]> git.ipfire.org Git - people/ms/linux.git/blob - block/blk-cgroup.c
Merge tag 'tegra-for-5.20-dt-bindings' of git://git.kernel.org/pub/scm/linux/kernel...
[people/ms/linux.git] / block / blk-cgroup.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36
37 /*
38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40 * policy [un]register operations including cgroup file additions /
41 * removals. Putting cgroup file registration outside blkcg_pol_mutex
42 * allows grabbing it from cgroup callbacks.
43 */
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
46
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
49
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
52
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54
55 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
56
57 bool blkcg_debug_stats = false;
58 static struct workqueue_struct *blkcg_punt_bio_wq;
59
60 #define BLKG_DESTROY_BATCH_SIZE 64
61
62 /**
63 * blkcg_css - find the current css
64 *
65 * Find the css associated with either the kthread or the current task.
66 * This may return a dying css, so it is up to the caller to use tryget logic
67 * to confirm it is alive and well.
68 */
69 static struct cgroup_subsys_state *blkcg_css(void)
70 {
71 struct cgroup_subsys_state *css;
72
73 css = kthread_blkcg();
74 if (css)
75 return css;
76 return task_css(current, io_cgrp_id);
77 }
78
79 static bool blkcg_policy_enabled(struct request_queue *q,
80 const struct blkcg_policy *pol)
81 {
82 return pol && test_bit(pol->plid, q->blkcg_pols);
83 }
84
85 static void blkg_free_workfn(struct work_struct *work)
86 {
87 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
88 free_work);
89 int i;
90
91 for (i = 0; i < BLKCG_MAX_POLS; i++)
92 if (blkg->pd[i])
93 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
94
95 if (blkg->q)
96 blk_put_queue(blkg->q);
97 free_percpu(blkg->iostat_cpu);
98 percpu_ref_exit(&blkg->refcnt);
99 kfree(blkg);
100 }
101
102 /**
103 * blkg_free - free a blkg
104 * @blkg: blkg to free
105 *
106 * Free @blkg which may be partially allocated.
107 */
108 static void blkg_free(struct blkcg_gq *blkg)
109 {
110 if (!blkg)
111 return;
112
113 /*
114 * Both ->pd_free_fn() and request queue's release handler may
115 * sleep, so free us by scheduling one work func
116 */
117 INIT_WORK(&blkg->free_work, blkg_free_workfn);
118 schedule_work(&blkg->free_work);
119 }
120
121 static void __blkg_release(struct rcu_head *rcu)
122 {
123 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
124
125 WARN_ON(!bio_list_empty(&blkg->async_bios));
126
127 /* release the blkcg and parent blkg refs this blkg has been holding */
128 css_put(&blkg->blkcg->css);
129 if (blkg->parent)
130 blkg_put(blkg->parent);
131 blkg_free(blkg);
132 }
133
134 /*
135 * A group is RCU protected, but having an rcu lock does not mean that one
136 * can access all the fields of blkg and assume these are valid. For
137 * example, don't try to follow throtl_data and request queue links.
138 *
139 * Having a reference to blkg under an rcu allows accesses to only values
140 * local to groups like group stats and group rate limits.
141 */
142 static void blkg_release(struct percpu_ref *ref)
143 {
144 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
145
146 call_rcu(&blkg->rcu_head, __blkg_release);
147 }
148
149 static void blkg_async_bio_workfn(struct work_struct *work)
150 {
151 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
152 async_bio_work);
153 struct bio_list bios = BIO_EMPTY_LIST;
154 struct bio *bio;
155 struct blk_plug plug;
156 bool need_plug = false;
157
158 /* as long as there are pending bios, @blkg can't go away */
159 spin_lock_bh(&blkg->async_bio_lock);
160 bio_list_merge(&bios, &blkg->async_bios);
161 bio_list_init(&blkg->async_bios);
162 spin_unlock_bh(&blkg->async_bio_lock);
163
164 /* start plug only when bio_list contains at least 2 bios */
165 if (bios.head && bios.head->bi_next) {
166 need_plug = true;
167 blk_start_plug(&plug);
168 }
169 while ((bio = bio_list_pop(&bios)))
170 submit_bio(bio);
171 if (need_plug)
172 blk_finish_plug(&plug);
173 }
174
175 /**
176 * bio_blkcg_css - return the blkcg CSS associated with a bio
177 * @bio: target bio
178 *
179 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
180 * associated. Callers are expected to either handle %NULL or know association
181 * has been done prior to calling this.
182 */
183 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
184 {
185 if (!bio || !bio->bi_blkg)
186 return NULL;
187 return &bio->bi_blkg->blkcg->css;
188 }
189 EXPORT_SYMBOL_GPL(bio_blkcg_css);
190
191 /**
192 * blkcg_parent - get the parent of a blkcg
193 * @blkcg: blkcg of interest
194 *
195 * Return the parent blkcg of @blkcg. Can be called anytime.
196 */
197 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
198 {
199 return css_to_blkcg(blkcg->css.parent);
200 }
201
202 /**
203 * blkg_alloc - allocate a blkg
204 * @blkcg: block cgroup the new blkg is associated with
205 * @q: request_queue the new blkg is associated with
206 * @gfp_mask: allocation mask to use
207 *
208 * Allocate a new blkg assocating @blkcg and @q.
209 */
210 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
211 gfp_t gfp_mask)
212 {
213 struct blkcg_gq *blkg;
214 int i, cpu;
215
216 /* alloc and init base part */
217 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
218 if (!blkg)
219 return NULL;
220
221 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
222 goto err_free;
223
224 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
225 if (!blkg->iostat_cpu)
226 goto err_free;
227
228 if (!blk_get_queue(q))
229 goto err_free;
230
231 blkg->q = q;
232 INIT_LIST_HEAD(&blkg->q_node);
233 spin_lock_init(&blkg->async_bio_lock);
234 bio_list_init(&blkg->async_bios);
235 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
236 blkg->blkcg = blkcg;
237
238 u64_stats_init(&blkg->iostat.sync);
239 for_each_possible_cpu(cpu)
240 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
241
242 for (i = 0; i < BLKCG_MAX_POLS; i++) {
243 struct blkcg_policy *pol = blkcg_policy[i];
244 struct blkg_policy_data *pd;
245
246 if (!blkcg_policy_enabled(q, pol))
247 continue;
248
249 /* alloc per-policy data and attach it to blkg */
250 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
251 if (!pd)
252 goto err_free;
253
254 blkg->pd[i] = pd;
255 pd->blkg = blkg;
256 pd->plid = i;
257 }
258
259 return blkg;
260
261 err_free:
262 blkg_free(blkg);
263 return NULL;
264 }
265
266 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
267 struct request_queue *q, bool update_hint)
268 {
269 struct blkcg_gq *blkg;
270
271 /*
272 * Hint didn't match. Look up from the radix tree. Note that the
273 * hint can only be updated under queue_lock as otherwise @blkg
274 * could have already been removed from blkg_tree. The caller is
275 * responsible for grabbing queue_lock if @update_hint.
276 */
277 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
278 if (blkg && blkg->q == q) {
279 if (update_hint) {
280 lockdep_assert_held(&q->queue_lock);
281 rcu_assign_pointer(blkcg->blkg_hint, blkg);
282 }
283 return blkg;
284 }
285
286 return NULL;
287 }
288 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
289
290 /*
291 * If @new_blkg is %NULL, this function tries to allocate a new one as
292 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
293 */
294 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
295 struct request_queue *q,
296 struct blkcg_gq *new_blkg)
297 {
298 struct blkcg_gq *blkg;
299 int i, ret;
300
301 lockdep_assert_held(&q->queue_lock);
302
303 /* request_queue is dying, do not create/recreate a blkg */
304 if (blk_queue_dying(q)) {
305 ret = -ENODEV;
306 goto err_free_blkg;
307 }
308
309 /* blkg holds a reference to blkcg */
310 if (!css_tryget_online(&blkcg->css)) {
311 ret = -ENODEV;
312 goto err_free_blkg;
313 }
314
315 /* allocate */
316 if (!new_blkg) {
317 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
318 if (unlikely(!new_blkg)) {
319 ret = -ENOMEM;
320 goto err_put_css;
321 }
322 }
323 blkg = new_blkg;
324
325 /* link parent */
326 if (blkcg_parent(blkcg)) {
327 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
328 if (WARN_ON_ONCE(!blkg->parent)) {
329 ret = -ENODEV;
330 goto err_put_css;
331 }
332 blkg_get(blkg->parent);
333 }
334
335 /* invoke per-policy init */
336 for (i = 0; i < BLKCG_MAX_POLS; i++) {
337 struct blkcg_policy *pol = blkcg_policy[i];
338
339 if (blkg->pd[i] && pol->pd_init_fn)
340 pol->pd_init_fn(blkg->pd[i]);
341 }
342
343 /* insert */
344 spin_lock(&blkcg->lock);
345 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
346 if (likely(!ret)) {
347 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
348 list_add(&blkg->q_node, &q->blkg_list);
349
350 for (i = 0; i < BLKCG_MAX_POLS; i++) {
351 struct blkcg_policy *pol = blkcg_policy[i];
352
353 if (blkg->pd[i] && pol->pd_online_fn)
354 pol->pd_online_fn(blkg->pd[i]);
355 }
356 }
357 blkg->online = true;
358 spin_unlock(&blkcg->lock);
359
360 if (!ret)
361 return blkg;
362
363 /* @blkg failed fully initialized, use the usual release path */
364 blkg_put(blkg);
365 return ERR_PTR(ret);
366
367 err_put_css:
368 css_put(&blkcg->css);
369 err_free_blkg:
370 blkg_free(new_blkg);
371 return ERR_PTR(ret);
372 }
373
374 /**
375 * blkg_lookup_create - lookup blkg, try to create one if not there
376 * @blkcg: blkcg of interest
377 * @q: request_queue of interest
378 *
379 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to
380 * create one. blkg creation is performed recursively from blkcg_root such
381 * that all non-root blkg's have access to the parent blkg. This function
382 * should be called under RCU read lock and takes @q->queue_lock.
383 *
384 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
385 * down from root.
386 */
387 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
388 struct request_queue *q)
389 {
390 struct blkcg_gq *blkg;
391 unsigned long flags;
392
393 WARN_ON_ONCE(!rcu_read_lock_held());
394
395 blkg = blkg_lookup(blkcg, q);
396 if (blkg)
397 return blkg;
398
399 spin_lock_irqsave(&q->queue_lock, flags);
400 blkg = __blkg_lookup(blkcg, q, true);
401 if (blkg)
402 goto found;
403
404 /*
405 * Create blkgs walking down from blkcg_root to @blkcg, so that all
406 * non-root blkgs have access to their parents. Returns the closest
407 * blkg to the intended blkg should blkg_create() fail.
408 */
409 while (true) {
410 struct blkcg *pos = blkcg;
411 struct blkcg *parent = blkcg_parent(blkcg);
412 struct blkcg_gq *ret_blkg = q->root_blkg;
413
414 while (parent) {
415 blkg = __blkg_lookup(parent, q, false);
416 if (blkg) {
417 /* remember closest blkg */
418 ret_blkg = blkg;
419 break;
420 }
421 pos = parent;
422 parent = blkcg_parent(parent);
423 }
424
425 blkg = blkg_create(pos, q, NULL);
426 if (IS_ERR(blkg)) {
427 blkg = ret_blkg;
428 break;
429 }
430 if (pos == blkcg)
431 break;
432 }
433
434 found:
435 spin_unlock_irqrestore(&q->queue_lock, flags);
436 return blkg;
437 }
438
439 static void blkg_destroy(struct blkcg_gq *blkg)
440 {
441 struct blkcg *blkcg = blkg->blkcg;
442 int i;
443
444 lockdep_assert_held(&blkg->q->queue_lock);
445 lockdep_assert_held(&blkcg->lock);
446
447 /* Something wrong if we are trying to remove same group twice */
448 WARN_ON_ONCE(list_empty(&blkg->q_node));
449 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
450
451 for (i = 0; i < BLKCG_MAX_POLS; i++) {
452 struct blkcg_policy *pol = blkcg_policy[i];
453
454 if (blkg->pd[i] && pol->pd_offline_fn)
455 pol->pd_offline_fn(blkg->pd[i]);
456 }
457
458 blkg->online = false;
459
460 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
461 list_del_init(&blkg->q_node);
462 hlist_del_init_rcu(&blkg->blkcg_node);
463
464 /*
465 * Both setting lookup hint to and clearing it from @blkg are done
466 * under queue_lock. If it's not pointing to @blkg now, it never
467 * will. Hint assignment itself can race safely.
468 */
469 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
470 rcu_assign_pointer(blkcg->blkg_hint, NULL);
471
472 /*
473 * Put the reference taken at the time of creation so that when all
474 * queues are gone, group can be destroyed.
475 */
476 percpu_ref_kill(&blkg->refcnt);
477 }
478
479 /**
480 * blkg_destroy_all - destroy all blkgs associated with a request_queue
481 * @q: request_queue of interest
482 *
483 * Destroy all blkgs associated with @q.
484 */
485 static void blkg_destroy_all(struct request_queue *q)
486 {
487 struct blkcg_gq *blkg, *n;
488 int count = BLKG_DESTROY_BATCH_SIZE;
489
490 restart:
491 spin_lock_irq(&q->queue_lock);
492 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
493 struct blkcg *blkcg = blkg->blkcg;
494
495 spin_lock(&blkcg->lock);
496 blkg_destroy(blkg);
497 spin_unlock(&blkcg->lock);
498
499 /*
500 * in order to avoid holding the spin lock for too long, release
501 * it when a batch of blkgs are destroyed.
502 */
503 if (!(--count)) {
504 count = BLKG_DESTROY_BATCH_SIZE;
505 spin_unlock_irq(&q->queue_lock);
506 cond_resched();
507 goto restart;
508 }
509 }
510
511 q->root_blkg = NULL;
512 spin_unlock_irq(&q->queue_lock);
513 }
514
515 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
516 struct cftype *cftype, u64 val)
517 {
518 struct blkcg *blkcg = css_to_blkcg(css);
519 struct blkcg_gq *blkg;
520 int i, cpu;
521
522 mutex_lock(&blkcg_pol_mutex);
523 spin_lock_irq(&blkcg->lock);
524
525 /*
526 * Note that stat reset is racy - it doesn't synchronize against
527 * stat updates. This is a debug feature which shouldn't exist
528 * anyway. If you get hit by a race, retry.
529 */
530 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
531 for_each_possible_cpu(cpu) {
532 struct blkg_iostat_set *bis =
533 per_cpu_ptr(blkg->iostat_cpu, cpu);
534 memset(bis, 0, sizeof(*bis));
535 }
536 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
537
538 for (i = 0; i < BLKCG_MAX_POLS; i++) {
539 struct blkcg_policy *pol = blkcg_policy[i];
540
541 if (blkg->pd[i] && pol->pd_reset_stats_fn)
542 pol->pd_reset_stats_fn(blkg->pd[i]);
543 }
544 }
545
546 spin_unlock_irq(&blkcg->lock);
547 mutex_unlock(&blkcg_pol_mutex);
548 return 0;
549 }
550
551 const char *blkg_dev_name(struct blkcg_gq *blkg)
552 {
553 if (!blkg->q->disk || !blkg->q->disk->bdi->dev)
554 return NULL;
555 return bdi_dev_name(blkg->q->disk->bdi);
556 }
557
558 /**
559 * blkcg_print_blkgs - helper for printing per-blkg data
560 * @sf: seq_file to print to
561 * @blkcg: blkcg of interest
562 * @prfill: fill function to print out a blkg
563 * @pol: policy in question
564 * @data: data to be passed to @prfill
565 * @show_total: to print out sum of prfill return values or not
566 *
567 * This function invokes @prfill on each blkg of @blkcg if pd for the
568 * policy specified by @pol exists. @prfill is invoked with @sf, the
569 * policy data and @data and the matching queue lock held. If @show_total
570 * is %true, the sum of the return values from @prfill is printed with
571 * "Total" label at the end.
572 *
573 * This is to be used to construct print functions for
574 * cftype->read_seq_string method.
575 */
576 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
577 u64 (*prfill)(struct seq_file *,
578 struct blkg_policy_data *, int),
579 const struct blkcg_policy *pol, int data,
580 bool show_total)
581 {
582 struct blkcg_gq *blkg;
583 u64 total = 0;
584
585 rcu_read_lock();
586 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
587 spin_lock_irq(&blkg->q->queue_lock);
588 if (blkcg_policy_enabled(blkg->q, pol))
589 total += prfill(sf, blkg->pd[pol->plid], data);
590 spin_unlock_irq(&blkg->q->queue_lock);
591 }
592 rcu_read_unlock();
593
594 if (show_total)
595 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
596 }
597 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
598
599 /**
600 * __blkg_prfill_u64 - prfill helper for a single u64 value
601 * @sf: seq_file to print to
602 * @pd: policy private data of interest
603 * @v: value to print
604 *
605 * Print @v to @sf for the device assocaited with @pd.
606 */
607 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
608 {
609 const char *dname = blkg_dev_name(pd->blkg);
610
611 if (!dname)
612 return 0;
613
614 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
615 return v;
616 }
617 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
618
619 /* Performs queue bypass and policy enabled checks then looks up blkg. */
620 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
621 const struct blkcg_policy *pol,
622 struct request_queue *q)
623 {
624 WARN_ON_ONCE(!rcu_read_lock_held());
625 lockdep_assert_held(&q->queue_lock);
626
627 if (!blkcg_policy_enabled(q, pol))
628 return ERR_PTR(-EOPNOTSUPP);
629 return __blkg_lookup(blkcg, q, true /* update_hint */);
630 }
631
632 /**
633 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
634 * @inputp: input string pointer
635 *
636 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
637 * from @input and get and return the matching bdev. *@inputp is
638 * updated to point past the device node prefix. Returns an ERR_PTR()
639 * value on error.
640 *
641 * Use this function iff blkg_conf_prep() can't be used for some reason.
642 */
643 struct block_device *blkcg_conf_open_bdev(char **inputp)
644 {
645 char *input = *inputp;
646 unsigned int major, minor;
647 struct block_device *bdev;
648 int key_len;
649
650 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
651 return ERR_PTR(-EINVAL);
652
653 input += key_len;
654 if (!isspace(*input))
655 return ERR_PTR(-EINVAL);
656 input = skip_spaces(input);
657
658 bdev = blkdev_get_no_open(MKDEV(major, minor));
659 if (!bdev)
660 return ERR_PTR(-ENODEV);
661 if (bdev_is_partition(bdev)) {
662 blkdev_put_no_open(bdev);
663 return ERR_PTR(-ENODEV);
664 }
665
666 *inputp = input;
667 return bdev;
668 }
669
670 /**
671 * blkg_conf_prep - parse and prepare for per-blkg config update
672 * @blkcg: target block cgroup
673 * @pol: target policy
674 * @input: input string
675 * @ctx: blkg_conf_ctx to be filled
676 *
677 * Parse per-blkg config update from @input and initialize @ctx with the
678 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
679 * part of @input following MAJ:MIN. This function returns with RCU read
680 * lock and queue lock held and must be paired with blkg_conf_finish().
681 */
682 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
683 char *input, struct blkg_conf_ctx *ctx)
684 __acquires(rcu) __acquires(&bdev->bd_queue->queue_lock)
685 {
686 struct block_device *bdev;
687 struct request_queue *q;
688 struct blkcg_gq *blkg;
689 int ret;
690
691 bdev = blkcg_conf_open_bdev(&input);
692 if (IS_ERR(bdev))
693 return PTR_ERR(bdev);
694
695 q = bdev_get_queue(bdev);
696
697 /*
698 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
699 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
700 */
701 ret = blk_queue_enter(q, 0);
702 if (ret)
703 goto fail;
704
705 rcu_read_lock();
706 spin_lock_irq(&q->queue_lock);
707
708 blkg = blkg_lookup_check(blkcg, pol, q);
709 if (IS_ERR(blkg)) {
710 ret = PTR_ERR(blkg);
711 goto fail_unlock;
712 }
713
714 if (blkg)
715 goto success;
716
717 /*
718 * Create blkgs walking down from blkcg_root to @blkcg, so that all
719 * non-root blkgs have access to their parents.
720 */
721 while (true) {
722 struct blkcg *pos = blkcg;
723 struct blkcg *parent;
724 struct blkcg_gq *new_blkg;
725
726 parent = blkcg_parent(blkcg);
727 while (parent && !__blkg_lookup(parent, q, false)) {
728 pos = parent;
729 parent = blkcg_parent(parent);
730 }
731
732 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
733 spin_unlock_irq(&q->queue_lock);
734 rcu_read_unlock();
735
736 new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
737 if (unlikely(!new_blkg)) {
738 ret = -ENOMEM;
739 goto fail_exit_queue;
740 }
741
742 if (radix_tree_preload(GFP_KERNEL)) {
743 blkg_free(new_blkg);
744 ret = -ENOMEM;
745 goto fail_exit_queue;
746 }
747
748 rcu_read_lock();
749 spin_lock_irq(&q->queue_lock);
750
751 blkg = blkg_lookup_check(pos, pol, q);
752 if (IS_ERR(blkg)) {
753 ret = PTR_ERR(blkg);
754 blkg_free(new_blkg);
755 goto fail_preloaded;
756 }
757
758 if (blkg) {
759 blkg_free(new_blkg);
760 } else {
761 blkg = blkg_create(pos, q, new_blkg);
762 if (IS_ERR(blkg)) {
763 ret = PTR_ERR(blkg);
764 goto fail_preloaded;
765 }
766 }
767
768 radix_tree_preload_end();
769
770 if (pos == blkcg)
771 goto success;
772 }
773 success:
774 blk_queue_exit(q);
775 ctx->bdev = bdev;
776 ctx->blkg = blkg;
777 ctx->body = input;
778 return 0;
779
780 fail_preloaded:
781 radix_tree_preload_end();
782 fail_unlock:
783 spin_unlock_irq(&q->queue_lock);
784 rcu_read_unlock();
785 fail_exit_queue:
786 blk_queue_exit(q);
787 fail:
788 blkdev_put_no_open(bdev);
789 /*
790 * If queue was bypassing, we should retry. Do so after a
791 * short msleep(). It isn't strictly necessary but queue
792 * can be bypassing for some time and it's always nice to
793 * avoid busy looping.
794 */
795 if (ret == -EBUSY) {
796 msleep(10);
797 ret = restart_syscall();
798 }
799 return ret;
800 }
801 EXPORT_SYMBOL_GPL(blkg_conf_prep);
802
803 /**
804 * blkg_conf_finish - finish up per-blkg config update
805 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
806 *
807 * Finish up after per-blkg config update. This function must be paired
808 * with blkg_conf_prep().
809 */
810 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
811 __releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu)
812 {
813 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
814 rcu_read_unlock();
815 blkdev_put_no_open(ctx->bdev);
816 }
817 EXPORT_SYMBOL_GPL(blkg_conf_finish);
818
819 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
820 {
821 int i;
822
823 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
824 dst->bytes[i] = src->bytes[i];
825 dst->ios[i] = src->ios[i];
826 }
827 }
828
829 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
830 {
831 int i;
832
833 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
834 dst->bytes[i] += src->bytes[i];
835 dst->ios[i] += src->ios[i];
836 }
837 }
838
839 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
840 {
841 int i;
842
843 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
844 dst->bytes[i] -= src->bytes[i];
845 dst->ios[i] -= src->ios[i];
846 }
847 }
848
849 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
850 {
851 struct blkcg *blkcg = css_to_blkcg(css);
852 struct blkcg_gq *blkg;
853
854 /* Root-level stats are sourced from system-wide IO stats */
855 if (!cgroup_parent(css->cgroup))
856 return;
857
858 rcu_read_lock();
859
860 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
861 struct blkcg_gq *parent = blkg->parent;
862 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
863 struct blkg_iostat cur, delta;
864 unsigned long flags;
865 unsigned int seq;
866
867 /* fetch the current per-cpu values */
868 do {
869 seq = u64_stats_fetch_begin(&bisc->sync);
870 blkg_iostat_set(&cur, &bisc->cur);
871 } while (u64_stats_fetch_retry(&bisc->sync, seq));
872
873 /* propagate percpu delta to global */
874 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
875 blkg_iostat_set(&delta, &cur);
876 blkg_iostat_sub(&delta, &bisc->last);
877 blkg_iostat_add(&blkg->iostat.cur, &delta);
878 blkg_iostat_add(&bisc->last, &delta);
879 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
880
881 /* propagate global delta to parent (unless that's root) */
882 if (parent && parent->parent) {
883 flags = u64_stats_update_begin_irqsave(&parent->iostat.sync);
884 blkg_iostat_set(&delta, &blkg->iostat.cur);
885 blkg_iostat_sub(&delta, &blkg->iostat.last);
886 blkg_iostat_add(&parent->iostat.cur, &delta);
887 blkg_iostat_add(&blkg->iostat.last, &delta);
888 u64_stats_update_end_irqrestore(&parent->iostat.sync, flags);
889 }
890 }
891
892 rcu_read_unlock();
893 }
894
895 /*
896 * We source root cgroup stats from the system-wide stats to avoid
897 * tracking the same information twice and incurring overhead when no
898 * cgroups are defined. For that reason, cgroup_rstat_flush in
899 * blkcg_print_stat does not actually fill out the iostat in the root
900 * cgroup's blkcg_gq.
901 *
902 * However, we would like to re-use the printing code between the root and
903 * non-root cgroups to the extent possible. For that reason, we simulate
904 * flushing the root cgroup's stats by explicitly filling in the iostat
905 * with disk level statistics.
906 */
907 static void blkcg_fill_root_iostats(void)
908 {
909 struct class_dev_iter iter;
910 struct device *dev;
911
912 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
913 while ((dev = class_dev_iter_next(&iter))) {
914 struct block_device *bdev = dev_to_bdev(dev);
915 struct blkcg_gq *blkg =
916 blk_queue_root_blkg(bdev_get_queue(bdev));
917 struct blkg_iostat tmp;
918 int cpu;
919 unsigned long flags;
920
921 memset(&tmp, 0, sizeof(tmp));
922 for_each_possible_cpu(cpu) {
923 struct disk_stats *cpu_dkstats;
924
925 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
926 tmp.ios[BLKG_IOSTAT_READ] +=
927 cpu_dkstats->ios[STAT_READ];
928 tmp.ios[BLKG_IOSTAT_WRITE] +=
929 cpu_dkstats->ios[STAT_WRITE];
930 tmp.ios[BLKG_IOSTAT_DISCARD] +=
931 cpu_dkstats->ios[STAT_DISCARD];
932 // convert sectors to bytes
933 tmp.bytes[BLKG_IOSTAT_READ] +=
934 cpu_dkstats->sectors[STAT_READ] << 9;
935 tmp.bytes[BLKG_IOSTAT_WRITE] +=
936 cpu_dkstats->sectors[STAT_WRITE] << 9;
937 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
938 cpu_dkstats->sectors[STAT_DISCARD] << 9;
939 }
940
941 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
942 blkg_iostat_set(&blkg->iostat.cur, &tmp);
943 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
944 }
945 }
946
947 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
948 {
949 struct blkg_iostat_set *bis = &blkg->iostat;
950 u64 rbytes, wbytes, rios, wios, dbytes, dios;
951 const char *dname;
952 unsigned seq;
953 int i;
954
955 if (!blkg->online)
956 return;
957
958 dname = blkg_dev_name(blkg);
959 if (!dname)
960 return;
961
962 seq_printf(s, "%s ", dname);
963
964 do {
965 seq = u64_stats_fetch_begin(&bis->sync);
966
967 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
968 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
969 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
970 rios = bis->cur.ios[BLKG_IOSTAT_READ];
971 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
972 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
973 } while (u64_stats_fetch_retry(&bis->sync, seq));
974
975 if (rbytes || wbytes || rios || wios) {
976 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
977 rbytes, wbytes, rios, wios,
978 dbytes, dios);
979 }
980
981 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
982 seq_printf(s, " use_delay=%d delay_nsec=%llu",
983 atomic_read(&blkg->use_delay),
984 atomic64_read(&blkg->delay_nsec));
985 }
986
987 for (i = 0; i < BLKCG_MAX_POLS; i++) {
988 struct blkcg_policy *pol = blkcg_policy[i];
989
990 if (!blkg->pd[i] || !pol->pd_stat_fn)
991 continue;
992
993 pol->pd_stat_fn(blkg->pd[i], s);
994 }
995
996 seq_puts(s, "\n");
997 }
998
999 static int blkcg_print_stat(struct seq_file *sf, void *v)
1000 {
1001 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1002 struct blkcg_gq *blkg;
1003
1004 if (!seq_css(sf)->parent)
1005 blkcg_fill_root_iostats();
1006 else
1007 cgroup_rstat_flush(blkcg->css.cgroup);
1008
1009 rcu_read_lock();
1010 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1011 spin_lock_irq(&blkg->q->queue_lock);
1012 blkcg_print_one_stat(blkg, sf);
1013 spin_unlock_irq(&blkg->q->queue_lock);
1014 }
1015 rcu_read_unlock();
1016 return 0;
1017 }
1018
1019 static struct cftype blkcg_files[] = {
1020 {
1021 .name = "stat",
1022 .seq_show = blkcg_print_stat,
1023 },
1024 { } /* terminate */
1025 };
1026
1027 static struct cftype blkcg_legacy_files[] = {
1028 {
1029 .name = "reset_stats",
1030 .write_u64 = blkcg_reset_stats,
1031 },
1032 { } /* terminate */
1033 };
1034
1035 #ifdef CONFIG_CGROUP_WRITEBACK
1036 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1037 {
1038 return &css_to_blkcg(css)->cgwb_list;
1039 }
1040 #endif
1041
1042 /*
1043 * blkcg destruction is a three-stage process.
1044 *
1045 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1046 * which offlines writeback. Here we tie the next stage of blkg destruction
1047 * to the completion of writeback associated with the blkcg. This lets us
1048 * avoid punting potentially large amounts of outstanding writeback to root
1049 * while maintaining any ongoing policies. The next stage is triggered when
1050 * the nr_cgwbs count goes to zero.
1051 *
1052 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1053 * and handles the destruction of blkgs. Here the css reference held by
1054 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1055 * This work may occur in cgwb_release_workfn() on the cgwb_release
1056 * workqueue. Any submitted ios that fail to get the blkg ref will be
1057 * punted to the root_blkg.
1058 *
1059 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1060 * This finally frees the blkcg.
1061 */
1062
1063 /**
1064 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1065 * @blkcg: blkcg of interest
1066 *
1067 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1068 * is nested inside q lock, this function performs reverse double lock dancing.
1069 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1070 * blkcg_css_free to eventually be called.
1071 *
1072 * This is the blkcg counterpart of ioc_release_fn().
1073 */
1074 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1075 {
1076 might_sleep();
1077
1078 spin_lock_irq(&blkcg->lock);
1079
1080 while (!hlist_empty(&blkcg->blkg_list)) {
1081 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1082 struct blkcg_gq, blkcg_node);
1083 struct request_queue *q = blkg->q;
1084
1085 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1086 /*
1087 * Given that the system can accumulate a huge number
1088 * of blkgs in pathological cases, check to see if we
1089 * need to rescheduling to avoid softlockup.
1090 */
1091 spin_unlock_irq(&blkcg->lock);
1092 cond_resched();
1093 spin_lock_irq(&blkcg->lock);
1094 continue;
1095 }
1096
1097 blkg_destroy(blkg);
1098 spin_unlock(&q->queue_lock);
1099 }
1100
1101 spin_unlock_irq(&blkcg->lock);
1102 }
1103
1104 /**
1105 * blkcg_pin_online - pin online state
1106 * @blkcg_css: blkcg of interest
1107 *
1108 * While pinned, a blkcg is kept online. This is primarily used to
1109 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1110 * while an associated cgwb is still active.
1111 */
1112 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1113 {
1114 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1115 }
1116
1117 /**
1118 * blkcg_unpin_online - unpin online state
1119 * @blkcg_css: blkcg of interest
1120 *
1121 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1122 * that blkg doesn't go offline while an associated cgwb is still active.
1123 * When this count goes to zero, all active cgwbs have finished so the
1124 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1125 */
1126 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1127 {
1128 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1129
1130 do {
1131 if (!refcount_dec_and_test(&blkcg->online_pin))
1132 break;
1133 blkcg_destroy_blkgs(blkcg);
1134 blkcg = blkcg_parent(blkcg);
1135 } while (blkcg);
1136 }
1137
1138 /**
1139 * blkcg_css_offline - cgroup css_offline callback
1140 * @css: css of interest
1141 *
1142 * This function is called when @css is about to go away. Here the cgwbs are
1143 * offlined first and only once writeback associated with the blkcg has
1144 * finished do we start step 2 (see above).
1145 */
1146 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1147 {
1148 /* this prevents anyone from attaching or migrating to this blkcg */
1149 wb_blkcg_offline(css);
1150
1151 /* put the base online pin allowing step 2 to be triggered */
1152 blkcg_unpin_online(css);
1153 }
1154
1155 static void blkcg_css_free(struct cgroup_subsys_state *css)
1156 {
1157 struct blkcg *blkcg = css_to_blkcg(css);
1158 int i;
1159
1160 mutex_lock(&blkcg_pol_mutex);
1161
1162 list_del(&blkcg->all_blkcgs_node);
1163
1164 for (i = 0; i < BLKCG_MAX_POLS; i++)
1165 if (blkcg->cpd[i])
1166 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1167
1168 mutex_unlock(&blkcg_pol_mutex);
1169
1170 kfree(blkcg);
1171 }
1172
1173 static struct cgroup_subsys_state *
1174 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1175 {
1176 struct blkcg *blkcg;
1177 struct cgroup_subsys_state *ret;
1178 int i;
1179
1180 mutex_lock(&blkcg_pol_mutex);
1181
1182 if (!parent_css) {
1183 blkcg = &blkcg_root;
1184 } else {
1185 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1186 if (!blkcg) {
1187 ret = ERR_PTR(-ENOMEM);
1188 goto unlock;
1189 }
1190 }
1191
1192 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1193 struct blkcg_policy *pol = blkcg_policy[i];
1194 struct blkcg_policy_data *cpd;
1195
1196 /*
1197 * If the policy hasn't been attached yet, wait for it
1198 * to be attached before doing anything else. Otherwise,
1199 * check if the policy requires any specific per-cgroup
1200 * data: if it does, allocate and initialize it.
1201 */
1202 if (!pol || !pol->cpd_alloc_fn)
1203 continue;
1204
1205 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1206 if (!cpd) {
1207 ret = ERR_PTR(-ENOMEM);
1208 goto free_pd_blkcg;
1209 }
1210 blkcg->cpd[i] = cpd;
1211 cpd->blkcg = blkcg;
1212 cpd->plid = i;
1213 if (pol->cpd_init_fn)
1214 pol->cpd_init_fn(cpd);
1215 }
1216
1217 spin_lock_init(&blkcg->lock);
1218 refcount_set(&blkcg->online_pin, 1);
1219 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1220 INIT_HLIST_HEAD(&blkcg->blkg_list);
1221 #ifdef CONFIG_CGROUP_WRITEBACK
1222 INIT_LIST_HEAD(&blkcg->cgwb_list);
1223 #endif
1224 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1225
1226 mutex_unlock(&blkcg_pol_mutex);
1227 return &blkcg->css;
1228
1229 free_pd_blkcg:
1230 for (i--; i >= 0; i--)
1231 if (blkcg->cpd[i])
1232 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1233
1234 if (blkcg != &blkcg_root)
1235 kfree(blkcg);
1236 unlock:
1237 mutex_unlock(&blkcg_pol_mutex);
1238 return ret;
1239 }
1240
1241 static int blkcg_css_online(struct cgroup_subsys_state *css)
1242 {
1243 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1244
1245 /*
1246 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1247 * don't go offline while cgwbs are still active on them. Pin the
1248 * parent so that offline always happens towards the root.
1249 */
1250 if (parent)
1251 blkcg_pin_online(css);
1252 return 0;
1253 }
1254
1255 /**
1256 * blkcg_init_queue - initialize blkcg part of request queue
1257 * @q: request_queue to initialize
1258 *
1259 * Called from blk_alloc_queue(). Responsible for initializing blkcg
1260 * part of new request_queue @q.
1261 *
1262 * RETURNS:
1263 * 0 on success, -errno on failure.
1264 */
1265 int blkcg_init_queue(struct request_queue *q)
1266 {
1267 struct blkcg_gq *new_blkg, *blkg;
1268 bool preloaded;
1269 int ret;
1270
1271 INIT_LIST_HEAD(&q->blkg_list);
1272
1273 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1274 if (!new_blkg)
1275 return -ENOMEM;
1276
1277 preloaded = !radix_tree_preload(GFP_KERNEL);
1278
1279 /* Make sure the root blkg exists. */
1280 /* spin_lock_irq can serve as RCU read-side critical section. */
1281 spin_lock_irq(&q->queue_lock);
1282 blkg = blkg_create(&blkcg_root, q, new_blkg);
1283 if (IS_ERR(blkg))
1284 goto err_unlock;
1285 q->root_blkg = blkg;
1286 spin_unlock_irq(&q->queue_lock);
1287
1288 if (preloaded)
1289 radix_tree_preload_end();
1290
1291 ret = blk_ioprio_init(q);
1292 if (ret)
1293 goto err_destroy_all;
1294
1295 ret = blk_throtl_init(q);
1296 if (ret)
1297 goto err_destroy_all;
1298
1299 ret = blk_iolatency_init(q);
1300 if (ret) {
1301 blk_throtl_exit(q);
1302 goto err_destroy_all;
1303 }
1304
1305 return 0;
1306
1307 err_destroy_all:
1308 blkg_destroy_all(q);
1309 return ret;
1310 err_unlock:
1311 spin_unlock_irq(&q->queue_lock);
1312 if (preloaded)
1313 radix_tree_preload_end();
1314 return PTR_ERR(blkg);
1315 }
1316
1317 /**
1318 * blkcg_exit_queue - exit and release blkcg part of request_queue
1319 * @q: request_queue being released
1320 *
1321 * Called from blk_exit_queue(). Responsible for exiting blkcg part.
1322 */
1323 void blkcg_exit_queue(struct request_queue *q)
1324 {
1325 blkg_destroy_all(q);
1326 blk_throtl_exit(q);
1327 }
1328
1329 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1330 {
1331 int i;
1332
1333 mutex_lock(&blkcg_pol_mutex);
1334
1335 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1336 struct blkcg_policy *pol = blkcg_policy[i];
1337 struct blkcg *blkcg;
1338
1339 if (!pol || !pol->cpd_bind_fn)
1340 continue;
1341
1342 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1343 if (blkcg->cpd[pol->plid])
1344 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1345 }
1346 mutex_unlock(&blkcg_pol_mutex);
1347 }
1348
1349 static void blkcg_exit(struct task_struct *tsk)
1350 {
1351 if (tsk->throttle_queue)
1352 blk_put_queue(tsk->throttle_queue);
1353 tsk->throttle_queue = NULL;
1354 }
1355
1356 struct cgroup_subsys io_cgrp_subsys = {
1357 .css_alloc = blkcg_css_alloc,
1358 .css_online = blkcg_css_online,
1359 .css_offline = blkcg_css_offline,
1360 .css_free = blkcg_css_free,
1361 .css_rstat_flush = blkcg_rstat_flush,
1362 .bind = blkcg_bind,
1363 .dfl_cftypes = blkcg_files,
1364 .legacy_cftypes = blkcg_legacy_files,
1365 .legacy_name = "blkio",
1366 .exit = blkcg_exit,
1367 #ifdef CONFIG_MEMCG
1368 /*
1369 * This ensures that, if available, memcg is automatically enabled
1370 * together on the default hierarchy so that the owner cgroup can
1371 * be retrieved from writeback pages.
1372 */
1373 .depends_on = 1 << memory_cgrp_id,
1374 #endif
1375 };
1376 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1377
1378 /**
1379 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1380 * @q: request_queue of interest
1381 * @pol: blkcg policy to activate
1382 *
1383 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through
1384 * bypass mode to populate its blkgs with policy_data for @pol.
1385 *
1386 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1387 * from IO path. Update of each blkg is protected by both queue and blkcg
1388 * locks so that holding either lock and testing blkcg_policy_enabled() is
1389 * always enough for dereferencing policy data.
1390 *
1391 * The caller is responsible for synchronizing [de]activations and policy
1392 * [un]registerations. Returns 0 on success, -errno on failure.
1393 */
1394 int blkcg_activate_policy(struct request_queue *q,
1395 const struct blkcg_policy *pol)
1396 {
1397 struct blkg_policy_data *pd_prealloc = NULL;
1398 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1399 int ret;
1400
1401 if (blkcg_policy_enabled(q, pol))
1402 return 0;
1403
1404 if (queue_is_mq(q))
1405 blk_mq_freeze_queue(q);
1406 retry:
1407 spin_lock_irq(&q->queue_lock);
1408
1409 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1410 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1411 struct blkg_policy_data *pd;
1412
1413 if (blkg->pd[pol->plid])
1414 continue;
1415
1416 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1417 if (blkg == pinned_blkg) {
1418 pd = pd_prealloc;
1419 pd_prealloc = NULL;
1420 } else {
1421 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1422 blkg->blkcg);
1423 }
1424
1425 if (!pd) {
1426 /*
1427 * GFP_NOWAIT failed. Free the existing one and
1428 * prealloc for @blkg w/ GFP_KERNEL.
1429 */
1430 if (pinned_blkg)
1431 blkg_put(pinned_blkg);
1432 blkg_get(blkg);
1433 pinned_blkg = blkg;
1434
1435 spin_unlock_irq(&q->queue_lock);
1436
1437 if (pd_prealloc)
1438 pol->pd_free_fn(pd_prealloc);
1439 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1440 blkg->blkcg);
1441 if (pd_prealloc)
1442 goto retry;
1443 else
1444 goto enomem;
1445 }
1446
1447 blkg->pd[pol->plid] = pd;
1448 pd->blkg = blkg;
1449 pd->plid = pol->plid;
1450 }
1451
1452 /* all allocated, init in the same order */
1453 if (pol->pd_init_fn)
1454 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1455 pol->pd_init_fn(blkg->pd[pol->plid]);
1456
1457 __set_bit(pol->plid, q->blkcg_pols);
1458 ret = 0;
1459
1460 spin_unlock_irq(&q->queue_lock);
1461 out:
1462 if (queue_is_mq(q))
1463 blk_mq_unfreeze_queue(q);
1464 if (pinned_blkg)
1465 blkg_put(pinned_blkg);
1466 if (pd_prealloc)
1467 pol->pd_free_fn(pd_prealloc);
1468 return ret;
1469
1470 enomem:
1471 /* alloc failed, nothing's initialized yet, free everything */
1472 spin_lock_irq(&q->queue_lock);
1473 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1474 struct blkcg *blkcg = blkg->blkcg;
1475
1476 spin_lock(&blkcg->lock);
1477 if (blkg->pd[pol->plid]) {
1478 pol->pd_free_fn(blkg->pd[pol->plid]);
1479 blkg->pd[pol->plid] = NULL;
1480 }
1481 spin_unlock(&blkcg->lock);
1482 }
1483 spin_unlock_irq(&q->queue_lock);
1484 ret = -ENOMEM;
1485 goto out;
1486 }
1487 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1488
1489 /**
1490 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1491 * @q: request_queue of interest
1492 * @pol: blkcg policy to deactivate
1493 *
1494 * Deactivate @pol on @q. Follows the same synchronization rules as
1495 * blkcg_activate_policy().
1496 */
1497 void blkcg_deactivate_policy(struct request_queue *q,
1498 const struct blkcg_policy *pol)
1499 {
1500 struct blkcg_gq *blkg;
1501
1502 if (!blkcg_policy_enabled(q, pol))
1503 return;
1504
1505 if (queue_is_mq(q))
1506 blk_mq_freeze_queue(q);
1507
1508 spin_lock_irq(&q->queue_lock);
1509
1510 __clear_bit(pol->plid, q->blkcg_pols);
1511
1512 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1513 struct blkcg *blkcg = blkg->blkcg;
1514
1515 spin_lock(&blkcg->lock);
1516 if (blkg->pd[pol->plid]) {
1517 if (pol->pd_offline_fn)
1518 pol->pd_offline_fn(blkg->pd[pol->plid]);
1519 pol->pd_free_fn(blkg->pd[pol->plid]);
1520 blkg->pd[pol->plid] = NULL;
1521 }
1522 spin_unlock(&blkcg->lock);
1523 }
1524
1525 spin_unlock_irq(&q->queue_lock);
1526
1527 if (queue_is_mq(q))
1528 blk_mq_unfreeze_queue(q);
1529 }
1530 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1531
1532 /**
1533 * blkcg_policy_register - register a blkcg policy
1534 * @pol: blkcg policy to register
1535 *
1536 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1537 * successful registration. Returns 0 on success and -errno on failure.
1538 */
1539 int blkcg_policy_register(struct blkcg_policy *pol)
1540 {
1541 struct blkcg *blkcg;
1542 int i, ret;
1543
1544 mutex_lock(&blkcg_pol_register_mutex);
1545 mutex_lock(&blkcg_pol_mutex);
1546
1547 /* find an empty slot */
1548 ret = -ENOSPC;
1549 for (i = 0; i < BLKCG_MAX_POLS; i++)
1550 if (!blkcg_policy[i])
1551 break;
1552 if (i >= BLKCG_MAX_POLS) {
1553 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1554 goto err_unlock;
1555 }
1556
1557 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1558 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1559 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1560 goto err_unlock;
1561
1562 /* register @pol */
1563 pol->plid = i;
1564 blkcg_policy[pol->plid] = pol;
1565
1566 /* allocate and install cpd's */
1567 if (pol->cpd_alloc_fn) {
1568 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1569 struct blkcg_policy_data *cpd;
1570
1571 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1572 if (!cpd)
1573 goto err_free_cpds;
1574
1575 blkcg->cpd[pol->plid] = cpd;
1576 cpd->blkcg = blkcg;
1577 cpd->plid = pol->plid;
1578 if (pol->cpd_init_fn)
1579 pol->cpd_init_fn(cpd);
1580 }
1581 }
1582
1583 mutex_unlock(&blkcg_pol_mutex);
1584
1585 /* everything is in place, add intf files for the new policy */
1586 if (pol->dfl_cftypes)
1587 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1588 pol->dfl_cftypes));
1589 if (pol->legacy_cftypes)
1590 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1591 pol->legacy_cftypes));
1592 mutex_unlock(&blkcg_pol_register_mutex);
1593 return 0;
1594
1595 err_free_cpds:
1596 if (pol->cpd_free_fn) {
1597 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1598 if (blkcg->cpd[pol->plid]) {
1599 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1600 blkcg->cpd[pol->plid] = NULL;
1601 }
1602 }
1603 }
1604 blkcg_policy[pol->plid] = NULL;
1605 err_unlock:
1606 mutex_unlock(&blkcg_pol_mutex);
1607 mutex_unlock(&blkcg_pol_register_mutex);
1608 return ret;
1609 }
1610 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1611
1612 /**
1613 * blkcg_policy_unregister - unregister a blkcg policy
1614 * @pol: blkcg policy to unregister
1615 *
1616 * Undo blkcg_policy_register(@pol). Might sleep.
1617 */
1618 void blkcg_policy_unregister(struct blkcg_policy *pol)
1619 {
1620 struct blkcg *blkcg;
1621
1622 mutex_lock(&blkcg_pol_register_mutex);
1623
1624 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1625 goto out_unlock;
1626
1627 /* kill the intf files first */
1628 if (pol->dfl_cftypes)
1629 cgroup_rm_cftypes(pol->dfl_cftypes);
1630 if (pol->legacy_cftypes)
1631 cgroup_rm_cftypes(pol->legacy_cftypes);
1632
1633 /* remove cpds and unregister */
1634 mutex_lock(&blkcg_pol_mutex);
1635
1636 if (pol->cpd_free_fn) {
1637 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1638 if (blkcg->cpd[pol->plid]) {
1639 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1640 blkcg->cpd[pol->plid] = NULL;
1641 }
1642 }
1643 }
1644 blkcg_policy[pol->plid] = NULL;
1645
1646 mutex_unlock(&blkcg_pol_mutex);
1647 out_unlock:
1648 mutex_unlock(&blkcg_pol_register_mutex);
1649 }
1650 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1651
1652 bool __blkcg_punt_bio_submit(struct bio *bio)
1653 {
1654 struct blkcg_gq *blkg = bio->bi_blkg;
1655
1656 /* consume the flag first */
1657 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1658
1659 /* never bounce for the root cgroup */
1660 if (!blkg->parent)
1661 return false;
1662
1663 spin_lock_bh(&blkg->async_bio_lock);
1664 bio_list_add(&blkg->async_bios, bio);
1665 spin_unlock_bh(&blkg->async_bio_lock);
1666
1667 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1668 return true;
1669 }
1670
1671 /*
1672 * Scale the accumulated delay based on how long it has been since we updated
1673 * the delay. We only call this when we are adding delay, in case it's been a
1674 * while since we added delay, and when we are checking to see if we need to
1675 * delay a task, to account for any delays that may have occurred.
1676 */
1677 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1678 {
1679 u64 old = atomic64_read(&blkg->delay_start);
1680
1681 /* negative use_delay means no scaling, see blkcg_set_delay() */
1682 if (atomic_read(&blkg->use_delay) < 0)
1683 return;
1684
1685 /*
1686 * We only want to scale down every second. The idea here is that we
1687 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1688 * time window. We only want to throttle tasks for recent delay that
1689 * has occurred, in 1 second time windows since that's the maximum
1690 * things can be throttled. We save the current delay window in
1691 * blkg->last_delay so we know what amount is still left to be charged
1692 * to the blkg from this point onward. blkg->last_use keeps track of
1693 * the use_delay counter. The idea is if we're unthrottling the blkg we
1694 * are ok with whatever is happening now, and we can take away more of
1695 * the accumulated delay as we've already throttled enough that
1696 * everybody is happy with their IO latencies.
1697 */
1698 if (time_before64(old + NSEC_PER_SEC, now) &&
1699 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1700 u64 cur = atomic64_read(&blkg->delay_nsec);
1701 u64 sub = min_t(u64, blkg->last_delay, now - old);
1702 int cur_use = atomic_read(&blkg->use_delay);
1703
1704 /*
1705 * We've been unthrottled, subtract a larger chunk of our
1706 * accumulated delay.
1707 */
1708 if (cur_use < blkg->last_use)
1709 sub = max_t(u64, sub, blkg->last_delay >> 1);
1710
1711 /*
1712 * This shouldn't happen, but handle it anyway. Our delay_nsec
1713 * should only ever be growing except here where we subtract out
1714 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1715 * rather not end up with negative numbers.
1716 */
1717 if (unlikely(cur < sub)) {
1718 atomic64_set(&blkg->delay_nsec, 0);
1719 blkg->last_delay = 0;
1720 } else {
1721 atomic64_sub(sub, &blkg->delay_nsec);
1722 blkg->last_delay = cur - sub;
1723 }
1724 blkg->last_use = cur_use;
1725 }
1726 }
1727
1728 /*
1729 * This is called when we want to actually walk up the hierarchy and check to
1730 * see if we need to throttle, and then actually throttle if there is some
1731 * accumulated delay. This should only be called upon return to user space so
1732 * we're not holding some lock that would induce a priority inversion.
1733 */
1734 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1735 {
1736 unsigned long pflags;
1737 bool clamp;
1738 u64 now = ktime_to_ns(ktime_get());
1739 u64 exp;
1740 u64 delay_nsec = 0;
1741 int tok;
1742
1743 while (blkg->parent) {
1744 int use_delay = atomic_read(&blkg->use_delay);
1745
1746 if (use_delay) {
1747 u64 this_delay;
1748
1749 blkcg_scale_delay(blkg, now);
1750 this_delay = atomic64_read(&blkg->delay_nsec);
1751 if (this_delay > delay_nsec) {
1752 delay_nsec = this_delay;
1753 clamp = use_delay > 0;
1754 }
1755 }
1756 blkg = blkg->parent;
1757 }
1758
1759 if (!delay_nsec)
1760 return;
1761
1762 /*
1763 * Let's not sleep for all eternity if we've amassed a huge delay.
1764 * Swapping or metadata IO can accumulate 10's of seconds worth of
1765 * delay, and we want userspace to be able to do _something_ so cap the
1766 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1767 * tasks will be delayed for 0.25 second for every syscall. If
1768 * blkcg_set_delay() was used as indicated by negative use_delay, the
1769 * caller is responsible for regulating the range.
1770 */
1771 if (clamp)
1772 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1773
1774 if (use_memdelay)
1775 psi_memstall_enter(&pflags);
1776
1777 exp = ktime_add_ns(now, delay_nsec);
1778 tok = io_schedule_prepare();
1779 do {
1780 __set_current_state(TASK_KILLABLE);
1781 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1782 break;
1783 } while (!fatal_signal_pending(current));
1784 io_schedule_finish(tok);
1785
1786 if (use_memdelay)
1787 psi_memstall_leave(&pflags);
1788 }
1789
1790 /**
1791 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1792 *
1793 * This is only called if we've been marked with set_notify_resume(). Obviously
1794 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1795 * check to see if current->throttle_queue is set and if not this doesn't do
1796 * anything. This should only ever be called by the resume code, it's not meant
1797 * to be called by people willy-nilly as it will actually do the work to
1798 * throttle the task if it is setup for throttling.
1799 */
1800 void blkcg_maybe_throttle_current(void)
1801 {
1802 struct request_queue *q = current->throttle_queue;
1803 struct blkcg *blkcg;
1804 struct blkcg_gq *blkg;
1805 bool use_memdelay = current->use_memdelay;
1806
1807 if (!q)
1808 return;
1809
1810 current->throttle_queue = NULL;
1811 current->use_memdelay = false;
1812
1813 rcu_read_lock();
1814 blkcg = css_to_blkcg(blkcg_css());
1815 if (!blkcg)
1816 goto out;
1817 blkg = blkg_lookup(blkcg, q);
1818 if (!blkg)
1819 goto out;
1820 if (!blkg_tryget(blkg))
1821 goto out;
1822 rcu_read_unlock();
1823
1824 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1825 blkg_put(blkg);
1826 blk_put_queue(q);
1827 return;
1828 out:
1829 rcu_read_unlock();
1830 blk_put_queue(q);
1831 }
1832
1833 /**
1834 * blkcg_schedule_throttle - this task needs to check for throttling
1835 * @q: the request queue IO was submitted on
1836 * @use_memdelay: do we charge this to memory delay for PSI
1837 *
1838 * This is called by the IO controller when we know there's delay accumulated
1839 * for the blkg for this task. We do not pass the blkg because there are places
1840 * we call this that may not have that information, the swapping code for
1841 * instance will only have a request_queue at that point. This set's the
1842 * notify_resume for the task to check and see if it requires throttling before
1843 * returning to user space.
1844 *
1845 * We will only schedule once per syscall. You can call this over and over
1846 * again and it will only do the check once upon return to user space, and only
1847 * throttle once. If the task needs to be throttled again it'll need to be
1848 * re-set at the next time we see the task.
1849 */
1850 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1851 {
1852 if (unlikely(current->flags & PF_KTHREAD))
1853 return;
1854
1855 if (current->throttle_queue != q) {
1856 if (!blk_get_queue(q))
1857 return;
1858
1859 if (current->throttle_queue)
1860 blk_put_queue(current->throttle_queue);
1861 current->throttle_queue = q;
1862 }
1863
1864 if (use_memdelay)
1865 current->use_memdelay = use_memdelay;
1866 set_notify_resume(current);
1867 }
1868
1869 /**
1870 * blkcg_add_delay - add delay to this blkg
1871 * @blkg: blkg of interest
1872 * @now: the current time in nanoseconds
1873 * @delta: how many nanoseconds of delay to add
1874 *
1875 * Charge @delta to the blkg's current delay accumulation. This is used to
1876 * throttle tasks if an IO controller thinks we need more throttling.
1877 */
1878 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1879 {
1880 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1881 return;
1882 blkcg_scale_delay(blkg, now);
1883 atomic64_add(delta, &blkg->delay_nsec);
1884 }
1885
1886 /**
1887 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1888 * @bio: target bio
1889 * @css: target css
1890 *
1891 * As the failure mode here is to walk up the blkg tree, this ensure that the
1892 * blkg->parent pointers are always valid. This returns the blkg that it ended
1893 * up taking a reference on or %NULL if no reference was taken.
1894 */
1895 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1896 struct cgroup_subsys_state *css)
1897 {
1898 struct blkcg_gq *blkg, *ret_blkg = NULL;
1899
1900 rcu_read_lock();
1901 blkg = blkg_lookup_create(css_to_blkcg(css),
1902 bdev_get_queue(bio->bi_bdev));
1903 while (blkg) {
1904 if (blkg_tryget(blkg)) {
1905 ret_blkg = blkg;
1906 break;
1907 }
1908 blkg = blkg->parent;
1909 }
1910 rcu_read_unlock();
1911
1912 return ret_blkg;
1913 }
1914
1915 /**
1916 * bio_associate_blkg_from_css - associate a bio with a specified css
1917 * @bio: target bio
1918 * @css: target css
1919 *
1920 * Associate @bio with the blkg found by combining the css's blkg and the
1921 * request_queue of the @bio. An association failure is handled by walking up
1922 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1923 * and q->root_blkg. This situation only happens when a cgroup is dying and
1924 * then the remaining bios will spill to the closest alive blkg.
1925 *
1926 * A reference will be taken on the blkg and will be released when @bio is
1927 * freed.
1928 */
1929 void bio_associate_blkg_from_css(struct bio *bio,
1930 struct cgroup_subsys_state *css)
1931 {
1932 if (bio->bi_blkg)
1933 blkg_put(bio->bi_blkg);
1934
1935 if (css && css->parent) {
1936 bio->bi_blkg = blkg_tryget_closest(bio, css);
1937 } else {
1938 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1939 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1940 }
1941 }
1942 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1943
1944 /**
1945 * bio_associate_blkg - associate a bio with a blkg
1946 * @bio: target bio
1947 *
1948 * Associate @bio with the blkg found from the bio's css and request_queue.
1949 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1950 * already associated, the css is reused and association redone as the
1951 * request_queue may have changed.
1952 */
1953 void bio_associate_blkg(struct bio *bio)
1954 {
1955 struct cgroup_subsys_state *css;
1956
1957 rcu_read_lock();
1958
1959 if (bio->bi_blkg)
1960 css = bio_blkcg_css(bio);
1961 else
1962 css = blkcg_css();
1963
1964 bio_associate_blkg_from_css(bio, css);
1965
1966 rcu_read_unlock();
1967 }
1968 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1969
1970 /**
1971 * bio_clone_blkg_association - clone blkg association from src to dst bio
1972 * @dst: destination bio
1973 * @src: source bio
1974 */
1975 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1976 {
1977 if (src->bi_blkg)
1978 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
1979 }
1980 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1981
1982 static int blk_cgroup_io_type(struct bio *bio)
1983 {
1984 if (op_is_discard(bio->bi_opf))
1985 return BLKG_IOSTAT_DISCARD;
1986 if (op_is_write(bio->bi_opf))
1987 return BLKG_IOSTAT_WRITE;
1988 return BLKG_IOSTAT_READ;
1989 }
1990
1991 void blk_cgroup_bio_start(struct bio *bio)
1992 {
1993 int rwd = blk_cgroup_io_type(bio), cpu;
1994 struct blkg_iostat_set *bis;
1995 unsigned long flags;
1996
1997 cpu = get_cpu();
1998 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1999 flags = u64_stats_update_begin_irqsave(&bis->sync);
2000
2001 /*
2002 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2003 * bio and we would have already accounted for the size of the bio.
2004 */
2005 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2006 bio_set_flag(bio, BIO_CGROUP_ACCT);
2007 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2008 }
2009 bis->cur.ios[rwd]++;
2010
2011 u64_stats_update_end_irqrestore(&bis->sync, flags);
2012 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
2013 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
2014 put_cpu();
2015 }
2016
2017 bool blk_cgroup_congested(void)
2018 {
2019 struct cgroup_subsys_state *css;
2020 bool ret = false;
2021
2022 rcu_read_lock();
2023 for (css = blkcg_css(); css; css = css->parent) {
2024 if (atomic_read(&css->cgroup->congestion_count)) {
2025 ret = true;
2026 break;
2027 }
2028 }
2029 rcu_read_unlock();
2030 return ret;
2031 }
2032
2033 static int __init blkcg_init(void)
2034 {
2035 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
2036 WQ_MEM_RECLAIM | WQ_FREEZABLE |
2037 WQ_UNBOUND | WQ_SYSFS, 0);
2038 if (!blkcg_punt_bio_wq)
2039 return -ENOMEM;
2040 return 0;
2041 }
2042 subsys_initcall(blkcg_init);
2043
2044 module_param(blkcg_debug_stats, bool, 0644);
2045 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");