]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - block/bio.c
block: Add and use op_stat_group() for indexing disk_stat fields.
[thirdparty/kernel/linux.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <linux/blk-cgroup.h>
32
33 #include <trace/events/block.h>
34 #include "blk.h"
35 #include "blk-rq-qos.h"
36
37 /*
38 * Test patch to inline a certain number of bi_io_vec's inside the bio
39 * itself, to shrink a bio data allocation from two mempool calls to one
40 */
41 #define BIO_INLINE_VECS 4
42
43 /*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
48 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
49 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
50 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
51 };
52 #undef BV
53
54 /*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
58 struct bio_set fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
60
61 /*
62 * Our slab pool management
63 */
64 struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69 };
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
73
74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75 {
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
78 struct bio_slab *bslab, *new_bio_slabs;
79 unsigned int new_bio_slab_max;
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
86 bslab = &bio_slabs[i];
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
102 new_bio_slab_max = bio_slab_max << 1;
103 new_bio_slabs = krealloc(bio_slabs,
104 new_bio_slab_max * sizeof(struct bio_slab),
105 GFP_KERNEL);
106 if (!new_bio_slabs)
107 goto out_unlock;
108 bio_slab_max = new_bio_slab_max;
109 bio_slabs = new_bio_slabs;
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 SLAB_HWCACHE_ALIGN, NULL);
119 if (!slab)
120 goto out_unlock;
121
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125 out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128 }
129
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155 out:
156 mutex_unlock(&bio_slab_lock);
157 }
158
159 unsigned int bvec_nr_vecs(unsigned short idx)
160 {
161 return bvec_slabs[idx].nr_vecs;
162 }
163
164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
165 {
166 if (!idx)
167 return;
168 idx--;
169
170 BIO_BUG_ON(idx >= BVEC_POOL_NR);
171
172 if (idx == BVEC_POOL_MAX) {
173 mempool_free(bv, pool);
174 } else {
175 struct biovec_slab *bvs = bvec_slabs + idx;
176
177 kmem_cache_free(bvs->slab, bv);
178 }
179 }
180
181 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 mempool_t *pool)
183 {
184 struct bio_vec *bvl;
185
186 /*
187 * see comment near bvec_array define!
188 */
189 switch (nr) {
190 case 1:
191 *idx = 0;
192 break;
193 case 2 ... 4:
194 *idx = 1;
195 break;
196 case 5 ... 16:
197 *idx = 2;
198 break;
199 case 17 ... 64:
200 *idx = 3;
201 break;
202 case 65 ... 128:
203 *idx = 4;
204 break;
205 case 129 ... BIO_MAX_PAGES:
206 *idx = 5;
207 break;
208 default:
209 return NULL;
210 }
211
212 /*
213 * idx now points to the pool we want to allocate from. only the
214 * 1-vec entry pool is mempool backed.
215 */
216 if (*idx == BVEC_POOL_MAX) {
217 fallback:
218 bvl = mempool_alloc(pool, gfp_mask);
219 } else {
220 struct biovec_slab *bvs = bvec_slabs + *idx;
221 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
222
223 /*
224 * Make this allocation restricted and don't dump info on
225 * allocation failures, since we'll fallback to the mempool
226 * in case of failure.
227 */
228 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
229
230 /*
231 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
232 * is set, retry with the 1-entry mempool
233 */
234 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
235 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
236 *idx = BVEC_POOL_MAX;
237 goto fallback;
238 }
239 }
240
241 (*idx)++;
242 return bvl;
243 }
244
245 void bio_uninit(struct bio *bio)
246 {
247 bio_disassociate_task(bio);
248 }
249 EXPORT_SYMBOL(bio_uninit);
250
251 static void bio_free(struct bio *bio)
252 {
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
256 bio_uninit(bio);
257
258 if (bs) {
259 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
265 p -= bs->front_pad;
266
267 mempool_free(p, &bs->bio_pool);
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
272 }
273
274 /*
275 * Users of this function have their own bio allocation. Subsequently,
276 * they must remember to pair any call to bio_init() with bio_uninit()
277 * when IO has completed, or when the bio is released.
278 */
279 void bio_init(struct bio *bio, struct bio_vec *table,
280 unsigned short max_vecs)
281 {
282 memset(bio, 0, sizeof(*bio));
283 atomic_set(&bio->__bi_remaining, 1);
284 atomic_set(&bio->__bi_cnt, 1);
285
286 bio->bi_io_vec = table;
287 bio->bi_max_vecs = max_vecs;
288 }
289 EXPORT_SYMBOL(bio_init);
290
291 /**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301 void bio_reset(struct bio *bio)
302 {
303 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304
305 bio_uninit(bio);
306
307 memset(bio, 0, BIO_RESET_BYTES);
308 bio->bi_flags = flags;
309 atomic_set(&bio->__bi_remaining, 1);
310 }
311 EXPORT_SYMBOL(bio_reset);
312
313 static struct bio *__bio_chain_endio(struct bio *bio)
314 {
315 struct bio *parent = bio->bi_private;
316
317 if (!parent->bi_status)
318 parent->bi_status = bio->bi_status;
319 bio_put(bio);
320 return parent;
321 }
322
323 static void bio_chain_endio(struct bio *bio)
324 {
325 bio_endio(__bio_chain_endio(bio));
326 }
327
328 /**
329 * bio_chain - chain bio completions
330 * @bio: the target bio
331 * @parent: the @bio's parent bio
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
339 void bio_chain(struct bio *bio, struct bio *parent)
340 {
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
345 bio_inc_remaining(parent);
346 }
347 EXPORT_SYMBOL(bio_chain);
348
349 static void bio_alloc_rescue(struct work_struct *work)
350 {
351 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 struct bio *bio;
353
354 while (1) {
355 spin_lock(&bs->rescue_lock);
356 bio = bio_list_pop(&bs->rescue_list);
357 spin_unlock(&bs->rescue_lock);
358
359 if (!bio)
360 break;
361
362 generic_make_request(bio);
363 }
364 }
365
366 static void punt_bios_to_rescuer(struct bio_set *bs)
367 {
368 struct bio_list punt, nopunt;
369 struct bio *bio;
370
371 if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 return;
373 /*
374 * In order to guarantee forward progress we must punt only bios that
375 * were allocated from this bio_set; otherwise, if there was a bio on
376 * there for a stacking driver higher up in the stack, processing it
377 * could require allocating bios from this bio_set, and doing that from
378 * our own rescuer would be bad.
379 *
380 * Since bio lists are singly linked, pop them all instead of trying to
381 * remove from the middle of the list:
382 */
383
384 bio_list_init(&punt);
385 bio_list_init(&nopunt);
386
387 while ((bio = bio_list_pop(&current->bio_list[0])))
388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
389 current->bio_list[0] = nopunt;
390
391 bio_list_init(&nopunt);
392 while ((bio = bio_list_pop(&current->bio_list[1])))
393 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 current->bio_list[1] = nopunt;
395
396 spin_lock(&bs->rescue_lock);
397 bio_list_merge(&bs->rescue_list, &punt);
398 spin_unlock(&bs->rescue_lock);
399
400 queue_work(bs->rescue_workqueue, &bs->rescue_work);
401 }
402
403 /**
404 * bio_alloc_bioset - allocate a bio for I/O
405 * @gfp_mask: the GFP_* mask given to the slab allocator
406 * @nr_iovecs: number of iovecs to pre-allocate
407 * @bs: the bio_set to allocate from.
408 *
409 * Description:
410 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411 * backed by the @bs's mempool.
412 *
413 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414 * always be able to allocate a bio. This is due to the mempool guarantees.
415 * To make this work, callers must never allocate more than 1 bio at a time
416 * from this pool. Callers that need to allocate more than 1 bio must always
417 * submit the previously allocated bio for IO before attempting to allocate
418 * a new one. Failure to do so can cause deadlocks under memory pressure.
419 *
420 * Note that when running under generic_make_request() (i.e. any block
421 * driver), bios are not submitted until after you return - see the code in
422 * generic_make_request() that converts recursion into iteration, to prevent
423 * stack overflows.
424 *
425 * This would normally mean allocating multiple bios under
426 * generic_make_request() would be susceptible to deadlocks, but we have
427 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * thread.
429 *
430 * However, we do not guarantee forward progress for allocations from other
431 * mempools. Doing multiple allocations from the same mempool under
432 * generic_make_request() should be avoided - instead, use bio_set's front_pad
433 * for per bio allocations.
434 *
435 * RETURNS:
436 * Pointer to new bio on success, NULL on failure.
437 */
438 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 struct bio_set *bs)
440 {
441 gfp_t saved_gfp = gfp_mask;
442 unsigned front_pad;
443 unsigned inline_vecs;
444 struct bio_vec *bvl = NULL;
445 struct bio *bio;
446 void *p;
447
448 if (!bs) {
449 if (nr_iovecs > UIO_MAXIOV)
450 return NULL;
451
452 p = kmalloc(sizeof(struct bio) +
453 nr_iovecs * sizeof(struct bio_vec),
454 gfp_mask);
455 front_pad = 0;
456 inline_vecs = nr_iovecs;
457 } else {
458 /* should not use nobvec bioset for nr_iovecs > 0 */
459 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 nr_iovecs > 0))
461 return NULL;
462 /*
463 * generic_make_request() converts recursion to iteration; this
464 * means if we're running beneath it, any bios we allocate and
465 * submit will not be submitted (and thus freed) until after we
466 * return.
467 *
468 * This exposes us to a potential deadlock if we allocate
469 * multiple bios from the same bio_set() while running
470 * underneath generic_make_request(). If we were to allocate
471 * multiple bios (say a stacking block driver that was splitting
472 * bios), we would deadlock if we exhausted the mempool's
473 * reserve.
474 *
475 * We solve this, and guarantee forward progress, with a rescuer
476 * workqueue per bio_set. If we go to allocate and there are
477 * bios on current->bio_list, we first try the allocation
478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 * bios we would be blocking to the rescuer workqueue before
480 * we retry with the original gfp_flags.
481 */
482
483 if (current->bio_list &&
484 (!bio_list_empty(&current->bio_list[0]) ||
485 !bio_list_empty(&current->bio_list[1])) &&
486 bs->rescue_workqueue)
487 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
488
489 p = mempool_alloc(&bs->bio_pool, gfp_mask);
490 if (!p && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
493 p = mempool_alloc(&bs->bio_pool, gfp_mask);
494 }
495
496 front_pad = bs->front_pad;
497 inline_vecs = BIO_INLINE_VECS;
498 }
499
500 if (unlikely(!p))
501 return NULL;
502
503 bio = p + front_pad;
504 bio_init(bio, NULL, 0);
505
506 if (nr_iovecs > inline_vecs) {
507 unsigned long idx = 0;
508
509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
510 if (!bvl && gfp_mask != saved_gfp) {
511 punt_bios_to_rescuer(bs);
512 gfp_mask = saved_gfp;
513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
514 }
515
516 if (unlikely(!bvl))
517 goto err_free;
518
519 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
520 } else if (nr_iovecs) {
521 bvl = bio->bi_inline_vecs;
522 }
523
524 bio->bi_pool = bs;
525 bio->bi_max_vecs = nr_iovecs;
526 bio->bi_io_vec = bvl;
527 return bio;
528
529 err_free:
530 mempool_free(p, &bs->bio_pool);
531 return NULL;
532 }
533 EXPORT_SYMBOL(bio_alloc_bioset);
534
535 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
536 {
537 unsigned long flags;
538 struct bio_vec bv;
539 struct bvec_iter iter;
540
541 __bio_for_each_segment(bv, bio, iter, start) {
542 char *data = bvec_kmap_irq(&bv, &flags);
543 memset(data, 0, bv.bv_len);
544 flush_dcache_page(bv.bv_page);
545 bvec_kunmap_irq(data, &flags);
546 }
547 }
548 EXPORT_SYMBOL(zero_fill_bio_iter);
549
550 /**
551 * bio_put - release a reference to a bio
552 * @bio: bio to release reference to
553 *
554 * Description:
555 * Put a reference to a &struct bio, either one you have gotten with
556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
557 **/
558 void bio_put(struct bio *bio)
559 {
560 if (!bio_flagged(bio, BIO_REFFED))
561 bio_free(bio);
562 else {
563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564
565 /*
566 * last put frees it
567 */
568 if (atomic_dec_and_test(&bio->__bi_cnt))
569 bio_free(bio);
570 }
571 }
572 EXPORT_SYMBOL(bio_put);
573
574 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
575 {
576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 blk_recount_segments(q, bio);
578
579 return bio->bi_phys_segments;
580 }
581 EXPORT_SYMBOL(bio_phys_segments);
582
583 /**
584 * __bio_clone_fast - clone a bio that shares the original bio's biovec
585 * @bio: destination bio
586 * @bio_src: bio to clone
587 *
588 * Clone a &bio. Caller will own the returned bio, but not
589 * the actual data it points to. Reference count of returned
590 * bio will be one.
591 *
592 * Caller must ensure that @bio_src is not freed before @bio.
593 */
594 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
595 {
596 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
597
598 /*
599 * most users will be overriding ->bi_disk with a new target,
600 * so we don't set nor calculate new physical/hw segment counts here
601 */
602 bio->bi_disk = bio_src->bi_disk;
603 bio->bi_partno = bio_src->bi_partno;
604 bio_set_flag(bio, BIO_CLONED);
605 if (bio_flagged(bio_src, BIO_THROTTLED))
606 bio_set_flag(bio, BIO_THROTTLED);
607 bio->bi_opf = bio_src->bi_opf;
608 bio->bi_write_hint = bio_src->bi_write_hint;
609 bio->bi_iter = bio_src->bi_iter;
610 bio->bi_io_vec = bio_src->bi_io_vec;
611
612 bio_clone_blkcg_association(bio, bio_src);
613 }
614 EXPORT_SYMBOL(__bio_clone_fast);
615
616 /**
617 * bio_clone_fast - clone a bio that shares the original bio's biovec
618 * @bio: bio to clone
619 * @gfp_mask: allocation priority
620 * @bs: bio_set to allocate from
621 *
622 * Like __bio_clone_fast, only also allocates the returned bio
623 */
624 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
625 {
626 struct bio *b;
627
628 b = bio_alloc_bioset(gfp_mask, 0, bs);
629 if (!b)
630 return NULL;
631
632 __bio_clone_fast(b, bio);
633
634 if (bio_integrity(bio)) {
635 int ret;
636
637 ret = bio_integrity_clone(b, bio, gfp_mask);
638
639 if (ret < 0) {
640 bio_put(b);
641 return NULL;
642 }
643 }
644
645 return b;
646 }
647 EXPORT_SYMBOL(bio_clone_fast);
648
649 /**
650 * bio_clone_bioset - clone a bio
651 * @bio_src: bio to clone
652 * @gfp_mask: allocation priority
653 * @bs: bio_set to allocate from
654 *
655 * Clone bio. Caller will own the returned bio, but not the actual data it
656 * points to. Reference count of returned bio will be one.
657 */
658 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
659 struct bio_set *bs)
660 {
661 struct bvec_iter iter;
662 struct bio_vec bv;
663 struct bio *bio;
664
665 /*
666 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
667 * bio_src->bi_io_vec to bio->bi_io_vec.
668 *
669 * We can't do that anymore, because:
670 *
671 * - The point of cloning the biovec is to produce a bio with a biovec
672 * the caller can modify: bi_idx and bi_bvec_done should be 0.
673 *
674 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
675 * we tried to clone the whole thing bio_alloc_bioset() would fail.
676 * But the clone should succeed as long as the number of biovecs we
677 * actually need to allocate is fewer than BIO_MAX_PAGES.
678 *
679 * - Lastly, bi_vcnt should not be looked at or relied upon by code
680 * that does not own the bio - reason being drivers don't use it for
681 * iterating over the biovec anymore, so expecting it to be kept up
682 * to date (i.e. for clones that share the parent biovec) is just
683 * asking for trouble and would force extra work on
684 * __bio_clone_fast() anyways.
685 */
686
687 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
688 if (!bio)
689 return NULL;
690 bio->bi_disk = bio_src->bi_disk;
691 bio->bi_opf = bio_src->bi_opf;
692 bio->bi_write_hint = bio_src->bi_write_hint;
693 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
694 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
695
696 switch (bio_op(bio)) {
697 case REQ_OP_DISCARD:
698 case REQ_OP_SECURE_ERASE:
699 case REQ_OP_WRITE_ZEROES:
700 break;
701 case REQ_OP_WRITE_SAME:
702 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
703 break;
704 default:
705 bio_for_each_segment(bv, bio_src, iter)
706 bio->bi_io_vec[bio->bi_vcnt++] = bv;
707 break;
708 }
709
710 if (bio_integrity(bio_src)) {
711 int ret;
712
713 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
714 if (ret < 0) {
715 bio_put(bio);
716 return NULL;
717 }
718 }
719
720 bio_clone_blkcg_association(bio, bio_src);
721
722 return bio;
723 }
724 EXPORT_SYMBOL(bio_clone_bioset);
725
726 /**
727 * bio_add_pc_page - attempt to add page to bio
728 * @q: the target queue
729 * @bio: destination bio
730 * @page: page to add
731 * @len: vec entry length
732 * @offset: vec entry offset
733 *
734 * Attempt to add a page to the bio_vec maplist. This can fail for a
735 * number of reasons, such as the bio being full or target block device
736 * limitations. The target block device must allow bio's up to PAGE_SIZE,
737 * so it is always possible to add a single page to an empty bio.
738 *
739 * This should only be used by REQ_PC bios.
740 */
741 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
742 *page, unsigned int len, unsigned int offset)
743 {
744 int retried_segments = 0;
745 struct bio_vec *bvec;
746
747 /*
748 * cloned bio must not modify vec list
749 */
750 if (unlikely(bio_flagged(bio, BIO_CLONED)))
751 return 0;
752
753 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
754 return 0;
755
756 /*
757 * For filesystems with a blocksize smaller than the pagesize
758 * we will often be called with the same page as last time and
759 * a consecutive offset. Optimize this special case.
760 */
761 if (bio->bi_vcnt > 0) {
762 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
763
764 if (page == prev->bv_page &&
765 offset == prev->bv_offset + prev->bv_len) {
766 prev->bv_len += len;
767 bio->bi_iter.bi_size += len;
768 goto done;
769 }
770
771 /*
772 * If the queue doesn't support SG gaps and adding this
773 * offset would create a gap, disallow it.
774 */
775 if (bvec_gap_to_prev(q, prev, offset))
776 return 0;
777 }
778
779 if (bio_full(bio))
780 return 0;
781
782 /*
783 * setup the new entry, we might clear it again later if we
784 * cannot add the page
785 */
786 bvec = &bio->bi_io_vec[bio->bi_vcnt];
787 bvec->bv_page = page;
788 bvec->bv_len = len;
789 bvec->bv_offset = offset;
790 bio->bi_vcnt++;
791 bio->bi_phys_segments++;
792 bio->bi_iter.bi_size += len;
793
794 /*
795 * Perform a recount if the number of segments is greater
796 * than queue_max_segments(q).
797 */
798
799 while (bio->bi_phys_segments > queue_max_segments(q)) {
800
801 if (retried_segments)
802 goto failed;
803
804 retried_segments = 1;
805 blk_recount_segments(q, bio);
806 }
807
808 /* If we may be able to merge these biovecs, force a recount */
809 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
810 bio_clear_flag(bio, BIO_SEG_VALID);
811
812 done:
813 return len;
814
815 failed:
816 bvec->bv_page = NULL;
817 bvec->bv_len = 0;
818 bvec->bv_offset = 0;
819 bio->bi_vcnt--;
820 bio->bi_iter.bi_size -= len;
821 blk_recount_segments(q, bio);
822 return 0;
823 }
824 EXPORT_SYMBOL(bio_add_pc_page);
825
826 /**
827 * __bio_try_merge_page - try appending data to an existing bvec.
828 * @bio: destination bio
829 * @page: page to add
830 * @len: length of the data to add
831 * @off: offset of the data in @page
832 *
833 * Try to add the data at @page + @off to the last bvec of @bio. This is a
834 * a useful optimisation for file systems with a block size smaller than the
835 * page size.
836 *
837 * Return %true on success or %false on failure.
838 */
839 bool __bio_try_merge_page(struct bio *bio, struct page *page,
840 unsigned int len, unsigned int off)
841 {
842 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
843 return false;
844
845 if (bio->bi_vcnt > 0) {
846 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
847
848 if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
849 bv->bv_len += len;
850 bio->bi_iter.bi_size += len;
851 return true;
852 }
853 }
854 return false;
855 }
856 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
857
858 /**
859 * __bio_add_page - add page to a bio in a new segment
860 * @bio: destination bio
861 * @page: page to add
862 * @len: length of the data to add
863 * @off: offset of the data in @page
864 *
865 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
866 * that @bio has space for another bvec.
867 */
868 void __bio_add_page(struct bio *bio, struct page *page,
869 unsigned int len, unsigned int off)
870 {
871 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
872
873 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
874 WARN_ON_ONCE(bio_full(bio));
875
876 bv->bv_page = page;
877 bv->bv_offset = off;
878 bv->bv_len = len;
879
880 bio->bi_iter.bi_size += len;
881 bio->bi_vcnt++;
882 }
883 EXPORT_SYMBOL_GPL(__bio_add_page);
884
885 /**
886 * bio_add_page - attempt to add page to bio
887 * @bio: destination bio
888 * @page: page to add
889 * @len: vec entry length
890 * @offset: vec entry offset
891 *
892 * Attempt to add a page to the bio_vec maplist. This will only fail
893 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
894 */
895 int bio_add_page(struct bio *bio, struct page *page,
896 unsigned int len, unsigned int offset)
897 {
898 if (!__bio_try_merge_page(bio, page, len, offset)) {
899 if (bio_full(bio))
900 return 0;
901 __bio_add_page(bio, page, len, offset);
902 }
903 return len;
904 }
905 EXPORT_SYMBOL(bio_add_page);
906
907 /**
908 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
909 * @bio: bio to add pages to
910 * @iter: iov iterator describing the region to be mapped
911 *
912 * Pins as many pages from *iter and appends them to @bio's bvec array. The
913 * pages will have to be released using put_page() when done.
914 */
915 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
916 {
917 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
918 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
919 struct page **pages = (struct page **)bv;
920 size_t offset, diff;
921 ssize_t size;
922
923 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
924 if (unlikely(size <= 0))
925 return size ? size : -EFAULT;
926 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
927
928 /*
929 * Deep magic below: We need to walk the pinned pages backwards
930 * because we are abusing the space allocated for the bio_vecs
931 * for the page array. Because the bio_vecs are larger than the
932 * page pointers by definition this will always work. But it also
933 * means we can't use bio_add_page, so any changes to it's semantics
934 * need to be reflected here as well.
935 */
936 bio->bi_iter.bi_size += size;
937 bio->bi_vcnt += nr_pages;
938
939 diff = (nr_pages * PAGE_SIZE - offset) - size;
940 while (nr_pages--) {
941 bv[nr_pages].bv_page = pages[nr_pages];
942 bv[nr_pages].bv_len = PAGE_SIZE;
943 bv[nr_pages].bv_offset = 0;
944 }
945
946 bv[0].bv_offset += offset;
947 bv[0].bv_len -= offset;
948 if (diff)
949 bv[bio->bi_vcnt - 1].bv_len -= diff;
950
951 iov_iter_advance(iter, size);
952 return 0;
953 }
954 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
955
956 static void submit_bio_wait_endio(struct bio *bio)
957 {
958 complete(bio->bi_private);
959 }
960
961 /**
962 * submit_bio_wait - submit a bio, and wait until it completes
963 * @bio: The &struct bio which describes the I/O
964 *
965 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
966 * bio_endio() on failure.
967 *
968 * WARNING: Unlike to how submit_bio() is usually used, this function does not
969 * result in bio reference to be consumed. The caller must drop the reference
970 * on his own.
971 */
972 int submit_bio_wait(struct bio *bio)
973 {
974 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
975
976 bio->bi_private = &done;
977 bio->bi_end_io = submit_bio_wait_endio;
978 bio->bi_opf |= REQ_SYNC;
979 submit_bio(bio);
980 wait_for_completion_io(&done);
981
982 return blk_status_to_errno(bio->bi_status);
983 }
984 EXPORT_SYMBOL(submit_bio_wait);
985
986 /**
987 * bio_advance - increment/complete a bio by some number of bytes
988 * @bio: bio to advance
989 * @bytes: number of bytes to complete
990 *
991 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
992 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
993 * be updated on the last bvec as well.
994 *
995 * @bio will then represent the remaining, uncompleted portion of the io.
996 */
997 void bio_advance(struct bio *bio, unsigned bytes)
998 {
999 if (bio_integrity(bio))
1000 bio_integrity_advance(bio, bytes);
1001
1002 bio_advance_iter(bio, &bio->bi_iter, bytes);
1003 }
1004 EXPORT_SYMBOL(bio_advance);
1005
1006 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1007 struct bio *src, struct bvec_iter *src_iter)
1008 {
1009 struct bio_vec src_bv, dst_bv;
1010 void *src_p, *dst_p;
1011 unsigned bytes;
1012
1013 while (src_iter->bi_size && dst_iter->bi_size) {
1014 src_bv = bio_iter_iovec(src, *src_iter);
1015 dst_bv = bio_iter_iovec(dst, *dst_iter);
1016
1017 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1018
1019 src_p = kmap_atomic(src_bv.bv_page);
1020 dst_p = kmap_atomic(dst_bv.bv_page);
1021
1022 memcpy(dst_p + dst_bv.bv_offset,
1023 src_p + src_bv.bv_offset,
1024 bytes);
1025
1026 kunmap_atomic(dst_p);
1027 kunmap_atomic(src_p);
1028
1029 flush_dcache_page(dst_bv.bv_page);
1030
1031 bio_advance_iter(src, src_iter, bytes);
1032 bio_advance_iter(dst, dst_iter, bytes);
1033 }
1034 }
1035 EXPORT_SYMBOL(bio_copy_data_iter);
1036
1037 /**
1038 * bio_copy_data - copy contents of data buffers from one bio to another
1039 * @src: source bio
1040 * @dst: destination bio
1041 *
1042 * Stops when it reaches the end of either @src or @dst - that is, copies
1043 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1044 */
1045 void bio_copy_data(struct bio *dst, struct bio *src)
1046 {
1047 struct bvec_iter src_iter = src->bi_iter;
1048 struct bvec_iter dst_iter = dst->bi_iter;
1049
1050 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1051 }
1052 EXPORT_SYMBOL(bio_copy_data);
1053
1054 /**
1055 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1056 * another
1057 * @src: source bio list
1058 * @dst: destination bio list
1059 *
1060 * Stops when it reaches the end of either the @src list or @dst list - that is,
1061 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1062 * bios).
1063 */
1064 void bio_list_copy_data(struct bio *dst, struct bio *src)
1065 {
1066 struct bvec_iter src_iter = src->bi_iter;
1067 struct bvec_iter dst_iter = dst->bi_iter;
1068
1069 while (1) {
1070 if (!src_iter.bi_size) {
1071 src = src->bi_next;
1072 if (!src)
1073 break;
1074
1075 src_iter = src->bi_iter;
1076 }
1077
1078 if (!dst_iter.bi_size) {
1079 dst = dst->bi_next;
1080 if (!dst)
1081 break;
1082
1083 dst_iter = dst->bi_iter;
1084 }
1085
1086 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1087 }
1088 }
1089 EXPORT_SYMBOL(bio_list_copy_data);
1090
1091 struct bio_map_data {
1092 int is_our_pages;
1093 struct iov_iter iter;
1094 struct iovec iov[];
1095 };
1096
1097 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1098 gfp_t gfp_mask)
1099 {
1100 struct bio_map_data *bmd;
1101 if (data->nr_segs > UIO_MAXIOV)
1102 return NULL;
1103
1104 bmd = kmalloc(sizeof(struct bio_map_data) +
1105 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1106 if (!bmd)
1107 return NULL;
1108 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1109 bmd->iter = *data;
1110 bmd->iter.iov = bmd->iov;
1111 return bmd;
1112 }
1113
1114 /**
1115 * bio_copy_from_iter - copy all pages from iov_iter to bio
1116 * @bio: The &struct bio which describes the I/O as destination
1117 * @iter: iov_iter as source
1118 *
1119 * Copy all pages from iov_iter to bio.
1120 * Returns 0 on success, or error on failure.
1121 */
1122 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1123 {
1124 int i;
1125 struct bio_vec *bvec;
1126
1127 bio_for_each_segment_all(bvec, bio, i) {
1128 ssize_t ret;
1129
1130 ret = copy_page_from_iter(bvec->bv_page,
1131 bvec->bv_offset,
1132 bvec->bv_len,
1133 iter);
1134
1135 if (!iov_iter_count(iter))
1136 break;
1137
1138 if (ret < bvec->bv_len)
1139 return -EFAULT;
1140 }
1141
1142 return 0;
1143 }
1144
1145 /**
1146 * bio_copy_to_iter - copy all pages from bio to iov_iter
1147 * @bio: The &struct bio which describes the I/O as source
1148 * @iter: iov_iter as destination
1149 *
1150 * Copy all pages from bio to iov_iter.
1151 * Returns 0 on success, or error on failure.
1152 */
1153 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1154 {
1155 int i;
1156 struct bio_vec *bvec;
1157
1158 bio_for_each_segment_all(bvec, bio, i) {
1159 ssize_t ret;
1160
1161 ret = copy_page_to_iter(bvec->bv_page,
1162 bvec->bv_offset,
1163 bvec->bv_len,
1164 &iter);
1165
1166 if (!iov_iter_count(&iter))
1167 break;
1168
1169 if (ret < bvec->bv_len)
1170 return -EFAULT;
1171 }
1172
1173 return 0;
1174 }
1175
1176 void bio_free_pages(struct bio *bio)
1177 {
1178 struct bio_vec *bvec;
1179 int i;
1180
1181 bio_for_each_segment_all(bvec, bio, i)
1182 __free_page(bvec->bv_page);
1183 }
1184 EXPORT_SYMBOL(bio_free_pages);
1185
1186 /**
1187 * bio_uncopy_user - finish previously mapped bio
1188 * @bio: bio being terminated
1189 *
1190 * Free pages allocated from bio_copy_user_iov() and write back data
1191 * to user space in case of a read.
1192 */
1193 int bio_uncopy_user(struct bio *bio)
1194 {
1195 struct bio_map_data *bmd = bio->bi_private;
1196 int ret = 0;
1197
1198 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1199 /*
1200 * if we're in a workqueue, the request is orphaned, so
1201 * don't copy into a random user address space, just free
1202 * and return -EINTR so user space doesn't expect any data.
1203 */
1204 if (!current->mm)
1205 ret = -EINTR;
1206 else if (bio_data_dir(bio) == READ)
1207 ret = bio_copy_to_iter(bio, bmd->iter);
1208 if (bmd->is_our_pages)
1209 bio_free_pages(bio);
1210 }
1211 kfree(bmd);
1212 bio_put(bio);
1213 return ret;
1214 }
1215
1216 /**
1217 * bio_copy_user_iov - copy user data to bio
1218 * @q: destination block queue
1219 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1220 * @iter: iovec iterator
1221 * @gfp_mask: memory allocation flags
1222 *
1223 * Prepares and returns a bio for indirect user io, bouncing data
1224 * to/from kernel pages as necessary. Must be paired with
1225 * call bio_uncopy_user() on io completion.
1226 */
1227 struct bio *bio_copy_user_iov(struct request_queue *q,
1228 struct rq_map_data *map_data,
1229 struct iov_iter *iter,
1230 gfp_t gfp_mask)
1231 {
1232 struct bio_map_data *bmd;
1233 struct page *page;
1234 struct bio *bio;
1235 int i = 0, ret;
1236 int nr_pages;
1237 unsigned int len = iter->count;
1238 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1239
1240 bmd = bio_alloc_map_data(iter, gfp_mask);
1241 if (!bmd)
1242 return ERR_PTR(-ENOMEM);
1243
1244 /*
1245 * We need to do a deep copy of the iov_iter including the iovecs.
1246 * The caller provided iov might point to an on-stack or otherwise
1247 * shortlived one.
1248 */
1249 bmd->is_our_pages = map_data ? 0 : 1;
1250
1251 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1252 if (nr_pages > BIO_MAX_PAGES)
1253 nr_pages = BIO_MAX_PAGES;
1254
1255 ret = -ENOMEM;
1256 bio = bio_kmalloc(gfp_mask, nr_pages);
1257 if (!bio)
1258 goto out_bmd;
1259
1260 ret = 0;
1261
1262 if (map_data) {
1263 nr_pages = 1 << map_data->page_order;
1264 i = map_data->offset / PAGE_SIZE;
1265 }
1266 while (len) {
1267 unsigned int bytes = PAGE_SIZE;
1268
1269 bytes -= offset;
1270
1271 if (bytes > len)
1272 bytes = len;
1273
1274 if (map_data) {
1275 if (i == map_data->nr_entries * nr_pages) {
1276 ret = -ENOMEM;
1277 break;
1278 }
1279
1280 page = map_data->pages[i / nr_pages];
1281 page += (i % nr_pages);
1282
1283 i++;
1284 } else {
1285 page = alloc_page(q->bounce_gfp | gfp_mask);
1286 if (!page) {
1287 ret = -ENOMEM;
1288 break;
1289 }
1290 }
1291
1292 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1293 break;
1294
1295 len -= bytes;
1296 offset = 0;
1297 }
1298
1299 if (ret)
1300 goto cleanup;
1301
1302 if (map_data)
1303 map_data->offset += bio->bi_iter.bi_size;
1304
1305 /*
1306 * success
1307 */
1308 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1309 (map_data && map_data->from_user)) {
1310 ret = bio_copy_from_iter(bio, iter);
1311 if (ret)
1312 goto cleanup;
1313 } else {
1314 iov_iter_advance(iter, bio->bi_iter.bi_size);
1315 }
1316
1317 bio->bi_private = bmd;
1318 if (map_data && map_data->null_mapped)
1319 bio_set_flag(bio, BIO_NULL_MAPPED);
1320 return bio;
1321 cleanup:
1322 if (!map_data)
1323 bio_free_pages(bio);
1324 bio_put(bio);
1325 out_bmd:
1326 kfree(bmd);
1327 return ERR_PTR(ret);
1328 }
1329
1330 /**
1331 * bio_map_user_iov - map user iovec into bio
1332 * @q: the struct request_queue for the bio
1333 * @iter: iovec iterator
1334 * @gfp_mask: memory allocation flags
1335 *
1336 * Map the user space address into a bio suitable for io to a block
1337 * device. Returns an error pointer in case of error.
1338 */
1339 struct bio *bio_map_user_iov(struct request_queue *q,
1340 struct iov_iter *iter,
1341 gfp_t gfp_mask)
1342 {
1343 int j;
1344 struct bio *bio;
1345 int ret;
1346 struct bio_vec *bvec;
1347
1348 if (!iov_iter_count(iter))
1349 return ERR_PTR(-EINVAL);
1350
1351 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1352 if (!bio)
1353 return ERR_PTR(-ENOMEM);
1354
1355 while (iov_iter_count(iter)) {
1356 struct page **pages;
1357 ssize_t bytes;
1358 size_t offs, added = 0;
1359 int npages;
1360
1361 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1362 if (unlikely(bytes <= 0)) {
1363 ret = bytes ? bytes : -EFAULT;
1364 goto out_unmap;
1365 }
1366
1367 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1368
1369 if (unlikely(offs & queue_dma_alignment(q))) {
1370 ret = -EINVAL;
1371 j = 0;
1372 } else {
1373 for (j = 0; j < npages; j++) {
1374 struct page *page = pages[j];
1375 unsigned int n = PAGE_SIZE - offs;
1376 unsigned short prev_bi_vcnt = bio->bi_vcnt;
1377
1378 if (n > bytes)
1379 n = bytes;
1380
1381 if (!bio_add_pc_page(q, bio, page, n, offs))
1382 break;
1383
1384 /*
1385 * check if vector was merged with previous
1386 * drop page reference if needed
1387 */
1388 if (bio->bi_vcnt == prev_bi_vcnt)
1389 put_page(page);
1390
1391 added += n;
1392 bytes -= n;
1393 offs = 0;
1394 }
1395 iov_iter_advance(iter, added);
1396 }
1397 /*
1398 * release the pages we didn't map into the bio, if any
1399 */
1400 while (j < npages)
1401 put_page(pages[j++]);
1402 kvfree(pages);
1403 /* couldn't stuff something into bio? */
1404 if (bytes)
1405 break;
1406 }
1407
1408 bio_set_flag(bio, BIO_USER_MAPPED);
1409
1410 /*
1411 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1412 * it would normally disappear when its bi_end_io is run.
1413 * however, we need it for the unmap, so grab an extra
1414 * reference to it
1415 */
1416 bio_get(bio);
1417 return bio;
1418
1419 out_unmap:
1420 bio_for_each_segment_all(bvec, bio, j) {
1421 put_page(bvec->bv_page);
1422 }
1423 bio_put(bio);
1424 return ERR_PTR(ret);
1425 }
1426
1427 static void __bio_unmap_user(struct bio *bio)
1428 {
1429 struct bio_vec *bvec;
1430 int i;
1431
1432 /*
1433 * make sure we dirty pages we wrote to
1434 */
1435 bio_for_each_segment_all(bvec, bio, i) {
1436 if (bio_data_dir(bio) == READ)
1437 set_page_dirty_lock(bvec->bv_page);
1438
1439 put_page(bvec->bv_page);
1440 }
1441
1442 bio_put(bio);
1443 }
1444
1445 /**
1446 * bio_unmap_user - unmap a bio
1447 * @bio: the bio being unmapped
1448 *
1449 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1450 * process context.
1451 *
1452 * bio_unmap_user() may sleep.
1453 */
1454 void bio_unmap_user(struct bio *bio)
1455 {
1456 __bio_unmap_user(bio);
1457 bio_put(bio);
1458 }
1459
1460 static void bio_map_kern_endio(struct bio *bio)
1461 {
1462 bio_put(bio);
1463 }
1464
1465 /**
1466 * bio_map_kern - map kernel address into bio
1467 * @q: the struct request_queue for the bio
1468 * @data: pointer to buffer to map
1469 * @len: length in bytes
1470 * @gfp_mask: allocation flags for bio allocation
1471 *
1472 * Map the kernel address into a bio suitable for io to a block
1473 * device. Returns an error pointer in case of error.
1474 */
1475 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1476 gfp_t gfp_mask)
1477 {
1478 unsigned long kaddr = (unsigned long)data;
1479 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1480 unsigned long start = kaddr >> PAGE_SHIFT;
1481 const int nr_pages = end - start;
1482 int offset, i;
1483 struct bio *bio;
1484
1485 bio = bio_kmalloc(gfp_mask, nr_pages);
1486 if (!bio)
1487 return ERR_PTR(-ENOMEM);
1488
1489 offset = offset_in_page(kaddr);
1490 for (i = 0; i < nr_pages; i++) {
1491 unsigned int bytes = PAGE_SIZE - offset;
1492
1493 if (len <= 0)
1494 break;
1495
1496 if (bytes > len)
1497 bytes = len;
1498
1499 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1500 offset) < bytes) {
1501 /* we don't support partial mappings */
1502 bio_put(bio);
1503 return ERR_PTR(-EINVAL);
1504 }
1505
1506 data += bytes;
1507 len -= bytes;
1508 offset = 0;
1509 }
1510
1511 bio->bi_end_io = bio_map_kern_endio;
1512 return bio;
1513 }
1514 EXPORT_SYMBOL(bio_map_kern);
1515
1516 static void bio_copy_kern_endio(struct bio *bio)
1517 {
1518 bio_free_pages(bio);
1519 bio_put(bio);
1520 }
1521
1522 static void bio_copy_kern_endio_read(struct bio *bio)
1523 {
1524 char *p = bio->bi_private;
1525 struct bio_vec *bvec;
1526 int i;
1527
1528 bio_for_each_segment_all(bvec, bio, i) {
1529 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1530 p += bvec->bv_len;
1531 }
1532
1533 bio_copy_kern_endio(bio);
1534 }
1535
1536 /**
1537 * bio_copy_kern - copy kernel address into bio
1538 * @q: the struct request_queue for the bio
1539 * @data: pointer to buffer to copy
1540 * @len: length in bytes
1541 * @gfp_mask: allocation flags for bio and page allocation
1542 * @reading: data direction is READ
1543 *
1544 * copy the kernel address into a bio suitable for io to a block
1545 * device. Returns an error pointer in case of error.
1546 */
1547 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1548 gfp_t gfp_mask, int reading)
1549 {
1550 unsigned long kaddr = (unsigned long)data;
1551 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1552 unsigned long start = kaddr >> PAGE_SHIFT;
1553 struct bio *bio;
1554 void *p = data;
1555 int nr_pages = 0;
1556
1557 /*
1558 * Overflow, abort
1559 */
1560 if (end < start)
1561 return ERR_PTR(-EINVAL);
1562
1563 nr_pages = end - start;
1564 bio = bio_kmalloc(gfp_mask, nr_pages);
1565 if (!bio)
1566 return ERR_PTR(-ENOMEM);
1567
1568 while (len) {
1569 struct page *page;
1570 unsigned int bytes = PAGE_SIZE;
1571
1572 if (bytes > len)
1573 bytes = len;
1574
1575 page = alloc_page(q->bounce_gfp | gfp_mask);
1576 if (!page)
1577 goto cleanup;
1578
1579 if (!reading)
1580 memcpy(page_address(page), p, bytes);
1581
1582 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1583 break;
1584
1585 len -= bytes;
1586 p += bytes;
1587 }
1588
1589 if (reading) {
1590 bio->bi_end_io = bio_copy_kern_endio_read;
1591 bio->bi_private = data;
1592 } else {
1593 bio->bi_end_io = bio_copy_kern_endio;
1594 }
1595
1596 return bio;
1597
1598 cleanup:
1599 bio_free_pages(bio);
1600 bio_put(bio);
1601 return ERR_PTR(-ENOMEM);
1602 }
1603
1604 /*
1605 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1606 * for performing direct-IO in BIOs.
1607 *
1608 * The problem is that we cannot run set_page_dirty() from interrupt context
1609 * because the required locks are not interrupt-safe. So what we can do is to
1610 * mark the pages dirty _before_ performing IO. And in interrupt context,
1611 * check that the pages are still dirty. If so, fine. If not, redirty them
1612 * in process context.
1613 *
1614 * We special-case compound pages here: normally this means reads into hugetlb
1615 * pages. The logic in here doesn't really work right for compound pages
1616 * because the VM does not uniformly chase down the head page in all cases.
1617 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1618 * handle them at all. So we skip compound pages here at an early stage.
1619 *
1620 * Note that this code is very hard to test under normal circumstances because
1621 * direct-io pins the pages with get_user_pages(). This makes
1622 * is_page_cache_freeable return false, and the VM will not clean the pages.
1623 * But other code (eg, flusher threads) could clean the pages if they are mapped
1624 * pagecache.
1625 *
1626 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1627 * deferred bio dirtying paths.
1628 */
1629
1630 /*
1631 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1632 */
1633 void bio_set_pages_dirty(struct bio *bio)
1634 {
1635 struct bio_vec *bvec;
1636 int i;
1637
1638 bio_for_each_segment_all(bvec, bio, i) {
1639 struct page *page = bvec->bv_page;
1640
1641 if (page && !PageCompound(page))
1642 set_page_dirty_lock(page);
1643 }
1644 }
1645 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1646
1647 static void bio_release_pages(struct bio *bio)
1648 {
1649 struct bio_vec *bvec;
1650 int i;
1651
1652 bio_for_each_segment_all(bvec, bio, i) {
1653 struct page *page = bvec->bv_page;
1654
1655 if (page)
1656 put_page(page);
1657 }
1658 }
1659
1660 /*
1661 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1662 * If they are, then fine. If, however, some pages are clean then they must
1663 * have been written out during the direct-IO read. So we take another ref on
1664 * the BIO and the offending pages and re-dirty the pages in process context.
1665 *
1666 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1667 * here on. It will run one put_page() against each page and will run one
1668 * bio_put() against the BIO.
1669 */
1670
1671 static void bio_dirty_fn(struct work_struct *work);
1672
1673 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1674 static DEFINE_SPINLOCK(bio_dirty_lock);
1675 static struct bio *bio_dirty_list;
1676
1677 /*
1678 * This runs in process context
1679 */
1680 static void bio_dirty_fn(struct work_struct *work)
1681 {
1682 unsigned long flags;
1683 struct bio *bio;
1684
1685 spin_lock_irqsave(&bio_dirty_lock, flags);
1686 bio = bio_dirty_list;
1687 bio_dirty_list = NULL;
1688 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1689
1690 while (bio) {
1691 struct bio *next = bio->bi_private;
1692
1693 bio_set_pages_dirty(bio);
1694 bio_release_pages(bio);
1695 bio_put(bio);
1696 bio = next;
1697 }
1698 }
1699
1700 void bio_check_pages_dirty(struct bio *bio)
1701 {
1702 struct bio_vec *bvec;
1703 int nr_clean_pages = 0;
1704 int i;
1705
1706 bio_for_each_segment_all(bvec, bio, i) {
1707 struct page *page = bvec->bv_page;
1708
1709 if (PageDirty(page) || PageCompound(page)) {
1710 put_page(page);
1711 bvec->bv_page = NULL;
1712 } else {
1713 nr_clean_pages++;
1714 }
1715 }
1716
1717 if (nr_clean_pages) {
1718 unsigned long flags;
1719
1720 spin_lock_irqsave(&bio_dirty_lock, flags);
1721 bio->bi_private = bio_dirty_list;
1722 bio_dirty_list = bio;
1723 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1724 schedule_work(&bio_dirty_work);
1725 } else {
1726 bio_put(bio);
1727 }
1728 }
1729 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1730
1731 void generic_start_io_acct(struct request_queue *q, int op,
1732 unsigned long sectors, struct hd_struct *part)
1733 {
1734 const int sgrp = op_stat_group(op);
1735 int cpu = part_stat_lock();
1736
1737 part_round_stats(q, cpu, part);
1738 part_stat_inc(cpu, part, ios[sgrp]);
1739 part_stat_add(cpu, part, sectors[sgrp], sectors);
1740 part_inc_in_flight(q, part, op_is_write(op));
1741
1742 part_stat_unlock();
1743 }
1744 EXPORT_SYMBOL(generic_start_io_acct);
1745
1746 void generic_end_io_acct(struct request_queue *q, int req_op,
1747 struct hd_struct *part, unsigned long start_time)
1748 {
1749 unsigned long duration = jiffies - start_time;
1750 const int sgrp = op_stat_group(req_op);
1751 int cpu = part_stat_lock();
1752
1753 part_stat_add(cpu, part, ticks[sgrp], duration);
1754 part_round_stats(q, cpu, part);
1755 part_dec_in_flight(q, part, op_is_write(req_op));
1756
1757 part_stat_unlock();
1758 }
1759 EXPORT_SYMBOL(generic_end_io_acct);
1760
1761 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1762 void bio_flush_dcache_pages(struct bio *bi)
1763 {
1764 struct bio_vec bvec;
1765 struct bvec_iter iter;
1766
1767 bio_for_each_segment(bvec, bi, iter)
1768 flush_dcache_page(bvec.bv_page);
1769 }
1770 EXPORT_SYMBOL(bio_flush_dcache_pages);
1771 #endif
1772
1773 static inline bool bio_remaining_done(struct bio *bio)
1774 {
1775 /*
1776 * If we're not chaining, then ->__bi_remaining is always 1 and
1777 * we always end io on the first invocation.
1778 */
1779 if (!bio_flagged(bio, BIO_CHAIN))
1780 return true;
1781
1782 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1783
1784 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1785 bio_clear_flag(bio, BIO_CHAIN);
1786 return true;
1787 }
1788
1789 return false;
1790 }
1791
1792 /**
1793 * bio_endio - end I/O on a bio
1794 * @bio: bio
1795 *
1796 * Description:
1797 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1798 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1799 * bio unless they own it and thus know that it has an end_io function.
1800 *
1801 * bio_endio() can be called several times on a bio that has been chained
1802 * using bio_chain(). The ->bi_end_io() function will only be called the
1803 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1804 * generated if BIO_TRACE_COMPLETION is set.
1805 **/
1806 void bio_endio(struct bio *bio)
1807 {
1808 again:
1809 if (!bio_remaining_done(bio))
1810 return;
1811 if (!bio_integrity_endio(bio))
1812 return;
1813
1814 if (bio->bi_disk)
1815 rq_qos_done_bio(bio->bi_disk->queue, bio);
1816
1817 /*
1818 * Need to have a real endio function for chained bios, otherwise
1819 * various corner cases will break (like stacking block devices that
1820 * save/restore bi_end_io) - however, we want to avoid unbounded
1821 * recursion and blowing the stack. Tail call optimization would
1822 * handle this, but compiling with frame pointers also disables
1823 * gcc's sibling call optimization.
1824 */
1825 if (bio->bi_end_io == bio_chain_endio) {
1826 bio = __bio_chain_endio(bio);
1827 goto again;
1828 }
1829
1830 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1831 trace_block_bio_complete(bio->bi_disk->queue, bio,
1832 blk_status_to_errno(bio->bi_status));
1833 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1834 }
1835
1836 blk_throtl_bio_endio(bio);
1837 /* release cgroup info */
1838 bio_uninit(bio);
1839 if (bio->bi_end_io)
1840 bio->bi_end_io(bio);
1841 }
1842 EXPORT_SYMBOL(bio_endio);
1843
1844 /**
1845 * bio_split - split a bio
1846 * @bio: bio to split
1847 * @sectors: number of sectors to split from the front of @bio
1848 * @gfp: gfp mask
1849 * @bs: bio set to allocate from
1850 *
1851 * Allocates and returns a new bio which represents @sectors from the start of
1852 * @bio, and updates @bio to represent the remaining sectors.
1853 *
1854 * Unless this is a discard request the newly allocated bio will point
1855 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1856 * @bio is not freed before the split.
1857 */
1858 struct bio *bio_split(struct bio *bio, int sectors,
1859 gfp_t gfp, struct bio_set *bs)
1860 {
1861 struct bio *split;
1862
1863 BUG_ON(sectors <= 0);
1864 BUG_ON(sectors >= bio_sectors(bio));
1865
1866 split = bio_clone_fast(bio, gfp, bs);
1867 if (!split)
1868 return NULL;
1869
1870 split->bi_iter.bi_size = sectors << 9;
1871
1872 if (bio_integrity(split))
1873 bio_integrity_trim(split);
1874
1875 bio_advance(bio, split->bi_iter.bi_size);
1876
1877 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1878 bio_set_flag(split, BIO_TRACE_COMPLETION);
1879
1880 return split;
1881 }
1882 EXPORT_SYMBOL(bio_split);
1883
1884 /**
1885 * bio_trim - trim a bio
1886 * @bio: bio to trim
1887 * @offset: number of sectors to trim from the front of @bio
1888 * @size: size we want to trim @bio to, in sectors
1889 */
1890 void bio_trim(struct bio *bio, int offset, int size)
1891 {
1892 /* 'bio' is a cloned bio which we need to trim to match
1893 * the given offset and size.
1894 */
1895
1896 size <<= 9;
1897 if (offset == 0 && size == bio->bi_iter.bi_size)
1898 return;
1899
1900 bio_clear_flag(bio, BIO_SEG_VALID);
1901
1902 bio_advance(bio, offset << 9);
1903
1904 bio->bi_iter.bi_size = size;
1905
1906 if (bio_integrity(bio))
1907 bio_integrity_trim(bio);
1908
1909 }
1910 EXPORT_SYMBOL_GPL(bio_trim);
1911
1912 /*
1913 * create memory pools for biovec's in a bio_set.
1914 * use the global biovec slabs created for general use.
1915 */
1916 int biovec_init_pool(mempool_t *pool, int pool_entries)
1917 {
1918 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1919
1920 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1921 }
1922
1923 /*
1924 * bioset_exit - exit a bioset initialized with bioset_init()
1925 *
1926 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1927 * kzalloc()).
1928 */
1929 void bioset_exit(struct bio_set *bs)
1930 {
1931 if (bs->rescue_workqueue)
1932 destroy_workqueue(bs->rescue_workqueue);
1933 bs->rescue_workqueue = NULL;
1934
1935 mempool_exit(&bs->bio_pool);
1936 mempool_exit(&bs->bvec_pool);
1937
1938 bioset_integrity_free(bs);
1939 if (bs->bio_slab)
1940 bio_put_slab(bs);
1941 bs->bio_slab = NULL;
1942 }
1943 EXPORT_SYMBOL(bioset_exit);
1944
1945 /**
1946 * bioset_init - Initialize a bio_set
1947 * @bs: pool to initialize
1948 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1949 * @front_pad: Number of bytes to allocate in front of the returned bio
1950 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1951 * and %BIOSET_NEED_RESCUER
1952 *
1953 * Description:
1954 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1955 * to ask for a number of bytes to be allocated in front of the bio.
1956 * Front pad allocation is useful for embedding the bio inside
1957 * another structure, to avoid allocating extra data to go with the bio.
1958 * Note that the bio must be embedded at the END of that structure always,
1959 * or things will break badly.
1960 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1961 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1962 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1963 * dispatch queued requests when the mempool runs out of space.
1964 *
1965 */
1966 int bioset_init(struct bio_set *bs,
1967 unsigned int pool_size,
1968 unsigned int front_pad,
1969 int flags)
1970 {
1971 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1972
1973 bs->front_pad = front_pad;
1974
1975 spin_lock_init(&bs->rescue_lock);
1976 bio_list_init(&bs->rescue_list);
1977 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1978
1979 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1980 if (!bs->bio_slab)
1981 return -ENOMEM;
1982
1983 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1984 goto bad;
1985
1986 if ((flags & BIOSET_NEED_BVECS) &&
1987 biovec_init_pool(&bs->bvec_pool, pool_size))
1988 goto bad;
1989
1990 if (!(flags & BIOSET_NEED_RESCUER))
1991 return 0;
1992
1993 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1994 if (!bs->rescue_workqueue)
1995 goto bad;
1996
1997 return 0;
1998 bad:
1999 bioset_exit(bs);
2000 return -ENOMEM;
2001 }
2002 EXPORT_SYMBOL(bioset_init);
2003
2004 /*
2005 * Initialize and setup a new bio_set, based on the settings from
2006 * another bio_set.
2007 */
2008 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2009 {
2010 int flags;
2011
2012 flags = 0;
2013 if (src->bvec_pool.min_nr)
2014 flags |= BIOSET_NEED_BVECS;
2015 if (src->rescue_workqueue)
2016 flags |= BIOSET_NEED_RESCUER;
2017
2018 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2019 }
2020 EXPORT_SYMBOL(bioset_init_from_src);
2021
2022 #ifdef CONFIG_BLK_CGROUP
2023
2024 #ifdef CONFIG_MEMCG
2025 /**
2026 * bio_associate_blkcg_from_page - associate a bio with the page's blkcg
2027 * @bio: target bio
2028 * @page: the page to lookup the blkcg from
2029 *
2030 * Associate @bio with the blkcg from @page's owning memcg. This works like
2031 * every other associate function wrt references.
2032 */
2033 int bio_associate_blkcg_from_page(struct bio *bio, struct page *page)
2034 {
2035 struct cgroup_subsys_state *blkcg_css;
2036
2037 if (unlikely(bio->bi_css))
2038 return -EBUSY;
2039 if (!page->mem_cgroup)
2040 return 0;
2041 blkcg_css = cgroup_get_e_css(page->mem_cgroup->css.cgroup,
2042 &io_cgrp_subsys);
2043 bio->bi_css = blkcg_css;
2044 return 0;
2045 }
2046 #endif /* CONFIG_MEMCG */
2047
2048 /**
2049 * bio_associate_blkcg - associate a bio with the specified blkcg
2050 * @bio: target bio
2051 * @blkcg_css: css of the blkcg to associate
2052 *
2053 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2054 * treat @bio as if it were issued by a task which belongs to the blkcg.
2055 *
2056 * This function takes an extra reference of @blkcg_css which will be put
2057 * when @bio is released. The caller must own @bio and is responsible for
2058 * synchronizing calls to this function.
2059 */
2060 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2061 {
2062 if (unlikely(bio->bi_css))
2063 return -EBUSY;
2064 css_get(blkcg_css);
2065 bio->bi_css = blkcg_css;
2066 return 0;
2067 }
2068 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2069
2070 /**
2071 * bio_associate_blkg - associate a bio with the specified blkg
2072 * @bio: target bio
2073 * @blkg: the blkg to associate
2074 *
2075 * Associate @bio with the blkg specified by @blkg. This is the queue specific
2076 * blkcg information associated with the @bio, a reference will be taken on the
2077 * @blkg and will be freed when the bio is freed.
2078 */
2079 int bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2080 {
2081 if (unlikely(bio->bi_blkg))
2082 return -EBUSY;
2083 blkg_get(blkg);
2084 bio->bi_blkg = blkg;
2085 return 0;
2086 }
2087
2088 /**
2089 * bio_disassociate_task - undo bio_associate_current()
2090 * @bio: target bio
2091 */
2092 void bio_disassociate_task(struct bio *bio)
2093 {
2094 if (bio->bi_ioc) {
2095 put_io_context(bio->bi_ioc);
2096 bio->bi_ioc = NULL;
2097 }
2098 if (bio->bi_css) {
2099 css_put(bio->bi_css);
2100 bio->bi_css = NULL;
2101 }
2102 if (bio->bi_blkg) {
2103 blkg_put(bio->bi_blkg);
2104 bio->bi_blkg = NULL;
2105 }
2106 }
2107
2108 /**
2109 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2110 * @dst: destination bio
2111 * @src: source bio
2112 */
2113 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2114 {
2115 if (src->bi_css)
2116 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2117 }
2118 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2119 #endif /* CONFIG_BLK_CGROUP */
2120
2121 static void __init biovec_init_slabs(void)
2122 {
2123 int i;
2124
2125 for (i = 0; i < BVEC_POOL_NR; i++) {
2126 int size;
2127 struct biovec_slab *bvs = bvec_slabs + i;
2128
2129 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2130 bvs->slab = NULL;
2131 continue;
2132 }
2133
2134 size = bvs->nr_vecs * sizeof(struct bio_vec);
2135 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2136 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2137 }
2138 }
2139
2140 static int __init init_bio(void)
2141 {
2142 bio_slab_max = 2;
2143 bio_slab_nr = 0;
2144 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2145 GFP_KERNEL);
2146 if (!bio_slabs)
2147 panic("bio: can't allocate bios\n");
2148
2149 bio_integrity_init();
2150 biovec_init_slabs();
2151
2152 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2153 panic("bio: can't allocate bios\n");
2154
2155 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2156 panic("bio: can't create integrity pool\n");
2157
2158 return 0;
2159 }
2160 subsys_initcall(init_bio);