]> git.ipfire.org Git - thirdparty/linux.git/blob - block/bio.c
Merge tag 'audit-pr-20200601' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoor...
[thirdparty/linux.git] / block / bio.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22
23 #include <trace/events/block.h>
24 #include "blk.h"
25 #include "blk-rq-qos.h"
26
27 /*
28 * Test patch to inline a certain number of bi_io_vec's inside the bio
29 * itself, to shrink a bio data allocation from two mempool calls to one
30 */
31 #define BIO_INLINE_VECS 4
32
33 /*
34 * if you change this list, also change bvec_alloc or things will
35 * break badly! cannot be bigger than what you can fit into an
36 * unsigned short
37 */
38 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
39 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
40 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
41 };
42 #undef BV
43
44 /*
45 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
46 * IO code that does not need private memory pools.
47 */
48 struct bio_set fs_bio_set;
49 EXPORT_SYMBOL(fs_bio_set);
50
51 /*
52 * Our slab pool management
53 */
54 struct bio_slab {
55 struct kmem_cache *slab;
56 unsigned int slab_ref;
57 unsigned int slab_size;
58 char name[8];
59 };
60 static DEFINE_MUTEX(bio_slab_lock);
61 static struct bio_slab *bio_slabs;
62 static unsigned int bio_slab_nr, bio_slab_max;
63
64 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
65 {
66 unsigned int sz = sizeof(struct bio) + extra_size;
67 struct kmem_cache *slab = NULL;
68 struct bio_slab *bslab, *new_bio_slabs;
69 unsigned int new_bio_slab_max;
70 unsigned int i, entry = -1;
71
72 mutex_lock(&bio_slab_lock);
73
74 i = 0;
75 while (i < bio_slab_nr) {
76 bslab = &bio_slabs[i];
77
78 if (!bslab->slab && entry == -1)
79 entry = i;
80 else if (bslab->slab_size == sz) {
81 slab = bslab->slab;
82 bslab->slab_ref++;
83 break;
84 }
85 i++;
86 }
87
88 if (slab)
89 goto out_unlock;
90
91 if (bio_slab_nr == bio_slab_max && entry == -1) {
92 new_bio_slab_max = bio_slab_max << 1;
93 new_bio_slabs = krealloc(bio_slabs,
94 new_bio_slab_max * sizeof(struct bio_slab),
95 GFP_KERNEL);
96 if (!new_bio_slabs)
97 goto out_unlock;
98 bio_slab_max = new_bio_slab_max;
99 bio_slabs = new_bio_slabs;
100 }
101 if (entry == -1)
102 entry = bio_slab_nr++;
103
104 bslab = &bio_slabs[entry];
105
106 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
107 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
108 SLAB_HWCACHE_ALIGN, NULL);
109 if (!slab)
110 goto out_unlock;
111
112 bslab->slab = slab;
113 bslab->slab_ref = 1;
114 bslab->slab_size = sz;
115 out_unlock:
116 mutex_unlock(&bio_slab_lock);
117 return slab;
118 }
119
120 static void bio_put_slab(struct bio_set *bs)
121 {
122 struct bio_slab *bslab = NULL;
123 unsigned int i;
124
125 mutex_lock(&bio_slab_lock);
126
127 for (i = 0; i < bio_slab_nr; i++) {
128 if (bs->bio_slab == bio_slabs[i].slab) {
129 bslab = &bio_slabs[i];
130 break;
131 }
132 }
133
134 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
135 goto out;
136
137 WARN_ON(!bslab->slab_ref);
138
139 if (--bslab->slab_ref)
140 goto out;
141
142 kmem_cache_destroy(bslab->slab);
143 bslab->slab = NULL;
144
145 out:
146 mutex_unlock(&bio_slab_lock);
147 }
148
149 unsigned int bvec_nr_vecs(unsigned short idx)
150 {
151 return bvec_slabs[--idx].nr_vecs;
152 }
153
154 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
155 {
156 if (!idx)
157 return;
158 idx--;
159
160 BIO_BUG_ON(idx >= BVEC_POOL_NR);
161
162 if (idx == BVEC_POOL_MAX) {
163 mempool_free(bv, pool);
164 } else {
165 struct biovec_slab *bvs = bvec_slabs + idx;
166
167 kmem_cache_free(bvs->slab, bv);
168 }
169 }
170
171 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
172 mempool_t *pool)
173 {
174 struct bio_vec *bvl;
175
176 /*
177 * see comment near bvec_array define!
178 */
179 switch (nr) {
180 case 1:
181 *idx = 0;
182 break;
183 case 2 ... 4:
184 *idx = 1;
185 break;
186 case 5 ... 16:
187 *idx = 2;
188 break;
189 case 17 ... 64:
190 *idx = 3;
191 break;
192 case 65 ... 128:
193 *idx = 4;
194 break;
195 case 129 ... BIO_MAX_PAGES:
196 *idx = 5;
197 break;
198 default:
199 return NULL;
200 }
201
202 /*
203 * idx now points to the pool we want to allocate from. only the
204 * 1-vec entry pool is mempool backed.
205 */
206 if (*idx == BVEC_POOL_MAX) {
207 fallback:
208 bvl = mempool_alloc(pool, gfp_mask);
209 } else {
210 struct biovec_slab *bvs = bvec_slabs + *idx;
211 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
212
213 /*
214 * Make this allocation restricted and don't dump info on
215 * allocation failures, since we'll fallback to the mempool
216 * in case of failure.
217 */
218 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
219
220 /*
221 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
222 * is set, retry with the 1-entry mempool
223 */
224 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
225 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
226 *idx = BVEC_POOL_MAX;
227 goto fallback;
228 }
229 }
230
231 (*idx)++;
232 return bvl;
233 }
234
235 void bio_uninit(struct bio *bio)
236 {
237 bio_disassociate_blkg(bio);
238
239 if (bio_integrity(bio))
240 bio_integrity_free(bio);
241
242 bio_crypt_free_ctx(bio);
243 }
244 EXPORT_SYMBOL(bio_uninit);
245
246 static void bio_free(struct bio *bio)
247 {
248 struct bio_set *bs = bio->bi_pool;
249 void *p;
250
251 bio_uninit(bio);
252
253 if (bs) {
254 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
260 p -= bs->front_pad;
261
262 mempool_free(p, &bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
267 }
268
269 /*
270 * Users of this function have their own bio allocation. Subsequently,
271 * they must remember to pair any call to bio_init() with bio_uninit()
272 * when IO has completed, or when the bio is released.
273 */
274 void bio_init(struct bio *bio, struct bio_vec *table,
275 unsigned short max_vecs)
276 {
277 memset(bio, 0, sizeof(*bio));
278 atomic_set(&bio->__bi_remaining, 1);
279 atomic_set(&bio->__bi_cnt, 1);
280
281 bio->bi_io_vec = table;
282 bio->bi_max_vecs = max_vecs;
283 }
284 EXPORT_SYMBOL(bio_init);
285
286 /**
287 * bio_reset - reinitialize a bio
288 * @bio: bio to reset
289 *
290 * Description:
291 * After calling bio_reset(), @bio will be in the same state as a freshly
292 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
293 * preserved are the ones that are initialized by bio_alloc_bioset(). See
294 * comment in struct bio.
295 */
296 void bio_reset(struct bio *bio)
297 {
298 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
299
300 bio_uninit(bio);
301
302 memset(bio, 0, BIO_RESET_BYTES);
303 bio->bi_flags = flags;
304 atomic_set(&bio->__bi_remaining, 1);
305 }
306 EXPORT_SYMBOL(bio_reset);
307
308 static struct bio *__bio_chain_endio(struct bio *bio)
309 {
310 struct bio *parent = bio->bi_private;
311
312 if (!parent->bi_status)
313 parent->bi_status = bio->bi_status;
314 bio_put(bio);
315 return parent;
316 }
317
318 static void bio_chain_endio(struct bio *bio)
319 {
320 bio_endio(__bio_chain_endio(bio));
321 }
322
323 /**
324 * bio_chain - chain bio completions
325 * @bio: the target bio
326 * @parent: the @bio's parent bio
327 *
328 * The caller won't have a bi_end_io called when @bio completes - instead,
329 * @parent's bi_end_io won't be called until both @parent and @bio have
330 * completed; the chained bio will also be freed when it completes.
331 *
332 * The caller must not set bi_private or bi_end_io in @bio.
333 */
334 void bio_chain(struct bio *bio, struct bio *parent)
335 {
336 BUG_ON(bio->bi_private || bio->bi_end_io);
337
338 bio->bi_private = parent;
339 bio->bi_end_io = bio_chain_endio;
340 bio_inc_remaining(parent);
341 }
342 EXPORT_SYMBOL(bio_chain);
343
344 static void bio_alloc_rescue(struct work_struct *work)
345 {
346 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
347 struct bio *bio;
348
349 while (1) {
350 spin_lock(&bs->rescue_lock);
351 bio = bio_list_pop(&bs->rescue_list);
352 spin_unlock(&bs->rescue_lock);
353
354 if (!bio)
355 break;
356
357 generic_make_request(bio);
358 }
359 }
360
361 static void punt_bios_to_rescuer(struct bio_set *bs)
362 {
363 struct bio_list punt, nopunt;
364 struct bio *bio;
365
366 if (WARN_ON_ONCE(!bs->rescue_workqueue))
367 return;
368 /*
369 * In order to guarantee forward progress we must punt only bios that
370 * were allocated from this bio_set; otherwise, if there was a bio on
371 * there for a stacking driver higher up in the stack, processing it
372 * could require allocating bios from this bio_set, and doing that from
373 * our own rescuer would be bad.
374 *
375 * Since bio lists are singly linked, pop them all instead of trying to
376 * remove from the middle of the list:
377 */
378
379 bio_list_init(&punt);
380 bio_list_init(&nopunt);
381
382 while ((bio = bio_list_pop(&current->bio_list[0])))
383 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
384 current->bio_list[0] = nopunt;
385
386 bio_list_init(&nopunt);
387 while ((bio = bio_list_pop(&current->bio_list[1])))
388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
389 current->bio_list[1] = nopunt;
390
391 spin_lock(&bs->rescue_lock);
392 bio_list_merge(&bs->rescue_list, &punt);
393 spin_unlock(&bs->rescue_lock);
394
395 queue_work(bs->rescue_workqueue, &bs->rescue_work);
396 }
397
398 /**
399 * bio_alloc_bioset - allocate a bio for I/O
400 * @gfp_mask: the GFP_* mask given to the slab allocator
401 * @nr_iovecs: number of iovecs to pre-allocate
402 * @bs: the bio_set to allocate from.
403 *
404 * Description:
405 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
406 * backed by the @bs's mempool.
407 *
408 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
409 * always be able to allocate a bio. This is due to the mempool guarantees.
410 * To make this work, callers must never allocate more than 1 bio at a time
411 * from this pool. Callers that need to allocate more than 1 bio must always
412 * submit the previously allocated bio for IO before attempting to allocate
413 * a new one. Failure to do so can cause deadlocks under memory pressure.
414 *
415 * Note that when running under generic_make_request() (i.e. any block
416 * driver), bios are not submitted until after you return - see the code in
417 * generic_make_request() that converts recursion into iteration, to prevent
418 * stack overflows.
419 *
420 * This would normally mean allocating multiple bios under
421 * generic_make_request() would be susceptible to deadlocks, but we have
422 * deadlock avoidance code that resubmits any blocked bios from a rescuer
423 * thread.
424 *
425 * However, we do not guarantee forward progress for allocations from other
426 * mempools. Doing multiple allocations from the same mempool under
427 * generic_make_request() should be avoided - instead, use bio_set's front_pad
428 * for per bio allocations.
429 *
430 * RETURNS:
431 * Pointer to new bio on success, NULL on failure.
432 */
433 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
434 struct bio_set *bs)
435 {
436 gfp_t saved_gfp = gfp_mask;
437 unsigned front_pad;
438 unsigned inline_vecs;
439 struct bio_vec *bvl = NULL;
440 struct bio *bio;
441 void *p;
442
443 if (!bs) {
444 if (nr_iovecs > UIO_MAXIOV)
445 return NULL;
446
447 p = kmalloc(sizeof(struct bio) +
448 nr_iovecs * sizeof(struct bio_vec),
449 gfp_mask);
450 front_pad = 0;
451 inline_vecs = nr_iovecs;
452 } else {
453 /* should not use nobvec bioset for nr_iovecs > 0 */
454 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
455 nr_iovecs > 0))
456 return NULL;
457 /*
458 * generic_make_request() converts recursion to iteration; this
459 * means if we're running beneath it, any bios we allocate and
460 * submit will not be submitted (and thus freed) until after we
461 * return.
462 *
463 * This exposes us to a potential deadlock if we allocate
464 * multiple bios from the same bio_set() while running
465 * underneath generic_make_request(). If we were to allocate
466 * multiple bios (say a stacking block driver that was splitting
467 * bios), we would deadlock if we exhausted the mempool's
468 * reserve.
469 *
470 * We solve this, and guarantee forward progress, with a rescuer
471 * workqueue per bio_set. If we go to allocate and there are
472 * bios on current->bio_list, we first try the allocation
473 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
474 * bios we would be blocking to the rescuer workqueue before
475 * we retry with the original gfp_flags.
476 */
477
478 if (current->bio_list &&
479 (!bio_list_empty(&current->bio_list[0]) ||
480 !bio_list_empty(&current->bio_list[1])) &&
481 bs->rescue_workqueue)
482 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
483
484 p = mempool_alloc(&bs->bio_pool, gfp_mask);
485 if (!p && gfp_mask != saved_gfp) {
486 punt_bios_to_rescuer(bs);
487 gfp_mask = saved_gfp;
488 p = mempool_alloc(&bs->bio_pool, gfp_mask);
489 }
490
491 front_pad = bs->front_pad;
492 inline_vecs = BIO_INLINE_VECS;
493 }
494
495 if (unlikely(!p))
496 return NULL;
497
498 bio = p + front_pad;
499 bio_init(bio, NULL, 0);
500
501 if (nr_iovecs > inline_vecs) {
502 unsigned long idx = 0;
503
504 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
505 if (!bvl && gfp_mask != saved_gfp) {
506 punt_bios_to_rescuer(bs);
507 gfp_mask = saved_gfp;
508 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
509 }
510
511 if (unlikely(!bvl))
512 goto err_free;
513
514 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
515 } else if (nr_iovecs) {
516 bvl = bio->bi_inline_vecs;
517 }
518
519 bio->bi_pool = bs;
520 bio->bi_max_vecs = nr_iovecs;
521 bio->bi_io_vec = bvl;
522 return bio;
523
524 err_free:
525 mempool_free(p, &bs->bio_pool);
526 return NULL;
527 }
528 EXPORT_SYMBOL(bio_alloc_bioset);
529
530 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
531 {
532 unsigned long flags;
533 struct bio_vec bv;
534 struct bvec_iter iter;
535
536 __bio_for_each_segment(bv, bio, iter, start) {
537 char *data = bvec_kmap_irq(&bv, &flags);
538 memset(data, 0, bv.bv_len);
539 flush_dcache_page(bv.bv_page);
540 bvec_kunmap_irq(data, &flags);
541 }
542 }
543 EXPORT_SYMBOL(zero_fill_bio_iter);
544
545 /**
546 * bio_truncate - truncate the bio to small size of @new_size
547 * @bio: the bio to be truncated
548 * @new_size: new size for truncating the bio
549 *
550 * Description:
551 * Truncate the bio to new size of @new_size. If bio_op(bio) is
552 * REQ_OP_READ, zero the truncated part. This function should only
553 * be used for handling corner cases, such as bio eod.
554 */
555 void bio_truncate(struct bio *bio, unsigned new_size)
556 {
557 struct bio_vec bv;
558 struct bvec_iter iter;
559 unsigned int done = 0;
560 bool truncated = false;
561
562 if (new_size >= bio->bi_iter.bi_size)
563 return;
564
565 if (bio_op(bio) != REQ_OP_READ)
566 goto exit;
567
568 bio_for_each_segment(bv, bio, iter) {
569 if (done + bv.bv_len > new_size) {
570 unsigned offset;
571
572 if (!truncated)
573 offset = new_size - done;
574 else
575 offset = 0;
576 zero_user(bv.bv_page, offset, bv.bv_len - offset);
577 truncated = true;
578 }
579 done += bv.bv_len;
580 }
581
582 exit:
583 /*
584 * Don't touch bvec table here and make it really immutable, since
585 * fs bio user has to retrieve all pages via bio_for_each_segment_all
586 * in its .end_bio() callback.
587 *
588 * It is enough to truncate bio by updating .bi_size since we can make
589 * correct bvec with the updated .bi_size for drivers.
590 */
591 bio->bi_iter.bi_size = new_size;
592 }
593
594 /**
595 * guard_bio_eod - truncate a BIO to fit the block device
596 * @bio: bio to truncate
597 *
598 * This allows us to do IO even on the odd last sectors of a device, even if the
599 * block size is some multiple of the physical sector size.
600 *
601 * We'll just truncate the bio to the size of the device, and clear the end of
602 * the buffer head manually. Truly out-of-range accesses will turn into actual
603 * I/O errors, this only handles the "we need to be able to do I/O at the final
604 * sector" case.
605 */
606 void guard_bio_eod(struct bio *bio)
607 {
608 sector_t maxsector;
609 struct hd_struct *part;
610
611 rcu_read_lock();
612 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
613 if (part)
614 maxsector = part_nr_sects_read(part);
615 else
616 maxsector = get_capacity(bio->bi_disk);
617 rcu_read_unlock();
618
619 if (!maxsector)
620 return;
621
622 /*
623 * If the *whole* IO is past the end of the device,
624 * let it through, and the IO layer will turn it into
625 * an EIO.
626 */
627 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
628 return;
629
630 maxsector -= bio->bi_iter.bi_sector;
631 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
632 return;
633
634 bio_truncate(bio, maxsector << 9);
635 }
636
637 /**
638 * bio_put - release a reference to a bio
639 * @bio: bio to release reference to
640 *
641 * Description:
642 * Put a reference to a &struct bio, either one you have gotten with
643 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
644 **/
645 void bio_put(struct bio *bio)
646 {
647 if (!bio_flagged(bio, BIO_REFFED))
648 bio_free(bio);
649 else {
650 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
651
652 /*
653 * last put frees it
654 */
655 if (atomic_dec_and_test(&bio->__bi_cnt))
656 bio_free(bio);
657 }
658 }
659 EXPORT_SYMBOL(bio_put);
660
661 /**
662 * __bio_clone_fast - clone a bio that shares the original bio's biovec
663 * @bio: destination bio
664 * @bio_src: bio to clone
665 *
666 * Clone a &bio. Caller will own the returned bio, but not
667 * the actual data it points to. Reference count of returned
668 * bio will be one.
669 *
670 * Caller must ensure that @bio_src is not freed before @bio.
671 */
672 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
673 {
674 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
675
676 /*
677 * most users will be overriding ->bi_disk with a new target,
678 * so we don't set nor calculate new physical/hw segment counts here
679 */
680 bio->bi_disk = bio_src->bi_disk;
681 bio->bi_partno = bio_src->bi_partno;
682 bio_set_flag(bio, BIO_CLONED);
683 if (bio_flagged(bio_src, BIO_THROTTLED))
684 bio_set_flag(bio, BIO_THROTTLED);
685 bio->bi_opf = bio_src->bi_opf;
686 bio->bi_ioprio = bio_src->bi_ioprio;
687 bio->bi_write_hint = bio_src->bi_write_hint;
688 bio->bi_iter = bio_src->bi_iter;
689 bio->bi_io_vec = bio_src->bi_io_vec;
690
691 bio_clone_blkg_association(bio, bio_src);
692 blkcg_bio_issue_init(bio);
693 }
694 EXPORT_SYMBOL(__bio_clone_fast);
695
696 /**
697 * bio_clone_fast - clone a bio that shares the original bio's biovec
698 * @bio: bio to clone
699 * @gfp_mask: allocation priority
700 * @bs: bio_set to allocate from
701 *
702 * Like __bio_clone_fast, only also allocates the returned bio
703 */
704 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
705 {
706 struct bio *b;
707
708 b = bio_alloc_bioset(gfp_mask, 0, bs);
709 if (!b)
710 return NULL;
711
712 __bio_clone_fast(b, bio);
713
714 bio_crypt_clone(b, bio, gfp_mask);
715
716 if (bio_integrity(bio)) {
717 int ret;
718
719 ret = bio_integrity_clone(b, bio, gfp_mask);
720
721 if (ret < 0) {
722 bio_put(b);
723 return NULL;
724 }
725 }
726
727 return b;
728 }
729 EXPORT_SYMBOL(bio_clone_fast);
730
731 const char *bio_devname(struct bio *bio, char *buf)
732 {
733 return disk_name(bio->bi_disk, bio->bi_partno, buf);
734 }
735 EXPORT_SYMBOL(bio_devname);
736
737 static inline bool page_is_mergeable(const struct bio_vec *bv,
738 struct page *page, unsigned int len, unsigned int off,
739 bool *same_page)
740 {
741 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
742 bv->bv_offset + bv->bv_len - 1;
743 phys_addr_t page_addr = page_to_phys(page);
744
745 if (vec_end_addr + 1 != page_addr + off)
746 return false;
747 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
748 return false;
749
750 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
751 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
752 return false;
753 return true;
754 }
755
756 /*
757 * Try to merge a page into a segment, while obeying the hardware segment
758 * size limit. This is not for normal read/write bios, but for passthrough
759 * or Zone Append operations that we can't split.
760 */
761 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
762 struct page *page, unsigned len,
763 unsigned offset, bool *same_page)
764 {
765 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
766 unsigned long mask = queue_segment_boundary(q);
767 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
768 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
769
770 if ((addr1 | mask) != (addr2 | mask))
771 return false;
772 if (bv->bv_len + len > queue_max_segment_size(q))
773 return false;
774 return __bio_try_merge_page(bio, page, len, offset, same_page);
775 }
776
777 /**
778 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
779 * @q: the target queue
780 * @bio: destination bio
781 * @page: page to add
782 * @len: vec entry length
783 * @offset: vec entry offset
784 * @max_sectors: maximum number of sectors that can be added
785 * @same_page: return if the segment has been merged inside the same page
786 *
787 * Add a page to a bio while respecting the hardware max_sectors, max_segment
788 * and gap limitations.
789 */
790 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
791 struct page *page, unsigned int len, unsigned int offset,
792 unsigned int max_sectors, bool *same_page)
793 {
794 struct bio_vec *bvec;
795
796 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
797 return 0;
798
799 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
800 return 0;
801
802 if (bio->bi_vcnt > 0) {
803 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
804 return len;
805
806 /*
807 * If the queue doesn't support SG gaps and adding this segment
808 * would create a gap, disallow it.
809 */
810 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
811 if (bvec_gap_to_prev(q, bvec, offset))
812 return 0;
813 }
814
815 if (bio_full(bio, len))
816 return 0;
817
818 if (bio->bi_vcnt >= queue_max_segments(q))
819 return 0;
820
821 bvec = &bio->bi_io_vec[bio->bi_vcnt];
822 bvec->bv_page = page;
823 bvec->bv_len = len;
824 bvec->bv_offset = offset;
825 bio->bi_vcnt++;
826 bio->bi_iter.bi_size += len;
827 return len;
828 }
829
830 /**
831 * bio_add_pc_page - attempt to add page to passthrough bio
832 * @q: the target queue
833 * @bio: destination bio
834 * @page: page to add
835 * @len: vec entry length
836 * @offset: vec entry offset
837 *
838 * Attempt to add a page to the bio_vec maplist. This can fail for a
839 * number of reasons, such as the bio being full or target block device
840 * limitations. The target block device must allow bio's up to PAGE_SIZE,
841 * so it is always possible to add a single page to an empty bio.
842 *
843 * This should only be used by passthrough bios.
844 */
845 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
846 struct page *page, unsigned int len, unsigned int offset)
847 {
848 bool same_page = false;
849 return bio_add_hw_page(q, bio, page, len, offset,
850 queue_max_hw_sectors(q), &same_page);
851 }
852 EXPORT_SYMBOL(bio_add_pc_page);
853
854 /**
855 * __bio_try_merge_page - try appending data to an existing bvec.
856 * @bio: destination bio
857 * @page: start page to add
858 * @len: length of the data to add
859 * @off: offset of the data relative to @page
860 * @same_page: return if the segment has been merged inside the same page
861 *
862 * Try to add the data at @page + @off to the last bvec of @bio. This is a
863 * a useful optimisation for file systems with a block size smaller than the
864 * page size.
865 *
866 * Warn if (@len, @off) crosses pages in case that @same_page is true.
867 *
868 * Return %true on success or %false on failure.
869 */
870 bool __bio_try_merge_page(struct bio *bio, struct page *page,
871 unsigned int len, unsigned int off, bool *same_page)
872 {
873 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
874 return false;
875
876 if (bio->bi_vcnt > 0) {
877 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
878
879 if (page_is_mergeable(bv, page, len, off, same_page)) {
880 if (bio->bi_iter.bi_size > UINT_MAX - len)
881 return false;
882 bv->bv_len += len;
883 bio->bi_iter.bi_size += len;
884 return true;
885 }
886 }
887 return false;
888 }
889 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
890
891 /**
892 * __bio_add_page - add page(s) to a bio in a new segment
893 * @bio: destination bio
894 * @page: start page to add
895 * @len: length of the data to add, may cross pages
896 * @off: offset of the data relative to @page, may cross pages
897 *
898 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
899 * that @bio has space for another bvec.
900 */
901 void __bio_add_page(struct bio *bio, struct page *page,
902 unsigned int len, unsigned int off)
903 {
904 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
905
906 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
907 WARN_ON_ONCE(bio_full(bio, len));
908
909 bv->bv_page = page;
910 bv->bv_offset = off;
911 bv->bv_len = len;
912
913 bio->bi_iter.bi_size += len;
914 bio->bi_vcnt++;
915
916 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
917 bio_set_flag(bio, BIO_WORKINGSET);
918 }
919 EXPORT_SYMBOL_GPL(__bio_add_page);
920
921 /**
922 * bio_add_page - attempt to add page(s) to bio
923 * @bio: destination bio
924 * @page: start page to add
925 * @len: vec entry length, may cross pages
926 * @offset: vec entry offset relative to @page, may cross pages
927 *
928 * Attempt to add page(s) to the bio_vec maplist. This will only fail
929 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
930 */
931 int bio_add_page(struct bio *bio, struct page *page,
932 unsigned int len, unsigned int offset)
933 {
934 bool same_page = false;
935
936 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
937 if (bio_full(bio, len))
938 return 0;
939 __bio_add_page(bio, page, len, offset);
940 }
941 return len;
942 }
943 EXPORT_SYMBOL(bio_add_page);
944
945 void bio_release_pages(struct bio *bio, bool mark_dirty)
946 {
947 struct bvec_iter_all iter_all;
948 struct bio_vec *bvec;
949
950 if (bio_flagged(bio, BIO_NO_PAGE_REF))
951 return;
952
953 bio_for_each_segment_all(bvec, bio, iter_all) {
954 if (mark_dirty && !PageCompound(bvec->bv_page))
955 set_page_dirty_lock(bvec->bv_page);
956 put_page(bvec->bv_page);
957 }
958 }
959 EXPORT_SYMBOL_GPL(bio_release_pages);
960
961 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
962 {
963 const struct bio_vec *bv = iter->bvec;
964 unsigned int len;
965 size_t size;
966
967 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
968 return -EINVAL;
969
970 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
971 size = bio_add_page(bio, bv->bv_page, len,
972 bv->bv_offset + iter->iov_offset);
973 if (unlikely(size != len))
974 return -EINVAL;
975 iov_iter_advance(iter, size);
976 return 0;
977 }
978
979 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
980
981 /**
982 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
983 * @bio: bio to add pages to
984 * @iter: iov iterator describing the region to be mapped
985 *
986 * Pins pages from *iter and appends them to @bio's bvec array. The
987 * pages will have to be released using put_page() when done.
988 * For multi-segment *iter, this function only adds pages from the
989 * the next non-empty segment of the iov iterator.
990 */
991 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
992 {
993 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
994 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
995 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
996 struct page **pages = (struct page **)bv;
997 bool same_page = false;
998 ssize_t size, left;
999 unsigned len, i;
1000 size_t offset;
1001
1002 /*
1003 * Move page array up in the allocated memory for the bio vecs as far as
1004 * possible so that we can start filling biovecs from the beginning
1005 * without overwriting the temporary page array.
1006 */
1007 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1008 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1009
1010 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1011 if (unlikely(size <= 0))
1012 return size ? size : -EFAULT;
1013
1014 for (left = size, i = 0; left > 0; left -= len, i++) {
1015 struct page *page = pages[i];
1016
1017 len = min_t(size_t, PAGE_SIZE - offset, left);
1018
1019 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1020 if (same_page)
1021 put_page(page);
1022 } else {
1023 if (WARN_ON_ONCE(bio_full(bio, len)))
1024 return -EINVAL;
1025 __bio_add_page(bio, page, len, offset);
1026 }
1027 offset = 0;
1028 }
1029
1030 iov_iter_advance(iter, size);
1031 return 0;
1032 }
1033
1034 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1035 {
1036 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1037 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1038 struct request_queue *q = bio->bi_disk->queue;
1039 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1040 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1041 struct page **pages = (struct page **)bv;
1042 ssize_t size, left;
1043 unsigned len, i;
1044 size_t offset;
1045
1046 if (WARN_ON_ONCE(!max_append_sectors))
1047 return 0;
1048
1049 /*
1050 * Move page array up in the allocated memory for the bio vecs as far as
1051 * possible so that we can start filling biovecs from the beginning
1052 * without overwriting the temporary page array.
1053 */
1054 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1055 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1056
1057 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1058 if (unlikely(size <= 0))
1059 return size ? size : -EFAULT;
1060
1061 for (left = size, i = 0; left > 0; left -= len, i++) {
1062 struct page *page = pages[i];
1063 bool same_page = false;
1064
1065 len = min_t(size_t, PAGE_SIZE - offset, left);
1066 if (bio_add_hw_page(q, bio, page, len, offset,
1067 max_append_sectors, &same_page) != len)
1068 return -EINVAL;
1069 if (same_page)
1070 put_page(page);
1071 offset = 0;
1072 }
1073
1074 iov_iter_advance(iter, size);
1075 return 0;
1076 }
1077
1078 /**
1079 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1080 * @bio: bio to add pages to
1081 * @iter: iov iterator describing the region to be added
1082 *
1083 * This takes either an iterator pointing to user memory, or one pointing to
1084 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1085 * map them into the kernel. On IO completion, the caller should put those
1086 * pages. If we're adding kernel pages, and the caller told us it's safe to
1087 * do so, we just have to add the pages to the bio directly. We don't grab an
1088 * extra reference to those pages (the user should already have that), and we
1089 * don't put the page on IO completion. The caller needs to check if the bio is
1090 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
1091 * released.
1092 *
1093 * The function tries, but does not guarantee, to pin as many pages as
1094 * fit into the bio, or are requested in *iter, whatever is smaller. If
1095 * MM encounters an error pinning the requested pages, it stops. Error
1096 * is returned only if 0 pages could be pinned.
1097 */
1098 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1099 {
1100 const bool is_bvec = iov_iter_is_bvec(iter);
1101 int ret;
1102
1103 if (WARN_ON_ONCE(bio->bi_vcnt))
1104 return -EINVAL;
1105
1106 do {
1107 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1108 if (WARN_ON_ONCE(is_bvec))
1109 return -EINVAL;
1110 ret = __bio_iov_append_get_pages(bio, iter);
1111 } else {
1112 if (is_bvec)
1113 ret = __bio_iov_bvec_add_pages(bio, iter);
1114 else
1115 ret = __bio_iov_iter_get_pages(bio, iter);
1116 }
1117 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1118
1119 if (is_bvec)
1120 bio_set_flag(bio, BIO_NO_PAGE_REF);
1121 return bio->bi_vcnt ? 0 : ret;
1122 }
1123 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1124
1125 static void submit_bio_wait_endio(struct bio *bio)
1126 {
1127 complete(bio->bi_private);
1128 }
1129
1130 /**
1131 * submit_bio_wait - submit a bio, and wait until it completes
1132 * @bio: The &struct bio which describes the I/O
1133 *
1134 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1135 * bio_endio() on failure.
1136 *
1137 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1138 * result in bio reference to be consumed. The caller must drop the reference
1139 * on his own.
1140 */
1141 int submit_bio_wait(struct bio *bio)
1142 {
1143 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1144 unsigned long hang_check;
1145
1146 bio->bi_private = &done;
1147 bio->bi_end_io = submit_bio_wait_endio;
1148 bio->bi_opf |= REQ_SYNC;
1149 submit_bio(bio);
1150
1151 /* Prevent hang_check timer from firing at us during very long I/O */
1152 hang_check = sysctl_hung_task_timeout_secs;
1153 if (hang_check)
1154 while (!wait_for_completion_io_timeout(&done,
1155 hang_check * (HZ/2)))
1156 ;
1157 else
1158 wait_for_completion_io(&done);
1159
1160 return blk_status_to_errno(bio->bi_status);
1161 }
1162 EXPORT_SYMBOL(submit_bio_wait);
1163
1164 /**
1165 * bio_advance - increment/complete a bio by some number of bytes
1166 * @bio: bio to advance
1167 * @bytes: number of bytes to complete
1168 *
1169 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1170 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1171 * be updated on the last bvec as well.
1172 *
1173 * @bio will then represent the remaining, uncompleted portion of the io.
1174 */
1175 void bio_advance(struct bio *bio, unsigned bytes)
1176 {
1177 if (bio_integrity(bio))
1178 bio_integrity_advance(bio, bytes);
1179
1180 bio_crypt_advance(bio, bytes);
1181 bio_advance_iter(bio, &bio->bi_iter, bytes);
1182 }
1183 EXPORT_SYMBOL(bio_advance);
1184
1185 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1186 struct bio *src, struct bvec_iter *src_iter)
1187 {
1188 struct bio_vec src_bv, dst_bv;
1189 void *src_p, *dst_p;
1190 unsigned bytes;
1191
1192 while (src_iter->bi_size && dst_iter->bi_size) {
1193 src_bv = bio_iter_iovec(src, *src_iter);
1194 dst_bv = bio_iter_iovec(dst, *dst_iter);
1195
1196 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1197
1198 src_p = kmap_atomic(src_bv.bv_page);
1199 dst_p = kmap_atomic(dst_bv.bv_page);
1200
1201 memcpy(dst_p + dst_bv.bv_offset,
1202 src_p + src_bv.bv_offset,
1203 bytes);
1204
1205 kunmap_atomic(dst_p);
1206 kunmap_atomic(src_p);
1207
1208 flush_dcache_page(dst_bv.bv_page);
1209
1210 bio_advance_iter(src, src_iter, bytes);
1211 bio_advance_iter(dst, dst_iter, bytes);
1212 }
1213 }
1214 EXPORT_SYMBOL(bio_copy_data_iter);
1215
1216 /**
1217 * bio_copy_data - copy contents of data buffers from one bio to another
1218 * @src: source bio
1219 * @dst: destination bio
1220 *
1221 * Stops when it reaches the end of either @src or @dst - that is, copies
1222 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1223 */
1224 void bio_copy_data(struct bio *dst, struct bio *src)
1225 {
1226 struct bvec_iter src_iter = src->bi_iter;
1227 struct bvec_iter dst_iter = dst->bi_iter;
1228
1229 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1230 }
1231 EXPORT_SYMBOL(bio_copy_data);
1232
1233 /**
1234 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1235 * another
1236 * @src: source bio list
1237 * @dst: destination bio list
1238 *
1239 * Stops when it reaches the end of either the @src list or @dst list - that is,
1240 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1241 * bios).
1242 */
1243 void bio_list_copy_data(struct bio *dst, struct bio *src)
1244 {
1245 struct bvec_iter src_iter = src->bi_iter;
1246 struct bvec_iter dst_iter = dst->bi_iter;
1247
1248 while (1) {
1249 if (!src_iter.bi_size) {
1250 src = src->bi_next;
1251 if (!src)
1252 break;
1253
1254 src_iter = src->bi_iter;
1255 }
1256
1257 if (!dst_iter.bi_size) {
1258 dst = dst->bi_next;
1259 if (!dst)
1260 break;
1261
1262 dst_iter = dst->bi_iter;
1263 }
1264
1265 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1266 }
1267 }
1268 EXPORT_SYMBOL(bio_list_copy_data);
1269
1270 void bio_free_pages(struct bio *bio)
1271 {
1272 struct bio_vec *bvec;
1273 struct bvec_iter_all iter_all;
1274
1275 bio_for_each_segment_all(bvec, bio, iter_all)
1276 __free_page(bvec->bv_page);
1277 }
1278 EXPORT_SYMBOL(bio_free_pages);
1279
1280 /*
1281 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1282 * for performing direct-IO in BIOs.
1283 *
1284 * The problem is that we cannot run set_page_dirty() from interrupt context
1285 * because the required locks are not interrupt-safe. So what we can do is to
1286 * mark the pages dirty _before_ performing IO. And in interrupt context,
1287 * check that the pages are still dirty. If so, fine. If not, redirty them
1288 * in process context.
1289 *
1290 * We special-case compound pages here: normally this means reads into hugetlb
1291 * pages. The logic in here doesn't really work right for compound pages
1292 * because the VM does not uniformly chase down the head page in all cases.
1293 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1294 * handle them at all. So we skip compound pages here at an early stage.
1295 *
1296 * Note that this code is very hard to test under normal circumstances because
1297 * direct-io pins the pages with get_user_pages(). This makes
1298 * is_page_cache_freeable return false, and the VM will not clean the pages.
1299 * But other code (eg, flusher threads) could clean the pages if they are mapped
1300 * pagecache.
1301 *
1302 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1303 * deferred bio dirtying paths.
1304 */
1305
1306 /*
1307 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1308 */
1309 void bio_set_pages_dirty(struct bio *bio)
1310 {
1311 struct bio_vec *bvec;
1312 struct bvec_iter_all iter_all;
1313
1314 bio_for_each_segment_all(bvec, bio, iter_all) {
1315 if (!PageCompound(bvec->bv_page))
1316 set_page_dirty_lock(bvec->bv_page);
1317 }
1318 }
1319
1320 /*
1321 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1322 * If they are, then fine. If, however, some pages are clean then they must
1323 * have been written out during the direct-IO read. So we take another ref on
1324 * the BIO and re-dirty the pages in process context.
1325 *
1326 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1327 * here on. It will run one put_page() against each page and will run one
1328 * bio_put() against the BIO.
1329 */
1330
1331 static void bio_dirty_fn(struct work_struct *work);
1332
1333 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1334 static DEFINE_SPINLOCK(bio_dirty_lock);
1335 static struct bio *bio_dirty_list;
1336
1337 /*
1338 * This runs in process context
1339 */
1340 static void bio_dirty_fn(struct work_struct *work)
1341 {
1342 struct bio *bio, *next;
1343
1344 spin_lock_irq(&bio_dirty_lock);
1345 next = bio_dirty_list;
1346 bio_dirty_list = NULL;
1347 spin_unlock_irq(&bio_dirty_lock);
1348
1349 while ((bio = next) != NULL) {
1350 next = bio->bi_private;
1351
1352 bio_release_pages(bio, true);
1353 bio_put(bio);
1354 }
1355 }
1356
1357 void bio_check_pages_dirty(struct bio *bio)
1358 {
1359 struct bio_vec *bvec;
1360 unsigned long flags;
1361 struct bvec_iter_all iter_all;
1362
1363 bio_for_each_segment_all(bvec, bio, iter_all) {
1364 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1365 goto defer;
1366 }
1367
1368 bio_release_pages(bio, false);
1369 bio_put(bio);
1370 return;
1371 defer:
1372 spin_lock_irqsave(&bio_dirty_lock, flags);
1373 bio->bi_private = bio_dirty_list;
1374 bio_dirty_list = bio;
1375 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1376 schedule_work(&bio_dirty_work);
1377 }
1378
1379 static inline bool bio_remaining_done(struct bio *bio)
1380 {
1381 /*
1382 * If we're not chaining, then ->__bi_remaining is always 1 and
1383 * we always end io on the first invocation.
1384 */
1385 if (!bio_flagged(bio, BIO_CHAIN))
1386 return true;
1387
1388 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1389
1390 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1391 bio_clear_flag(bio, BIO_CHAIN);
1392 return true;
1393 }
1394
1395 return false;
1396 }
1397
1398 /**
1399 * bio_endio - end I/O on a bio
1400 * @bio: bio
1401 *
1402 * Description:
1403 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1404 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1405 * bio unless they own it and thus know that it has an end_io function.
1406 *
1407 * bio_endio() can be called several times on a bio that has been chained
1408 * using bio_chain(). The ->bi_end_io() function will only be called the
1409 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1410 * generated if BIO_TRACE_COMPLETION is set.
1411 **/
1412 void bio_endio(struct bio *bio)
1413 {
1414 again:
1415 if (!bio_remaining_done(bio))
1416 return;
1417 if (!bio_integrity_endio(bio))
1418 return;
1419
1420 if (bio->bi_disk)
1421 rq_qos_done_bio(bio->bi_disk->queue, bio);
1422
1423 /*
1424 * Need to have a real endio function for chained bios, otherwise
1425 * various corner cases will break (like stacking block devices that
1426 * save/restore bi_end_io) - however, we want to avoid unbounded
1427 * recursion and blowing the stack. Tail call optimization would
1428 * handle this, but compiling with frame pointers also disables
1429 * gcc's sibling call optimization.
1430 */
1431 if (bio->bi_end_io == bio_chain_endio) {
1432 bio = __bio_chain_endio(bio);
1433 goto again;
1434 }
1435
1436 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1437 trace_block_bio_complete(bio->bi_disk->queue, bio,
1438 blk_status_to_errno(bio->bi_status));
1439 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1440 }
1441
1442 blk_throtl_bio_endio(bio);
1443 /* release cgroup info */
1444 bio_uninit(bio);
1445 if (bio->bi_end_io)
1446 bio->bi_end_io(bio);
1447 }
1448 EXPORT_SYMBOL(bio_endio);
1449
1450 /**
1451 * bio_split - split a bio
1452 * @bio: bio to split
1453 * @sectors: number of sectors to split from the front of @bio
1454 * @gfp: gfp mask
1455 * @bs: bio set to allocate from
1456 *
1457 * Allocates and returns a new bio which represents @sectors from the start of
1458 * @bio, and updates @bio to represent the remaining sectors.
1459 *
1460 * Unless this is a discard request the newly allocated bio will point
1461 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1462 * neither @bio nor @bs are freed before the split bio.
1463 */
1464 struct bio *bio_split(struct bio *bio, int sectors,
1465 gfp_t gfp, struct bio_set *bs)
1466 {
1467 struct bio *split;
1468
1469 BUG_ON(sectors <= 0);
1470 BUG_ON(sectors >= bio_sectors(bio));
1471
1472 /* Zone append commands cannot be split */
1473 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1474 return NULL;
1475
1476 split = bio_clone_fast(bio, gfp, bs);
1477 if (!split)
1478 return NULL;
1479
1480 split->bi_iter.bi_size = sectors << 9;
1481
1482 if (bio_integrity(split))
1483 bio_integrity_trim(split);
1484
1485 bio_advance(bio, split->bi_iter.bi_size);
1486
1487 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1488 bio_set_flag(split, BIO_TRACE_COMPLETION);
1489
1490 return split;
1491 }
1492 EXPORT_SYMBOL(bio_split);
1493
1494 /**
1495 * bio_trim - trim a bio
1496 * @bio: bio to trim
1497 * @offset: number of sectors to trim from the front of @bio
1498 * @size: size we want to trim @bio to, in sectors
1499 */
1500 void bio_trim(struct bio *bio, int offset, int size)
1501 {
1502 /* 'bio' is a cloned bio which we need to trim to match
1503 * the given offset and size.
1504 */
1505
1506 size <<= 9;
1507 if (offset == 0 && size == bio->bi_iter.bi_size)
1508 return;
1509
1510 bio_advance(bio, offset << 9);
1511 bio->bi_iter.bi_size = size;
1512
1513 if (bio_integrity(bio))
1514 bio_integrity_trim(bio);
1515
1516 }
1517 EXPORT_SYMBOL_GPL(bio_trim);
1518
1519 /*
1520 * create memory pools for biovec's in a bio_set.
1521 * use the global biovec slabs created for general use.
1522 */
1523 int biovec_init_pool(mempool_t *pool, int pool_entries)
1524 {
1525 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1526
1527 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1528 }
1529
1530 /*
1531 * bioset_exit - exit a bioset initialized with bioset_init()
1532 *
1533 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1534 * kzalloc()).
1535 */
1536 void bioset_exit(struct bio_set *bs)
1537 {
1538 if (bs->rescue_workqueue)
1539 destroy_workqueue(bs->rescue_workqueue);
1540 bs->rescue_workqueue = NULL;
1541
1542 mempool_exit(&bs->bio_pool);
1543 mempool_exit(&bs->bvec_pool);
1544
1545 bioset_integrity_free(bs);
1546 if (bs->bio_slab)
1547 bio_put_slab(bs);
1548 bs->bio_slab = NULL;
1549 }
1550 EXPORT_SYMBOL(bioset_exit);
1551
1552 /**
1553 * bioset_init - Initialize a bio_set
1554 * @bs: pool to initialize
1555 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1556 * @front_pad: Number of bytes to allocate in front of the returned bio
1557 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1558 * and %BIOSET_NEED_RESCUER
1559 *
1560 * Description:
1561 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1562 * to ask for a number of bytes to be allocated in front of the bio.
1563 * Front pad allocation is useful for embedding the bio inside
1564 * another structure, to avoid allocating extra data to go with the bio.
1565 * Note that the bio must be embedded at the END of that structure always,
1566 * or things will break badly.
1567 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1568 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1569 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1570 * dispatch queued requests when the mempool runs out of space.
1571 *
1572 */
1573 int bioset_init(struct bio_set *bs,
1574 unsigned int pool_size,
1575 unsigned int front_pad,
1576 int flags)
1577 {
1578 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1579
1580 bs->front_pad = front_pad;
1581
1582 spin_lock_init(&bs->rescue_lock);
1583 bio_list_init(&bs->rescue_list);
1584 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1585
1586 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1587 if (!bs->bio_slab)
1588 return -ENOMEM;
1589
1590 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1591 goto bad;
1592
1593 if ((flags & BIOSET_NEED_BVECS) &&
1594 biovec_init_pool(&bs->bvec_pool, pool_size))
1595 goto bad;
1596
1597 if (!(flags & BIOSET_NEED_RESCUER))
1598 return 0;
1599
1600 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1601 if (!bs->rescue_workqueue)
1602 goto bad;
1603
1604 return 0;
1605 bad:
1606 bioset_exit(bs);
1607 return -ENOMEM;
1608 }
1609 EXPORT_SYMBOL(bioset_init);
1610
1611 /*
1612 * Initialize and setup a new bio_set, based on the settings from
1613 * another bio_set.
1614 */
1615 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1616 {
1617 int flags;
1618
1619 flags = 0;
1620 if (src->bvec_pool.min_nr)
1621 flags |= BIOSET_NEED_BVECS;
1622 if (src->rescue_workqueue)
1623 flags |= BIOSET_NEED_RESCUER;
1624
1625 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1626 }
1627 EXPORT_SYMBOL(bioset_init_from_src);
1628
1629 #ifdef CONFIG_BLK_CGROUP
1630
1631 /**
1632 * bio_disassociate_blkg - puts back the blkg reference if associated
1633 * @bio: target bio
1634 *
1635 * Helper to disassociate the blkg from @bio if a blkg is associated.
1636 */
1637 void bio_disassociate_blkg(struct bio *bio)
1638 {
1639 if (bio->bi_blkg) {
1640 blkg_put(bio->bi_blkg);
1641 bio->bi_blkg = NULL;
1642 }
1643 }
1644 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
1645
1646 /**
1647 * __bio_associate_blkg - associate a bio with the a blkg
1648 * @bio: target bio
1649 * @blkg: the blkg to associate
1650 *
1651 * This tries to associate @bio with the specified @blkg. Association failure
1652 * is handled by walking up the blkg tree. Therefore, the blkg associated can
1653 * be anything between @blkg and the root_blkg. This situation only happens
1654 * when a cgroup is dying and then the remaining bios will spill to the closest
1655 * alive blkg.
1656 *
1657 * A reference will be taken on the @blkg and will be released when @bio is
1658 * freed.
1659 */
1660 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
1661 {
1662 bio_disassociate_blkg(bio);
1663
1664 bio->bi_blkg = blkg_tryget_closest(blkg);
1665 }
1666
1667 /**
1668 * bio_associate_blkg_from_css - associate a bio with a specified css
1669 * @bio: target bio
1670 * @css: target css
1671 *
1672 * Associate @bio with the blkg found by combining the css's blkg and the
1673 * request_queue of the @bio. This falls back to the queue's root_blkg if
1674 * the association fails with the css.
1675 */
1676 void bio_associate_blkg_from_css(struct bio *bio,
1677 struct cgroup_subsys_state *css)
1678 {
1679 struct request_queue *q = bio->bi_disk->queue;
1680 struct blkcg_gq *blkg;
1681
1682 rcu_read_lock();
1683
1684 if (!css || !css->parent)
1685 blkg = q->root_blkg;
1686 else
1687 blkg = blkg_lookup_create(css_to_blkcg(css), q);
1688
1689 __bio_associate_blkg(bio, blkg);
1690
1691 rcu_read_unlock();
1692 }
1693 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1694
1695 #ifdef CONFIG_MEMCG
1696 /**
1697 * bio_associate_blkg_from_page - associate a bio with the page's blkg
1698 * @bio: target bio
1699 * @page: the page to lookup the blkcg from
1700 *
1701 * Associate @bio with the blkg from @page's owning memcg and the respective
1702 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
1703 * root_blkg.
1704 */
1705 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
1706 {
1707 struct cgroup_subsys_state *css;
1708
1709 if (!page->mem_cgroup)
1710 return;
1711
1712 rcu_read_lock();
1713
1714 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
1715 bio_associate_blkg_from_css(bio, css);
1716
1717 rcu_read_unlock();
1718 }
1719 #endif /* CONFIG_MEMCG */
1720
1721 /**
1722 * bio_associate_blkg - associate a bio with a blkg
1723 * @bio: target bio
1724 *
1725 * Associate @bio with the blkg found from the bio's css and request_queue.
1726 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1727 * already associated, the css is reused and association redone as the
1728 * request_queue may have changed.
1729 */
1730 void bio_associate_blkg(struct bio *bio)
1731 {
1732 struct cgroup_subsys_state *css;
1733
1734 rcu_read_lock();
1735
1736 if (bio->bi_blkg)
1737 css = &bio_blkcg(bio)->css;
1738 else
1739 css = blkcg_css();
1740
1741 bio_associate_blkg_from_css(bio, css);
1742
1743 rcu_read_unlock();
1744 }
1745 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1746
1747 /**
1748 * bio_clone_blkg_association - clone blkg association from src to dst bio
1749 * @dst: destination bio
1750 * @src: source bio
1751 */
1752 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1753 {
1754 rcu_read_lock();
1755
1756 if (src->bi_blkg)
1757 __bio_associate_blkg(dst, src->bi_blkg);
1758
1759 rcu_read_unlock();
1760 }
1761 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1762 #endif /* CONFIG_BLK_CGROUP */
1763
1764 static void __init biovec_init_slabs(void)
1765 {
1766 int i;
1767
1768 for (i = 0; i < BVEC_POOL_NR; i++) {
1769 int size;
1770 struct biovec_slab *bvs = bvec_slabs + i;
1771
1772 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1773 bvs->slab = NULL;
1774 continue;
1775 }
1776
1777 size = bvs->nr_vecs * sizeof(struct bio_vec);
1778 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1779 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1780 }
1781 }
1782
1783 static int __init init_bio(void)
1784 {
1785 bio_slab_max = 2;
1786 bio_slab_nr = 0;
1787 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
1788 GFP_KERNEL);
1789
1790 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1791
1792 if (!bio_slabs)
1793 panic("bio: can't allocate bios\n");
1794
1795 bio_integrity_init();
1796 biovec_init_slabs();
1797
1798 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1799 panic("bio: can't allocate bios\n");
1800
1801 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1802 panic("bio: can't create integrity pool\n");
1803
1804 return 0;
1805 }
1806 subsys_initcall(init_bio);