5246 }
5247
5248 if (dynsym && h->dynindx == -1)
5249 {
5250 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5251 goto error_free_vers;
5252 if (h->is_weakalias
5253 && weakdef (h)->dynindx == -1)
5254 {
5255 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5256 goto error_free_vers;
5257 }
5258 }
5259 else if (h->dynindx != -1)
5260 /* If the symbol already has a dynamic index, but
5261 visibility says it should not be visible, turn it into
5262 a local symbol. */
5263 switch (ELF_ST_VISIBILITY (h->other))
5264 {
5265 case STV_INTERNAL:
5266 case STV_HIDDEN:
5267 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5268 dynsym = FALSE;
5269 break;
5270 }
5271
5272 if (!add_needed
5273 && matched
5274 && definition
5275 && ((dynsym
5276 && h->ref_regular_nonweak)
5277 || (old_bfd != NULL
5278 && (old_bfd->flags & BFD_PLUGIN) != 0
5279 && bind != STB_WEAK)
5280 || (h->ref_dynamic_nonweak
5281 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5282 && !on_needed_list (elf_dt_name (abfd),
5283 htab->needed, NULL))))
5284 {
5285 const char *soname = elf_dt_name (abfd);
5286
5287 info->callbacks->minfo ("%!", soname, old_bfd,
5288 h->root.root.string);
5289
5290 /* A symbol from a library loaded via DT_NEEDED of some
5291 other library is referenced by a regular object.
5292 Add a DT_NEEDED entry for it. Issue an error if
5293 --no-add-needed is used and the reference was not
5294 a weak one. */
5295 if (old_bfd != NULL
5296 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5297 {
5298 _bfd_error_handler
5299 /* xgettext:c-format */
5300 (_("%pB: undefined reference to symbol '%s'"),
5301 old_bfd, name);
5302 bfd_set_error (bfd_error_missing_dso);
5303 goto error_free_vers;
5304 }
5305
5306 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5307 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5308
5309 /* Create dynamic sections for backends that require
5310 that be done before setup_gnu_properties. */
5311 if (!_bfd_elf_link_create_dynamic_sections (abfd, info))
5312 return FALSE;
5313 add_needed = TRUE;
5314 }
5315 }
5316 }
5317
5318 if (info->lto_plugin_active
5319 && !bfd_link_relocatable (info)
5320 && (abfd->flags & BFD_PLUGIN) == 0
5321 && !just_syms
5322 && extsymcount)
5323 {
5324 int r_sym_shift;
5325
5326 if (bed->s->arch_size == 32)
5327 r_sym_shift = 8;
5328 else
5329 r_sym_shift = 32;
5330
5331 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5332 referenced in regular objects so that linker plugin will get
5333 the correct symbol resolution. */
5334
5335 sym_hash = elf_sym_hashes (abfd);
5336 for (s = abfd->sections; s != NULL; s = s->next)
5337 {
5338 Elf_Internal_Rela *internal_relocs;
5339 Elf_Internal_Rela *rel, *relend;
5340
5341 /* Don't check relocations in excluded sections. */
5342 if ((s->flags & SEC_RELOC) == 0
5343 || s->reloc_count == 0
5344 || (s->flags & SEC_EXCLUDE) != 0
5345 || ((info->strip == strip_all
5346 || info->strip == strip_debugger)
5347 && (s->flags & SEC_DEBUGGING) != 0))
5348 continue;
5349
5350 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5351 NULL,
5352 info->keep_memory);
5353 if (internal_relocs == NULL)
5354 goto error_free_vers;
5355
5356 rel = internal_relocs;
5357 relend = rel + s->reloc_count;
5358 for ( ; rel < relend; rel++)
5359 {
5360 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5361 struct elf_link_hash_entry *h;
5362
5363 /* Skip local symbols. */
5364 if (r_symndx < extsymoff)
5365 continue;
5366
5367 h = sym_hash[r_symndx - extsymoff];
5368 if (h != NULL)
5369 h->root.non_ir_ref_regular = 1;
5370 }
5371
5372 if (elf_section_data (s)->relocs != internal_relocs)
5373 free (internal_relocs);
5374 }
5375 }
5376
5377 free (extversym);
5378 extversym = NULL;
5379 free (isymbuf);
5380 isymbuf = NULL;
5381
5382 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5383 {
5384 unsigned int i;
5385
5386 /* Restore the symbol table. */
5387 old_ent = (char *) old_tab + tabsize;
5388 memset (elf_sym_hashes (abfd), 0,
5389 extsymcount * sizeof (struct elf_link_hash_entry *));
5390 htab->root.table.table = old_table;
5391 htab->root.table.size = old_size;
5392 htab->root.table.count = old_count;
5393 memcpy (htab->root.table.table, old_tab, tabsize);
5394 htab->root.undefs = old_undefs;
5395 htab->root.undefs_tail = old_undefs_tail;
5396 if (htab->dynstr != NULL)
5397 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5398 free (old_strtab);
5399 old_strtab = NULL;
5400 for (i = 0; i < htab->root.table.size; i++)
5401 {
5402 struct bfd_hash_entry *p;
5403 struct elf_link_hash_entry *h;
5404 unsigned int non_ir_ref_dynamic;
5405
5406 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5407 {
5408 /* Preserve non_ir_ref_dynamic so that this symbol
5409 will be exported when the dynamic lib becomes needed
5410 in the second pass. */
5411 h = (struct elf_link_hash_entry *) p;
5412 if (h->root.type == bfd_link_hash_warning)
5413 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5414 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5415
5416 h = (struct elf_link_hash_entry *) p;
5417 memcpy (h, old_ent, htab->root.table.entsize);
5418 old_ent = (char *) old_ent + htab->root.table.entsize;
5419 if (h->root.type == bfd_link_hash_warning)
5420 {
5421 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5422 memcpy (h, old_ent, htab->root.table.entsize);
5423 old_ent = (char *) old_ent + htab->root.table.entsize;
5424 }
5425 if (h->root.type == bfd_link_hash_common)
5426 {
5427 memcpy (h->root.u.c.p, old_ent, sizeof (*h->root.u.c.p));
5428 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
5429 }
5430 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5431 }
5432 }
5433
5434 /* Make a special call to the linker "notice" function to
5435 tell it that symbols added for crefs may need to be removed. */
5436 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5437 goto error_free_vers;
5438
5439 free (old_tab);
5440 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5441 alloc_mark);
5442 free (nondeflt_vers);
5443 return TRUE;
5444 }
5445
5446 if (old_tab != NULL)
5447 {
5448 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5449 goto error_free_vers;
5450 free (old_tab);
5451 old_tab = NULL;
5452 }
5453
5454 /* Now that all the symbols from this input file are created, if
5455 not performing a relocatable link, handle .symver foo, foo@BAR
5456 such that any relocs against foo become foo@BAR. */
5457 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5458 {
5459 size_t cnt, symidx;
5460
5461 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5462 {
5463 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5464 char *shortname, *p;
5465 size_t amt;
5466
5467 p = strchr (h->root.root.string, ELF_VER_CHR);
5468 if (p == NULL
5469 || (h->root.type != bfd_link_hash_defined
5470 && h->root.type != bfd_link_hash_defweak))
5471 continue;
5472
5473 amt = p - h->root.root.string;
5474 shortname = (char *) bfd_malloc (amt + 1);
5475 if (!shortname)
5476 goto error_free_vers;
5477 memcpy (shortname, h->root.root.string, amt);
5478 shortname[amt] = '\0';
5479
5480 hi = (struct elf_link_hash_entry *)
5481 bfd_link_hash_lookup (&htab->root, shortname,
5482 FALSE, FALSE, FALSE);
5483 if (hi != NULL
5484 && hi->root.type == h->root.type
5485 && hi->root.u.def.value == h->root.u.def.value
5486 && hi->root.u.def.section == h->root.u.def.section)
5487 {
5488 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5489 hi->root.type = bfd_link_hash_indirect;
5490 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5491 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5492 sym_hash = elf_sym_hashes (abfd);
5493 if (sym_hash)
5494 for (symidx = 0; symidx < extsymcount; ++symidx)
5495 if (sym_hash[symidx] == hi)
5496 {
5497 sym_hash[symidx] = h;
5498 break;
5499 }
5500 }
5501 free (shortname);
5502 }
5503 free (nondeflt_vers);
5504 nondeflt_vers = NULL;
5505 }
5506
5507 /* Now set the alias field correctly for all the weak defined
5508 symbols we found. The only way to do this is to search all the
5509 symbols. Since we only need the information for non functions in
5510 dynamic objects, that's the only time we actually put anything on
5511 the list WEAKS. We need this information so that if a regular
5512 object refers to a symbol defined weakly in a dynamic object, the
5513 real symbol in the dynamic object is also put in the dynamic
5514 symbols; we also must arrange for both symbols to point to the
5515 same memory location. We could handle the general case of symbol
5516 aliasing, but a general symbol alias can only be generated in
5517 assembler code, handling it correctly would be very time
5518 consuming, and other ELF linkers don't handle general aliasing
5519 either. */
5520 if (weaks != NULL)
5521 {
5522 struct elf_link_hash_entry **hpp;
5523 struct elf_link_hash_entry **hppend;
5524 struct elf_link_hash_entry **sorted_sym_hash;
5525 struct elf_link_hash_entry *h;
5526 size_t sym_count, amt;
5527
5528 /* Since we have to search the whole symbol list for each weak
5529 defined symbol, search time for N weak defined symbols will be
5530 O(N^2). Binary search will cut it down to O(NlogN). */
5531 amt = extsymcount * sizeof (*sorted_sym_hash);
5532 sorted_sym_hash = bfd_malloc (amt);
5533 if (sorted_sym_hash == NULL)
5534 goto error_return;
5535 sym_hash = sorted_sym_hash;
5536 hpp = elf_sym_hashes (abfd);
5537 hppend = hpp + extsymcount;
5538 sym_count = 0;
5539 for (; hpp < hppend; hpp++)
5540 {
5541 h = *hpp;
5542 if (h != NULL
5543 && h->root.type == bfd_link_hash_defined
5544 && !bed->is_function_type (h->type))
5545 {
5546 *sym_hash = h;
5547 sym_hash++;
5548 sym_count++;
5549 }
5550 }
5551
5552 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5553 elf_sort_symbol);
5554
5555 while (weaks != NULL)
5556 {
5557 struct elf_link_hash_entry *hlook;
5558 asection *slook;
5559 bfd_vma vlook;
5560 size_t i, j, idx = 0;
5561
5562 hlook = weaks;
5563 weaks = hlook->u.alias;
5564 hlook->u.alias = NULL;
5565
5566 if (hlook->root.type != bfd_link_hash_defined
5567 && hlook->root.type != bfd_link_hash_defweak)
5568 continue;
5569
5570 slook = hlook->root.u.def.section;
5571 vlook = hlook->root.u.def.value;
5572
5573 i = 0;
5574 j = sym_count;
5575 while (i != j)
5576 {
5577 bfd_signed_vma vdiff;
5578 idx = (i + j) / 2;
5579 h = sorted_sym_hash[idx];
5580 vdiff = vlook - h->root.u.def.value;
5581 if (vdiff < 0)
5582 j = idx;
5583 else if (vdiff > 0)
5584 i = idx + 1;
5585 else
5586 {
5587 int sdiff = slook->id - h->root.u.def.section->id;
5588 if (sdiff < 0)
5589 j = idx;
5590 else if (sdiff > 0)
5591 i = idx + 1;
5592 else
5593 break;
5594 }
5595 }
5596
5597 /* We didn't find a value/section match. */
5598 if (i == j)
5599 continue;
5600
5601 /* With multiple aliases, or when the weak symbol is already
5602 strongly defined, we have multiple matching symbols and
5603 the binary search above may land on any of them. Step
5604 one past the matching symbol(s). */
5605 while (++idx != j)
5606 {
5607 h = sorted_sym_hash[idx];
5608 if (h->root.u.def.section != slook
5609 || h->root.u.def.value != vlook)
5610 break;
5611 }
5612
5613 /* Now look back over the aliases. Since we sorted by size
5614 as well as value and section, we'll choose the one with
5615 the largest size. */
5616 while (idx-- != i)
5617 {
5618 h = sorted_sym_hash[idx];
5619
5620 /* Stop if value or section doesn't match. */
5621 if (h->root.u.def.section != slook
5622 || h->root.u.def.value != vlook)
5623 break;
5624 else if (h != hlook)
5625 {
5626 struct elf_link_hash_entry *t;
5627
5628 hlook->u.alias = h;
5629 hlook->is_weakalias = 1;
5630 t = h;
5631 if (t->u.alias != NULL)
5632 while (t->u.alias != h)
5633 t = t->u.alias;
5634 t->u.alias = hlook;
5635
5636 /* If the weak definition is in the list of dynamic
5637 symbols, make sure the real definition is put
5638 there as well. */
5639 if (hlook->dynindx != -1 && h->dynindx == -1)
5640 {
5641 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5642 {
5643 err_free_sym_hash:
5644 free (sorted_sym_hash);
5645 goto error_return;
5646 }
5647 }
5648
5649 /* If the real definition is in the list of dynamic
5650 symbols, make sure the weak definition is put
5651 there as well. If we don't do this, then the
5652 dynamic loader might not merge the entries for the
5653 real definition and the weak definition. */
5654 if (h->dynindx != -1 && hlook->dynindx == -1)
5655 {
5656 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5657 goto err_free_sym_hash;
5658 }
5659 break;
5660 }
5661 }
5662 }
5663
5664 free (sorted_sym_hash);
5665 }
5666
5667 if (bed->check_directives
5668 && !(*bed->check_directives) (abfd, info))
5669 return FALSE;
5670
5671 /* If this is a non-traditional link, try to optimize the handling
5672 of the .stab/.stabstr sections. */
5673 if (! dynamic
5674 && ! info->traditional_format
5675 && is_elf_hash_table (htab)
5676 && (info->strip != strip_all && info->strip != strip_debugger))
5677 {
5678 asection *stabstr;
5679
5680 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5681 if (stabstr != NULL)
5682 {
5683 bfd_size_type string_offset = 0;
5684 asection *stab;
5685
5686 for (stab = abfd->sections; stab; stab = stab->next)
5687 if (CONST_STRNEQ (stab->name, ".stab")
5688 && (!stab->name[5] ||
5689 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5690 && (stab->flags & SEC_MERGE) == 0
5691 && !bfd_is_abs_section (stab->output_section))
5692 {
5693 struct bfd_elf_section_data *secdata;
5694
5695 secdata = elf_section_data (stab);
5696 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5697 stabstr, &secdata->sec_info,
5698 &string_offset))
5699 goto error_return;
5700 if (secdata->sec_info)
5701 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5702 }
5703 }
5704 }
5705
5706 if (dynamic && add_needed)
5707 {
5708 /* Add this bfd to the loaded list. */
5709 struct elf_link_loaded_list *n;
5710
5711 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5712 if (n == NULL)
5713 goto error_return;
5714 n->abfd = abfd;
5715 n->next = htab->dyn_loaded;
5716 htab->dyn_loaded = n;
5717 }
5718 if (dynamic && !add_needed
5719 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0)
5720 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED;
5721
5722 return TRUE;
5723
5724 error_free_vers:
5725 free (old_tab);
5726 free (old_strtab);
5727 free (nondeflt_vers);
5728 free (extversym);
5729 error_free_sym:
5730 free (isymbuf);
5731 error_return:
5732 return FALSE;
5733 }
5734
5735 /* Return the linker hash table entry of a symbol that might be
5736 satisfied by an archive symbol. Return -1 on error. */
5737
5738 struct elf_link_hash_entry *
5739 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5740 struct bfd_link_info *info,
5741 const char *name)
5742 {
5743 struct elf_link_hash_entry *h;
5744 char *p, *copy;
5745 size_t len, first;
5746
5747 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5748 if (h != NULL)
5749 return h;
5750
5751 /* If this is a default version (the name contains @@), look up the
5752 symbol again with only one `@' as well as without the version.
5753 The effect is that references to the symbol with and without the
5754 version will be matched by the default symbol in the archive. */
5755
5756 p = strchr (name, ELF_VER_CHR);
5757 if (p == NULL || p[1] != ELF_VER_CHR)
5758 return h;
5759
5760 /* First check with only one `@'. */
5761 len = strlen (name);
5762 copy = (char *) bfd_alloc (abfd, len);
5763 if (copy == NULL)
5764 return (struct elf_link_hash_entry *) -1;
5765
5766 first = p - name + 1;
5767 memcpy (copy, name, first);
5768 memcpy (copy + first, name + first + 1, len - first);
5769
5770 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5771 if (h == NULL)
5772 {
5773 /* We also need to check references to the symbol without the
5774 version. */
5775 copy[first - 1] = '\0';
5776 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5777 FALSE, FALSE, TRUE);
5778 }
5779
5780 bfd_release (abfd, copy);
5781 return h;
5782 }
5783
5784 /* Add symbols from an ELF archive file to the linker hash table. We
5785 don't use _bfd_generic_link_add_archive_symbols because we need to
5786 handle versioned symbols.
5787
5788 Fortunately, ELF archive handling is simpler than that done by
5789 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5790 oddities. In ELF, if we find a symbol in the archive map, and the
5791 symbol is currently undefined, we know that we must pull in that
5792 object file.
5793
5794 Unfortunately, we do have to make multiple passes over the symbol
5795 table until nothing further is resolved. */
5796
5797 static bfd_boolean
5798 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5799 {
5800 symindex c;
5801 unsigned char *included = NULL;
5802 carsym *symdefs;
5803 bfd_boolean loop;
5804 size_t amt;
5805 const struct elf_backend_data *bed;
5806 struct elf_link_hash_entry * (*archive_symbol_lookup)
5807 (bfd *, struct bfd_link_info *, const char *);
5808
5809 if (! bfd_has_map (abfd))
5810 {
5811 /* An empty archive is a special case. */
5812 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5813 return TRUE;
5814 bfd_set_error (bfd_error_no_armap);
5815 return FALSE;
5816 }
5817
5818 /* Keep track of all symbols we know to be already defined, and all
5819 files we know to be already included. This is to speed up the
5820 second and subsequent passes. */
5821 c = bfd_ardata (abfd)->symdef_count;
5822 if (c == 0)
5823 return TRUE;
5824 amt = c * sizeof (*included);
5825 included = (unsigned char *) bfd_zmalloc (amt);
5826 if (included == NULL)
5827 return FALSE;
5828
5829 symdefs = bfd_ardata (abfd)->symdefs;
5830 bed = get_elf_backend_data (abfd);
5831 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5832
5833 do
5834 {
5835 file_ptr last;
5836 symindex i;
5837 carsym *symdef;
5838 carsym *symdefend;
5839
5840 loop = FALSE;
5841 last = -1;
5842
5843 symdef = symdefs;
5844 symdefend = symdef + c;
5845 for (i = 0; symdef < symdefend; symdef++, i++)
5846 {
5847 struct elf_link_hash_entry *h;
5848 bfd *element;
5849 struct bfd_link_hash_entry *undefs_tail;
5850 symindex mark;
5851
5852 if (included[i])
5853 continue;
5854 if (symdef->file_offset == last)
5855 {
5856 included[i] = TRUE;
5857 continue;
5858 }
5859
5860 h = archive_symbol_lookup (abfd, info, symdef->name);
5861 if (h == (struct elf_link_hash_entry *) -1)
5862 goto error_return;
5863
5864 if (h == NULL)
5865 continue;
5866
5867 if (h->root.type == bfd_link_hash_undefined)
5868 {
5869 /* If the archive element has already been loaded then one
5870 of the symbols defined by that element might have been
5871 made undefined due to being in a discarded section. */
5872 if (h->indx == -3)
5873 continue;
5874 }
5875 else if (h->root.type == bfd_link_hash_common)
5876 {
5877 /* We currently have a common symbol. The archive map contains
5878 a reference to this symbol, so we may want to include it. We
5879 only want to include it however, if this archive element
5880 contains a definition of the symbol, not just another common
5881 declaration of it.
5882
5883 Unfortunately some archivers (including GNU ar) will put
5884 declarations of common symbols into their archive maps, as
5885 well as real definitions, so we cannot just go by the archive
5886 map alone. Instead we must read in the element's symbol
5887 table and check that to see what kind of symbol definition
5888 this is. */
5889 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5890 continue;
5891 }
5892 else
5893 {
5894 if (h->root.type != bfd_link_hash_undefweak)
5895 /* Symbol must be defined. Don't check it again. */
5896 included[i] = TRUE;
5897 continue;
5898 }
5899
5900 /* We need to include this archive member. */
5901 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5902 if (element == NULL)
5903 goto error_return;
5904
5905 if (! bfd_check_format (element, bfd_object))
5906 goto error_return;
5907
5908 undefs_tail = info->hash->undefs_tail;
5909
5910 if (!(*info->callbacks
5911 ->add_archive_element) (info, element, symdef->name, &element))
5912 continue;
5913 if (!bfd_link_add_symbols (element, info))
5914 goto error_return;
5915
5916 /* If there are any new undefined symbols, we need to make
5917 another pass through the archive in order to see whether
5918 they can be defined. FIXME: This isn't perfect, because
5919 common symbols wind up on undefs_tail and because an
5920 undefined symbol which is defined later on in this pass
5921 does not require another pass. This isn't a bug, but it
5922 does make the code less efficient than it could be. */
5923 if (undefs_tail != info->hash->undefs_tail)
5924 loop = TRUE;
5925
5926 /* Look backward to mark all symbols from this object file
5927 which we have already seen in this pass. */
5928 mark = i;
5929 do
5930 {
5931 included[mark] = TRUE;
5932 if (mark == 0)
5933 break;
5934 --mark;
5935 }
5936 while (symdefs[mark].file_offset == symdef->file_offset);
5937
5938 /* We mark subsequent symbols from this object file as we go
5939 on through the loop. */
5940 last = symdef->file_offset;
5941 }
5942 }
5943 while (loop);
5944
5945 free (included);
5946 return TRUE;
5947
5948 error_return:
5949 free (included);
5950 return FALSE;
5951 }
5952
5953 /* Given an ELF BFD, add symbols to the global hash table as
5954 appropriate. */
5955
5956 bfd_boolean
5957 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5958 {
5959 switch (bfd_get_format (abfd))
5960 {
5961 case bfd_object:
5962 return elf_link_add_object_symbols (abfd, info);
5963 case bfd_archive:
5964 return elf_link_add_archive_symbols (abfd, info);
5965 default:
5966 bfd_set_error (bfd_error_wrong_format);
5967 return FALSE;
5968 }
5969 }
5970 \f
5971 struct hash_codes_info
5972 {
5973 unsigned long *hashcodes;
5974 bfd_boolean error;
5975 };
5976
5977 /* This function will be called though elf_link_hash_traverse to store
5978 all hash value of the exported symbols in an array. */
5979
5980 static bfd_boolean
5981 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5982 {
5983 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5984 const char *name;
5985 unsigned long ha;
5986 char *alc = NULL;
5987
5988 /* Ignore indirect symbols. These are added by the versioning code. */
5989 if (h->dynindx == -1)
5990 return TRUE;
5991
5992 name = h->root.root.string;
5993 if (h->versioned >= versioned)
5994 {
5995 char *p = strchr (name, ELF_VER_CHR);
5996 if (p != NULL)
5997 {
5998 alc = (char *) bfd_malloc (p - name + 1);
5999 if (alc == NULL)
6000 {
6001 inf->error = TRUE;
6002 return FALSE;
6003 }
6004 memcpy (alc, name, p - name);
6005 alc[p - name] = '\0';
6006 name = alc;
6007 }
6008 }
6009
6010 /* Compute the hash value. */
6011 ha = bfd_elf_hash (name);
6012
6013 /* Store the found hash value in the array given as the argument. */
6014 *(inf->hashcodes)++ = ha;
6015
6016 /* And store it in the struct so that we can put it in the hash table
6017 later. */
6018 h->u.elf_hash_value = ha;
6019
6020 free (alc);
6021 return TRUE;
6022 }
6023
6024 struct collect_gnu_hash_codes
6025 {
6026 bfd *output_bfd;
6027 const struct elf_backend_data *bed;
6028 unsigned long int nsyms;
6029 unsigned long int maskbits;
6030 unsigned long int *hashcodes;
6031 unsigned long int *hashval;
6032 unsigned long int *indx;
6033 unsigned long int *counts;
6034 bfd_vma *bitmask;
6035 bfd_byte *contents;
6036 bfd_size_type xlat;
6037 long int min_dynindx;
6038 unsigned long int bucketcount;
6039 unsigned long int symindx;
6040 long int local_indx;
6041 long int shift1, shift2;
6042 unsigned long int mask;
6043 bfd_boolean error;
6044 };
6045
6046 /* This function will be called though elf_link_hash_traverse to store
6047 all hash value of the exported symbols in an array. */
6048
6049 static bfd_boolean
6050 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
6051 {
6052 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6053 const char *name;
6054 unsigned long ha;
6055 char *alc = NULL;
6056
6057 /* Ignore indirect symbols. These are added by the versioning code. */
6058 if (h->dynindx == -1)
6059 return TRUE;
6060
6061 /* Ignore also local symbols and undefined symbols. */
6062 if (! (*s->bed->elf_hash_symbol) (h))
6063 return TRUE;
6064
6065 name = h->root.root.string;
6066 if (h->versioned >= versioned)
6067 {
6068 char *p = strchr (name, ELF_VER_CHR);
6069 if (p != NULL)
6070 {
6071 alc = (char *) bfd_malloc (p - name + 1);
6072 if (alc == NULL)
6073 {
6074 s->error = TRUE;
6075 return FALSE;
6076 }
6077 memcpy (alc, name, p - name);
6078 alc[p - name] = '\0';
6079 name = alc;
6080 }
6081 }
6082
6083 /* Compute the hash value. */
6084 ha = bfd_elf_gnu_hash (name);
6085
6086 /* Store the found hash value in the array for compute_bucket_count,
6087 and also for .dynsym reordering purposes. */
6088 s->hashcodes[s->nsyms] = ha;
6089 s->hashval[h->dynindx] = ha;
6090 ++s->nsyms;
6091 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
6092 s->min_dynindx = h->dynindx;
6093
6094 free (alc);
6095 return TRUE;
6096 }
6097
6098 /* This function will be called though elf_link_hash_traverse to do
6099 final dynamic symbol renumbering in case of .gnu.hash.
6100 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
6101 to the translation table. */
6102
6103 static bfd_boolean
6104 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
6105 {
6106 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6107 unsigned long int bucket;
6108 unsigned long int val;
6109
6110 /* Ignore indirect symbols. */
6111 if (h->dynindx == -1)
6112 return TRUE;
6113
6114 /* Ignore also local symbols and undefined symbols. */
6115 if (! (*s->bed->elf_hash_symbol) (h))
6116 {
6117 if (h->dynindx >= s->min_dynindx)
6118 {
6119 if (s->bed->record_xhash_symbol != NULL)
6120 {
6121 (*s->bed->record_xhash_symbol) (h, 0);
6122 s->local_indx++;
6123 }
6124 else
6125 h->dynindx = s->local_indx++;
6126 }
6127 return TRUE;
6128 }
6129
6130 bucket = s->hashval[h->dynindx] % s->bucketcount;
6131 val = (s->hashval[h->dynindx] >> s->shift1)
6132 & ((s->maskbits >> s->shift1) - 1);
6133 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
6134 s->bitmask[val]
6135 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
6136 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
6137 if (s->counts[bucket] == 1)
6138 /* Last element terminates the chain. */
6139 val |= 1;
6140 bfd_put_32 (s->output_bfd, val,
6141 s->contents + (s->indx[bucket] - s->symindx) * 4);
6142 --s->counts[bucket];
6143 if (s->bed->record_xhash_symbol != NULL)
6144 {
6145 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
6146
6147 (*s->bed->record_xhash_symbol) (h, xlat_loc);
6148 }
6149 else
6150 h->dynindx = s->indx[bucket]++;
6151 return TRUE;
6152 }
6153
6154 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6155
6156 bfd_boolean
6157 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6158 {
6159 return !(h->forced_local
6160 || h->root.type == bfd_link_hash_undefined
6161 || h->root.type == bfd_link_hash_undefweak
6162 || ((h->root.type == bfd_link_hash_defined
6163 || h->root.type == bfd_link_hash_defweak)
6164 && h->root.u.def.section->output_section == NULL));
6165 }
6166
6167 /* Array used to determine the number of hash table buckets to use
6168 based on the number of symbols there are. If there are fewer than
6169 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6170 fewer than 37 we use 17 buckets, and so forth. We never use more
6171 than 32771 buckets. */
6172
6173 static const size_t elf_buckets[] =
6174 {
6175 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6176 16411, 32771, 0
6177 };
6178
6179 /* Compute bucket count for hashing table. We do not use a static set
6180 of possible tables sizes anymore. Instead we determine for all
6181 possible reasonable sizes of the table the outcome (i.e., the
6182 number of collisions etc) and choose the best solution. The
6183 weighting functions are not too simple to allow the table to grow
6184 without bounds. Instead one of the weighting factors is the size.
6185 Therefore the result is always a good payoff between few collisions
6186 (= short chain lengths) and table size. */
6187 static size_t
6188 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6189 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6190 unsigned long int nsyms,
6191 int gnu_hash)
6192 {
6193 size_t best_size = 0;
6194 unsigned long int i;
6195
6196 /* We have a problem here. The following code to optimize the table
6197 size requires an integer type with more the 32 bits. If
6198 BFD_HOST_U_64_BIT is set we know about such a type. */
6199 #ifdef BFD_HOST_U_64_BIT
6200 if (info->optimize)
6201 {
6202 size_t minsize;
6203 size_t maxsize;
6204 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6205 bfd *dynobj = elf_hash_table (info)->dynobj;
6206 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6207 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6208 unsigned long int *counts;
6209 bfd_size_type amt;
6210 unsigned int no_improvement_count = 0;
6211
6212 /* Possible optimization parameters: if we have NSYMS symbols we say
6213 that the hashing table must at least have NSYMS/4 and at most
6214 2*NSYMS buckets. */
6215 minsize = nsyms / 4;
6216 if (minsize == 0)
6217 minsize = 1;
6218 best_size = maxsize = nsyms * 2;
6219 if (gnu_hash)
6220 {
6221 if (minsize < 2)
6222 minsize = 2;
6223 if ((best_size & 31) == 0)
6224 ++best_size;
6225 }
6226
6227 /* Create array where we count the collisions in. We must use bfd_malloc
6228 since the size could be large. */
6229 amt = maxsize;
6230 amt *= sizeof (unsigned long int);
6231 counts = (unsigned long int *) bfd_malloc (amt);
6232 if (counts == NULL)
6233 return 0;
6234
6235 /* Compute the "optimal" size for the hash table. The criteria is a
6236 minimal chain length. The minor criteria is (of course) the size
6237 of the table. */
6238 for (i = minsize; i < maxsize; ++i)
6239 {
6240 /* Walk through the array of hashcodes and count the collisions. */
6241 BFD_HOST_U_64_BIT max;
6242 unsigned long int j;
6243 unsigned long int fact;
6244
6245 if (gnu_hash && (i & 31) == 0)
6246 continue;
6247
6248 memset (counts, '\0', i * sizeof (unsigned long int));
6249
6250 /* Determine how often each hash bucket is used. */
6251 for (j = 0; j < nsyms; ++j)
6252 ++counts[hashcodes[j] % i];
6253
6254 /* For the weight function we need some information about the
6255 pagesize on the target. This is information need not be 100%
6256 accurate. Since this information is not available (so far) we
6257 define it here to a reasonable default value. If it is crucial
6258 to have a better value some day simply define this value. */
6259 # ifndef BFD_TARGET_PAGESIZE
6260 # define BFD_TARGET_PAGESIZE (4096)
6261 # endif
6262
6263 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6264 and the chains. */
6265 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6266
6267 # if 1
6268 /* Variant 1: optimize for short chains. We add the squares
6269 of all the chain lengths (which favors many small chain
6270 over a few long chains). */
6271 for (j = 0; j < i; ++j)
6272 max += counts[j] * counts[j];
6273
6274 /* This adds penalties for the overall size of the table. */
6275 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6276 max *= fact * fact;
6277 # else
6278 /* Variant 2: Optimize a lot more for small table. Here we
6279 also add squares of the size but we also add penalties for
6280 empty slots (the +1 term). */
6281 for (j = 0; j < i; ++j)
6282 max += (1 + counts[j]) * (1 + counts[j]);
6283
6284 /* The overall size of the table is considered, but not as
6285 strong as in variant 1, where it is squared. */
6286 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6287 max *= fact;
6288 # endif
6289
6290 /* Compare with current best results. */
6291 if (max < best_chlen)
6292 {
6293 best_chlen = max;
6294 best_size = i;
6295 no_improvement_count = 0;
6296 }
6297 /* PR 11843: Avoid futile long searches for the best bucket size
6298 when there are a large number of symbols. */
6299 else if (++no_improvement_count == 100)
6300 break;
6301 }
6302
6303 free (counts);
6304 }
6305 else
6306 #endif /* defined (BFD_HOST_U_64_BIT) */
6307 {
6308 /* This is the fallback solution if no 64bit type is available or if we
6309 are not supposed to spend much time on optimizations. We select the
6310 bucket count using a fixed set of numbers. */
6311 for (i = 0; elf_buckets[i] != 0; i++)
6312 {
6313 best_size = elf_buckets[i];
6314 if (nsyms < elf_buckets[i + 1])
6315 break;
6316 }
6317 if (gnu_hash && best_size < 2)
6318 best_size = 2;
6319 }
6320
6321 return best_size;
6322 }
6323
6324 /* Size any SHT_GROUP section for ld -r. */
6325
6326 bfd_boolean
6327 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6328 {
6329 bfd *ibfd;
6330 asection *s;
6331
6332 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6333 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6334 && (s = ibfd->sections) != NULL
6335 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6336 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6337 return FALSE;
6338 return TRUE;
6339 }
6340
6341 /* Set a default stack segment size. The value in INFO wins. If it
6342 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6343 undefined it is initialized. */
6344
6345 bfd_boolean
6346 bfd_elf_stack_segment_size (bfd *output_bfd,
6347 struct bfd_link_info *info,
6348 const char *legacy_symbol,
6349 bfd_vma default_size)
6350 {
6351 struct elf_link_hash_entry *h = NULL;
6352
6353 /* Look for legacy symbol. */
6354 if (legacy_symbol)
6355 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6356 FALSE, FALSE, FALSE);
6357 if (h && (h->root.type == bfd_link_hash_defined
6358 || h->root.type == bfd_link_hash_defweak)
6359 && h->def_regular
6360 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6361 {
6362 /* The symbol has no type if specified on the command line. */
6363 h->type = STT_OBJECT;
6364 if (info->stacksize)
6365 /* xgettext:c-format */
6366 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6367 output_bfd, legacy_symbol);
6368 else if (h->root.u.def.section != bfd_abs_section_ptr)
6369 /* xgettext:c-format */
6370 _bfd_error_handler (_("%pB: %s not absolute"),
6371 output_bfd, legacy_symbol);
6372 else
6373 info->stacksize = h->root.u.def.value;
6374 }
6375
6376 if (!info->stacksize)
6377 /* If the user didn't set a size, or explicitly inhibit the
6378 size, set it now. */
6379 info->stacksize = default_size;
6380
6381 /* Provide the legacy symbol, if it is referenced. */
6382 if (h && (h->root.type == bfd_link_hash_undefined
6383 || h->root.type == bfd_link_hash_undefweak))
6384 {
6385 struct bfd_link_hash_entry *bh = NULL;
6386
6387 if (!(_bfd_generic_link_add_one_symbol
6388 (info, output_bfd, legacy_symbol,
6389 BSF_GLOBAL, bfd_abs_section_ptr,
6390 info->stacksize >= 0 ? info->stacksize : 0,
6391 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6392 return FALSE;
6393
6394 h = (struct elf_link_hash_entry *) bh;
6395 h->def_regular = 1;
6396 h->type = STT_OBJECT;
6397 }
6398
6399 return TRUE;
6400 }
6401
6402 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6403
6404 struct elf_gc_sweep_symbol_info
6405 {
6406 struct bfd_link_info *info;
6407 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6408 bfd_boolean);
6409 };
6410
6411 static bfd_boolean
6412 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6413 {
6414 if (!h->mark
6415 && (((h->root.type == bfd_link_hash_defined
6416 || h->root.type == bfd_link_hash_defweak)
6417 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6418 && h->root.u.def.section->gc_mark))
6419 || h->root.type == bfd_link_hash_undefined
6420 || h->root.type == bfd_link_hash_undefweak))
6421 {
6422 struct elf_gc_sweep_symbol_info *inf;
6423
6424 inf = (struct elf_gc_sweep_symbol_info *) data;
6425 (*inf->hide_symbol) (inf->info, h, TRUE);
6426 h->def_regular = 0;
6427 h->ref_regular = 0;
6428 h->ref_regular_nonweak = 0;
6429 }
6430
6431 return TRUE;
6432 }
6433
6434 /* Set up the sizes and contents of the ELF dynamic sections. This is
6435 called by the ELF linker emulation before_allocation routine. We
6436 must set the sizes of the sections before the linker sets the
6437 addresses of the various sections. */
6438
6439 bfd_boolean
6440 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6441 const char *soname,
6442 const char *rpath,
6443 const char *filter_shlib,
6444 const char *audit,
6445 const char *depaudit,
6446 const char * const *auxiliary_filters,
6447 struct bfd_link_info *info,
6448 asection **sinterpptr)
6449 {
6450 bfd *dynobj;
6451 const struct elf_backend_data *bed;
6452
6453 *sinterpptr = NULL;
6454
6455 if (!is_elf_hash_table (info->hash))
6456 return TRUE;
6457
6458 dynobj = elf_hash_table (info)->dynobj;
6459
6460 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6461 {
6462 struct bfd_elf_version_tree *verdefs;
6463 struct elf_info_failed asvinfo;
6464 struct bfd_elf_version_tree *t;
6465 struct bfd_elf_version_expr *d;
6466 asection *s;
6467 size_t soname_indx;
6468
6469 /* If we are supposed to export all symbols into the dynamic symbol
6470 table (this is not the normal case), then do so. */
6471 if (info->export_dynamic
6472 || (bfd_link_executable (info) && info->dynamic))
6473 {
6474 struct elf_info_failed eif;
6475
6476 eif.info = info;
6477 eif.failed = FALSE;
6478 elf_link_hash_traverse (elf_hash_table (info),
6479 _bfd_elf_export_symbol,
6480 &eif);
6481 if (eif.failed)
6482 return FALSE;
6483 }
6484
6485 if (soname != NULL)
6486 {
6487 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6488 soname, TRUE);
6489 if (soname_indx == (size_t) -1
6490 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6491 return FALSE;
6492 }
6493 else
6494 soname_indx = (size_t) -1;
6495
6496 /* Make all global versions with definition. */
6497 for (t = info->version_info; t != NULL; t = t->next)
6498 for (d = t->globals.list; d != NULL; d = d->next)
6499 if (!d->symver && d->literal)
6500 {
6501 const char *verstr, *name;
6502 size_t namelen, verlen, newlen;
6503 char *newname, *p, leading_char;
6504 struct elf_link_hash_entry *newh;
6505
6506 leading_char = bfd_get_symbol_leading_char (output_bfd);
6507 name = d->pattern;
6508 namelen = strlen (name) + (leading_char != '\0');
6509 verstr = t->name;
6510 verlen = strlen (verstr);
6511 newlen = namelen + verlen + 3;
6512
6513 newname = (char *) bfd_malloc (newlen);
6514 if (newname == NULL)
6515 return FALSE;
6516 newname[0] = leading_char;
6517 memcpy (newname + (leading_char != '\0'), name, namelen);
6518
6519 /* Check the hidden versioned definition. */
6520 p = newname + namelen;
6521 *p++ = ELF_VER_CHR;
6522 memcpy (p, verstr, verlen + 1);
6523 newh = elf_link_hash_lookup (elf_hash_table (info),
6524 newname, FALSE, FALSE,
6525 FALSE);
6526 if (newh == NULL
6527 || (newh->root.type != bfd_link_hash_defined
6528 && newh->root.type != bfd_link_hash_defweak))
6529 {
6530 /* Check the default versioned definition. */
6531 *p++ = ELF_VER_CHR;
6532 memcpy (p, verstr, verlen + 1);
6533 newh = elf_link_hash_lookup (elf_hash_table (info),
6534 newname, FALSE, FALSE,
6535 FALSE);
6536 }
6537 free (newname);
6538
6539 /* Mark this version if there is a definition and it is
6540 not defined in a shared object. */
6541 if (newh != NULL
6542 && !newh->def_dynamic
6543 && (newh->root.type == bfd_link_hash_defined
6544 || newh->root.type == bfd_link_hash_defweak))
6545 d->symver = 1;
6546 }
6547
6548 /* Attach all the symbols to their version information. */
6549 asvinfo.info = info;
6550 asvinfo.failed = FALSE;
6551
6552 elf_link_hash_traverse (elf_hash_table (info),
6553 _bfd_elf_link_assign_sym_version,
6554 &asvinfo);
6555 if (asvinfo.failed)
6556 return FALSE;
6557
6558 if (!info->allow_undefined_version)
6559 {
6560 /* Check if all global versions have a definition. */
6561 bfd_boolean all_defined = TRUE;
6562 for (t = info->version_info; t != NULL; t = t->next)
6563 for (d = t->globals.list; d != NULL; d = d->next)
6564 if (d->literal && !d->symver && !d->script)
6565 {
6566 _bfd_error_handler
6567 (_("%s: undefined version: %s"),
6568 d->pattern, t->name);
6569 all_defined = FALSE;
6570 }
6571
6572 if (!all_defined)
6573 {
6574 bfd_set_error (bfd_error_bad_value);
6575 return FALSE;
6576 }
6577 }
6578
6579 /* Set up the version definition section. */
6580 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6581 BFD_ASSERT (s != NULL);
6582
6583 /* We may have created additional version definitions if we are
6584 just linking a regular application. */
6585 verdefs = info->version_info;
6586
6587 /* Skip anonymous version tag. */
6588 if (verdefs != NULL && verdefs->vernum == 0)
6589 verdefs = verdefs->next;
6590
6591 if (verdefs == NULL && !info->create_default_symver)
6592 s->flags |= SEC_EXCLUDE;
6593 else
6594 {
6595 unsigned int cdefs;
6596 bfd_size_type size;
6597 bfd_byte *p;
6598 Elf_Internal_Verdef def;
6599 Elf_Internal_Verdaux defaux;
6600 struct bfd_link_hash_entry *bh;
6601 struct elf_link_hash_entry *h;
6602 const char *name;
6603
6604 cdefs = 0;
6605 size = 0;
6606
6607 /* Make space for the base version. */
6608 size += sizeof (Elf_External_Verdef);
6609 size += sizeof (Elf_External_Verdaux);
6610 ++cdefs;
6611
6612 /* Make space for the default version. */
6613 if (info->create_default_symver)
6614 {
6615 size += sizeof (Elf_External_Verdef);
6616 ++cdefs;
6617 }
6618
6619 for (t = verdefs; t != NULL; t = t->next)
6620 {
6621 struct bfd_elf_version_deps *n;
6622
6623 /* Don't emit base version twice. */
6624 if (t->vernum == 0)
6625 continue;
6626
6627 size += sizeof (Elf_External_Verdef);
6628 size += sizeof (Elf_External_Verdaux);
6629 ++cdefs;
6630
6631 for (n = t->deps; n != NULL; n = n->next)
6632 size += sizeof (Elf_External_Verdaux);
6633 }
6634
6635 s->size = size;
6636 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6637 if (s->contents == NULL && s->size != 0)
6638 return FALSE;
6639
6640 /* Fill in the version definition section. */
6641
6642 p = s->contents;
6643
6644 def.vd_version = VER_DEF_CURRENT;
6645 def.vd_flags = VER_FLG_BASE;
6646 def.vd_ndx = 1;
6647 def.vd_cnt = 1;
6648 if (info->create_default_symver)
6649 {
6650 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6651 def.vd_next = sizeof (Elf_External_Verdef);
6652 }
6653 else
6654 {
6655 def.vd_aux = sizeof (Elf_External_Verdef);
6656 def.vd_next = (sizeof (Elf_External_Verdef)
6657 + sizeof (Elf_External_Verdaux));
6658 }
6659
6660 if (soname_indx != (size_t) -1)
6661 {
6662 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6663 soname_indx);
6664 def.vd_hash = bfd_elf_hash (soname);
6665 defaux.vda_name = soname_indx;
6666 name = soname;
6667 }
6668 else
6669 {
6670 size_t indx;
6671
6672 name = lbasename (bfd_get_filename (output_bfd));
6673 def.vd_hash = bfd_elf_hash (name);
6674 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6675 name, FALSE);
6676 if (indx == (size_t) -1)
6677 return FALSE;
6678 defaux.vda_name = indx;
6679 }
6680 defaux.vda_next = 0;
6681
6682 _bfd_elf_swap_verdef_out (output_bfd, &def,
6683 (Elf_External_Verdef *) p);
6684 p += sizeof (Elf_External_Verdef);
6685 if (info->create_default_symver)
6686 {
6687 /* Add a symbol representing this version. */
6688 bh = NULL;
6689 if (! (_bfd_generic_link_add_one_symbol
6690 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6691 0, NULL, FALSE,
6692 get_elf_backend_data (dynobj)->collect, &bh)))
6693 return FALSE;
6694 h = (struct elf_link_hash_entry *) bh;
6695 h->non_elf = 0;
6696 h->def_regular = 1;
6697 h->type = STT_OBJECT;
6698 h->verinfo.vertree = NULL;
6699
6700 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6701 return FALSE;
6702
6703 /* Create a duplicate of the base version with the same
6704 aux block, but different flags. */
6705 def.vd_flags = 0;
6706 def.vd_ndx = 2;
6707 def.vd_aux = sizeof (Elf_External_Verdef);
6708 if (verdefs)
6709 def.vd_next = (sizeof (Elf_External_Verdef)
6710 + sizeof (Elf_External_Verdaux));
6711 else
6712 def.vd_next = 0;
6713 _bfd_elf_swap_verdef_out (output_bfd, &def,
6714 (Elf_External_Verdef *) p);
6715 p += sizeof (Elf_External_Verdef);
6716 }
6717 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6718 (Elf_External_Verdaux *) p);
6719 p += sizeof (Elf_External_Verdaux);
6720
6721 for (t = verdefs; t != NULL; t = t->next)
6722 {
6723 unsigned int cdeps;
6724 struct bfd_elf_version_deps *n;
6725
6726 /* Don't emit the base version twice. */
6727 if (t->vernum == 0)
6728 continue;
6729
6730 cdeps = 0;
6731 for (n = t->deps; n != NULL; n = n->next)
6732 ++cdeps;
6733
6734 /* Add a symbol representing this version. */
6735 bh = NULL;
6736 if (! (_bfd_generic_link_add_one_symbol
6737 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6738 0, NULL, FALSE,
6739 get_elf_backend_data (dynobj)->collect, &bh)))
6740 return FALSE;
6741 h = (struct elf_link_hash_entry *) bh;
6742 h->non_elf = 0;
6743 h->def_regular = 1;
6744 h->type = STT_OBJECT;
6745 h->verinfo.vertree = t;
6746
6747 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6748 return FALSE;
6749
6750 def.vd_version = VER_DEF_CURRENT;
6751 def.vd_flags = 0;
6752 if (t->globals.list == NULL
6753 && t->locals.list == NULL
6754 && ! t->used)
6755 def.vd_flags |= VER_FLG_WEAK;
6756 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6757 def.vd_cnt = cdeps + 1;
6758 def.vd_hash = bfd_elf_hash (t->name);
6759 def.vd_aux = sizeof (Elf_External_Verdef);
6760 def.vd_next = 0;
6761
6762 /* If a basever node is next, it *must* be the last node in
6763 the chain, otherwise Verdef construction breaks. */
6764 if (t->next != NULL && t->next->vernum == 0)
6765 BFD_ASSERT (t->next->next == NULL);
6766
6767 if (t->next != NULL && t->next->vernum != 0)
6768 def.vd_next = (sizeof (Elf_External_Verdef)
6769 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6770
6771 _bfd_elf_swap_verdef_out (output_bfd, &def,
6772 (Elf_External_Verdef *) p);
6773 p += sizeof (Elf_External_Verdef);
6774
6775 defaux.vda_name = h->dynstr_index;
6776 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6777 h->dynstr_index);
6778 defaux.vda_next = 0;
6779 if (t->deps != NULL)
6780 defaux.vda_next = sizeof (Elf_External_Verdaux);
6781 t->name_indx = defaux.vda_name;
6782
6783 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6784 (Elf_External_Verdaux *) p);
6785 p += sizeof (Elf_External_Verdaux);
6786
6787 for (n = t->deps; n != NULL; n = n->next)
6788 {
6789 if (n->version_needed == NULL)
6790 {
6791 /* This can happen if there was an error in the
6792 version script. */
6793 defaux.vda_name = 0;
6794 }
6795 else
6796 {
6797 defaux.vda_name = n->version_needed->name_indx;
6798 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6799 defaux.vda_name);
6800 }
6801 if (n->next == NULL)
6802 defaux.vda_next = 0;
6803 else
6804 defaux.vda_next = sizeof (Elf_External_Verdaux);
6805
6806 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6807 (Elf_External_Verdaux *) p);
6808 p += sizeof (Elf_External_Verdaux);
6809 }
6810 }
6811
6812 elf_tdata (output_bfd)->cverdefs = cdefs;
6813 }
6814 }
6815
6816 bed = get_elf_backend_data (output_bfd);
6817
6818 if (info->gc_sections && bed->can_gc_sections)
6819 {
6820 struct elf_gc_sweep_symbol_info sweep_info;
6821
6822 /* Remove the symbols that were in the swept sections from the
6823 dynamic symbol table. */
6824 sweep_info.info = info;
6825 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6826 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6827 &sweep_info);
6828 }
6829
6830 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6831 {
6832 asection *s;
6833 struct elf_find_verdep_info sinfo;
6834
6835 /* Work out the size of the version reference section. */
6836
6837 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6838 BFD_ASSERT (s != NULL);
6839
6840 sinfo.info = info;
6841 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6842 if (sinfo.vers == 0)
6843 sinfo.vers = 1;
6844 sinfo.failed = FALSE;
6845
6846 elf_link_hash_traverse (elf_hash_table (info),
6847 _bfd_elf_link_find_version_dependencies,
6848 &sinfo);
6849 if (sinfo.failed)
6850 return FALSE;
6851
6852 if (elf_tdata (output_bfd)->verref == NULL)
6853 s->flags |= SEC_EXCLUDE;
6854 else
6855 {
6856 Elf_Internal_Verneed *vn;
6857 unsigned int size;
6858 unsigned int crefs;
6859 bfd_byte *p;
6860
6861 /* Build the version dependency section. */
6862 size = 0;
6863 crefs = 0;
6864 for (vn = elf_tdata (output_bfd)->verref;
6865 vn != NULL;
6866 vn = vn->vn_nextref)
6867 {
6868 Elf_Internal_Vernaux *a;
6869
6870 size += sizeof (Elf_External_Verneed);
6871 ++crefs;
6872 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6873 size += sizeof (Elf_External_Vernaux);
6874 }
6875
6876 s->size = size;
6877 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6878 if (s->contents == NULL)
6879 return FALSE;
6880
6881 p = s->contents;
6882 for (vn = elf_tdata (output_bfd)->verref;
6883 vn != NULL;
6884 vn = vn->vn_nextref)
6885 {
6886 unsigned int caux;
6887 Elf_Internal_Vernaux *a;
6888 size_t indx;
6889
6890 caux = 0;
6891 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6892 ++caux;
6893
6894 vn->vn_version = VER_NEED_CURRENT;
6895 vn->vn_cnt = caux;
6896 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6897 elf_dt_name (vn->vn_bfd) != NULL
6898 ? elf_dt_name (vn->vn_bfd)
6899 : lbasename (bfd_get_filename
6900 (vn->vn_bfd)),
6901 FALSE);
6902 if (indx == (size_t) -1)
6903 return FALSE;
6904 vn->vn_file = indx;
6905 vn->vn_aux = sizeof (Elf_External_Verneed);
6906 if (vn->vn_nextref == NULL)
6907 vn->vn_next = 0;
6908 else
6909 vn->vn_next = (sizeof (Elf_External_Verneed)
6910 + caux * sizeof (Elf_External_Vernaux));
6911
6912 _bfd_elf_swap_verneed_out (output_bfd, vn,
6913 (Elf_External_Verneed *) p);
6914 p += sizeof (Elf_External_Verneed);
6915
6916 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6917 {
6918 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6919 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6920 a->vna_nodename, FALSE);
6921 if (indx == (size_t) -1)
6922 return FALSE;
6923 a->vna_name = indx;
6924 if (a->vna_nextptr == NULL)
6925 a->vna_next = 0;
6926 else
6927 a->vna_next = sizeof (Elf_External_Vernaux);
6928
6929 _bfd_elf_swap_vernaux_out (output_bfd, a,
6930 (Elf_External_Vernaux *) p);
6931 p += sizeof (Elf_External_Vernaux);
6932 }
6933 }
6934
6935 elf_tdata (output_bfd)->cverrefs = crefs;
6936 }
6937 }
6938
6939 /* Any syms created from now on start with -1 in
6940 got.refcount/offset and plt.refcount/offset. */
6941 elf_hash_table (info)->init_got_refcount
6942 = elf_hash_table (info)->init_got_offset;
6943 elf_hash_table (info)->init_plt_refcount
6944 = elf_hash_table (info)->init_plt_offset;
6945
6946 if (bfd_link_relocatable (info)
6947 && !_bfd_elf_size_group_sections (info))
6948 return FALSE;
6949
6950 /* The backend may have to create some sections regardless of whether
6951 we're dynamic or not. */
6952 if (bed->elf_backend_always_size_sections
6953 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6954 return FALSE;
6955
6956 /* Determine any GNU_STACK segment requirements, after the backend
6957 has had a chance to set a default segment size. */
6958 if (info->execstack)
6959 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6960 else if (info->noexecstack)
6961 elf_stack_flags (output_bfd) = PF_R | PF_W;
6962 else
6963 {
6964 bfd *inputobj;
6965 asection *notesec = NULL;
6966 int exec = 0;
6967
6968 for (inputobj = info->input_bfds;
6969 inputobj;
6970 inputobj = inputobj->link.next)
6971 {
6972 asection *s;
6973
6974 if (inputobj->flags
6975 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6976 continue;
6977 s = inputobj->sections;
6978 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6979 continue;
6980
6981 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6982 if (s)
6983 {
6984 if (s->flags & SEC_CODE)
6985 exec = PF_X;
6986 notesec = s;
6987 }
6988 else if (bed->default_execstack)
6989 exec = PF_X;
6990 }
6991 if (notesec || info->stacksize > 0)
6992 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6993 if (notesec && exec && bfd_link_relocatable (info)
6994 && notesec->output_section != bfd_abs_section_ptr)
6995 notesec->output_section->flags |= SEC_CODE;
6996 }
6997
6998 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6999 {
7000 struct elf_info_failed eif;
7001 struct elf_link_hash_entry *h;
7002 asection *dynstr;
7003 asection *s;
7004
7005 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
7006 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
7007
7008 if (info->symbolic)
7009 {
7010 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
7011 return FALSE;
7012 info->flags |= DF_SYMBOLIC;
7013 }
7014
7015 if (rpath != NULL)
7016 {
7017 size_t indx;
7018 bfd_vma tag;
7019
7020 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
7021 TRUE);
7022 if (indx == (size_t) -1)
7023 return FALSE;
7024
7025 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
7026 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
7027 return FALSE;
7028 }
7029
7030 if (filter_shlib != NULL)
7031 {
7032 size_t indx;
7033
7034 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7035 filter_shlib, TRUE);
7036 if (indx == (size_t) -1
7037 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
7038 return FALSE;
7039 }
7040
7041 if (auxiliary_filters != NULL)
7042 {
7043 const char * const *p;
7044
7045 for (p = auxiliary_filters; *p != NULL; p++)
7046 {
7047 size_t indx;
7048
7049 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7050 *p, TRUE);
7051 if (indx == (size_t) -1
7052 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
7053 return FALSE;
7054 }
7055 }
7056
7057 if (audit != NULL)
7058 {
7059 size_t indx;
7060
7061 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
7062 TRUE);
7063 if (indx == (size_t) -1
7064 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
7065 return FALSE;
7066 }
7067
7068 if (depaudit != NULL)
7069 {
7070 size_t indx;
7071
7072 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
7073 TRUE);
7074 if (indx == (size_t) -1
7075 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
7076 return FALSE;
7077 }
7078
7079 eif.info = info;
7080 eif.failed = FALSE;
7081
7082 /* Find all symbols which were defined in a dynamic object and make
7083 the backend pick a reasonable value for them. */
7084 elf_link_hash_traverse (elf_hash_table (info),
7085 _bfd_elf_adjust_dynamic_symbol,
7086 &eif);
7087 if (eif.failed)
7088 return FALSE;
7089
7090 /* Add some entries to the .dynamic section. We fill in some of the
7091 values later, in bfd_elf_final_link, but we must add the entries
7092 now so that we know the final size of the .dynamic section. */
7093
7094 /* If there are initialization and/or finalization functions to
7095 call then add the corresponding DT_INIT/DT_FINI entries. */
7096 h = (info->init_function
7097 ? elf_link_hash_lookup (elf_hash_table (info),
7098 info->init_function, FALSE,
7099 FALSE, FALSE)
7100 : NULL);
7101 if (h != NULL
7102 && (h->ref_regular
7103 || h->def_regular))
7104 {
7105 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
7106 return FALSE;
7107 }
7108 h = (info->fini_function
7109 ? elf_link_hash_lookup (elf_hash_table (info),
7110 info->fini_function, FALSE,
7111 FALSE, FALSE)
7112 : NULL);
7113 if (h != NULL
7114 && (h->ref_regular
7115 || h->def_regular))
7116 {
7117 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
7118 return FALSE;
7119 }
7120
7121 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
7122 if (s != NULL && s->linker_has_input)
7123 {
7124 /* DT_PREINIT_ARRAY is not allowed in shared library. */
7125 if (! bfd_link_executable (info))
7126 {
7127 bfd *sub;
7128 asection *o;
7129
7130 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
7131 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
7132 && (o = sub->sections) != NULL
7133 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
7134 for (o = sub->sections; o != NULL; o = o->next)
7135 if (elf_section_data (o)->this_hdr.sh_type
7136 == SHT_PREINIT_ARRAY)
7137 {
7138 _bfd_error_handler
7139 (_("%pB: .preinit_array section is not allowed in DSO"),
7140 sub);
7141 break;
7142 }
7143
7144 bfd_set_error (bfd_error_nonrepresentable_section);
7145 return FALSE;
7146 }
7147
7148 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
7149 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7150 return FALSE;
7151 }
7152 s = bfd_get_section_by_name (output_bfd, ".init_array");
7153 if (s != NULL && s->linker_has_input)
7154 {
7155 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7156 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7157 return FALSE;
7158 }
7159 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7160 if (s != NULL && s->linker_has_input)
7161 {
7162 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7163 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7164 return FALSE;
7165 }
7166
7167 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7168 /* If .dynstr is excluded from the link, we don't want any of
7169 these tags. Strictly, we should be checking each section
7170 individually; This quick check covers for the case where
7171 someone does a /DISCARD/ : { *(*) }. */
7172 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7173 {
7174 bfd_size_type strsize;
7175
7176 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7177 if ((info->emit_hash
7178 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7179 || (info->emit_gnu_hash
7180 && (bed->record_xhash_symbol == NULL
7181 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7182 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7183 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7184 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7185 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7186 bed->s->sizeof_sym)
7187 || (info->gnu_flags_1
7188 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_FLAGS_1,
7189 info->gnu_flags_1)))
7190 return FALSE;
7191 }
7192 }
7193
7194 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7195 return FALSE;
7196
7197 /* The backend must work out the sizes of all the other dynamic
7198 sections. */
7199 if (dynobj != NULL
7200 && bed->elf_backend_size_dynamic_sections != NULL
7201 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7202 return FALSE;
7203
7204 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7205 {
7206 if (elf_tdata (output_bfd)->cverdefs)
7207 {
7208 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7209
7210 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7211 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7212 return FALSE;
7213 }
7214
7215 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7216 {
7217 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7218 return FALSE;
7219 }
7220 else if (info->flags & DF_BIND_NOW)
7221 {
7222 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7223 return FALSE;
7224 }
7225
7226 if (info->flags_1)
7227 {
7228 if (bfd_link_executable (info))
7229 info->flags_1 &= ~ (DF_1_INITFIRST
7230 | DF_1_NODELETE
7231 | DF_1_NOOPEN);
7232 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7233 return FALSE;
7234 }
7235
7236 if (elf_tdata (output_bfd)->cverrefs)
7237 {
7238 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7239
7240 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7241 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7242 return FALSE;
7243 }
7244
7245 if ((elf_tdata (output_bfd)->cverrefs == 0
7246 && elf_tdata (output_bfd)->cverdefs == 0)
7247 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7248 {
7249 asection *s;
7250
7251 s = bfd_get_linker_section (dynobj, ".gnu.version");
7252 s->flags |= SEC_EXCLUDE;
7253 }
7254 }
7255 return TRUE;
7256 }
7257
7258 /* Find the first non-excluded output section. We'll use its
7259 section symbol for some emitted relocs. */
7260 void
7261 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7262 {
7263 asection *s;
7264 asection *found = NULL;
7265
7266 for (s = output_bfd->sections; s != NULL; s = s->next)
7267 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7268 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7269 {
7270 found = s;
7271 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7272 break;
7273 }
7274 elf_hash_table (info)->text_index_section = found;
7275 }
7276
7277 /* Find two non-excluded output sections, one for code, one for data.
7278 We'll use their section symbols for some emitted relocs. */
7279 void
7280 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7281 {
7282 asection *s;
7283 asection *found = NULL;
7284
7285 /* Data first, since setting text_index_section changes
7286 _bfd_elf_omit_section_dynsym_default. */
7287 for (s = output_bfd->sections; s != NULL; s = s->next)
7288 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7289 && !(s->flags & SEC_READONLY)
7290 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7291 {
7292 found = s;
7293 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7294 break;
7295 }
7296 elf_hash_table (info)->data_index_section = found;
7297
7298 for (s = output_bfd->sections; s != NULL; s = s->next)
7299 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7300 && (s->flags & SEC_READONLY)
7301 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7302 {
7303 found = s;
7304 break;
7305 }
7306 elf_hash_table (info)->text_index_section = found;
7307 }
7308
7309 #define GNU_HASH_SECTION_NAME(bed) \
7310 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7311
7312 bfd_boolean
7313 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7314 {
7315 const struct elf_backend_data *bed;
7316 unsigned long section_sym_count;
7317 bfd_size_type dynsymcount = 0;
7318
7319 if (!is_elf_hash_table (info->hash))
7320 return TRUE;
7321
7322 bed = get_elf_backend_data (output_bfd);
7323 (*bed->elf_backend_init_index_section) (output_bfd, info);
7324
7325 /* Assign dynsym indices. In a shared library we generate a section
7326 symbol for each output section, which come first. Next come all
7327 of the back-end allocated local dynamic syms, followed by the rest
7328 of the global symbols.
7329
7330 This is usually not needed for static binaries, however backends
7331 can request to always do it, e.g. the MIPS backend uses dynamic
7332 symbol counts to lay out GOT, which will be produced in the
7333 presence of GOT relocations even in static binaries (holding fixed
7334 data in that case, to satisfy those relocations). */
7335
7336 if (elf_hash_table (info)->dynamic_sections_created
7337 || bed->always_renumber_dynsyms)
7338 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7339 &section_sym_count);
7340
7341 if (elf_hash_table (info)->dynamic_sections_created)
7342 {
7343 bfd *dynobj;
7344 asection *s;
7345 unsigned int dtagcount;
7346
7347 dynobj = elf_hash_table (info)->dynobj;
7348
7349 /* Work out the size of the symbol version section. */
7350 s = bfd_get_linker_section (dynobj, ".gnu.version");
7351 BFD_ASSERT (s != NULL);
7352 if ((s->flags & SEC_EXCLUDE) == 0)
7353 {
7354 s->size = dynsymcount * sizeof (Elf_External_Versym);
7355 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7356 if (s->contents == NULL)
7357 return FALSE;
7358
7359 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7360 return FALSE;
7361 }
7362
7363 /* Set the size of the .dynsym and .hash sections. We counted
7364 the number of dynamic symbols in elf_link_add_object_symbols.
7365 We will build the contents of .dynsym and .hash when we build
7366 the final symbol table, because until then we do not know the
7367 correct value to give the symbols. We built the .dynstr
7368 section as we went along in elf_link_add_object_symbols. */
7369 s = elf_hash_table (info)->dynsym;
7370 BFD_ASSERT (s != NULL);
7371 s->size = dynsymcount * bed->s->sizeof_sym;
7372
7373 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7374 if (s->contents == NULL)
7375 return FALSE;
7376
7377 /* The first entry in .dynsym is a dummy symbol. Clear all the
7378 section syms, in case we don't output them all. */
7379 ++section_sym_count;
7380 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7381
7382 elf_hash_table (info)->bucketcount = 0;
7383
7384 /* Compute the size of the hashing table. As a side effect this
7385 computes the hash values for all the names we export. */
7386 if (info->emit_hash)
7387 {
7388 unsigned long int *hashcodes;
7389 struct hash_codes_info hashinf;
7390 bfd_size_type amt;
7391 unsigned long int nsyms;
7392 size_t bucketcount;
7393 size_t hash_entry_size;
7394
7395 /* Compute the hash values for all exported symbols. At the same
7396 time store the values in an array so that we could use them for
7397 optimizations. */
7398 amt = dynsymcount * sizeof (unsigned long int);
7399 hashcodes = (unsigned long int *) bfd_malloc (amt);
7400 if (hashcodes == NULL)
7401 return FALSE;
7402 hashinf.hashcodes = hashcodes;
7403 hashinf.error = FALSE;
7404
7405 /* Put all hash values in HASHCODES. */
7406 elf_link_hash_traverse (elf_hash_table (info),
7407 elf_collect_hash_codes, &hashinf);
7408 if (hashinf.error)
7409 {
7410 free (hashcodes);
7411 return FALSE;
7412 }
7413
7414 nsyms = hashinf.hashcodes - hashcodes;
7415 bucketcount
7416 = compute_bucket_count (info, hashcodes, nsyms, 0);
7417 free (hashcodes);
7418
7419 if (bucketcount == 0 && nsyms > 0)
7420 return FALSE;
7421
7422 elf_hash_table (info)->bucketcount = bucketcount;
7423
7424 s = bfd_get_linker_section (dynobj, ".hash");
7425 BFD_ASSERT (s != NULL);
7426 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7427 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7428 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7429 if (s->contents == NULL)
7430 return FALSE;
7431
7432 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7433 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7434 s->contents + hash_entry_size);
7435 }
7436
7437 if (info->emit_gnu_hash)
7438 {
7439 size_t i, cnt;
7440 unsigned char *contents;
7441 struct collect_gnu_hash_codes cinfo;
7442 bfd_size_type amt;
7443 size_t bucketcount;
7444
7445 memset (&cinfo, 0, sizeof (cinfo));
7446
7447 /* Compute the hash values for all exported symbols. At the same
7448 time store the values in an array so that we could use them for
7449 optimizations. */
7450 amt = dynsymcount * 2 * sizeof (unsigned long int);
7451 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7452 if (cinfo.hashcodes == NULL)
7453 return FALSE;
7454
7455 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7456 cinfo.min_dynindx = -1;
7457 cinfo.output_bfd = output_bfd;
7458 cinfo.bed = bed;
7459
7460 /* Put all hash values in HASHCODES. */
7461 elf_link_hash_traverse (elf_hash_table (info),
7462 elf_collect_gnu_hash_codes, &cinfo);
7463 if (cinfo.error)
7464 {
7465 free (cinfo.hashcodes);
7466 return FALSE;
7467 }
7468
7469 bucketcount
7470 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7471
7472 if (bucketcount == 0)
7473 {
7474 free (cinfo.hashcodes);
7475 return FALSE;
7476 }
7477
7478 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7479 BFD_ASSERT (s != NULL);
7480
7481 if (cinfo.nsyms == 0)
7482 {
7483 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7484 BFD_ASSERT (cinfo.min_dynindx == -1);
7485 free (cinfo.hashcodes);
7486 s->size = 5 * 4 + bed->s->arch_size / 8;
7487 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7488 if (contents == NULL)
7489 return FALSE;
7490 s->contents = contents;
7491 /* 1 empty bucket. */
7492 bfd_put_32 (output_bfd, 1, contents);
7493 /* SYMIDX above the special symbol 0. */
7494 bfd_put_32 (output_bfd, 1, contents + 4);
7495 /* Just one word for bitmask. */
7496 bfd_put_32 (output_bfd, 1, contents + 8);
7497 /* Only hash fn bloom filter. */
7498 bfd_put_32 (output_bfd, 0, contents + 12);
7499 /* No hashes are valid - empty bitmask. */
7500 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7501 /* No hashes in the only bucket. */
7502 bfd_put_32 (output_bfd, 0,
7503 contents + 16 + bed->s->arch_size / 8);
7504 }
7505 else
7506 {
7507 unsigned long int maskwords, maskbitslog2, x;
7508 BFD_ASSERT (cinfo.min_dynindx != -1);
7509
7510 x = cinfo.nsyms;
7511 maskbitslog2 = 1;
7512 while ((x >>= 1) != 0)
7513 ++maskbitslog2;
7514 if (maskbitslog2 < 3)
7515 maskbitslog2 = 5;
7516 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7517 maskbitslog2 = maskbitslog2 + 3;
7518 else
7519 maskbitslog2 = maskbitslog2 + 2;
7520 if (bed->s->arch_size == 64)
7521 {
7522 if (maskbitslog2 == 5)
7523 maskbitslog2 = 6;
7524 cinfo.shift1 = 6;
7525 }
7526 else
7527 cinfo.shift1 = 5;
7528 cinfo.mask = (1 << cinfo.shift1) - 1;
7529 cinfo.shift2 = maskbitslog2;
7530 cinfo.maskbits = 1 << maskbitslog2;
7531 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7532 amt = bucketcount * sizeof (unsigned long int) * 2;
7533 amt += maskwords * sizeof (bfd_vma);
7534 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7535 if (cinfo.bitmask == NULL)
7536 {
7537 free (cinfo.hashcodes);
7538 return FALSE;
7539 }
7540
7541 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7542 cinfo.indx = cinfo.counts + bucketcount;
7543 cinfo.symindx = dynsymcount - cinfo.nsyms;
7544 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7545
7546 /* Determine how often each hash bucket is used. */
7547 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7548 for (i = 0; i < cinfo.nsyms; ++i)
7549 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7550
7551 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7552 if (cinfo.counts[i] != 0)
7553 {
7554 cinfo.indx[i] = cnt;
7555 cnt += cinfo.counts[i];
7556 }
7557 BFD_ASSERT (cnt == dynsymcount);
7558 cinfo.bucketcount = bucketcount;
7559 cinfo.local_indx = cinfo.min_dynindx;
7560
7561 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7562 s->size += cinfo.maskbits / 8;
7563 if (bed->record_xhash_symbol != NULL)
7564 s->size += cinfo.nsyms * 4;
7565 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7566 if (contents == NULL)
7567 {
7568 free (cinfo.bitmask);
7569 free (cinfo.hashcodes);
7570 return FALSE;
7571 }
7572
7573 s->contents = contents;
7574 bfd_put_32 (output_bfd, bucketcount, contents);
7575 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7576 bfd_put_32 (output_bfd, maskwords, contents + 8);
7577 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7578 contents += 16 + cinfo.maskbits / 8;
7579
7580 for (i = 0; i < bucketcount; ++i)
7581 {
7582 if (cinfo.counts[i] == 0)
7583 bfd_put_32 (output_bfd, 0, contents);
7584 else
7585 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7586 contents += 4;
7587 }
7588
7589 cinfo.contents = contents;
7590
7591 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7592 /* Renumber dynamic symbols, if populating .gnu.hash section.
7593 If using .MIPS.xhash, populate the translation table. */
7594 elf_link_hash_traverse (elf_hash_table (info),
7595 elf_gnu_hash_process_symidx, &cinfo);
7596
7597 contents = s->contents + 16;
7598 for (i = 0; i < maskwords; ++i)
7599 {
7600 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7601 contents);
7602 contents += bed->s->arch_size / 8;
7603 }
7604
7605 free (cinfo.bitmask);
7606 free (cinfo.hashcodes);
7607 }
7608 }
7609
7610 s = bfd_get_linker_section (dynobj, ".dynstr");
7611 BFD_ASSERT (s != NULL);
7612
7613 elf_finalize_dynstr (output_bfd, info);
7614
7615 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7616
7617 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7618 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7619 return FALSE;
7620 }
7621
7622 return TRUE;
7623 }
7624 \f
7625 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7626
7627 static void
7628 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7629 asection *sec)
7630 {
7631 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7632 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7633 }
7634
7635 /* Finish SHF_MERGE section merging. */
7636
7637 bfd_boolean
7638 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7639 {
7640 bfd *ibfd;
7641 asection *sec;
7642
7643 if (!is_elf_hash_table (info->hash))
7644 return FALSE;
7645
7646 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7647 if ((ibfd->flags & DYNAMIC) == 0
7648 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7649 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7650 == get_elf_backend_data (obfd)->s->elfclass))
7651 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7652 if ((sec->flags & SEC_MERGE) != 0
7653 && !bfd_is_abs_section (sec->output_section))
7654 {
7655 struct bfd_elf_section_data *secdata;
7656
7657 secdata = elf_section_data (sec);
7658 if (! _bfd_add_merge_section (obfd,
7659 &elf_hash_table (info)->merge_info,
7660 sec, &secdata->sec_info))
7661 return FALSE;
7662 else if (secdata->sec_info)
7663 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7664 }
7665
7666 if (elf_hash_table (info)->merge_info != NULL)
7667 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7668 merge_sections_remove_hook);
7669 return TRUE;
7670 }
7671
7672 /* Create an entry in an ELF linker hash table. */
7673
7674 struct bfd_hash_entry *
7675 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7676 struct bfd_hash_table *table,
7677 const char *string)
7678 {
7679 /* Allocate the structure if it has not already been allocated by a
7680 subclass. */
7681 if (entry == NULL)
7682 {
7683 entry = (struct bfd_hash_entry *)
7684 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7685 if (entry == NULL)
7686 return entry;
7687 }
7688
7689 /* Call the allocation method of the superclass. */
7690 entry = _bfd_link_hash_newfunc (entry, table, string);
7691 if (entry != NULL)
7692 {
7693 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7694 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7695
7696 /* Set local fields. */
7697 ret->indx = -1;
7698 ret->dynindx = -1;
7699 ret->got = htab->init_got_refcount;
7700 ret->plt = htab->init_plt_refcount;
7701 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7702 - offsetof (struct elf_link_hash_entry, size)));
7703 /* Assume that we have been called by a non-ELF symbol reader.
7704 This flag is then reset by the code which reads an ELF input
7705 file. This ensures that a symbol created by a non-ELF symbol
7706 reader will have the flag set correctly. */
7707 ret->non_elf = 1;
7708 }
7709
7710 return entry;
7711 }
7712
7713 /* Copy data from an indirect symbol to its direct symbol, hiding the
7714 old indirect symbol. Also used for copying flags to a weakdef. */
7715
7716 void
7717 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7718 struct elf_link_hash_entry *dir,
7719 struct elf_link_hash_entry *ind)
7720 {
7721 struct elf_link_hash_table *htab;
7722
7723 if (ind->dyn_relocs != NULL)
7724 {
7725 if (dir->dyn_relocs != NULL)
7726 {
7727 struct elf_dyn_relocs **pp;
7728 struct elf_dyn_relocs *p;
7729
7730 /* Add reloc counts against the indirect sym to the direct sym
7731 list. Merge any entries against the same section. */
7732 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
7733 {
7734 struct elf_dyn_relocs *q;
7735
7736 for (q = dir->dyn_relocs; q != NULL; q = q->next)
7737 if (q->sec == p->sec)
7738 {
7739 q->pc_count += p->pc_count;
7740 q->count += p->count;
7741 *pp = p->next;
7742 break;
7743 }
7744 if (q == NULL)
7745 pp = &p->next;
7746 }
7747 *pp = dir->dyn_relocs;
7748 }
7749
7750 dir->dyn_relocs = ind->dyn_relocs;
7751 ind->dyn_relocs = NULL;
7752 }
7753
7754 /* Copy down any references that we may have already seen to the
7755 symbol which just became indirect. */
7756
7757 if (dir->versioned != versioned_hidden)
7758 dir->ref_dynamic |= ind->ref_dynamic;
7759 dir->ref_regular |= ind->ref_regular;
7760 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7761 dir->non_got_ref |= ind->non_got_ref;
7762 dir->needs_plt |= ind->needs_plt;
7763 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7764
7765 if (ind->root.type != bfd_link_hash_indirect)
7766 return;
7767
7768 /* Copy over the global and procedure linkage table refcount entries.
7769 These may have been already set up by a check_relocs routine. */
7770 htab = elf_hash_table (info);
7771 if (ind->got.refcount > htab->init_got_refcount.refcount)
7772 {
7773 if (dir->got.refcount < 0)
7774 dir->got.refcount = 0;
7775 dir->got.refcount += ind->got.refcount;
7776 ind->got.refcount = htab->init_got_refcount.refcount;
7777 }
7778
7779 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7780 {
7781 if (dir->plt.refcount < 0)
7782 dir->plt.refcount = 0;
7783 dir->plt.refcount += ind->plt.refcount;
7784 ind->plt.refcount = htab->init_plt_refcount.refcount;
7785 }
7786
7787 if (ind->dynindx != -1)
7788 {
7789 if (dir->dynindx != -1)
7790 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7791 dir->dynindx = ind->dynindx;
7792 dir->dynstr_index = ind->dynstr_index;
7793 ind->dynindx = -1;
7794 ind->dynstr_index = 0;
7795 }
7796 }
7797
7798 void
7799 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7800 struct elf_link_hash_entry *h,
7801 bfd_boolean force_local)
7802 {
7803 /* STT_GNU_IFUNC symbol must go through PLT. */
7804 if (h->type != STT_GNU_IFUNC)
7805 {
7806 h->plt = elf_hash_table (info)->init_plt_offset;
7807 h->needs_plt = 0;
7808 }
7809 if (force_local)
7810 {
7811 h->forced_local = 1;
7812 if (h->dynindx != -1)
7813 {
7814 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7815 h->dynstr_index);
7816 h->dynindx = -1;
7817 h->dynstr_index = 0;
7818 }
7819 }
7820 }
7821
7822 /* Hide a symbol. */
7823
7824 void
7825 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7826 struct bfd_link_info *info,
7827 struct bfd_link_hash_entry *h)
7828 {
7829 if (is_elf_hash_table (info->hash))
7830 {
7831 const struct elf_backend_data *bed
7832 = get_elf_backend_data (output_bfd);
7833 struct elf_link_hash_entry *eh
7834 = (struct elf_link_hash_entry *) h;
7835 bed->elf_backend_hide_symbol (info, eh, TRUE);
7836 eh->def_dynamic = 0;
7837 eh->ref_dynamic = 0;
7838 eh->dynamic_def = 0;
7839 }
7840 }
7841
7842 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7843 caller. */
7844
7845 bfd_boolean
7846 _bfd_elf_link_hash_table_init
7847 (struct elf_link_hash_table *table,
7848 bfd *abfd,
7849 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7850 struct bfd_hash_table *,
7851 const char *),
7852 unsigned int entsize,
7853 enum elf_target_id target_id)
7854 {
7855 bfd_boolean ret;
7856 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7857
7858 table->init_got_refcount.refcount = can_refcount - 1;
7859 table->init_plt_refcount.refcount = can_refcount - 1;
7860 table->init_got_offset.offset = -(bfd_vma) 1;
7861 table->init_plt_offset.offset = -(bfd_vma) 1;
7862 /* The first dynamic symbol is a dummy. */
7863 table->dynsymcount = 1;
7864
7865 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7866
7867 table->root.type = bfd_link_elf_hash_table;
7868 table->hash_table_id = target_id;
7869 table->target_os = get_elf_backend_data (abfd)->target_os;
7870
7871 return ret;
7872 }
7873
7874 /* Create an ELF linker hash table. */
7875
7876 struct bfd_link_hash_table *
7877 _bfd_elf_link_hash_table_create (bfd *abfd)
7878 {
7879 struct elf_link_hash_table *ret;
7880 size_t amt = sizeof (struct elf_link_hash_table);
7881
7882 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7883 if (ret == NULL)
7884 return NULL;
7885
7886 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7887 sizeof (struct elf_link_hash_entry),
7888 GENERIC_ELF_DATA))
7889 {
7890 free (ret);
7891 return NULL;
7892 }
7893 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7894
7895 return &ret->root;
7896 }
7897
7898 /* Destroy an ELF linker hash table. */
7899
7900 void
7901 _bfd_elf_link_hash_table_free (bfd *obfd)
7902 {
7903 struct elf_link_hash_table *htab;
7904
7905 htab = (struct elf_link_hash_table *) obfd->link.hash;
7906 if (htab->dynstr != NULL)
7907 _bfd_elf_strtab_free (htab->dynstr);
7908 _bfd_merge_sections_free (htab->merge_info);
7909 _bfd_generic_link_hash_table_free (obfd);
7910 }
7911
7912 /* This is a hook for the ELF emulation code in the generic linker to
7913 tell the backend linker what file name to use for the DT_NEEDED
7914 entry for a dynamic object. */
7915
7916 void
7917 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7918 {
7919 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7920 && bfd_get_format (abfd) == bfd_object)
7921 elf_dt_name (abfd) = name;
7922 }
7923
7924 int
7925 bfd_elf_get_dyn_lib_class (bfd *abfd)
7926 {
7927 int lib_class;
7928 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7929 && bfd_get_format (abfd) == bfd_object)
7930 lib_class = elf_dyn_lib_class (abfd);
7931 else
7932 lib_class = 0;
7933 return lib_class;
7934 }
7935
7936 void
7937 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7938 {
7939 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7940 && bfd_get_format (abfd) == bfd_object)
7941 elf_dyn_lib_class (abfd) = lib_class;
7942 }
7943
7944 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7945 the linker ELF emulation code. */
7946
7947 struct bfd_link_needed_list *
7948 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7949 struct bfd_link_info *info)
7950 {
7951 if (! is_elf_hash_table (info->hash))
7952 return NULL;
7953 return elf_hash_table (info)->needed;
7954 }
7955
7956 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7957 hook for the linker ELF emulation code. */
7958
7959 struct bfd_link_needed_list *
7960 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7961 struct bfd_link_info *info)
7962 {
7963 if (! is_elf_hash_table (info->hash))
7964 return NULL;
7965 return elf_hash_table (info)->runpath;
7966 }
7967
7968 /* Get the name actually used for a dynamic object for a link. This
7969 is the SONAME entry if there is one. Otherwise, it is the string
7970 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7971
7972 const char *
7973 bfd_elf_get_dt_soname (bfd *abfd)
7974 {
7975 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7976 && bfd_get_format (abfd) == bfd_object)
7977 return elf_dt_name (abfd);
7978 return NULL;
7979 }
7980
7981 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7982 the ELF linker emulation code. */
7983
7984 bfd_boolean
7985 bfd_elf_get_bfd_needed_list (bfd *abfd,
7986 struct bfd_link_needed_list **pneeded)
7987 {
7988 asection *s;
7989 bfd_byte *dynbuf = NULL;
7990 unsigned int elfsec;
7991 unsigned long shlink;
7992 bfd_byte *extdyn, *extdynend;
7993 size_t extdynsize;
7994 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7995
7996 *pneeded = NULL;
7997
7998 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7999 || bfd_get_format (abfd) != bfd_object)
8000 return TRUE;
8001
8002 s = bfd_get_section_by_name (abfd, ".dynamic");
8003 if (s == NULL || s->size == 0)
8004 return TRUE;
8005
8006 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
8007 goto error_return;
8008
8009 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
8010 if (elfsec == SHN_BAD)
8011 goto error_return;
8012
8013 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
8014
8015 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
8016 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
8017
8018 extdyn = dynbuf;
8019 extdynend = extdyn + s->size;
8020 for (; extdyn < extdynend; extdyn += extdynsize)
8021 {
8022 Elf_Internal_Dyn dyn;
8023
8024 (*swap_dyn_in) (abfd, extdyn, &dyn);
8025
8026 if (dyn.d_tag == DT_NULL)
8027 break;
8028
8029 if (dyn.d_tag == DT_NEEDED)
8030 {
8031 const char *string;
8032 struct bfd_link_needed_list *l;
8033 unsigned int tagv = dyn.d_un.d_val;
8034 size_t amt;
8035
8036 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
8037 if (string == NULL)
8038 goto error_return;
8039
8040 amt = sizeof *l;
8041 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
8042 if (l == NULL)
8043 goto error_return;
8044
8045 l->by = abfd;
8046 l->name = string;
8047 l->next = *pneeded;
8048 *pneeded = l;
8049 }
8050 }
8051
8052 free (dynbuf);
8053
8054 return TRUE;
8055
8056 error_return:
8057 free (dynbuf);
8058 return FALSE;
8059 }
8060
8061 struct elf_symbuf_symbol
8062 {
8063 unsigned long st_name; /* Symbol name, index in string tbl */
8064 unsigned char st_info; /* Type and binding attributes */
8065 unsigned char st_other; /* Visibilty, and target specific */
8066 };
8067
8068 struct elf_symbuf_head
8069 {
8070 struct elf_symbuf_symbol *ssym;
8071 size_t count;
8072 unsigned int st_shndx;
8073 };
8074
8075 struct elf_symbol
8076 {
8077 union
8078 {
8079 Elf_Internal_Sym *isym;
8080 struct elf_symbuf_symbol *ssym;
8081 void *p;
8082 } u;
8083 const char *name;
8084 };
8085
8086 /* Sort references to symbols by ascending section number. */
8087
8088 static int
8089 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8090 {
8091 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8092 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8093
8094 if (s1->st_shndx != s2->st_shndx)
8095 return s1->st_shndx > s2->st_shndx ? 1 : -1;
8096 /* Final sort by the address of the sym in the symbuf ensures
8097 a stable sort. */
8098 if (s1 != s2)
8099 return s1 > s2 ? 1 : -1;
8100 return 0;
8101 }
8102
8103 static int
8104 elf_sym_name_compare (const void *arg1, const void *arg2)
8105 {
8106 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8107 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8108 int ret = strcmp (s1->name, s2->name);
8109 if (ret != 0)
8110 return ret;
8111 if (s1->u.p != s2->u.p)
8112 return s1->u.p > s2->u.p ? 1 : -1;
8113 return 0;
8114 }
8115
8116 static struct elf_symbuf_head *
8117 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
8118 {
8119 Elf_Internal_Sym **ind, **indbufend, **indbuf;
8120 struct elf_symbuf_symbol *ssym;
8121 struct elf_symbuf_head *ssymbuf, *ssymhead;
8122 size_t i, shndx_count, total_size, amt;
8123
8124 amt = symcount * sizeof (*indbuf);
8125 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
8126 if (indbuf == NULL)
8127 return NULL;
8128
8129 for (ind = indbuf, i = 0; i < symcount; i++)
8130 if (isymbuf[i].st_shndx != SHN_UNDEF)
8131 *ind++ = &isymbuf[i];
8132 indbufend = ind;
8133
8134 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8135 elf_sort_elf_symbol);
8136
8137 shndx_count = 0;
8138 if (indbufend > indbuf)
8139 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8140 if (ind[0]->st_shndx != ind[1]->st_shndx)
8141 shndx_count++;
8142
8143 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
8144 + (indbufend - indbuf) * sizeof (*ssym));
8145 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
8146 if (ssymbuf == NULL)
8147 {
8148 free (indbuf);
8149 return NULL;
8150 }
8151
8152 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
8153 ssymbuf->ssym = NULL;
8154 ssymbuf->count = shndx_count;
8155 ssymbuf->st_shndx = 0;
8156 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8157 {
8158 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8159 {
8160 ssymhead++;
8161 ssymhead->ssym = ssym;
8162 ssymhead->count = 0;
8163 ssymhead->st_shndx = (*ind)->st_shndx;
8164 }
8165 ssym->st_name = (*ind)->st_name;
8166 ssym->st_info = (*ind)->st_info;
8167 ssym->st_other = (*ind)->st_other;
8168 ssymhead->count++;
8169 }
8170 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
8171 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
8172 == total_size));
8173
8174 free (indbuf);
8175 return ssymbuf;
8176 }
8177
8178 /* Check if 2 sections define the same set of local and global
8179 symbols. */
8180
8181 static bfd_boolean
8182 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8183 struct bfd_link_info *info)
8184 {
8185 bfd *bfd1, *bfd2;
8186 const struct elf_backend_data *bed1, *bed2;
8187 Elf_Internal_Shdr *hdr1, *hdr2;
8188 size_t symcount1, symcount2;
8189 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8190 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8191 Elf_Internal_Sym *isym, *isymend;
8192 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8193 size_t count1, count2, i;
8194 unsigned int shndx1, shndx2;
8195 bfd_boolean result;
8196
8197 bfd1 = sec1->owner;
8198 bfd2 = sec2->owner;
8199
8200 /* Both sections have to be in ELF. */
8201 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8202 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8203 return FALSE;
8204
8205 if (elf_section_type (sec1) != elf_section_type (sec2))
8206 return FALSE;
8207
8208 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8209 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8210 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8211 return FALSE;
8212
8213 bed1 = get_elf_backend_data (bfd1);
8214 bed2 = get_elf_backend_data (bfd2);
8215 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8216 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8217 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8218 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8219
8220 if (symcount1 == 0 || symcount2 == 0)
8221 return FALSE;
8222
8223 result = FALSE;
8224 isymbuf1 = NULL;
8225 isymbuf2 = NULL;
8226 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8227 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8228
8229 if (ssymbuf1 == NULL)
8230 {
8231 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8232 NULL, NULL, NULL);
8233 if (isymbuf1 == NULL)
8234 goto done;
8235
8236 if (info != NULL && !info->reduce_memory_overheads)
8237 {
8238 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8239 elf_tdata (bfd1)->symbuf = ssymbuf1;
8240 }
8241 }
8242
8243 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8244 {
8245 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8246 NULL, NULL, NULL);
8247 if (isymbuf2 == NULL)
8248 goto done;
8249
8250 if (ssymbuf1 != NULL && info != NULL && !info->reduce_memory_overheads)
8251 {
8252 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8253 elf_tdata (bfd2)->symbuf = ssymbuf2;
8254 }
8255 }
8256
8257 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8258 {
8259 /* Optimized faster version. */
8260 size_t lo, hi, mid;
8261 struct elf_symbol *symp;
8262 struct elf_symbuf_symbol *ssym, *ssymend;
8263
8264 lo = 0;
8265 hi = ssymbuf1->count;
8266 ssymbuf1++;
8267 count1 = 0;
8268 while (lo < hi)
8269 {
8270 mid = (lo + hi) / 2;
8271 if (shndx1 < ssymbuf1[mid].st_shndx)
8272 hi = mid;
8273 else if (shndx1 > ssymbuf1[mid].st_shndx)
8274 lo = mid + 1;
8275 else
8276 {
8277 count1 = ssymbuf1[mid].count;
8278 ssymbuf1 += mid;
8279 break;
8280 }
8281 }
8282
8283 lo = 0;
8284 hi = ssymbuf2->count;
8285 ssymbuf2++;
8286 count2 = 0;
8287 while (lo < hi)
8288 {
8289 mid = (lo + hi) / 2;
8290 if (shndx2 < ssymbuf2[mid].st_shndx)
8291 hi = mid;
8292 else if (shndx2 > ssymbuf2[mid].st_shndx)
8293 lo = mid + 1;
8294 else
8295 {
8296 count2 = ssymbuf2[mid].count;
8297 ssymbuf2 += mid;
8298 break;
8299 }
8300 }
8301
8302 if (count1 == 0 || count2 == 0 || count1 != count2)
8303 goto done;
8304
8305 symtable1
8306 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8307 symtable2
8308 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8309 if (symtable1 == NULL || symtable2 == NULL)
8310 goto done;
8311
8312 symp = symtable1;
8313 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8314 ssym < ssymend; ssym++, symp++)
8315 {
8316 symp->u.ssym = ssym;
8317 symp->name = bfd_elf_string_from_elf_section (bfd1,
8318 hdr1->sh_link,
8319 ssym->st_name);
8320 }
8321
8322 symp = symtable2;
8323 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8324 ssym < ssymend; ssym++, symp++)
8325 {
8326 symp->u.ssym = ssym;
8327 symp->name = bfd_elf_string_from_elf_section (bfd2,
8328 hdr2->sh_link,
8329 ssym->st_name);
8330 }
8331
8332 /* Sort symbol by name. */
8333 qsort (symtable1, count1, sizeof (struct elf_symbol),
8334 elf_sym_name_compare);
8335 qsort (symtable2, count1, sizeof (struct elf_symbol),
8336 elf_sym_name_compare);
8337
8338 for (i = 0; i < count1; i++)
8339 /* Two symbols must have the same binding, type and name. */
8340 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8341 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8342 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8343 goto done;
8344
8345 result = TRUE;
8346 goto done;
8347 }
8348
8349 symtable1 = (struct elf_symbol *)
8350 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8351 symtable2 = (struct elf_symbol *)
8352 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8353 if (symtable1 == NULL || symtable2 == NULL)
8354 goto done;
8355
8356 /* Count definitions in the section. */
8357 count1 = 0;
8358 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8359 if (isym->st_shndx == shndx1)
8360 symtable1[count1++].u.isym = isym;
8361
8362 count2 = 0;
8363 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8364 if (isym->st_shndx == shndx2)
8365 symtable2[count2++].u.isym = isym;
8366
8367 if (count1 == 0 || count2 == 0 || count1 != count2)
8368 goto done;
8369
8370 for (i = 0; i < count1; i++)
8371 symtable1[i].name
8372 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8373 symtable1[i].u.isym->st_name);
8374
8375 for (i = 0; i < count2; i++)
8376 symtable2[i].name
8377 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8378 symtable2[i].u.isym->st_name);
8379
8380 /* Sort symbol by name. */
8381 qsort (symtable1, count1, sizeof (struct elf_symbol),
8382 elf_sym_name_compare);
8383 qsort (symtable2, count1, sizeof (struct elf_symbol),
8384 elf_sym_name_compare);
8385
8386 for (i = 0; i < count1; i++)
8387 /* Two symbols must have the same binding, type and name. */
8388 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8389 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8390 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8391 goto done;
8392
8393 result = TRUE;
8394
8395 done:
8396 free (symtable1);
8397 free (symtable2);
8398 free (isymbuf1);
8399 free (isymbuf2);
8400
8401 return result;
8402 }
8403
8404 /* Return TRUE if 2 section types are compatible. */
8405
8406 bfd_boolean
8407 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8408 bfd *bbfd, const asection *bsec)
8409 {
8410 if (asec == NULL
8411 || bsec == NULL
8412 || abfd->xvec->flavour != bfd_target_elf_flavour
8413 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8414 return TRUE;
8415
8416 return elf_section_type (asec) == elf_section_type (bsec);
8417 }
8418 \f
8419 /* Final phase of ELF linker. */
8420
8421 /* A structure we use to avoid passing large numbers of arguments. */
8422
8423 struct elf_final_link_info
8424 {
8425 /* General link information. */
8426 struct bfd_link_info *info;
8427 /* Output BFD. */
8428 bfd *output_bfd;
8429 /* Symbol string table. */
8430 struct elf_strtab_hash *symstrtab;
8431 /* .hash section. */
8432 asection *hash_sec;
8433 /* symbol version section (.gnu.version). */
8434 asection *symver_sec;
8435 /* Buffer large enough to hold contents of any section. */
8436 bfd_byte *contents;
8437 /* Buffer large enough to hold external relocs of any section. */
8438 void *external_relocs;
8439 /* Buffer large enough to hold internal relocs of any section. */
8440 Elf_Internal_Rela *internal_relocs;
8441 /* Buffer large enough to hold external local symbols of any input
8442 BFD. */
8443 bfd_byte *external_syms;
8444 /* And a buffer for symbol section indices. */
8445 Elf_External_Sym_Shndx *locsym_shndx;
8446 /* Buffer large enough to hold internal local symbols of any input
8447 BFD. */
8448 Elf_Internal_Sym *internal_syms;
8449 /* Array large enough to hold a symbol index for each local symbol
8450 of any input BFD. */
8451 long *indices;
8452 /* Array large enough to hold a section pointer for each local
8453 symbol of any input BFD. */
8454 asection **sections;
8455 /* Buffer for SHT_SYMTAB_SHNDX section. */
8456 Elf_External_Sym_Shndx *symshndxbuf;
8457 /* Number of STT_FILE syms seen. */
8458 size_t filesym_count;
8459 /* Local symbol hash table. */
8460 struct bfd_hash_table local_hash_table;
8461 };
8462
8463 struct local_hash_entry
8464 {
8465 /* Base hash table entry structure. */
8466 struct bfd_hash_entry root;
8467 /* Size of the local symbol name. */
8468 size_t size;
8469 /* Number of the duplicated local symbol names. */
8470 long count;
8471 };
8472
8473 /* Create an entry in the local symbol hash table. */
8474
8475 static struct bfd_hash_entry *
8476 local_hash_newfunc (struct bfd_hash_entry *entry,
8477 struct bfd_hash_table *table,
8478 const char *string)
8479 {
8480
8481 /* Allocate the structure if it has not already been allocated by a
8482 subclass. */
8483 if (entry == NULL)
8484 {
8485 entry = bfd_hash_allocate (table,
8486 sizeof (struct local_hash_entry));
8487 if (entry == NULL)
8488 return entry;
8489 }
8490
8491 /* Call the allocation method of the superclass. */
8492 entry = bfd_hash_newfunc (entry, table, string);
8493 if (entry != NULL)
8494 {
8495 ((struct local_hash_entry *) entry)->count = 0;
8496 ((struct local_hash_entry *) entry)->size = 0;
8497 }
8498
8499 return entry;
8500 }
8501
8502 /* This struct is used to pass information to elf_link_output_extsym. */
8503
8504 struct elf_outext_info
8505 {
8506 bfd_boolean failed;
8507 bfd_boolean localsyms;
8508 bfd_boolean file_sym_done;
8509 struct elf_final_link_info *flinfo;
8510 };
8511
8512
8513 /* Support for evaluating a complex relocation.
8514
8515 Complex relocations are generalized, self-describing relocations. The
8516 implementation of them consists of two parts: complex symbols, and the
8517 relocations themselves.
8518
8519 The relocations use a reserved elf-wide relocation type code (R_RELC
8520 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8521 information (start bit, end bit, word width, etc) into the addend. This
8522 information is extracted from CGEN-generated operand tables within gas.
8523
8524 Complex symbols are mangled symbols (STT_RELC external / BSF_RELC
8525 internal) representing prefix-notation expressions, including but not
8526 limited to those sorts of expressions normally encoded as addends in the
8527 addend field. The symbol mangling format is:
8528
8529 <node> := <literal>
8530 | <unary-operator> ':' <node>
8531 | <binary-operator> ':' <node> ':' <node>
8532 ;
8533
8534 <literal> := 's' <digits=N> ':' <N character symbol name>
8535 | 'S' <digits=N> ':' <N character section name>
8536 | '#' <hexdigits>
8537 ;
8538
8539 <binary-operator> := as in C
8540 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8541
8542 static void
8543 set_symbol_value (bfd *bfd_with_globals,
8544 Elf_Internal_Sym *isymbuf,
8545 size_t locsymcount,
8546 size_t symidx,
8547 bfd_vma val)
8548 {
8549 struct elf_link_hash_entry **sym_hashes;
8550 struct elf_link_hash_entry *h;
8551 size_t extsymoff = locsymcount;
8552
8553 if (symidx < locsymcount)
8554 {
8555 Elf_Internal_Sym *sym;
8556
8557 sym = isymbuf + symidx;
8558 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8559 {
8560 /* It is a local symbol: move it to the
8561 "absolute" section and give it a value. */
8562 sym->st_shndx = SHN_ABS;
8563 sym->st_value = val;
8564 return;
8565 }
8566 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8567 extsymoff = 0;
8568 }
8569
8570 /* It is a global symbol: set its link type
8571 to "defined" and give it a value. */
8572
8573 sym_hashes = elf_sym_hashes (bfd_with_globals);
8574 h = sym_hashes [symidx - extsymoff];
8575 while (h->root.type == bfd_link_hash_indirect
8576 || h->root.type == bfd_link_hash_warning)
8577 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8578 h->root.type = bfd_link_hash_defined;
8579 h->root.u.def.value = val;
8580 h->root.u.def.section = bfd_abs_section_ptr;
8581 }
8582
8583 static bfd_boolean
8584 resolve_symbol (const char *name,
8585 bfd *input_bfd,
8586 struct elf_final_link_info *flinfo,
8587 bfd_vma *result,
8588 Elf_Internal_Sym *isymbuf,
8589 size_t locsymcount)
8590 {
8591 Elf_Internal_Sym *sym;
8592 struct bfd_link_hash_entry *global_entry;
8593 const char *candidate = NULL;
8594 Elf_Internal_Shdr *symtab_hdr;
8595 size_t i;
8596
8597 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8598
8599 for (i = 0; i < locsymcount; ++ i)
8600 {
8601 sym = isymbuf + i;
8602
8603 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8604 continue;
8605
8606 candidate = bfd_elf_string_from_elf_section (input_bfd,
8607 symtab_hdr->sh_link,
8608 sym->st_name);
8609 #ifdef DEBUG
8610 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8611 name, candidate, (unsigned long) sym->st_value);
8612 #endif
8613 if (candidate && strcmp (candidate, name) == 0)
8614 {
8615 asection *sec = flinfo->sections [i];
8616
8617 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8618 *result += sec->output_offset + sec->output_section->vma;
8619 #ifdef DEBUG
8620 printf ("Found symbol with value %8.8lx\n",
8621 (unsigned long) *result);
8622 #endif
8623 return TRUE;
8624 }
8625 }
8626
8627 /* Hmm, haven't found it yet. perhaps it is a global. */
8628 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8629 FALSE, FALSE, TRUE);
8630 if (!global_entry)
8631 return FALSE;
8632
8633 if (global_entry->type == bfd_link_hash_defined
8634 || global_entry->type == bfd_link_hash_defweak)
8635 {
8636 *result = (global_entry->u.def.value
8637 + global_entry->u.def.section->output_section->vma
8638 + global_entry->u.def.section->output_offset);
8639 #ifdef DEBUG
8640 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8641 global_entry->root.string, (unsigned long) *result);
8642 #endif
8643 return TRUE;
8644 }
8645
8646 return FALSE;
8647 }
8648
8649 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8650 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8651 names like "foo.end" which is the end address of section "foo". */
8652
8653 static bfd_boolean
8654 resolve_section (const char *name,
8655 asection *sections,
8656 bfd_vma *result,
8657 bfd * abfd)
8658 {
8659 asection *curr;
8660 unsigned int len;
8661
8662 for (curr = sections; curr; curr = curr->next)
8663 if (strcmp (curr->name, name) == 0)
8664 {
8665 *result = curr->vma;
8666 return TRUE;
8667 }
8668
8669 /* Hmm. still haven't found it. try pseudo-section names. */
8670 /* FIXME: This could be coded more efficiently... */
8671 for (curr = sections; curr; curr = curr->next)
8672 {
8673 len = strlen (curr->name);
8674 if (len > strlen (name))
8675 continue;
8676
8677 if (strncmp (curr->name, name, len) == 0)
8678 {
8679 if (strncmp (".end", name + len, 4) == 0)
8680 {
8681 *result = (curr->vma
8682 + curr->size / bfd_octets_per_byte (abfd, curr));
8683 return TRUE;
8684 }
8685
8686 /* Insert more pseudo-section names here, if you like. */
8687 }
8688 }
8689
8690 return FALSE;
8691 }
8692
8693 static void
8694 undefined_reference (const char *reftype, const char *name)
8695 {
8696 /* xgettext:c-format */
8697 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8698 reftype, name);
8699 bfd_set_error (bfd_error_bad_value);
8700 }
8701
8702 static bfd_boolean
8703 eval_symbol (bfd_vma *result,
8704 const char **symp,
8705 bfd *input_bfd,
8706 struct elf_final_link_info *flinfo,
8707 bfd_vma dot,
8708 Elf_Internal_Sym *isymbuf,
8709 size_t locsymcount,
8710 int signed_p)
8711 {
8712 size_t len;
8713 size_t symlen;
8714 bfd_vma a;
8715 bfd_vma b;
8716 char symbuf[4096];
8717 const char *sym = *symp;
8718 const char *symend;
8719 bfd_boolean symbol_is_section = FALSE;
8720
8721 len = strlen (sym);
8722 symend = sym + len;
8723
8724 if (len < 1 || len > sizeof (symbuf))
8725 {
8726 bfd_set_error (bfd_error_invalid_operation);
8727 return FALSE;
8728 }
8729
8730 switch (* sym)
8731 {
8732 case '.':
8733 *result = dot;
8734 *symp = sym + 1;
8735 return TRUE;
8736
8737 case '#':
8738 ++sym;
8739 *result = strtoul (sym, (char **) symp, 16);
8740 return TRUE;
8741
8742 case 'S':
8743 symbol_is_section = TRUE;
8744 /* Fall through. */
8745 case 's':
8746 ++sym;
8747 symlen = strtol (sym, (char **) symp, 10);
8748 sym = *symp + 1; /* Skip the trailing ':'. */
8749
8750 if (symend < sym || symlen + 1 > sizeof (symbuf))
8751 {
8752 bfd_set_error (bfd_error_invalid_operation);
8753 return FALSE;
8754 }
8755
8756 memcpy (symbuf, sym, symlen);
8757 symbuf[symlen] = '\0';
8758 *symp = sym + symlen;
8759
8760 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8761 the symbol as a section, or vice-versa. so we're pretty liberal in our
8762 interpretation here; section means "try section first", not "must be a
8763 section", and likewise with symbol. */
8764
8765 if (symbol_is_section)
8766 {
8767 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8768 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8769 isymbuf, locsymcount))
8770 {
8771 undefined_reference ("section", symbuf);
8772 return FALSE;
8773 }
8774 }
8775 else
8776 {
8777 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8778 isymbuf, locsymcount)
8779 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8780 result, input_bfd))
8781 {
8782 undefined_reference ("symbol", symbuf);
8783 return FALSE;
8784 }
8785 }
8786
8787 return TRUE;
8788
8789 /* All that remains are operators. */
8790
8791 #define UNARY_OP(op) \
8792 if (strncmp (sym, #op, strlen (#op)) == 0) \
8793 { \
8794 sym += strlen (#op); \
8795 if (*sym == ':') \
8796 ++sym; \
8797 *symp = sym; \
8798 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8799 isymbuf, locsymcount, signed_p)) \
8800 return FALSE; \
8801 if (signed_p) \
8802 *result = op ((bfd_signed_vma) a); \
8803 else \
8804 *result = op a; \
8805 return TRUE; \
8806 }
8807
8808 #define BINARY_OP_HEAD(op) \
8809 if (strncmp (sym, #op, strlen (#op)) == 0) \
8810 { \
8811 sym += strlen (#op); \
8812 if (*sym == ':') \
8813 ++sym; \
8814 *symp = sym; \
8815 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8816 isymbuf, locsymcount, signed_p)) \
8817 return FALSE; \
8818 ++*symp; \
8819 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8820 isymbuf, locsymcount, signed_p)) \
8821 return FALSE;
8822 #define BINARY_OP_TAIL(op) \
8823 if (signed_p) \
8824 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8825 else \
8826 *result = a op b; \
8827 return TRUE; \
8828 }
8829 #define BINARY_OP(op) BINARY_OP_HEAD(op) BINARY_OP_TAIL(op)
8830
8831 default:
8832 UNARY_OP (0-);
8833 BINARY_OP_HEAD (<<);
8834 if (b >= sizeof (a) * CHAR_BIT)
8835 {
8836 *result = 0;
8837 return TRUE;
8838 }
8839 signed_p = 0;
8840 BINARY_OP_TAIL (<<);
8841 BINARY_OP_HEAD (>>);
8842 if (b >= sizeof (a) * CHAR_BIT)
8843 {
8844 *result = signed_p && (bfd_signed_vma) a < 0 ? -1 : 0;
8845 return TRUE;
8846 }
8847 BINARY_OP_TAIL (>>);
8848 BINARY_OP (==);
8849 BINARY_OP (!=);
8850 BINARY_OP (<=);
8851 BINARY_OP (>=);
8852 BINARY_OP (&&);
8853 BINARY_OP (||);
8854 UNARY_OP (~);
8855 UNARY_OP (!);
8856 BINARY_OP (*);
8857 BINARY_OP_HEAD (/);
8858 if (b == 0)
8859 {
8860 _bfd_error_handler (_("division by zero"));
8861 bfd_set_error (bfd_error_bad_value);
8862 return FALSE;
8863 }
8864 BINARY_OP_TAIL (/);
8865 BINARY_OP_HEAD (%);
8866 if (b == 0)
8867 {
8868 _bfd_error_handler (_("division by zero"));
8869 bfd_set_error (bfd_error_bad_value);
8870 return FALSE;
8871 }
8872 BINARY_OP_TAIL (%);
8873 BINARY_OP (^);
8874 BINARY_OP (|);
8875 BINARY_OP (&);
8876 BINARY_OP (+);
8877 BINARY_OP (-);
8878 BINARY_OP (<);
8879 BINARY_OP (>);
8880 #undef UNARY_OP
8881 #undef BINARY_OP
8882 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8883 bfd_set_error (bfd_error_invalid_operation);
8884 return FALSE;
8885 }
8886 }
8887
8888 static void
8889 put_value (bfd_vma size,
8890 unsigned long chunksz,
8891 bfd *input_bfd,
8892 bfd_vma x,
8893 bfd_byte *location)
8894 {
8895 location += (size - chunksz);
8896
8897 for (; size; size -= chunksz, location -= chunksz)
8898 {
8899 switch (chunksz)
8900 {
8901 case 1:
8902 bfd_put_8 (input_bfd, x, location);
8903 x >>= 8;
8904 break;
8905 case 2:
8906 bfd_put_16 (input_bfd, x, location);
8907 x >>= 16;
8908 break;
8909 case 4:
8910 bfd_put_32 (input_bfd, x, location);
8911 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8912 x >>= 16;
8913 x >>= 16;
8914 break;
8915 #ifdef BFD64
8916 case 8:
8917 bfd_put_64 (input_bfd, x, location);
8918 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8919 x >>= 32;
8920 x >>= 32;
8921 break;
8922 #endif
8923 default:
8924 abort ();
8925 break;
8926 }
8927 }
8928 }
8929
8930 static bfd_vma
8931 get_value (bfd_vma size,
8932 unsigned long chunksz,
8933 bfd *input_bfd,
8934 bfd_byte *location)
8935 {
8936 int shift;
8937 bfd_vma x = 0;
8938
8939 /* Sanity checks. */
8940 BFD_ASSERT (chunksz <= sizeof (x)
8941 && size >= chunksz
8942 && chunksz != 0
8943 && (size % chunksz) == 0
8944 && input_bfd != NULL
8945 && location != NULL);
8946
8947 if (chunksz == sizeof (x))
8948 {
8949 BFD_ASSERT (size == chunksz);
8950
8951 /* Make sure that we do not perform an undefined shift operation.
8952 We know that size == chunksz so there will only be one iteration
8953 of the loop below. */
8954 shift = 0;
8955 }
8956 else
8957 shift = 8 * chunksz;
8958
8959 for (; size; size -= chunksz, location += chunksz)
8960 {
8961 switch (chunksz)
8962 {
8963 case 1:
8964 x = (x << shift) | bfd_get_8 (input_bfd, location);
8965 break;
8966 case 2:
8967 x = (x << shift) | bfd_get_16 (input_bfd, location);
8968 break;
8969 case 4:
8970 x = (x << shift) | bfd_get_32 (input_bfd, location);
8971 break;
8972 #ifdef BFD64
8973 case 8:
8974 x = (x << shift) | bfd_get_64 (input_bfd, location);
8975 break;
8976 #endif
8977 default:
8978 abort ();
8979 }
8980 }
8981 return x;
8982 }
8983
8984 static void
8985 decode_complex_addend (unsigned long *start, /* in bits */
8986 unsigned long *oplen, /* in bits */
8987 unsigned long *len, /* in bits */
8988 unsigned long *wordsz, /* in bytes */
8989 unsigned long *chunksz, /* in bytes */
8990 unsigned long *lsb0_p,
8991 unsigned long *signed_p,
8992 unsigned long *trunc_p,
8993 unsigned long encoded)
8994 {
8995 * start = encoded & 0x3F;
8996 * len = (encoded >> 6) & 0x3F;
8997 * oplen = (encoded >> 12) & 0x3F;
8998 * wordsz = (encoded >> 18) & 0xF;
8999 * chunksz = (encoded >> 22) & 0xF;
9000 * lsb0_p = (encoded >> 27) & 1;
9001 * signed_p = (encoded >> 28) & 1;
9002 * trunc_p = (encoded >> 29) & 1;
9003 }
9004
9005 bfd_reloc_status_type
9006 bfd_elf_perform_complex_relocation (bfd *input_bfd,
9007 asection *input_section,
9008 bfd_byte *contents,
9009 Elf_Internal_Rela *rel,
9010 bfd_vma relocation)
9011 {
9012 bfd_vma shift, x, mask;
9013 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
9014 bfd_reloc_status_type r;
9015 bfd_size_type octets;
9016
9017 /* Perform this reloc, since it is complex.
9018 (this is not to say that it necessarily refers to a complex
9019 symbol; merely that it is a self-describing CGEN based reloc.
9020 i.e. the addend has the complete reloc information (bit start, end,
9021 word size, etc) encoded within it.). */
9022
9023 decode_complex_addend (&start, &oplen, &len, &wordsz,
9024 &chunksz, &lsb0_p, &signed_p,
9025 &trunc_p, rel->r_addend);
9026
9027 mask = (((1L << (len - 1)) - 1) << 1) | 1;
9028
9029 if (lsb0_p)
9030 shift = (start + 1) - len;
9031 else
9032 shift = (8 * wordsz) - (start + len);
9033
9034 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
9035 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
9036
9037 #ifdef DEBUG
9038 printf ("Doing complex reloc: "
9039 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
9040 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
9041 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
9042 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
9043 oplen, (unsigned long) x, (unsigned long) mask,
9044 (unsigned long) relocation);
9045 #endif
9046
9047 r = bfd_reloc_ok;
9048 if (! trunc_p)
9049 /* Now do an overflow check. */
9050 r = bfd_check_overflow ((signed_p
9051 ? complain_overflow_signed
9052 : complain_overflow_unsigned),
9053 len, 0, (8 * wordsz),
9054 relocation);
9055
9056 /* Do the deed. */
9057 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
9058
9059 #ifdef DEBUG
9060 printf (" relocation: %8.8lx\n"
9061 " shifted mask: %8.8lx\n"
9062 " shifted/masked reloc: %8.8lx\n"
9063 " result: %8.8lx\n",
9064 (unsigned long) relocation, (unsigned long) (mask << shift),
9065 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
9066 #endif
9067 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
9068 return r;
9069 }
9070
9071 /* Functions to read r_offset from external (target order) reloc
9072 entry. Faster than bfd_getl32 et al, because we let the compiler
9073 know the value is aligned. */
9074
9075 static bfd_vma
9076 ext32l_r_offset (const void *p)
9077 {
9078 union aligned32
9079 {
9080 uint32_t v;
9081 unsigned char c[4];
9082 };
9083 const union aligned32 *a
9084 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9085
9086 uint32_t aval = ( (uint32_t) a->c[0]
9087 | (uint32_t) a->c[1] << 8
9088 | (uint32_t) a->c[2] << 16
9089 | (uint32_t) a->c[3] << 24);
9090 return aval;
9091 }
9092
9093 static bfd_vma
9094 ext32b_r_offset (const void *p)
9095 {
9096 union aligned32
9097 {
9098 uint32_t v;
9099 unsigned char c[4];
9100 };
9101 const union aligned32 *a
9102 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9103
9104 uint32_t aval = ( (uint32_t) a->c[0] << 24
9105 | (uint32_t) a->c[1] << 16
9106 | (uint32_t) a->c[2] << 8
9107 | (uint32_t) a->c[3]);
9108 return aval;
9109 }
9110
9111 #ifdef BFD_HOST_64_BIT
9112 static bfd_vma
9113 ext64l_r_offset (const void *p)
9114 {
9115 union aligned64
9116 {
9117 uint64_t v;
9118 unsigned char c[8];
9119 };
9120 const union aligned64 *a
9121 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9122
9123 uint64_t aval = ( (uint64_t) a->c[0]
9124 | (uint64_t) a->c[1] << 8
9125 | (uint64_t) a->c[2] << 16
9126 | (uint64_t) a->c[3] << 24
9127 | (uint64_t) a->c[4] << 32
9128 | (uint64_t) a->c[5] << 40
9129 | (uint64_t) a->c[6] << 48
9130 | (uint64_t) a->c[7] << 56);
9131 return aval;
9132 }
9133
9134 static bfd_vma
9135 ext64b_r_offset (const void *p)
9136 {
9137 union aligned64
9138 {
9139 uint64_t v;
9140 unsigned char c[8];
9141 };
9142 const union aligned64 *a
9143 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9144
9145 uint64_t aval = ( (uint64_t) a->c[0] << 56
9146 | (uint64_t) a->c[1] << 48
9147 | (uint64_t) a->c[2] << 40
9148 | (uint64_t) a->c[3] << 32
9149 | (uint64_t) a->c[4] << 24
9150 | (uint64_t) a->c[5] << 16
9151 | (uint64_t) a->c[6] << 8
9152 | (uint64_t) a->c[7]);
9153 return aval;
9154 }
9155 #endif
9156
9157 /* When performing a relocatable link, the input relocations are
9158 preserved. But, if they reference global symbols, the indices
9159 referenced must be updated. Update all the relocations found in
9160 RELDATA. */
9161
9162 static bfd_boolean
9163 elf_link_adjust_relocs (bfd *abfd,
9164 asection *sec,
9165 struct bfd_elf_section_reloc_data *reldata,
9166 bfd_boolean sort,
9167 struct bfd_link_info *info)
9168 {
9169 unsigned int i;
9170 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9171 bfd_byte *erela;
9172 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9173 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9174 bfd_vma r_type_mask;
9175 int r_sym_shift;
9176 unsigned int count = reldata->count;
9177 struct elf_link_hash_entry **rel_hash = reldata->hashes;
9178
9179 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
9180 {
9181 swap_in = bed->s->swap_reloc_in;
9182 swap_out = bed->s->swap_reloc_out;
9183 }
9184 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
9185 {
9186 swap_in = bed->s->swap_reloca_in;
9187 swap_out = bed->s->swap_reloca_out;
9188 }
9189 else
9190 abort ();
9191
9192 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
9193 abort ();
9194
9195 if (bed->s->arch_size == 32)
9196 {
9197 r_type_mask = 0xff;
9198 r_sym_shift = 8;
9199 }
9200 else
9201 {
9202 r_type_mask = 0xffffffff;
9203 r_sym_shift = 32;
9204 }
9205
9206 erela = reldata->hdr->contents;
9207 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
9208 {
9209 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
9210 unsigned int j;
9211
9212 if (*rel_hash == NULL)
9213 continue;
9214
9215 if ((*rel_hash)->indx == -2
9216 && info->gc_sections
9217 && ! info->gc_keep_exported)
9218 {
9219 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
9220 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
9221 abfd, sec,
9222 (*rel_hash)->root.root.string);
9223 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
9224 abfd, sec);
9225 bfd_set_error (bfd_error_invalid_operation);
9226 return FALSE;
9227 }
9228 BFD_ASSERT ((*rel_hash)->indx >= 0);
9229
9230 (*swap_in) (abfd, erela, irela);
9231 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
9232 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
9233 | (irela[j].r_info & r_type_mask));
9234 (*swap_out) (abfd, irela, erela);
9235 }
9236
9237 if (bed->elf_backend_update_relocs)
9238 (*bed->elf_backend_update_relocs) (sec, reldata);
9239
9240 if (sort && count != 0)
9241 {
9242 bfd_vma (*ext_r_off) (const void *);
9243 bfd_vma r_off;
9244 size_t elt_size;
9245 bfd_byte *base, *end, *p, *loc;
9246 bfd_byte *buf = NULL;
9247
9248 if (bed->s->arch_size == 32)
9249 {
9250 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9251 ext_r_off = ext32l_r_offset;
9252 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9253 ext_r_off = ext32b_r_offset;
9254 else
9255 abort ();
9256 }
9257 else
9258 {
9259 #ifdef BFD_HOST_64_BIT
9260 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9261 ext_r_off = ext64l_r_offset;
9262 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9263 ext_r_off = ext64b_r_offset;
9264 else
9265 #endif
9266 abort ();
9267 }
9268
9269 /* Must use a stable sort here. A modified insertion sort,
9270 since the relocs are mostly sorted already. */
9271 elt_size = reldata->hdr->sh_entsize;
9272 base = reldata->hdr->contents;
9273 end = base + count * elt_size;
9274 if (elt_size > sizeof (Elf64_External_Rela))
9275 abort ();
9276
9277 /* Ensure the first element is lowest. This acts as a sentinel,
9278 speeding the main loop below. */
9279 r_off = (*ext_r_off) (base);
9280 for (p = loc = base; (p += elt_size) < end; )
9281 {
9282 bfd_vma r_off2 = (*ext_r_off) (p);
9283 if (r_off > r_off2)
9284 {
9285 r_off = r_off2;
9286 loc = p;
9287 }
9288 }
9289 if (loc != base)
9290 {
9291 /* Don't just swap *base and *loc as that changes the order
9292 of the original base[0] and base[1] if they happen to
9293 have the same r_offset. */
9294 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9295 memcpy (onebuf, loc, elt_size);
9296 memmove (base + elt_size, base, loc - base);
9297 memcpy (base, onebuf, elt_size);
9298 }
9299
9300 for (p = base + elt_size; (p += elt_size) < end; )
9301 {
9302 /* base to p is sorted, *p is next to insert. */
9303 r_off = (*ext_r_off) (p);
9304 /* Search the sorted region for location to insert. */
9305 loc = p - elt_size;
9306 while (r_off < (*ext_r_off) (loc))
9307 loc -= elt_size;
9308 loc += elt_size;
9309 if (loc != p)
9310 {
9311 /* Chances are there is a run of relocs to insert here,
9312 from one of more input files. Files are not always
9313 linked in order due to the way elf_link_input_bfd is
9314 called. See pr17666. */
9315 size_t sortlen = p - loc;
9316 bfd_vma r_off2 = (*ext_r_off) (loc);
9317 size_t runlen = elt_size;
9318 size_t buf_size = 96 * 1024;
9319 while (p + runlen < end
9320 && (sortlen <= buf_size
9321 || runlen + elt_size <= buf_size)
9322 && r_off2 > (*ext_r_off) (p + runlen))
9323 runlen += elt_size;
9324 if (buf == NULL)
9325 {
9326 buf = bfd_malloc (buf_size);
9327 if (buf == NULL)
9328 return FALSE;
9329 }
9330 if (runlen < sortlen)
9331 {
9332 memcpy (buf, p, runlen);
9333 memmove (loc + runlen, loc, sortlen);
9334 memcpy (loc, buf, runlen);
9335 }
9336 else
9337 {
9338 memcpy (buf, loc, sortlen);
9339 memmove (loc, p, runlen);
9340 memcpy (loc + runlen, buf, sortlen);
9341 }
9342 p += runlen - elt_size;
9343 }
9344 }
9345 /* Hashes are no longer valid. */
9346 free (reldata->hashes);
9347 reldata->hashes = NULL;
9348 free (buf);
9349 }
9350 return TRUE;
9351 }
9352
9353 struct elf_link_sort_rela
9354 {
9355 union {
9356 bfd_vma offset;
9357 bfd_vma sym_mask;
9358 } u;
9359 enum elf_reloc_type_class type;
9360 /* We use this as an array of size int_rels_per_ext_rel. */
9361 Elf_Internal_Rela rela[1];
9362 };
9363
9364 /* qsort stability here and for cmp2 is only an issue if multiple
9365 dynamic relocations are emitted at the same address. But targets
9366 that apply a series of dynamic relocations each operating on the
9367 result of the prior relocation can't use -z combreloc as
9368 implemented anyway. Such schemes tend to be broken by sorting on
9369 symbol index. That leaves dynamic NONE relocs as the only other
9370 case where ld might emit multiple relocs at the same address, and
9371 those are only emitted due to target bugs. */
9372
9373 static int
9374 elf_link_sort_cmp1 (const void *A, const void *B)
9375 {
9376 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9377 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9378 int relativea, relativeb;
9379
9380 relativea = a->type == reloc_class_relative;
9381 relativeb = b->type == reloc_class_relative;
9382
9383 if (relativea < relativeb)
9384 return 1;
9385 if (relativea > relativeb)
9386 return -1;
9387 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9388 return -1;
9389 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9390 return 1;
9391 if (a->rela->r_offset < b->rela->r_offset)
9392 return -1;
9393 if (a->rela->r_offset > b->rela->r_offset)
9394 return 1;
9395 return 0;
9396 }
9397
9398 static int
9399 elf_link_sort_cmp2 (const void *A, const void *B)
9400 {
9401 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9402 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9403
9404 if (a->type < b->type)
9405 return -1;
9406 if (a->type > b->type)
9407 return 1;
9408 if (a->u.offset < b->u.offset)
9409 return -1;
9410 if (a->u.offset > b->u.offset)
9411 return 1;
9412 if (a->rela->r_offset < b->rela->r_offset)
9413 return -1;
9414 if (a->rela->r_offset > b->rela->r_offset)
9415 return 1;
9416 return 0;
9417 }
9418
9419 static size_t
9420 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9421 {
9422 asection *dynamic_relocs;
9423 asection *rela_dyn;
9424 asection *rel_dyn;
9425 bfd_size_type count, size;
9426 size_t i, ret, sort_elt, ext_size;
9427 bfd_byte *sort, *s_non_relative, *p;
9428 struct elf_link_sort_rela *sq;
9429 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9430 int i2e = bed->s->int_rels_per_ext_rel;
9431 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9432 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9433 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9434 struct bfd_link_order *lo;
9435 bfd_vma r_sym_mask;
9436 bfd_boolean use_rela;
9437
9438 /* Find a dynamic reloc section. */
9439 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9440 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9441 if (rela_dyn != NULL && rela_dyn->size > 0
9442 && rel_dyn != NULL && rel_dyn->size > 0)
9443 {
9444 bfd_boolean use_rela_initialised = FALSE;
9445
9446 /* This is just here to stop gcc from complaining.
9447 Its initialization checking code is not perfect. */
9448 use_rela = TRUE;
9449
9450 /* Both sections are present. Examine the sizes
9451 of the indirect sections to help us choose. */
9452 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9453 if (lo->type == bfd_indirect_link_order)
9454 {
9455 asection *o = lo->u.indirect.section;
9456
9457 if ((o->size % bed->s->sizeof_rela) == 0)
9458 {
9459 if ((o->size % bed->s->sizeof_rel) == 0)
9460 /* Section size is divisible by both rel and rela sizes.
9461 It is of no help to us. */
9462 ;
9463 else
9464 {
9465 /* Section size is only divisible by rela. */
9466 if (use_rela_initialised && !use_rela)
9467 {
9468 _bfd_error_handler (_("%pB: unable to sort relocs - "
9469 "they are in more than one size"),
9470 abfd);
9471 bfd_set_error (bfd_error_invalid_operation);
9472 return 0;
9473 }
9474 else
9475 {
9476 use_rela = TRUE;
9477 use_rela_initialised = TRUE;
9478 }
9479 }
9480 }
9481 else if ((o->size % bed->s->sizeof_rel) == 0)
9482 {
9483 /* Section size is only divisible by rel. */
9484 if (use_rela_initialised && use_rela)
9485 {
9486 _bfd_error_handler (_("%pB: unable to sort relocs - "
9487 "they are in more than one size"),
9488 abfd);
9489 bfd_set_error (bfd_error_invalid_operation);
9490 return 0;
9491 }
9492 else
9493 {
9494 use_rela = FALSE;
9495 use_rela_initialised = TRUE;
9496 }
9497 }
9498 else
9499 {
9500 /* The section size is not divisible by either -
9501 something is wrong. */
9502 _bfd_error_handler (_("%pB: unable to sort relocs - "
9503 "they are of an unknown size"), abfd);
9504 bfd_set_error (bfd_error_invalid_operation);
9505 return 0;
9506 }
9507 }
9508
9509 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9510 if (lo->type == bfd_indirect_link_order)
9511 {
9512 asection *o = lo->u.indirect.section;
9513
9514 if ((o->size % bed->s->sizeof_rela) == 0)
9515 {
9516 if ((o->size % bed->s->sizeof_rel) == 0)
9517 /* Section size is divisible by both rel and rela sizes.
9518 It is of no help to us. */
9519 ;
9520 else
9521 {
9522 /* Section size is only divisible by rela. */
9523 if (use_rela_initialised && !use_rela)
9524 {
9525 _bfd_error_handler (_("%pB: unable to sort relocs - "
9526 "they are in more than one size"),
9527 abfd);
9528 bfd_set_error (bfd_error_invalid_operation);
9529 return 0;
9530 }
9531 else
9532 {
9533 use_rela = TRUE;
9534 use_rela_initialised = TRUE;
9535 }
9536 }
9537 }
9538 else if ((o->size % bed->s->sizeof_rel) == 0)
9539 {
9540 /* Section size is only divisible by rel. */
9541 if (use_rela_initialised && use_rela)
9542 {
9543 _bfd_error_handler (_("%pB: unable to sort relocs - "
9544 "they are in more than one size"),
9545 abfd);
9546 bfd_set_error (bfd_error_invalid_operation);
9547 return 0;
9548 }
9549 else
9550 {
9551 use_rela = FALSE;
9552 use_rela_initialised = TRUE;
9553 }
9554 }
9555 else
9556 {
9557 /* The section size is not divisible by either -
9558 something is wrong. */
9559 _bfd_error_handler (_("%pB: unable to sort relocs - "
9560 "they are of an unknown size"), abfd);
9561 bfd_set_error (bfd_error_invalid_operation);
9562 return 0;
9563 }
9564 }
9565
9566 if (! use_rela_initialised)
9567 /* Make a guess. */
9568 use_rela = TRUE;
9569 }
9570 else if (rela_dyn != NULL && rela_dyn->size > 0)
9571 use_rela = TRUE;
9572 else if (rel_dyn != NULL && rel_dyn->size > 0)
9573 use_rela = FALSE;
9574 else
9575 return 0;
9576
9577 if (use_rela)
9578 {
9579 dynamic_relocs = rela_dyn;
9580 ext_size = bed->s->sizeof_rela;
9581 swap_in = bed->s->swap_reloca_in;
9582 swap_out = bed->s->swap_reloca_out;
9583 }
9584 else
9585 {
9586 dynamic_relocs = rel_dyn;
9587 ext_size = bed->s->sizeof_rel;
9588 swap_in = bed->s->swap_reloc_in;
9589 swap_out = bed->s->swap_reloc_out;
9590 }
9591
9592 size = 0;
9593 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9594 if (lo->type == bfd_indirect_link_order)
9595 size += lo->u.indirect.section->size;
9596
9597 if (size != dynamic_relocs->size)
9598 return 0;
9599
9600 sort_elt = (sizeof (struct elf_link_sort_rela)
9601 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9602
9603 count = dynamic_relocs->size / ext_size;
9604 if (count == 0)
9605 return 0;
9606 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9607
9608 if (sort == NULL)
9609 {
9610 (*info->callbacks->warning)
9611 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9612 return 0;
9613 }
9614
9615 if (bed->s->arch_size == 32)
9616 r_sym_mask = ~(bfd_vma) 0xff;
9617 else
9618 r_sym_mask = ~(bfd_vma) 0xffffffff;
9619
9620 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9621 if (lo->type == bfd_indirect_link_order)
9622 {
9623 bfd_byte *erel, *erelend;
9624 asection *o = lo->u.indirect.section;
9625
9626 if (o->contents == NULL && o->size != 0)
9627 {
9628 /* This is a reloc section that is being handled as a normal
9629 section. See bfd_section_from_shdr. We can't combine
9630 relocs in this case. */
9631 free (sort);
9632 return 0;
9633 }
9634 erel = o->contents;
9635 erelend = o->contents + o->size;
9636 p = sort + o->output_offset * opb / ext_size * sort_elt;
9637
9638 while (erel < erelend)
9639 {
9640 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9641
9642 (*swap_in) (abfd, erel, s->rela);
9643 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9644 s->u.sym_mask = r_sym_mask;
9645 p += sort_elt;
9646 erel += ext_size;
9647 }
9648 }
9649
9650 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9651
9652 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9653 {
9654 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9655 if (s->type != reloc_class_relative)
9656 break;
9657 }
9658 ret = i;
9659 s_non_relative = p;
9660
9661 sq = (struct elf_link_sort_rela *) s_non_relative;
9662 for (; i < count; i++, p += sort_elt)
9663 {
9664 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9665 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9666 sq = sp;
9667 sp->u.offset = sq->rela->r_offset;
9668 }
9669
9670 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9671
9672 struct elf_link_hash_table *htab = elf_hash_table (info);
9673 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9674 {
9675 /* We have plt relocs in .rela.dyn. */
9676 sq = (struct elf_link_sort_rela *) sort;
9677 for (i = 0; i < count; i++)
9678 if (sq[count - i - 1].type != reloc_class_plt)
9679 break;
9680 if (i != 0 && htab->srelplt->size == i * ext_size)
9681 {
9682 struct bfd_link_order **plo;
9683 /* Put srelplt link_order last. This is so the output_offset
9684 set in the next loop is correct for DT_JMPREL. */
9685 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9686 if ((*plo)->type == bfd_indirect_link_order
9687 && (*plo)->u.indirect.section == htab->srelplt)
9688 {
9689 lo = *plo;
9690 *plo = lo->next;
9691 }
9692 else
9693 plo = &(*plo)->next;
9694 *plo = lo;
9695 lo->next = NULL;
9696 dynamic_relocs->map_tail.link_order = lo;
9697 }
9698 }
9699
9700 p = sort;
9701 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9702 if (lo->type == bfd_indirect_link_order)
9703 {
9704 bfd_byte *erel, *erelend;
9705 asection *o = lo->u.indirect.section;
9706
9707 erel = o->contents;
9708 erelend = o->contents + o->size;
9709 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9710 while (erel < erelend)
9711 {
9712 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9713 (*swap_out) (abfd, s->rela, erel);
9714 p += sort_elt;
9715 erel += ext_size;
9716 }
9717 }
9718
9719 free (sort);
9720 *psec = dynamic_relocs;
9721 return ret;
9722 }
9723
9724 /* Add a symbol to the output symbol string table. */
9725
9726 static int
9727 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9728 const char *name,
9729 Elf_Internal_Sym *elfsym,
9730 asection *input_sec,
9731 struct elf_link_hash_entry *h)
9732 {
9733 int (*output_symbol_hook)
9734 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9735 struct elf_link_hash_entry *);
9736 struct elf_link_hash_table *hash_table;
9737 const struct elf_backend_data *bed;
9738 bfd_size_type strtabsize;
9739
9740 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9741
9742 bed = get_elf_backend_data (flinfo->output_bfd);
9743 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9744 if (output_symbol_hook != NULL)
9745 {
9746 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9747 if (ret != 1)
9748 return ret;
9749 }
9750
9751 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9752 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9753 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9754 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9755
9756 if (name == NULL
9757 || *name == '\0'
9758 || (input_sec->flags & SEC_EXCLUDE))
9759 elfsym->st_name = (unsigned long) -1;
9760 else
9761 {
9762 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9763 to get the final offset for st_name. */
9764 char *versioned_name = (char *) name;
9765 if (h != NULL)
9766 {
9767 if (h->versioned == versioned && h->def_dynamic)
9768 {
9769 /* Keep only one '@' for versioned symbols defined in
9770 shared objects. */
9771 char *version = strrchr (name, ELF_VER_CHR);
9772 char *base_end = strchr (name, ELF_VER_CHR);
9773 if (version != base_end)
9774 {
9775 size_t base_len;
9776 size_t len = strlen (name);
9777 versioned_name = bfd_alloc (flinfo->output_bfd, len);
9778 if (versioned_name == NULL)
9779 return 0;
9780 base_len = base_end - name;
9781 memcpy (versioned_name, name, base_len);
9782 memcpy (versioned_name + base_len, version,
9783 len - base_len);
9784 }
9785 }
9786 }
9787 else if (flinfo->info->unique_symbol
9788 && ELF_ST_BIND (elfsym->st_info) == STB_LOCAL)
9789 {
9790 struct local_hash_entry *lh;
9791 switch (ELF_ST_TYPE (elfsym->st_info))
9792 {
9793 case STT_FILE:
9794 case STT_SECTION:
9795 break;
9796 default:
9797 lh = (struct local_hash_entry *) bfd_hash_lookup
9798 (&flinfo->local_hash_table, name, TRUE, FALSE);
9799 if (lh == NULL)
9800 return 0;
9801 if (lh->count)
9802 {
9803 /* Append ".COUNT" to duplicated local symbols. */
9804 size_t count_len;
9805 size_t base_len = lh->size;
9806 char buf[30];
9807 sprintf (buf, "%lx", lh->count);
9808 if (!base_len)
9809 {
9810 base_len = strlen (name);
9811 lh->size = base_len;
9812 }
9813 count_len = strlen (buf);
9814 versioned_name = bfd_alloc (flinfo->output_bfd,
9815 base_len + count_len + 2);
9816 if (versioned_name == NULL)
9817 return 0;
9818 memcpy (versioned_name, name, base_len);
9819 versioned_name[base_len] = '.';
9820 memcpy (versioned_name + base_len + 1, buf,
9821 count_len + 1);
9822 }
9823 lh->count++;
9824 break;
9825 }
9826 }
9827 elfsym->st_name
9828 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9829 versioned_name, FALSE);
9830 if (elfsym->st_name == (unsigned long) -1)
9831 return 0;
9832 }
9833
9834 hash_table = elf_hash_table (flinfo->info);
9835 strtabsize = hash_table->strtabsize;
9836 if (strtabsize <= hash_table->strtabcount)
9837 {
9838 strtabsize += strtabsize;
9839 hash_table->strtabsize = strtabsize;
9840 strtabsize *= sizeof (*hash_table->strtab);
9841 hash_table->strtab
9842 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9843 strtabsize);
9844 if (hash_table->strtab == NULL)
9845 return 0;
9846 }
9847 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9848 hash_table->strtab[hash_table->strtabcount].dest_index
9849 = hash_table->strtabcount;
9850 hash_table->strtab[hash_table->strtabcount].destshndx_index
9851 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9852
9853 flinfo->output_bfd->symcount += 1;
9854 hash_table->strtabcount += 1;
9855
9856 return 1;
9857 }
9858
9859 /* Swap symbols out to the symbol table and flush the output symbols to
9860 the file. */
9861
9862 static bfd_boolean
9863 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9864 {
9865 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9866 size_t amt;
9867 size_t i;
9868 const struct elf_backend_data *bed;
9869 bfd_byte *symbuf;
9870 Elf_Internal_Shdr *hdr;
9871 file_ptr pos;
9872 bfd_boolean ret;
9873
9874 if (!hash_table->strtabcount)
9875 return TRUE;
9876
9877 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9878
9879 bed = get_elf_backend_data (flinfo->output_bfd);
9880
9881 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9882 symbuf = (bfd_byte *) bfd_malloc (amt);
9883 if (symbuf == NULL)
9884 return FALSE;
9885
9886 if (flinfo->symshndxbuf)
9887 {
9888 amt = sizeof (Elf_External_Sym_Shndx);
9889 amt *= bfd_get_symcount (flinfo->output_bfd);
9890 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9891 if (flinfo->symshndxbuf == NULL)
9892 {
9893 free (symbuf);
9894 return FALSE;
9895 }
9896 }
9897
9898 /* Now swap out the symbols. */
9899 for (i = 0; i < hash_table->strtabcount; i++)
9900 {
9901 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9902 if (elfsym->sym.st_name == (unsigned long) -1)
9903 elfsym->sym.st_name = 0;
9904 else
9905 elfsym->sym.st_name
9906 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9907 elfsym->sym.st_name);
9908
9909 /* Inform the linker of the addition of this symbol. */
9910
9911 if (flinfo->info->callbacks->ctf_new_symbol)
9912 flinfo->info->callbacks->ctf_new_symbol (elfsym->dest_index,
9913 &elfsym->sym);
9914
9915 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9916 ((bfd_byte *) symbuf
9917 + (elfsym->dest_index
9918 * bed->s->sizeof_sym)),
9919 (flinfo->symshndxbuf
9920 + elfsym->destshndx_index));
9921 }
9922
9923 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9924 pos = hdr->sh_offset + hdr->sh_size;
9925 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9926 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9927 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9928 {
9929 hdr->sh_size += amt;
9930 ret = TRUE;
9931 }
9932 else
9933 ret = FALSE;
9934
9935 free (symbuf);
9936
9937 free (hash_table->strtab);
9938 hash_table->strtab = NULL;
9939
9940 return ret;
9941 }
9942
9943 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9944
9945 static bfd_boolean
9946 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9947 {
9948 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9949 && sym->st_shndx < SHN_LORESERVE)
9950 {
9951 /* The gABI doesn't support dynamic symbols in output sections
9952 beyond 64k. */
9953 _bfd_error_handler
9954 /* xgettext:c-format */
9955 (_("%pB: too many sections: %d (>= %d)"),
9956 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9957 bfd_set_error (bfd_error_nonrepresentable_section);
9958 return FALSE;
9959 }
9960 return TRUE;
9961 }
9962
9963 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9964 allowing an unsatisfied unversioned symbol in the DSO to match a
9965 versioned symbol that would normally require an explicit version.
9966 We also handle the case that a DSO references a hidden symbol
9967 which may be satisfied by a versioned symbol in another DSO. */
9968
9969 static bfd_boolean
9970 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9971 const struct elf_backend_data *bed,
9972 struct elf_link_hash_entry *h)
9973 {
9974 bfd *abfd;
9975 struct elf_link_loaded_list *loaded;
9976
9977 if (!is_elf_hash_table (info->hash))
9978 return FALSE;
9979
9980 /* Check indirect symbol. */
9981 while (h->root.type == bfd_link_hash_indirect)
9982 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9983
9984 switch (h->root.type)
9985 {
9986 default:
9987 abfd = NULL;
9988 break;
9989
9990 case bfd_link_hash_undefined:
9991 case bfd_link_hash_undefweak:
9992 abfd = h->root.u.undef.abfd;
9993 if (abfd == NULL
9994 || (abfd->flags & DYNAMIC) == 0
9995 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9996 return FALSE;
9997 break;
9998
9999 case bfd_link_hash_defined:
10000 case bfd_link_hash_defweak:
10001 abfd = h->root.u.def.section->owner;
10002 break;
10003
10004 case bfd_link_hash_common:
10005 abfd = h->root.u.c.p->section->owner;
10006 break;
10007 }
10008 BFD_ASSERT (abfd != NULL);
10009
10010 for (loaded = elf_hash_table (info)->dyn_loaded;
10011 loaded != NULL;
10012 loaded = loaded->next)
10013 {
10014 bfd *input;
10015 Elf_Internal_Shdr *hdr;
10016 size_t symcount;
10017 size_t extsymcount;
10018 size_t extsymoff;
10019 Elf_Internal_Shdr *versymhdr;
10020 Elf_Internal_Sym *isym;
10021 Elf_Internal_Sym *isymend;
10022 Elf_Internal_Sym *isymbuf;
10023 Elf_External_Versym *ever;
10024 Elf_External_Versym *extversym;
10025
10026 input = loaded->abfd;
10027
10028 /* We check each DSO for a possible hidden versioned definition. */
10029 if (input == abfd
10030 || elf_dynversym (input) == 0)
10031 continue;
10032
10033 hdr = &elf_tdata (input)->dynsymtab_hdr;
10034
10035 symcount = hdr->sh_size / bed->s->sizeof_sym;
10036 if (elf_bad_symtab (input))
10037 {
10038 extsymcount = symcount;
10039 extsymoff = 0;
10040 }
10041 else
10042 {
10043 extsymcount = symcount - hdr->sh_info;
10044 extsymoff = hdr->sh_info;
10045 }
10046
10047 if (extsymcount == 0)
10048 continue;
10049
10050 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
10051 NULL, NULL, NULL);
10052 if (isymbuf == NULL)
10053 return FALSE;
10054
10055 /* Read in any version definitions. */
10056 versymhdr = &elf_tdata (input)->dynversym_hdr;
10057 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
10058 || (extversym = (Elf_External_Versym *)
10059 _bfd_malloc_and_read (input, versymhdr->sh_size,
10060 versymhdr->sh_size)) == NULL)
10061 {
10062 free (isymbuf);
10063 return FALSE;
10064 }
10065
10066 ever = extversym + extsymoff;
10067 isymend = isymbuf + extsymcount;
10068 for (isym = isymbuf; isym < isymend; isym++, ever++)
10069 {
10070 const char *name;
10071 Elf_Internal_Versym iver;
10072 unsigned short version_index;
10073
10074 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
10075 || isym->st_shndx == SHN_UNDEF)
10076 continue;
10077
10078 name = bfd_elf_string_from_elf_section (input,
10079 hdr->sh_link,
10080 isym->st_name);
10081 if (strcmp (name, h->root.root.string) != 0)
10082 continue;
10083
10084 _bfd_elf_swap_versym_in (input, ever, &iver);
10085
10086 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
10087 && !(h->def_regular
10088 && h->forced_local))
10089 {
10090 /* If we have a non-hidden versioned sym, then it should
10091 have provided a definition for the undefined sym unless
10092 it is defined in a non-shared object and forced local.
10093 */
10094 abort ();
10095 }
10096
10097 version_index = iver.vs_vers & VERSYM_VERSION;
10098 if (version_index == 1 || version_index == 2)
10099 {
10100 /* This is the base or first version. We can use it. */
10101 free (extversym);
10102 free (isymbuf);
10103 return TRUE;
10104 }
10105 }
10106
10107 free (extversym);
10108 free (isymbuf);
10109 }
10110
10111 return FALSE;
10112 }
10113
10114 /* Convert ELF common symbol TYPE. */
10115
10116 static int
10117 elf_link_convert_common_type (struct bfd_link_info *info, int type)
10118 {
10119 /* Commom symbol can only appear in relocatable link. */
10120 if (!bfd_link_relocatable (info))
10121 abort ();
10122 switch (info->elf_stt_common)
10123 {
10124 case unchanged:
10125 break;
10126 case elf_stt_common:
10127 type = STT_COMMON;
10128 break;
10129 case no_elf_stt_common:
10130 type = STT_OBJECT;
10131 break;
10132 }
10133 return type;
10134 }
10135
10136 /* Add an external symbol to the symbol table. This is called from
10137 the hash table traversal routine. When generating a shared object,
10138 we go through the symbol table twice. The first time we output
10139 anything that might have been forced to local scope in a version
10140 script. The second time we output the symbols that are still
10141 global symbols. */
10142
10143 static bfd_boolean
10144 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
10145 {
10146 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
10147 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
10148 struct elf_final_link_info *flinfo = eoinfo->flinfo;
10149 bfd_boolean strip;
10150 Elf_Internal_Sym sym;
10151 asection *input_sec;
10152 const struct elf_backend_data *bed;
10153 long indx;
10154 int ret;
10155 unsigned int type;
10156
10157 if (h->root.type == bfd_link_hash_warning)
10158 {
10159 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10160 if (h->root.type == bfd_link_hash_new)
10161 return TRUE;
10162 }
10163
10164 /* Decide whether to output this symbol in this pass. */
10165 if (eoinfo->localsyms)
10166 {
10167 if (!h->forced_local)
10168 return TRUE;
10169 }
10170 else
10171 {
10172 if (h->forced_local)
10173 return TRUE;
10174 }
10175
10176 bed = get_elf_backend_data (flinfo->output_bfd);
10177
10178 if (h->root.type == bfd_link_hash_undefined)
10179 {
10180 /* If we have an undefined symbol reference here then it must have
10181 come from a shared library that is being linked in. (Undefined
10182 references in regular files have already been handled unless
10183 they are in unreferenced sections which are removed by garbage
10184 collection). */
10185 bfd_boolean ignore_undef = FALSE;
10186
10187 /* Some symbols may be special in that the fact that they're
10188 undefined can be safely ignored - let backend determine that. */
10189 if (bed->elf_backend_ignore_undef_symbol)
10190 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
10191
10192 /* If we are reporting errors for this situation then do so now. */
10193 if (!ignore_undef
10194 && h->ref_dynamic_nonweak
10195 && (!h->ref_regular || flinfo->info->gc_sections)
10196 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
10197 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
10198 {
10199 flinfo->info->callbacks->undefined_symbol
10200 (flinfo->info, h->root.root.string,
10201 h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0,
10202 flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE
10203 && !flinfo->info->warn_unresolved_syms);
10204 }
10205
10206 /* Strip a global symbol defined in a discarded section. */
10207 if (h->indx == -3)
10208 return TRUE;
10209 }
10210
10211 /* We should also warn if a forced local symbol is referenced from
10212 shared libraries. */
10213 if (bfd_link_executable (flinfo->info)
10214 && h->forced_local
10215 && h->ref_dynamic
10216 && h->def_regular
10217 && !h->dynamic_def
10218 && h->ref_dynamic_nonweak
10219 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
10220 {
10221 bfd *def_bfd;
10222 const char *msg;
10223 struct elf_link_hash_entry *hi = h;
10224
10225 /* Check indirect symbol. */
10226 while (hi->root.type == bfd_link_hash_indirect)
10227 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
10228
10229 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
10230 /* xgettext:c-format */
10231 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
10232 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
10233 /* xgettext:c-format */
10234 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
10235 else
10236 /* xgettext:c-format */
10237 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
10238 def_bfd = flinfo->output_bfd;
10239 if (hi->root.u.def.section != bfd_abs_section_ptr)
10240 def_bfd = hi->root.u.def.section->owner;
10241 _bfd_error_handler (msg, flinfo->output_bfd,
10242 h->root.root.string, def_bfd);
10243 bfd_set_error (bfd_error_bad_value);
10244 eoinfo->failed = TRUE;
10245 return FALSE;
10246 }
10247
10248 /* We don't want to output symbols that have never been mentioned by
10249 a regular file, or that we have been told to strip. However, if
10250 h->indx is set to -2, the symbol is used by a reloc and we must
10251 output it. */
10252 strip = FALSE;
10253 if (h->indx == -2)
10254 ;
10255 else if ((h->def_dynamic
10256 || h->ref_dynamic
10257 || h->root.type == bfd_link_hash_new)
10258 && !h->def_regular
10259 && !h->ref_regular)
10260 strip = TRUE;
10261 else if (flinfo->info->strip == strip_all)
10262 strip = TRUE;
10263 else if (flinfo->info->strip == strip_some
10264 && bfd_hash_lookup (flinfo->info->keep_hash,
10265 h->root.root.string, FALSE, FALSE) == NULL)
10266 strip = TRUE;
10267 else if ((h->root.type == bfd_link_hash_defined
10268 || h->root.type == bfd_link_hash_defweak)
10269 && ((flinfo->info->strip_discarded
10270 && discarded_section (h->root.u.def.section))
10271 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
10272 && h->root.u.def.section->owner != NULL
10273 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
10274 strip = TRUE;
10275 else if ((h->root.type == bfd_link_hash_undefined
10276 || h->root.type == bfd_link_hash_undefweak)
10277 && h->root.u.undef.abfd != NULL
10278 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
10279 strip = TRUE;
10280
10281 type = h->type;
10282
10283 /* If we're stripping it, and it's not a dynamic symbol, there's
10284 nothing else to do. However, if it is a forced local symbol or
10285 an ifunc symbol we need to give the backend finish_dynamic_symbol
10286 function a chance to make it dynamic. */
10287 if (strip
10288 && h->dynindx == -1
10289 && type != STT_GNU_IFUNC
10290 && !h->forced_local)
10291 return TRUE;
10292
10293 sym.st_value = 0;
10294 sym.st_size = h->size;
10295 sym.st_other = h->other;
10296 switch (h->root.type)
10297 {
10298 default:
10299 case bfd_link_hash_new:
10300 case bfd_link_hash_warning:
10301 abort ();
10302 return FALSE;
10303
10304 case bfd_link_hash_undefined:
10305 case bfd_link_hash_undefweak:
10306 input_sec = bfd_und_section_ptr;
10307 sym.st_shndx = SHN_UNDEF;
10308 break;
10309
10310 case bfd_link_hash_defined:
10311 case bfd_link_hash_defweak:
10312 {
10313 input_sec = h->root.u.def.section;
10314 if (input_sec->output_section != NULL)
10315 {
10316 sym.st_shndx =
10317 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10318 input_sec->output_section);
10319 if (sym.st_shndx == SHN_BAD)
10320 {
10321 _bfd_error_handler
10322 /* xgettext:c-format */
10323 (_("%pB: could not find output section %pA for input section %pA"),
10324 flinfo->output_bfd, input_sec->output_section, input_sec);
10325 bfd_set_error (bfd_error_nonrepresentable_section);
10326 eoinfo->failed = TRUE;
10327 return FALSE;
10328 }
10329
10330 /* ELF symbols in relocatable files are section relative,
10331 but in nonrelocatable files they are virtual
10332 addresses. */
10333 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10334 if (!bfd_link_relocatable (flinfo->info))
10335 {
10336 sym.st_value += input_sec->output_section->vma;
10337 if (h->type == STT_TLS)
10338 {
10339 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10340 if (tls_sec != NULL)
10341 sym.st_value -= tls_sec->vma;
10342 }
10343 }
10344 }
10345 else
10346 {
10347 BFD_ASSERT (input_sec->owner == NULL
10348 || (input_sec->owner->flags & DYNAMIC) != 0);
10349 sym.st_shndx = SHN_UNDEF;
10350 input_sec = bfd_und_section_ptr;
10351 }
10352 }
10353 break;
10354
10355 case bfd_link_hash_common:
10356 input_sec = h->root.u.c.p->section;
10357 sym.st_shndx = bed->common_section_index (input_sec);
10358 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10359 break;
10360
10361 case bfd_link_hash_indirect:
10362 /* These symbols are created by symbol versioning. They point
10363 to the decorated version of the name. For example, if the
10364 symbol foo@@GNU_1.2 is the default, which should be used when
10365 foo is used with no version, then we add an indirect symbol
10366 foo which points to foo@@GNU_1.2. We ignore these symbols,
10367 since the indirected symbol is already in the hash table. */
10368 return TRUE;
10369 }
10370
10371 if (type == STT_COMMON || type == STT_OBJECT)
10372 switch (h->root.type)
10373 {
10374 case bfd_link_hash_common:
10375 type = elf_link_convert_common_type (flinfo->info, type);
10376 break;
10377 case bfd_link_hash_defined:
10378 case bfd_link_hash_defweak:
10379 if (bed->common_definition (&sym))
10380 type = elf_link_convert_common_type (flinfo->info, type);
10381 else
10382 type = STT_OBJECT;
10383 break;
10384 case bfd_link_hash_undefined:
10385 case bfd_link_hash_undefweak:
10386 break;
10387 default:
10388 abort ();
10389 }
10390
10391 if (h->forced_local)
10392 {
10393 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10394 /* Turn off visibility on local symbol. */
10395 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10396 }
10397 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10398 else if (h->unique_global && h->def_regular)
10399 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10400 else if (h->root.type == bfd_link_hash_undefweak
10401 || h->root.type == bfd_link_hash_defweak)
10402 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10403 else
10404 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10405 sym.st_target_internal = h->target_internal;
10406
10407 /* Give the processor backend a chance to tweak the symbol value,
10408 and also to finish up anything that needs to be done for this
10409 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10410 forced local syms when non-shared is due to a historical quirk.
10411 STT_GNU_IFUNC symbol must go through PLT. */
10412 if ((h->type == STT_GNU_IFUNC
10413 && h->def_regular
10414 && !bfd_link_relocatable (flinfo->info))
10415 || ((h->dynindx != -1
10416 || h->forced_local)
10417 && ((bfd_link_pic (flinfo->info)
10418 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10419 || h->root.type != bfd_link_hash_undefweak))
10420 || !h->forced_local)
10421 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10422 {
10423 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10424 (flinfo->output_bfd, flinfo->info, h, &sym)))
10425 {
10426 eoinfo->failed = TRUE;
10427 return FALSE;
10428 }
10429 }
10430
10431 /* If we are marking the symbol as undefined, and there are no
10432 non-weak references to this symbol from a regular object, then
10433 mark the symbol as weak undefined; if there are non-weak
10434 references, mark the symbol as strong. We can't do this earlier,
10435 because it might not be marked as undefined until the
10436 finish_dynamic_symbol routine gets through with it. */
10437 if (sym.st_shndx == SHN_UNDEF
10438 && h->ref_regular
10439 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10440 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10441 {
10442 int bindtype;
10443 type = ELF_ST_TYPE (sym.st_info);
10444
10445 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10446 if (type == STT_GNU_IFUNC)
10447 type = STT_FUNC;
10448
10449 if (h->ref_regular_nonweak)
10450 bindtype = STB_GLOBAL;
10451 else
10452 bindtype = STB_WEAK;
10453 sym.st_info = ELF_ST_INFO (bindtype, type);
10454 }
10455
10456 /* If this is a symbol defined in a dynamic library, don't use the
10457 symbol size from the dynamic library. Relinking an executable
10458 against a new library may introduce gratuitous changes in the
10459 executable's symbols if we keep the size. */
10460 if (sym.st_shndx == SHN_UNDEF
10461 && !h->def_regular
10462 && h->def_dynamic)
10463 sym.st_size = 0;
10464
10465 /* If a non-weak symbol with non-default visibility is not defined
10466 locally, it is a fatal error. */
10467 if (!bfd_link_relocatable (flinfo->info)
10468 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10469 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10470 && h->root.type == bfd_link_hash_undefined
10471 && !h->def_regular)
10472 {
10473 const char *msg;
10474
10475 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10476 /* xgettext:c-format */
10477 msg = _("%pB: protected symbol `%s' isn't defined");
10478 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10479 /* xgettext:c-format */
10480 msg = _("%pB: internal symbol `%s' isn't defined");
10481 else
10482 /* xgettext:c-format */
10483 msg = _("%pB: hidden symbol `%s' isn't defined");
10484 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10485 bfd_set_error (bfd_error_bad_value);
10486 eoinfo->failed = TRUE;
10487 return FALSE;
10488 }
10489
10490 /* If this symbol should be put in the .dynsym section, then put it
10491 there now. We already know the symbol index. We also fill in
10492 the entry in the .hash section. */
10493 if (h->dynindx != -1
10494 && elf_hash_table (flinfo->info)->dynamic_sections_created
10495 && elf_hash_table (flinfo->info)->dynsym != NULL
10496 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10497 {
10498 bfd_byte *esym;
10499
10500 /* Since there is no version information in the dynamic string,
10501 if there is no version info in symbol version section, we will
10502 have a run-time problem if not linking executable, referenced
10503 by shared library, or not bound locally. */
10504 if (h->verinfo.verdef == NULL
10505 && (!bfd_link_executable (flinfo->info)
10506 || h->ref_dynamic
10507 || !h->def_regular))
10508 {
10509 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10510
10511 if (p && p [1] != '\0')
10512 {
10513 _bfd_error_handler
10514 /* xgettext:c-format */
10515 (_("%pB: no symbol version section for versioned symbol `%s'"),
10516 flinfo->output_bfd, h->root.root.string);
10517 eoinfo->failed = TRUE;
10518 return FALSE;
10519 }
10520 }
10521
10522 sym.st_name = h->dynstr_index;
10523 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10524 + h->dynindx * bed->s->sizeof_sym);
10525 if (!check_dynsym (flinfo->output_bfd, &sym))
10526 {
10527 eoinfo->failed = TRUE;
10528 return FALSE;
10529 }
10530
10531 /* Inform the linker of the addition of this symbol. */
10532
10533 if (flinfo->info->callbacks->ctf_new_dynsym)
10534 flinfo->info->callbacks->ctf_new_dynsym (h->dynindx, &sym);
10535
10536 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10537
10538 if (flinfo->hash_sec != NULL)
10539 {
10540 size_t hash_entry_size;
10541 bfd_byte *bucketpos;
10542 bfd_vma chain;
10543 size_t bucketcount;
10544 size_t bucket;
10545
10546 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10547 bucket = h->u.elf_hash_value % bucketcount;
10548
10549 hash_entry_size
10550 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10551 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10552 + (bucket + 2) * hash_entry_size);
10553 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10554 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10555 bucketpos);
10556 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10557 ((bfd_byte *) flinfo->hash_sec->contents
10558 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10559 }
10560
10561 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10562 {
10563 Elf_Internal_Versym iversym;
10564 Elf_External_Versym *eversym;
10565
10566 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10567 {
10568 if (h->verinfo.verdef == NULL
10569 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10570 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10571 iversym.vs_vers = 1;
10572 else
10573 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10574 }
10575 else
10576 {
10577 if (h->verinfo.vertree == NULL)
10578 iversym.vs_vers = 1;
10579 else
10580 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10581 if (flinfo->info->create_default_symver)
10582 iversym.vs_vers++;
10583 }
10584
10585 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10586 defined locally. */
10587 if (h->versioned == versioned_hidden && h->def_regular)
10588 iversym.vs_vers |= VERSYM_HIDDEN;
10589
10590 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10591 eversym += h->dynindx;
10592 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10593 }
10594 }
10595
10596 /* If the symbol is undefined, and we didn't output it to .dynsym,
10597 strip it from .symtab too. Obviously we can't do this for
10598 relocatable output or when needed for --emit-relocs. */
10599 else if (input_sec == bfd_und_section_ptr
10600 && h->indx != -2
10601 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10602 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10603 && !bfd_link_relocatable (flinfo->info))
10604 return TRUE;
10605
10606 /* Also strip others that we couldn't earlier due to dynamic symbol
10607 processing. */
10608 if (strip)
10609 return TRUE;
10610 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10611 return TRUE;
10612
10613 /* Output a FILE symbol so that following locals are not associated
10614 with the wrong input file. We need one for forced local symbols
10615 if we've seen more than one FILE symbol or when we have exactly
10616 one FILE symbol but global symbols are present in a file other
10617 than the one with the FILE symbol. We also need one if linker
10618 defined symbols are present. In practice these conditions are
10619 always met, so just emit the FILE symbol unconditionally. */
10620 if (eoinfo->localsyms
10621 && !eoinfo->file_sym_done
10622 && eoinfo->flinfo->filesym_count != 0)
10623 {
10624 Elf_Internal_Sym fsym;
10625
10626 memset (&fsym, 0, sizeof (fsym));
10627 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10628 fsym.st_shndx = SHN_ABS;
10629 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10630 bfd_und_section_ptr, NULL))
10631 return FALSE;
10632
10633 eoinfo->file_sym_done = TRUE;
10634 }
10635
10636 indx = bfd_get_symcount (flinfo->output_bfd);
10637 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10638 input_sec, h);
10639 if (ret == 0)
10640 {
10641 eoinfo->failed = TRUE;
10642 return FALSE;
10643 }
10644 else if (ret == 1)
10645 h->indx = indx;
10646 else if (h->indx == -2)
10647 abort();
10648
10649 return TRUE;
10650 }
10651
10652 /* Return TRUE if special handling is done for relocs in SEC against
10653 symbols defined in discarded sections. */
10654
10655 static bfd_boolean
10656 elf_section_ignore_discarded_relocs (asection *sec)
10657 {
10658 const struct elf_backend_data *bed;
10659
10660 switch (sec->sec_info_type)
10661 {
10662 case SEC_INFO_TYPE_STABS:
10663 case SEC_INFO_TYPE_EH_FRAME:
10664 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10665 return TRUE;
10666 default:
10667 break;
10668 }
10669
10670 bed = get_elf_backend_data (sec->owner);
10671 if (bed->elf_backend_ignore_discarded_relocs != NULL
10672 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10673 return TRUE;
10674
10675 return FALSE;
10676 }
10677
10678 /* Return a mask saying how ld should treat relocations in SEC against
10679 symbols defined in discarded sections. If this function returns
10680 COMPLAIN set, ld will issue a warning message. If this function
10681 returns PRETEND set, and the discarded section was link-once and the
10682 same size as the kept link-once section, ld will pretend that the
10683 symbol was actually defined in the kept section. Otherwise ld will
10684 zero the reloc (at least that is the intent, but some cooperation by
10685 the target dependent code is needed, particularly for REL targets). */
10686
10687 unsigned int
10688 _bfd_elf_default_action_discarded (asection *sec)
10689 {
10690 if (sec->flags & SEC_DEBUGGING)
10691 return PRETEND;
10692
10693 if (strcmp (".eh_frame", sec->name) == 0)
10694 return 0;
10695
10696 if (strcmp (".gcc_except_table", sec->name) == 0)
10697 return 0;
10698
10699 return COMPLAIN | PRETEND;
10700 }
10701
10702 /* Find a match between a section and a member of a section group. */
10703
10704 static asection *
10705 match_group_member (asection *sec, asection *group,
10706 struct bfd_link_info *info)
10707 {
10708 asection *first = elf_next_in_group (group);
10709 asection *s = first;
10710
10711 while (s != NULL)
10712 {
10713 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10714 return s;
10715
10716 s = elf_next_in_group (s);
10717 if (s == first)
10718 break;
10719 }
10720
10721 return NULL;
10722 }
10723
10724 /* Check if the kept section of a discarded section SEC can be used
10725 to replace it. Return the replacement if it is OK. Otherwise return
10726 NULL. */
10727
10728 asection *
10729 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10730 {
10731 asection *kept;
10732
10733 kept = sec->kept_section;
10734 if (kept != NULL)
10735 {
10736 if ((kept->flags & SEC_GROUP) != 0)
10737 kept = match_group_member (sec, kept, info);
10738 if (kept != NULL)
10739 {
10740 if ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10741 != (kept->rawsize != 0 ? kept->rawsize : kept->size))
10742 kept = NULL;
10743 else
10744 {
10745 /* Get the real kept section. */
10746 asection *next;
10747 for (next = kept->kept_section;
10748 next != NULL;
10749 next = next->kept_section)
10750 kept = next;
10751 }
10752 }
10753 sec->kept_section = kept;
10754 }
10755 return kept;
10756 }
10757
10758 /* Link an input file into the linker output file. This function
10759 handles all the sections and relocations of the input file at once.
10760 This is so that we only have to read the local symbols once, and
10761 don't have to keep them in memory. */
10762
10763 static bfd_boolean
10764 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10765 {
10766 int (*relocate_section)
10767 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10768 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10769 bfd *output_bfd;
10770 Elf_Internal_Shdr *symtab_hdr;
10771 size_t locsymcount;
10772 size_t extsymoff;
10773 Elf_Internal_Sym *isymbuf;
10774 Elf_Internal_Sym *isym;
10775 Elf_Internal_Sym *isymend;
10776 long *pindex;
10777 asection **ppsection;
10778 asection *o;
10779 const struct elf_backend_data *bed;
10780 struct elf_link_hash_entry **sym_hashes;
10781 bfd_size_type address_size;
10782 bfd_vma r_type_mask;
10783 int r_sym_shift;
10784 bfd_boolean have_file_sym = FALSE;
10785
10786 output_bfd = flinfo->output_bfd;
10787 bed = get_elf_backend_data (output_bfd);
10788 relocate_section = bed->elf_backend_relocate_section;
10789
10790 /* If this is a dynamic object, we don't want to do anything here:
10791 we don't want the local symbols, and we don't want the section
10792 contents. */
10793 if ((input_bfd->flags & DYNAMIC) != 0)
10794 return TRUE;
10795
10796 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10797 if (elf_bad_symtab (input_bfd))
10798 {
10799 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10800 extsymoff = 0;
10801 }
10802 else
10803 {
10804 locsymcount = symtab_hdr->sh_info;
10805 extsymoff = symtab_hdr->sh_info;
10806 }
10807
10808 /* Enable GNU OSABI features in the output BFD that are used in the input
10809 BFD. */
10810 if (bed->elf_osabi == ELFOSABI_NONE
10811 || bed->elf_osabi == ELFOSABI_GNU
10812 || bed->elf_osabi == ELFOSABI_FREEBSD)
10813 elf_tdata (output_bfd)->has_gnu_osabi
10814 |= (elf_tdata (input_bfd)->has_gnu_osabi
10815 & (bfd_link_relocatable (flinfo->info)
10816 ? -1 : ~elf_gnu_osabi_retain));
10817
10818 /* Read the local symbols. */
10819 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10820 if (isymbuf == NULL && locsymcount != 0)
10821 {
10822 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10823 flinfo->internal_syms,
10824 flinfo->external_syms,
10825 flinfo->locsym_shndx);
10826 if (isymbuf == NULL)
10827 return FALSE;
10828 }
10829
10830 /* Find local symbol sections and adjust values of symbols in
10831 SEC_MERGE sections. Write out those local symbols we know are
10832 going into the output file. */
10833 isymend = isymbuf + locsymcount;
10834 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10835 isym < isymend;
10836 isym++, pindex++, ppsection++)
10837 {
10838 asection *isec;
10839 const char *name;
10840 Elf_Internal_Sym osym;
10841 long indx;
10842 int ret;
10843
10844 *pindex = -1;
10845
10846 if (elf_bad_symtab (input_bfd))
10847 {
10848 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10849 {
10850 *ppsection = NULL;
10851 continue;
10852 }
10853 }
10854
10855 if (isym->st_shndx == SHN_UNDEF)
10856 isec = bfd_und_section_ptr;
10857 else if (isym->st_shndx == SHN_ABS)
10858 isec = bfd_abs_section_ptr;
10859 else if (isym->st_shndx == SHN_COMMON)
10860 isec = bfd_com_section_ptr;
10861 else
10862 {
10863 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10864 if (isec == NULL)
10865 {
10866 /* Don't attempt to output symbols with st_shnx in the
10867 reserved range other than SHN_ABS and SHN_COMMON. */
10868 isec = bfd_und_section_ptr;
10869 }
10870 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10871 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10872 isym->st_value =
10873 _bfd_merged_section_offset (output_bfd, &isec,
10874 elf_section_data (isec)->sec_info,
10875 isym->st_value);
10876 }
10877
10878 *ppsection = isec;
10879
10880 /* Don't output the first, undefined, symbol. In fact, don't
10881 output any undefined local symbol. */
10882 if (isec == bfd_und_section_ptr)
10883 continue;
10884
10885 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10886 {
10887 /* We never output section symbols. Instead, we use the
10888 section symbol of the corresponding section in the output
10889 file. */
10890 continue;
10891 }
10892
10893 /* If we are stripping all symbols, we don't want to output this
10894 one. */
10895 if (flinfo->info->strip == strip_all)
10896 continue;
10897
10898 /* If we are discarding all local symbols, we don't want to
10899 output this one. If we are generating a relocatable output
10900 file, then some of the local symbols may be required by
10901 relocs; we output them below as we discover that they are
10902 needed. */
10903 if (flinfo->info->discard == discard_all)
10904 continue;
10905
10906 /* If this symbol is defined in a section which we are
10907 discarding, we don't need to keep it. */
10908 if (isym->st_shndx != SHN_UNDEF
10909 && isym->st_shndx < SHN_LORESERVE
10910 && isec->output_section == NULL
10911 && flinfo->info->non_contiguous_regions
10912 && flinfo->info->non_contiguous_regions_warnings)
10913 {
10914 _bfd_error_handler (_("warning: --enable-non-contiguous-regions "
10915 "discards section `%s' from '%s'\n"),
10916 isec->name, bfd_get_filename (isec->owner));
10917 continue;
10918 }
10919
10920 if (isym->st_shndx != SHN_UNDEF
10921 && isym->st_shndx < SHN_LORESERVE
10922 && bfd_section_removed_from_list (output_bfd,
10923 isec->output_section))
10924 continue;
10925
10926 /* Get the name of the symbol. */
10927 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10928 isym->st_name);
10929 if (name == NULL)
10930 return FALSE;
10931
10932 /* See if we are discarding symbols with this name. */
10933 if ((flinfo->info->strip == strip_some
10934 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10935 == NULL))
10936 || (((flinfo->info->discard == discard_sec_merge
10937 && (isec->flags & SEC_MERGE)
10938 && !bfd_link_relocatable (flinfo->info))
10939 || flinfo->info->discard == discard_l)
10940 && bfd_is_local_label_name (input_bfd, name)))
10941 continue;
10942
10943 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10944 {
10945 if (input_bfd->lto_output)
10946 /* -flto puts a temp file name here. This means builds
10947 are not reproducible. Discard the symbol. */
10948 continue;
10949 have_file_sym = TRUE;
10950 flinfo->filesym_count += 1;
10951 }
10952 if (!have_file_sym)
10953 {
10954 /* In the absence of debug info, bfd_find_nearest_line uses
10955 FILE symbols to determine the source file for local
10956 function symbols. Provide a FILE symbol here if input
10957 files lack such, so that their symbols won't be
10958 associated with a previous input file. It's not the
10959 source file, but the best we can do. */
10960 const char *filename;
10961 have_file_sym = TRUE;
10962 flinfo->filesym_count += 1;
10963 memset (&osym, 0, sizeof (osym));
10964 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10965 osym.st_shndx = SHN_ABS;
10966 if (input_bfd->lto_output)
10967 filename = NULL;
10968 else
10969 filename = lbasename (bfd_get_filename (input_bfd));
10970 if (!elf_link_output_symstrtab (flinfo, filename, &osym,
10971 bfd_abs_section_ptr, NULL))
10972 return FALSE;
10973 }
10974
10975 osym = *isym;
10976
10977 /* Adjust the section index for the output file. */
10978 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10979 isec->output_section);
10980 if (osym.st_shndx == SHN_BAD)
10981 return FALSE;
10982
10983 /* ELF symbols in relocatable files are section relative, but
10984 in executable files they are virtual addresses. Note that
10985 this code assumes that all ELF sections have an associated
10986 BFD section with a reasonable value for output_offset; below
10987 we assume that they also have a reasonable value for
10988 output_section. Any special sections must be set up to meet
10989 these requirements. */
10990 osym.st_value += isec->output_offset;
10991 if (!bfd_link_relocatable (flinfo->info))
10992 {
10993 osym.st_value += isec->output_section->vma;
10994 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10995 {
10996 /* STT_TLS symbols are relative to PT_TLS segment base. */
10997 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10998 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10999 else
11000 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
11001 STT_NOTYPE);
11002 }
11003 }
11004
11005 indx = bfd_get_symcount (output_bfd);
11006 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
11007 if (ret == 0)
11008 return FALSE;
11009 else if (ret == 1)
11010 *pindex = indx;
11011 }
11012
11013 if (bed->s->arch_size == 32)
11014 {
11015 r_type_mask = 0xff;
11016 r_sym_shift = 8;
11017 address_size = 4;
11018 }
11019 else
11020 {
11021 r_type_mask = 0xffffffff;
11022 r_sym_shift = 32;
11023 address_size = 8;
11024 }
11025
11026 /* Relocate the contents of each section. */
11027 sym_hashes = elf_sym_hashes (input_bfd);
11028 for (o = input_bfd->sections; o != NULL; o = o->next)
11029 {
11030 bfd_byte *contents;
11031
11032 if (! o->linker_mark)
11033 {
11034 /* This section was omitted from the link. */
11035 continue;
11036 }
11037
11038 if (!flinfo->info->resolve_section_groups
11039 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
11040 {
11041 /* Deal with the group signature symbol. */
11042 struct bfd_elf_section_data *sec_data = elf_section_data (o);
11043 unsigned long symndx = sec_data->this_hdr.sh_info;
11044 asection *osec = o->output_section;
11045
11046 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
11047 if (symndx >= locsymcount
11048 || (elf_bad_symtab (input_bfd)
11049 && flinfo->sections[symndx] == NULL))
11050 {
11051 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
11052 while (h->root.type == bfd_link_hash_indirect
11053 || h->root.type == bfd_link_hash_warning)
11054 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11055 /* Arrange for symbol to be output. */
11056 h->indx = -2;
11057 elf_section_data (osec)->this_hdr.sh_info = -2;
11058 }
11059 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
11060 {
11061 /* We'll use the output section target_index. */
11062 asection *sec = flinfo->sections[symndx]->output_section;
11063 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
11064 }
11065 else
11066 {
11067 if (flinfo->indices[symndx] == -1)
11068 {
11069 /* Otherwise output the local symbol now. */
11070 Elf_Internal_Sym sym = isymbuf[symndx];
11071 asection *sec = flinfo->sections[symndx]->output_section;
11072 const char *name;
11073 long indx;
11074 int ret;
11075
11076 name = bfd_elf_string_from_elf_section (input_bfd,
11077 symtab_hdr->sh_link,
11078 sym.st_name);
11079 if (name == NULL)
11080 return FALSE;
11081
11082 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11083 sec);
11084 if (sym.st_shndx == SHN_BAD)
11085 return FALSE;
11086
11087 sym.st_value += o->output_offset;
11088
11089 indx = bfd_get_symcount (output_bfd);
11090 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
11091 NULL);
11092 if (ret == 0)
11093 return FALSE;
11094 else if (ret == 1)
11095 flinfo->indices[symndx] = indx;
11096 else
11097 abort ();
11098 }
11099 elf_section_data (osec)->this_hdr.sh_info
11100 = flinfo->indices[symndx];
11101 }
11102 }
11103
11104 if ((o->flags & SEC_HAS_CONTENTS) == 0
11105 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
11106 continue;
11107
11108 if ((o->flags & SEC_LINKER_CREATED) != 0)
11109 {
11110 /* Section was created by _bfd_elf_link_create_dynamic_sections
11111 or somesuch. */
11112 continue;
11113 }
11114
11115 /* Get the contents of the section. They have been cached by a
11116 relaxation routine. Note that o is a section in an input
11117 file, so the contents field will not have been set by any of
11118 the routines which work on output files. */
11119 if (elf_section_data (o)->this_hdr.contents != NULL)
11120 {
11121 contents = elf_section_data (o)->this_hdr.contents;
11122 if (bed->caches_rawsize
11123 && o->rawsize != 0
11124 && o->rawsize < o->size)
11125 {
11126 memcpy (flinfo->contents, contents, o->rawsize);
11127 contents = flinfo->contents;
11128 }
11129 }
11130 else
11131 {
11132 contents = flinfo->contents;
11133 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
11134 return FALSE;
11135 }
11136
11137 if ((o->flags & SEC_RELOC) != 0)
11138 {
11139 Elf_Internal_Rela *internal_relocs;
11140 Elf_Internal_Rela *rel, *relend;
11141 int action_discarded;
11142 int ret;
11143
11144 /* Get the swapped relocs. */
11145 internal_relocs
11146 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
11147 flinfo->internal_relocs, FALSE);
11148 if (internal_relocs == NULL
11149 && o->reloc_count > 0)
11150 return FALSE;
11151
11152 /* We need to reverse-copy input .ctors/.dtors sections if
11153 they are placed in .init_array/.finit_array for output. */
11154 if (o->size > address_size
11155 && ((strncmp (o->name, ".ctors", 6) == 0
11156 && strcmp (o->output_section->name,
11157 ".init_array") == 0)
11158 || (strncmp (o->name, ".dtors", 6) == 0
11159 && strcmp (o->output_section->name,
11160 ".fini_array") == 0))
11161 && (o->name[6] == 0 || o->name[6] == '.'))
11162 {
11163 if (o->size * bed->s->int_rels_per_ext_rel
11164 != o->reloc_count * address_size)
11165 {
11166 _bfd_error_handler
11167 /* xgettext:c-format */
11168 (_("error: %pB: size of section %pA is not "
11169 "multiple of address size"),
11170 input_bfd, o);
11171 bfd_set_error (bfd_error_bad_value);
11172 return FALSE;
11173 }
11174 o->flags |= SEC_ELF_REVERSE_COPY;
11175 }
11176
11177 action_discarded = -1;
11178 if (!elf_section_ignore_discarded_relocs (o))
11179 action_discarded = (*bed->action_discarded) (o);
11180
11181 /* Run through the relocs evaluating complex reloc symbols and
11182 looking for relocs against symbols from discarded sections
11183 or section symbols from removed link-once sections.
11184 Complain about relocs against discarded sections. Zero
11185 relocs against removed link-once sections. */
11186
11187 rel = internal_relocs;
11188 relend = rel + o->reloc_count;
11189 for ( ; rel < relend; rel++)
11190 {
11191 unsigned long r_symndx = rel->r_info >> r_sym_shift;
11192 unsigned int s_type;
11193 asection **ps, *sec;
11194 struct elf_link_hash_entry *h = NULL;
11195 const char *sym_name;
11196
11197 if (r_symndx == STN_UNDEF)
11198 continue;
11199
11200 if (r_symndx >= locsymcount
11201 || (elf_bad_symtab (input_bfd)
11202 && flinfo->sections[r_symndx] == NULL))
11203 {
11204 h = sym_hashes[r_symndx - extsymoff];
11205
11206 /* Badly formatted input files can contain relocs that
11207 reference non-existant symbols. Check here so that
11208 we do not seg fault. */
11209 if (h == NULL)
11210 {
11211 _bfd_error_handler
11212 /* xgettext:c-format */
11213 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
11214 "that references a non-existent global symbol"),
11215 input_bfd, (uint64_t) rel->r_info, o);
11216 bfd_set_error (bfd_error_bad_value);
11217 return FALSE;
11218 }
11219
11220 while (h->root.type == bfd_link_hash_indirect
11221 || h->root.type == bfd_link_hash_warning)
11222 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11223
11224 s_type = h->type;
11225
11226 /* If a plugin symbol is referenced from a non-IR file,
11227 mark the symbol as undefined. Note that the
11228 linker may attach linker created dynamic sections
11229 to the plugin bfd. Symbols defined in linker
11230 created sections are not plugin symbols. */
11231 if ((h->root.non_ir_ref_regular
11232 || h->root.non_ir_ref_dynamic)
11233 && (h->root.type == bfd_link_hash_defined
11234 || h->root.type == bfd_link_hash_defweak)
11235 && (h->root.u.def.section->flags
11236 & SEC_LINKER_CREATED) == 0
11237 && h->root.u.def.section->owner != NULL
11238 && (h->root.u.def.section->owner->flags
11239 & BFD_PLUGIN) != 0)
11240 {
11241 h->root.type = bfd_link_hash_undefined;
11242 h->root.u.undef.abfd = h->root.u.def.section->owner;
11243 }
11244
11245 ps = NULL;
11246 if (h->root.type == bfd_link_hash_defined
11247 || h->root.type == bfd_link_hash_defweak)
11248 ps = &h->root.u.def.section;
11249
11250 sym_name = h->root.root.string;
11251 }
11252 else
11253 {
11254 Elf_Internal_Sym *sym = isymbuf + r_symndx;
11255
11256 s_type = ELF_ST_TYPE (sym->st_info);
11257 ps = &flinfo->sections[r_symndx];
11258 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
11259 sym, *ps);
11260 }
11261
11262 if ((s_type == STT_RELC || s_type == STT_SRELC)
11263 && !bfd_link_relocatable (flinfo->info))
11264 {
11265 bfd_vma val;
11266 bfd_vma dot = (rel->r_offset
11267 + o->output_offset + o->output_section->vma);
11268 #ifdef DEBUG
11269 printf ("Encountered a complex symbol!");
11270 printf (" (input_bfd %s, section %s, reloc %ld\n",
11271 bfd_get_filename (input_bfd), o->name,
11272 (long) (rel - internal_relocs));
11273 printf (" symbol: idx %8.8lx, name %s\n",
11274 r_symndx, sym_name);
11275 printf (" reloc : info %8.8lx, addr %8.8lx\n",
11276 (unsigned long) rel->r_info,
11277 (unsigned long) rel->r_offset);
11278 #endif
11279 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
11280 isymbuf, locsymcount, s_type == STT_SRELC))
11281 return FALSE;
11282
11283 /* Symbol evaluated OK. Update to absolute value. */
11284 set_symbol_value (input_bfd, isymbuf, locsymcount,
11285 r_symndx, val);
11286 continue;
11287 }
11288
11289 if (action_discarded != -1 && ps != NULL)
11290 {
11291 /* Complain if the definition comes from a
11292 discarded section. */
11293 if ((sec = *ps) != NULL && discarded_section (sec))
11294 {
11295 BFD_ASSERT (r_symndx != STN_UNDEF);
11296 if (action_discarded & COMPLAIN)
11297 (*flinfo->info->callbacks->einfo)
11298 /* xgettext:c-format */
11299 (_("%X`%s' referenced in section `%pA' of %pB: "
11300 "defined in discarded section `%pA' of %pB\n"),
11301 sym_name, o, input_bfd, sec, sec->owner);
11302
11303 /* Try to do the best we can to support buggy old
11304 versions of gcc. Pretend that the symbol is
11305 really defined in the kept linkonce section.
11306 FIXME: This is quite broken. Modifying the
11307 symbol here means we will be changing all later
11308 uses of the symbol, not just in this section. */
11309 if (action_discarded & PRETEND)
11310 {
11311 asection *kept;
11312
11313 kept = _bfd_elf_check_kept_section (sec,
11314 flinfo->info);
11315 if (kept != NULL)
11316 {
11317 *ps = kept;
11318 continue;
11319 }
11320 }
11321 }
11322 }
11323 }
11324
11325 /* Relocate the section by invoking a back end routine.
11326
11327 The back end routine is responsible for adjusting the
11328 section contents as necessary, and (if using Rela relocs
11329 and generating a relocatable output file) adjusting the
11330 reloc addend as necessary.
11331
11332 The back end routine does not have to worry about setting
11333 the reloc address or the reloc symbol index.
11334
11335 The back end routine is given a pointer to the swapped in
11336 internal symbols, and can access the hash table entries
11337 for the external symbols via elf_sym_hashes (input_bfd).
11338
11339 When generating relocatable output, the back end routine
11340 must handle STB_LOCAL/STT_SECTION symbols specially. The
11341 output symbol is going to be a section symbol
11342 corresponding to the output section, which will require
11343 the addend to be adjusted. */
11344
11345 ret = (*relocate_section) (output_bfd, flinfo->info,
11346 input_bfd, o, contents,
11347 internal_relocs,
11348 isymbuf,
11349 flinfo->sections);
11350 if (!ret)
11351 return FALSE;
11352
11353 if (ret == 2
11354 || bfd_link_relocatable (flinfo->info)
11355 || flinfo->info->emitrelocations)
11356 {
11357 Elf_Internal_Rela *irela;
11358 Elf_Internal_Rela *irelaend, *irelamid;
11359 bfd_vma last_offset;
11360 struct elf_link_hash_entry **rel_hash;
11361 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11362 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11363 unsigned int next_erel;
11364 bfd_boolean rela_normal;
11365 struct bfd_elf_section_data *esdi, *esdo;
11366
11367 esdi = elf_section_data (o);
11368 esdo = elf_section_data (o->output_section);
11369 rela_normal = FALSE;
11370
11371 /* Adjust the reloc addresses and symbol indices. */
11372
11373 irela = internal_relocs;
11374 irelaend = irela + o->reloc_count;
11375 rel_hash = esdo->rel.hashes + esdo->rel.count;
11376 /* We start processing the REL relocs, if any. When we reach
11377 IRELAMID in the loop, we switch to the RELA relocs. */
11378 irelamid = irela;
11379 if (esdi->rel.hdr != NULL)
11380 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11381 * bed->s->int_rels_per_ext_rel);
11382 rel_hash_list = rel_hash;
11383 rela_hash_list = NULL;
11384 last_offset = o->output_offset;
11385 if (!bfd_link_relocatable (flinfo->info))
11386 last_offset += o->output_section->vma;
11387 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11388 {
11389 unsigned long r_symndx;
11390 asection *sec;
11391 Elf_Internal_Sym sym;
11392
11393 if (next_erel == bed->s->int_rels_per_ext_rel)
11394 {
11395 rel_hash++;
11396 next_erel = 0;
11397 }
11398
11399 if (irela == irelamid)
11400 {
11401 rel_hash = esdo->rela.hashes + esdo->rela.count;
11402 rela_hash_list = rel_hash;
11403 rela_normal = bed->rela_normal;
11404 }
11405
11406 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11407 flinfo->info, o,
11408 irela->r_offset);
11409 if (irela->r_offset >= (bfd_vma) -2)
11410 {
11411 /* This is a reloc for a deleted entry or somesuch.
11412 Turn it into an R_*_NONE reloc, at the same
11413 offset as the last reloc. elf_eh_frame.c and
11414 bfd_elf_discard_info rely on reloc offsets
11415 being ordered. */
11416 irela->r_offset = last_offset;
11417 irela->r_info = 0;
11418 irela->r_addend = 0;
11419 continue;
11420 }
11421
11422 irela->r_offset += o->output_offset;
11423
11424 /* Relocs in an executable have to be virtual addresses. */
11425 if (!bfd_link_relocatable (flinfo->info))
11426 irela->r_offset += o->output_section->vma;
11427
11428 last_offset = irela->r_offset;
11429
11430 r_symndx = irela->r_info >> r_sym_shift;
11431 if (r_symndx == STN_UNDEF)
11432 continue;
11433
11434 if (r_symndx >= locsymcount
11435 || (elf_bad_symtab (input_bfd)
11436 && flinfo->sections[r_symndx] == NULL))
11437 {
11438 struct elf_link_hash_entry *rh;
11439 unsigned long indx;
11440
11441 /* This is a reloc against a global symbol. We
11442 have not yet output all the local symbols, so
11443 we do not know the symbol index of any global
11444 symbol. We set the rel_hash entry for this
11445 reloc to point to the global hash table entry
11446 for this symbol. The symbol index is then
11447 set at the end of bfd_elf_final_link. */
11448 indx = r_symndx - extsymoff;
11449 rh = elf_sym_hashes (input_bfd)[indx];
11450 while (rh->root.type == bfd_link_hash_indirect
11451 || rh->root.type == bfd_link_hash_warning)
11452 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11453
11454 /* Setting the index to -2 tells
11455 elf_link_output_extsym that this symbol is
11456 used by a reloc. */
11457 BFD_ASSERT (rh->indx < 0);
11458 rh->indx = -2;
11459 *rel_hash = rh;
11460
11461 continue;
11462 }
11463
11464 /* This is a reloc against a local symbol. */
11465
11466 *rel_hash = NULL;
11467 sym = isymbuf[r_symndx];
11468 sec = flinfo->sections[r_symndx];
11469 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11470 {
11471 /* I suppose the backend ought to fill in the
11472 section of any STT_SECTION symbol against a
11473 processor specific section. */
11474 r_symndx = STN_UNDEF;
11475 if (bfd_is_abs_section (sec))
11476 ;
11477 else if (sec == NULL || sec->owner == NULL)
11478 {
11479 bfd_set_error (bfd_error_bad_value);
11480 return FALSE;
11481 }
11482 else
11483 {
11484 asection *osec = sec->output_section;
11485
11486 /* If we have discarded a section, the output
11487 section will be the absolute section. In
11488 case of discarded SEC_MERGE sections, use
11489 the kept section. relocate_section should
11490 have already handled discarded linkonce
11491 sections. */
11492 if (bfd_is_abs_section (osec)
11493 && sec->kept_section != NULL
11494 && sec->kept_section->output_section != NULL)
11495 {
11496 osec = sec->kept_section->output_section;
11497 irela->r_addend -= osec->vma;
11498 }
11499
11500 if (!bfd_is_abs_section (osec))
11501 {
11502 r_symndx = osec->target_index;
11503 if (r_symndx == STN_UNDEF)
11504 {
11505 irela->r_addend += osec->vma;
11506 osec = _bfd_nearby_section (output_bfd, osec,
11507 osec->vma);
11508 irela->r_addend -= osec->vma;
11509 r_symndx = osec->target_index;
11510 }
11511 }
11512 }
11513
11514 /* Adjust the addend according to where the
11515 section winds up in the output section. */
11516 if (rela_normal)
11517 irela->r_addend += sec->output_offset;
11518 }
11519 else
11520 {
11521 if (flinfo->indices[r_symndx] == -1)
11522 {
11523 unsigned long shlink;
11524 const char *name;
11525 asection *osec;
11526 long indx;
11527
11528 if (flinfo->info->strip == strip_all)
11529 {
11530 /* You can't do ld -r -s. */
11531 bfd_set_error (bfd_error_invalid_operation);
11532 return FALSE;
11533 }
11534
11535 /* This symbol was skipped earlier, but
11536 since it is needed by a reloc, we
11537 must output it now. */
11538 shlink = symtab_hdr->sh_link;
11539 name = (bfd_elf_string_from_elf_section
11540 (input_bfd, shlink, sym.st_name));
11541 if (name == NULL)
11542 return FALSE;
11543
11544 osec = sec->output_section;
11545 sym.st_shndx =
11546 _bfd_elf_section_from_bfd_section (output_bfd,
11547 osec);
11548 if (sym.st_shndx == SHN_BAD)
11549 return FALSE;
11550
11551 sym.st_value += sec->output_offset;
11552 if (!bfd_link_relocatable (flinfo->info))
11553 {
11554 sym.st_value += osec->vma;
11555 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11556 {
11557 struct elf_link_hash_table *htab
11558 = elf_hash_table (flinfo->info);
11559
11560 /* STT_TLS symbols are relative to PT_TLS
11561 segment base. */
11562 if (htab->tls_sec != NULL)
11563 sym.st_value -= htab->tls_sec->vma;
11564 else
11565 sym.st_info
11566 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11567 STT_NOTYPE);
11568 }
11569 }
11570
11571 indx = bfd_get_symcount (output_bfd);
11572 ret = elf_link_output_symstrtab (flinfo, name,
11573 &sym, sec,
11574 NULL);
11575 if (ret == 0)
11576 return FALSE;
11577 else if (ret == 1)
11578 flinfo->indices[r_symndx] = indx;
11579 else
11580 abort ();
11581 }
11582
11583 r_symndx = flinfo->indices[r_symndx];
11584 }
11585
11586 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11587 | (irela->r_info & r_type_mask));
11588 }
11589
11590 /* Swap out the relocs. */
11591 input_rel_hdr = esdi->rel.hdr;
11592 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11593 {
11594 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11595 input_rel_hdr,
11596 internal_relocs,
11597 rel_hash_list))
11598 return FALSE;
11599 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11600 * bed->s->int_rels_per_ext_rel);
11601 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11602 }
11603
11604 input_rela_hdr = esdi->rela.hdr;
11605 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11606 {
11607 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11608 input_rela_hdr,
11609 internal_relocs,
11610 rela_hash_list))
11611 return FALSE;
11612 }
11613 }
11614 }
11615
11616 /* Write out the modified section contents. */
11617 if (bed->elf_backend_write_section
11618 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11619 contents))
11620 {
11621 /* Section written out. */
11622 }
11623 else switch (o->sec_info_type)
11624 {
11625 case SEC_INFO_TYPE_STABS:
11626 if (! (_bfd_write_section_stabs
11627 (output_bfd,
11628 &elf_hash_table (flinfo->info)->stab_info,
11629 o, &elf_section_data (o)->sec_info, contents)))
11630 return FALSE;
11631 break;
11632 case SEC_INFO_TYPE_MERGE:
11633 if (! _bfd_write_merged_section (output_bfd, o,
11634 elf_section_data (o)->sec_info))
11635 return FALSE;
11636 break;
11637 case SEC_INFO_TYPE_EH_FRAME:
11638 {
11639 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11640 o, contents))
11641 return FALSE;
11642 }
11643 break;
11644 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11645 {
11646 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11647 flinfo->info,
11648 o, contents))
11649 return FALSE;
11650 }
11651 break;
11652 default:
11653 {
11654 if (! (o->flags & SEC_EXCLUDE))
11655 {
11656 file_ptr offset = (file_ptr) o->output_offset;
11657 bfd_size_type todo = o->size;
11658
11659 offset *= bfd_octets_per_byte (output_bfd, o);
11660
11661 if ((o->flags & SEC_ELF_REVERSE_COPY))
11662 {
11663 /* Reverse-copy input section to output. */
11664 do
11665 {
11666 todo -= address_size;
11667 if (! bfd_set_section_contents (output_bfd,
11668 o->output_section,
11669 contents + todo,
11670 offset,
11671 address_size))
11672 return FALSE;
11673 if (todo == 0)
11674 break;
11675 offset += address_size;
11676 }
11677 while (1);
11678 }
11679 else if (! bfd_set_section_contents (output_bfd,
11680 o->output_section,
11681 contents,
11682 offset, todo))
11683 return FALSE;
11684 }
11685 }
11686 break;
11687 }
11688 }
11689
11690 return TRUE;
11691 }
11692
11693 /* Generate a reloc when linking an ELF file. This is a reloc
11694 requested by the linker, and does not come from any input file. This
11695 is used to build constructor and destructor tables when linking
11696 with -Ur. */
11697
11698 static bfd_boolean
11699 elf_reloc_link_order (bfd *output_bfd,
11700 struct bfd_link_info *info,
11701 asection *output_section,
11702 struct bfd_link_order *link_order)
11703 {
11704 reloc_howto_type *howto;
11705 long indx;
11706 bfd_vma offset;
11707 bfd_vma addend;
11708 struct bfd_elf_section_reloc_data *reldata;
11709 struct elf_link_hash_entry **rel_hash_ptr;
11710 Elf_Internal_Shdr *rel_hdr;
11711 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11712 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11713 bfd_byte *erel;
11714 unsigned int i;
11715 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11716
11717 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11718 if (howto == NULL)
11719 {
11720 bfd_set_error (bfd_error_bad_value);
11721 return FALSE;
11722 }
11723
11724 addend = link_order->u.reloc.p->addend;
11725
11726 if (esdo->rel.hdr)
11727 reldata = &esdo->rel;
11728 else if (esdo->rela.hdr)
11729 reldata = &esdo->rela;
11730 else
11731 {
11732 reldata = NULL;
11733 BFD_ASSERT (0);
11734 }
11735
11736 /* Figure out the symbol index. */
11737 rel_hash_ptr = reldata->hashes + reldata->count;
11738 if (link_order->type == bfd_section_reloc_link_order)
11739 {
11740 indx = link_order->u.reloc.p->u.section->target_index;
11741 BFD_ASSERT (indx != 0);
11742 *rel_hash_ptr = NULL;
11743 }
11744 else
11745 {
11746 struct elf_link_hash_entry *h;
11747
11748 /* Treat a reloc against a defined symbol as though it were
11749 actually against the section. */
11750 h = ((struct elf_link_hash_entry *)
11751 bfd_wrapped_link_hash_lookup (output_bfd, info,
11752 link_order->u.reloc.p->u.name,
11753 FALSE, FALSE, TRUE));
11754 if (h != NULL
11755 && (h->root.type == bfd_link_hash_defined
11756 || h->root.type == bfd_link_hash_defweak))
11757 {
11758 asection *section;
11759
11760 section = h->root.u.def.section;
11761 indx = section->output_section->target_index;
11762 *rel_hash_ptr = NULL;
11763 /* It seems that we ought to add the symbol value to the
11764 addend here, but in practice it has already been added
11765 because it was passed to constructor_callback. */
11766 addend += section->output_section->vma + section->output_offset;
11767 }
11768 else if (h != NULL)
11769 {
11770 /* Setting the index to -2 tells elf_link_output_extsym that
11771 this symbol is used by a reloc. */
11772 h->indx = -2;
11773 *rel_hash_ptr = h;
11774 indx = 0;
11775 }
11776 else
11777 {
11778 (*info->callbacks->unattached_reloc)
11779 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11780 indx = 0;
11781 }
11782 }
11783
11784 /* If this is an inplace reloc, we must write the addend into the
11785 object file. */
11786 if (howto->partial_inplace && addend != 0)
11787 {
11788 bfd_size_type size;
11789 bfd_reloc_status_type rstat;
11790 bfd_byte *buf;
11791 bfd_boolean ok;
11792 const char *sym_name;
11793 bfd_size_type octets;
11794
11795 size = (bfd_size_type) bfd_get_reloc_size (howto);
11796 buf = (bfd_byte *) bfd_zmalloc (size);
11797 if (buf == NULL && size != 0)
11798 return FALSE;
11799 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11800 switch (rstat)
11801 {
11802 case bfd_reloc_ok:
11803 break;
11804
11805 default:
11806 case bfd_reloc_outofrange:
11807 abort ();
11808
11809 case bfd_reloc_overflow:
11810 if (link_order->type == bfd_section_reloc_link_order)
11811 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11812 else
11813 sym_name = link_order->u.reloc.p->u.name;
11814 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11815 howto->name, addend, NULL, NULL,
11816 (bfd_vma) 0);
11817 break;
11818 }
11819
11820 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
11821 output_section);
11822 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11823 octets, size);
11824 free (buf);
11825 if (! ok)
11826 return FALSE;
11827 }
11828
11829 /* The address of a reloc is relative to the section in a
11830 relocatable file, and is a virtual address in an executable
11831 file. */
11832 offset = link_order->offset;
11833 if (! bfd_link_relocatable (info))
11834 offset += output_section->vma;
11835
11836 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11837 {
11838 irel[i].r_offset = offset;
11839 irel[i].r_info = 0;
11840 irel[i].r_addend = 0;
11841 }
11842 if (bed->s->arch_size == 32)
11843 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11844 else
11845 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11846
11847 rel_hdr = reldata->hdr;
11848 erel = rel_hdr->contents;
11849 if (rel_hdr->sh_type == SHT_REL)
11850 {
11851 erel += reldata->count * bed->s->sizeof_rel;
11852 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11853 }
11854 else
11855 {
11856 irel[0].r_addend = addend;
11857 erel += reldata->count * bed->s->sizeof_rela;
11858 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11859 }
11860
11861 ++reldata->count;
11862
11863 return TRUE;
11864 }
11865
11866 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11867 Returns TRUE upon success, FALSE otherwise. */
11868
11869 static bfd_boolean
11870 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11871 {
11872 bfd_boolean ret = FALSE;
11873 bfd *implib_bfd;
11874 const struct elf_backend_data *bed;
11875 flagword flags;
11876 enum bfd_architecture arch;
11877 unsigned int mach;
11878 asymbol **sympp = NULL;
11879 long symsize;
11880 long symcount;
11881 long src_count;
11882 elf_symbol_type *osymbuf;
11883 size_t amt;
11884
11885 implib_bfd = info->out_implib_bfd;
11886 bed = get_elf_backend_data (abfd);
11887
11888 if (!bfd_set_format (implib_bfd, bfd_object))
11889 return FALSE;
11890
11891 /* Use flag from executable but make it a relocatable object. */
11892 flags = bfd_get_file_flags (abfd);
11893 flags &= ~HAS_RELOC;
11894 if (!bfd_set_start_address (implib_bfd, 0)
11895 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11896 return FALSE;
11897
11898 /* Copy architecture of output file to import library file. */
11899 arch = bfd_get_arch (abfd);
11900 mach = bfd_get_mach (abfd);
11901 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11902 && (abfd->target_defaulted
11903 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11904 return FALSE;
11905
11906 /* Get symbol table size. */
11907 symsize = bfd_get_symtab_upper_bound (abfd);
11908 if (symsize < 0)
11909 return FALSE;
11910
11911 /* Read in the symbol table. */
11912 sympp = (asymbol **) bfd_malloc (symsize);
11913 if (sympp == NULL)
11914 return FALSE;
11915
11916 symcount = bfd_canonicalize_symtab (abfd, sympp);
11917 if (symcount < 0)
11918 goto free_sym_buf;
11919
11920 /* Allow the BFD backend to copy any private header data it
11921 understands from the output BFD to the import library BFD. */
11922 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11923 goto free_sym_buf;
11924
11925 /* Filter symbols to appear in the import library. */
11926 if (bed->elf_backend_filter_implib_symbols)
11927 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11928 symcount);
11929 else
11930 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11931 if (symcount == 0)
11932 {
11933 bfd_set_error (bfd_error_no_symbols);
11934 _bfd_error_handler (_("%pB: no symbol found for import library"),
11935 implib_bfd);
11936 goto free_sym_buf;
11937 }
11938
11939
11940 /* Make symbols absolute. */
11941 amt = symcount * sizeof (*osymbuf);
11942 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
11943 if (osymbuf == NULL)
11944 goto free_sym_buf;
11945
11946 for (src_count = 0; src_count < symcount; src_count++)
11947 {
11948 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11949 sizeof (*osymbuf));
11950 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11951 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11952 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11953 osymbuf[src_count].internal_elf_sym.st_value =
11954 osymbuf[src_count].symbol.value;
11955 sympp[src_count] = &osymbuf[src_count].symbol;
11956 }
11957
11958 bfd_set_symtab (implib_bfd, sympp, symcount);
11959
11960 /* Allow the BFD backend to copy any private data it understands
11961 from the output BFD to the import library BFD. This is done last
11962 to permit the routine to look at the filtered symbol table. */
11963 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11964 goto free_sym_buf;
11965
11966 if (!bfd_close (implib_bfd))
11967 goto free_sym_buf;
11968
11969 ret = TRUE;
11970
11971 free_sym_buf:
11972 free (sympp);
11973 return ret;
11974 }
11975
11976 static void
11977 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11978 {
11979 asection *o;
11980
11981 if (flinfo->symstrtab != NULL)
11982 _bfd_elf_strtab_free (flinfo->symstrtab);
11983 free (flinfo->contents);
11984 free (flinfo->external_relocs);
11985 free (flinfo->internal_relocs);
11986 free (flinfo->external_syms);
11987 free (flinfo->locsym_shndx);
11988 free (flinfo->internal_syms);
11989 free (flinfo->indices);
11990 free (flinfo->sections);
11991 if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11992 free (flinfo->symshndxbuf);
11993 for (o = obfd->sections; o != NULL; o = o->next)
11994 {
11995 struct bfd_elf_section_data *esdo = elf_section_data (o);
11996 free (esdo->rel.hashes);
11997 free (esdo->rela.hashes);
11998 }
11999 }
12000
12001 /* Do the final step of an ELF link. */
12002
12003 bfd_boolean
12004 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12005 {
12006 bfd_boolean dynamic;
12007 bfd_boolean emit_relocs;
12008 bfd *dynobj;
12009 struct elf_final_link_info flinfo;
12010 asection *o;
12011 struct bfd_link_order *p;
12012 bfd *sub;
12013 bfd_size_type max_contents_size;
12014 bfd_size_type max_external_reloc_size;
12015 bfd_size_type max_internal_reloc_count;
12016 bfd_size_type max_sym_count;
12017 bfd_size_type max_sym_shndx_count;
12018 Elf_Internal_Sym elfsym;
12019 unsigned int i;
12020 Elf_Internal_Shdr *symtab_hdr;
12021 Elf_Internal_Shdr *symtab_shndx_hdr;
12022 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12023 struct elf_outext_info eoinfo;
12024 bfd_boolean merged;
12025 size_t relativecount = 0;
12026 asection *reldyn = 0;
12027 bfd_size_type amt;
12028 asection *attr_section = NULL;
12029 bfd_vma attr_size = 0;
12030 const char *std_attrs_section;
12031 struct elf_link_hash_table *htab = elf_hash_table (info);
12032 bfd_boolean sections_removed;
12033 bfd_boolean ret;
12034
12035 if (!is_elf_hash_table (htab))
12036 return FALSE;
12037
12038 if (bfd_link_pic (info))
12039 abfd->flags |= DYNAMIC;
12040
12041 dynamic = htab->dynamic_sections_created;
12042 dynobj = htab->dynobj;
12043
12044 emit_relocs = (bfd_link_relocatable (info)
12045 || info->emitrelocations);
12046
12047 memset (&flinfo, 0, sizeof (flinfo));
12048 flinfo.info = info;
12049 flinfo.output_bfd = abfd;
12050 flinfo.symstrtab = _bfd_elf_strtab_init ();
12051 if (flinfo.symstrtab == NULL)
12052 return FALSE;
12053
12054 if (! dynamic)
12055 {
12056 flinfo.hash_sec = NULL;
12057 flinfo.symver_sec = NULL;
12058 }
12059 else
12060 {
12061 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
12062 /* Note that dynsym_sec can be NULL (on VMS). */
12063 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
12064 /* Note that it is OK if symver_sec is NULL. */
12065 }
12066
12067 if (info->unique_symbol
12068 && !bfd_hash_table_init (&flinfo.local_hash_table,
12069 local_hash_newfunc,
12070 sizeof (struct local_hash_entry)))
12071 return FALSE;
12072
12073 /* The object attributes have been merged. Remove the input
12074 sections from the link, and set the contents of the output
12075 section. */
12076 sections_removed = FALSE;
12077 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
12078 for (o = abfd->sections; o != NULL; o = o->next)
12079 {
12080 bfd_boolean remove_section = FALSE;
12081
12082 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
12083 || strcmp (o->name, ".gnu.attributes") == 0)
12084 {
12085 for (p = o->map_head.link_order; p != NULL; p = p->next)
12086 {
12087 asection *input_section;
12088
12089 if (p->type != bfd_indirect_link_order)
12090 continue;
12091 input_section = p->u.indirect.section;
12092 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12093 elf_link_input_bfd ignores this section. */
12094 input_section->flags &= ~SEC_HAS_CONTENTS;
12095 }
12096
12097 attr_size = bfd_elf_obj_attr_size (abfd);
12098 bfd_set_section_size (o, attr_size);
12099 /* Skip this section later on. */
12100 o->map_head.link_order = NULL;
12101 if (attr_size)
12102 attr_section = o;
12103 else
12104 remove_section = TRUE;
12105 }
12106 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
12107 {
12108 /* Remove empty group section from linker output. */
12109 remove_section = TRUE;
12110 }
12111 if (remove_section)
12112 {
12113 o->flags |= SEC_EXCLUDE;
12114 bfd_section_list_remove (abfd, o);
12115 abfd->section_count--;
12116 sections_removed = TRUE;
12117 }
12118 }
12119 if (sections_removed)
12120 _bfd_fix_excluded_sec_syms (abfd, info);
12121
12122 /* Count up the number of relocations we will output for each output
12123 section, so that we know the sizes of the reloc sections. We
12124 also figure out some maximum sizes. */
12125 max_contents_size = 0;
12126 max_external_reloc_size = 0;
12127 max_internal_reloc_count = 0;
12128 max_sym_count = 0;
12129 max_sym_shndx_count = 0;
12130 merged = FALSE;
12131 for (o = abfd->sections; o != NULL; o = o->next)
12132 {
12133 struct bfd_elf_section_data *esdo = elf_section_data (o);
12134 o->reloc_count = 0;
12135
12136 for (p = o->map_head.link_order; p != NULL; p = p->next)
12137 {
12138 unsigned int reloc_count = 0;
12139 unsigned int additional_reloc_count = 0;
12140 struct bfd_elf_section_data *esdi = NULL;
12141
12142 if (p->type == bfd_section_reloc_link_order
12143 || p->type == bfd_symbol_reloc_link_order)
12144 reloc_count = 1;
12145 else if (p->type == bfd_indirect_link_order)
12146 {
12147 asection *sec;
12148
12149 sec = p->u.indirect.section;
12150
12151 /* Mark all sections which are to be included in the
12152 link. This will normally be every section. We need
12153 to do this so that we can identify any sections which
12154 the linker has decided to not include. */
12155 sec->linker_mark = TRUE;
12156
12157 if (sec->flags & SEC_MERGE)
12158 merged = TRUE;
12159
12160 if (sec->rawsize > max_contents_size)
12161 max_contents_size = sec->rawsize;
12162 if (sec->size > max_contents_size)
12163 max_contents_size = sec->size;
12164
12165 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
12166 && (sec->owner->flags & DYNAMIC) == 0)
12167 {
12168 size_t sym_count;
12169
12170 /* We are interested in just local symbols, not all
12171 symbols. */
12172 if (elf_bad_symtab (sec->owner))
12173 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
12174 / bed->s->sizeof_sym);
12175 else
12176 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
12177
12178 if (sym_count > max_sym_count)
12179 max_sym_count = sym_count;
12180
12181 if (sym_count > max_sym_shndx_count
12182 && elf_symtab_shndx_list (sec->owner) != NULL)
12183 max_sym_shndx_count = sym_count;
12184
12185 if (esdo->this_hdr.sh_type == SHT_REL
12186 || esdo->this_hdr.sh_type == SHT_RELA)
12187 /* Some backends use reloc_count in relocation sections
12188 to count particular types of relocs. Of course,
12189 reloc sections themselves can't have relocations. */
12190 ;
12191 else if (emit_relocs)
12192 {
12193 reloc_count = sec->reloc_count;
12194 if (bed->elf_backend_count_additional_relocs)
12195 {
12196 int c;
12197 c = (*bed->elf_backend_count_additional_relocs) (sec);
12198 additional_reloc_count += c;
12199 }
12200 }
12201 else if (bed->elf_backend_count_relocs)
12202 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
12203
12204 esdi = elf_section_data (sec);
12205
12206 if ((sec->flags & SEC_RELOC) != 0)
12207 {
12208 size_t ext_size = 0;
12209
12210 if (esdi->rel.hdr != NULL)
12211 ext_size = esdi->rel.hdr->sh_size;
12212 if (esdi->rela.hdr != NULL)
12213 ext_size += esdi->rela.hdr->sh_size;
12214
12215 if (ext_size > max_external_reloc_size)
12216 max_external_reloc_size = ext_size;
12217 if (sec->reloc_count > max_internal_reloc_count)
12218 max_internal_reloc_count = sec->reloc_count;
12219 }
12220 }
12221 }
12222
12223 if (reloc_count == 0)
12224 continue;
12225
12226 reloc_count += additional_reloc_count;
12227 o->reloc_count += reloc_count;
12228
12229 if (p->type == bfd_indirect_link_order && emit_relocs)
12230 {
12231 if (esdi->rel.hdr)
12232 {
12233 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12234 esdo->rel.count += additional_reloc_count;
12235 }
12236 if (esdi->rela.hdr)
12237 {
12238 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12239 esdo->rela.count += additional_reloc_count;
12240 }
12241 }
12242 else
12243 {
12244 if (o->use_rela_p)
12245 esdo->rela.count += reloc_count;
12246 else
12247 esdo->rel.count += reloc_count;
12248 }
12249 }
12250
12251 if (o->reloc_count > 0)
12252 o->flags |= SEC_RELOC;
12253 else
12254 {
12255 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12256 set it (this is probably a bug) and if it is set
12257 assign_section_numbers will create a reloc section. */
12258 o->flags &=~ SEC_RELOC;
12259 }
12260
12261 /* If the SEC_ALLOC flag is not set, force the section VMA to
12262 zero. This is done in elf_fake_sections as well, but forcing
12263 the VMA to 0 here will ensure that relocs against these
12264 sections are handled correctly. */
12265 if ((o->flags & SEC_ALLOC) == 0
12266 && ! o->user_set_vma)
12267 o->vma = 0;
12268 }
12269
12270 if (! bfd_link_relocatable (info) && merged)
12271 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12272
12273 /* Figure out the file positions for everything but the symbol table
12274 and the relocs. We set symcount to force assign_section_numbers
12275 to create a symbol table. */
12276 abfd->symcount = info->strip != strip_all || emit_relocs;
12277 BFD_ASSERT (! abfd->output_has_begun);
12278 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12279 goto error_return;
12280
12281 /* Set sizes, and assign file positions for reloc sections. */
12282 for (o = abfd->sections; o != NULL; o = o->next)
12283 {
12284 struct bfd_elf_section_data *esdo = elf_section_data (o);
12285 if ((o->flags & SEC_RELOC) != 0)
12286 {
12287 if (esdo->rel.hdr
12288 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12289 goto error_return;
12290
12291 if (esdo->rela.hdr
12292 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12293 goto error_return;
12294 }
12295
12296 /* _bfd_elf_compute_section_file_positions makes temporary use
12297 of target_index. Reset it. */
12298 o->target_index = 0;
12299
12300 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12301 to count upwards while actually outputting the relocations. */
12302 esdo->rel.count = 0;
12303 esdo->rela.count = 0;
12304
12305 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12306 && !bfd_section_is_ctf (o))
12307 {
12308 /* Cache the section contents so that they can be compressed
12309 later. Use bfd_malloc since it will be freed by
12310 bfd_compress_section_contents. */
12311 unsigned char *contents = esdo->this_hdr.contents;
12312 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12313 abort ();
12314 contents
12315 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12316 if (contents == NULL)
12317 goto error_return;
12318 esdo->this_hdr.contents = contents;
12319 }
12320 }
12321
12322 /* We have now assigned file positions for all the sections except .symtab,
12323 .strtab, and non-loaded reloc and compressed debugging sections. We start
12324 the .symtab section at the current file position, and write directly to it.
12325 We build the .strtab section in memory. */
12326 abfd->symcount = 0;
12327 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12328 /* sh_name is set in prep_headers. */
12329 symtab_hdr->sh_type = SHT_SYMTAB;
12330 /* sh_flags, sh_addr and sh_size all start off zero. */
12331 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12332 /* sh_link is set in assign_section_numbers. */
12333 /* sh_info is set below. */
12334 /* sh_offset is set just below. */
12335 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12336
12337 if (max_sym_count < 20)
12338 max_sym_count = 20;
12339 htab->strtabsize = max_sym_count;
12340 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12341 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12342 if (htab->strtab == NULL)
12343 goto error_return;
12344 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12345 flinfo.symshndxbuf
12346 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12347 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12348
12349 if (info->strip != strip_all || emit_relocs)
12350 {
12351 file_ptr off = elf_next_file_pos (abfd);
12352
12353 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12354
12355 /* Note that at this point elf_next_file_pos (abfd) is
12356 incorrect. We do not yet know the size of the .symtab section.
12357 We correct next_file_pos below, after we do know the size. */
12358
12359 /* Start writing out the symbol table. The first symbol is always a
12360 dummy symbol. */
12361 elfsym.st_value = 0;
12362 elfsym.st_size = 0;
12363 elfsym.st_info = 0;
12364 elfsym.st_other = 0;
12365 elfsym.st_shndx = SHN_UNDEF;
12366 elfsym.st_target_internal = 0;
12367 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12368 bfd_und_section_ptr, NULL) != 1)
12369 goto error_return;
12370
12371 /* Output a symbol for each section if asked or they are used for
12372 relocs. These symbols usually have no names. We store the
12373 index of each one in the index field of the section, so that
12374 we can find it again when outputting relocs. */
12375
12376 if (bfd_keep_unused_section_symbols (abfd) || emit_relocs)
12377 {
12378 bfd_boolean name_local_sections
12379 = (bed->elf_backend_name_local_section_symbols
12380 && bed->elf_backend_name_local_section_symbols (abfd));
12381 const char *name = NULL;
12382
12383 elfsym.st_size = 0;
12384 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12385 elfsym.st_other = 0;
12386 elfsym.st_value = 0;
12387 elfsym.st_target_internal = 0;
12388 for (i = 1; i < elf_numsections (abfd); i++)
12389 {
12390 o = bfd_section_from_elf_index (abfd, i);
12391 if (o != NULL)
12392 {
12393 o->target_index = bfd_get_symcount (abfd);
12394 elfsym.st_shndx = i;
12395 if (!bfd_link_relocatable (info))
12396 elfsym.st_value = o->vma;
12397 if (name_local_sections)
12398 name = o->name;
12399 if (elf_link_output_symstrtab (&flinfo, name, &elfsym, o,
12400 NULL) != 1)
12401 goto error_return;
12402 }
12403 }
12404 }
12405 }
12406
12407 /* On some targets like Irix 5 the symbol split between local and global
12408 ones recorded in the sh_info field needs to be done between section
12409 and all other symbols. */
12410 if (bed->elf_backend_elfsym_local_is_section
12411 && bed->elf_backend_elfsym_local_is_section (abfd))
12412 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12413
12414 /* Allocate some memory to hold information read in from the input
12415 files. */
12416 if (max_contents_size != 0)
12417 {
12418 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12419 if (flinfo.contents == NULL)
12420 goto error_return;
12421 }
12422
12423 if (max_external_reloc_size != 0)
12424 {
12425 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12426 if (flinfo.external_relocs == NULL)
12427 goto error_return;
12428 }
12429
12430 if (max_internal_reloc_count != 0)
12431 {
12432 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12433 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12434 if (flinfo.internal_relocs == NULL)
12435 goto error_return;
12436 }
12437
12438 if (max_sym_count != 0)
12439 {
12440 amt = max_sym_count * bed->s->sizeof_sym;
12441 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12442 if (flinfo.external_syms == NULL)
12443 goto error_return;
12444
12445 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12446 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12447 if (flinfo.internal_syms == NULL)
12448 goto error_return;
12449
12450 amt = max_sym_count * sizeof (long);
12451 flinfo.indices = (long int *) bfd_malloc (amt);
12452 if (flinfo.indices == NULL)
12453 goto error_return;
12454
12455 amt = max_sym_count * sizeof (asection *);
12456 flinfo.sections = (asection **) bfd_malloc (amt);
12457 if (flinfo.sections == NULL)
12458 goto error_return;
12459 }
12460
12461 if (max_sym_shndx_count != 0)
12462 {
12463 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12464 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12465 if (flinfo.locsym_shndx == NULL)
12466 goto error_return;
12467 }
12468
12469 if (htab->tls_sec)
12470 {
12471 bfd_vma base, end = 0; /* Both bytes. */
12472 asection *sec;
12473
12474 for (sec = htab->tls_sec;
12475 sec && (sec->flags & SEC_THREAD_LOCAL);
12476 sec = sec->next)
12477 {
12478 bfd_size_type size = sec->size;
12479 unsigned int opb = bfd_octets_per_byte (abfd, sec);
12480
12481 if (size == 0
12482 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12483 {
12484 struct bfd_link_order *ord = sec->map_tail.link_order;
12485
12486 if (ord != NULL)
12487 size = ord->offset * opb + ord->size;
12488 }
12489 end = sec->vma + size / opb;
12490 }
12491 base = htab->tls_sec->vma;
12492 /* Only align end of TLS section if static TLS doesn't have special
12493 alignment requirements. */
12494 if (bed->static_tls_alignment == 1)
12495 end = align_power (end, htab->tls_sec->alignment_power);
12496 htab->tls_size = end - base;
12497 }
12498
12499 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12500 return FALSE;
12501
12502 /* Since ELF permits relocations to be against local symbols, we
12503 must have the local symbols available when we do the relocations.
12504 Since we would rather only read the local symbols once, and we
12505 would rather not keep them in memory, we handle all the
12506 relocations for a single input file at the same time.
12507
12508 Unfortunately, there is no way to know the total number of local
12509 symbols until we have seen all of them, and the local symbol
12510 indices precede the global symbol indices. This means that when
12511 we are generating relocatable output, and we see a reloc against
12512 a global symbol, we can not know the symbol index until we have
12513 finished examining all the local symbols to see which ones we are
12514 going to output. To deal with this, we keep the relocations in
12515 memory, and don't output them until the end of the link. This is
12516 an unfortunate waste of memory, but I don't see a good way around
12517 it. Fortunately, it only happens when performing a relocatable
12518 link, which is not the common case. FIXME: If keep_memory is set
12519 we could write the relocs out and then read them again; I don't
12520 know how bad the memory loss will be. */
12521
12522 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12523 sub->output_has_begun = FALSE;
12524 for (o = abfd->sections; o != NULL; o = o->next)
12525 {
12526 for (p = o->map_head.link_order; p != NULL; p = p->next)
12527 {
12528 if (p->type == bfd_indirect_link_order
12529 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12530 == bfd_target_elf_flavour)
12531 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12532 {
12533 if (! sub->output_has_begun)
12534 {
12535 if (! elf_link_input_bfd (&flinfo, sub))
12536 goto error_return;
12537 sub->output_has_begun = TRUE;
12538 }
12539 }
12540 else if (p->type == bfd_section_reloc_link_order
12541 || p->type == bfd_symbol_reloc_link_order)
12542 {
12543 if (! elf_reloc_link_order (abfd, info, o, p))
12544 goto error_return;
12545 }
12546 else
12547 {
12548 if (! _bfd_default_link_order (abfd, info, o, p))
12549 {
12550 if (p->type == bfd_indirect_link_order
12551 && (bfd_get_flavour (sub)
12552 == bfd_target_elf_flavour)
12553 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12554 != bed->s->elfclass))
12555 {
12556 const char *iclass, *oclass;
12557
12558 switch (bed->s->elfclass)
12559 {
12560 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12561 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12562 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12563 default: abort ();
12564 }
12565
12566 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12567 {
12568 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12569 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12570 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12571 default: abort ();
12572 }
12573
12574 bfd_set_error (bfd_error_wrong_format);
12575 _bfd_error_handler
12576 /* xgettext:c-format */
12577 (_("%pB: file class %s incompatible with %s"),
12578 sub, iclass, oclass);
12579 }
12580
12581 goto error_return;
12582 }
12583 }
12584 }
12585 }
12586
12587 /* Free symbol buffer if needed. */
12588 if (!info->reduce_memory_overheads)
12589 {
12590 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12591 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
12592 {
12593 free (elf_tdata (sub)->symbuf);
12594 elf_tdata (sub)->symbuf = NULL;
12595 }
12596 }
12597
12598 ret = TRUE;
12599
12600 /* Output any global symbols that got converted to local in a
12601 version script or due to symbol visibility. We do this in a
12602 separate step since ELF requires all local symbols to appear
12603 prior to any global symbols. FIXME: We should only do this if
12604 some global symbols were, in fact, converted to become local.
12605 FIXME: Will this work correctly with the Irix 5 linker? */
12606 eoinfo.failed = FALSE;
12607 eoinfo.flinfo = &flinfo;
12608 eoinfo.localsyms = TRUE;
12609 eoinfo.file_sym_done = FALSE;
12610 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12611 if (eoinfo.failed)
12612 {
12613 ret = FALSE;
12614 goto return_local_hash_table;
12615 }
12616
12617 /* If backend needs to output some local symbols not present in the hash
12618 table, do it now. */
12619 if (bed->elf_backend_output_arch_local_syms
12620 && (info->strip != strip_all || emit_relocs))
12621 {
12622 typedef int (*out_sym_func)
12623 (void *, const char *, Elf_Internal_Sym *, asection *,
12624 struct elf_link_hash_entry *);
12625
12626 if (! ((*bed->elf_backend_output_arch_local_syms)
12627 (abfd, info, &flinfo,
12628 (out_sym_func) elf_link_output_symstrtab)))
12629 {
12630 ret = FALSE;
12631 goto return_local_hash_table;
12632 }
12633 }
12634
12635 /* That wrote out all the local symbols. Finish up the symbol table
12636 with the global symbols. Even if we want to strip everything we
12637 can, we still need to deal with those global symbols that got
12638 converted to local in a version script. */
12639
12640 /* The sh_info field records the index of the first non local symbol. */
12641 if (!symtab_hdr->sh_info)
12642 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12643
12644 if (dynamic
12645 && htab->dynsym != NULL
12646 && htab->dynsym->output_section != bfd_abs_section_ptr)
12647 {
12648 Elf_Internal_Sym sym;
12649 bfd_byte *dynsym = htab->dynsym->contents;
12650
12651 o = htab->dynsym->output_section;
12652 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12653
12654 /* Write out the section symbols for the output sections. */
12655 if (bfd_link_pic (info)
12656 || htab->is_relocatable_executable)
12657 {
12658 asection *s;
12659
12660 sym.st_size = 0;
12661 sym.st_name = 0;
12662 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12663 sym.st_other = 0;
12664 sym.st_target_internal = 0;
12665
12666 for (s = abfd->sections; s != NULL; s = s->next)
12667 {
12668 int indx;
12669 bfd_byte *dest;
12670 long dynindx;
12671
12672 dynindx = elf_section_data (s)->dynindx;
12673 if (dynindx <= 0)
12674 continue;
12675 indx = elf_section_data (s)->this_idx;
12676 BFD_ASSERT (indx > 0);
12677 sym.st_shndx = indx;
12678 if (! check_dynsym (abfd, &sym))
12679 {
12680 ret = FALSE;
12681 goto return_local_hash_table;
12682 }
12683 sym.st_value = s->vma;
12684 dest = dynsym + dynindx * bed->s->sizeof_sym;
12685
12686 /* Inform the linker of the addition of this symbol. */
12687
12688 if (info->callbacks->ctf_new_dynsym)
12689 info->callbacks->ctf_new_dynsym (dynindx, &sym);
12690
12691 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12692 }
12693 }
12694
12695 /* Write out the local dynsyms. */
12696 if (htab->dynlocal)
12697 {
12698 struct elf_link_local_dynamic_entry *e;
12699 for (e = htab->dynlocal; e ; e = e->next)
12700 {
12701 asection *s;
12702 bfd_byte *dest;
12703
12704 /* Copy the internal symbol and turn off visibility.
12705 Note that we saved a word of storage and overwrote
12706 the original st_name with the dynstr_index. */
12707 sym = e->isym;
12708 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12709 sym.st_shndx = SHN_UNDEF;
12710
12711 s = bfd_section_from_elf_index (e->input_bfd,
12712 e->isym.st_shndx);
12713 if (s != NULL
12714 && s->output_section != NULL
12715 && elf_section_data (s->output_section) != NULL)
12716 {
12717 sym.st_shndx =
12718 elf_section_data (s->output_section)->this_idx;
12719 if (! check_dynsym (abfd, &sym))
12720 {
12721 ret = FALSE;
12722 goto return_local_hash_table;
12723 }
12724 sym.st_value = (s->output_section->vma
12725 + s->output_offset
12726 + e->isym.st_value);
12727 }
12728
12729 /* Inform the linker of the addition of this symbol. */
12730
12731 if (info->callbacks->ctf_new_dynsym)
12732 info->callbacks->ctf_new_dynsym (e->dynindx, &sym);
12733
12734 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12735 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12736 }
12737 }
12738 }
12739
12740 /* We get the global symbols from the hash table. */
12741 eoinfo.failed = FALSE;
12742 eoinfo.localsyms = FALSE;
12743 eoinfo.flinfo = &flinfo;
12744 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12745 if (eoinfo.failed)
12746 {
12747 ret = FALSE;
12748 goto return_local_hash_table;
12749 }
12750
12751 /* If backend needs to output some symbols not present in the hash
12752 table, do it now. */
12753 if (bed->elf_backend_output_arch_syms
12754 && (info->strip != strip_all || emit_relocs))
12755 {
12756 typedef int (*out_sym_func)
12757 (void *, const char *, Elf_Internal_Sym *, asection *,
12758 struct elf_link_hash_entry *);
12759
12760 if (! ((*bed->elf_backend_output_arch_syms)
12761 (abfd, info, &flinfo,
12762 (out_sym_func) elf_link_output_symstrtab)))
12763 {
12764 ret = FALSE;
12765 goto return_local_hash_table;
12766 }
12767 }
12768
12769 /* Finalize the .strtab section. */
12770 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12771
12772 /* Swap out the .strtab section. */
12773 if (!elf_link_swap_symbols_out (&flinfo))
12774 {
12775 ret = FALSE;
12776 goto return_local_hash_table;
12777 }
12778
12779 /* Now we know the size of the symtab section. */
12780 if (bfd_get_symcount (abfd) > 0)
12781 {
12782 /* Finish up and write out the symbol string table (.strtab)
12783 section. */
12784 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12785 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12786
12787 if (elf_symtab_shndx_list (abfd))
12788 {
12789 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12790
12791 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12792 {
12793 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12794 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12795 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12796 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12797 symtab_shndx_hdr->sh_size = amt;
12798
12799 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12800 off, TRUE);
12801
12802 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12803 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12804 {
12805 ret = FALSE;
12806 goto return_local_hash_table;
12807 }
12808 }
12809 }
12810
12811 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12812 /* sh_name was set in prep_headers. */
12813 symstrtab_hdr->sh_type = SHT_STRTAB;
12814 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12815 symstrtab_hdr->sh_addr = 0;
12816 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12817 symstrtab_hdr->sh_entsize = 0;
12818 symstrtab_hdr->sh_link = 0;
12819 symstrtab_hdr->sh_info = 0;
12820 /* sh_offset is set just below. */
12821 symstrtab_hdr->sh_addralign = 1;
12822
12823 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12824 off, TRUE);
12825 elf_next_file_pos (abfd) = off;
12826
12827 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12828 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12829 {
12830 ret = FALSE;
12831 goto return_local_hash_table;
12832 }
12833 }
12834
12835 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12836 {
12837 _bfd_error_handler (_("%pB: failed to generate import library"),
12838 info->out_implib_bfd);
12839 ret = FALSE;
12840 goto return_local_hash_table;
12841 }
12842
12843 /* Adjust the relocs to have the correct symbol indices. */
12844 for (o = abfd->sections; o != NULL; o = o->next)
12845 {
12846 struct bfd_elf_section_data *esdo = elf_section_data (o);
12847 bfd_boolean sort;
12848
12849 if ((o->flags & SEC_RELOC) == 0)
12850 continue;
12851
12852 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12853 if (esdo->rel.hdr != NULL
12854 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12855 {
12856 ret = FALSE;
12857 goto return_local_hash_table;
12858 }
12859 if (esdo->rela.hdr != NULL
12860 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12861 {
12862 ret = FALSE;
12863 goto return_local_hash_table;
12864 }
12865
12866 /* Set the reloc_count field to 0 to prevent write_relocs from
12867 trying to swap the relocs out itself. */
12868 o->reloc_count = 0;
12869 }
12870
12871 if (dynamic && info->combreloc && dynobj != NULL)
12872 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12873
12874 /* If we are linking against a dynamic object, or generating a
12875 shared library, finish up the dynamic linking information. */
12876 if (dynamic)
12877 {
12878 bfd_byte *dyncon, *dynconend;
12879
12880 /* Fix up .dynamic entries. */
12881 o = bfd_get_linker_section (dynobj, ".dynamic");
12882 BFD_ASSERT (o != NULL);
12883
12884 dyncon = o->contents;
12885 dynconend = o->contents + o->size;
12886 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12887 {
12888 Elf_Internal_Dyn dyn;
12889 const char *name;
12890 unsigned int type;
12891 bfd_size_type sh_size;
12892 bfd_vma sh_addr;
12893
12894 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12895
12896 switch (dyn.d_tag)
12897 {
12898 default:
12899 continue;
12900 case DT_NULL:
12901 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12902 {
12903 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12904 {
12905 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12906 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12907 default: continue;
12908 }
12909 dyn.d_un.d_val = relativecount;
12910 relativecount = 0;
12911 break;
12912 }
12913 continue;
12914
12915 case DT_INIT:
12916 name = info->init_function;
12917 goto get_sym;
12918 case DT_FINI:
12919 name = info->fini_function;
12920 get_sym:
12921 {
12922 struct elf_link_hash_entry *h;
12923
12924 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12925 if (h != NULL
12926 && (h->root.type == bfd_link_hash_defined
12927 || h->root.type == bfd_link_hash_defweak))
12928 {
12929 dyn.d_un.d_ptr = h->root.u.def.value;
12930 o = h->root.u.def.section;
12931 if (o->output_section != NULL)
12932 dyn.d_un.d_ptr += (o->output_section->vma
12933 + o->output_offset);
12934 else
12935 {
12936 /* The symbol is imported from another shared
12937 library and does not apply to this one. */
12938 dyn.d_un.d_ptr = 0;
12939 }
12940 break;
12941 }
12942 }
12943 continue;
12944
12945 case DT_PREINIT_ARRAYSZ:
12946 name = ".preinit_array";
12947 goto get_out_size;
12948 case DT_INIT_ARRAYSZ:
12949 name = ".init_array";
12950 goto get_out_size;
12951 case DT_FINI_ARRAYSZ:
12952 name = ".fini_array";
12953 get_out_size:
12954 o = bfd_get_section_by_name (abfd, name);
12955 if (o == NULL)
12956 {
12957 _bfd_error_handler
12958 (_("could not find section %s"), name);
12959 goto error_return;
12960 }
12961 if (o->size == 0)
12962 _bfd_error_handler
12963 (_("warning: %s section has zero size"), name);
12964 dyn.d_un.d_val = o->size;
12965 break;
12966
12967 case DT_PREINIT_ARRAY:
12968 name = ".preinit_array";
12969 goto get_out_vma;
12970 case DT_INIT_ARRAY:
12971 name = ".init_array";
12972 goto get_out_vma;
12973 case DT_FINI_ARRAY:
12974 name = ".fini_array";
12975 get_out_vma:
12976 o = bfd_get_section_by_name (abfd, name);
12977 goto do_vma;
12978
12979 case DT_HASH:
12980 name = ".hash";
12981 goto get_vma;
12982 case DT_GNU_HASH:
12983 name = ".gnu.hash";
12984 goto get_vma;
12985 case DT_STRTAB:
12986 name = ".dynstr";
12987 goto get_vma;
12988 case DT_SYMTAB:
12989 name = ".dynsym";
12990 goto get_vma;
12991 case DT_VERDEF:
12992 name = ".gnu.version_d";
12993 goto get_vma;
12994 case DT_VERNEED:
12995 name = ".gnu.version_r";
12996 goto get_vma;
12997 case DT_VERSYM:
12998 name = ".gnu.version";
12999 get_vma:
13000 o = bfd_get_linker_section (dynobj, name);
13001 do_vma:
13002 if (o == NULL || bfd_is_abs_section (o->output_section))
13003 {
13004 _bfd_error_handler
13005 (_("could not find section %s"), name);
13006 goto error_return;
13007 }
13008 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
13009 {
13010 _bfd_error_handler
13011 (_("warning: section '%s' is being made into a note"), name);
13012 bfd_set_error (bfd_error_nonrepresentable_section);
13013 goto error_return;
13014 }
13015 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
13016 break;
13017
13018 case DT_REL:
13019 case DT_RELA:
13020 case DT_RELSZ:
13021 case DT_RELASZ:
13022 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13023 type = SHT_REL;
13024 else
13025 type = SHT_RELA;
13026 sh_size = 0;
13027 sh_addr = 0;
13028 for (i = 1; i < elf_numsections (abfd); i++)
13029 {
13030 Elf_Internal_Shdr *hdr;
13031
13032 hdr = elf_elfsections (abfd)[i];
13033 if (hdr->sh_type == type
13034 && (hdr->sh_flags & SHF_ALLOC) != 0)
13035 {
13036 sh_size += hdr->sh_size;
13037 if (sh_addr == 0
13038 || sh_addr > hdr->sh_addr)
13039 sh_addr = hdr->sh_addr;
13040 }
13041 }
13042
13043 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
13044 {
13045 unsigned int opb = bfd_octets_per_byte (abfd, o);
13046
13047 /* Don't count procedure linkage table relocs in the
13048 overall reloc count. */
13049 sh_size -= htab->srelplt->size;
13050 if (sh_size == 0)
13051 /* If the size is zero, make the address zero too.
13052 This is to avoid a glibc bug. If the backend
13053 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
13054 zero, then we'll put DT_RELA at the end of
13055 DT_JMPREL. glibc will interpret the end of
13056 DT_RELA matching the end of DT_JMPREL as the
13057 case where DT_RELA includes DT_JMPREL, and for
13058 LD_BIND_NOW will decide that processing DT_RELA
13059 will process the PLT relocs too. Net result:
13060 No PLT relocs applied. */
13061 sh_addr = 0;
13062
13063 /* If .rela.plt is the first .rela section, exclude
13064 it from DT_RELA. */
13065 else if (sh_addr == (htab->srelplt->output_section->vma
13066 + htab->srelplt->output_offset) * opb)
13067 sh_addr += htab->srelplt->size;
13068 }
13069
13070 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
13071 dyn.d_un.d_val = sh_size;
13072 else
13073 dyn.d_un.d_ptr = sh_addr;
13074 break;
13075 }
13076 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13077 }
13078 }
13079
13080 /* If we have created any dynamic sections, then output them. */
13081 if (dynobj != NULL)
13082 {
13083 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
13084 goto error_return;
13085
13086 /* Check for DT_TEXTREL (late, in case the backend removes it). */
13087 if (bfd_link_textrel_check (info)
13088 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
13089 {
13090 bfd_byte *dyncon, *dynconend;
13091
13092 dyncon = o->contents;
13093 dynconend = o->contents + o->size;
13094 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
13095 {
13096 Elf_Internal_Dyn dyn;
13097
13098 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
13099
13100 if (dyn.d_tag == DT_TEXTREL)
13101 {
13102 if (info->textrel_check == textrel_check_error)
13103 info->callbacks->einfo
13104 (_("%P%X: read-only segment has dynamic relocations\n"));
13105 else if (bfd_link_dll (info))
13106 info->callbacks->einfo
13107 (_("%P: warning: creating DT_TEXTREL in a shared object\n"));
13108 else
13109 info->callbacks->einfo
13110 (_("%P: warning: creating DT_TEXTREL in a PIE\n"));
13111 break;
13112 }
13113 }
13114 }
13115
13116 for (o = dynobj->sections; o != NULL; o = o->next)
13117 {
13118 if ((o->flags & SEC_HAS_CONTENTS) == 0
13119 || o->size == 0
13120 || o->output_section == bfd_abs_section_ptr)
13121 continue;
13122 if ((o->flags & SEC_LINKER_CREATED) == 0)
13123 {
13124 /* At this point, we are only interested in sections
13125 created by _bfd_elf_link_create_dynamic_sections. */
13126 continue;
13127 }
13128 if (htab->stab_info.stabstr == o)
13129 continue;
13130 if (htab->eh_info.hdr_sec == o)
13131 continue;
13132 if (strcmp (o->name, ".dynstr") != 0)
13133 {
13134 bfd_size_type octets = ((file_ptr) o->output_offset
13135 * bfd_octets_per_byte (abfd, o));
13136 if (!bfd_set_section_contents (abfd, o->output_section,
13137 o->contents, octets, o->size))
13138 goto error_return;
13139 }
13140 else
13141 {
13142 /* The contents of the .dynstr section are actually in a
13143 stringtab. */
13144 file_ptr off;
13145
13146 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
13147 if (bfd_seek (abfd, off, SEEK_SET) != 0
13148 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
13149 goto error_return;
13150 }
13151 }
13152 }
13153
13154 if (!info->resolve_section_groups)
13155 {
13156 bfd_boolean failed = FALSE;
13157
13158 BFD_ASSERT (bfd_link_relocatable (info));
13159 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
13160 if (failed)
13161 goto error_return;
13162 }
13163
13164 /* If we have optimized stabs strings, output them. */
13165 if (htab->stab_info.stabstr != NULL)
13166 {
13167 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
13168 goto error_return;
13169 }
13170
13171 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
13172 goto error_return;
13173
13174 if (info->callbacks->emit_ctf)
13175 info->callbacks->emit_ctf ();
13176
13177 elf_final_link_free (abfd, &flinfo);
13178
13179 if (attr_section)
13180 {
13181 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
13182 if (contents == NULL)
13183 {
13184 /* Bail out and fail. */
13185 ret = FALSE;
13186 goto return_local_hash_table;
13187 }
13188 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
13189 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
13190 free (contents);
13191 }
13192
13193 return_local_hash_table:
13194 if (info->unique_symbol)
13195 bfd_hash_table_free (&flinfo.local_hash_table);
13196 return ret;
13197
13198 error_return:
13199 elf_final_link_free (abfd, &flinfo);
13200 ret = FALSE;
13201 goto return_local_hash_table;
13202 }
13203 \f
13204 /* Initialize COOKIE for input bfd ABFD. */
13205
13206 static bfd_boolean
13207 init_reloc_cookie (struct elf_reloc_cookie *cookie,
13208 struct bfd_link_info *info, bfd *abfd)
13209 {
13210 Elf_Internal_Shdr *symtab_hdr;
13211 const struct elf_backend_data *bed;
13212
13213 bed = get_elf_backend_data (abfd);
13214 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13215
13216 cookie->abfd = abfd;
13217 cookie->sym_hashes = elf_sym_hashes (abfd);
13218 cookie->bad_symtab = elf_bad_symtab (abfd);
13219 if (cookie->bad_symtab)
13220 {
13221 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13222 cookie->extsymoff = 0;
13223 }
13224 else
13225 {
13226 cookie->locsymcount = symtab_hdr->sh_info;
13227 cookie->extsymoff = symtab_hdr->sh_info;
13228 }
13229
13230 if (bed->s->arch_size == 32)
13231 cookie->r_sym_shift = 8;
13232 else
13233 cookie->r_sym_shift = 32;
13234
13235 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
13236 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
13237 {
13238 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13239 cookie->locsymcount, 0,
13240 NULL, NULL, NULL);
13241 if (cookie->locsyms == NULL)
13242 {
13243 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
13244 return FALSE;
13245 }
13246 if (info->keep_memory)
13247 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
13248 }
13249 return TRUE;
13250 }
13251
13252 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
13253
13254 static void
13255 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
13256 {
13257 Elf_Internal_Shdr *symtab_hdr;
13258
13259 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13260 if (symtab_hdr->contents != (unsigned char *) cookie->locsyms)
13261 free (cookie->locsyms);
13262 }
13263
13264 /* Initialize the relocation information in COOKIE for input section SEC
13265 of input bfd ABFD. */
13266
13267 static bfd_boolean
13268 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13269 struct bfd_link_info *info, bfd *abfd,
13270 asection *sec)
13271 {
13272 if (sec->reloc_count == 0)
13273 {
13274 cookie->rels = NULL;
13275 cookie->relend = NULL;
13276 }
13277 else
13278 {
13279 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
13280 info->keep_memory);
13281 if (cookie->rels == NULL)
13282 return FALSE;
13283 cookie->rel = cookie->rels;
13284 cookie->relend = cookie->rels + sec->reloc_count;
13285 }
13286 cookie->rel = cookie->rels;
13287 return TRUE;
13288 }
13289
13290 /* Free the memory allocated by init_reloc_cookie_rels,
13291 if appropriate. */
13292
13293 static void
13294 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13295 asection *sec)
13296 {
13297 if (elf_section_data (sec)->relocs != cookie->rels)
13298 free (cookie->rels);
13299 }
13300
13301 /* Initialize the whole of COOKIE for input section SEC. */
13302
13303 static bfd_boolean
13304 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13305 struct bfd_link_info *info,
13306 asection *sec)
13307 {
13308 if (!init_reloc_cookie (cookie, info, sec->owner))
13309 goto error1;
13310 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13311 goto error2;
13312 return TRUE;
13313
13314 error2:
13315 fini_reloc_cookie (cookie, sec->owner);
13316 error1:
13317 return FALSE;
13318 }
13319
13320 /* Free the memory allocated by init_reloc_cookie_for_section,
13321 if appropriate. */
13322
13323 static void
13324 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13325 asection *sec)
13326 {
13327 fini_reloc_cookie_rels (cookie, sec);
13328 fini_reloc_cookie (cookie, sec->owner);
13329 }
13330 \f
13331 /* Garbage collect unused sections. */
13332
13333 /* Default gc_mark_hook. */
13334
13335 asection *
13336 _bfd_elf_gc_mark_hook (asection *sec,
13337 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13338 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13339 struct elf_link_hash_entry *h,
13340 Elf_Internal_Sym *sym)
13341 {
13342 if (h != NULL)
13343 {
13344 switch (h->root.type)
13345 {
13346 case bfd_link_hash_defined:
13347 case bfd_link_hash_defweak:
13348 return h->root.u.def.section;
13349
13350 case bfd_link_hash_common:
13351 return h->root.u.c.p->section;
13352
13353 default:
13354 break;
13355 }
13356 }
13357 else
13358 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13359
13360 return NULL;
13361 }
13362
13363 /* Return the debug definition section. */
13364
13365 static asection *
13366 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13367 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13368 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13369 struct elf_link_hash_entry *h,
13370 Elf_Internal_Sym *sym)
13371 {
13372 if (h != NULL)
13373 {
13374 /* Return the global debug definition section. */
13375 if ((h->root.type == bfd_link_hash_defined
13376 || h->root.type == bfd_link_hash_defweak)
13377 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13378 return h->root.u.def.section;
13379 }
13380 else
13381 {
13382 /* Return the local debug definition section. */
13383 asection *isec = bfd_section_from_elf_index (sec->owner,
13384 sym->st_shndx);
13385 if ((isec->flags & SEC_DEBUGGING) != 0)
13386 return isec;
13387 }
13388
13389 return NULL;
13390 }
13391
13392 /* COOKIE->rel describes a relocation against section SEC, which is
13393 a section we've decided to keep. Return the section that contains
13394 the relocation symbol, or NULL if no section contains it. */
13395
13396 asection *
13397 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13398 elf_gc_mark_hook_fn gc_mark_hook,
13399 struct elf_reloc_cookie *cookie,
13400 bfd_boolean *start_stop)
13401 {
13402 unsigned long r_symndx;
13403 struct elf_link_hash_entry *h, *hw;
13404
13405 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13406 if (r_symndx == STN_UNDEF)
13407 return NULL;
13408
13409 if (r_symndx >= cookie->locsymcount
13410 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13411 {
13412 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13413 if (h == NULL)
13414 {
13415 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13416 sec->owner);
13417 return NULL;
13418 }
13419 while (h->root.type == bfd_link_hash_indirect
13420 || h->root.type == bfd_link_hash_warning)
13421 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13422 h->mark = 1;
13423 /* Keep all aliases of the symbol too. If an object symbol
13424 needs to be copied into .dynbss then all of its aliases
13425 should be present as dynamic symbols, not just the one used
13426 on the copy relocation. */
13427 hw = h;
13428 while (hw->is_weakalias)
13429 {
13430 hw = hw->u.alias;
13431 hw->mark = 1;
13432 }
13433
13434 if (start_stop != NULL)
13435 {
13436 /* To work around a glibc bug, mark XXX input sections
13437 when there is a reference to __start_XXX or __stop_XXX
13438 symbols. */
13439 if (h->start_stop)
13440 {
13441 asection *s = h->u2.start_stop_section;
13442 *start_stop = !s->gc_mark;
13443 return s;
13444 }
13445 }
13446
13447 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13448 }
13449
13450 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13451 &cookie->locsyms[r_symndx]);
13452 }
13453
13454 /* COOKIE->rel describes a relocation against section SEC, which is
13455 a section we've decided to keep. Mark the section that contains
13456 the relocation symbol. */
13457
13458 bfd_boolean
13459 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13460 asection *sec,
13461 elf_gc_mark_hook_fn gc_mark_hook,
13462 struct elf_reloc_cookie *cookie)
13463 {
13464 asection *rsec;
13465 bfd_boolean start_stop = FALSE;
13466
13467 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13468 while (rsec != NULL)
13469 {
13470 if (!rsec->gc_mark)
13471 {
13472 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13473 || (rsec->owner->flags & DYNAMIC) != 0)
13474 rsec->gc_mark = 1;
13475 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13476 return FALSE;
13477 }
13478 if (!start_stop)
13479 break;
13480 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13481 }
13482 return TRUE;
13483 }
13484
13485 /* The mark phase of garbage collection. For a given section, mark
13486 it and any sections in this section's group, and all the sections
13487 which define symbols to which it refers. */
13488
13489 bfd_boolean
13490 _bfd_elf_gc_mark (struct bfd_link_info *info,
13491 asection *sec,
13492 elf_gc_mark_hook_fn gc_mark_hook)
13493 {
13494 bfd_boolean ret;
13495 asection *group_sec, *eh_frame;
13496
13497 sec->gc_mark = 1;
13498
13499 /* Mark all the sections in the group. */
13500 group_sec = elf_section_data (sec)->next_in_group;
13501 if (group_sec && !group_sec->gc_mark)
13502 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13503 return FALSE;
13504
13505 /* Look through the section relocs. */
13506 ret = TRUE;
13507 eh_frame = elf_eh_frame_section (sec->owner);
13508 if ((sec->flags & SEC_RELOC) != 0
13509 && sec->reloc_count > 0
13510 && sec != eh_frame)
13511 {
13512 struct elf_reloc_cookie cookie;
13513
13514 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13515 ret = FALSE;
13516 else
13517 {
13518 for (; cookie.rel < cookie.relend; cookie.rel++)
13519 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13520 {
13521 ret = FALSE;
13522 break;
13523 }
13524 fini_reloc_cookie_for_section (&cookie, sec);
13525 }
13526 }
13527
13528 if (ret && eh_frame && elf_fde_list (sec))
13529 {
13530 struct elf_reloc_cookie cookie;
13531
13532 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13533 ret = FALSE;
13534 else
13535 {
13536 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13537 gc_mark_hook, &cookie))
13538 ret = FALSE;
13539 fini_reloc_cookie_for_section (&cookie, eh_frame);
13540 }
13541 }
13542
13543 eh_frame = elf_section_eh_frame_entry (sec);
13544 if (ret && eh_frame && !eh_frame->gc_mark)
13545 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13546 ret = FALSE;
13547
13548 return ret;
13549 }
13550
13551 /* Scan and mark sections in a special or debug section group. */
13552
13553 static void
13554 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13555 {
13556 /* Point to first section of section group. */
13557 asection *ssec;
13558 /* Used to iterate the section group. */
13559 asection *msec;
13560
13561 bfd_boolean is_special_grp = TRUE;
13562 bfd_boolean is_debug_grp = TRUE;
13563
13564 /* First scan to see if group contains any section other than debug
13565 and special section. */
13566 ssec = msec = elf_next_in_group (grp);
13567 do
13568 {
13569 if ((msec->flags & SEC_DEBUGGING) == 0)
13570 is_debug_grp = FALSE;
13571
13572 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13573 is_special_grp = FALSE;
13574
13575 msec = elf_next_in_group (msec);
13576 }
13577 while (msec != ssec);
13578
13579 /* If this is a pure debug section group or pure special section group,
13580 keep all sections in this group. */
13581 if (is_debug_grp || is_special_grp)
13582 {
13583 do
13584 {
13585 msec->gc_mark = 1;
13586 msec = elf_next_in_group (msec);
13587 }
13588 while (msec != ssec);
13589 }
13590 }
13591
13592 /* Keep debug and special sections. */
13593
13594 bfd_boolean
13595 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13596 elf_gc_mark_hook_fn mark_hook)
13597 {
13598 bfd *ibfd;
13599
13600 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13601 {
13602 asection *isec;
13603 bfd_boolean some_kept;
13604 bfd_boolean debug_frag_seen;
13605 bfd_boolean has_kept_debug_info;
13606
13607 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13608 continue;
13609 isec = ibfd->sections;
13610 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13611 continue;
13612
13613 /* Ensure all linker created sections are kept,
13614 see if any other section is already marked,
13615 and note if we have any fragmented debug sections. */
13616 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13617 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13618 {
13619 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13620 isec->gc_mark = 1;
13621 else if (isec->gc_mark
13622 && (isec->flags & SEC_ALLOC) != 0
13623 && elf_section_type (isec) != SHT_NOTE)
13624 some_kept = TRUE;
13625 else
13626 {
13627 /* Since all sections, except for backend specific ones,
13628 have been garbage collected, call mark_hook on this
13629 section if any of its linked-to sections is marked. */
13630 asection *linked_to_sec = elf_linked_to_section (isec);
13631 for (; linked_to_sec != NULL;
13632 linked_to_sec = elf_linked_to_section (linked_to_sec))
13633 if (linked_to_sec->gc_mark)
13634 {
13635 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
13636 return FALSE;
13637 break;
13638 }
13639 }
13640
13641 if (!debug_frag_seen
13642 && (isec->flags & SEC_DEBUGGING)
13643 && CONST_STRNEQ (isec->name, ".debug_line."))
13644 debug_frag_seen = TRUE;
13645 else if (strcmp (bfd_section_name (isec),
13646 "__patchable_function_entries") == 0
13647 && elf_linked_to_section (isec) == NULL)
13648 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
13649 "need linked-to section "
13650 "for --gc-sections\n"),
13651 isec->owner, isec);
13652 }
13653
13654 /* If no non-note alloc section in this file will be kept, then
13655 we can toss out the debug and special sections. */
13656 if (!some_kept)
13657 continue;
13658
13659 /* Keep debug and special sections like .comment when they are
13660 not part of a group. Also keep section groups that contain
13661 just debug sections or special sections. NB: Sections with
13662 linked-to section has been handled above. */
13663 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13664 {
13665 if ((isec->flags & SEC_GROUP) != 0)
13666 _bfd_elf_gc_mark_debug_special_section_group (isec);
13667 else if (((isec->flags & SEC_DEBUGGING) != 0
13668 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13669 && elf_next_in_group (isec) == NULL
13670 && elf_linked_to_section (isec) == NULL)
13671 isec->gc_mark = 1;
13672 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13673 has_kept_debug_info = TRUE;
13674 }
13675
13676 /* Look for CODE sections which are going to be discarded,
13677 and find and discard any fragmented debug sections which
13678 are associated with that code section. */
13679 if (debug_frag_seen)
13680 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13681 if ((isec->flags & SEC_CODE) != 0
13682 && isec->gc_mark == 0)
13683 {
13684 unsigned int ilen;
13685 asection *dsec;
13686
13687 ilen = strlen (isec->name);
13688
13689 /* Association is determined by the name of the debug
13690 section containing the name of the code section as
13691 a suffix. For example .debug_line.text.foo is a
13692 debug section associated with .text.foo. */
13693 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13694 {
13695 unsigned int dlen;
13696
13697 if (dsec->gc_mark == 0
13698 || (dsec->flags & SEC_DEBUGGING) == 0)
13699 continue;
13700
13701 dlen = strlen (dsec->name);
13702
13703 if (dlen > ilen
13704 && strncmp (dsec->name + (dlen - ilen),
13705 isec->name, ilen) == 0)
13706 dsec->gc_mark = 0;
13707 }
13708 }
13709
13710 /* Mark debug sections referenced by kept debug sections. */
13711 if (has_kept_debug_info)
13712 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13713 if (isec->gc_mark
13714 && (isec->flags & SEC_DEBUGGING) != 0)
13715 if (!_bfd_elf_gc_mark (info, isec,
13716 elf_gc_mark_debug_section))
13717 return FALSE;
13718 }
13719 return TRUE;
13720 }
13721
13722 static bfd_boolean
13723 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13724 {
13725 bfd *sub;
13726 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13727
13728 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13729 {
13730 asection *o;
13731
13732 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13733 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13734 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13735 continue;
13736 o = sub->sections;
13737 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13738 continue;
13739
13740 for (o = sub->sections; o != NULL; o = o->next)
13741 {
13742 /* When any section in a section group is kept, we keep all
13743 sections in the section group. If the first member of
13744 the section group is excluded, we will also exclude the
13745 group section. */
13746 if (o->flags & SEC_GROUP)
13747 {
13748 asection *first = elf_next_in_group (o);
13749 o->gc_mark = first->gc_mark;
13750 }
13751
13752 if (o->gc_mark)
13753 continue;
13754
13755 /* Skip sweeping sections already excluded. */
13756 if (o->flags & SEC_EXCLUDE)
13757 continue;
13758
13759 /* Since this is early in the link process, it is simple
13760 to remove a section from the output. */
13761 o->flags |= SEC_EXCLUDE;
13762
13763 if (info->print_gc_sections && o->size != 0)
13764 /* xgettext:c-format */
13765 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13766 o, sub);
13767 }
13768 }
13769
13770 return TRUE;
13771 }
13772
13773 /* Propagate collected vtable information. This is called through
13774 elf_link_hash_traverse. */
13775
13776 static bfd_boolean
13777 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13778 {
13779 /* Those that are not vtables. */
13780 if (h->start_stop
13781 || h->u2.vtable == NULL
13782 || h->u2.vtable->parent == NULL)
13783 return TRUE;
13784
13785 /* Those vtables that do not have parents, we cannot merge. */
13786 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13787 return TRUE;
13788
13789 /* If we've already been done, exit. */
13790 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13791 return TRUE;
13792
13793 /* Make sure the parent's table is up to date. */
13794 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13795
13796 if (h->u2.vtable->used == NULL)
13797 {
13798 /* None of this table's entries were referenced. Re-use the
13799 parent's table. */
13800 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13801 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13802 }
13803 else
13804 {
13805 size_t n;
13806 bfd_boolean *cu, *pu;
13807
13808 /* Or the parent's entries into ours. */
13809 cu = h->u2.vtable->used;
13810 cu[-1] = TRUE;
13811 pu = h->u2.vtable->parent->u2.vtable->used;
13812 if (pu != NULL)
13813 {
13814 const struct elf_backend_data *bed;
13815 unsigned int log_file_align;
13816
13817 bed = get_elf_backend_data (h->root.u.def.section->owner);
13818 log_file_align = bed->s->log_file_align;
13819 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13820 while (n--)
13821 {
13822 if (*pu)
13823 *cu = TRUE;
13824 pu++;
13825 cu++;
13826 }
13827 }
13828 }
13829
13830 return TRUE;
13831 }
13832
13833 static bfd_boolean
13834 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13835 {
13836 asection *sec;
13837 bfd_vma hstart, hend;
13838 Elf_Internal_Rela *relstart, *relend, *rel;
13839 const struct elf_backend_data *bed;
13840 unsigned int log_file_align;
13841
13842 /* Take care of both those symbols that do not describe vtables as
13843 well as those that are not loaded. */
13844 if (h->start_stop
13845 || h->u2.vtable == NULL
13846 || h->u2.vtable->parent == NULL)
13847 return TRUE;
13848
13849 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13850 || h->root.type == bfd_link_hash_defweak);
13851
13852 sec = h->root.u.def.section;
13853 hstart = h->root.u.def.value;
13854 hend = hstart + h->size;
13855
13856 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13857 if (!relstart)
13858 return *(bfd_boolean *) okp = FALSE;
13859 bed = get_elf_backend_data (sec->owner);
13860 log_file_align = bed->s->log_file_align;
13861
13862 relend = relstart + sec->reloc_count;
13863
13864 for (rel = relstart; rel < relend; ++rel)
13865 if (rel->r_offset >= hstart && rel->r_offset < hend)
13866 {
13867 /* If the entry is in use, do nothing. */
13868 if (h->u2.vtable->used
13869 && (rel->r_offset - hstart) < h->u2.vtable->size)
13870 {
13871 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13872 if (h->u2.vtable->used[entry])
13873 continue;
13874 }
13875 /* Otherwise, kill it. */
13876 rel->r_offset = rel->r_info = rel->r_addend = 0;
13877 }
13878
13879 return TRUE;
13880 }
13881
13882 /* Mark sections containing dynamically referenced symbols. When
13883 building shared libraries, we must assume that any visible symbol is
13884 referenced. */
13885
13886 bfd_boolean
13887 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13888 {
13889 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13890 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13891
13892 if ((h->root.type == bfd_link_hash_defined
13893 || h->root.type == bfd_link_hash_defweak)
13894 && ((h->ref_dynamic && !h->forced_local)
13895 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13896 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13897 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13898 && (!bfd_link_executable (info)
13899 || info->gc_keep_exported
13900 || info->export_dynamic
13901 || (h->dynamic
13902 && d != NULL
13903 && (*d->match) (&d->head, NULL, h->root.root.string)))
13904 && (h->versioned >= versioned
13905 || !bfd_hide_sym_by_version (info->version_info,
13906 h->root.root.string)))))
13907 h->root.u.def.section->flags |= SEC_KEEP;
13908
13909 return TRUE;
13910 }
13911
13912 /* Keep all sections containing symbols undefined on the command-line,
13913 and the section containing the entry symbol. */
13914
13915 void
13916 _bfd_elf_gc_keep (struct bfd_link_info *info)
13917 {
13918 struct bfd_sym_chain *sym;
13919
13920 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13921 {
13922 struct elf_link_hash_entry *h;
13923
13924 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13925 FALSE, FALSE, FALSE);
13926
13927 if (h != NULL
13928 && (h->root.type == bfd_link_hash_defined
13929 || h->root.type == bfd_link_hash_defweak)
13930 && !bfd_is_const_section (h->root.u.def.section))
13931 h->root.u.def.section->flags |= SEC_KEEP;
13932 }
13933 }
13934
13935 bfd_boolean
13936 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13937 struct bfd_link_info *info)
13938 {
13939 bfd *ibfd = info->input_bfds;
13940
13941 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13942 {
13943 asection *sec;
13944 struct elf_reloc_cookie cookie;
13945
13946 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13947 continue;
13948 sec = ibfd->sections;
13949 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13950 continue;
13951
13952 if (!init_reloc_cookie (&cookie, info, ibfd))
13953 return FALSE;
13954
13955 for (sec = ibfd->sections; sec; sec = sec->next)
13956 {
13957 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry")
13958 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13959 {
13960 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13961 fini_reloc_cookie_rels (&cookie, sec);
13962 }
13963 }
13964 }
13965 return TRUE;
13966 }
13967
13968 /* Do mark and sweep of unused sections. */
13969
13970 bfd_boolean
13971 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13972 {
13973 bfd_boolean ok = TRUE;
13974 bfd *sub;
13975 elf_gc_mark_hook_fn gc_mark_hook;
13976 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13977 struct elf_link_hash_table *htab;
13978
13979 if (!bed->can_gc_sections
13980 || !is_elf_hash_table (info->hash))
13981 {
13982 _bfd_error_handler(_("warning: gc-sections option ignored"));
13983 return TRUE;
13984 }
13985
13986 bed->gc_keep (info);
13987 htab = elf_hash_table (info);
13988
13989 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13990 at the .eh_frame section if we can mark the FDEs individually. */
13991 for (sub = info->input_bfds;
13992 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13993 sub = sub->link.next)
13994 {
13995 asection *sec;
13996 struct elf_reloc_cookie cookie;
13997
13998 sec = sub->sections;
13999 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14000 continue;
14001 sec = bfd_get_section_by_name (sub, ".eh_frame");
14002 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
14003 {
14004 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
14005 if (elf_section_data (sec)->sec_info
14006 && (sec->flags & SEC_LINKER_CREATED) == 0)
14007 elf_eh_frame_section (sub) = sec;
14008 fini_reloc_cookie_for_section (&cookie, sec);
14009 sec = bfd_get_next_section_by_name (NULL, sec);
14010 }
14011 }
14012
14013 /* Apply transitive closure to the vtable entry usage info. */
14014 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
14015 if (!ok)
14016 return FALSE;
14017
14018 /* Kill the vtable relocations that were not used. */
14019 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
14020 if (!ok)
14021 return FALSE;
14022
14023 /* Mark dynamically referenced symbols. */
14024 if (htab->dynamic_sections_created || info->gc_keep_exported)
14025 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
14026
14027 /* Grovel through relocs to find out who stays ... */
14028 gc_mark_hook = bed->gc_mark_hook;
14029 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
14030 {
14031 asection *o;
14032
14033 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
14034 || elf_object_id (sub) != elf_hash_table_id (htab)
14035 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
14036 continue;
14037
14038 o = sub->sections;
14039 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14040 continue;
14041
14042 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
14043 Also treat note sections as a root, if the section is not part
14044 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
14045 well as FINI_ARRAY sections for ld -r. */
14046 for (o = sub->sections; o != NULL; o = o->next)
14047 if (!o->gc_mark
14048 && (o->flags & SEC_EXCLUDE) == 0
14049 && ((o->flags & SEC_KEEP) != 0
14050 || (bfd_link_relocatable (info)
14051 && ((elf_section_data (o)->this_hdr.sh_type
14052 == SHT_PREINIT_ARRAY)
14053 || (elf_section_data (o)->this_hdr.sh_type
14054 == SHT_INIT_ARRAY)
14055 || (elf_section_data (o)->this_hdr.sh_type
14056 == SHT_FINI_ARRAY)))
14057 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
14058 && elf_next_in_group (o) == NULL
14059 && elf_linked_to_section (o) == NULL)
14060 || ((elf_tdata (sub)->has_gnu_osabi & elf_gnu_osabi_retain)
14061 && (elf_section_flags (o) & SHF_GNU_RETAIN))))
14062 {
14063 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
14064 return FALSE;
14065 }
14066 }
14067
14068 /* Allow the backend to mark additional target specific sections. */
14069 bed->gc_mark_extra_sections (info, gc_mark_hook);
14070
14071 /* ... and mark SEC_EXCLUDE for those that go. */
14072 return elf_gc_sweep (abfd, info);
14073 }
14074 \f
14075 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
14076
14077 bfd_boolean
14078 bfd_elf_gc_record_vtinherit (bfd *abfd,
14079 asection *sec,
14080 struct elf_link_hash_entry *h,
14081 bfd_vma offset)
14082 {
14083 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
14084 struct elf_link_hash_entry **search, *child;
14085 size_t extsymcount;
14086 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14087
14088 /* The sh_info field of the symtab header tells us where the
14089 external symbols start. We don't care about the local symbols at
14090 this point. */
14091 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
14092 if (!elf_bad_symtab (abfd))
14093 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
14094
14095 sym_hashes = elf_sym_hashes (abfd);
14096 sym_hashes_end = sym_hashes + extsymcount;
14097
14098 /* Hunt down the child symbol, which is in this section at the same
14099 offset as the relocation. */
14100 for (search = sym_hashes; search != sym_hashes_end; ++search)
14101 {
14102 if ((child = *search) != NULL
14103 && (child->root.type == bfd_link_hash_defined
14104 || child->root.type == bfd_link_hash_defweak)
14105 && child->root.u.def.section == sec
14106 && child->root.u.def.value == offset)
14107 goto win;
14108 }
14109
14110 /* xgettext:c-format */
14111 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
14112 abfd, sec, (uint64_t) offset);
14113 bfd_set_error (bfd_error_invalid_operation);
14114 return FALSE;
14115
14116 win:
14117 if (!child->u2.vtable)
14118 {
14119 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
14120 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
14121 if (!child->u2.vtable)
14122 return FALSE;
14123 }
14124 if (!h)
14125 {
14126 /* This *should* only be the absolute section. It could potentially
14127 be that someone has defined a non-global vtable though, which
14128 would be bad. It isn't worth paging in the local symbols to be
14129 sure though; that case should simply be handled by the assembler. */
14130
14131 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
14132 }
14133 else
14134 child->u2.vtable->parent = h;
14135
14136 return TRUE;
14137 }
14138
14139 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
14140
14141 bfd_boolean
14142 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
14143 struct elf_link_hash_entry *h,
14144 bfd_vma addend)
14145 {
14146 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14147 unsigned int log_file_align = bed->s->log_file_align;
14148
14149 if (!h)
14150 {
14151 /* xgettext:c-format */
14152 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
14153 abfd, sec);
14154 bfd_set_error (bfd_error_bad_value);
14155 return FALSE;
14156 }
14157
14158 if (!h->u2.vtable)
14159 {
14160 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
14161 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
14162 if (!h->u2.vtable)
14163 return FALSE;
14164 }
14165
14166 if (addend >= h->u2.vtable->size)
14167 {
14168 size_t size, bytes, file_align;
14169 bfd_boolean *ptr = h->u2.vtable->used;
14170
14171 /* While the symbol is undefined, we have to be prepared to handle
14172 a zero size. */
14173 file_align = 1 << log_file_align;
14174 if (h->root.type == bfd_link_hash_undefined)
14175 size = addend + file_align;
14176 else
14177 {
14178 size = h->size;
14179 if (addend >= size)
14180 {
14181 /* Oops! We've got a reference past the defined end of
14182 the table. This is probably a bug -- shall we warn? */
14183 size = addend + file_align;
14184 }
14185 }
14186 size = (size + file_align - 1) & -file_align;
14187
14188 /* Allocate one extra entry for use as a "done" flag for the
14189 consolidation pass. */
14190 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
14191
14192 if (ptr)
14193 {
14194 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
14195
14196 if (ptr != NULL)
14197 {
14198 size_t oldbytes;
14199
14200 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
14201 * sizeof (bfd_boolean));
14202 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
14203 }
14204 }
14205 else
14206 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
14207
14208 if (ptr == NULL)
14209 return FALSE;
14210
14211 /* And arrange for that done flag to be at index -1. */
14212 h->u2.vtable->used = ptr + 1;
14213 h->u2.vtable->size = size;
14214 }
14215
14216 h->u2.vtable->used[addend >> log_file_align] = TRUE;
14217
14218 return TRUE;
14219 }
14220
14221 /* Map an ELF section header flag to its corresponding string. */
14222 typedef struct
14223 {
14224 char *flag_name;
14225 flagword flag_value;
14226 } elf_flags_to_name_table;
14227
14228 static const elf_flags_to_name_table elf_flags_to_names [] =
14229 {
14230 { "SHF_WRITE", SHF_WRITE },
14231 { "SHF_ALLOC", SHF_ALLOC },
14232 { "SHF_EXECINSTR", SHF_EXECINSTR },
14233 { "SHF_MERGE", SHF_MERGE },
14234 { "SHF_STRINGS", SHF_STRINGS },
14235 { "SHF_INFO_LINK", SHF_INFO_LINK},
14236 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
14237 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
14238 { "SHF_GROUP", SHF_GROUP },
14239 { "SHF_TLS", SHF_TLS },
14240 { "SHF_MASKOS", SHF_MASKOS },
14241 { "SHF_EXCLUDE", SHF_EXCLUDE },
14242 };
14243
14244 /* Returns TRUE if the section is to be included, otherwise FALSE. */
14245 bfd_boolean
14246 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
14247 struct flag_info *flaginfo,
14248 asection *section)
14249 {
14250 const bfd_vma sh_flags = elf_section_flags (section);
14251
14252 if (!flaginfo->flags_initialized)
14253 {
14254 bfd *obfd = info->output_bfd;
14255 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14256 struct flag_info_list *tf = flaginfo->flag_list;
14257 int with_hex = 0;
14258 int without_hex = 0;
14259
14260 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
14261 {
14262 unsigned i;
14263 flagword (*lookup) (char *);
14264
14265 lookup = bed->elf_backend_lookup_section_flags_hook;
14266 if (lookup != NULL)
14267 {
14268 flagword hexval = (*lookup) ((char *) tf->name);
14269
14270 if (hexval != 0)
14271 {
14272 if (tf->with == with_flags)
14273 with_hex |= hexval;
14274 else if (tf->with == without_flags)
14275 without_hex |= hexval;
14276 tf->valid = TRUE;
14277 continue;
14278 }
14279 }
14280 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
14281 {
14282 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
14283 {
14284 if (tf->with == with_flags)
14285 with_hex |= elf_flags_to_names[i].flag_value;
14286 else if (tf->with == without_flags)
14287 without_hex |= elf_flags_to_names[i].flag_value;
14288 tf->valid = TRUE;
14289 break;
14290 }
14291 }
14292 if (!tf->valid)
14293 {
14294 info->callbacks->einfo
14295 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14296 return FALSE;
14297 }
14298 }
14299 flaginfo->flags_initialized = TRUE;
14300 flaginfo->only_with_flags |= with_hex;
14301 flaginfo->not_with_flags |= without_hex;
14302 }
14303
14304 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14305 return FALSE;
14306
14307 if ((flaginfo->not_with_flags & sh_flags) != 0)
14308 return FALSE;
14309
14310 return TRUE;
14311 }
14312
14313 struct alloc_got_off_arg {
14314 bfd_vma gotoff;
14315 struct bfd_link_info *info;
14316 };
14317
14318 /* We need a special top-level link routine to convert got reference counts
14319 to real got offsets. */
14320
14321 static bfd_boolean
14322 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14323 {
14324 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14325 bfd *obfd = gofarg->info->output_bfd;
14326 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14327
14328 if (h->got.refcount > 0)
14329 {
14330 h->got.offset = gofarg->gotoff;
14331 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14332 }
14333 else
14334 h->got.offset = (bfd_vma) -1;
14335
14336 return TRUE;
14337 }
14338
14339 /* And an accompanying bit to work out final got entry offsets once
14340 we're done. Should be called from final_link. */
14341
14342 bfd_boolean
14343 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14344 struct bfd_link_info *info)
14345 {
14346 bfd *i;
14347 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14348 bfd_vma gotoff;
14349 struct alloc_got_off_arg gofarg;
14350
14351 BFD_ASSERT (abfd == info->output_bfd);
14352
14353 if (! is_elf_hash_table (info->hash))
14354 return FALSE;
14355
14356 /* The GOT offset is relative to the .got section, but the GOT header is
14357 put into the .got.plt section, if the backend uses it. */
14358 if (bed->want_got_plt)
14359 gotoff = 0;
14360 else
14361 gotoff = bed->got_header_size;
14362
14363 /* Do the local .got entries first. */
14364 for (i = info->input_bfds; i; i = i->link.next)
14365 {
14366 bfd_signed_vma *local_got;
14367 size_t j, locsymcount;
14368 Elf_Internal_Shdr *symtab_hdr;
14369
14370 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14371 continue;
14372
14373 local_got = elf_local_got_refcounts (i);
14374 if (!local_got)
14375 continue;
14376
14377 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14378 if (elf_bad_symtab (i))
14379 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14380 else
14381 locsymcount = symtab_hdr->sh_info;
14382
14383 for (j = 0; j < locsymcount; ++j)
14384 {
14385 if (local_got[j] > 0)
14386 {
14387 local_got[j] = gotoff;
14388 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14389 }
14390 else
14391 local_got[j] = (bfd_vma) -1;
14392 }
14393 }
14394
14395 /* Then the global .got entries. .plt refcounts are handled by
14396 adjust_dynamic_symbol */
14397 gofarg.gotoff = gotoff;
14398 gofarg.info = info;
14399 elf_link_hash_traverse (elf_hash_table (info),
14400 elf_gc_allocate_got_offsets,
14401 &gofarg);
14402 return TRUE;
14403 }
14404
14405 /* Many folk need no more in the way of final link than this, once
14406 got entry reference counting is enabled. */
14407
14408 bfd_boolean
14409 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14410 {
14411 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14412 return FALSE;
14413
14414 /* Invoke the regular ELF backend linker to do all the work. */
14415 return bfd_elf_final_link (abfd, info);
14416 }
14417
14418 bfd_boolean
14419 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14420 {
14421 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14422
14423 if (rcookie->bad_symtab)
14424 rcookie->rel = rcookie->rels;
14425
14426 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14427 {
14428 unsigned long r_symndx;
14429
14430 if (! rcookie->bad_symtab)
14431 if (rcookie->rel->r_offset > offset)
14432 return FALSE;
14433 if (rcookie->rel->r_offset != offset)
14434 continue;
14435
14436 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14437 if (r_symndx == STN_UNDEF)
14438 return TRUE;
14439
14440 if (r_symndx >= rcookie->locsymcount
14441 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14442 {
14443 struct elf_link_hash_entry *h;
14444
14445 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14446
14447 while (h->root.type == bfd_link_hash_indirect
14448 || h->root.type == bfd_link_hash_warning)
14449 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14450
14451 if ((h->root.type == bfd_link_hash_defined
14452 || h->root.type == bfd_link_hash_defweak)
14453 && (h->root.u.def.section->owner != rcookie->abfd
14454 || h->root.u.def.section->kept_section != NULL
14455 || discarded_section (h->root.u.def.section)))
14456 return TRUE;
14457 }
14458 else
14459 {
14460 /* It's not a relocation against a global symbol,
14461 but it could be a relocation against a local
14462 symbol for a discarded section. */
14463 asection *isec;
14464 Elf_Internal_Sym *isym;
14465
14466 /* Need to: get the symbol; get the section. */
14467 isym = &rcookie->locsyms[r_symndx];
14468 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14469 if (isec != NULL
14470 && (isec->kept_section != NULL
14471 || discarded_section (isec)))
14472 return TRUE;
14473 }
14474 return FALSE;
14475 }
14476 return FALSE;
14477 }
14478
14479 /* Discard unneeded references to discarded sections.
14480 Returns -1 on error, 1 if any section's size was changed, 0 if
14481 nothing changed. This function assumes that the relocations are in
14482 sorted order, which is true for all known assemblers. */
14483
14484 int
14485 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14486 {
14487 struct elf_reloc_cookie cookie;
14488 asection *o;
14489 bfd *abfd;
14490 int changed = 0;
14491
14492 if (info->traditional_format
14493 || !is_elf_hash_table (info->hash))
14494 return 0;
14495
14496 o = bfd_get_section_by_name (output_bfd, ".stab");
14497 if (o != NULL)
14498 {
14499 asection *i;
14500
14501 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14502 {
14503 if (i->size == 0
14504 || i->reloc_count == 0
14505 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14506 continue;
14507
14508 abfd = i->owner;
14509 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14510 continue;
14511
14512 if (!init_reloc_cookie_for_section (&cookie, info, i))
14513 return -1;
14514
14515 if (_bfd_discard_section_stabs (abfd, i,
14516 elf_section_data (i)->sec_info,
14517 bfd_elf_reloc_symbol_deleted_p,
14518 &cookie))
14519 changed = 1;
14520
14521 fini_reloc_cookie_for_section (&cookie, i);
14522 }
14523 }
14524
14525 o = NULL;
14526 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14527 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14528 if (o != NULL)
14529 {
14530 asection *i;
14531 int eh_changed = 0;
14532 unsigned int eh_alignment; /* Octets. */
14533
14534 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14535 {
14536 if (i->size == 0)
14537 continue;
14538
14539 abfd = i->owner;
14540 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14541 continue;
14542
14543 if (!init_reloc_cookie_for_section (&cookie, info, i))
14544 return -1;
14545
14546 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14547 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14548 bfd_elf_reloc_symbol_deleted_p,
14549 &cookie))
14550 {
14551 eh_changed = 1;
14552 if (i->size != i->rawsize)
14553 changed = 1;
14554 }
14555
14556 fini_reloc_cookie_for_section (&cookie, i);
14557 }
14558
14559 eh_alignment = ((1 << o->alignment_power)
14560 * bfd_octets_per_byte (output_bfd, o));
14561 /* Skip over zero terminator, and prevent empty sections from
14562 adding alignment padding at the end. */
14563 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14564 if (i->size == 0)
14565 i->flags |= SEC_EXCLUDE;
14566 else if (i->size > 4)
14567 break;
14568 /* The last non-empty eh_frame section doesn't need padding. */
14569 if (i != NULL)
14570 i = i->map_tail.s;
14571 /* Any prior sections must pad the last FDE out to the output
14572 section alignment. Otherwise we might have zero padding
14573 between sections, which would be seen as a terminator. */
14574 for (; i != NULL; i = i->map_tail.s)
14575 if (i->size == 4)
14576 /* All but the last zero terminator should have been removed. */
14577 BFD_FAIL ();
14578 else
14579 {
14580 bfd_size_type size
14581 = (i->size + eh_alignment - 1) & -eh_alignment;
14582 if (i->size != size)
14583 {
14584 i->size = size;
14585 changed = 1;
14586 eh_changed = 1;
14587 }
14588 }
14589 if (eh_changed)
14590 elf_link_hash_traverse (elf_hash_table (info),
14591 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14592 }
14593
14594 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14595 {
14596 const struct elf_backend_data *bed;
14597 asection *s;
14598
14599 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14600 continue;
14601 s = abfd->sections;
14602 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14603 continue;
14604
14605 bed = get_elf_backend_data (abfd);
14606
14607 if (bed->elf_backend_discard_info != NULL)
14608 {
14609 if (!init_reloc_cookie (&cookie, info, abfd))
14610 return -1;
14611
14612 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14613 changed = 1;
14614
14615 fini_reloc_cookie (&cookie, abfd);
14616 }
14617 }
14618
14619 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14620 _bfd_elf_end_eh_frame_parsing (info);
14621
14622 if (info->eh_frame_hdr_type
14623 && !bfd_link_relocatable (info)
14624 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14625 changed = 1;
14626
14627 return changed;
14628 }
14629
14630 bfd_boolean
14631 _bfd_elf_section_already_linked (bfd *abfd,
14632 asection *sec,
14633 struct bfd_link_info *info)
14634 {
14635 flagword flags;
14636 const char *name, *key;
14637 struct bfd_section_already_linked *l;
14638 struct bfd_section_already_linked_hash_entry *already_linked_list;
14639
14640 if (sec->output_section == bfd_abs_section_ptr)
14641 return FALSE;
14642
14643 flags = sec->flags;
14644
14645 /* Return if it isn't a linkonce section. A comdat group section
14646 also has SEC_LINK_ONCE set. */
14647 if ((flags & SEC_LINK_ONCE) == 0)
14648 return FALSE;
14649
14650 /* Don't put group member sections on our list of already linked
14651 sections. They are handled as a group via their group section. */
14652 if (elf_sec_group (sec) != NULL)
14653 return FALSE;
14654
14655 /* For a SHT_GROUP section, use the group signature as the key. */
14656 name = sec->name;
14657 if ((flags & SEC_GROUP) != 0
14658 && elf_next_in_group (sec) != NULL
14659 && elf_group_name (elf_next_in_group (sec)) != NULL)
14660 key = elf_group_name (elf_next_in_group (sec));
14661 else
14662 {
14663 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14664 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14665 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14666 key++;
14667 else
14668 /* Must be a user linkonce section that doesn't follow gcc's
14669 naming convention. In this case we won't be matching
14670 single member groups. */
14671 key = name;
14672 }
14673
14674 already_linked_list = bfd_section_already_linked_table_lookup (key);
14675
14676 for (l = already_linked_list->entry; l != NULL; l = l->next)
14677 {
14678 /* We may have 2 different types of sections on the list: group
14679 sections with a signature of <key> (<key> is some string),
14680 and linkonce sections named .gnu.linkonce.<type>.<key>.
14681 Match like sections. LTO plugin sections are an exception.
14682 They are always named .gnu.linkonce.t.<key> and match either
14683 type of section. */
14684 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14685 && ((flags & SEC_GROUP) != 0
14686 || strcmp (name, l->sec->name) == 0))
14687 || (l->sec->owner->flags & BFD_PLUGIN) != 0
14688 || (sec->owner->flags & BFD_PLUGIN) != 0)
14689 {
14690 /* The section has already been linked. See if we should
14691 issue a warning. */
14692 if (!_bfd_handle_already_linked (sec, l, info))
14693 return FALSE;
14694
14695 if (flags & SEC_GROUP)
14696 {
14697 asection *first = elf_next_in_group (sec);
14698 asection *s = first;
14699
14700 while (s != NULL)
14701 {
14702 s->output_section = bfd_abs_section_ptr;
14703 /* Record which group discards it. */
14704 s->kept_section = l->sec;
14705 s = elf_next_in_group (s);
14706 /* These lists are circular. */
14707 if (s == first)
14708 break;
14709 }
14710 }
14711
14712 return TRUE;
14713 }
14714 }
14715
14716 /* A single member comdat group section may be discarded by a
14717 linkonce section and vice versa. */
14718 if ((flags & SEC_GROUP) != 0)
14719 {
14720 asection *first = elf_next_in_group (sec);
14721
14722 if (first != NULL && elf_next_in_group (first) == first)
14723 /* Check this single member group against linkonce sections. */
14724 for (l = already_linked_list->entry; l != NULL; l = l->next)
14725 if ((l->sec->flags & SEC_GROUP) == 0
14726 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14727 {
14728 first->output_section = bfd_abs_section_ptr;
14729 first->kept_section = l->sec;
14730 sec->output_section = bfd_abs_section_ptr;
14731 break;
14732 }
14733 }
14734 else
14735 /* Check this linkonce section against single member groups. */
14736 for (l = already_linked_list->entry; l != NULL; l = l->next)
14737 if (l->sec->flags & SEC_GROUP)
14738 {
14739 asection *first = elf_next_in_group (l->sec);
14740
14741 if (first != NULL
14742 && elf_next_in_group (first) == first
14743 && bfd_elf_match_symbols_in_sections (first, sec, info))
14744 {
14745 sec->output_section = bfd_abs_section_ptr;
14746 sec->kept_section = first;
14747 break;
14748 }
14749 }
14750
14751 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14752 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14753 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14754 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14755 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14756 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14757 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14758 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14759 The reverse order cannot happen as there is never a bfd with only the
14760 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14761 matter as here were are looking only for cross-bfd sections. */
14762
14763 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14764 for (l = already_linked_list->entry; l != NULL; l = l->next)
14765 if ((l->sec->flags & SEC_GROUP) == 0
14766 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14767 {
14768 if (abfd != l->sec->owner)
14769 sec->output_section = bfd_abs_section_ptr;
14770 break;
14771 }
14772
14773 /* This is the first section with this name. Record it. */
14774 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14775 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14776 return sec->output_section == bfd_abs_section_ptr;
14777 }
14778
14779 bfd_boolean
14780 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14781 {
14782 return sym->st_shndx == SHN_COMMON;
14783 }
14784
14785 unsigned int
14786 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14787 {
14788 return SHN_COMMON;
14789 }
14790
14791 asection *
14792 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14793 {
14794 return bfd_com_section_ptr;
14795 }
14796
14797 bfd_vma
14798 _bfd_elf_default_got_elt_size (bfd *abfd,
14799 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14800 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14801 bfd *ibfd ATTRIBUTE_UNUSED,
14802 unsigned long symndx ATTRIBUTE_UNUSED)
14803 {
14804 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14805 return bed->s->arch_size / 8;
14806 }
14807
14808 /* Routines to support the creation of dynamic relocs. */
14809
14810 /* Returns the name of the dynamic reloc section associated with SEC. */
14811
14812 static const char *
14813 get_dynamic_reloc_section_name (bfd * abfd,
14814 asection * sec,
14815 bfd_boolean is_rela)
14816 {
14817 char *name;
14818 const char *old_name = bfd_section_name (sec);
14819 const char *prefix = is_rela ? ".rela" : ".rel";
14820
14821 if (old_name == NULL)
14822 return NULL;
14823
14824 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14825 sprintf (name, "%s%s", prefix, old_name);
14826
14827 return name;
14828 }
14829
14830 /* Returns the dynamic reloc section associated with SEC.
14831 If necessary compute the name of the dynamic reloc section based
14832 on SEC's name (looked up in ABFD's string table) and the setting
14833 of IS_RELA. */
14834
14835 asection *
14836 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14837 asection * sec,
14838 bfd_boolean is_rela)
14839 {
14840 asection * reloc_sec = elf_section_data (sec)->sreloc;
14841
14842 if (reloc_sec == NULL)
14843 {
14844 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14845
14846 if (name != NULL)
14847 {
14848 reloc_sec = bfd_get_linker_section (abfd, name);
14849
14850 if (reloc_sec != NULL)
14851 elf_section_data (sec)->sreloc = reloc_sec;
14852 }
14853 }
14854
14855 return reloc_sec;
14856 }
14857
14858 /* Returns the dynamic reloc section associated with SEC. If the
14859 section does not exist it is created and attached to the DYNOBJ
14860 bfd and stored in the SRELOC field of SEC's elf_section_data
14861 structure.
14862
14863 ALIGNMENT is the alignment for the newly created section and
14864 IS_RELA defines whether the name should be .rela.<SEC's name>
14865 or .rel.<SEC's name>. The section name is looked up in the
14866 string table associated with ABFD. */
14867
14868 asection *
14869 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14870 bfd *dynobj,
14871 unsigned int alignment,
14872 bfd *abfd,
14873 bfd_boolean is_rela)
14874 {
14875 asection * reloc_sec = elf_section_data (sec)->sreloc;
14876
14877 if (reloc_sec == NULL)
14878 {
14879 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14880
14881 if (name == NULL)
14882 return NULL;
14883
14884 reloc_sec = bfd_get_linker_section (dynobj, name);
14885
14886 if (reloc_sec == NULL)
14887 {
14888 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14889 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14890 if ((sec->flags & SEC_ALLOC) != 0)
14891 flags |= SEC_ALLOC | SEC_LOAD;
14892
14893 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14894 if (reloc_sec != NULL)
14895 {
14896 /* _bfd_elf_get_sec_type_attr chooses a section type by
14897 name. Override as it may be wrong, eg. for a user
14898 section named "auto" we'll get ".relauto" which is
14899 seen to be a .rela section. */
14900 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14901 if (!bfd_set_section_alignment (reloc_sec, alignment))
14902 reloc_sec = NULL;
14903 }
14904 }
14905
14906 elf_section_data (sec)->sreloc = reloc_sec;
14907 }
14908
14909 return reloc_sec;
14910 }
14911
14912 /* Copy the ELF symbol type and other attributes for a linker script
14913 assignment from HSRC to HDEST. Generally this should be treated as
14914 if we found a strong non-dynamic definition for HDEST (except that
14915 ld ignores multiple definition errors). */
14916 void
14917 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14918 struct bfd_link_hash_entry *hdest,
14919 struct bfd_link_hash_entry *hsrc)
14920 {
14921 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14922 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14923 Elf_Internal_Sym isym;
14924
14925 ehdest->type = ehsrc->type;
14926 ehdest->target_internal = ehsrc->target_internal;
14927
14928 isym.st_other = ehsrc->other;
14929 elf_merge_st_other (abfd, ehdest, isym.st_other, NULL, TRUE, FALSE);
14930 }
14931
14932 /* Append a RELA relocation REL to section S in BFD. */
14933
14934 void
14935 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14936 {
14937 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14938 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14939 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14940 bed->s->swap_reloca_out (abfd, rel, loc);
14941 }
14942
14943 /* Append a REL relocation REL to section S in BFD. */
14944
14945 void
14946 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14947 {
14948 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14949 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14950 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14951 bed->s->swap_reloc_out (abfd, rel, loc);
14952 }
14953
14954 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14955
14956 struct bfd_link_hash_entry *
14957 bfd_elf_define_start_stop (struct bfd_link_info *info,
14958 const char *symbol, asection *sec)
14959 {
14960 struct elf_link_hash_entry *h;
14961
14962 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14963 FALSE, FALSE, TRUE);
14964 /* NB: Common symbols will be turned into definition later. */
14965 if (h != NULL
14966 && (h->root.type == bfd_link_hash_undefined
14967 || h->root.type == bfd_link_hash_undefweak
14968 || ((h->ref_regular || h->def_dynamic)
14969 && !h->def_regular
14970 && h->root.type != bfd_link_hash_common)))
14971 {
14972 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14973 h->verinfo.verdef = NULL;
14974 h->root.type = bfd_link_hash_defined;
14975 h->root.u.def.section = sec;
14976 h->root.u.def.value = 0;
14977 h->def_regular = 1;
14978 h->def_dynamic = 0;
14979 h->start_stop = 1;
14980 h->u2.start_stop_section = sec;
14981 if (symbol[0] == '.')
14982 {
14983 /* .startof. and .sizeof. symbols are local. */
14984 const struct elf_backend_data *bed;
14985 bed = get_elf_backend_data (info->output_bfd);
14986 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14987 }
14988 else
14989 {
14990 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14991 h->other = ((h->other & ~ELF_ST_VISIBILITY (-1))
14992 | info->start_stop_visibility);
14993 if (was_dynamic)
14994 bfd_elf_link_record_dynamic_symbol (info, h);
14995 }
14996 return &h->root;
14997 }
14998 return NULL;
14999 }
15000
15001 /* Find dynamic relocs for H that apply to read-only sections. */
15002
15003 asection *
15004 _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h)
15005 {
15006 struct elf_dyn_relocs *p;
15007
15008 for (p = h->dyn_relocs; p != NULL; p = p->next)
15009 {
15010 asection *s = p->sec->output_section;
15011
15012 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15013 return p->sec;
15014 }
15015 return NULL;
15016 }
15017
15018 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
15019 read-only sections. */
15020
15021 bfd_boolean
15022 _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
15023 {
15024 asection *sec;
15025
15026 if (h->root.type == bfd_link_hash_indirect)
15027 return TRUE;
15028
15029 sec = _bfd_elf_readonly_dynrelocs (h);
15030 if (sec != NULL)
15031 {
15032 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15033
15034 info->flags |= DF_TEXTREL;
15035 /* xgettext:c-format */
15036 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' "
15037 "in read-only section `%pA'\n"),
15038 sec->owner, h->root.root.string, sec);
15039
15040 if (bfd_link_textrel_check (info))
15041 /* xgettext:c-format */
15042 info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' "
15043 "in read-only section `%pA'\n"),
15044 sec->owner, h->root.root.string, sec);
15045
15046 /* Not an error, just cut short the traversal. */
15047 return FALSE;
15048 }
15049 return TRUE;
15050 }
15051
15052 /* Add dynamic tags. */
15053
15054 bfd_boolean
15055 _bfd_elf_add_dynamic_tags (bfd *output_bfd, struct bfd_link_info *info,
15056 bfd_boolean need_dynamic_reloc)
15057 {
15058 struct elf_link_hash_table *htab = elf_hash_table (info);
15059
15060 if (htab->dynamic_sections_created)
15061 {
15062 /* Add some entries to the .dynamic section. We fill in the
15063 values later, in finish_dynamic_sections, but we must add
15064 the entries now so that we get the correct size for the
15065 .dynamic section. The DT_DEBUG entry is filled in by the
15066 dynamic linker and used by the debugger. */
15067 #define add_dynamic_entry(TAG, VAL) \
15068 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
15069
15070 const struct elf_backend_data *bed
15071 = get_elf_backend_data (output_bfd);
15072
15073 if (bfd_link_executable (info))
15074 {
15075 if (!add_dynamic_entry (DT_DEBUG, 0))
15076 return FALSE;
15077 }
15078
15079 if (htab->dt_pltgot_required || htab->splt->size != 0)
15080 {
15081 /* DT_PLTGOT is used by prelink even if there is no PLT
15082 relocation. */
15083 if (!add_dynamic_entry (DT_PLTGOT, 0))
15084 return FALSE;
15085 }
15086
15087 if (htab->dt_jmprel_required || htab->srelplt->size != 0)
15088 {
15089 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
15090 || !add_dynamic_entry (DT_PLTREL,
15091 (bed->rela_plts_and_copies_p
15092 ? DT_RELA : DT_REL))
15093 || !add_dynamic_entry (DT_JMPREL, 0))
15094 return FALSE;
15095 }
15096
15097 if (htab->tlsdesc_plt
15098 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
15099 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
15100 return FALSE;
15101
15102 if (need_dynamic_reloc)
15103 {
15104 if (bed->rela_plts_and_copies_p)
15105 {
15106 if (!add_dynamic_entry (DT_RELA, 0)
15107 || !add_dynamic_entry (DT_RELASZ, 0)
15108 || !add_dynamic_entry (DT_RELAENT,
15109 bed->s->sizeof_rela))
15110 return FALSE;
15111 }
15112 else
15113 {
15114 if (!add_dynamic_entry (DT_REL, 0)
15115 || !add_dynamic_entry (DT_RELSZ, 0)
15116 || !add_dynamic_entry (DT_RELENT,
15117 bed->s->sizeof_rel))
15118 return FALSE;
15119 }
15120
15121 /* If any dynamic relocs apply to a read-only section,
15122 then we need a DT_TEXTREL entry. */
15123 if ((info->flags & DF_TEXTREL) == 0)
15124 elf_link_hash_traverse (htab, _bfd_elf_maybe_set_textrel,
15125 info);
15126
15127 if ((info->flags & DF_TEXTREL) != 0)
15128 {
15129 if (htab->ifunc_resolvers)
15130 info->callbacks->einfo
15131 (_("%P: warning: GNU indirect functions with DT_TEXTREL "
15132 "may result in a segfault at runtime; recompile with %s\n"),
15133 bfd_link_dll (info) ? "-fPIC" : "-fPIE");
15134
15135 if (!add_dynamic_entry (DT_TEXTREL, 0))
15136 return FALSE;
15137 }
15138 }
15139 }
15140 #undef add_dynamic_entry
15141
15142 return TRUE;
15143 }