]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-cgroup.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / block / blk-cgroup.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/genhd.h>
27 #include <linux/delay.h>
28 #include <linux/atomic.h>
29 #include <linux/ctype.h>
30 #include <linux/blk-cgroup.h>
31 #include <linux/tracehook.h>
32 #include <linux/psi.h>
33 #include "blk.h"
34
35 #define MAX_KEY_LEN 100
36
37 /*
38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40 * policy [un]register operations including cgroup file additions /
41 * removals. Putting cgroup file registration outside blkcg_pol_mutex
42 * allows grabbing it from cgroup callbacks.
43 */
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
46
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
49
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
52
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54
55 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
56
57 bool blkcg_debug_stats = false;
58 static struct workqueue_struct *blkcg_punt_bio_wq;
59
60 static bool blkcg_policy_enabled(struct request_queue *q,
61 const struct blkcg_policy *pol)
62 {
63 return pol && test_bit(pol->plid, q->blkcg_pols);
64 }
65
66 /**
67 * blkg_free - free a blkg
68 * @blkg: blkg to free
69 *
70 * Free @blkg which may be partially allocated.
71 */
72 static void blkg_free(struct blkcg_gq *blkg)
73 {
74 int i;
75
76 if (!blkg)
77 return;
78
79 for (i = 0; i < BLKCG_MAX_POLS; i++)
80 if (blkg->pd[i])
81 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
82
83 free_percpu(blkg->iostat_cpu);
84 percpu_ref_exit(&blkg->refcnt);
85 kfree(blkg);
86 }
87
88 static void __blkg_release(struct rcu_head *rcu)
89 {
90 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
91
92 WARN_ON(!bio_list_empty(&blkg->async_bios));
93
94 /* release the blkcg and parent blkg refs this blkg has been holding */
95 css_put(&blkg->blkcg->css);
96 if (blkg->parent)
97 blkg_put(blkg->parent);
98
99 wb_congested_put(blkg->wb_congested);
100
101 blkg_free(blkg);
102 }
103
104 /*
105 * A group is RCU protected, but having an rcu lock does not mean that one
106 * can access all the fields of blkg and assume these are valid. For
107 * example, don't try to follow throtl_data and request queue links.
108 *
109 * Having a reference to blkg under an rcu allows accesses to only values
110 * local to groups like group stats and group rate limits.
111 */
112 static void blkg_release(struct percpu_ref *ref)
113 {
114 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
115
116 call_rcu(&blkg->rcu_head, __blkg_release);
117 }
118
119 static void blkg_async_bio_workfn(struct work_struct *work)
120 {
121 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122 async_bio_work);
123 struct bio_list bios = BIO_EMPTY_LIST;
124 struct bio *bio;
125
126 /* as long as there are pending bios, @blkg can't go away */
127 spin_lock_bh(&blkg->async_bio_lock);
128 bio_list_merge(&bios, &blkg->async_bios);
129 bio_list_init(&blkg->async_bios);
130 spin_unlock_bh(&blkg->async_bio_lock);
131
132 while ((bio = bio_list_pop(&bios)))
133 submit_bio(bio);
134 }
135
136 /**
137 * blkg_alloc - allocate a blkg
138 * @blkcg: block cgroup the new blkg is associated with
139 * @q: request_queue the new blkg is associated with
140 * @gfp_mask: allocation mask to use
141 *
142 * Allocate a new blkg assocating @blkcg and @q.
143 */
144 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
145 gfp_t gfp_mask)
146 {
147 struct blkcg_gq *blkg;
148 int i, cpu;
149
150 /* alloc and init base part */
151 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
152 if (!blkg)
153 return NULL;
154
155 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
156 goto err_free;
157
158 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
159 if (!blkg->iostat_cpu)
160 goto err_free;
161
162 blkg->q = q;
163 INIT_LIST_HEAD(&blkg->q_node);
164 spin_lock_init(&blkg->async_bio_lock);
165 bio_list_init(&blkg->async_bios);
166 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
167 blkg->blkcg = blkcg;
168
169 u64_stats_init(&blkg->iostat.sync);
170 for_each_possible_cpu(cpu)
171 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
172
173 for (i = 0; i < BLKCG_MAX_POLS; i++) {
174 struct blkcg_policy *pol = blkcg_policy[i];
175 struct blkg_policy_data *pd;
176
177 if (!blkcg_policy_enabled(q, pol))
178 continue;
179
180 /* alloc per-policy data and attach it to blkg */
181 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
182 if (!pd)
183 goto err_free;
184
185 blkg->pd[i] = pd;
186 pd->blkg = blkg;
187 pd->plid = i;
188 }
189
190 return blkg;
191
192 err_free:
193 blkg_free(blkg);
194 return NULL;
195 }
196
197 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
198 struct request_queue *q, bool update_hint)
199 {
200 struct blkcg_gq *blkg;
201
202 /*
203 * Hint didn't match. Look up from the radix tree. Note that the
204 * hint can only be updated under queue_lock as otherwise @blkg
205 * could have already been removed from blkg_tree. The caller is
206 * responsible for grabbing queue_lock if @update_hint.
207 */
208 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
209 if (blkg && blkg->q == q) {
210 if (update_hint) {
211 lockdep_assert_held(&q->queue_lock);
212 rcu_assign_pointer(blkcg->blkg_hint, blkg);
213 }
214 return blkg;
215 }
216
217 return NULL;
218 }
219 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
220
221 /*
222 * If @new_blkg is %NULL, this function tries to allocate a new one as
223 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
224 */
225 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
226 struct request_queue *q,
227 struct blkcg_gq *new_blkg)
228 {
229 struct blkcg_gq *blkg;
230 struct bdi_writeback_congested *wb_congested;
231 int i, ret;
232
233 WARN_ON_ONCE(!rcu_read_lock_held());
234 lockdep_assert_held(&q->queue_lock);
235
236 /* request_queue is dying, do not create/recreate a blkg */
237 if (blk_queue_dying(q)) {
238 ret = -ENODEV;
239 goto err_free_blkg;
240 }
241
242 /* blkg holds a reference to blkcg */
243 if (!css_tryget_online(&blkcg->css)) {
244 ret = -ENODEV;
245 goto err_free_blkg;
246 }
247
248 wb_congested = wb_congested_get_create(q->backing_dev_info,
249 blkcg->css.id,
250 GFP_NOWAIT | __GFP_NOWARN);
251 if (!wb_congested) {
252 ret = -ENOMEM;
253 goto err_put_css;
254 }
255
256 /* allocate */
257 if (!new_blkg) {
258 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
259 if (unlikely(!new_blkg)) {
260 ret = -ENOMEM;
261 goto err_put_congested;
262 }
263 }
264 blkg = new_blkg;
265 blkg->wb_congested = wb_congested;
266
267 /* link parent */
268 if (blkcg_parent(blkcg)) {
269 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
270 if (WARN_ON_ONCE(!blkg->parent)) {
271 ret = -ENODEV;
272 goto err_put_congested;
273 }
274 blkg_get(blkg->parent);
275 }
276
277 /* invoke per-policy init */
278 for (i = 0; i < BLKCG_MAX_POLS; i++) {
279 struct blkcg_policy *pol = blkcg_policy[i];
280
281 if (blkg->pd[i] && pol->pd_init_fn)
282 pol->pd_init_fn(blkg->pd[i]);
283 }
284
285 /* insert */
286 spin_lock(&blkcg->lock);
287 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
288 if (likely(!ret)) {
289 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
290 list_add(&blkg->q_node, &q->blkg_list);
291
292 for (i = 0; i < BLKCG_MAX_POLS; i++) {
293 struct blkcg_policy *pol = blkcg_policy[i];
294
295 if (blkg->pd[i] && pol->pd_online_fn)
296 pol->pd_online_fn(blkg->pd[i]);
297 }
298 }
299 blkg->online = true;
300 spin_unlock(&blkcg->lock);
301
302 if (!ret)
303 return blkg;
304
305 /* @blkg failed fully initialized, use the usual release path */
306 blkg_put(blkg);
307 return ERR_PTR(ret);
308
309 err_put_congested:
310 wb_congested_put(wb_congested);
311 err_put_css:
312 css_put(&blkcg->css);
313 err_free_blkg:
314 blkg_free(new_blkg);
315 return ERR_PTR(ret);
316 }
317
318 /**
319 * __blkg_lookup_create - lookup blkg, try to create one if not there
320 * @blkcg: blkcg of interest
321 * @q: request_queue of interest
322 *
323 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to
324 * create one. blkg creation is performed recursively from blkcg_root such
325 * that all non-root blkg's have access to the parent blkg. This function
326 * should be called under RCU read lock and @q->queue_lock.
327 *
328 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
329 * down from root.
330 */
331 struct blkcg_gq *__blkg_lookup_create(struct blkcg *blkcg,
332 struct request_queue *q)
333 {
334 struct blkcg_gq *blkg;
335
336 WARN_ON_ONCE(!rcu_read_lock_held());
337 lockdep_assert_held(&q->queue_lock);
338
339 blkg = __blkg_lookup(blkcg, q, true);
340 if (blkg)
341 return blkg;
342
343 /*
344 * Create blkgs walking down from blkcg_root to @blkcg, so that all
345 * non-root blkgs have access to their parents. Returns the closest
346 * blkg to the intended blkg should blkg_create() fail.
347 */
348 while (true) {
349 struct blkcg *pos = blkcg;
350 struct blkcg *parent = blkcg_parent(blkcg);
351 struct blkcg_gq *ret_blkg = q->root_blkg;
352
353 while (parent) {
354 blkg = __blkg_lookup(parent, q, false);
355 if (blkg) {
356 /* remember closest blkg */
357 ret_blkg = blkg;
358 break;
359 }
360 pos = parent;
361 parent = blkcg_parent(parent);
362 }
363
364 blkg = blkg_create(pos, q, NULL);
365 if (IS_ERR(blkg))
366 return ret_blkg;
367 if (pos == blkcg)
368 return blkg;
369 }
370 }
371
372 /**
373 * blkg_lookup_create - find or create a blkg
374 * @blkcg: target block cgroup
375 * @q: target request_queue
376 *
377 * This looks up or creates the blkg representing the unique pair
378 * of the blkcg and the request_queue.
379 */
380 struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
381 struct request_queue *q)
382 {
383 struct blkcg_gq *blkg = blkg_lookup(blkcg, q);
384
385 if (unlikely(!blkg)) {
386 unsigned long flags;
387
388 spin_lock_irqsave(&q->queue_lock, flags);
389 blkg = __blkg_lookup_create(blkcg, q);
390 spin_unlock_irqrestore(&q->queue_lock, flags);
391 }
392
393 return blkg;
394 }
395
396 static void blkg_destroy(struct blkcg_gq *blkg)
397 {
398 struct blkcg *blkcg = blkg->blkcg;
399 int i;
400
401 lockdep_assert_held(&blkg->q->queue_lock);
402 lockdep_assert_held(&blkcg->lock);
403
404 /* Something wrong if we are trying to remove same group twice */
405 WARN_ON_ONCE(list_empty(&blkg->q_node));
406 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
407
408 for (i = 0; i < BLKCG_MAX_POLS; i++) {
409 struct blkcg_policy *pol = blkcg_policy[i];
410
411 if (blkg->pd[i] && pol->pd_offline_fn)
412 pol->pd_offline_fn(blkg->pd[i]);
413 }
414
415 blkg->online = false;
416
417 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
418 list_del_init(&blkg->q_node);
419 hlist_del_init_rcu(&blkg->blkcg_node);
420
421 /*
422 * Both setting lookup hint to and clearing it from @blkg are done
423 * under queue_lock. If it's not pointing to @blkg now, it never
424 * will. Hint assignment itself can race safely.
425 */
426 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
427 rcu_assign_pointer(blkcg->blkg_hint, NULL);
428
429 /*
430 * Put the reference taken at the time of creation so that when all
431 * queues are gone, group can be destroyed.
432 */
433 percpu_ref_kill(&blkg->refcnt);
434 }
435
436 /**
437 * blkg_destroy_all - destroy all blkgs associated with a request_queue
438 * @q: request_queue of interest
439 *
440 * Destroy all blkgs associated with @q.
441 */
442 static void blkg_destroy_all(struct request_queue *q)
443 {
444 struct blkcg_gq *blkg, *n;
445
446 spin_lock_irq(&q->queue_lock);
447 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
448 struct blkcg *blkcg = blkg->blkcg;
449
450 spin_lock(&blkcg->lock);
451 blkg_destroy(blkg);
452 spin_unlock(&blkcg->lock);
453 }
454
455 q->root_blkg = NULL;
456 spin_unlock_irq(&q->queue_lock);
457 }
458
459 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
460 struct cftype *cftype, u64 val)
461 {
462 struct blkcg *blkcg = css_to_blkcg(css);
463 struct blkcg_gq *blkg;
464 int i, cpu;
465
466 mutex_lock(&blkcg_pol_mutex);
467 spin_lock_irq(&blkcg->lock);
468
469 /*
470 * Note that stat reset is racy - it doesn't synchronize against
471 * stat updates. This is a debug feature which shouldn't exist
472 * anyway. If you get hit by a race, retry.
473 */
474 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
475 for_each_possible_cpu(cpu) {
476 struct blkg_iostat_set *bis =
477 per_cpu_ptr(blkg->iostat_cpu, cpu);
478 memset(bis, 0, sizeof(*bis));
479 }
480 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
481
482 for (i = 0; i < BLKCG_MAX_POLS; i++) {
483 struct blkcg_policy *pol = blkcg_policy[i];
484
485 if (blkg->pd[i] && pol->pd_reset_stats_fn)
486 pol->pd_reset_stats_fn(blkg->pd[i]);
487 }
488 }
489
490 spin_unlock_irq(&blkcg->lock);
491 mutex_unlock(&blkcg_pol_mutex);
492 return 0;
493 }
494
495 const char *blkg_dev_name(struct blkcg_gq *blkg)
496 {
497 /* some drivers (floppy) instantiate a queue w/o disk registered */
498 if (blkg->q->backing_dev_info->dev)
499 return bdi_dev_name(blkg->q->backing_dev_info);
500 return NULL;
501 }
502
503 /**
504 * blkcg_print_blkgs - helper for printing per-blkg data
505 * @sf: seq_file to print to
506 * @blkcg: blkcg of interest
507 * @prfill: fill function to print out a blkg
508 * @pol: policy in question
509 * @data: data to be passed to @prfill
510 * @show_total: to print out sum of prfill return values or not
511 *
512 * This function invokes @prfill on each blkg of @blkcg if pd for the
513 * policy specified by @pol exists. @prfill is invoked with @sf, the
514 * policy data and @data and the matching queue lock held. If @show_total
515 * is %true, the sum of the return values from @prfill is printed with
516 * "Total" label at the end.
517 *
518 * This is to be used to construct print functions for
519 * cftype->read_seq_string method.
520 */
521 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
522 u64 (*prfill)(struct seq_file *,
523 struct blkg_policy_data *, int),
524 const struct blkcg_policy *pol, int data,
525 bool show_total)
526 {
527 struct blkcg_gq *blkg;
528 u64 total = 0;
529
530 rcu_read_lock();
531 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
532 spin_lock_irq(&blkg->q->queue_lock);
533 if (blkcg_policy_enabled(blkg->q, pol))
534 total += prfill(sf, blkg->pd[pol->plid], data);
535 spin_unlock_irq(&blkg->q->queue_lock);
536 }
537 rcu_read_unlock();
538
539 if (show_total)
540 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
541 }
542 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
543
544 /**
545 * __blkg_prfill_u64 - prfill helper for a single u64 value
546 * @sf: seq_file to print to
547 * @pd: policy private data of interest
548 * @v: value to print
549 *
550 * Print @v to @sf for the device assocaited with @pd.
551 */
552 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
553 {
554 const char *dname = blkg_dev_name(pd->blkg);
555
556 if (!dname)
557 return 0;
558
559 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
560 return v;
561 }
562 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
563
564 /* Performs queue bypass and policy enabled checks then looks up blkg. */
565 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
566 const struct blkcg_policy *pol,
567 struct request_queue *q)
568 {
569 WARN_ON_ONCE(!rcu_read_lock_held());
570 lockdep_assert_held(&q->queue_lock);
571
572 if (!blkcg_policy_enabled(q, pol))
573 return ERR_PTR(-EOPNOTSUPP);
574 return __blkg_lookup(blkcg, q, true /* update_hint */);
575 }
576
577 /**
578 * blkg_conf_prep - parse and prepare for per-blkg config update
579 * @inputp: input string pointer
580 *
581 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
582 * from @input and get and return the matching gendisk. *@inputp is
583 * updated to point past the device node prefix. Returns an ERR_PTR()
584 * value on error.
585 *
586 * Use this function iff blkg_conf_prep() can't be used for some reason.
587 */
588 struct gendisk *blkcg_conf_get_disk(char **inputp)
589 {
590 char *input = *inputp;
591 unsigned int major, minor;
592 struct gendisk *disk;
593 int key_len, part;
594
595 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
596 return ERR_PTR(-EINVAL);
597
598 input += key_len;
599 if (!isspace(*input))
600 return ERR_PTR(-EINVAL);
601 input = skip_spaces(input);
602
603 disk = get_gendisk(MKDEV(major, minor), &part);
604 if (!disk)
605 return ERR_PTR(-ENODEV);
606 if (part) {
607 put_disk_and_module(disk);
608 return ERR_PTR(-ENODEV);
609 }
610
611 *inputp = input;
612 return disk;
613 }
614
615 /**
616 * blkg_conf_prep - parse and prepare for per-blkg config update
617 * @blkcg: target block cgroup
618 * @pol: target policy
619 * @input: input string
620 * @ctx: blkg_conf_ctx to be filled
621 *
622 * Parse per-blkg config update from @input and initialize @ctx with the
623 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
624 * part of @input following MAJ:MIN. This function returns with RCU read
625 * lock and queue lock held and must be paired with blkg_conf_finish().
626 */
627 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
628 char *input, struct blkg_conf_ctx *ctx)
629 __acquires(rcu) __acquires(&disk->queue->queue_lock)
630 {
631 struct gendisk *disk;
632 struct request_queue *q;
633 struct blkcg_gq *blkg;
634 int ret;
635
636 disk = blkcg_conf_get_disk(&input);
637 if (IS_ERR(disk))
638 return PTR_ERR(disk);
639
640 q = disk->queue;
641
642 rcu_read_lock();
643 spin_lock_irq(&q->queue_lock);
644
645 blkg = blkg_lookup_check(blkcg, pol, q);
646 if (IS_ERR(blkg)) {
647 ret = PTR_ERR(blkg);
648 goto fail_unlock;
649 }
650
651 if (blkg)
652 goto success;
653
654 /*
655 * Create blkgs walking down from blkcg_root to @blkcg, so that all
656 * non-root blkgs have access to their parents.
657 */
658 while (true) {
659 struct blkcg *pos = blkcg;
660 struct blkcg *parent;
661 struct blkcg_gq *new_blkg;
662
663 parent = blkcg_parent(blkcg);
664 while (parent && !__blkg_lookup(parent, q, false)) {
665 pos = parent;
666 parent = blkcg_parent(parent);
667 }
668
669 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
670 spin_unlock_irq(&q->queue_lock);
671 rcu_read_unlock();
672
673 new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
674 if (unlikely(!new_blkg)) {
675 ret = -ENOMEM;
676 goto fail;
677 }
678
679 rcu_read_lock();
680 spin_lock_irq(&q->queue_lock);
681
682 blkg = blkg_lookup_check(pos, pol, q);
683 if (IS_ERR(blkg)) {
684 ret = PTR_ERR(blkg);
685 goto fail_unlock;
686 }
687
688 if (blkg) {
689 blkg_free(new_blkg);
690 } else {
691 blkg = blkg_create(pos, q, new_blkg);
692 if (IS_ERR(blkg)) {
693 ret = PTR_ERR(blkg);
694 goto fail_unlock;
695 }
696 }
697
698 if (pos == blkcg)
699 goto success;
700 }
701 success:
702 ctx->disk = disk;
703 ctx->blkg = blkg;
704 ctx->body = input;
705 return 0;
706
707 fail_unlock:
708 spin_unlock_irq(&q->queue_lock);
709 rcu_read_unlock();
710 fail:
711 put_disk_and_module(disk);
712 /*
713 * If queue was bypassing, we should retry. Do so after a
714 * short msleep(). It isn't strictly necessary but queue
715 * can be bypassing for some time and it's always nice to
716 * avoid busy looping.
717 */
718 if (ret == -EBUSY) {
719 msleep(10);
720 ret = restart_syscall();
721 }
722 return ret;
723 }
724 EXPORT_SYMBOL_GPL(blkg_conf_prep);
725
726 /**
727 * blkg_conf_finish - finish up per-blkg config update
728 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
729 *
730 * Finish up after per-blkg config update. This function must be paired
731 * with blkg_conf_prep().
732 */
733 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
734 __releases(&ctx->disk->queue->queue_lock) __releases(rcu)
735 {
736 spin_unlock_irq(&ctx->disk->queue->queue_lock);
737 rcu_read_unlock();
738 put_disk_and_module(ctx->disk);
739 }
740 EXPORT_SYMBOL_GPL(blkg_conf_finish);
741
742 static int blkcg_print_stat(struct seq_file *sf, void *v)
743 {
744 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
745 struct blkcg_gq *blkg;
746
747 cgroup_rstat_flush(blkcg->css.cgroup);
748 rcu_read_lock();
749
750 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
751 struct blkg_iostat_set *bis = &blkg->iostat;
752 const char *dname;
753 char *buf;
754 u64 rbytes, wbytes, rios, wios, dbytes, dios;
755 size_t size = seq_get_buf(sf, &buf), off = 0;
756 int i;
757 bool has_stats = false;
758 unsigned seq;
759
760 spin_lock_irq(&blkg->q->queue_lock);
761
762 if (!blkg->online)
763 goto skip;
764
765 dname = blkg_dev_name(blkg);
766 if (!dname)
767 goto skip;
768
769 /*
770 * Hooray string manipulation, count is the size written NOT
771 * INCLUDING THE \0, so size is now count+1 less than what we
772 * had before, but we want to start writing the next bit from
773 * the \0 so we only add count to buf.
774 */
775 off += scnprintf(buf+off, size-off, "%s ", dname);
776
777 do {
778 seq = u64_stats_fetch_begin(&bis->sync);
779
780 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
781 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
782 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
783 rios = bis->cur.ios[BLKG_IOSTAT_READ];
784 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
785 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
786 } while (u64_stats_fetch_retry(&bis->sync, seq));
787
788 if (rbytes || wbytes || rios || wios) {
789 has_stats = true;
790 off += scnprintf(buf+off, size-off,
791 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
792 rbytes, wbytes, rios, wios,
793 dbytes, dios);
794 }
795
796 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
797 has_stats = true;
798 off += scnprintf(buf+off, size-off,
799 " use_delay=%d delay_nsec=%llu",
800 atomic_read(&blkg->use_delay),
801 (unsigned long long)atomic64_read(&blkg->delay_nsec));
802 }
803
804 for (i = 0; i < BLKCG_MAX_POLS; i++) {
805 struct blkcg_policy *pol = blkcg_policy[i];
806 size_t written;
807
808 if (!blkg->pd[i] || !pol->pd_stat_fn)
809 continue;
810
811 written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off);
812 if (written)
813 has_stats = true;
814 off += written;
815 }
816
817 if (has_stats) {
818 if (off < size - 1) {
819 off += scnprintf(buf+off, size-off, "\n");
820 seq_commit(sf, off);
821 } else {
822 seq_commit(sf, -1);
823 }
824 }
825 skip:
826 spin_unlock_irq(&blkg->q->queue_lock);
827 }
828
829 rcu_read_unlock();
830 return 0;
831 }
832
833 static struct cftype blkcg_files[] = {
834 {
835 .name = "stat",
836 .flags = CFTYPE_NOT_ON_ROOT,
837 .seq_show = blkcg_print_stat,
838 },
839 { } /* terminate */
840 };
841
842 static struct cftype blkcg_legacy_files[] = {
843 {
844 .name = "reset_stats",
845 .write_u64 = blkcg_reset_stats,
846 },
847 { } /* terminate */
848 };
849
850 /*
851 * blkcg destruction is a three-stage process.
852 *
853 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
854 * which offlines writeback. Here we tie the next stage of blkg destruction
855 * to the completion of writeback associated with the blkcg. This lets us
856 * avoid punting potentially large amounts of outstanding writeback to root
857 * while maintaining any ongoing policies. The next stage is triggered when
858 * the nr_cgwbs count goes to zero.
859 *
860 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
861 * and handles the destruction of blkgs. Here the css reference held by
862 * the blkg is put back eventually allowing blkcg_css_free() to be called.
863 * This work may occur in cgwb_release_workfn() on the cgwb_release
864 * workqueue. Any submitted ios that fail to get the blkg ref will be
865 * punted to the root_blkg.
866 *
867 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
868 * This finally frees the blkcg.
869 */
870
871 /**
872 * blkcg_css_offline - cgroup css_offline callback
873 * @css: css of interest
874 *
875 * This function is called when @css is about to go away. Here the cgwbs are
876 * offlined first and only once writeback associated with the blkcg has
877 * finished do we start step 2 (see above).
878 */
879 static void blkcg_css_offline(struct cgroup_subsys_state *css)
880 {
881 struct blkcg *blkcg = css_to_blkcg(css);
882
883 /* this prevents anyone from attaching or migrating to this blkcg */
884 wb_blkcg_offline(blkcg);
885
886 /* put the base online pin allowing step 2 to be triggered */
887 blkcg_unpin_online(blkcg);
888 }
889
890 /**
891 * blkcg_destroy_blkgs - responsible for shooting down blkgs
892 * @blkcg: blkcg of interest
893 *
894 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
895 * is nested inside q lock, this function performs reverse double lock dancing.
896 * Destroying the blkgs releases the reference held on the blkcg's css allowing
897 * blkcg_css_free to eventually be called.
898 *
899 * This is the blkcg counterpart of ioc_release_fn().
900 */
901 void blkcg_destroy_blkgs(struct blkcg *blkcg)
902 {
903 spin_lock_irq(&blkcg->lock);
904
905 while (!hlist_empty(&blkcg->blkg_list)) {
906 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
907 struct blkcg_gq, blkcg_node);
908 struct request_queue *q = blkg->q;
909
910 if (spin_trylock(&q->queue_lock)) {
911 blkg_destroy(blkg);
912 spin_unlock(&q->queue_lock);
913 } else {
914 spin_unlock_irq(&blkcg->lock);
915 cpu_relax();
916 spin_lock_irq(&blkcg->lock);
917 }
918 }
919
920 spin_unlock_irq(&blkcg->lock);
921 }
922
923 static void blkcg_css_free(struct cgroup_subsys_state *css)
924 {
925 struct blkcg *blkcg = css_to_blkcg(css);
926 int i;
927
928 mutex_lock(&blkcg_pol_mutex);
929
930 list_del(&blkcg->all_blkcgs_node);
931
932 for (i = 0; i < BLKCG_MAX_POLS; i++)
933 if (blkcg->cpd[i])
934 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
935
936 mutex_unlock(&blkcg_pol_mutex);
937
938 kfree(blkcg);
939 }
940
941 static struct cgroup_subsys_state *
942 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
943 {
944 struct blkcg *blkcg;
945 struct cgroup_subsys_state *ret;
946 int i;
947
948 mutex_lock(&blkcg_pol_mutex);
949
950 if (!parent_css) {
951 blkcg = &blkcg_root;
952 } else {
953 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
954 if (!blkcg) {
955 ret = ERR_PTR(-ENOMEM);
956 goto unlock;
957 }
958 }
959
960 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
961 struct blkcg_policy *pol = blkcg_policy[i];
962 struct blkcg_policy_data *cpd;
963
964 /*
965 * If the policy hasn't been attached yet, wait for it
966 * to be attached before doing anything else. Otherwise,
967 * check if the policy requires any specific per-cgroup
968 * data: if it does, allocate and initialize it.
969 */
970 if (!pol || !pol->cpd_alloc_fn)
971 continue;
972
973 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
974 if (!cpd) {
975 ret = ERR_PTR(-ENOMEM);
976 goto free_pd_blkcg;
977 }
978 blkcg->cpd[i] = cpd;
979 cpd->blkcg = blkcg;
980 cpd->plid = i;
981 if (pol->cpd_init_fn)
982 pol->cpd_init_fn(cpd);
983 }
984
985 spin_lock_init(&blkcg->lock);
986 refcount_set(&blkcg->online_pin, 1);
987 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
988 INIT_HLIST_HEAD(&blkcg->blkg_list);
989 #ifdef CONFIG_CGROUP_WRITEBACK
990 INIT_LIST_HEAD(&blkcg->cgwb_list);
991 #endif
992 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
993
994 mutex_unlock(&blkcg_pol_mutex);
995 return &blkcg->css;
996
997 free_pd_blkcg:
998 for (i--; i >= 0; i--)
999 if (blkcg->cpd[i])
1000 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1001
1002 if (blkcg != &blkcg_root)
1003 kfree(blkcg);
1004 unlock:
1005 mutex_unlock(&blkcg_pol_mutex);
1006 return ret;
1007 }
1008
1009 static int blkcg_css_online(struct cgroup_subsys_state *css)
1010 {
1011 struct blkcg *blkcg = css_to_blkcg(css);
1012 struct blkcg *parent = blkcg_parent(blkcg);
1013
1014 /*
1015 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1016 * don't go offline while cgwbs are still active on them. Pin the
1017 * parent so that offline always happens towards the root.
1018 */
1019 if (parent)
1020 blkcg_pin_online(parent);
1021 return 0;
1022 }
1023
1024 /**
1025 * blkcg_init_queue - initialize blkcg part of request queue
1026 * @q: request_queue to initialize
1027 *
1028 * Called from __blk_alloc_queue(). Responsible for initializing blkcg
1029 * part of new request_queue @q.
1030 *
1031 * RETURNS:
1032 * 0 on success, -errno on failure.
1033 */
1034 int blkcg_init_queue(struct request_queue *q)
1035 {
1036 struct blkcg_gq *new_blkg, *blkg;
1037 bool preloaded;
1038 int ret;
1039
1040 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1041 if (!new_blkg)
1042 return -ENOMEM;
1043
1044 preloaded = !radix_tree_preload(GFP_KERNEL);
1045
1046 /* Make sure the root blkg exists. */
1047 rcu_read_lock();
1048 spin_lock_irq(&q->queue_lock);
1049 blkg = blkg_create(&blkcg_root, q, new_blkg);
1050 if (IS_ERR(blkg))
1051 goto err_unlock;
1052 q->root_blkg = blkg;
1053 spin_unlock_irq(&q->queue_lock);
1054 rcu_read_unlock();
1055
1056 if (preloaded)
1057 radix_tree_preload_end();
1058
1059 ret = blk_iolatency_init(q);
1060 if (ret)
1061 goto err_destroy_all;
1062
1063 ret = blk_throtl_init(q);
1064 if (ret)
1065 goto err_destroy_all;
1066 return 0;
1067
1068 err_destroy_all:
1069 blkg_destroy_all(q);
1070 return ret;
1071 err_unlock:
1072 spin_unlock_irq(&q->queue_lock);
1073 rcu_read_unlock();
1074 if (preloaded)
1075 radix_tree_preload_end();
1076 return PTR_ERR(blkg);
1077 }
1078
1079 /**
1080 * blkcg_exit_queue - exit and release blkcg part of request_queue
1081 * @q: request_queue being released
1082 *
1083 * Called from blk_exit_queue(). Responsible for exiting blkcg part.
1084 */
1085 void blkcg_exit_queue(struct request_queue *q)
1086 {
1087 blkg_destroy_all(q);
1088 blk_throtl_exit(q);
1089 }
1090
1091 /*
1092 * We cannot support shared io contexts, as we have no mean to support
1093 * two tasks with the same ioc in two different groups without major rework
1094 * of the main cic data structures. For now we allow a task to change
1095 * its cgroup only if it's the only owner of its ioc.
1096 */
1097 static int blkcg_can_attach(struct cgroup_taskset *tset)
1098 {
1099 struct task_struct *task;
1100 struct cgroup_subsys_state *dst_css;
1101 struct io_context *ioc;
1102 int ret = 0;
1103
1104 /* task_lock() is needed to avoid races with exit_io_context() */
1105 cgroup_taskset_for_each(task, dst_css, tset) {
1106 task_lock(task);
1107 ioc = task->io_context;
1108 if (ioc && atomic_read(&ioc->nr_tasks) > 1)
1109 ret = -EINVAL;
1110 task_unlock(task);
1111 if (ret)
1112 break;
1113 }
1114 return ret;
1115 }
1116
1117 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
1118 {
1119 int i;
1120
1121 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1122 dst->bytes[i] = src->bytes[i];
1123 dst->ios[i] = src->ios[i];
1124 }
1125 }
1126
1127 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
1128 {
1129 int i;
1130
1131 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1132 dst->bytes[i] += src->bytes[i];
1133 dst->ios[i] += src->ios[i];
1134 }
1135 }
1136
1137 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
1138 {
1139 int i;
1140
1141 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1142 dst->bytes[i] -= src->bytes[i];
1143 dst->ios[i] -= src->ios[i];
1144 }
1145 }
1146
1147 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1148 {
1149 struct blkcg *blkcg = css_to_blkcg(css);
1150 struct blkcg_gq *blkg;
1151
1152 rcu_read_lock();
1153
1154 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1155 struct blkcg_gq *parent = blkg->parent;
1156 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
1157 struct blkg_iostat cur, delta;
1158 unsigned seq;
1159
1160 /* fetch the current per-cpu values */
1161 do {
1162 seq = u64_stats_fetch_begin(&bisc->sync);
1163 blkg_iostat_set(&cur, &bisc->cur);
1164 } while (u64_stats_fetch_retry(&bisc->sync, seq));
1165
1166 /* propagate percpu delta to global */
1167 u64_stats_update_begin(&blkg->iostat.sync);
1168 blkg_iostat_set(&delta, &cur);
1169 blkg_iostat_sub(&delta, &bisc->last);
1170 blkg_iostat_add(&blkg->iostat.cur, &delta);
1171 blkg_iostat_add(&bisc->last, &delta);
1172 u64_stats_update_end(&blkg->iostat.sync);
1173
1174 /* propagate global delta to parent */
1175 if (parent) {
1176 u64_stats_update_begin(&parent->iostat.sync);
1177 blkg_iostat_set(&delta, &blkg->iostat.cur);
1178 blkg_iostat_sub(&delta, &blkg->iostat.last);
1179 blkg_iostat_add(&parent->iostat.cur, &delta);
1180 blkg_iostat_add(&blkg->iostat.last, &delta);
1181 u64_stats_update_end(&parent->iostat.sync);
1182 }
1183 }
1184
1185 rcu_read_unlock();
1186 }
1187
1188 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1189 {
1190 int i;
1191
1192 mutex_lock(&blkcg_pol_mutex);
1193
1194 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1195 struct blkcg_policy *pol = blkcg_policy[i];
1196 struct blkcg *blkcg;
1197
1198 if (!pol || !pol->cpd_bind_fn)
1199 continue;
1200
1201 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1202 if (blkcg->cpd[pol->plid])
1203 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1204 }
1205 mutex_unlock(&blkcg_pol_mutex);
1206 }
1207
1208 static void blkcg_exit(struct task_struct *tsk)
1209 {
1210 if (tsk->throttle_queue)
1211 blk_put_queue(tsk->throttle_queue);
1212 tsk->throttle_queue = NULL;
1213 }
1214
1215 struct cgroup_subsys io_cgrp_subsys = {
1216 .css_alloc = blkcg_css_alloc,
1217 .css_online = blkcg_css_online,
1218 .css_offline = blkcg_css_offline,
1219 .css_free = blkcg_css_free,
1220 .can_attach = blkcg_can_attach,
1221 .css_rstat_flush = blkcg_rstat_flush,
1222 .bind = blkcg_bind,
1223 .dfl_cftypes = blkcg_files,
1224 .legacy_cftypes = blkcg_legacy_files,
1225 .legacy_name = "blkio",
1226 .exit = blkcg_exit,
1227 #ifdef CONFIG_MEMCG
1228 /*
1229 * This ensures that, if available, memcg is automatically enabled
1230 * together on the default hierarchy so that the owner cgroup can
1231 * be retrieved from writeback pages.
1232 */
1233 .depends_on = 1 << memory_cgrp_id,
1234 #endif
1235 };
1236 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1237
1238 /**
1239 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1240 * @q: request_queue of interest
1241 * @pol: blkcg policy to activate
1242 *
1243 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through
1244 * bypass mode to populate its blkgs with policy_data for @pol.
1245 *
1246 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1247 * from IO path. Update of each blkg is protected by both queue and blkcg
1248 * locks so that holding either lock and testing blkcg_policy_enabled() is
1249 * always enough for dereferencing policy data.
1250 *
1251 * The caller is responsible for synchronizing [de]activations and policy
1252 * [un]registerations. Returns 0 on success, -errno on failure.
1253 */
1254 int blkcg_activate_policy(struct request_queue *q,
1255 const struct blkcg_policy *pol)
1256 {
1257 struct blkg_policy_data *pd_prealloc = NULL;
1258 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1259 int ret;
1260
1261 if (blkcg_policy_enabled(q, pol))
1262 return 0;
1263
1264 if (queue_is_mq(q))
1265 blk_mq_freeze_queue(q);
1266 retry:
1267 spin_lock_irq(&q->queue_lock);
1268
1269 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1270 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1271 struct blkg_policy_data *pd;
1272
1273 if (blkg->pd[pol->plid])
1274 continue;
1275
1276 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1277 if (blkg == pinned_blkg) {
1278 pd = pd_prealloc;
1279 pd_prealloc = NULL;
1280 } else {
1281 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1282 blkg->blkcg);
1283 }
1284
1285 if (!pd) {
1286 /*
1287 * GFP_NOWAIT failed. Free the existing one and
1288 * prealloc for @blkg w/ GFP_KERNEL.
1289 */
1290 if (pinned_blkg)
1291 blkg_put(pinned_blkg);
1292 blkg_get(blkg);
1293 pinned_blkg = blkg;
1294
1295 spin_unlock_irq(&q->queue_lock);
1296
1297 if (pd_prealloc)
1298 pol->pd_free_fn(pd_prealloc);
1299 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1300 blkg->blkcg);
1301 if (pd_prealloc)
1302 goto retry;
1303 else
1304 goto enomem;
1305 }
1306
1307 blkg->pd[pol->plid] = pd;
1308 pd->blkg = blkg;
1309 pd->plid = pol->plid;
1310 }
1311
1312 /* all allocated, init in the same order */
1313 if (pol->pd_init_fn)
1314 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1315 pol->pd_init_fn(blkg->pd[pol->plid]);
1316
1317 __set_bit(pol->plid, q->blkcg_pols);
1318 ret = 0;
1319
1320 spin_unlock_irq(&q->queue_lock);
1321 out:
1322 if (queue_is_mq(q))
1323 blk_mq_unfreeze_queue(q);
1324 if (pinned_blkg)
1325 blkg_put(pinned_blkg);
1326 if (pd_prealloc)
1327 pol->pd_free_fn(pd_prealloc);
1328 return ret;
1329
1330 enomem:
1331 /* alloc failed, nothing's initialized yet, free everything */
1332 spin_lock_irq(&q->queue_lock);
1333 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1334 if (blkg->pd[pol->plid]) {
1335 pol->pd_free_fn(blkg->pd[pol->plid]);
1336 blkg->pd[pol->plid] = NULL;
1337 }
1338 }
1339 spin_unlock_irq(&q->queue_lock);
1340 ret = -ENOMEM;
1341 goto out;
1342 }
1343 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1344
1345 /**
1346 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1347 * @q: request_queue of interest
1348 * @pol: blkcg policy to deactivate
1349 *
1350 * Deactivate @pol on @q. Follows the same synchronization rules as
1351 * blkcg_activate_policy().
1352 */
1353 void blkcg_deactivate_policy(struct request_queue *q,
1354 const struct blkcg_policy *pol)
1355 {
1356 struct blkcg_gq *blkg;
1357
1358 if (!blkcg_policy_enabled(q, pol))
1359 return;
1360
1361 if (queue_is_mq(q))
1362 blk_mq_freeze_queue(q);
1363
1364 spin_lock_irq(&q->queue_lock);
1365
1366 __clear_bit(pol->plid, q->blkcg_pols);
1367
1368 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1369 if (blkg->pd[pol->plid]) {
1370 if (pol->pd_offline_fn)
1371 pol->pd_offline_fn(blkg->pd[pol->plid]);
1372 pol->pd_free_fn(blkg->pd[pol->plid]);
1373 blkg->pd[pol->plid] = NULL;
1374 }
1375 }
1376
1377 spin_unlock_irq(&q->queue_lock);
1378
1379 if (queue_is_mq(q))
1380 blk_mq_unfreeze_queue(q);
1381 }
1382 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1383
1384 /**
1385 * blkcg_policy_register - register a blkcg policy
1386 * @pol: blkcg policy to register
1387 *
1388 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1389 * successful registration. Returns 0 on success and -errno on failure.
1390 */
1391 int blkcg_policy_register(struct blkcg_policy *pol)
1392 {
1393 struct blkcg *blkcg;
1394 int i, ret;
1395
1396 mutex_lock(&blkcg_pol_register_mutex);
1397 mutex_lock(&blkcg_pol_mutex);
1398
1399 /* find an empty slot */
1400 ret = -ENOSPC;
1401 for (i = 0; i < BLKCG_MAX_POLS; i++)
1402 if (!blkcg_policy[i])
1403 break;
1404 if (i >= BLKCG_MAX_POLS) {
1405 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1406 goto err_unlock;
1407 }
1408
1409 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1410 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1411 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1412 goto err_unlock;
1413
1414 /* register @pol */
1415 pol->plid = i;
1416 blkcg_policy[pol->plid] = pol;
1417
1418 /* allocate and install cpd's */
1419 if (pol->cpd_alloc_fn) {
1420 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1421 struct blkcg_policy_data *cpd;
1422
1423 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1424 if (!cpd)
1425 goto err_free_cpds;
1426
1427 blkcg->cpd[pol->plid] = cpd;
1428 cpd->blkcg = blkcg;
1429 cpd->plid = pol->plid;
1430 if (pol->cpd_init_fn)
1431 pol->cpd_init_fn(cpd);
1432 }
1433 }
1434
1435 mutex_unlock(&blkcg_pol_mutex);
1436
1437 /* everything is in place, add intf files for the new policy */
1438 if (pol->dfl_cftypes)
1439 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1440 pol->dfl_cftypes));
1441 if (pol->legacy_cftypes)
1442 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1443 pol->legacy_cftypes));
1444 mutex_unlock(&blkcg_pol_register_mutex);
1445 return 0;
1446
1447 err_free_cpds:
1448 if (pol->cpd_free_fn) {
1449 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1450 if (blkcg->cpd[pol->plid]) {
1451 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1452 blkcg->cpd[pol->plid] = NULL;
1453 }
1454 }
1455 }
1456 blkcg_policy[pol->plid] = NULL;
1457 err_unlock:
1458 mutex_unlock(&blkcg_pol_mutex);
1459 mutex_unlock(&blkcg_pol_register_mutex);
1460 return ret;
1461 }
1462 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1463
1464 /**
1465 * blkcg_policy_unregister - unregister a blkcg policy
1466 * @pol: blkcg policy to unregister
1467 *
1468 * Undo blkcg_policy_register(@pol). Might sleep.
1469 */
1470 void blkcg_policy_unregister(struct blkcg_policy *pol)
1471 {
1472 struct blkcg *blkcg;
1473
1474 mutex_lock(&blkcg_pol_register_mutex);
1475
1476 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1477 goto out_unlock;
1478
1479 /* kill the intf files first */
1480 if (pol->dfl_cftypes)
1481 cgroup_rm_cftypes(pol->dfl_cftypes);
1482 if (pol->legacy_cftypes)
1483 cgroup_rm_cftypes(pol->legacy_cftypes);
1484
1485 /* remove cpds and unregister */
1486 mutex_lock(&blkcg_pol_mutex);
1487
1488 if (pol->cpd_free_fn) {
1489 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1490 if (blkcg->cpd[pol->plid]) {
1491 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1492 blkcg->cpd[pol->plid] = NULL;
1493 }
1494 }
1495 }
1496 blkcg_policy[pol->plid] = NULL;
1497
1498 mutex_unlock(&blkcg_pol_mutex);
1499 out_unlock:
1500 mutex_unlock(&blkcg_pol_register_mutex);
1501 }
1502 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1503
1504 bool __blkcg_punt_bio_submit(struct bio *bio)
1505 {
1506 struct blkcg_gq *blkg = bio->bi_blkg;
1507
1508 /* consume the flag first */
1509 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1510
1511 /* never bounce for the root cgroup */
1512 if (!blkg->parent)
1513 return false;
1514
1515 spin_lock_bh(&blkg->async_bio_lock);
1516 bio_list_add(&blkg->async_bios, bio);
1517 spin_unlock_bh(&blkg->async_bio_lock);
1518
1519 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1520 return true;
1521 }
1522
1523 /*
1524 * Scale the accumulated delay based on how long it has been since we updated
1525 * the delay. We only call this when we are adding delay, in case it's been a
1526 * while since we added delay, and when we are checking to see if we need to
1527 * delay a task, to account for any delays that may have occurred.
1528 */
1529 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1530 {
1531 u64 old = atomic64_read(&blkg->delay_start);
1532
1533 /*
1534 * We only want to scale down every second. The idea here is that we
1535 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1536 * time window. We only want to throttle tasks for recent delay that
1537 * has occurred, in 1 second time windows since that's the maximum
1538 * things can be throttled. We save the current delay window in
1539 * blkg->last_delay so we know what amount is still left to be charged
1540 * to the blkg from this point onward. blkg->last_use keeps track of
1541 * the use_delay counter. The idea is if we're unthrottling the blkg we
1542 * are ok with whatever is happening now, and we can take away more of
1543 * the accumulated delay as we've already throttled enough that
1544 * everybody is happy with their IO latencies.
1545 */
1546 if (time_before64(old + NSEC_PER_SEC, now) &&
1547 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1548 u64 cur = atomic64_read(&blkg->delay_nsec);
1549 u64 sub = min_t(u64, blkg->last_delay, now - old);
1550 int cur_use = atomic_read(&blkg->use_delay);
1551
1552 /*
1553 * We've been unthrottled, subtract a larger chunk of our
1554 * accumulated delay.
1555 */
1556 if (cur_use < blkg->last_use)
1557 sub = max_t(u64, sub, blkg->last_delay >> 1);
1558
1559 /*
1560 * This shouldn't happen, but handle it anyway. Our delay_nsec
1561 * should only ever be growing except here where we subtract out
1562 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1563 * rather not end up with negative numbers.
1564 */
1565 if (unlikely(cur < sub)) {
1566 atomic64_set(&blkg->delay_nsec, 0);
1567 blkg->last_delay = 0;
1568 } else {
1569 atomic64_sub(sub, &blkg->delay_nsec);
1570 blkg->last_delay = cur - sub;
1571 }
1572 blkg->last_use = cur_use;
1573 }
1574 }
1575
1576 /*
1577 * This is called when we want to actually walk up the hierarchy and check to
1578 * see if we need to throttle, and then actually throttle if there is some
1579 * accumulated delay. This should only be called upon return to user space so
1580 * we're not holding some lock that would induce a priority inversion.
1581 */
1582 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1583 {
1584 unsigned long pflags;
1585 u64 now = ktime_to_ns(ktime_get());
1586 u64 exp;
1587 u64 delay_nsec = 0;
1588 int tok;
1589
1590 while (blkg->parent) {
1591 if (atomic_read(&blkg->use_delay)) {
1592 blkcg_scale_delay(blkg, now);
1593 delay_nsec = max_t(u64, delay_nsec,
1594 atomic64_read(&blkg->delay_nsec));
1595 }
1596 blkg = blkg->parent;
1597 }
1598
1599 if (!delay_nsec)
1600 return;
1601
1602 /*
1603 * Let's not sleep for all eternity if we've amassed a huge delay.
1604 * Swapping or metadata IO can accumulate 10's of seconds worth of
1605 * delay, and we want userspace to be able to do _something_ so cap the
1606 * delays at 1 second. If there's 10's of seconds worth of delay then
1607 * the tasks will be delayed for 1 second for every syscall.
1608 */
1609 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1610
1611 if (use_memdelay)
1612 psi_memstall_enter(&pflags);
1613
1614 exp = ktime_add_ns(now, delay_nsec);
1615 tok = io_schedule_prepare();
1616 do {
1617 __set_current_state(TASK_KILLABLE);
1618 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1619 break;
1620 } while (!fatal_signal_pending(current));
1621 io_schedule_finish(tok);
1622
1623 if (use_memdelay)
1624 psi_memstall_leave(&pflags);
1625 }
1626
1627 /**
1628 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1629 *
1630 * This is only called if we've been marked with set_notify_resume(). Obviously
1631 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1632 * check to see if current->throttle_queue is set and if not this doesn't do
1633 * anything. This should only ever be called by the resume code, it's not meant
1634 * to be called by people willy-nilly as it will actually do the work to
1635 * throttle the task if it is setup for throttling.
1636 */
1637 void blkcg_maybe_throttle_current(void)
1638 {
1639 struct request_queue *q = current->throttle_queue;
1640 struct cgroup_subsys_state *css;
1641 struct blkcg *blkcg;
1642 struct blkcg_gq *blkg;
1643 bool use_memdelay = current->use_memdelay;
1644
1645 if (!q)
1646 return;
1647
1648 current->throttle_queue = NULL;
1649 current->use_memdelay = false;
1650
1651 rcu_read_lock();
1652 css = kthread_blkcg();
1653 if (css)
1654 blkcg = css_to_blkcg(css);
1655 else
1656 blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1657
1658 if (!blkcg)
1659 goto out;
1660 blkg = blkg_lookup(blkcg, q);
1661 if (!blkg)
1662 goto out;
1663 if (!blkg_tryget(blkg))
1664 goto out;
1665 rcu_read_unlock();
1666
1667 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1668 blkg_put(blkg);
1669 blk_put_queue(q);
1670 return;
1671 out:
1672 rcu_read_unlock();
1673 blk_put_queue(q);
1674 }
1675
1676 /**
1677 * blkcg_schedule_throttle - this task needs to check for throttling
1678 * @q: the request queue IO was submitted on
1679 * @use_memdelay: do we charge this to memory delay for PSI
1680 *
1681 * This is called by the IO controller when we know there's delay accumulated
1682 * for the blkg for this task. We do not pass the blkg because there are places
1683 * we call this that may not have that information, the swapping code for
1684 * instance will only have a request_queue at that point. This set's the
1685 * notify_resume for the task to check and see if it requires throttling before
1686 * returning to user space.
1687 *
1688 * We will only schedule once per syscall. You can call this over and over
1689 * again and it will only do the check once upon return to user space, and only
1690 * throttle once. If the task needs to be throttled again it'll need to be
1691 * re-set at the next time we see the task.
1692 */
1693 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1694 {
1695 if (unlikely(current->flags & PF_KTHREAD))
1696 return;
1697
1698 if (!blk_get_queue(q))
1699 return;
1700
1701 if (current->throttle_queue)
1702 blk_put_queue(current->throttle_queue);
1703 current->throttle_queue = q;
1704 if (use_memdelay)
1705 current->use_memdelay = use_memdelay;
1706 set_notify_resume(current);
1707 }
1708
1709 /**
1710 * blkcg_add_delay - add delay to this blkg
1711 * @blkg: blkg of interest
1712 * @now: the current time in nanoseconds
1713 * @delta: how many nanoseconds of delay to add
1714 *
1715 * Charge @delta to the blkg's current delay accumulation. This is used to
1716 * throttle tasks if an IO controller thinks we need more throttling.
1717 */
1718 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1719 {
1720 blkcg_scale_delay(blkg, now);
1721 atomic64_add(delta, &blkg->delay_nsec);
1722 }
1723
1724 static int __init blkcg_init(void)
1725 {
1726 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1727 WQ_MEM_RECLAIM | WQ_FREEZABLE |
1728 WQ_UNBOUND | WQ_SYSFS, 0);
1729 if (!blkcg_punt_bio_wq)
1730 return -ENOMEM;
1731 return 0;
1732 }
1733 subsys_initcall(blkcg_init);
1734
1735 module_param(blkcg_debug_stats, bool, 0644);
1736 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");