]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/bio.c
block: Set BIO_TRACE_COMPLETION on new bio during split
[thirdparty/kernel/stable.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33 #include "blk.h"
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 /*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
46 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
49 };
50 #undef BV
51
52 /*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58
59 /*
60 * Our slab pool management
61 */
62 struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
103 GFP_KERNEL);
104 if (!new_bio_slabs)
105 goto out_unlock;
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
117 if (!slab)
118 goto out_unlock;
119
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123 out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126 }
127
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153 out:
154 mutex_unlock(&bio_slab_lock);
155 }
156
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 return bvec_slabs[idx].nr_vecs;
160 }
161
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
169
170 if (idx == BVEC_POOL_MAX) {
171 mempool_free(bv, pool);
172 } else {
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177 }
178
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
181 {
182 struct bio_vec *bvl;
183
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
214 if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 bvl = mempool_alloc(pool, gfp_mask);
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220
221 /*
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
225 */
226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227
228 /*
229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 * is set, retry with the 1-entry mempool
231 */
232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 *idx = BVEC_POOL_MAX;
235 goto fallback;
236 }
237 }
238
239 (*idx)++;
240 return bvl;
241 }
242
243 void bio_uninit(struct bio *bio)
244 {
245 bio_disassociate_task(bio);
246 }
247 EXPORT_SYMBOL(bio_uninit);
248
249 static void bio_free(struct bio *bio)
250 {
251 struct bio_set *bs = bio->bi_pool;
252 void *p;
253
254 bio_uninit(bio);
255
256 if (bs) {
257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
263 p -= bs->front_pad;
264
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
270 }
271
272 /*
273 * Users of this function have their own bio allocation. Subsequently,
274 * they must remember to pair any call to bio_init() with bio_uninit()
275 * when IO has completed, or when the bio is released.
276 */
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 unsigned short max_vecs)
279 {
280 memset(bio, 0, sizeof(*bio));
281 atomic_set(&bio->__bi_remaining, 1);
282 atomic_set(&bio->__bi_cnt, 1);
283
284 bio->bi_io_vec = table;
285 bio->bi_max_vecs = max_vecs;
286 }
287 EXPORT_SYMBOL(bio_init);
288
289 /**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 *
293 * Description:
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
298 */
299 void bio_reset(struct bio *bio)
300 {
301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302
303 bio_uninit(bio);
304
305 memset(bio, 0, BIO_RESET_BYTES);
306 bio->bi_flags = flags;
307 atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 struct bio *parent = bio->bi_private;
314
315 if (!parent->bi_status)
316 parent->bi_status = bio->bi_status;
317 bio_put(bio);
318 return parent;
319 }
320
321 static void bio_chain_endio(struct bio *bio)
322 {
323 bio_endio(__bio_chain_endio(bio));
324 }
325
326 /**
327 * bio_chain - chain bio completions
328 * @bio: the target bio
329 * @parent: the @bio's parent bio
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
343 bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346
347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 struct bio *bio;
351
352 while (1) {
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
356
357 if (!bio)
358 break;
359
360 generic_make_request(bio);
361 }
362 }
363
364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 struct bio_list punt, nopunt;
367 struct bio *bio;
368
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 return;
371 /*
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
377 *
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
380 */
381
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
384
385 while ((bio = bio_list_pop(&current->bio_list[0])))
386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 current->bio_list[0] = nopunt;
388
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(&current->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
393
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
397
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400
401 /**
402 * bio_alloc_bioset - allocate a bio for I/O
403 * @gfp_mask: the GFP_ mask given to the slab allocator
404 * @nr_iovecs: number of iovecs to pre-allocate
405 * @bs: the bio_set to allocate from.
406 *
407 * Description:
408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409 * backed by the @bs's mempool.
410 *
411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412 * always be able to allocate a bio. This is due to the mempool guarantees.
413 * To make this work, callers must never allocate more than 1 bio at a time
414 * from this pool. Callers that need to allocate more than 1 bio must always
415 * submit the previously allocated bio for IO before attempting to allocate
416 * a new one. Failure to do so can cause deadlocks under memory pressure.
417 *
418 * Note that when running under generic_make_request() (i.e. any block
419 * driver), bios are not submitted until after you return - see the code in
420 * generic_make_request() that converts recursion into iteration, to prevent
421 * stack overflows.
422 *
423 * This would normally mean allocating multiple bios under
424 * generic_make_request() would be susceptible to deadlocks, but we have
425 * deadlock avoidance code that resubmits any blocked bios from a rescuer
426 * thread.
427 *
428 * However, we do not guarantee forward progress for allocations from other
429 * mempools. Doing multiple allocations from the same mempool under
430 * generic_make_request() should be avoided - instead, use bio_set's front_pad
431 * for per bio allocations.
432 *
433 * RETURNS:
434 * Pointer to new bio on success, NULL on failure.
435 */
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 struct bio_set *bs)
438 {
439 gfp_t saved_gfp = gfp_mask;
440 unsigned front_pad;
441 unsigned inline_vecs;
442 struct bio_vec *bvl = NULL;
443 struct bio *bio;
444 void *p;
445
446 if (!bs) {
447 if (nr_iovecs > UIO_MAXIOV)
448 return NULL;
449
450 p = kmalloc(sizeof(struct bio) +
451 nr_iovecs * sizeof(struct bio_vec),
452 gfp_mask);
453 front_pad = 0;
454 inline_vecs = nr_iovecs;
455 } else {
456 /* should not use nobvec bioset for nr_iovecs > 0 */
457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 return NULL;
459 /*
460 * generic_make_request() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
464 *
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath generic_make_request(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
471 *
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
478 */
479
480 if (current->bio_list &&
481 (!bio_list_empty(&current->bio_list[0]) ||
482 !bio_list_empty(&current->bio_list[1])) &&
483 bs->rescue_workqueue)
484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485
486 p = mempool_alloc(bs->bio_pool, gfp_mask);
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(bs->bio_pool, gfp_mask);
491 }
492
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
497 if (unlikely(!p))
498 return NULL;
499
500 bio = p + front_pad;
501 bio_init(bio, NULL, 0);
502
503 if (nr_iovecs > inline_vecs) {
504 unsigned long idx = 0;
505
506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
511 }
512
513 if (unlikely(!bvl))
514 goto err_free;
515
516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
519 }
520
521 bio->bi_pool = bs;
522 bio->bi_max_vecs = nr_iovecs;
523 bio->bi_io_vec = bvl;
524 return bio;
525
526 err_free:
527 mempool_free(p, bs->bio_pool);
528 return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531
532 void zero_fill_bio(struct bio *bio)
533 {
534 unsigned long flags;
535 struct bio_vec bv;
536 struct bvec_iter iter;
537
538 bio_for_each_segment(bv, bio, iter) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
542 bvec_kunmap_irq(data, &flags);
543 }
544 }
545 EXPORT_SYMBOL(zero_fill_bio);
546
547 /**
548 * bio_put - release a reference to a bio
549 * @bio: bio to release reference to
550 *
551 * Description:
552 * Put a reference to a &struct bio, either one you have gotten with
553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
554 **/
555 void bio_put(struct bio *bio)
556 {
557 if (!bio_flagged(bio, BIO_REFFED))
558 bio_free(bio);
559 else {
560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561
562 /*
563 * last put frees it
564 */
565 if (atomic_dec_and_test(&bio->__bi_cnt))
566 bio_free(bio);
567 }
568 }
569 EXPORT_SYMBOL(bio_put);
570
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
572 {
573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 blk_recount_segments(q, bio);
575
576 return bio->bi_phys_segments;
577 }
578 EXPORT_SYMBOL(bio_phys_segments);
579
580 /**
581 * __bio_clone_fast - clone a bio that shares the original bio's biovec
582 * @bio: destination bio
583 * @bio_src: bio to clone
584 *
585 * Clone a &bio. Caller will own the returned bio, but not
586 * the actual data it points to. Reference count of returned
587 * bio will be one.
588 *
589 * Caller must ensure that @bio_src is not freed before @bio.
590 */
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592 {
593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
594
595 /*
596 * most users will be overriding ->bi_disk with a new target,
597 * so we don't set nor calculate new physical/hw segment counts here
598 */
599 bio->bi_disk = bio_src->bi_disk;
600 bio->bi_partno = bio_src->bi_partno;
601 bio_set_flag(bio, BIO_CLONED);
602 if (bio_flagged(bio_src, BIO_THROTTLED))
603 bio_set_flag(bio, BIO_THROTTLED);
604 bio->bi_opf = bio_src->bi_opf;
605 bio->bi_write_hint = bio_src->bi_write_hint;
606 bio->bi_iter = bio_src->bi_iter;
607 bio->bi_io_vec = bio_src->bi_io_vec;
608
609 bio_clone_blkcg_association(bio, bio_src);
610 }
611 EXPORT_SYMBOL(__bio_clone_fast);
612
613 /**
614 * bio_clone_fast - clone a bio that shares the original bio's biovec
615 * @bio: bio to clone
616 * @gfp_mask: allocation priority
617 * @bs: bio_set to allocate from
618 *
619 * Like __bio_clone_fast, only also allocates the returned bio
620 */
621 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
622 {
623 struct bio *b;
624
625 b = bio_alloc_bioset(gfp_mask, 0, bs);
626 if (!b)
627 return NULL;
628
629 __bio_clone_fast(b, bio);
630
631 if (bio_integrity(bio)) {
632 int ret;
633
634 ret = bio_integrity_clone(b, bio, gfp_mask);
635
636 if (ret < 0) {
637 bio_put(b);
638 return NULL;
639 }
640 }
641
642 return b;
643 }
644 EXPORT_SYMBOL(bio_clone_fast);
645
646 /**
647 * bio_clone_bioset - clone a bio
648 * @bio_src: bio to clone
649 * @gfp_mask: allocation priority
650 * @bs: bio_set to allocate from
651 *
652 * Clone bio. Caller will own the returned bio, but not the actual data it
653 * points to. Reference count of returned bio will be one.
654 */
655 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
656 struct bio_set *bs)
657 {
658 struct bvec_iter iter;
659 struct bio_vec bv;
660 struct bio *bio;
661
662 /*
663 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
664 * bio_src->bi_io_vec to bio->bi_io_vec.
665 *
666 * We can't do that anymore, because:
667 *
668 * - The point of cloning the biovec is to produce a bio with a biovec
669 * the caller can modify: bi_idx and bi_bvec_done should be 0.
670 *
671 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
672 * we tried to clone the whole thing bio_alloc_bioset() would fail.
673 * But the clone should succeed as long as the number of biovecs we
674 * actually need to allocate is fewer than BIO_MAX_PAGES.
675 *
676 * - Lastly, bi_vcnt should not be looked at or relied upon by code
677 * that does not own the bio - reason being drivers don't use it for
678 * iterating over the biovec anymore, so expecting it to be kept up
679 * to date (i.e. for clones that share the parent biovec) is just
680 * asking for trouble and would force extra work on
681 * __bio_clone_fast() anyways.
682 */
683
684 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
685 if (!bio)
686 return NULL;
687 bio->bi_disk = bio_src->bi_disk;
688 bio->bi_opf = bio_src->bi_opf;
689 bio->bi_write_hint = bio_src->bi_write_hint;
690 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
691 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
692
693 switch (bio_op(bio)) {
694 case REQ_OP_DISCARD:
695 case REQ_OP_SECURE_ERASE:
696 case REQ_OP_WRITE_ZEROES:
697 break;
698 case REQ_OP_WRITE_SAME:
699 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
700 break;
701 default:
702 bio_for_each_segment(bv, bio_src, iter)
703 bio->bi_io_vec[bio->bi_vcnt++] = bv;
704 break;
705 }
706
707 if (bio_integrity(bio_src)) {
708 int ret;
709
710 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
711 if (ret < 0) {
712 bio_put(bio);
713 return NULL;
714 }
715 }
716
717 bio_clone_blkcg_association(bio, bio_src);
718
719 return bio;
720 }
721 EXPORT_SYMBOL(bio_clone_bioset);
722
723 /**
724 * bio_add_pc_page - attempt to add page to bio
725 * @q: the target queue
726 * @bio: destination bio
727 * @page: page to add
728 * @len: vec entry length
729 * @offset: vec entry offset
730 *
731 * Attempt to add a page to the bio_vec maplist. This can fail for a
732 * number of reasons, such as the bio being full or target block device
733 * limitations. The target block device must allow bio's up to PAGE_SIZE,
734 * so it is always possible to add a single page to an empty bio.
735 *
736 * This should only be used by REQ_PC bios.
737 */
738 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
739 *page, unsigned int len, unsigned int offset)
740 {
741 int retried_segments = 0;
742 struct bio_vec *bvec;
743
744 /*
745 * cloned bio must not modify vec list
746 */
747 if (unlikely(bio_flagged(bio, BIO_CLONED)))
748 return 0;
749
750 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
751 return 0;
752
753 /*
754 * For filesystems with a blocksize smaller than the pagesize
755 * we will often be called with the same page as last time and
756 * a consecutive offset. Optimize this special case.
757 */
758 if (bio->bi_vcnt > 0) {
759 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
760
761 if (page == prev->bv_page &&
762 offset == prev->bv_offset + prev->bv_len) {
763 prev->bv_len += len;
764 bio->bi_iter.bi_size += len;
765 goto done;
766 }
767
768 /*
769 * If the queue doesn't support SG gaps and adding this
770 * offset would create a gap, disallow it.
771 */
772 if (bvec_gap_to_prev(q, prev, offset))
773 return 0;
774 }
775
776 if (bio->bi_vcnt >= bio->bi_max_vecs)
777 return 0;
778
779 /*
780 * setup the new entry, we might clear it again later if we
781 * cannot add the page
782 */
783 bvec = &bio->bi_io_vec[bio->bi_vcnt];
784 bvec->bv_page = page;
785 bvec->bv_len = len;
786 bvec->bv_offset = offset;
787 bio->bi_vcnt++;
788 bio->bi_phys_segments++;
789 bio->bi_iter.bi_size += len;
790
791 /*
792 * Perform a recount if the number of segments is greater
793 * than queue_max_segments(q).
794 */
795
796 while (bio->bi_phys_segments > queue_max_segments(q)) {
797
798 if (retried_segments)
799 goto failed;
800
801 retried_segments = 1;
802 blk_recount_segments(q, bio);
803 }
804
805 /* If we may be able to merge these biovecs, force a recount */
806 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
807 bio_clear_flag(bio, BIO_SEG_VALID);
808
809 done:
810 return len;
811
812 failed:
813 bvec->bv_page = NULL;
814 bvec->bv_len = 0;
815 bvec->bv_offset = 0;
816 bio->bi_vcnt--;
817 bio->bi_iter.bi_size -= len;
818 blk_recount_segments(q, bio);
819 return 0;
820 }
821 EXPORT_SYMBOL(bio_add_pc_page);
822
823 /**
824 * bio_add_page - attempt to add page to bio
825 * @bio: destination bio
826 * @page: page to add
827 * @len: vec entry length
828 * @offset: vec entry offset
829 *
830 * Attempt to add a page to the bio_vec maplist. This will only fail
831 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
832 */
833 int bio_add_page(struct bio *bio, struct page *page,
834 unsigned int len, unsigned int offset)
835 {
836 struct bio_vec *bv;
837
838 /*
839 * cloned bio must not modify vec list
840 */
841 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
842 return 0;
843
844 /*
845 * For filesystems with a blocksize smaller than the pagesize
846 * we will often be called with the same page as last time and
847 * a consecutive offset. Optimize this special case.
848 */
849 if (bio->bi_vcnt > 0) {
850 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
851
852 if (page == bv->bv_page &&
853 offset == bv->bv_offset + bv->bv_len) {
854 bv->bv_len += len;
855 goto done;
856 }
857 }
858
859 if (bio->bi_vcnt >= bio->bi_max_vecs)
860 return 0;
861
862 bv = &bio->bi_io_vec[bio->bi_vcnt];
863 bv->bv_page = page;
864 bv->bv_len = len;
865 bv->bv_offset = offset;
866
867 bio->bi_vcnt++;
868 done:
869 bio->bi_iter.bi_size += len;
870 return len;
871 }
872 EXPORT_SYMBOL(bio_add_page);
873
874 /**
875 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
876 * @bio: bio to add pages to
877 * @iter: iov iterator describing the region to be mapped
878 *
879 * Pins as many pages from *iter and appends them to @bio's bvec array. The
880 * pages will have to be released using put_page() when done.
881 */
882 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
883 {
884 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
885 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
886 struct page **pages = (struct page **)bv;
887 size_t offset, diff;
888 ssize_t size;
889
890 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
891 if (unlikely(size <= 0))
892 return size ? size : -EFAULT;
893 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
894
895 /*
896 * Deep magic below: We need to walk the pinned pages backwards
897 * because we are abusing the space allocated for the bio_vecs
898 * for the page array. Because the bio_vecs are larger than the
899 * page pointers by definition this will always work. But it also
900 * means we can't use bio_add_page, so any changes to it's semantics
901 * need to be reflected here as well.
902 */
903 bio->bi_iter.bi_size += size;
904 bio->bi_vcnt += nr_pages;
905
906 diff = (nr_pages * PAGE_SIZE - offset) - size;
907 while (nr_pages--) {
908 bv[nr_pages].bv_page = pages[nr_pages];
909 bv[nr_pages].bv_len = PAGE_SIZE;
910 bv[nr_pages].bv_offset = 0;
911 }
912
913 bv[0].bv_offset += offset;
914 bv[0].bv_len -= offset;
915 if (diff)
916 bv[bio->bi_vcnt - 1].bv_len -= diff;
917
918 iov_iter_advance(iter, size);
919 return 0;
920 }
921 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
922
923 struct submit_bio_ret {
924 struct completion event;
925 int error;
926 };
927
928 static void submit_bio_wait_endio(struct bio *bio)
929 {
930 struct submit_bio_ret *ret = bio->bi_private;
931
932 ret->error = blk_status_to_errno(bio->bi_status);
933 complete(&ret->event);
934 }
935
936 /**
937 * submit_bio_wait - submit a bio, and wait until it completes
938 * @bio: The &struct bio which describes the I/O
939 *
940 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
941 * bio_endio() on failure.
942 *
943 * WARNING: Unlike to how submit_bio() is usually used, this function does not
944 * result in bio reference to be consumed. The caller must drop the reference
945 * on his own.
946 */
947 int submit_bio_wait(struct bio *bio)
948 {
949 struct submit_bio_ret ret;
950
951 init_completion(&ret.event);
952 bio->bi_private = &ret;
953 bio->bi_end_io = submit_bio_wait_endio;
954 bio->bi_opf |= REQ_SYNC;
955 submit_bio(bio);
956 wait_for_completion_io(&ret.event);
957
958 return ret.error;
959 }
960 EXPORT_SYMBOL(submit_bio_wait);
961
962 /**
963 * bio_advance - increment/complete a bio by some number of bytes
964 * @bio: bio to advance
965 * @bytes: number of bytes to complete
966 *
967 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
968 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
969 * be updated on the last bvec as well.
970 *
971 * @bio will then represent the remaining, uncompleted portion of the io.
972 */
973 void bio_advance(struct bio *bio, unsigned bytes)
974 {
975 if (bio_integrity(bio))
976 bio_integrity_advance(bio, bytes);
977
978 bio_advance_iter(bio, &bio->bi_iter, bytes);
979 }
980 EXPORT_SYMBOL(bio_advance);
981
982 /**
983 * bio_alloc_pages - allocates a single page for each bvec in a bio
984 * @bio: bio to allocate pages for
985 * @gfp_mask: flags for allocation
986 *
987 * Allocates pages up to @bio->bi_vcnt.
988 *
989 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
990 * freed.
991 */
992 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
993 {
994 int i;
995 struct bio_vec *bv;
996
997 bio_for_each_segment_all(bv, bio, i) {
998 bv->bv_page = alloc_page(gfp_mask);
999 if (!bv->bv_page) {
1000 while (--bv >= bio->bi_io_vec)
1001 __free_page(bv->bv_page);
1002 return -ENOMEM;
1003 }
1004 }
1005
1006 return 0;
1007 }
1008 EXPORT_SYMBOL(bio_alloc_pages);
1009
1010 /**
1011 * bio_copy_data - copy contents of data buffers from one chain of bios to
1012 * another
1013 * @src: source bio list
1014 * @dst: destination bio list
1015 *
1016 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1017 * @src and @dst as linked lists of bios.
1018 *
1019 * Stops when it reaches the end of either @src or @dst - that is, copies
1020 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1021 */
1022 void bio_copy_data(struct bio *dst, struct bio *src)
1023 {
1024 struct bvec_iter src_iter, dst_iter;
1025 struct bio_vec src_bv, dst_bv;
1026 void *src_p, *dst_p;
1027 unsigned bytes;
1028
1029 src_iter = src->bi_iter;
1030 dst_iter = dst->bi_iter;
1031
1032 while (1) {
1033 if (!src_iter.bi_size) {
1034 src = src->bi_next;
1035 if (!src)
1036 break;
1037
1038 src_iter = src->bi_iter;
1039 }
1040
1041 if (!dst_iter.bi_size) {
1042 dst = dst->bi_next;
1043 if (!dst)
1044 break;
1045
1046 dst_iter = dst->bi_iter;
1047 }
1048
1049 src_bv = bio_iter_iovec(src, src_iter);
1050 dst_bv = bio_iter_iovec(dst, dst_iter);
1051
1052 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1053
1054 src_p = kmap_atomic(src_bv.bv_page);
1055 dst_p = kmap_atomic(dst_bv.bv_page);
1056
1057 memcpy(dst_p + dst_bv.bv_offset,
1058 src_p + src_bv.bv_offset,
1059 bytes);
1060
1061 kunmap_atomic(dst_p);
1062 kunmap_atomic(src_p);
1063
1064 bio_advance_iter(src, &src_iter, bytes);
1065 bio_advance_iter(dst, &dst_iter, bytes);
1066 }
1067 }
1068 EXPORT_SYMBOL(bio_copy_data);
1069
1070 struct bio_map_data {
1071 int is_our_pages;
1072 struct iov_iter iter;
1073 struct iovec iov[];
1074 };
1075
1076 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1077 gfp_t gfp_mask)
1078 {
1079 if (iov_count > UIO_MAXIOV)
1080 return NULL;
1081
1082 return kmalloc(sizeof(struct bio_map_data) +
1083 sizeof(struct iovec) * iov_count, gfp_mask);
1084 }
1085
1086 /**
1087 * bio_copy_from_iter - copy all pages from iov_iter to bio
1088 * @bio: The &struct bio which describes the I/O as destination
1089 * @iter: iov_iter as source
1090 *
1091 * Copy all pages from iov_iter to bio.
1092 * Returns 0 on success, or error on failure.
1093 */
1094 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1095 {
1096 int i;
1097 struct bio_vec *bvec;
1098
1099 bio_for_each_segment_all(bvec, bio, i) {
1100 ssize_t ret;
1101
1102 ret = copy_page_from_iter(bvec->bv_page,
1103 bvec->bv_offset,
1104 bvec->bv_len,
1105 &iter);
1106
1107 if (!iov_iter_count(&iter))
1108 break;
1109
1110 if (ret < bvec->bv_len)
1111 return -EFAULT;
1112 }
1113
1114 return 0;
1115 }
1116
1117 /**
1118 * bio_copy_to_iter - copy all pages from bio to iov_iter
1119 * @bio: The &struct bio which describes the I/O as source
1120 * @iter: iov_iter as destination
1121 *
1122 * Copy all pages from bio to iov_iter.
1123 * Returns 0 on success, or error on failure.
1124 */
1125 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1126 {
1127 int i;
1128 struct bio_vec *bvec;
1129
1130 bio_for_each_segment_all(bvec, bio, i) {
1131 ssize_t ret;
1132
1133 ret = copy_page_to_iter(bvec->bv_page,
1134 bvec->bv_offset,
1135 bvec->bv_len,
1136 &iter);
1137
1138 if (!iov_iter_count(&iter))
1139 break;
1140
1141 if (ret < bvec->bv_len)
1142 return -EFAULT;
1143 }
1144
1145 return 0;
1146 }
1147
1148 void bio_free_pages(struct bio *bio)
1149 {
1150 struct bio_vec *bvec;
1151 int i;
1152
1153 bio_for_each_segment_all(bvec, bio, i)
1154 __free_page(bvec->bv_page);
1155 }
1156 EXPORT_SYMBOL(bio_free_pages);
1157
1158 /**
1159 * bio_uncopy_user - finish previously mapped bio
1160 * @bio: bio being terminated
1161 *
1162 * Free pages allocated from bio_copy_user_iov() and write back data
1163 * to user space in case of a read.
1164 */
1165 int bio_uncopy_user(struct bio *bio)
1166 {
1167 struct bio_map_data *bmd = bio->bi_private;
1168 int ret = 0;
1169
1170 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1171 /*
1172 * if we're in a workqueue, the request is orphaned, so
1173 * don't copy into a random user address space, just free
1174 * and return -EINTR so user space doesn't expect any data.
1175 */
1176 if (!current->mm)
1177 ret = -EINTR;
1178 else if (bio_data_dir(bio) == READ)
1179 ret = bio_copy_to_iter(bio, bmd->iter);
1180 if (bmd->is_our_pages)
1181 bio_free_pages(bio);
1182 }
1183 kfree(bmd);
1184 bio_put(bio);
1185 return ret;
1186 }
1187
1188 /**
1189 * bio_copy_user_iov - copy user data to bio
1190 * @q: destination block queue
1191 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1192 * @iter: iovec iterator
1193 * @gfp_mask: memory allocation flags
1194 *
1195 * Prepares and returns a bio for indirect user io, bouncing data
1196 * to/from kernel pages as necessary. Must be paired with
1197 * call bio_uncopy_user() on io completion.
1198 */
1199 struct bio *bio_copy_user_iov(struct request_queue *q,
1200 struct rq_map_data *map_data,
1201 const struct iov_iter *iter,
1202 gfp_t gfp_mask)
1203 {
1204 struct bio_map_data *bmd;
1205 struct page *page;
1206 struct bio *bio;
1207 int i, ret;
1208 int nr_pages = 0;
1209 unsigned int len = iter->count;
1210 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1211
1212 for (i = 0; i < iter->nr_segs; i++) {
1213 unsigned long uaddr;
1214 unsigned long end;
1215 unsigned long start;
1216
1217 uaddr = (unsigned long) iter->iov[i].iov_base;
1218 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1219 >> PAGE_SHIFT;
1220 start = uaddr >> PAGE_SHIFT;
1221
1222 /*
1223 * Overflow, abort
1224 */
1225 if (end < start)
1226 return ERR_PTR(-EINVAL);
1227
1228 nr_pages += end - start;
1229 }
1230
1231 if (offset)
1232 nr_pages++;
1233
1234 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1235 if (!bmd)
1236 return ERR_PTR(-ENOMEM);
1237
1238 /*
1239 * We need to do a deep copy of the iov_iter including the iovecs.
1240 * The caller provided iov might point to an on-stack or otherwise
1241 * shortlived one.
1242 */
1243 bmd->is_our_pages = map_data ? 0 : 1;
1244 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1245 bmd->iter = *iter;
1246 bmd->iter.iov = bmd->iov;
1247
1248 ret = -ENOMEM;
1249 bio = bio_kmalloc(gfp_mask, nr_pages);
1250 if (!bio)
1251 goto out_bmd;
1252
1253 ret = 0;
1254
1255 if (map_data) {
1256 nr_pages = 1 << map_data->page_order;
1257 i = map_data->offset / PAGE_SIZE;
1258 }
1259 while (len) {
1260 unsigned int bytes = PAGE_SIZE;
1261
1262 bytes -= offset;
1263
1264 if (bytes > len)
1265 bytes = len;
1266
1267 if (map_data) {
1268 if (i == map_data->nr_entries * nr_pages) {
1269 ret = -ENOMEM;
1270 break;
1271 }
1272
1273 page = map_data->pages[i / nr_pages];
1274 page += (i % nr_pages);
1275
1276 i++;
1277 } else {
1278 page = alloc_page(q->bounce_gfp | gfp_mask);
1279 if (!page) {
1280 ret = -ENOMEM;
1281 break;
1282 }
1283 }
1284
1285 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1286 break;
1287
1288 len -= bytes;
1289 offset = 0;
1290 }
1291
1292 if (ret)
1293 goto cleanup;
1294
1295 /*
1296 * success
1297 */
1298 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1299 (map_data && map_data->from_user)) {
1300 ret = bio_copy_from_iter(bio, *iter);
1301 if (ret)
1302 goto cleanup;
1303 }
1304
1305 bio->bi_private = bmd;
1306 return bio;
1307 cleanup:
1308 if (!map_data)
1309 bio_free_pages(bio);
1310 bio_put(bio);
1311 out_bmd:
1312 kfree(bmd);
1313 return ERR_PTR(ret);
1314 }
1315
1316 /**
1317 * bio_map_user_iov - map user iovec into bio
1318 * @q: the struct request_queue for the bio
1319 * @iter: iovec iterator
1320 * @gfp_mask: memory allocation flags
1321 *
1322 * Map the user space address into a bio suitable for io to a block
1323 * device. Returns an error pointer in case of error.
1324 */
1325 struct bio *bio_map_user_iov(struct request_queue *q,
1326 const struct iov_iter *iter,
1327 gfp_t gfp_mask)
1328 {
1329 int j;
1330 int nr_pages = 0;
1331 struct page **pages;
1332 struct bio *bio;
1333 int cur_page = 0;
1334 int ret, offset;
1335 struct iov_iter i;
1336 struct iovec iov;
1337 struct bio_vec *bvec;
1338
1339 iov_for_each(iov, i, *iter) {
1340 unsigned long uaddr = (unsigned long) iov.iov_base;
1341 unsigned long len = iov.iov_len;
1342 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1343 unsigned long start = uaddr >> PAGE_SHIFT;
1344
1345 /*
1346 * Overflow, abort
1347 */
1348 if (end < start)
1349 return ERR_PTR(-EINVAL);
1350
1351 nr_pages += end - start;
1352 /*
1353 * buffer must be aligned to at least logical block size for now
1354 */
1355 if (uaddr & queue_dma_alignment(q))
1356 return ERR_PTR(-EINVAL);
1357 }
1358
1359 if (!nr_pages)
1360 return ERR_PTR(-EINVAL);
1361
1362 bio = bio_kmalloc(gfp_mask, nr_pages);
1363 if (!bio)
1364 return ERR_PTR(-ENOMEM);
1365
1366 ret = -ENOMEM;
1367 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1368 if (!pages)
1369 goto out;
1370
1371 iov_for_each(iov, i, *iter) {
1372 unsigned long uaddr = (unsigned long) iov.iov_base;
1373 unsigned long len = iov.iov_len;
1374 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1375 unsigned long start = uaddr >> PAGE_SHIFT;
1376 const int local_nr_pages = end - start;
1377 const int page_limit = cur_page + local_nr_pages;
1378
1379 ret = get_user_pages_fast(uaddr, local_nr_pages,
1380 (iter->type & WRITE) != WRITE,
1381 &pages[cur_page]);
1382 if (unlikely(ret < local_nr_pages)) {
1383 for (j = cur_page; j < page_limit; j++) {
1384 if (!pages[j])
1385 break;
1386 put_page(pages[j]);
1387 }
1388 ret = -EFAULT;
1389 goto out_unmap;
1390 }
1391
1392 offset = offset_in_page(uaddr);
1393 for (j = cur_page; j < page_limit; j++) {
1394 unsigned int bytes = PAGE_SIZE - offset;
1395 unsigned short prev_bi_vcnt = bio->bi_vcnt;
1396
1397 if (len <= 0)
1398 break;
1399
1400 if (bytes > len)
1401 bytes = len;
1402
1403 /*
1404 * sorry...
1405 */
1406 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1407 bytes)
1408 break;
1409
1410 /*
1411 * check if vector was merged with previous
1412 * drop page reference if needed
1413 */
1414 if (bio->bi_vcnt == prev_bi_vcnt)
1415 put_page(pages[j]);
1416
1417 len -= bytes;
1418 offset = 0;
1419 }
1420
1421 cur_page = j;
1422 /*
1423 * release the pages we didn't map into the bio, if any
1424 */
1425 while (j < page_limit)
1426 put_page(pages[j++]);
1427 }
1428
1429 kfree(pages);
1430
1431 bio_set_flag(bio, BIO_USER_MAPPED);
1432
1433 /*
1434 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1435 * it would normally disappear when its bi_end_io is run.
1436 * however, we need it for the unmap, so grab an extra
1437 * reference to it
1438 */
1439 bio_get(bio);
1440 return bio;
1441
1442 out_unmap:
1443 bio_for_each_segment_all(bvec, bio, j) {
1444 put_page(bvec->bv_page);
1445 }
1446 out:
1447 kfree(pages);
1448 bio_put(bio);
1449 return ERR_PTR(ret);
1450 }
1451
1452 static void __bio_unmap_user(struct bio *bio)
1453 {
1454 struct bio_vec *bvec;
1455 int i;
1456
1457 /*
1458 * make sure we dirty pages we wrote to
1459 */
1460 bio_for_each_segment_all(bvec, bio, i) {
1461 if (bio_data_dir(bio) == READ)
1462 set_page_dirty_lock(bvec->bv_page);
1463
1464 put_page(bvec->bv_page);
1465 }
1466
1467 bio_put(bio);
1468 }
1469
1470 /**
1471 * bio_unmap_user - unmap a bio
1472 * @bio: the bio being unmapped
1473 *
1474 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1475 * process context.
1476 *
1477 * bio_unmap_user() may sleep.
1478 */
1479 void bio_unmap_user(struct bio *bio)
1480 {
1481 __bio_unmap_user(bio);
1482 bio_put(bio);
1483 }
1484
1485 static void bio_map_kern_endio(struct bio *bio)
1486 {
1487 bio_put(bio);
1488 }
1489
1490 /**
1491 * bio_map_kern - map kernel address into bio
1492 * @q: the struct request_queue for the bio
1493 * @data: pointer to buffer to map
1494 * @len: length in bytes
1495 * @gfp_mask: allocation flags for bio allocation
1496 *
1497 * Map the kernel address into a bio suitable for io to a block
1498 * device. Returns an error pointer in case of error.
1499 */
1500 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1501 gfp_t gfp_mask)
1502 {
1503 unsigned long kaddr = (unsigned long)data;
1504 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1505 unsigned long start = kaddr >> PAGE_SHIFT;
1506 const int nr_pages = end - start;
1507 int offset, i;
1508 struct bio *bio;
1509
1510 bio = bio_kmalloc(gfp_mask, nr_pages);
1511 if (!bio)
1512 return ERR_PTR(-ENOMEM);
1513
1514 offset = offset_in_page(kaddr);
1515 for (i = 0; i < nr_pages; i++) {
1516 unsigned int bytes = PAGE_SIZE - offset;
1517
1518 if (len <= 0)
1519 break;
1520
1521 if (bytes > len)
1522 bytes = len;
1523
1524 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1525 offset) < bytes) {
1526 /* we don't support partial mappings */
1527 bio_put(bio);
1528 return ERR_PTR(-EINVAL);
1529 }
1530
1531 data += bytes;
1532 len -= bytes;
1533 offset = 0;
1534 }
1535
1536 bio->bi_end_io = bio_map_kern_endio;
1537 return bio;
1538 }
1539 EXPORT_SYMBOL(bio_map_kern);
1540
1541 static void bio_copy_kern_endio(struct bio *bio)
1542 {
1543 bio_free_pages(bio);
1544 bio_put(bio);
1545 }
1546
1547 static void bio_copy_kern_endio_read(struct bio *bio)
1548 {
1549 char *p = bio->bi_private;
1550 struct bio_vec *bvec;
1551 int i;
1552
1553 bio_for_each_segment_all(bvec, bio, i) {
1554 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1555 p += bvec->bv_len;
1556 }
1557
1558 bio_copy_kern_endio(bio);
1559 }
1560
1561 /**
1562 * bio_copy_kern - copy kernel address into bio
1563 * @q: the struct request_queue for the bio
1564 * @data: pointer to buffer to copy
1565 * @len: length in bytes
1566 * @gfp_mask: allocation flags for bio and page allocation
1567 * @reading: data direction is READ
1568 *
1569 * copy the kernel address into a bio suitable for io to a block
1570 * device. Returns an error pointer in case of error.
1571 */
1572 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1573 gfp_t gfp_mask, int reading)
1574 {
1575 unsigned long kaddr = (unsigned long)data;
1576 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1577 unsigned long start = kaddr >> PAGE_SHIFT;
1578 struct bio *bio;
1579 void *p = data;
1580 int nr_pages = 0;
1581
1582 /*
1583 * Overflow, abort
1584 */
1585 if (end < start)
1586 return ERR_PTR(-EINVAL);
1587
1588 nr_pages = end - start;
1589 bio = bio_kmalloc(gfp_mask, nr_pages);
1590 if (!bio)
1591 return ERR_PTR(-ENOMEM);
1592
1593 while (len) {
1594 struct page *page;
1595 unsigned int bytes = PAGE_SIZE;
1596
1597 if (bytes > len)
1598 bytes = len;
1599
1600 page = alloc_page(q->bounce_gfp | gfp_mask);
1601 if (!page)
1602 goto cleanup;
1603
1604 if (!reading)
1605 memcpy(page_address(page), p, bytes);
1606
1607 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1608 break;
1609
1610 len -= bytes;
1611 p += bytes;
1612 }
1613
1614 if (reading) {
1615 bio->bi_end_io = bio_copy_kern_endio_read;
1616 bio->bi_private = data;
1617 } else {
1618 bio->bi_end_io = bio_copy_kern_endio;
1619 }
1620
1621 return bio;
1622
1623 cleanup:
1624 bio_free_pages(bio);
1625 bio_put(bio);
1626 return ERR_PTR(-ENOMEM);
1627 }
1628
1629 /*
1630 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1631 * for performing direct-IO in BIOs.
1632 *
1633 * The problem is that we cannot run set_page_dirty() from interrupt context
1634 * because the required locks are not interrupt-safe. So what we can do is to
1635 * mark the pages dirty _before_ performing IO. And in interrupt context,
1636 * check that the pages are still dirty. If so, fine. If not, redirty them
1637 * in process context.
1638 *
1639 * We special-case compound pages here: normally this means reads into hugetlb
1640 * pages. The logic in here doesn't really work right for compound pages
1641 * because the VM does not uniformly chase down the head page in all cases.
1642 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1643 * handle them at all. So we skip compound pages here at an early stage.
1644 *
1645 * Note that this code is very hard to test under normal circumstances because
1646 * direct-io pins the pages with get_user_pages(). This makes
1647 * is_page_cache_freeable return false, and the VM will not clean the pages.
1648 * But other code (eg, flusher threads) could clean the pages if they are mapped
1649 * pagecache.
1650 *
1651 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1652 * deferred bio dirtying paths.
1653 */
1654
1655 /*
1656 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1657 */
1658 void bio_set_pages_dirty(struct bio *bio)
1659 {
1660 struct bio_vec *bvec;
1661 int i;
1662
1663 bio_for_each_segment_all(bvec, bio, i) {
1664 struct page *page = bvec->bv_page;
1665
1666 if (page && !PageCompound(page))
1667 set_page_dirty_lock(page);
1668 }
1669 }
1670
1671 static void bio_release_pages(struct bio *bio)
1672 {
1673 struct bio_vec *bvec;
1674 int i;
1675
1676 bio_for_each_segment_all(bvec, bio, i) {
1677 struct page *page = bvec->bv_page;
1678
1679 if (page)
1680 put_page(page);
1681 }
1682 }
1683
1684 /*
1685 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1686 * If they are, then fine. If, however, some pages are clean then they must
1687 * have been written out during the direct-IO read. So we take another ref on
1688 * the BIO and the offending pages and re-dirty the pages in process context.
1689 *
1690 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1691 * here on. It will run one put_page() against each page and will run one
1692 * bio_put() against the BIO.
1693 */
1694
1695 static void bio_dirty_fn(struct work_struct *work);
1696
1697 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1698 static DEFINE_SPINLOCK(bio_dirty_lock);
1699 static struct bio *bio_dirty_list;
1700
1701 /*
1702 * This runs in process context
1703 */
1704 static void bio_dirty_fn(struct work_struct *work)
1705 {
1706 unsigned long flags;
1707 struct bio *bio;
1708
1709 spin_lock_irqsave(&bio_dirty_lock, flags);
1710 bio = bio_dirty_list;
1711 bio_dirty_list = NULL;
1712 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1713
1714 while (bio) {
1715 struct bio *next = bio->bi_private;
1716
1717 bio_set_pages_dirty(bio);
1718 bio_release_pages(bio);
1719 bio_put(bio);
1720 bio = next;
1721 }
1722 }
1723
1724 void bio_check_pages_dirty(struct bio *bio)
1725 {
1726 struct bio_vec *bvec;
1727 int nr_clean_pages = 0;
1728 int i;
1729
1730 bio_for_each_segment_all(bvec, bio, i) {
1731 struct page *page = bvec->bv_page;
1732
1733 if (PageDirty(page) || PageCompound(page)) {
1734 put_page(page);
1735 bvec->bv_page = NULL;
1736 } else {
1737 nr_clean_pages++;
1738 }
1739 }
1740
1741 if (nr_clean_pages) {
1742 unsigned long flags;
1743
1744 spin_lock_irqsave(&bio_dirty_lock, flags);
1745 bio->bi_private = bio_dirty_list;
1746 bio_dirty_list = bio;
1747 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1748 schedule_work(&bio_dirty_work);
1749 } else {
1750 bio_put(bio);
1751 }
1752 }
1753
1754 void generic_start_io_acct(struct request_queue *q, int rw,
1755 unsigned long sectors, struct hd_struct *part)
1756 {
1757 int cpu = part_stat_lock();
1758
1759 part_round_stats(q, cpu, part);
1760 part_stat_inc(cpu, part, ios[rw]);
1761 part_stat_add(cpu, part, sectors[rw], sectors);
1762 part_inc_in_flight(q, part, rw);
1763
1764 part_stat_unlock();
1765 }
1766 EXPORT_SYMBOL(generic_start_io_acct);
1767
1768 void generic_end_io_acct(struct request_queue *q, int rw,
1769 struct hd_struct *part, unsigned long start_time)
1770 {
1771 unsigned long duration = jiffies - start_time;
1772 int cpu = part_stat_lock();
1773
1774 part_stat_add(cpu, part, ticks[rw], duration);
1775 part_round_stats(q, cpu, part);
1776 part_dec_in_flight(q, part, rw);
1777
1778 part_stat_unlock();
1779 }
1780 EXPORT_SYMBOL(generic_end_io_acct);
1781
1782 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1783 void bio_flush_dcache_pages(struct bio *bi)
1784 {
1785 struct bio_vec bvec;
1786 struct bvec_iter iter;
1787
1788 bio_for_each_segment(bvec, bi, iter)
1789 flush_dcache_page(bvec.bv_page);
1790 }
1791 EXPORT_SYMBOL(bio_flush_dcache_pages);
1792 #endif
1793
1794 static inline bool bio_remaining_done(struct bio *bio)
1795 {
1796 /*
1797 * If we're not chaining, then ->__bi_remaining is always 1 and
1798 * we always end io on the first invocation.
1799 */
1800 if (!bio_flagged(bio, BIO_CHAIN))
1801 return true;
1802
1803 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1804
1805 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1806 bio_clear_flag(bio, BIO_CHAIN);
1807 return true;
1808 }
1809
1810 return false;
1811 }
1812
1813 /**
1814 * bio_endio - end I/O on a bio
1815 * @bio: bio
1816 *
1817 * Description:
1818 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1819 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1820 * bio unless they own it and thus know that it has an end_io function.
1821 *
1822 * bio_endio() can be called several times on a bio that has been chained
1823 * using bio_chain(). The ->bi_end_io() function will only be called the
1824 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1825 * generated if BIO_TRACE_COMPLETION is set.
1826 **/
1827 void bio_endio(struct bio *bio)
1828 {
1829 again:
1830 if (!bio_remaining_done(bio))
1831 return;
1832 if (!bio_integrity_endio(bio))
1833 return;
1834
1835 /*
1836 * Need to have a real endio function for chained bios, otherwise
1837 * various corner cases will break (like stacking block devices that
1838 * save/restore bi_end_io) - however, we want to avoid unbounded
1839 * recursion and blowing the stack. Tail call optimization would
1840 * handle this, but compiling with frame pointers also disables
1841 * gcc's sibling call optimization.
1842 */
1843 if (bio->bi_end_io == bio_chain_endio) {
1844 bio = __bio_chain_endio(bio);
1845 goto again;
1846 }
1847
1848 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1849 trace_block_bio_complete(bio->bi_disk->queue, bio,
1850 blk_status_to_errno(bio->bi_status));
1851 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1852 }
1853
1854 blk_throtl_bio_endio(bio);
1855 /* release cgroup info */
1856 bio_uninit(bio);
1857 if (bio->bi_end_io)
1858 bio->bi_end_io(bio);
1859 }
1860 EXPORT_SYMBOL(bio_endio);
1861
1862 /**
1863 * bio_split - split a bio
1864 * @bio: bio to split
1865 * @sectors: number of sectors to split from the front of @bio
1866 * @gfp: gfp mask
1867 * @bs: bio set to allocate from
1868 *
1869 * Allocates and returns a new bio which represents @sectors from the start of
1870 * @bio, and updates @bio to represent the remaining sectors.
1871 *
1872 * Unless this is a discard request the newly allocated bio will point
1873 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1874 * @bio is not freed before the split.
1875 */
1876 struct bio *bio_split(struct bio *bio, int sectors,
1877 gfp_t gfp, struct bio_set *bs)
1878 {
1879 struct bio *split = NULL;
1880
1881 BUG_ON(sectors <= 0);
1882 BUG_ON(sectors >= bio_sectors(bio));
1883
1884 split = bio_clone_fast(bio, gfp, bs);
1885 if (!split)
1886 return NULL;
1887
1888 split->bi_iter.bi_size = sectors << 9;
1889
1890 if (bio_integrity(split))
1891 bio_integrity_trim(split);
1892
1893 bio_advance(bio, split->bi_iter.bi_size);
1894
1895 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1896 bio_set_flag(split, BIO_TRACE_COMPLETION);
1897
1898 return split;
1899 }
1900 EXPORT_SYMBOL(bio_split);
1901
1902 /**
1903 * bio_trim - trim a bio
1904 * @bio: bio to trim
1905 * @offset: number of sectors to trim from the front of @bio
1906 * @size: size we want to trim @bio to, in sectors
1907 */
1908 void bio_trim(struct bio *bio, int offset, int size)
1909 {
1910 /* 'bio' is a cloned bio which we need to trim to match
1911 * the given offset and size.
1912 */
1913
1914 size <<= 9;
1915 if (offset == 0 && size == bio->bi_iter.bi_size)
1916 return;
1917
1918 bio_clear_flag(bio, BIO_SEG_VALID);
1919
1920 bio_advance(bio, offset << 9);
1921
1922 bio->bi_iter.bi_size = size;
1923
1924 if (bio_integrity(bio))
1925 bio_integrity_trim(bio);
1926
1927 }
1928 EXPORT_SYMBOL_GPL(bio_trim);
1929
1930 /*
1931 * create memory pools for biovec's in a bio_set.
1932 * use the global biovec slabs created for general use.
1933 */
1934 mempool_t *biovec_create_pool(int pool_entries)
1935 {
1936 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1937
1938 return mempool_create_slab_pool(pool_entries, bp->slab);
1939 }
1940
1941 void bioset_free(struct bio_set *bs)
1942 {
1943 if (bs->rescue_workqueue)
1944 destroy_workqueue(bs->rescue_workqueue);
1945
1946 if (bs->bio_pool)
1947 mempool_destroy(bs->bio_pool);
1948
1949 if (bs->bvec_pool)
1950 mempool_destroy(bs->bvec_pool);
1951
1952 bioset_integrity_free(bs);
1953 bio_put_slab(bs);
1954
1955 kfree(bs);
1956 }
1957 EXPORT_SYMBOL(bioset_free);
1958
1959 /**
1960 * bioset_create - Create a bio_set
1961 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1962 * @front_pad: Number of bytes to allocate in front of the returned bio
1963 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1964 * and %BIOSET_NEED_RESCUER
1965 *
1966 * Description:
1967 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1968 * to ask for a number of bytes to be allocated in front of the bio.
1969 * Front pad allocation is useful for embedding the bio inside
1970 * another structure, to avoid allocating extra data to go with the bio.
1971 * Note that the bio must be embedded at the END of that structure always,
1972 * or things will break badly.
1973 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1974 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1975 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1976 * dispatch queued requests when the mempool runs out of space.
1977 *
1978 */
1979 struct bio_set *bioset_create(unsigned int pool_size,
1980 unsigned int front_pad,
1981 int flags)
1982 {
1983 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1984 struct bio_set *bs;
1985
1986 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1987 if (!bs)
1988 return NULL;
1989
1990 bs->front_pad = front_pad;
1991
1992 spin_lock_init(&bs->rescue_lock);
1993 bio_list_init(&bs->rescue_list);
1994 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1995
1996 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1997 if (!bs->bio_slab) {
1998 kfree(bs);
1999 return NULL;
2000 }
2001
2002 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
2003 if (!bs->bio_pool)
2004 goto bad;
2005
2006 if (flags & BIOSET_NEED_BVECS) {
2007 bs->bvec_pool = biovec_create_pool(pool_size);
2008 if (!bs->bvec_pool)
2009 goto bad;
2010 }
2011
2012 if (!(flags & BIOSET_NEED_RESCUER))
2013 return bs;
2014
2015 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2016 if (!bs->rescue_workqueue)
2017 goto bad;
2018
2019 return bs;
2020 bad:
2021 bioset_free(bs);
2022 return NULL;
2023 }
2024 EXPORT_SYMBOL(bioset_create);
2025
2026 #ifdef CONFIG_BLK_CGROUP
2027
2028 /**
2029 * bio_associate_blkcg - associate a bio with the specified blkcg
2030 * @bio: target bio
2031 * @blkcg_css: css of the blkcg to associate
2032 *
2033 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2034 * treat @bio as if it were issued by a task which belongs to the blkcg.
2035 *
2036 * This function takes an extra reference of @blkcg_css which will be put
2037 * when @bio is released. The caller must own @bio and is responsible for
2038 * synchronizing calls to this function.
2039 */
2040 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2041 {
2042 if (unlikely(bio->bi_css))
2043 return -EBUSY;
2044 css_get(blkcg_css);
2045 bio->bi_css = blkcg_css;
2046 return 0;
2047 }
2048 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2049
2050 /**
2051 * bio_associate_current - associate a bio with %current
2052 * @bio: target bio
2053 *
2054 * Associate @bio with %current if it hasn't been associated yet. Block
2055 * layer will treat @bio as if it were issued by %current no matter which
2056 * task actually issues it.
2057 *
2058 * This function takes an extra reference of @task's io_context and blkcg
2059 * which will be put when @bio is released. The caller must own @bio,
2060 * ensure %current->io_context exists, and is responsible for synchronizing
2061 * calls to this function.
2062 */
2063 int bio_associate_current(struct bio *bio)
2064 {
2065 struct io_context *ioc;
2066
2067 if (bio->bi_css)
2068 return -EBUSY;
2069
2070 ioc = current->io_context;
2071 if (!ioc)
2072 return -ENOENT;
2073
2074 get_io_context_active(ioc);
2075 bio->bi_ioc = ioc;
2076 bio->bi_css = task_get_css(current, io_cgrp_id);
2077 return 0;
2078 }
2079 EXPORT_SYMBOL_GPL(bio_associate_current);
2080
2081 /**
2082 * bio_disassociate_task - undo bio_associate_current()
2083 * @bio: target bio
2084 */
2085 void bio_disassociate_task(struct bio *bio)
2086 {
2087 if (bio->bi_ioc) {
2088 put_io_context(bio->bi_ioc);
2089 bio->bi_ioc = NULL;
2090 }
2091 if (bio->bi_css) {
2092 css_put(bio->bi_css);
2093 bio->bi_css = NULL;
2094 }
2095 }
2096
2097 /**
2098 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2099 * @dst: destination bio
2100 * @src: source bio
2101 */
2102 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2103 {
2104 if (src->bi_css)
2105 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2106 }
2107 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2108 #endif /* CONFIG_BLK_CGROUP */
2109
2110 static void __init biovec_init_slabs(void)
2111 {
2112 int i;
2113
2114 for (i = 0; i < BVEC_POOL_NR; i++) {
2115 int size;
2116 struct biovec_slab *bvs = bvec_slabs + i;
2117
2118 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2119 bvs->slab = NULL;
2120 continue;
2121 }
2122
2123 size = bvs->nr_vecs * sizeof(struct bio_vec);
2124 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2125 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2126 }
2127 }
2128
2129 static int __init init_bio(void)
2130 {
2131 bio_slab_max = 2;
2132 bio_slab_nr = 0;
2133 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2134 if (!bio_slabs)
2135 panic("bio: can't allocate bios\n");
2136
2137 bio_integrity_init();
2138 biovec_init_slabs();
2139
2140 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2141 if (!fs_bio_set)
2142 panic("bio: can't allocate bios\n");
2143
2144 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2145 panic("bio: can't create integrity pool\n");
2146
2147 return 0;
2148 }
2149 subsys_initcall(init_bio);