]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-cgroup.c
0ce64dd73cfe71489cce5dba5672a66b0052d4e0
[thirdparty/linux.git] / block / blk-cgroup.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36
37 /*
38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40 * policy [un]register operations including cgroup file additions /
41 * removals. Putting cgroup file registration outside blkcg_pol_mutex
42 * allows grabbing it from cgroup callbacks.
43 */
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
46
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
49
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
52
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54
55 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
56
57 bool blkcg_debug_stats = false;
58
59 #define BLKG_DESTROY_BATCH_SIZE 64
60
61 /*
62 * Lockless lists for tracking IO stats update
63 *
64 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
65 * There are multiple blkg's (one for each block device) attached to each
66 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
67 * but it doesn't know which blkg has the updated stats. If there are many
68 * block devices in a system, the cost of iterating all the blkg's to flush
69 * out the IO stats can be high. To reduce such overhead, a set of percpu
70 * lockless lists (lhead) per blkcg are used to track the set of recently
71 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
72 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
73 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
74 * References to blkg are gotten and then put back in the process to
75 * protect against blkg removal.
76 *
77 * Return: 0 if successful or -ENOMEM if allocation fails.
78 */
79 static int init_blkcg_llists(struct blkcg *blkcg)
80 {
81 int cpu;
82
83 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
84 if (!blkcg->lhead)
85 return -ENOMEM;
86
87 for_each_possible_cpu(cpu)
88 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
89 return 0;
90 }
91
92 /**
93 * blkcg_css - find the current css
94 *
95 * Find the css associated with either the kthread or the current task.
96 * This may return a dying css, so it is up to the caller to use tryget logic
97 * to confirm it is alive and well.
98 */
99 static struct cgroup_subsys_state *blkcg_css(void)
100 {
101 struct cgroup_subsys_state *css;
102
103 css = kthread_blkcg();
104 if (css)
105 return css;
106 return task_css(current, io_cgrp_id);
107 }
108
109 static bool blkcg_policy_enabled(struct request_queue *q,
110 const struct blkcg_policy *pol)
111 {
112 return pol && test_bit(pol->plid, q->blkcg_pols);
113 }
114
115 static void blkg_free_workfn(struct work_struct *work)
116 {
117 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
118 free_work);
119 struct request_queue *q = blkg->q;
120 int i;
121
122 /*
123 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
124 * in order to make sure pd_free_fn() is called in order, the deletion
125 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
126 * blkcg_mutex is used to synchronize blkg_free_workfn() and
127 * blkcg_deactivate_policy().
128 */
129 mutex_lock(&q->blkcg_mutex);
130 for (i = 0; i < BLKCG_MAX_POLS; i++)
131 if (blkg->pd[i])
132 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
133 if (blkg->parent)
134 blkg_put(blkg->parent);
135 list_del_init(&blkg->q_node);
136 mutex_unlock(&q->blkcg_mutex);
137
138 blk_put_queue(q);
139 free_percpu(blkg->iostat_cpu);
140 percpu_ref_exit(&blkg->refcnt);
141 kfree(blkg);
142 }
143
144 /**
145 * blkg_free - free a blkg
146 * @blkg: blkg to free
147 *
148 * Free @blkg which may be partially allocated.
149 */
150 static void blkg_free(struct blkcg_gq *blkg)
151 {
152 if (!blkg)
153 return;
154
155 /*
156 * Both ->pd_free_fn() and request queue's release handler may
157 * sleep, so free us by scheduling one work func
158 */
159 INIT_WORK(&blkg->free_work, blkg_free_workfn);
160 schedule_work(&blkg->free_work);
161 }
162
163 static void __blkg_release(struct rcu_head *rcu)
164 {
165 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
166
167 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
168 WARN_ON(!bio_list_empty(&blkg->async_bios));
169 #endif
170
171 /* release the blkcg and parent blkg refs this blkg has been holding */
172 css_put(&blkg->blkcg->css);
173 blkg_free(blkg);
174 }
175
176 /*
177 * A group is RCU protected, but having an rcu lock does not mean that one
178 * can access all the fields of blkg and assume these are valid. For
179 * example, don't try to follow throtl_data and request queue links.
180 *
181 * Having a reference to blkg under an rcu allows accesses to only values
182 * local to groups like group stats and group rate limits.
183 */
184 static void blkg_release(struct percpu_ref *ref)
185 {
186 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
187
188 call_rcu(&blkg->rcu_head, __blkg_release);
189 }
190
191 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
192 static struct workqueue_struct *blkcg_punt_bio_wq;
193
194 static void blkg_async_bio_workfn(struct work_struct *work)
195 {
196 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
197 async_bio_work);
198 struct bio_list bios = BIO_EMPTY_LIST;
199 struct bio *bio;
200 struct blk_plug plug;
201 bool need_plug = false;
202
203 /* as long as there are pending bios, @blkg can't go away */
204 spin_lock(&blkg->async_bio_lock);
205 bio_list_merge(&bios, &blkg->async_bios);
206 bio_list_init(&blkg->async_bios);
207 spin_unlock(&blkg->async_bio_lock);
208
209 /* start plug only when bio_list contains at least 2 bios */
210 if (bios.head && bios.head->bi_next) {
211 need_plug = true;
212 blk_start_plug(&plug);
213 }
214 while ((bio = bio_list_pop(&bios)))
215 submit_bio(bio);
216 if (need_plug)
217 blk_finish_plug(&plug);
218 }
219
220 /*
221 * When a shared kthread issues a bio for a cgroup, doing so synchronously can
222 * lead to priority inversions as the kthread can be trapped waiting for that
223 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to
224 * a dedicated per-blkcg work item to avoid such priority inversions.
225 */
226 void blkcg_punt_bio_submit(struct bio *bio)
227 {
228 struct blkcg_gq *blkg = bio->bi_blkg;
229
230 if (blkg->parent) {
231 spin_lock(&blkg->async_bio_lock);
232 bio_list_add(&blkg->async_bios, bio);
233 spin_unlock(&blkg->async_bio_lock);
234 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
235 } else {
236 /* never bounce for the root cgroup */
237 submit_bio(bio);
238 }
239 }
240 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
241
242 static int __init blkcg_punt_bio_init(void)
243 {
244 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
245 WQ_MEM_RECLAIM | WQ_FREEZABLE |
246 WQ_UNBOUND | WQ_SYSFS, 0);
247 if (!blkcg_punt_bio_wq)
248 return -ENOMEM;
249 return 0;
250 }
251 subsys_initcall(blkcg_punt_bio_init);
252 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
253
254 /**
255 * bio_blkcg_css - return the blkcg CSS associated with a bio
256 * @bio: target bio
257 *
258 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
259 * associated. Callers are expected to either handle %NULL or know association
260 * has been done prior to calling this.
261 */
262 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
263 {
264 if (!bio || !bio->bi_blkg)
265 return NULL;
266 return &bio->bi_blkg->blkcg->css;
267 }
268 EXPORT_SYMBOL_GPL(bio_blkcg_css);
269
270 /**
271 * blkcg_parent - get the parent of a blkcg
272 * @blkcg: blkcg of interest
273 *
274 * Return the parent blkcg of @blkcg. Can be called anytime.
275 */
276 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
277 {
278 return css_to_blkcg(blkcg->css.parent);
279 }
280
281 /**
282 * blkg_alloc - allocate a blkg
283 * @blkcg: block cgroup the new blkg is associated with
284 * @disk: gendisk the new blkg is associated with
285 * @gfp_mask: allocation mask to use
286 *
287 * Allocate a new blkg assocating @blkcg and @q.
288 */
289 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
290 gfp_t gfp_mask)
291 {
292 struct blkcg_gq *blkg;
293 int i, cpu;
294
295 /* alloc and init base part */
296 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
297 if (!blkg)
298 return NULL;
299 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
300 goto out_free_blkg;
301 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
302 if (!blkg->iostat_cpu)
303 goto out_exit_refcnt;
304 if (!blk_get_queue(disk->queue))
305 goto out_free_iostat;
306
307 blkg->q = disk->queue;
308 INIT_LIST_HEAD(&blkg->q_node);
309 blkg->blkcg = blkcg;
310 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
311 spin_lock_init(&blkg->async_bio_lock);
312 bio_list_init(&blkg->async_bios);
313 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
314 #endif
315
316 u64_stats_init(&blkg->iostat.sync);
317 for_each_possible_cpu(cpu) {
318 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
319 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
320 }
321
322 for (i = 0; i < BLKCG_MAX_POLS; i++) {
323 struct blkcg_policy *pol = blkcg_policy[i];
324 struct blkg_policy_data *pd;
325
326 if (!blkcg_policy_enabled(disk->queue, pol))
327 continue;
328
329 /* alloc per-policy data and attach it to blkg */
330 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
331 if (!pd)
332 goto out_free_pds;
333 blkg->pd[i] = pd;
334 pd->blkg = blkg;
335 pd->plid = i;
336 pd->online = false;
337 }
338
339 return blkg;
340
341 out_free_pds:
342 while (--i >= 0)
343 if (blkg->pd[i])
344 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
345 blk_put_queue(disk->queue);
346 out_free_iostat:
347 free_percpu(blkg->iostat_cpu);
348 out_exit_refcnt:
349 percpu_ref_exit(&blkg->refcnt);
350 out_free_blkg:
351 kfree(blkg);
352 return NULL;
353 }
354
355 /*
356 * If @new_blkg is %NULL, this function tries to allocate a new one as
357 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
358 */
359 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
360 struct blkcg_gq *new_blkg)
361 {
362 struct blkcg_gq *blkg;
363 int i, ret;
364
365 lockdep_assert_held(&disk->queue->queue_lock);
366
367 /* request_queue is dying, do not create/recreate a blkg */
368 if (blk_queue_dying(disk->queue)) {
369 ret = -ENODEV;
370 goto err_free_blkg;
371 }
372
373 /* blkg holds a reference to blkcg */
374 if (!css_tryget_online(&blkcg->css)) {
375 ret = -ENODEV;
376 goto err_free_blkg;
377 }
378
379 /* allocate */
380 if (!new_blkg) {
381 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
382 if (unlikely(!new_blkg)) {
383 ret = -ENOMEM;
384 goto err_put_css;
385 }
386 }
387 blkg = new_blkg;
388
389 /* link parent */
390 if (blkcg_parent(blkcg)) {
391 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
392 if (WARN_ON_ONCE(!blkg->parent)) {
393 ret = -ENODEV;
394 goto err_put_css;
395 }
396 blkg_get(blkg->parent);
397 }
398
399 /* invoke per-policy init */
400 for (i = 0; i < BLKCG_MAX_POLS; i++) {
401 struct blkcg_policy *pol = blkcg_policy[i];
402
403 if (blkg->pd[i] && pol->pd_init_fn)
404 pol->pd_init_fn(blkg->pd[i]);
405 }
406
407 /* insert */
408 spin_lock(&blkcg->lock);
409 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
410 if (likely(!ret)) {
411 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
412 list_add(&blkg->q_node, &disk->queue->blkg_list);
413
414 for (i = 0; i < BLKCG_MAX_POLS; i++) {
415 struct blkcg_policy *pol = blkcg_policy[i];
416
417 if (blkg->pd[i]) {
418 if (pol->pd_online_fn)
419 pol->pd_online_fn(blkg->pd[i]);
420 blkg->pd[i]->online = true;
421 }
422 }
423 }
424 blkg->online = true;
425 spin_unlock(&blkcg->lock);
426
427 if (!ret)
428 return blkg;
429
430 /* @blkg failed fully initialized, use the usual release path */
431 blkg_put(blkg);
432 return ERR_PTR(ret);
433
434 err_put_css:
435 css_put(&blkcg->css);
436 err_free_blkg:
437 if (new_blkg)
438 blkg_free(new_blkg);
439 return ERR_PTR(ret);
440 }
441
442 /**
443 * blkg_lookup_create - lookup blkg, try to create one if not there
444 * @blkcg: blkcg of interest
445 * @disk: gendisk of interest
446 *
447 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
448 * create one. blkg creation is performed recursively from blkcg_root such
449 * that all non-root blkg's have access to the parent blkg. This function
450 * should be called under RCU read lock and takes @disk->queue->queue_lock.
451 *
452 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
453 * down from root.
454 */
455 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
456 struct gendisk *disk)
457 {
458 struct request_queue *q = disk->queue;
459 struct blkcg_gq *blkg;
460 unsigned long flags;
461
462 WARN_ON_ONCE(!rcu_read_lock_held());
463
464 blkg = blkg_lookup(blkcg, q);
465 if (blkg)
466 return blkg;
467
468 spin_lock_irqsave(&q->queue_lock, flags);
469 blkg = blkg_lookup(blkcg, q);
470 if (blkg) {
471 if (blkcg != &blkcg_root &&
472 blkg != rcu_dereference(blkcg->blkg_hint))
473 rcu_assign_pointer(blkcg->blkg_hint, blkg);
474 goto found;
475 }
476
477 /*
478 * Create blkgs walking down from blkcg_root to @blkcg, so that all
479 * non-root blkgs have access to their parents. Returns the closest
480 * blkg to the intended blkg should blkg_create() fail.
481 */
482 while (true) {
483 struct blkcg *pos = blkcg;
484 struct blkcg *parent = blkcg_parent(blkcg);
485 struct blkcg_gq *ret_blkg = q->root_blkg;
486
487 while (parent) {
488 blkg = blkg_lookup(parent, q);
489 if (blkg) {
490 /* remember closest blkg */
491 ret_blkg = blkg;
492 break;
493 }
494 pos = parent;
495 parent = blkcg_parent(parent);
496 }
497
498 blkg = blkg_create(pos, disk, NULL);
499 if (IS_ERR(blkg)) {
500 blkg = ret_blkg;
501 break;
502 }
503 if (pos == blkcg)
504 break;
505 }
506
507 found:
508 spin_unlock_irqrestore(&q->queue_lock, flags);
509 return blkg;
510 }
511
512 static void blkg_destroy(struct blkcg_gq *blkg)
513 {
514 struct blkcg *blkcg = blkg->blkcg;
515 int i;
516
517 lockdep_assert_held(&blkg->q->queue_lock);
518 lockdep_assert_held(&blkcg->lock);
519
520 /*
521 * blkg stays on the queue list until blkg_free_workfn(), see details in
522 * blkg_free_workfn(), hence this function can be called from
523 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
524 * blkg_free_workfn().
525 */
526 if (hlist_unhashed(&blkg->blkcg_node))
527 return;
528
529 for (i = 0; i < BLKCG_MAX_POLS; i++) {
530 struct blkcg_policy *pol = blkcg_policy[i];
531
532 if (blkg->pd[i] && blkg->pd[i]->online) {
533 blkg->pd[i]->online = false;
534 if (pol->pd_offline_fn)
535 pol->pd_offline_fn(blkg->pd[i]);
536 }
537 }
538
539 blkg->online = false;
540
541 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
542 hlist_del_init_rcu(&blkg->blkcg_node);
543
544 /*
545 * Both setting lookup hint to and clearing it from @blkg are done
546 * under queue_lock. If it's not pointing to @blkg now, it never
547 * will. Hint assignment itself can race safely.
548 */
549 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
550 rcu_assign_pointer(blkcg->blkg_hint, NULL);
551
552 /*
553 * Put the reference taken at the time of creation so that when all
554 * queues are gone, group can be destroyed.
555 */
556 percpu_ref_kill(&blkg->refcnt);
557 }
558
559 static void blkg_destroy_all(struct gendisk *disk)
560 {
561 struct request_queue *q = disk->queue;
562 struct blkcg_gq *blkg, *n;
563 int count = BLKG_DESTROY_BATCH_SIZE;
564
565 restart:
566 spin_lock_irq(&q->queue_lock);
567 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
568 struct blkcg *blkcg = blkg->blkcg;
569
570 if (hlist_unhashed(&blkg->blkcg_node))
571 continue;
572
573 spin_lock(&blkcg->lock);
574 blkg_destroy(blkg);
575 spin_unlock(&blkcg->lock);
576
577 /*
578 * in order to avoid holding the spin lock for too long, release
579 * it when a batch of blkgs are destroyed.
580 */
581 if (!(--count)) {
582 count = BLKG_DESTROY_BATCH_SIZE;
583 spin_unlock_irq(&q->queue_lock);
584 cond_resched();
585 goto restart;
586 }
587 }
588
589 q->root_blkg = NULL;
590 spin_unlock_irq(&q->queue_lock);
591 }
592
593 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
594 struct cftype *cftype, u64 val)
595 {
596 struct blkcg *blkcg = css_to_blkcg(css);
597 struct blkcg_gq *blkg;
598 int i, cpu;
599
600 mutex_lock(&blkcg_pol_mutex);
601 spin_lock_irq(&blkcg->lock);
602
603 /*
604 * Note that stat reset is racy - it doesn't synchronize against
605 * stat updates. This is a debug feature which shouldn't exist
606 * anyway. If you get hit by a race, retry.
607 */
608 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
609 for_each_possible_cpu(cpu) {
610 struct blkg_iostat_set *bis =
611 per_cpu_ptr(blkg->iostat_cpu, cpu);
612 memset(bis, 0, sizeof(*bis));
613 }
614 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
615
616 for (i = 0; i < BLKCG_MAX_POLS; i++) {
617 struct blkcg_policy *pol = blkcg_policy[i];
618
619 if (blkg->pd[i] && pol->pd_reset_stats_fn)
620 pol->pd_reset_stats_fn(blkg->pd[i]);
621 }
622 }
623
624 spin_unlock_irq(&blkcg->lock);
625 mutex_unlock(&blkcg_pol_mutex);
626 return 0;
627 }
628
629 const char *blkg_dev_name(struct blkcg_gq *blkg)
630 {
631 if (!blkg->q->disk)
632 return NULL;
633 return bdi_dev_name(blkg->q->disk->bdi);
634 }
635
636 /**
637 * blkcg_print_blkgs - helper for printing per-blkg data
638 * @sf: seq_file to print to
639 * @blkcg: blkcg of interest
640 * @prfill: fill function to print out a blkg
641 * @pol: policy in question
642 * @data: data to be passed to @prfill
643 * @show_total: to print out sum of prfill return values or not
644 *
645 * This function invokes @prfill on each blkg of @blkcg if pd for the
646 * policy specified by @pol exists. @prfill is invoked with @sf, the
647 * policy data and @data and the matching queue lock held. If @show_total
648 * is %true, the sum of the return values from @prfill is printed with
649 * "Total" label at the end.
650 *
651 * This is to be used to construct print functions for
652 * cftype->read_seq_string method.
653 */
654 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
655 u64 (*prfill)(struct seq_file *,
656 struct blkg_policy_data *, int),
657 const struct blkcg_policy *pol, int data,
658 bool show_total)
659 {
660 struct blkcg_gq *blkg;
661 u64 total = 0;
662
663 rcu_read_lock();
664 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
665 spin_lock_irq(&blkg->q->queue_lock);
666 if (blkcg_policy_enabled(blkg->q, pol))
667 total += prfill(sf, blkg->pd[pol->plid], data);
668 spin_unlock_irq(&blkg->q->queue_lock);
669 }
670 rcu_read_unlock();
671
672 if (show_total)
673 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
674 }
675 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
676
677 /**
678 * __blkg_prfill_u64 - prfill helper for a single u64 value
679 * @sf: seq_file to print to
680 * @pd: policy private data of interest
681 * @v: value to print
682 *
683 * Print @v to @sf for the device associated with @pd.
684 */
685 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
686 {
687 const char *dname = blkg_dev_name(pd->blkg);
688
689 if (!dname)
690 return 0;
691
692 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
693 return v;
694 }
695 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
696
697 /**
698 * blkg_conf_init - initialize a blkg_conf_ctx
699 * @ctx: blkg_conf_ctx to initialize
700 * @input: input string
701 *
702 * Initialize @ctx which can be used to parse blkg config input string @input.
703 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
704 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
705 */
706 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
707 {
708 *ctx = (struct blkg_conf_ctx){ .input = input };
709 }
710 EXPORT_SYMBOL_GPL(blkg_conf_init);
711
712 /**
713 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
714 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
715 *
716 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
717 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
718 * set to point past the device node prefix.
719 *
720 * This function may be called multiple times on @ctx and the extra calls become
721 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
722 * explicitly if bdev access is needed without resolving the blkcg / policy part
723 * of @ctx->input. Returns -errno on error.
724 */
725 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
726 {
727 char *input = ctx->input;
728 unsigned int major, minor;
729 struct block_device *bdev;
730 int key_len;
731
732 if (ctx->bdev)
733 return 0;
734
735 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
736 return -EINVAL;
737
738 input += key_len;
739 if (!isspace(*input))
740 return -EINVAL;
741 input = skip_spaces(input);
742
743 bdev = blkdev_get_no_open(MKDEV(major, minor));
744 if (!bdev)
745 return -ENODEV;
746 if (bdev_is_partition(bdev)) {
747 blkdev_put_no_open(bdev);
748 return -ENODEV;
749 }
750
751 ctx->body = input;
752 ctx->bdev = bdev;
753 return 0;
754 }
755
756 /**
757 * blkg_conf_prep - parse and prepare for per-blkg config update
758 * @blkcg: target block cgroup
759 * @pol: target policy
760 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
761 *
762 * Parse per-blkg config update from @ctx->input and initialize @ctx
763 * accordingly. On success, @ctx->body points to the part of @ctx->input
764 * following MAJ:MIN, @ctx->bdev points to the target block device and
765 * @ctx->blkg to the blkg being configured.
766 *
767 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
768 * function returns with queue lock held and must be followed by
769 * blkg_conf_exit().
770 */
771 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
772 struct blkg_conf_ctx *ctx)
773 __acquires(&bdev->bd_queue->queue_lock)
774 {
775 struct gendisk *disk;
776 struct request_queue *q;
777 struct blkcg_gq *blkg;
778 int ret;
779
780 ret = blkg_conf_open_bdev(ctx);
781 if (ret)
782 return ret;
783
784 disk = ctx->bdev->bd_disk;
785 q = disk->queue;
786
787 /*
788 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
789 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
790 */
791 ret = blk_queue_enter(q, 0);
792 if (ret)
793 goto fail;
794
795 spin_lock_irq(&q->queue_lock);
796
797 if (!blkcg_policy_enabled(q, pol)) {
798 ret = -EOPNOTSUPP;
799 goto fail_unlock;
800 }
801
802 blkg = blkg_lookup(blkcg, q);
803 if (blkg)
804 goto success;
805
806 /*
807 * Create blkgs walking down from blkcg_root to @blkcg, so that all
808 * non-root blkgs have access to their parents.
809 */
810 while (true) {
811 struct blkcg *pos = blkcg;
812 struct blkcg *parent;
813 struct blkcg_gq *new_blkg;
814
815 parent = blkcg_parent(blkcg);
816 while (parent && !blkg_lookup(parent, q)) {
817 pos = parent;
818 parent = blkcg_parent(parent);
819 }
820
821 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
822 spin_unlock_irq(&q->queue_lock);
823
824 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
825 if (unlikely(!new_blkg)) {
826 ret = -ENOMEM;
827 goto fail_exit_queue;
828 }
829
830 if (radix_tree_preload(GFP_KERNEL)) {
831 blkg_free(new_blkg);
832 ret = -ENOMEM;
833 goto fail_exit_queue;
834 }
835
836 spin_lock_irq(&q->queue_lock);
837
838 if (!blkcg_policy_enabled(q, pol)) {
839 blkg_free(new_blkg);
840 ret = -EOPNOTSUPP;
841 goto fail_preloaded;
842 }
843
844 blkg = blkg_lookup(pos, q);
845 if (blkg) {
846 blkg_free(new_blkg);
847 } else {
848 blkg = blkg_create(pos, disk, new_blkg);
849 if (IS_ERR(blkg)) {
850 ret = PTR_ERR(blkg);
851 goto fail_preloaded;
852 }
853 }
854
855 radix_tree_preload_end();
856
857 if (pos == blkcg)
858 goto success;
859 }
860 success:
861 blk_queue_exit(q);
862 ctx->blkg = blkg;
863 return 0;
864
865 fail_preloaded:
866 radix_tree_preload_end();
867 fail_unlock:
868 spin_unlock_irq(&q->queue_lock);
869 fail_exit_queue:
870 blk_queue_exit(q);
871 fail:
872 /*
873 * If queue was bypassing, we should retry. Do so after a
874 * short msleep(). It isn't strictly necessary but queue
875 * can be bypassing for some time and it's always nice to
876 * avoid busy looping.
877 */
878 if (ret == -EBUSY) {
879 msleep(10);
880 ret = restart_syscall();
881 }
882 return ret;
883 }
884 EXPORT_SYMBOL_GPL(blkg_conf_prep);
885
886 /**
887 * blkg_conf_exit - clean up per-blkg config update
888 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
889 *
890 * Clean up after per-blkg config update. This function must be called on all
891 * blkg_conf_ctx's initialized with blkg_conf_init().
892 */
893 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
894 __releases(&ctx->bdev->bd_queue->queue_lock)
895 {
896 if (ctx->blkg) {
897 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
898 ctx->blkg = NULL;
899 }
900
901 if (ctx->bdev) {
902 blkdev_put_no_open(ctx->bdev);
903 ctx->body = NULL;
904 ctx->bdev = NULL;
905 }
906 }
907 EXPORT_SYMBOL_GPL(blkg_conf_exit);
908
909 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
910 {
911 int i;
912
913 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
914 dst->bytes[i] = src->bytes[i];
915 dst->ios[i] = src->ios[i];
916 }
917 }
918
919 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
920 {
921 int i;
922
923 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
924 dst->bytes[i] += src->bytes[i];
925 dst->ios[i] += src->ios[i];
926 }
927 }
928
929 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
930 {
931 int i;
932
933 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
934 dst->bytes[i] -= src->bytes[i];
935 dst->ios[i] -= src->ios[i];
936 }
937 }
938
939 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
940 struct blkg_iostat *last)
941 {
942 struct blkg_iostat delta;
943 unsigned long flags;
944
945 /* propagate percpu delta to global */
946 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
947 blkg_iostat_set(&delta, cur);
948 blkg_iostat_sub(&delta, last);
949 blkg_iostat_add(&blkg->iostat.cur, &delta);
950 blkg_iostat_add(last, &delta);
951 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
952 }
953
954 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
955 {
956 struct blkcg *blkcg = css_to_blkcg(css);
957 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
958 struct llist_node *lnode;
959 struct blkg_iostat_set *bisc, *next_bisc;
960
961 /* Root-level stats are sourced from system-wide IO stats */
962 if (!cgroup_parent(css->cgroup))
963 return;
964
965 rcu_read_lock();
966
967 lnode = llist_del_all(lhead);
968 if (!lnode)
969 goto out;
970
971 /*
972 * Iterate only the iostat_cpu's queued in the lockless list.
973 */
974 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
975 struct blkcg_gq *blkg = bisc->blkg;
976 struct blkcg_gq *parent = blkg->parent;
977 struct blkg_iostat cur;
978 unsigned int seq;
979
980 WRITE_ONCE(bisc->lqueued, false);
981
982 /* fetch the current per-cpu values */
983 do {
984 seq = u64_stats_fetch_begin(&bisc->sync);
985 blkg_iostat_set(&cur, &bisc->cur);
986 } while (u64_stats_fetch_retry(&bisc->sync, seq));
987
988 blkcg_iostat_update(blkg, &cur, &bisc->last);
989
990 /* propagate global delta to parent (unless that's root) */
991 if (parent && parent->parent)
992 blkcg_iostat_update(parent, &blkg->iostat.cur,
993 &blkg->iostat.last);
994 percpu_ref_put(&blkg->refcnt);
995 }
996
997 out:
998 rcu_read_unlock();
999 }
1000
1001 /*
1002 * We source root cgroup stats from the system-wide stats to avoid
1003 * tracking the same information twice and incurring overhead when no
1004 * cgroups are defined. For that reason, cgroup_rstat_flush in
1005 * blkcg_print_stat does not actually fill out the iostat in the root
1006 * cgroup's blkcg_gq.
1007 *
1008 * However, we would like to re-use the printing code between the root and
1009 * non-root cgroups to the extent possible. For that reason, we simulate
1010 * flushing the root cgroup's stats by explicitly filling in the iostat
1011 * with disk level statistics.
1012 */
1013 static void blkcg_fill_root_iostats(void)
1014 {
1015 struct class_dev_iter iter;
1016 struct device *dev;
1017
1018 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1019 while ((dev = class_dev_iter_next(&iter))) {
1020 struct block_device *bdev = dev_to_bdev(dev);
1021 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1022 struct blkg_iostat tmp;
1023 int cpu;
1024 unsigned long flags;
1025
1026 memset(&tmp, 0, sizeof(tmp));
1027 for_each_possible_cpu(cpu) {
1028 struct disk_stats *cpu_dkstats;
1029
1030 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1031 tmp.ios[BLKG_IOSTAT_READ] +=
1032 cpu_dkstats->ios[STAT_READ];
1033 tmp.ios[BLKG_IOSTAT_WRITE] +=
1034 cpu_dkstats->ios[STAT_WRITE];
1035 tmp.ios[BLKG_IOSTAT_DISCARD] +=
1036 cpu_dkstats->ios[STAT_DISCARD];
1037 // convert sectors to bytes
1038 tmp.bytes[BLKG_IOSTAT_READ] +=
1039 cpu_dkstats->sectors[STAT_READ] << 9;
1040 tmp.bytes[BLKG_IOSTAT_WRITE] +=
1041 cpu_dkstats->sectors[STAT_WRITE] << 9;
1042 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1043 cpu_dkstats->sectors[STAT_DISCARD] << 9;
1044 }
1045
1046 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1047 blkg_iostat_set(&blkg->iostat.cur, &tmp);
1048 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1049 }
1050 }
1051
1052 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1053 {
1054 struct blkg_iostat_set *bis = &blkg->iostat;
1055 u64 rbytes, wbytes, rios, wios, dbytes, dios;
1056 const char *dname;
1057 unsigned seq;
1058 int i;
1059
1060 if (!blkg->online)
1061 return;
1062
1063 dname = blkg_dev_name(blkg);
1064 if (!dname)
1065 return;
1066
1067 seq_printf(s, "%s ", dname);
1068
1069 do {
1070 seq = u64_stats_fetch_begin(&bis->sync);
1071
1072 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1073 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1074 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1075 rios = bis->cur.ios[BLKG_IOSTAT_READ];
1076 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1077 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1078 } while (u64_stats_fetch_retry(&bis->sync, seq));
1079
1080 if (rbytes || wbytes || rios || wios) {
1081 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1082 rbytes, wbytes, rios, wios,
1083 dbytes, dios);
1084 }
1085
1086 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1087 seq_printf(s, " use_delay=%d delay_nsec=%llu",
1088 atomic_read(&blkg->use_delay),
1089 atomic64_read(&blkg->delay_nsec));
1090 }
1091
1092 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1093 struct blkcg_policy *pol = blkcg_policy[i];
1094
1095 if (!blkg->pd[i] || !pol->pd_stat_fn)
1096 continue;
1097
1098 pol->pd_stat_fn(blkg->pd[i], s);
1099 }
1100
1101 seq_puts(s, "\n");
1102 }
1103
1104 static int blkcg_print_stat(struct seq_file *sf, void *v)
1105 {
1106 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1107 struct blkcg_gq *blkg;
1108
1109 if (!seq_css(sf)->parent)
1110 blkcg_fill_root_iostats();
1111 else
1112 cgroup_rstat_flush(blkcg->css.cgroup);
1113
1114 rcu_read_lock();
1115 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1116 spin_lock_irq(&blkg->q->queue_lock);
1117 blkcg_print_one_stat(blkg, sf);
1118 spin_unlock_irq(&blkg->q->queue_lock);
1119 }
1120 rcu_read_unlock();
1121 return 0;
1122 }
1123
1124 static struct cftype blkcg_files[] = {
1125 {
1126 .name = "stat",
1127 .seq_show = blkcg_print_stat,
1128 },
1129 { } /* terminate */
1130 };
1131
1132 static struct cftype blkcg_legacy_files[] = {
1133 {
1134 .name = "reset_stats",
1135 .write_u64 = blkcg_reset_stats,
1136 },
1137 { } /* terminate */
1138 };
1139
1140 #ifdef CONFIG_CGROUP_WRITEBACK
1141 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1142 {
1143 return &css_to_blkcg(css)->cgwb_list;
1144 }
1145 #endif
1146
1147 /*
1148 * blkcg destruction is a three-stage process.
1149 *
1150 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1151 * which offlines writeback. Here we tie the next stage of blkg destruction
1152 * to the completion of writeback associated with the blkcg. This lets us
1153 * avoid punting potentially large amounts of outstanding writeback to root
1154 * while maintaining any ongoing policies. The next stage is triggered when
1155 * the nr_cgwbs count goes to zero.
1156 *
1157 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1158 * and handles the destruction of blkgs. Here the css reference held by
1159 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1160 * This work may occur in cgwb_release_workfn() on the cgwb_release
1161 * workqueue. Any submitted ios that fail to get the blkg ref will be
1162 * punted to the root_blkg.
1163 *
1164 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1165 * This finally frees the blkcg.
1166 */
1167
1168 /**
1169 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1170 * @blkcg: blkcg of interest
1171 *
1172 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1173 * is nested inside q lock, this function performs reverse double lock dancing.
1174 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1175 * blkcg_css_free to eventually be called.
1176 *
1177 * This is the blkcg counterpart of ioc_release_fn().
1178 */
1179 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1180 {
1181 might_sleep();
1182
1183 spin_lock_irq(&blkcg->lock);
1184
1185 while (!hlist_empty(&blkcg->blkg_list)) {
1186 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1187 struct blkcg_gq, blkcg_node);
1188 struct request_queue *q = blkg->q;
1189
1190 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1191 /*
1192 * Given that the system can accumulate a huge number
1193 * of blkgs in pathological cases, check to see if we
1194 * need to rescheduling to avoid softlockup.
1195 */
1196 spin_unlock_irq(&blkcg->lock);
1197 cond_resched();
1198 spin_lock_irq(&blkcg->lock);
1199 continue;
1200 }
1201
1202 blkg_destroy(blkg);
1203 spin_unlock(&q->queue_lock);
1204 }
1205
1206 spin_unlock_irq(&blkcg->lock);
1207 }
1208
1209 /**
1210 * blkcg_pin_online - pin online state
1211 * @blkcg_css: blkcg of interest
1212 *
1213 * While pinned, a blkcg is kept online. This is primarily used to
1214 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1215 * while an associated cgwb is still active.
1216 */
1217 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1218 {
1219 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1220 }
1221
1222 /**
1223 * blkcg_unpin_online - unpin online state
1224 * @blkcg_css: blkcg of interest
1225 *
1226 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1227 * that blkg doesn't go offline while an associated cgwb is still active.
1228 * When this count goes to zero, all active cgwbs have finished so the
1229 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1230 */
1231 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1232 {
1233 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1234
1235 do {
1236 if (!refcount_dec_and_test(&blkcg->online_pin))
1237 break;
1238 blkcg_destroy_blkgs(blkcg);
1239 blkcg = blkcg_parent(blkcg);
1240 } while (blkcg);
1241 }
1242
1243 /**
1244 * blkcg_css_offline - cgroup css_offline callback
1245 * @css: css of interest
1246 *
1247 * This function is called when @css is about to go away. Here the cgwbs are
1248 * offlined first and only once writeback associated with the blkcg has
1249 * finished do we start step 2 (see above).
1250 */
1251 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1252 {
1253 /* this prevents anyone from attaching or migrating to this blkcg */
1254 wb_blkcg_offline(css);
1255
1256 /* put the base online pin allowing step 2 to be triggered */
1257 blkcg_unpin_online(css);
1258 }
1259
1260 static void blkcg_css_free(struct cgroup_subsys_state *css)
1261 {
1262 struct blkcg *blkcg = css_to_blkcg(css);
1263 int i;
1264
1265 mutex_lock(&blkcg_pol_mutex);
1266
1267 list_del(&blkcg->all_blkcgs_node);
1268
1269 for (i = 0; i < BLKCG_MAX_POLS; i++)
1270 if (blkcg->cpd[i])
1271 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1272
1273 mutex_unlock(&blkcg_pol_mutex);
1274
1275 free_percpu(blkcg->lhead);
1276 kfree(blkcg);
1277 }
1278
1279 static struct cgroup_subsys_state *
1280 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1281 {
1282 struct blkcg *blkcg;
1283 int i;
1284
1285 mutex_lock(&blkcg_pol_mutex);
1286
1287 if (!parent_css) {
1288 blkcg = &blkcg_root;
1289 } else {
1290 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1291 if (!blkcg)
1292 goto unlock;
1293 }
1294
1295 if (init_blkcg_llists(blkcg))
1296 goto free_blkcg;
1297
1298 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1299 struct blkcg_policy *pol = blkcg_policy[i];
1300 struct blkcg_policy_data *cpd;
1301
1302 /*
1303 * If the policy hasn't been attached yet, wait for it
1304 * to be attached before doing anything else. Otherwise,
1305 * check if the policy requires any specific per-cgroup
1306 * data: if it does, allocate and initialize it.
1307 */
1308 if (!pol || !pol->cpd_alloc_fn)
1309 continue;
1310
1311 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1312 if (!cpd)
1313 goto free_pd_blkcg;
1314
1315 blkcg->cpd[i] = cpd;
1316 cpd->blkcg = blkcg;
1317 cpd->plid = i;
1318 }
1319
1320 spin_lock_init(&blkcg->lock);
1321 refcount_set(&blkcg->online_pin, 1);
1322 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1323 INIT_HLIST_HEAD(&blkcg->blkg_list);
1324 #ifdef CONFIG_CGROUP_WRITEBACK
1325 INIT_LIST_HEAD(&blkcg->cgwb_list);
1326 #endif
1327 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1328
1329 mutex_unlock(&blkcg_pol_mutex);
1330 return &blkcg->css;
1331
1332 free_pd_blkcg:
1333 for (i--; i >= 0; i--)
1334 if (blkcg->cpd[i])
1335 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1336 free_percpu(blkcg->lhead);
1337 free_blkcg:
1338 if (blkcg != &blkcg_root)
1339 kfree(blkcg);
1340 unlock:
1341 mutex_unlock(&blkcg_pol_mutex);
1342 return ERR_PTR(-ENOMEM);
1343 }
1344
1345 static int blkcg_css_online(struct cgroup_subsys_state *css)
1346 {
1347 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1348
1349 /*
1350 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1351 * don't go offline while cgwbs are still active on them. Pin the
1352 * parent so that offline always happens towards the root.
1353 */
1354 if (parent)
1355 blkcg_pin_online(&parent->css);
1356 return 0;
1357 }
1358
1359 int blkcg_init_disk(struct gendisk *disk)
1360 {
1361 struct request_queue *q = disk->queue;
1362 struct blkcg_gq *new_blkg, *blkg;
1363 bool preloaded;
1364 int ret;
1365
1366 INIT_LIST_HEAD(&q->blkg_list);
1367 mutex_init(&q->blkcg_mutex);
1368
1369 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1370 if (!new_blkg)
1371 return -ENOMEM;
1372
1373 preloaded = !radix_tree_preload(GFP_KERNEL);
1374
1375 /* Make sure the root blkg exists. */
1376 /* spin_lock_irq can serve as RCU read-side critical section. */
1377 spin_lock_irq(&q->queue_lock);
1378 blkg = blkg_create(&blkcg_root, disk, new_blkg);
1379 if (IS_ERR(blkg))
1380 goto err_unlock;
1381 q->root_blkg = blkg;
1382 spin_unlock_irq(&q->queue_lock);
1383
1384 if (preloaded)
1385 radix_tree_preload_end();
1386
1387 ret = blk_ioprio_init(disk);
1388 if (ret)
1389 goto err_destroy_all;
1390
1391 ret = blk_throtl_init(disk);
1392 if (ret)
1393 goto err_ioprio_exit;
1394
1395 return 0;
1396
1397 err_ioprio_exit:
1398 blk_ioprio_exit(disk);
1399 err_destroy_all:
1400 blkg_destroy_all(disk);
1401 return ret;
1402 err_unlock:
1403 spin_unlock_irq(&q->queue_lock);
1404 if (preloaded)
1405 radix_tree_preload_end();
1406 return PTR_ERR(blkg);
1407 }
1408
1409 void blkcg_exit_disk(struct gendisk *disk)
1410 {
1411 blkg_destroy_all(disk);
1412 blk_throtl_exit(disk);
1413 }
1414
1415 static void blkcg_exit(struct task_struct *tsk)
1416 {
1417 if (tsk->throttle_disk)
1418 put_disk(tsk->throttle_disk);
1419 tsk->throttle_disk = NULL;
1420 }
1421
1422 struct cgroup_subsys io_cgrp_subsys = {
1423 .css_alloc = blkcg_css_alloc,
1424 .css_online = blkcg_css_online,
1425 .css_offline = blkcg_css_offline,
1426 .css_free = blkcg_css_free,
1427 .css_rstat_flush = blkcg_rstat_flush,
1428 .dfl_cftypes = blkcg_files,
1429 .legacy_cftypes = blkcg_legacy_files,
1430 .legacy_name = "blkio",
1431 .exit = blkcg_exit,
1432 #ifdef CONFIG_MEMCG
1433 /*
1434 * This ensures that, if available, memcg is automatically enabled
1435 * together on the default hierarchy so that the owner cgroup can
1436 * be retrieved from writeback pages.
1437 */
1438 .depends_on = 1 << memory_cgrp_id,
1439 #endif
1440 };
1441 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1442
1443 /**
1444 * blkcg_activate_policy - activate a blkcg policy on a gendisk
1445 * @disk: gendisk of interest
1446 * @pol: blkcg policy to activate
1447 *
1448 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1449 * bypass mode to populate its blkgs with policy_data for @pol.
1450 *
1451 * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1452 * from IO path. Update of each blkg is protected by both queue and blkcg
1453 * locks so that holding either lock and testing blkcg_policy_enabled() is
1454 * always enough for dereferencing policy data.
1455 *
1456 * The caller is responsible for synchronizing [de]activations and policy
1457 * [un]registerations. Returns 0 on success, -errno on failure.
1458 */
1459 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1460 {
1461 struct request_queue *q = disk->queue;
1462 struct blkg_policy_data *pd_prealloc = NULL;
1463 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1464 int ret;
1465
1466 if (blkcg_policy_enabled(q, pol))
1467 return 0;
1468
1469 if (queue_is_mq(q))
1470 blk_mq_freeze_queue(q);
1471 retry:
1472 spin_lock_irq(&q->queue_lock);
1473
1474 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1475 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1476 struct blkg_policy_data *pd;
1477
1478 if (blkg->pd[pol->plid])
1479 continue;
1480
1481 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1482 if (blkg == pinned_blkg) {
1483 pd = pd_prealloc;
1484 pd_prealloc = NULL;
1485 } else {
1486 pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1487 GFP_NOWAIT | __GFP_NOWARN);
1488 }
1489
1490 if (!pd) {
1491 /*
1492 * GFP_NOWAIT failed. Free the existing one and
1493 * prealloc for @blkg w/ GFP_KERNEL.
1494 */
1495 if (pinned_blkg)
1496 blkg_put(pinned_blkg);
1497 blkg_get(blkg);
1498 pinned_blkg = blkg;
1499
1500 spin_unlock_irq(&q->queue_lock);
1501
1502 if (pd_prealloc)
1503 pol->pd_free_fn(pd_prealloc);
1504 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1505 GFP_KERNEL);
1506 if (pd_prealloc)
1507 goto retry;
1508 else
1509 goto enomem;
1510 }
1511
1512 blkg->pd[pol->plid] = pd;
1513 pd->blkg = blkg;
1514 pd->plid = pol->plid;
1515 pd->online = false;
1516 }
1517
1518 /* all allocated, init in the same order */
1519 if (pol->pd_init_fn)
1520 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1521 pol->pd_init_fn(blkg->pd[pol->plid]);
1522
1523 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1524 if (pol->pd_online_fn)
1525 pol->pd_online_fn(blkg->pd[pol->plid]);
1526 blkg->pd[pol->plid]->online = true;
1527 }
1528
1529 __set_bit(pol->plid, q->blkcg_pols);
1530 ret = 0;
1531
1532 spin_unlock_irq(&q->queue_lock);
1533 out:
1534 if (queue_is_mq(q))
1535 blk_mq_unfreeze_queue(q);
1536 if (pinned_blkg)
1537 blkg_put(pinned_blkg);
1538 if (pd_prealloc)
1539 pol->pd_free_fn(pd_prealloc);
1540 return ret;
1541
1542 enomem:
1543 /* alloc failed, nothing's initialized yet, free everything */
1544 spin_lock_irq(&q->queue_lock);
1545 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1546 struct blkcg *blkcg = blkg->blkcg;
1547
1548 spin_lock(&blkcg->lock);
1549 if (blkg->pd[pol->plid]) {
1550 pol->pd_free_fn(blkg->pd[pol->plid]);
1551 blkg->pd[pol->plid] = NULL;
1552 }
1553 spin_unlock(&blkcg->lock);
1554 }
1555 spin_unlock_irq(&q->queue_lock);
1556 ret = -ENOMEM;
1557 goto out;
1558 }
1559 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1560
1561 /**
1562 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1563 * @disk: gendisk of interest
1564 * @pol: blkcg policy to deactivate
1565 *
1566 * Deactivate @pol on @disk. Follows the same synchronization rules as
1567 * blkcg_activate_policy().
1568 */
1569 void blkcg_deactivate_policy(struct gendisk *disk,
1570 const struct blkcg_policy *pol)
1571 {
1572 struct request_queue *q = disk->queue;
1573 struct blkcg_gq *blkg;
1574
1575 if (!blkcg_policy_enabled(q, pol))
1576 return;
1577
1578 if (queue_is_mq(q))
1579 blk_mq_freeze_queue(q);
1580
1581 mutex_lock(&q->blkcg_mutex);
1582 spin_lock_irq(&q->queue_lock);
1583
1584 __clear_bit(pol->plid, q->blkcg_pols);
1585
1586 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1587 struct blkcg *blkcg = blkg->blkcg;
1588
1589 spin_lock(&blkcg->lock);
1590 if (blkg->pd[pol->plid]) {
1591 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1592 pol->pd_offline_fn(blkg->pd[pol->plid]);
1593 pol->pd_free_fn(blkg->pd[pol->plid]);
1594 blkg->pd[pol->plid] = NULL;
1595 }
1596 spin_unlock(&blkcg->lock);
1597 }
1598
1599 spin_unlock_irq(&q->queue_lock);
1600 mutex_unlock(&q->blkcg_mutex);
1601
1602 if (queue_is_mq(q))
1603 blk_mq_unfreeze_queue(q);
1604 }
1605 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1606
1607 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1608 {
1609 struct blkcg *blkcg;
1610
1611 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1612 if (blkcg->cpd[pol->plid]) {
1613 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1614 blkcg->cpd[pol->plid] = NULL;
1615 }
1616 }
1617 }
1618
1619 /**
1620 * blkcg_policy_register - register a blkcg policy
1621 * @pol: blkcg policy to register
1622 *
1623 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1624 * successful registration. Returns 0 on success and -errno on failure.
1625 */
1626 int blkcg_policy_register(struct blkcg_policy *pol)
1627 {
1628 struct blkcg *blkcg;
1629 int i, ret;
1630
1631 mutex_lock(&blkcg_pol_register_mutex);
1632 mutex_lock(&blkcg_pol_mutex);
1633
1634 /* find an empty slot */
1635 ret = -ENOSPC;
1636 for (i = 0; i < BLKCG_MAX_POLS; i++)
1637 if (!blkcg_policy[i])
1638 break;
1639 if (i >= BLKCG_MAX_POLS) {
1640 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1641 goto err_unlock;
1642 }
1643
1644 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1645 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1646 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1647 goto err_unlock;
1648
1649 /* register @pol */
1650 pol->plid = i;
1651 blkcg_policy[pol->plid] = pol;
1652
1653 /* allocate and install cpd's */
1654 if (pol->cpd_alloc_fn) {
1655 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1656 struct blkcg_policy_data *cpd;
1657
1658 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1659 if (!cpd)
1660 goto err_free_cpds;
1661
1662 blkcg->cpd[pol->plid] = cpd;
1663 cpd->blkcg = blkcg;
1664 cpd->plid = pol->plid;
1665 }
1666 }
1667
1668 mutex_unlock(&blkcg_pol_mutex);
1669
1670 /* everything is in place, add intf files for the new policy */
1671 if (pol->dfl_cftypes)
1672 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1673 pol->dfl_cftypes));
1674 if (pol->legacy_cftypes)
1675 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1676 pol->legacy_cftypes));
1677 mutex_unlock(&blkcg_pol_register_mutex);
1678 return 0;
1679
1680 err_free_cpds:
1681 if (pol->cpd_free_fn)
1682 blkcg_free_all_cpd(pol);
1683
1684 blkcg_policy[pol->plid] = NULL;
1685 err_unlock:
1686 mutex_unlock(&blkcg_pol_mutex);
1687 mutex_unlock(&blkcg_pol_register_mutex);
1688 return ret;
1689 }
1690 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1691
1692 /**
1693 * blkcg_policy_unregister - unregister a blkcg policy
1694 * @pol: blkcg policy to unregister
1695 *
1696 * Undo blkcg_policy_register(@pol). Might sleep.
1697 */
1698 void blkcg_policy_unregister(struct blkcg_policy *pol)
1699 {
1700 mutex_lock(&blkcg_pol_register_mutex);
1701
1702 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1703 goto out_unlock;
1704
1705 /* kill the intf files first */
1706 if (pol->dfl_cftypes)
1707 cgroup_rm_cftypes(pol->dfl_cftypes);
1708 if (pol->legacy_cftypes)
1709 cgroup_rm_cftypes(pol->legacy_cftypes);
1710
1711 /* remove cpds and unregister */
1712 mutex_lock(&blkcg_pol_mutex);
1713
1714 if (pol->cpd_free_fn)
1715 blkcg_free_all_cpd(pol);
1716
1717 blkcg_policy[pol->plid] = NULL;
1718
1719 mutex_unlock(&blkcg_pol_mutex);
1720 out_unlock:
1721 mutex_unlock(&blkcg_pol_register_mutex);
1722 }
1723 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1724
1725 /*
1726 * Scale the accumulated delay based on how long it has been since we updated
1727 * the delay. We only call this when we are adding delay, in case it's been a
1728 * while since we added delay, and when we are checking to see if we need to
1729 * delay a task, to account for any delays that may have occurred.
1730 */
1731 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1732 {
1733 u64 old = atomic64_read(&blkg->delay_start);
1734
1735 /* negative use_delay means no scaling, see blkcg_set_delay() */
1736 if (atomic_read(&blkg->use_delay) < 0)
1737 return;
1738
1739 /*
1740 * We only want to scale down every second. The idea here is that we
1741 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1742 * time window. We only want to throttle tasks for recent delay that
1743 * has occurred, in 1 second time windows since that's the maximum
1744 * things can be throttled. We save the current delay window in
1745 * blkg->last_delay so we know what amount is still left to be charged
1746 * to the blkg from this point onward. blkg->last_use keeps track of
1747 * the use_delay counter. The idea is if we're unthrottling the blkg we
1748 * are ok with whatever is happening now, and we can take away more of
1749 * the accumulated delay as we've already throttled enough that
1750 * everybody is happy with their IO latencies.
1751 */
1752 if (time_before64(old + NSEC_PER_SEC, now) &&
1753 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1754 u64 cur = atomic64_read(&blkg->delay_nsec);
1755 u64 sub = min_t(u64, blkg->last_delay, now - old);
1756 int cur_use = atomic_read(&blkg->use_delay);
1757
1758 /*
1759 * We've been unthrottled, subtract a larger chunk of our
1760 * accumulated delay.
1761 */
1762 if (cur_use < blkg->last_use)
1763 sub = max_t(u64, sub, blkg->last_delay >> 1);
1764
1765 /*
1766 * This shouldn't happen, but handle it anyway. Our delay_nsec
1767 * should only ever be growing except here where we subtract out
1768 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1769 * rather not end up with negative numbers.
1770 */
1771 if (unlikely(cur < sub)) {
1772 atomic64_set(&blkg->delay_nsec, 0);
1773 blkg->last_delay = 0;
1774 } else {
1775 atomic64_sub(sub, &blkg->delay_nsec);
1776 blkg->last_delay = cur - sub;
1777 }
1778 blkg->last_use = cur_use;
1779 }
1780 }
1781
1782 /*
1783 * This is called when we want to actually walk up the hierarchy and check to
1784 * see if we need to throttle, and then actually throttle if there is some
1785 * accumulated delay. This should only be called upon return to user space so
1786 * we're not holding some lock that would induce a priority inversion.
1787 */
1788 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1789 {
1790 unsigned long pflags;
1791 bool clamp;
1792 u64 now = ktime_to_ns(ktime_get());
1793 u64 exp;
1794 u64 delay_nsec = 0;
1795 int tok;
1796
1797 while (blkg->parent) {
1798 int use_delay = atomic_read(&blkg->use_delay);
1799
1800 if (use_delay) {
1801 u64 this_delay;
1802
1803 blkcg_scale_delay(blkg, now);
1804 this_delay = atomic64_read(&blkg->delay_nsec);
1805 if (this_delay > delay_nsec) {
1806 delay_nsec = this_delay;
1807 clamp = use_delay > 0;
1808 }
1809 }
1810 blkg = blkg->parent;
1811 }
1812
1813 if (!delay_nsec)
1814 return;
1815
1816 /*
1817 * Let's not sleep for all eternity if we've amassed a huge delay.
1818 * Swapping or metadata IO can accumulate 10's of seconds worth of
1819 * delay, and we want userspace to be able to do _something_ so cap the
1820 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1821 * tasks will be delayed for 0.25 second for every syscall. If
1822 * blkcg_set_delay() was used as indicated by negative use_delay, the
1823 * caller is responsible for regulating the range.
1824 */
1825 if (clamp)
1826 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1827
1828 if (use_memdelay)
1829 psi_memstall_enter(&pflags);
1830
1831 exp = ktime_add_ns(now, delay_nsec);
1832 tok = io_schedule_prepare();
1833 do {
1834 __set_current_state(TASK_KILLABLE);
1835 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1836 break;
1837 } while (!fatal_signal_pending(current));
1838 io_schedule_finish(tok);
1839
1840 if (use_memdelay)
1841 psi_memstall_leave(&pflags);
1842 }
1843
1844 /**
1845 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1846 *
1847 * This is only called if we've been marked with set_notify_resume(). Obviously
1848 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1849 * check to see if current->throttle_disk is set and if not this doesn't do
1850 * anything. This should only ever be called by the resume code, it's not meant
1851 * to be called by people willy-nilly as it will actually do the work to
1852 * throttle the task if it is setup for throttling.
1853 */
1854 void blkcg_maybe_throttle_current(void)
1855 {
1856 struct gendisk *disk = current->throttle_disk;
1857 struct blkcg *blkcg;
1858 struct blkcg_gq *blkg;
1859 bool use_memdelay = current->use_memdelay;
1860
1861 if (!disk)
1862 return;
1863
1864 current->throttle_disk = NULL;
1865 current->use_memdelay = false;
1866
1867 rcu_read_lock();
1868 blkcg = css_to_blkcg(blkcg_css());
1869 if (!blkcg)
1870 goto out;
1871 blkg = blkg_lookup(blkcg, disk->queue);
1872 if (!blkg)
1873 goto out;
1874 if (!blkg_tryget(blkg))
1875 goto out;
1876 rcu_read_unlock();
1877
1878 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1879 blkg_put(blkg);
1880 put_disk(disk);
1881 return;
1882 out:
1883 rcu_read_unlock();
1884 }
1885
1886 /**
1887 * blkcg_schedule_throttle - this task needs to check for throttling
1888 * @disk: disk to throttle
1889 * @use_memdelay: do we charge this to memory delay for PSI
1890 *
1891 * This is called by the IO controller when we know there's delay accumulated
1892 * for the blkg for this task. We do not pass the blkg because there are places
1893 * we call this that may not have that information, the swapping code for
1894 * instance will only have a block_device at that point. This set's the
1895 * notify_resume for the task to check and see if it requires throttling before
1896 * returning to user space.
1897 *
1898 * We will only schedule once per syscall. You can call this over and over
1899 * again and it will only do the check once upon return to user space, and only
1900 * throttle once. If the task needs to be throttled again it'll need to be
1901 * re-set at the next time we see the task.
1902 */
1903 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1904 {
1905 if (unlikely(current->flags & PF_KTHREAD))
1906 return;
1907
1908 if (current->throttle_disk != disk) {
1909 if (test_bit(GD_DEAD, &disk->state))
1910 return;
1911 get_device(disk_to_dev(disk));
1912
1913 if (current->throttle_disk)
1914 put_disk(current->throttle_disk);
1915 current->throttle_disk = disk;
1916 }
1917
1918 if (use_memdelay)
1919 current->use_memdelay = use_memdelay;
1920 set_notify_resume(current);
1921 }
1922
1923 /**
1924 * blkcg_add_delay - add delay to this blkg
1925 * @blkg: blkg of interest
1926 * @now: the current time in nanoseconds
1927 * @delta: how many nanoseconds of delay to add
1928 *
1929 * Charge @delta to the blkg's current delay accumulation. This is used to
1930 * throttle tasks if an IO controller thinks we need more throttling.
1931 */
1932 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1933 {
1934 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1935 return;
1936 blkcg_scale_delay(blkg, now);
1937 atomic64_add(delta, &blkg->delay_nsec);
1938 }
1939
1940 /**
1941 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1942 * @bio: target bio
1943 * @css: target css
1944 *
1945 * As the failure mode here is to walk up the blkg tree, this ensure that the
1946 * blkg->parent pointers are always valid. This returns the blkg that it ended
1947 * up taking a reference on or %NULL if no reference was taken.
1948 */
1949 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1950 struct cgroup_subsys_state *css)
1951 {
1952 struct blkcg_gq *blkg, *ret_blkg = NULL;
1953
1954 rcu_read_lock();
1955 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
1956 while (blkg) {
1957 if (blkg_tryget(blkg)) {
1958 ret_blkg = blkg;
1959 break;
1960 }
1961 blkg = blkg->parent;
1962 }
1963 rcu_read_unlock();
1964
1965 return ret_blkg;
1966 }
1967
1968 /**
1969 * bio_associate_blkg_from_css - associate a bio with a specified css
1970 * @bio: target bio
1971 * @css: target css
1972 *
1973 * Associate @bio with the blkg found by combining the css's blkg and the
1974 * request_queue of the @bio. An association failure is handled by walking up
1975 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1976 * and q->root_blkg. This situation only happens when a cgroup is dying and
1977 * then the remaining bios will spill to the closest alive blkg.
1978 *
1979 * A reference will be taken on the blkg and will be released when @bio is
1980 * freed.
1981 */
1982 void bio_associate_blkg_from_css(struct bio *bio,
1983 struct cgroup_subsys_state *css)
1984 {
1985 if (bio->bi_blkg)
1986 blkg_put(bio->bi_blkg);
1987
1988 if (css && css->parent) {
1989 bio->bi_blkg = blkg_tryget_closest(bio, css);
1990 } else {
1991 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1992 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1993 }
1994 }
1995 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1996
1997 /**
1998 * bio_associate_blkg - associate a bio with a blkg
1999 * @bio: target bio
2000 *
2001 * Associate @bio with the blkg found from the bio's css and request_queue.
2002 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2003 * already associated, the css is reused and association redone as the
2004 * request_queue may have changed.
2005 */
2006 void bio_associate_blkg(struct bio *bio)
2007 {
2008 struct cgroup_subsys_state *css;
2009
2010 rcu_read_lock();
2011
2012 if (bio->bi_blkg)
2013 css = bio_blkcg_css(bio);
2014 else
2015 css = blkcg_css();
2016
2017 bio_associate_blkg_from_css(bio, css);
2018
2019 rcu_read_unlock();
2020 }
2021 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2022
2023 /**
2024 * bio_clone_blkg_association - clone blkg association from src to dst bio
2025 * @dst: destination bio
2026 * @src: source bio
2027 */
2028 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2029 {
2030 if (src->bi_blkg)
2031 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2032 }
2033 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2034
2035 static int blk_cgroup_io_type(struct bio *bio)
2036 {
2037 if (op_is_discard(bio->bi_opf))
2038 return BLKG_IOSTAT_DISCARD;
2039 if (op_is_write(bio->bi_opf))
2040 return BLKG_IOSTAT_WRITE;
2041 return BLKG_IOSTAT_READ;
2042 }
2043
2044 void blk_cgroup_bio_start(struct bio *bio)
2045 {
2046 struct blkcg *blkcg = bio->bi_blkg->blkcg;
2047 int rwd = blk_cgroup_io_type(bio), cpu;
2048 struct blkg_iostat_set *bis;
2049 unsigned long flags;
2050
2051 /* Root-level stats are sourced from system-wide IO stats */
2052 if (!cgroup_parent(blkcg->css.cgroup))
2053 return;
2054
2055 cpu = get_cpu();
2056 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2057 flags = u64_stats_update_begin_irqsave(&bis->sync);
2058
2059 /*
2060 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2061 * bio and we would have already accounted for the size of the bio.
2062 */
2063 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2064 bio_set_flag(bio, BIO_CGROUP_ACCT);
2065 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2066 }
2067 bis->cur.ios[rwd]++;
2068
2069 /*
2070 * If the iostat_cpu isn't in a lockless list, put it into the
2071 * list to indicate that a stat update is pending.
2072 */
2073 if (!READ_ONCE(bis->lqueued)) {
2074 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2075
2076 llist_add(&bis->lnode, lhead);
2077 WRITE_ONCE(bis->lqueued, true);
2078 percpu_ref_get(&bis->blkg->refcnt);
2079 }
2080
2081 u64_stats_update_end_irqrestore(&bis->sync, flags);
2082 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
2083 cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2084 put_cpu();
2085 }
2086
2087 bool blk_cgroup_congested(void)
2088 {
2089 struct cgroup_subsys_state *css;
2090 bool ret = false;
2091
2092 rcu_read_lock();
2093 for (css = blkcg_css(); css; css = css->parent) {
2094 if (atomic_read(&css->cgroup->congestion_count)) {
2095 ret = true;
2096 break;
2097 }
2098 }
2099 rcu_read_unlock();
2100 return ret;
2101 }
2102
2103 module_param(blkcg_debug_stats, bool, 0644);
2104 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");