]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/bio.c
lkdtm: Add tests for NULL pointer dereference
[thirdparty/kernel/stable.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33 #include "blk.h"
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 /*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
46 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
49 };
50 #undef BV
51
52 /*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58
59 /*
60 * Our slab pool management
61 */
62 struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
103 GFP_KERNEL);
104 if (!new_bio_slabs)
105 goto out_unlock;
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
117 if (!slab)
118 goto out_unlock;
119
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123 out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126 }
127
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153 out:
154 mutex_unlock(&bio_slab_lock);
155 }
156
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 return bvec_slabs[--idx].nr_vecs;
160 }
161
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
169
170 if (idx == BVEC_POOL_MAX) {
171 mempool_free(bv, pool);
172 } else {
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177 }
178
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
181 {
182 struct bio_vec *bvl;
183
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
214 if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 bvl = mempool_alloc(pool, gfp_mask);
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220
221 /*
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
225 */
226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227
228 /*
229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 * is set, retry with the 1-entry mempool
231 */
232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 *idx = BVEC_POOL_MAX;
235 goto fallback;
236 }
237 }
238
239 (*idx)++;
240 return bvl;
241 }
242
243 void bio_uninit(struct bio *bio)
244 {
245 bio_disassociate_task(bio);
246 }
247 EXPORT_SYMBOL(bio_uninit);
248
249 static void bio_free(struct bio *bio)
250 {
251 struct bio_set *bs = bio->bi_pool;
252 void *p;
253
254 bio_uninit(bio);
255
256 if (bs) {
257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
263 p -= bs->front_pad;
264
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
270 }
271
272 /*
273 * Users of this function have their own bio allocation. Subsequently,
274 * they must remember to pair any call to bio_init() with bio_uninit()
275 * when IO has completed, or when the bio is released.
276 */
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 unsigned short max_vecs)
279 {
280 memset(bio, 0, sizeof(*bio));
281 atomic_set(&bio->__bi_remaining, 1);
282 atomic_set(&bio->__bi_cnt, 1);
283
284 bio->bi_io_vec = table;
285 bio->bi_max_vecs = max_vecs;
286 }
287 EXPORT_SYMBOL(bio_init);
288
289 /**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 *
293 * Description:
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
298 */
299 void bio_reset(struct bio *bio)
300 {
301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302
303 bio_uninit(bio);
304
305 memset(bio, 0, BIO_RESET_BYTES);
306 bio->bi_flags = flags;
307 atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 struct bio *parent = bio->bi_private;
314
315 if (!parent->bi_status)
316 parent->bi_status = bio->bi_status;
317 bio_put(bio);
318 return parent;
319 }
320
321 static void bio_chain_endio(struct bio *bio)
322 {
323 bio_endio(__bio_chain_endio(bio));
324 }
325
326 /**
327 * bio_chain - chain bio completions
328 * @bio: the target bio
329 * @parent: the @bio's parent bio
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
343 bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346
347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 struct bio *bio;
351
352 while (1) {
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
356
357 if (!bio)
358 break;
359
360 generic_make_request(bio);
361 }
362 }
363
364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 struct bio_list punt, nopunt;
367 struct bio *bio;
368
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 return;
371 /*
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
377 *
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
380 */
381
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
384
385 while ((bio = bio_list_pop(&current->bio_list[0])))
386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 current->bio_list[0] = nopunt;
388
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(&current->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
393
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
397
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400
401 /**
402 * bio_alloc_bioset - allocate a bio for I/O
403 * @gfp_mask: the GFP_ mask given to the slab allocator
404 * @nr_iovecs: number of iovecs to pre-allocate
405 * @bs: the bio_set to allocate from.
406 *
407 * Description:
408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409 * backed by the @bs's mempool.
410 *
411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412 * always be able to allocate a bio. This is due to the mempool guarantees.
413 * To make this work, callers must never allocate more than 1 bio at a time
414 * from this pool. Callers that need to allocate more than 1 bio must always
415 * submit the previously allocated bio for IO before attempting to allocate
416 * a new one. Failure to do so can cause deadlocks under memory pressure.
417 *
418 * Note that when running under generic_make_request() (i.e. any block
419 * driver), bios are not submitted until after you return - see the code in
420 * generic_make_request() that converts recursion into iteration, to prevent
421 * stack overflows.
422 *
423 * This would normally mean allocating multiple bios under
424 * generic_make_request() would be susceptible to deadlocks, but we have
425 * deadlock avoidance code that resubmits any blocked bios from a rescuer
426 * thread.
427 *
428 * However, we do not guarantee forward progress for allocations from other
429 * mempools. Doing multiple allocations from the same mempool under
430 * generic_make_request() should be avoided - instead, use bio_set's front_pad
431 * for per bio allocations.
432 *
433 * RETURNS:
434 * Pointer to new bio on success, NULL on failure.
435 */
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 struct bio_set *bs)
438 {
439 gfp_t saved_gfp = gfp_mask;
440 unsigned front_pad;
441 unsigned inline_vecs;
442 struct bio_vec *bvl = NULL;
443 struct bio *bio;
444 void *p;
445
446 if (!bs) {
447 if (nr_iovecs > UIO_MAXIOV)
448 return NULL;
449
450 p = kmalloc(sizeof(struct bio) +
451 nr_iovecs * sizeof(struct bio_vec),
452 gfp_mask);
453 front_pad = 0;
454 inline_vecs = nr_iovecs;
455 } else {
456 /* should not use nobvec bioset for nr_iovecs > 0 */
457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 return NULL;
459 /*
460 * generic_make_request() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
464 *
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath generic_make_request(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
471 *
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
478 */
479
480 if (current->bio_list &&
481 (!bio_list_empty(&current->bio_list[0]) ||
482 !bio_list_empty(&current->bio_list[1])) &&
483 bs->rescue_workqueue)
484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485
486 p = mempool_alloc(bs->bio_pool, gfp_mask);
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(bs->bio_pool, gfp_mask);
491 }
492
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
497 if (unlikely(!p))
498 return NULL;
499
500 bio = p + front_pad;
501 bio_init(bio, NULL, 0);
502
503 if (nr_iovecs > inline_vecs) {
504 unsigned long idx = 0;
505
506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
511 }
512
513 if (unlikely(!bvl))
514 goto err_free;
515
516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
519 }
520
521 bio->bi_pool = bs;
522 bio->bi_max_vecs = nr_iovecs;
523 bio->bi_io_vec = bvl;
524 return bio;
525
526 err_free:
527 mempool_free(p, bs->bio_pool);
528 return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531
532 void zero_fill_bio(struct bio *bio)
533 {
534 unsigned long flags;
535 struct bio_vec bv;
536 struct bvec_iter iter;
537
538 bio_for_each_segment(bv, bio, iter) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
542 bvec_kunmap_irq(data, &flags);
543 }
544 }
545 EXPORT_SYMBOL(zero_fill_bio);
546
547 /**
548 * bio_put - release a reference to a bio
549 * @bio: bio to release reference to
550 *
551 * Description:
552 * Put a reference to a &struct bio, either one you have gotten with
553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
554 **/
555 void bio_put(struct bio *bio)
556 {
557 if (!bio_flagged(bio, BIO_REFFED))
558 bio_free(bio);
559 else {
560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561
562 /*
563 * last put frees it
564 */
565 if (atomic_dec_and_test(&bio->__bi_cnt))
566 bio_free(bio);
567 }
568 }
569 EXPORT_SYMBOL(bio_put);
570
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
572 {
573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 blk_recount_segments(q, bio);
575
576 return bio->bi_phys_segments;
577 }
578 EXPORT_SYMBOL(bio_phys_segments);
579
580 /**
581 * __bio_clone_fast - clone a bio that shares the original bio's biovec
582 * @bio: destination bio
583 * @bio_src: bio to clone
584 *
585 * Clone a &bio. Caller will own the returned bio, but not
586 * the actual data it points to. Reference count of returned
587 * bio will be one.
588 *
589 * Caller must ensure that @bio_src is not freed before @bio.
590 */
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592 {
593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
594
595 /*
596 * most users will be overriding ->bi_disk with a new target,
597 * so we don't set nor calculate new physical/hw segment counts here
598 */
599 bio->bi_disk = bio_src->bi_disk;
600 bio->bi_partno = bio_src->bi_partno;
601 bio_set_flag(bio, BIO_CLONED);
602 if (bio_flagged(bio_src, BIO_THROTTLED))
603 bio_set_flag(bio, BIO_THROTTLED);
604 bio->bi_opf = bio_src->bi_opf;
605 bio->bi_write_hint = bio_src->bi_write_hint;
606 bio->bi_iter = bio_src->bi_iter;
607 bio->bi_io_vec = bio_src->bi_io_vec;
608
609 bio_clone_blkcg_association(bio, bio_src);
610 }
611 EXPORT_SYMBOL(__bio_clone_fast);
612
613 /**
614 * bio_clone_fast - clone a bio that shares the original bio's biovec
615 * @bio: bio to clone
616 * @gfp_mask: allocation priority
617 * @bs: bio_set to allocate from
618 *
619 * Like __bio_clone_fast, only also allocates the returned bio
620 */
621 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
622 {
623 struct bio *b;
624
625 b = bio_alloc_bioset(gfp_mask, 0, bs);
626 if (!b)
627 return NULL;
628
629 __bio_clone_fast(b, bio);
630
631 if (bio_integrity(bio)) {
632 int ret;
633
634 ret = bio_integrity_clone(b, bio, gfp_mask);
635
636 if (ret < 0) {
637 bio_put(b);
638 return NULL;
639 }
640 }
641
642 return b;
643 }
644 EXPORT_SYMBOL(bio_clone_fast);
645
646 /**
647 * bio_clone_bioset - clone a bio
648 * @bio_src: bio to clone
649 * @gfp_mask: allocation priority
650 * @bs: bio_set to allocate from
651 *
652 * Clone bio. Caller will own the returned bio, but not the actual data it
653 * points to. Reference count of returned bio will be one.
654 */
655 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
656 struct bio_set *bs)
657 {
658 struct bvec_iter iter;
659 struct bio_vec bv;
660 struct bio *bio;
661
662 /*
663 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
664 * bio_src->bi_io_vec to bio->bi_io_vec.
665 *
666 * We can't do that anymore, because:
667 *
668 * - The point of cloning the biovec is to produce a bio with a biovec
669 * the caller can modify: bi_idx and bi_bvec_done should be 0.
670 *
671 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
672 * we tried to clone the whole thing bio_alloc_bioset() would fail.
673 * But the clone should succeed as long as the number of biovecs we
674 * actually need to allocate is fewer than BIO_MAX_PAGES.
675 *
676 * - Lastly, bi_vcnt should not be looked at or relied upon by code
677 * that does not own the bio - reason being drivers don't use it for
678 * iterating over the biovec anymore, so expecting it to be kept up
679 * to date (i.e. for clones that share the parent biovec) is just
680 * asking for trouble and would force extra work on
681 * __bio_clone_fast() anyways.
682 */
683
684 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
685 if (!bio)
686 return NULL;
687 bio->bi_disk = bio_src->bi_disk;
688 bio->bi_opf = bio_src->bi_opf;
689 bio->bi_write_hint = bio_src->bi_write_hint;
690 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
691 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
692
693 switch (bio_op(bio)) {
694 case REQ_OP_DISCARD:
695 case REQ_OP_SECURE_ERASE:
696 case REQ_OP_WRITE_ZEROES:
697 break;
698 case REQ_OP_WRITE_SAME:
699 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
700 break;
701 default:
702 bio_for_each_segment(bv, bio_src, iter)
703 bio->bi_io_vec[bio->bi_vcnt++] = bv;
704 break;
705 }
706
707 if (bio_integrity(bio_src)) {
708 int ret;
709
710 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
711 if (ret < 0) {
712 bio_put(bio);
713 return NULL;
714 }
715 }
716
717 bio_clone_blkcg_association(bio, bio_src);
718
719 return bio;
720 }
721 EXPORT_SYMBOL(bio_clone_bioset);
722
723 /**
724 * bio_add_pc_page - attempt to add page to bio
725 * @q: the target queue
726 * @bio: destination bio
727 * @page: page to add
728 * @len: vec entry length
729 * @offset: vec entry offset
730 *
731 * Attempt to add a page to the bio_vec maplist. This can fail for a
732 * number of reasons, such as the bio being full or target block device
733 * limitations. The target block device must allow bio's up to PAGE_SIZE,
734 * so it is always possible to add a single page to an empty bio.
735 *
736 * This should only be used by REQ_PC bios.
737 */
738 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
739 *page, unsigned int len, unsigned int offset)
740 {
741 int retried_segments = 0;
742 struct bio_vec *bvec;
743
744 /*
745 * cloned bio must not modify vec list
746 */
747 if (unlikely(bio_flagged(bio, BIO_CLONED)))
748 return 0;
749
750 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
751 return 0;
752
753 /*
754 * For filesystems with a blocksize smaller than the pagesize
755 * we will often be called with the same page as last time and
756 * a consecutive offset. Optimize this special case.
757 */
758 if (bio->bi_vcnt > 0) {
759 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
760
761 if (page == prev->bv_page &&
762 offset == prev->bv_offset + prev->bv_len) {
763 prev->bv_len += len;
764 bio->bi_iter.bi_size += len;
765 goto done;
766 }
767
768 /*
769 * If the queue doesn't support SG gaps and adding this
770 * offset would create a gap, disallow it.
771 */
772 if (bvec_gap_to_prev(q, prev, offset))
773 return 0;
774 }
775
776 if (bio->bi_vcnt >= bio->bi_max_vecs)
777 return 0;
778
779 /*
780 * setup the new entry, we might clear it again later if we
781 * cannot add the page
782 */
783 bvec = &bio->bi_io_vec[bio->bi_vcnt];
784 bvec->bv_page = page;
785 bvec->bv_len = len;
786 bvec->bv_offset = offset;
787 bio->bi_vcnt++;
788 bio->bi_phys_segments++;
789 bio->bi_iter.bi_size += len;
790
791 /*
792 * Perform a recount if the number of segments is greater
793 * than queue_max_segments(q).
794 */
795
796 while (bio->bi_phys_segments > queue_max_segments(q)) {
797
798 if (retried_segments)
799 goto failed;
800
801 retried_segments = 1;
802 blk_recount_segments(q, bio);
803 }
804
805 /* If we may be able to merge these biovecs, force a recount */
806 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
807 bio_clear_flag(bio, BIO_SEG_VALID);
808
809 done:
810 return len;
811
812 failed:
813 bvec->bv_page = NULL;
814 bvec->bv_len = 0;
815 bvec->bv_offset = 0;
816 bio->bi_vcnt--;
817 bio->bi_iter.bi_size -= len;
818 blk_recount_segments(q, bio);
819 return 0;
820 }
821 EXPORT_SYMBOL(bio_add_pc_page);
822
823 /**
824 * bio_add_page - attempt to add page to bio
825 * @bio: destination bio
826 * @page: page to add
827 * @len: vec entry length
828 * @offset: vec entry offset
829 *
830 * Attempt to add a page to the bio_vec maplist. This will only fail
831 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
832 */
833 int bio_add_page(struct bio *bio, struct page *page,
834 unsigned int len, unsigned int offset)
835 {
836 struct bio_vec *bv;
837
838 /*
839 * cloned bio must not modify vec list
840 */
841 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
842 return 0;
843
844 /*
845 * For filesystems with a blocksize smaller than the pagesize
846 * we will often be called with the same page as last time and
847 * a consecutive offset. Optimize this special case.
848 */
849 if (bio->bi_vcnt > 0) {
850 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
851
852 if (page == bv->bv_page &&
853 offset == bv->bv_offset + bv->bv_len) {
854 bv->bv_len += len;
855 goto done;
856 }
857 }
858
859 if (bio->bi_vcnt >= bio->bi_max_vecs)
860 return 0;
861
862 bv = &bio->bi_io_vec[bio->bi_vcnt];
863 bv->bv_page = page;
864 bv->bv_len = len;
865 bv->bv_offset = offset;
866
867 bio->bi_vcnt++;
868 done:
869 bio->bi_iter.bi_size += len;
870 return len;
871 }
872 EXPORT_SYMBOL(bio_add_page);
873
874 /**
875 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
876 * @bio: bio to add pages to
877 * @iter: iov iterator describing the region to be mapped
878 *
879 * Pins as many pages from *iter and appends them to @bio's bvec array. The
880 * pages will have to be released using put_page() when done.
881 */
882 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
883 {
884 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt, idx;
885 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
886 struct page **pages = (struct page **)bv;
887 size_t offset;
888 ssize_t size;
889
890 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
891 if (unlikely(size <= 0))
892 return size ? size : -EFAULT;
893 idx = nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
894
895 /*
896 * Deep magic below: We need to walk the pinned pages backwards
897 * because we are abusing the space allocated for the bio_vecs
898 * for the page array. Because the bio_vecs are larger than the
899 * page pointers by definition this will always work. But it also
900 * means we can't use bio_add_page, so any changes to it's semantics
901 * need to be reflected here as well.
902 */
903 bio->bi_iter.bi_size += size;
904 bio->bi_vcnt += nr_pages;
905
906 while (idx--) {
907 bv[idx].bv_page = pages[idx];
908 bv[idx].bv_len = PAGE_SIZE;
909 bv[idx].bv_offset = 0;
910 }
911
912 bv[0].bv_offset += offset;
913 bv[0].bv_len -= offset;
914 bv[nr_pages - 1].bv_len -= nr_pages * PAGE_SIZE - offset - size;
915
916 iov_iter_advance(iter, size);
917 return 0;
918 }
919 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
920
921 struct submit_bio_ret {
922 struct completion event;
923 int error;
924 };
925
926 static void submit_bio_wait_endio(struct bio *bio)
927 {
928 struct submit_bio_ret *ret = bio->bi_private;
929
930 ret->error = blk_status_to_errno(bio->bi_status);
931 complete(&ret->event);
932 }
933
934 /**
935 * submit_bio_wait - submit a bio, and wait until it completes
936 * @bio: The &struct bio which describes the I/O
937 *
938 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
939 * bio_endio() on failure.
940 *
941 * WARNING: Unlike to how submit_bio() is usually used, this function does not
942 * result in bio reference to be consumed. The caller must drop the reference
943 * on his own.
944 */
945 int submit_bio_wait(struct bio *bio)
946 {
947 struct submit_bio_ret ret;
948
949 init_completion(&ret.event);
950 bio->bi_private = &ret;
951 bio->bi_end_io = submit_bio_wait_endio;
952 bio->bi_opf |= REQ_SYNC;
953 submit_bio(bio);
954 wait_for_completion_io(&ret.event);
955
956 return ret.error;
957 }
958 EXPORT_SYMBOL(submit_bio_wait);
959
960 /**
961 * bio_advance - increment/complete a bio by some number of bytes
962 * @bio: bio to advance
963 * @bytes: number of bytes to complete
964 *
965 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
966 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
967 * be updated on the last bvec as well.
968 *
969 * @bio will then represent the remaining, uncompleted portion of the io.
970 */
971 void bio_advance(struct bio *bio, unsigned bytes)
972 {
973 if (bio_integrity(bio))
974 bio_integrity_advance(bio, bytes);
975
976 bio_advance_iter(bio, &bio->bi_iter, bytes);
977 }
978 EXPORT_SYMBOL(bio_advance);
979
980 /**
981 * bio_alloc_pages - allocates a single page for each bvec in a bio
982 * @bio: bio to allocate pages for
983 * @gfp_mask: flags for allocation
984 *
985 * Allocates pages up to @bio->bi_vcnt.
986 *
987 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
988 * freed.
989 */
990 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
991 {
992 int i;
993 struct bio_vec *bv;
994
995 bio_for_each_segment_all(bv, bio, i) {
996 bv->bv_page = alloc_page(gfp_mask);
997 if (!bv->bv_page) {
998 while (--bv >= bio->bi_io_vec)
999 __free_page(bv->bv_page);
1000 return -ENOMEM;
1001 }
1002 }
1003
1004 return 0;
1005 }
1006 EXPORT_SYMBOL(bio_alloc_pages);
1007
1008 /**
1009 * bio_copy_data - copy contents of data buffers from one chain of bios to
1010 * another
1011 * @src: source bio list
1012 * @dst: destination bio list
1013 *
1014 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1015 * @src and @dst as linked lists of bios.
1016 *
1017 * Stops when it reaches the end of either @src or @dst - that is, copies
1018 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1019 */
1020 void bio_copy_data(struct bio *dst, struct bio *src)
1021 {
1022 struct bvec_iter src_iter, dst_iter;
1023 struct bio_vec src_bv, dst_bv;
1024 void *src_p, *dst_p;
1025 unsigned bytes;
1026
1027 src_iter = src->bi_iter;
1028 dst_iter = dst->bi_iter;
1029
1030 while (1) {
1031 if (!src_iter.bi_size) {
1032 src = src->bi_next;
1033 if (!src)
1034 break;
1035
1036 src_iter = src->bi_iter;
1037 }
1038
1039 if (!dst_iter.bi_size) {
1040 dst = dst->bi_next;
1041 if (!dst)
1042 break;
1043
1044 dst_iter = dst->bi_iter;
1045 }
1046
1047 src_bv = bio_iter_iovec(src, src_iter);
1048 dst_bv = bio_iter_iovec(dst, dst_iter);
1049
1050 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1051
1052 src_p = kmap_atomic(src_bv.bv_page);
1053 dst_p = kmap_atomic(dst_bv.bv_page);
1054
1055 memcpy(dst_p + dst_bv.bv_offset,
1056 src_p + src_bv.bv_offset,
1057 bytes);
1058
1059 kunmap_atomic(dst_p);
1060 kunmap_atomic(src_p);
1061
1062 bio_advance_iter(src, &src_iter, bytes);
1063 bio_advance_iter(dst, &dst_iter, bytes);
1064 }
1065 }
1066 EXPORT_SYMBOL(bio_copy_data);
1067
1068 struct bio_map_data {
1069 int is_our_pages;
1070 struct iov_iter iter;
1071 struct iovec iov[];
1072 };
1073
1074 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1075 gfp_t gfp_mask)
1076 {
1077 if (iov_count > UIO_MAXIOV)
1078 return NULL;
1079
1080 return kmalloc(sizeof(struct bio_map_data) +
1081 sizeof(struct iovec) * iov_count, gfp_mask);
1082 }
1083
1084 /**
1085 * bio_copy_from_iter - copy all pages from iov_iter to bio
1086 * @bio: The &struct bio which describes the I/O as destination
1087 * @iter: iov_iter as source
1088 *
1089 * Copy all pages from iov_iter to bio.
1090 * Returns 0 on success, or error on failure.
1091 */
1092 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1093 {
1094 int i;
1095 struct bio_vec *bvec;
1096
1097 bio_for_each_segment_all(bvec, bio, i) {
1098 ssize_t ret;
1099
1100 ret = copy_page_from_iter(bvec->bv_page,
1101 bvec->bv_offset,
1102 bvec->bv_len,
1103 &iter);
1104
1105 if (!iov_iter_count(&iter))
1106 break;
1107
1108 if (ret < bvec->bv_len)
1109 return -EFAULT;
1110 }
1111
1112 return 0;
1113 }
1114
1115 /**
1116 * bio_copy_to_iter - copy all pages from bio to iov_iter
1117 * @bio: The &struct bio which describes the I/O as source
1118 * @iter: iov_iter as destination
1119 *
1120 * Copy all pages from bio to iov_iter.
1121 * Returns 0 on success, or error on failure.
1122 */
1123 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1124 {
1125 int i;
1126 struct bio_vec *bvec;
1127
1128 bio_for_each_segment_all(bvec, bio, i) {
1129 ssize_t ret;
1130
1131 ret = copy_page_to_iter(bvec->bv_page,
1132 bvec->bv_offset,
1133 bvec->bv_len,
1134 &iter);
1135
1136 if (!iov_iter_count(&iter))
1137 break;
1138
1139 if (ret < bvec->bv_len)
1140 return -EFAULT;
1141 }
1142
1143 return 0;
1144 }
1145
1146 void bio_free_pages(struct bio *bio)
1147 {
1148 struct bio_vec *bvec;
1149 int i;
1150
1151 bio_for_each_segment_all(bvec, bio, i)
1152 __free_page(bvec->bv_page);
1153 }
1154 EXPORT_SYMBOL(bio_free_pages);
1155
1156 /**
1157 * bio_uncopy_user - finish previously mapped bio
1158 * @bio: bio being terminated
1159 *
1160 * Free pages allocated from bio_copy_user_iov() and write back data
1161 * to user space in case of a read.
1162 */
1163 int bio_uncopy_user(struct bio *bio)
1164 {
1165 struct bio_map_data *bmd = bio->bi_private;
1166 int ret = 0;
1167
1168 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1169 /*
1170 * if we're in a workqueue, the request is orphaned, so
1171 * don't copy into a random user address space, just free
1172 * and return -EINTR so user space doesn't expect any data.
1173 */
1174 if (!current->mm)
1175 ret = -EINTR;
1176 else if (bio_data_dir(bio) == READ)
1177 ret = bio_copy_to_iter(bio, bmd->iter);
1178 if (bmd->is_our_pages)
1179 bio_free_pages(bio);
1180 }
1181 kfree(bmd);
1182 bio_put(bio);
1183 return ret;
1184 }
1185
1186 /**
1187 * bio_copy_user_iov - copy user data to bio
1188 * @q: destination block queue
1189 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1190 * @iter: iovec iterator
1191 * @gfp_mask: memory allocation flags
1192 *
1193 * Prepares and returns a bio for indirect user io, bouncing data
1194 * to/from kernel pages as necessary. Must be paired with
1195 * call bio_uncopy_user() on io completion.
1196 */
1197 struct bio *bio_copy_user_iov(struct request_queue *q,
1198 struct rq_map_data *map_data,
1199 const struct iov_iter *iter,
1200 gfp_t gfp_mask)
1201 {
1202 struct bio_map_data *bmd;
1203 struct page *page;
1204 struct bio *bio;
1205 int i, ret;
1206 int nr_pages = 0;
1207 unsigned int len = iter->count;
1208 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1209
1210 for (i = 0; i < iter->nr_segs; i++) {
1211 unsigned long uaddr;
1212 unsigned long end;
1213 unsigned long start;
1214
1215 uaddr = (unsigned long) iter->iov[i].iov_base;
1216 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1217 >> PAGE_SHIFT;
1218 start = uaddr >> PAGE_SHIFT;
1219
1220 /*
1221 * Overflow, abort
1222 */
1223 if (end < start)
1224 return ERR_PTR(-EINVAL);
1225
1226 nr_pages += end - start;
1227 }
1228
1229 if (offset)
1230 nr_pages++;
1231
1232 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1233 if (!bmd)
1234 return ERR_PTR(-ENOMEM);
1235
1236 /*
1237 * We need to do a deep copy of the iov_iter including the iovecs.
1238 * The caller provided iov might point to an on-stack or otherwise
1239 * shortlived one.
1240 */
1241 bmd->is_our_pages = map_data ? 0 : 1;
1242 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1243 bmd->iter = *iter;
1244 bmd->iter.iov = bmd->iov;
1245
1246 ret = -ENOMEM;
1247 bio = bio_kmalloc(gfp_mask, nr_pages);
1248 if (!bio)
1249 goto out_bmd;
1250
1251 ret = 0;
1252
1253 if (map_data) {
1254 nr_pages = 1 << map_data->page_order;
1255 i = map_data->offset / PAGE_SIZE;
1256 }
1257 while (len) {
1258 unsigned int bytes = PAGE_SIZE;
1259
1260 bytes -= offset;
1261
1262 if (bytes > len)
1263 bytes = len;
1264
1265 if (map_data) {
1266 if (i == map_data->nr_entries * nr_pages) {
1267 ret = -ENOMEM;
1268 break;
1269 }
1270
1271 page = map_data->pages[i / nr_pages];
1272 page += (i % nr_pages);
1273
1274 i++;
1275 } else {
1276 page = alloc_page(q->bounce_gfp | gfp_mask);
1277 if (!page) {
1278 ret = -ENOMEM;
1279 break;
1280 }
1281 }
1282
1283 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1284 if (!map_data)
1285 __free_page(page);
1286 break;
1287 }
1288
1289 len -= bytes;
1290 offset = 0;
1291 }
1292
1293 if (ret)
1294 goto cleanup;
1295
1296 /*
1297 * success
1298 */
1299 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1300 (map_data && map_data->from_user)) {
1301 ret = bio_copy_from_iter(bio, *iter);
1302 if (ret)
1303 goto cleanup;
1304 }
1305
1306 bio->bi_private = bmd;
1307 return bio;
1308 cleanup:
1309 if (!map_data)
1310 bio_free_pages(bio);
1311 bio_put(bio);
1312 out_bmd:
1313 kfree(bmd);
1314 return ERR_PTR(ret);
1315 }
1316
1317 /**
1318 * bio_map_user_iov - map user iovec into bio
1319 * @q: the struct request_queue for the bio
1320 * @iter: iovec iterator
1321 * @gfp_mask: memory allocation flags
1322 *
1323 * Map the user space address into a bio suitable for io to a block
1324 * device. Returns an error pointer in case of error.
1325 */
1326 struct bio *bio_map_user_iov(struct request_queue *q,
1327 const struct iov_iter *iter,
1328 gfp_t gfp_mask)
1329 {
1330 int j;
1331 int nr_pages = 0;
1332 struct page **pages;
1333 struct bio *bio;
1334 int cur_page = 0;
1335 int ret, offset;
1336 struct iov_iter i;
1337 struct iovec iov;
1338 struct bio_vec *bvec;
1339
1340 iov_for_each(iov, i, *iter) {
1341 unsigned long uaddr = (unsigned long) iov.iov_base;
1342 unsigned long len = iov.iov_len;
1343 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1344 unsigned long start = uaddr >> PAGE_SHIFT;
1345
1346 /*
1347 * Overflow, abort
1348 */
1349 if (end < start)
1350 return ERR_PTR(-EINVAL);
1351
1352 nr_pages += end - start;
1353 /*
1354 * buffer must be aligned to at least logical block size for now
1355 */
1356 if (uaddr & queue_dma_alignment(q))
1357 return ERR_PTR(-EINVAL);
1358 }
1359
1360 if (!nr_pages)
1361 return ERR_PTR(-EINVAL);
1362
1363 bio = bio_kmalloc(gfp_mask, nr_pages);
1364 if (!bio)
1365 return ERR_PTR(-ENOMEM);
1366
1367 ret = -ENOMEM;
1368 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1369 if (!pages)
1370 goto out;
1371
1372 iov_for_each(iov, i, *iter) {
1373 unsigned long uaddr = (unsigned long) iov.iov_base;
1374 unsigned long len = iov.iov_len;
1375 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1376 unsigned long start = uaddr >> PAGE_SHIFT;
1377 const int local_nr_pages = end - start;
1378 const int page_limit = cur_page + local_nr_pages;
1379
1380 ret = get_user_pages_fast(uaddr, local_nr_pages,
1381 (iter->type & WRITE) != WRITE,
1382 &pages[cur_page]);
1383 if (unlikely(ret < local_nr_pages)) {
1384 for (j = cur_page; j < page_limit; j++) {
1385 if (!pages[j])
1386 break;
1387 put_page(pages[j]);
1388 }
1389 ret = -EFAULT;
1390 goto out_unmap;
1391 }
1392
1393 offset = offset_in_page(uaddr);
1394 for (j = cur_page; j < page_limit; j++) {
1395 unsigned int bytes = PAGE_SIZE - offset;
1396 unsigned short prev_bi_vcnt = bio->bi_vcnt;
1397
1398 if (len <= 0)
1399 break;
1400
1401 if (bytes > len)
1402 bytes = len;
1403
1404 /*
1405 * sorry...
1406 */
1407 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1408 bytes)
1409 break;
1410
1411 /*
1412 * check if vector was merged with previous
1413 * drop page reference if needed
1414 */
1415 if (bio->bi_vcnt == prev_bi_vcnt)
1416 put_page(pages[j]);
1417
1418 len -= bytes;
1419 offset = 0;
1420 }
1421
1422 cur_page = j;
1423 /*
1424 * release the pages we didn't map into the bio, if any
1425 */
1426 while (j < page_limit)
1427 put_page(pages[j++]);
1428 }
1429
1430 kfree(pages);
1431
1432 bio_set_flag(bio, BIO_USER_MAPPED);
1433
1434 /*
1435 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1436 * it would normally disappear when its bi_end_io is run.
1437 * however, we need it for the unmap, so grab an extra
1438 * reference to it
1439 */
1440 bio_get(bio);
1441 return bio;
1442
1443 out_unmap:
1444 bio_for_each_segment_all(bvec, bio, j) {
1445 put_page(bvec->bv_page);
1446 }
1447 out:
1448 kfree(pages);
1449 bio_put(bio);
1450 return ERR_PTR(ret);
1451 }
1452
1453 static void __bio_unmap_user(struct bio *bio)
1454 {
1455 struct bio_vec *bvec;
1456 int i;
1457
1458 /*
1459 * make sure we dirty pages we wrote to
1460 */
1461 bio_for_each_segment_all(bvec, bio, i) {
1462 if (bio_data_dir(bio) == READ)
1463 set_page_dirty_lock(bvec->bv_page);
1464
1465 put_page(bvec->bv_page);
1466 }
1467
1468 bio_put(bio);
1469 }
1470
1471 /**
1472 * bio_unmap_user - unmap a bio
1473 * @bio: the bio being unmapped
1474 *
1475 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1476 * process context.
1477 *
1478 * bio_unmap_user() may sleep.
1479 */
1480 void bio_unmap_user(struct bio *bio)
1481 {
1482 __bio_unmap_user(bio);
1483 bio_put(bio);
1484 }
1485
1486 static void bio_map_kern_endio(struct bio *bio)
1487 {
1488 bio_put(bio);
1489 }
1490
1491 /**
1492 * bio_map_kern - map kernel address into bio
1493 * @q: the struct request_queue for the bio
1494 * @data: pointer to buffer to map
1495 * @len: length in bytes
1496 * @gfp_mask: allocation flags for bio allocation
1497 *
1498 * Map the kernel address into a bio suitable for io to a block
1499 * device. Returns an error pointer in case of error.
1500 */
1501 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1502 gfp_t gfp_mask)
1503 {
1504 unsigned long kaddr = (unsigned long)data;
1505 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1506 unsigned long start = kaddr >> PAGE_SHIFT;
1507 const int nr_pages = end - start;
1508 int offset, i;
1509 struct bio *bio;
1510
1511 bio = bio_kmalloc(gfp_mask, nr_pages);
1512 if (!bio)
1513 return ERR_PTR(-ENOMEM);
1514
1515 offset = offset_in_page(kaddr);
1516 for (i = 0; i < nr_pages; i++) {
1517 unsigned int bytes = PAGE_SIZE - offset;
1518
1519 if (len <= 0)
1520 break;
1521
1522 if (bytes > len)
1523 bytes = len;
1524
1525 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1526 offset) < bytes) {
1527 /* we don't support partial mappings */
1528 bio_put(bio);
1529 return ERR_PTR(-EINVAL);
1530 }
1531
1532 data += bytes;
1533 len -= bytes;
1534 offset = 0;
1535 }
1536
1537 bio->bi_end_io = bio_map_kern_endio;
1538 return bio;
1539 }
1540 EXPORT_SYMBOL(bio_map_kern);
1541
1542 static void bio_copy_kern_endio(struct bio *bio)
1543 {
1544 bio_free_pages(bio);
1545 bio_put(bio);
1546 }
1547
1548 static void bio_copy_kern_endio_read(struct bio *bio)
1549 {
1550 char *p = bio->bi_private;
1551 struct bio_vec *bvec;
1552 int i;
1553
1554 bio_for_each_segment_all(bvec, bio, i) {
1555 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1556 p += bvec->bv_len;
1557 }
1558
1559 bio_copy_kern_endio(bio);
1560 }
1561
1562 /**
1563 * bio_copy_kern - copy kernel address into bio
1564 * @q: the struct request_queue for the bio
1565 * @data: pointer to buffer to copy
1566 * @len: length in bytes
1567 * @gfp_mask: allocation flags for bio and page allocation
1568 * @reading: data direction is READ
1569 *
1570 * copy the kernel address into a bio suitable for io to a block
1571 * device. Returns an error pointer in case of error.
1572 */
1573 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1574 gfp_t gfp_mask, int reading)
1575 {
1576 unsigned long kaddr = (unsigned long)data;
1577 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1578 unsigned long start = kaddr >> PAGE_SHIFT;
1579 struct bio *bio;
1580 void *p = data;
1581 int nr_pages = 0;
1582
1583 /*
1584 * Overflow, abort
1585 */
1586 if (end < start)
1587 return ERR_PTR(-EINVAL);
1588
1589 nr_pages = end - start;
1590 bio = bio_kmalloc(gfp_mask, nr_pages);
1591 if (!bio)
1592 return ERR_PTR(-ENOMEM);
1593
1594 while (len) {
1595 struct page *page;
1596 unsigned int bytes = PAGE_SIZE;
1597
1598 if (bytes > len)
1599 bytes = len;
1600
1601 page = alloc_page(q->bounce_gfp | gfp_mask);
1602 if (!page)
1603 goto cleanup;
1604
1605 if (!reading)
1606 memcpy(page_address(page), p, bytes);
1607
1608 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1609 break;
1610
1611 len -= bytes;
1612 p += bytes;
1613 }
1614
1615 if (reading) {
1616 bio->bi_end_io = bio_copy_kern_endio_read;
1617 bio->bi_private = data;
1618 } else {
1619 bio->bi_end_io = bio_copy_kern_endio;
1620 }
1621
1622 return bio;
1623
1624 cleanup:
1625 bio_free_pages(bio);
1626 bio_put(bio);
1627 return ERR_PTR(-ENOMEM);
1628 }
1629
1630 /*
1631 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1632 * for performing direct-IO in BIOs.
1633 *
1634 * The problem is that we cannot run set_page_dirty() from interrupt context
1635 * because the required locks are not interrupt-safe. So what we can do is to
1636 * mark the pages dirty _before_ performing IO. And in interrupt context,
1637 * check that the pages are still dirty. If so, fine. If not, redirty them
1638 * in process context.
1639 *
1640 * We special-case compound pages here: normally this means reads into hugetlb
1641 * pages. The logic in here doesn't really work right for compound pages
1642 * because the VM does not uniformly chase down the head page in all cases.
1643 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1644 * handle them at all. So we skip compound pages here at an early stage.
1645 *
1646 * Note that this code is very hard to test under normal circumstances because
1647 * direct-io pins the pages with get_user_pages(). This makes
1648 * is_page_cache_freeable return false, and the VM will not clean the pages.
1649 * But other code (eg, flusher threads) could clean the pages if they are mapped
1650 * pagecache.
1651 *
1652 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1653 * deferred bio dirtying paths.
1654 */
1655
1656 /*
1657 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1658 */
1659 void bio_set_pages_dirty(struct bio *bio)
1660 {
1661 struct bio_vec *bvec;
1662 int i;
1663
1664 bio_for_each_segment_all(bvec, bio, i) {
1665 struct page *page = bvec->bv_page;
1666
1667 if (page && !PageCompound(page))
1668 set_page_dirty_lock(page);
1669 }
1670 }
1671
1672 static void bio_release_pages(struct bio *bio)
1673 {
1674 struct bio_vec *bvec;
1675 int i;
1676
1677 bio_for_each_segment_all(bvec, bio, i) {
1678 struct page *page = bvec->bv_page;
1679
1680 if (page)
1681 put_page(page);
1682 }
1683 }
1684
1685 /*
1686 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1687 * If they are, then fine. If, however, some pages are clean then they must
1688 * have been written out during the direct-IO read. So we take another ref on
1689 * the BIO and the offending pages and re-dirty the pages in process context.
1690 *
1691 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1692 * here on. It will run one put_page() against each page and will run one
1693 * bio_put() against the BIO.
1694 */
1695
1696 static void bio_dirty_fn(struct work_struct *work);
1697
1698 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1699 static DEFINE_SPINLOCK(bio_dirty_lock);
1700 static struct bio *bio_dirty_list;
1701
1702 /*
1703 * This runs in process context
1704 */
1705 static void bio_dirty_fn(struct work_struct *work)
1706 {
1707 unsigned long flags;
1708 struct bio *bio;
1709
1710 spin_lock_irqsave(&bio_dirty_lock, flags);
1711 bio = bio_dirty_list;
1712 bio_dirty_list = NULL;
1713 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1714
1715 while (bio) {
1716 struct bio *next = bio->bi_private;
1717
1718 bio_set_pages_dirty(bio);
1719 bio_release_pages(bio);
1720 bio_put(bio);
1721 bio = next;
1722 }
1723 }
1724
1725 void bio_check_pages_dirty(struct bio *bio)
1726 {
1727 struct bio_vec *bvec;
1728 int nr_clean_pages = 0;
1729 int i;
1730
1731 bio_for_each_segment_all(bvec, bio, i) {
1732 struct page *page = bvec->bv_page;
1733
1734 if (PageDirty(page) || PageCompound(page)) {
1735 put_page(page);
1736 bvec->bv_page = NULL;
1737 } else {
1738 nr_clean_pages++;
1739 }
1740 }
1741
1742 if (nr_clean_pages) {
1743 unsigned long flags;
1744
1745 spin_lock_irqsave(&bio_dirty_lock, flags);
1746 bio->bi_private = bio_dirty_list;
1747 bio_dirty_list = bio;
1748 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1749 schedule_work(&bio_dirty_work);
1750 } else {
1751 bio_put(bio);
1752 }
1753 }
1754
1755 void generic_start_io_acct(struct request_queue *q, int rw,
1756 unsigned long sectors, struct hd_struct *part)
1757 {
1758 int cpu = part_stat_lock();
1759
1760 part_round_stats(q, cpu, part);
1761 part_stat_inc(cpu, part, ios[rw]);
1762 part_stat_add(cpu, part, sectors[rw], sectors);
1763 part_inc_in_flight(q, part, rw);
1764
1765 part_stat_unlock();
1766 }
1767 EXPORT_SYMBOL(generic_start_io_acct);
1768
1769 void generic_end_io_acct(struct request_queue *q, int rw,
1770 struct hd_struct *part, unsigned long start_time)
1771 {
1772 unsigned long duration = jiffies - start_time;
1773 int cpu = part_stat_lock();
1774
1775 part_stat_add(cpu, part, ticks[rw], duration);
1776 part_round_stats(q, cpu, part);
1777 part_dec_in_flight(q, part, rw);
1778
1779 part_stat_unlock();
1780 }
1781 EXPORT_SYMBOL(generic_end_io_acct);
1782
1783 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1784 void bio_flush_dcache_pages(struct bio *bi)
1785 {
1786 struct bio_vec bvec;
1787 struct bvec_iter iter;
1788
1789 bio_for_each_segment(bvec, bi, iter)
1790 flush_dcache_page(bvec.bv_page);
1791 }
1792 EXPORT_SYMBOL(bio_flush_dcache_pages);
1793 #endif
1794
1795 static inline bool bio_remaining_done(struct bio *bio)
1796 {
1797 /*
1798 * If we're not chaining, then ->__bi_remaining is always 1 and
1799 * we always end io on the first invocation.
1800 */
1801 if (!bio_flagged(bio, BIO_CHAIN))
1802 return true;
1803
1804 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1805
1806 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1807 bio_clear_flag(bio, BIO_CHAIN);
1808 return true;
1809 }
1810
1811 return false;
1812 }
1813
1814 /**
1815 * bio_endio - end I/O on a bio
1816 * @bio: bio
1817 *
1818 * Description:
1819 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1820 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1821 * bio unless they own it and thus know that it has an end_io function.
1822 *
1823 * bio_endio() can be called several times on a bio that has been chained
1824 * using bio_chain(). The ->bi_end_io() function will only be called the
1825 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1826 * generated if BIO_TRACE_COMPLETION is set.
1827 **/
1828 void bio_endio(struct bio *bio)
1829 {
1830 again:
1831 if (!bio_remaining_done(bio))
1832 return;
1833 if (!bio_integrity_endio(bio))
1834 return;
1835
1836 /*
1837 * Need to have a real endio function for chained bios, otherwise
1838 * various corner cases will break (like stacking block devices that
1839 * save/restore bi_end_io) - however, we want to avoid unbounded
1840 * recursion and blowing the stack. Tail call optimization would
1841 * handle this, but compiling with frame pointers also disables
1842 * gcc's sibling call optimization.
1843 */
1844 if (bio->bi_end_io == bio_chain_endio) {
1845 bio = __bio_chain_endio(bio);
1846 goto again;
1847 }
1848
1849 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1850 trace_block_bio_complete(bio->bi_disk->queue, bio,
1851 blk_status_to_errno(bio->bi_status));
1852 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1853 }
1854
1855 blk_throtl_bio_endio(bio);
1856 /* release cgroup info */
1857 bio_uninit(bio);
1858 if (bio->bi_end_io)
1859 bio->bi_end_io(bio);
1860 }
1861 EXPORT_SYMBOL(bio_endio);
1862
1863 /**
1864 * bio_split - split a bio
1865 * @bio: bio to split
1866 * @sectors: number of sectors to split from the front of @bio
1867 * @gfp: gfp mask
1868 * @bs: bio set to allocate from
1869 *
1870 * Allocates and returns a new bio which represents @sectors from the start of
1871 * @bio, and updates @bio to represent the remaining sectors.
1872 *
1873 * Unless this is a discard request the newly allocated bio will point
1874 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1875 * @bio is not freed before the split.
1876 */
1877 struct bio *bio_split(struct bio *bio, int sectors,
1878 gfp_t gfp, struct bio_set *bs)
1879 {
1880 struct bio *split = NULL;
1881
1882 BUG_ON(sectors <= 0);
1883 BUG_ON(sectors >= bio_sectors(bio));
1884
1885 split = bio_clone_fast(bio, gfp, bs);
1886 if (!split)
1887 return NULL;
1888
1889 split->bi_iter.bi_size = sectors << 9;
1890
1891 if (bio_integrity(split))
1892 bio_integrity_trim(split);
1893
1894 bio_advance(bio, split->bi_iter.bi_size);
1895 bio->bi_iter.bi_done = 0;
1896
1897 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1898 bio_set_flag(split, BIO_TRACE_COMPLETION);
1899
1900 return split;
1901 }
1902 EXPORT_SYMBOL(bio_split);
1903
1904 /**
1905 * bio_trim - trim a bio
1906 * @bio: bio to trim
1907 * @offset: number of sectors to trim from the front of @bio
1908 * @size: size we want to trim @bio to, in sectors
1909 */
1910 void bio_trim(struct bio *bio, int offset, int size)
1911 {
1912 /* 'bio' is a cloned bio which we need to trim to match
1913 * the given offset and size.
1914 */
1915
1916 size <<= 9;
1917 if (offset == 0 && size == bio->bi_iter.bi_size)
1918 return;
1919
1920 bio_clear_flag(bio, BIO_SEG_VALID);
1921
1922 bio_advance(bio, offset << 9);
1923
1924 bio->bi_iter.bi_size = size;
1925
1926 if (bio_integrity(bio))
1927 bio_integrity_trim(bio);
1928
1929 }
1930 EXPORT_SYMBOL_GPL(bio_trim);
1931
1932 /*
1933 * create memory pools for biovec's in a bio_set.
1934 * use the global biovec slabs created for general use.
1935 */
1936 mempool_t *biovec_create_pool(int pool_entries)
1937 {
1938 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1939
1940 return mempool_create_slab_pool(pool_entries, bp->slab);
1941 }
1942
1943 void bioset_free(struct bio_set *bs)
1944 {
1945 if (bs->rescue_workqueue)
1946 destroy_workqueue(bs->rescue_workqueue);
1947
1948 if (bs->bio_pool)
1949 mempool_destroy(bs->bio_pool);
1950
1951 if (bs->bvec_pool)
1952 mempool_destroy(bs->bvec_pool);
1953
1954 bioset_integrity_free(bs);
1955 bio_put_slab(bs);
1956
1957 kfree(bs);
1958 }
1959 EXPORT_SYMBOL(bioset_free);
1960
1961 /**
1962 * bioset_create - Create a bio_set
1963 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1964 * @front_pad: Number of bytes to allocate in front of the returned bio
1965 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1966 * and %BIOSET_NEED_RESCUER
1967 *
1968 * Description:
1969 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1970 * to ask for a number of bytes to be allocated in front of the bio.
1971 * Front pad allocation is useful for embedding the bio inside
1972 * another structure, to avoid allocating extra data to go with the bio.
1973 * Note that the bio must be embedded at the END of that structure always,
1974 * or things will break badly.
1975 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1976 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1977 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1978 * dispatch queued requests when the mempool runs out of space.
1979 *
1980 */
1981 struct bio_set *bioset_create(unsigned int pool_size,
1982 unsigned int front_pad,
1983 int flags)
1984 {
1985 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1986 struct bio_set *bs;
1987
1988 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1989 if (!bs)
1990 return NULL;
1991
1992 bs->front_pad = front_pad;
1993
1994 spin_lock_init(&bs->rescue_lock);
1995 bio_list_init(&bs->rescue_list);
1996 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1997
1998 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1999 if (!bs->bio_slab) {
2000 kfree(bs);
2001 return NULL;
2002 }
2003
2004 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
2005 if (!bs->bio_pool)
2006 goto bad;
2007
2008 if (flags & BIOSET_NEED_BVECS) {
2009 bs->bvec_pool = biovec_create_pool(pool_size);
2010 if (!bs->bvec_pool)
2011 goto bad;
2012 }
2013
2014 if (!(flags & BIOSET_NEED_RESCUER))
2015 return bs;
2016
2017 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2018 if (!bs->rescue_workqueue)
2019 goto bad;
2020
2021 return bs;
2022 bad:
2023 bioset_free(bs);
2024 return NULL;
2025 }
2026 EXPORT_SYMBOL(bioset_create);
2027
2028 #ifdef CONFIG_BLK_CGROUP
2029
2030 /**
2031 * bio_associate_blkcg - associate a bio with the specified blkcg
2032 * @bio: target bio
2033 * @blkcg_css: css of the blkcg to associate
2034 *
2035 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2036 * treat @bio as if it were issued by a task which belongs to the blkcg.
2037 *
2038 * This function takes an extra reference of @blkcg_css which will be put
2039 * when @bio is released. The caller must own @bio and is responsible for
2040 * synchronizing calls to this function.
2041 */
2042 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2043 {
2044 if (unlikely(bio->bi_css))
2045 return -EBUSY;
2046 css_get(blkcg_css);
2047 bio->bi_css = blkcg_css;
2048 return 0;
2049 }
2050 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2051
2052 /**
2053 * bio_associate_current - associate a bio with %current
2054 * @bio: target bio
2055 *
2056 * Associate @bio with %current if it hasn't been associated yet. Block
2057 * layer will treat @bio as if it were issued by %current no matter which
2058 * task actually issues it.
2059 *
2060 * This function takes an extra reference of @task's io_context and blkcg
2061 * which will be put when @bio is released. The caller must own @bio,
2062 * ensure %current->io_context exists, and is responsible for synchronizing
2063 * calls to this function.
2064 */
2065 int bio_associate_current(struct bio *bio)
2066 {
2067 struct io_context *ioc;
2068
2069 if (bio->bi_css)
2070 return -EBUSY;
2071
2072 ioc = current->io_context;
2073 if (!ioc)
2074 return -ENOENT;
2075
2076 get_io_context_active(ioc);
2077 bio->bi_ioc = ioc;
2078 bio->bi_css = task_get_css(current, io_cgrp_id);
2079 return 0;
2080 }
2081 EXPORT_SYMBOL_GPL(bio_associate_current);
2082
2083 /**
2084 * bio_disassociate_task - undo bio_associate_current()
2085 * @bio: target bio
2086 */
2087 void bio_disassociate_task(struct bio *bio)
2088 {
2089 if (bio->bi_ioc) {
2090 put_io_context(bio->bi_ioc);
2091 bio->bi_ioc = NULL;
2092 }
2093 if (bio->bi_css) {
2094 css_put(bio->bi_css);
2095 bio->bi_css = NULL;
2096 }
2097 }
2098
2099 /**
2100 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2101 * @dst: destination bio
2102 * @src: source bio
2103 */
2104 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2105 {
2106 if (src->bi_css)
2107 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2108 }
2109 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2110 #endif /* CONFIG_BLK_CGROUP */
2111
2112 static void __init biovec_init_slabs(void)
2113 {
2114 int i;
2115
2116 for (i = 0; i < BVEC_POOL_NR; i++) {
2117 int size;
2118 struct biovec_slab *bvs = bvec_slabs + i;
2119
2120 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2121 bvs->slab = NULL;
2122 continue;
2123 }
2124
2125 size = bvs->nr_vecs * sizeof(struct bio_vec);
2126 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2127 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2128 }
2129 }
2130
2131 static int __init init_bio(void)
2132 {
2133 bio_slab_max = 2;
2134 bio_slab_nr = 0;
2135 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2136 if (!bio_slabs)
2137 panic("bio: can't allocate bios\n");
2138
2139 bio_integrity_init();
2140 biovec_init_slabs();
2141
2142 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2143 if (!fs_bio_set)
2144 panic("bio: can't allocate bios\n");
2145
2146 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2147 panic("bio: can't create integrity pool\n");
2148
2149 return 0;
2150 }
2151 subsys_initcall(init_bio);