]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-core.c
blk-mq: fix discard merge with scheduler attached
[thirdparty/kernel/stable.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 cancel_delayed_work_sync(&q->requeue_work);
343 queue_for_each_hw_ctx(q, hctx, i)
344 cancel_delayed_work_sync(&hctx->run_work);
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350
351 /**
352 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
353 * @q: The queue to run
354 *
355 * Description:
356 * Invoke request handling on a queue if there are any pending requests.
357 * May be used to restart request handling after a request has completed.
358 * This variant runs the queue whether or not the queue has been
359 * stopped. Must be called with the queue lock held and interrupts
360 * disabled. See also @blk_run_queue.
361 */
362 inline void __blk_run_queue_uncond(struct request_queue *q)
363 {
364 lockdep_assert_held(q->queue_lock);
365 WARN_ON_ONCE(q->mq_ops);
366
367 if (unlikely(blk_queue_dead(q)))
368 return;
369
370 /*
371 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
372 * the queue lock internally. As a result multiple threads may be
373 * running such a request function concurrently. Keep track of the
374 * number of active request_fn invocations such that blk_drain_queue()
375 * can wait until all these request_fn calls have finished.
376 */
377 q->request_fn_active++;
378 q->request_fn(q);
379 q->request_fn_active--;
380 }
381 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
382
383 /**
384 * __blk_run_queue - run a single device queue
385 * @q: The queue to run
386 *
387 * Description:
388 * See @blk_run_queue.
389 */
390 void __blk_run_queue(struct request_queue *q)
391 {
392 lockdep_assert_held(q->queue_lock);
393 WARN_ON_ONCE(q->mq_ops);
394
395 if (unlikely(blk_queue_stopped(q)))
396 return;
397
398 __blk_run_queue_uncond(q);
399 }
400 EXPORT_SYMBOL(__blk_run_queue);
401
402 /**
403 * blk_run_queue_async - run a single device queue in workqueue context
404 * @q: The queue to run
405 *
406 * Description:
407 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
408 * of us.
409 *
410 * Note:
411 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
412 * has canceled q->delay_work, callers must hold the queue lock to avoid
413 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
414 */
415 void blk_run_queue_async(struct request_queue *q)
416 {
417 lockdep_assert_held(q->queue_lock);
418 WARN_ON_ONCE(q->mq_ops);
419
420 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
421 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
422 }
423 EXPORT_SYMBOL(blk_run_queue_async);
424
425 /**
426 * blk_run_queue - run a single device queue
427 * @q: The queue to run
428 *
429 * Description:
430 * Invoke request handling on this queue, if it has pending work to do.
431 * May be used to restart queueing when a request has completed.
432 */
433 void blk_run_queue(struct request_queue *q)
434 {
435 unsigned long flags;
436
437 WARN_ON_ONCE(q->mq_ops);
438
439 spin_lock_irqsave(q->queue_lock, flags);
440 __blk_run_queue(q);
441 spin_unlock_irqrestore(q->queue_lock, flags);
442 }
443 EXPORT_SYMBOL(blk_run_queue);
444
445 void blk_put_queue(struct request_queue *q)
446 {
447 kobject_put(&q->kobj);
448 }
449 EXPORT_SYMBOL(blk_put_queue);
450
451 /**
452 * __blk_drain_queue - drain requests from request_queue
453 * @q: queue to drain
454 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
455 *
456 * Drain requests from @q. If @drain_all is set, all requests are drained.
457 * If not, only ELVPRIV requests are drained. The caller is responsible
458 * for ensuring that no new requests which need to be drained are queued.
459 */
460 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
461 __releases(q->queue_lock)
462 __acquires(q->queue_lock)
463 {
464 int i;
465
466 lockdep_assert_held(q->queue_lock);
467 WARN_ON_ONCE(q->mq_ops);
468
469 while (true) {
470 bool drain = false;
471
472 /*
473 * The caller might be trying to drain @q before its
474 * elevator is initialized.
475 */
476 if (q->elevator)
477 elv_drain_elevator(q);
478
479 blkcg_drain_queue(q);
480
481 /*
482 * This function might be called on a queue which failed
483 * driver init after queue creation or is not yet fully
484 * active yet. Some drivers (e.g. fd and loop) get unhappy
485 * in such cases. Kick queue iff dispatch queue has
486 * something on it and @q has request_fn set.
487 */
488 if (!list_empty(&q->queue_head) && q->request_fn)
489 __blk_run_queue(q);
490
491 drain |= q->nr_rqs_elvpriv;
492 drain |= q->request_fn_active;
493
494 /*
495 * Unfortunately, requests are queued at and tracked from
496 * multiple places and there's no single counter which can
497 * be drained. Check all the queues and counters.
498 */
499 if (drain_all) {
500 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
501 drain |= !list_empty(&q->queue_head);
502 for (i = 0; i < 2; i++) {
503 drain |= q->nr_rqs[i];
504 drain |= q->in_flight[i];
505 if (fq)
506 drain |= !list_empty(&fq->flush_queue[i]);
507 }
508 }
509
510 if (!drain)
511 break;
512
513 spin_unlock_irq(q->queue_lock);
514
515 msleep(10);
516
517 spin_lock_irq(q->queue_lock);
518 }
519
520 /*
521 * With queue marked dead, any woken up waiter will fail the
522 * allocation path, so the wakeup chaining is lost and we're
523 * left with hung waiters. We need to wake up those waiters.
524 */
525 if (q->request_fn) {
526 struct request_list *rl;
527
528 blk_queue_for_each_rl(rl, q)
529 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
530 wake_up_all(&rl->wait[i]);
531 }
532 }
533
534 void blk_drain_queue(struct request_queue *q)
535 {
536 spin_lock_irq(q->queue_lock);
537 __blk_drain_queue(q, true);
538 spin_unlock_irq(q->queue_lock);
539 }
540
541 /**
542 * blk_queue_bypass_start - enter queue bypass mode
543 * @q: queue of interest
544 *
545 * In bypass mode, only the dispatch FIFO queue of @q is used. This
546 * function makes @q enter bypass mode and drains all requests which were
547 * throttled or issued before. On return, it's guaranteed that no request
548 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
549 * inside queue or RCU read lock.
550 */
551 void blk_queue_bypass_start(struct request_queue *q)
552 {
553 WARN_ON_ONCE(q->mq_ops);
554
555 spin_lock_irq(q->queue_lock);
556 q->bypass_depth++;
557 queue_flag_set(QUEUE_FLAG_BYPASS, q);
558 spin_unlock_irq(q->queue_lock);
559
560 /*
561 * Queues start drained. Skip actual draining till init is
562 * complete. This avoids lenghty delays during queue init which
563 * can happen many times during boot.
564 */
565 if (blk_queue_init_done(q)) {
566 spin_lock_irq(q->queue_lock);
567 __blk_drain_queue(q, false);
568 spin_unlock_irq(q->queue_lock);
569
570 /* ensure blk_queue_bypass() is %true inside RCU read lock */
571 synchronize_rcu();
572 }
573 }
574 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
575
576 /**
577 * blk_queue_bypass_end - leave queue bypass mode
578 * @q: queue of interest
579 *
580 * Leave bypass mode and restore the normal queueing behavior.
581 *
582 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
583 * this function is called for both blk-sq and blk-mq queues.
584 */
585 void blk_queue_bypass_end(struct request_queue *q)
586 {
587 spin_lock_irq(q->queue_lock);
588 if (!--q->bypass_depth)
589 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
590 WARN_ON_ONCE(q->bypass_depth < 0);
591 spin_unlock_irq(q->queue_lock);
592 }
593 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
594
595 void blk_set_queue_dying(struct request_queue *q)
596 {
597 spin_lock_irq(q->queue_lock);
598 queue_flag_set(QUEUE_FLAG_DYING, q);
599 spin_unlock_irq(q->queue_lock);
600
601 /*
602 * When queue DYING flag is set, we need to block new req
603 * entering queue, so we call blk_freeze_queue_start() to
604 * prevent I/O from crossing blk_queue_enter().
605 */
606 blk_freeze_queue_start(q);
607
608 if (q->mq_ops)
609 blk_mq_wake_waiters(q);
610 else {
611 struct request_list *rl;
612
613 spin_lock_irq(q->queue_lock);
614 blk_queue_for_each_rl(rl, q) {
615 if (rl->rq_pool) {
616 wake_up_all(&rl->wait[BLK_RW_SYNC]);
617 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
618 }
619 }
620 spin_unlock_irq(q->queue_lock);
621 }
622 }
623 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
624
625 /**
626 * blk_cleanup_queue - shutdown a request queue
627 * @q: request queue to shutdown
628 *
629 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
630 * put it. All future requests will be failed immediately with -ENODEV.
631 */
632 void blk_cleanup_queue(struct request_queue *q)
633 {
634 spinlock_t *lock = q->queue_lock;
635
636 /* mark @q DYING, no new request or merges will be allowed afterwards */
637 mutex_lock(&q->sysfs_lock);
638 blk_set_queue_dying(q);
639 spin_lock_irq(lock);
640
641 /*
642 * A dying queue is permanently in bypass mode till released. Note
643 * that, unlike blk_queue_bypass_start(), we aren't performing
644 * synchronize_rcu() after entering bypass mode to avoid the delay
645 * as some drivers create and destroy a lot of queues while
646 * probing. This is still safe because blk_release_queue() will be
647 * called only after the queue refcnt drops to zero and nothing,
648 * RCU or not, would be traversing the queue by then.
649 */
650 q->bypass_depth++;
651 queue_flag_set(QUEUE_FLAG_BYPASS, q);
652
653 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
654 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
655 queue_flag_set(QUEUE_FLAG_DYING, q);
656 spin_unlock_irq(lock);
657 mutex_unlock(&q->sysfs_lock);
658
659 /*
660 * Drain all requests queued before DYING marking. Set DEAD flag to
661 * prevent that q->request_fn() gets invoked after draining finished.
662 */
663 blk_freeze_queue(q);
664 spin_lock_irq(lock);
665 queue_flag_set(QUEUE_FLAG_DEAD, q);
666 spin_unlock_irq(lock);
667
668 /*
669 * make sure all in-progress dispatch are completed because
670 * blk_freeze_queue() can only complete all requests, and
671 * dispatch may still be in-progress since we dispatch requests
672 * from more than one contexts
673 */
674 if (q->mq_ops)
675 blk_mq_quiesce_queue(q);
676
677 /* for synchronous bio-based driver finish in-flight integrity i/o */
678 blk_flush_integrity();
679
680 /* @q won't process any more request, flush async actions */
681 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
682 blk_sync_queue(q);
683
684 if (q->mq_ops)
685 blk_mq_free_queue(q);
686 percpu_ref_exit(&q->q_usage_counter);
687
688 spin_lock_irq(lock);
689 if (q->queue_lock != &q->__queue_lock)
690 q->queue_lock = &q->__queue_lock;
691 spin_unlock_irq(lock);
692
693 /* @q is and will stay empty, shutdown and put */
694 blk_put_queue(q);
695 }
696 EXPORT_SYMBOL(blk_cleanup_queue);
697
698 /* Allocate memory local to the request queue */
699 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
700 {
701 struct request_queue *q = data;
702
703 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
704 }
705
706 static void free_request_simple(void *element, void *data)
707 {
708 kmem_cache_free(request_cachep, element);
709 }
710
711 static void *alloc_request_size(gfp_t gfp_mask, void *data)
712 {
713 struct request_queue *q = data;
714 struct request *rq;
715
716 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
717 q->node);
718 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
719 kfree(rq);
720 rq = NULL;
721 }
722 return rq;
723 }
724
725 static void free_request_size(void *element, void *data)
726 {
727 struct request_queue *q = data;
728
729 if (q->exit_rq_fn)
730 q->exit_rq_fn(q, element);
731 kfree(element);
732 }
733
734 int blk_init_rl(struct request_list *rl, struct request_queue *q,
735 gfp_t gfp_mask)
736 {
737 if (unlikely(rl->rq_pool))
738 return 0;
739
740 rl->q = q;
741 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
742 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
743 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
744 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
745
746 if (q->cmd_size) {
747 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
748 alloc_request_size, free_request_size,
749 q, gfp_mask, q->node);
750 } else {
751 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
752 alloc_request_simple, free_request_simple,
753 q, gfp_mask, q->node);
754 }
755 if (!rl->rq_pool)
756 return -ENOMEM;
757
758 if (rl != &q->root_rl)
759 WARN_ON_ONCE(!blk_get_queue(q));
760
761 return 0;
762 }
763
764 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
765 {
766 if (rl->rq_pool) {
767 mempool_destroy(rl->rq_pool);
768 if (rl != &q->root_rl)
769 blk_put_queue(q);
770 }
771 }
772
773 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
774 {
775 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
776 }
777 EXPORT_SYMBOL(blk_alloc_queue);
778
779 int blk_queue_enter(struct request_queue *q, bool nowait)
780 {
781 while (true) {
782 int ret;
783
784 if (percpu_ref_tryget_live(&q->q_usage_counter))
785 return 0;
786
787 if (nowait)
788 return -EBUSY;
789
790 /*
791 * read pair of barrier in blk_freeze_queue_start(),
792 * we need to order reading __PERCPU_REF_DEAD flag of
793 * .q_usage_counter and reading .mq_freeze_depth or
794 * queue dying flag, otherwise the following wait may
795 * never return if the two reads are reordered.
796 */
797 smp_rmb();
798
799 ret = wait_event_interruptible(q->mq_freeze_wq,
800 !atomic_read(&q->mq_freeze_depth) ||
801 blk_queue_dying(q));
802 if (blk_queue_dying(q))
803 return -ENODEV;
804 if (ret)
805 return ret;
806 }
807 }
808
809 void blk_queue_exit(struct request_queue *q)
810 {
811 percpu_ref_put(&q->q_usage_counter);
812 }
813
814 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
815 {
816 struct request_queue *q =
817 container_of(ref, struct request_queue, q_usage_counter);
818
819 wake_up_all(&q->mq_freeze_wq);
820 }
821
822 static void blk_rq_timed_out_timer(unsigned long data)
823 {
824 struct request_queue *q = (struct request_queue *)data;
825
826 kblockd_schedule_work(&q->timeout_work);
827 }
828
829 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
830 {
831 struct request_queue *q;
832
833 q = kmem_cache_alloc_node(blk_requestq_cachep,
834 gfp_mask | __GFP_ZERO, node_id);
835 if (!q)
836 return NULL;
837
838 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
839 if (q->id < 0)
840 goto fail_q;
841
842 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
843 if (!q->bio_split)
844 goto fail_id;
845
846 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
847 if (!q->backing_dev_info)
848 goto fail_split;
849
850 q->stats = blk_alloc_queue_stats();
851 if (!q->stats)
852 goto fail_stats;
853
854 q->backing_dev_info->ra_pages =
855 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
856 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
857 q->backing_dev_info->name = "block";
858 q->node = node_id;
859
860 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
861 laptop_mode_timer_fn, (unsigned long) q);
862 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
863 INIT_WORK(&q->timeout_work, NULL);
864 INIT_LIST_HEAD(&q->queue_head);
865 INIT_LIST_HEAD(&q->timeout_list);
866 INIT_LIST_HEAD(&q->icq_list);
867 #ifdef CONFIG_BLK_CGROUP
868 INIT_LIST_HEAD(&q->blkg_list);
869 #endif
870 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
871
872 kobject_init(&q->kobj, &blk_queue_ktype);
873
874 #ifdef CONFIG_BLK_DEV_IO_TRACE
875 mutex_init(&q->blk_trace_mutex);
876 #endif
877 mutex_init(&q->sysfs_lock);
878 spin_lock_init(&q->__queue_lock);
879
880 /*
881 * By default initialize queue_lock to internal lock and driver can
882 * override it later if need be.
883 */
884 q->queue_lock = &q->__queue_lock;
885
886 /*
887 * A queue starts its life with bypass turned on to avoid
888 * unnecessary bypass on/off overhead and nasty surprises during
889 * init. The initial bypass will be finished when the queue is
890 * registered by blk_register_queue().
891 */
892 q->bypass_depth = 1;
893 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
894
895 init_waitqueue_head(&q->mq_freeze_wq);
896
897 /*
898 * Init percpu_ref in atomic mode so that it's faster to shutdown.
899 * See blk_register_queue() for details.
900 */
901 if (percpu_ref_init(&q->q_usage_counter,
902 blk_queue_usage_counter_release,
903 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
904 goto fail_bdi;
905
906 if (blkcg_init_queue(q))
907 goto fail_ref;
908
909 return q;
910
911 fail_ref:
912 percpu_ref_exit(&q->q_usage_counter);
913 fail_bdi:
914 blk_free_queue_stats(q->stats);
915 fail_stats:
916 bdi_put(q->backing_dev_info);
917 fail_split:
918 bioset_free(q->bio_split);
919 fail_id:
920 ida_simple_remove(&blk_queue_ida, q->id);
921 fail_q:
922 kmem_cache_free(blk_requestq_cachep, q);
923 return NULL;
924 }
925 EXPORT_SYMBOL(blk_alloc_queue_node);
926
927 /**
928 * blk_init_queue - prepare a request queue for use with a block device
929 * @rfn: The function to be called to process requests that have been
930 * placed on the queue.
931 * @lock: Request queue spin lock
932 *
933 * Description:
934 * If a block device wishes to use the standard request handling procedures,
935 * which sorts requests and coalesces adjacent requests, then it must
936 * call blk_init_queue(). The function @rfn will be called when there
937 * are requests on the queue that need to be processed. If the device
938 * supports plugging, then @rfn may not be called immediately when requests
939 * are available on the queue, but may be called at some time later instead.
940 * Plugged queues are generally unplugged when a buffer belonging to one
941 * of the requests on the queue is needed, or due to memory pressure.
942 *
943 * @rfn is not required, or even expected, to remove all requests off the
944 * queue, but only as many as it can handle at a time. If it does leave
945 * requests on the queue, it is responsible for arranging that the requests
946 * get dealt with eventually.
947 *
948 * The queue spin lock must be held while manipulating the requests on the
949 * request queue; this lock will be taken also from interrupt context, so irq
950 * disabling is needed for it.
951 *
952 * Function returns a pointer to the initialized request queue, or %NULL if
953 * it didn't succeed.
954 *
955 * Note:
956 * blk_init_queue() must be paired with a blk_cleanup_queue() call
957 * when the block device is deactivated (such as at module unload).
958 **/
959
960 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
961 {
962 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
963 }
964 EXPORT_SYMBOL(blk_init_queue);
965
966 struct request_queue *
967 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
968 {
969 struct request_queue *q;
970
971 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
972 if (!q)
973 return NULL;
974
975 q->request_fn = rfn;
976 if (lock)
977 q->queue_lock = lock;
978 if (blk_init_allocated_queue(q) < 0) {
979 blk_cleanup_queue(q);
980 return NULL;
981 }
982
983 return q;
984 }
985 EXPORT_SYMBOL(blk_init_queue_node);
986
987 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
988
989
990 int blk_init_allocated_queue(struct request_queue *q)
991 {
992 WARN_ON_ONCE(q->mq_ops);
993
994 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
995 if (!q->fq)
996 return -ENOMEM;
997
998 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
999 goto out_free_flush_queue;
1000
1001 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1002 goto out_exit_flush_rq;
1003
1004 INIT_WORK(&q->timeout_work, blk_timeout_work);
1005 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1006
1007 /*
1008 * This also sets hw/phys segments, boundary and size
1009 */
1010 blk_queue_make_request(q, blk_queue_bio);
1011
1012 q->sg_reserved_size = INT_MAX;
1013
1014 /* Protect q->elevator from elevator_change */
1015 mutex_lock(&q->sysfs_lock);
1016
1017 /* init elevator */
1018 if (elevator_init(q, NULL)) {
1019 mutex_unlock(&q->sysfs_lock);
1020 goto out_exit_flush_rq;
1021 }
1022
1023 mutex_unlock(&q->sysfs_lock);
1024 return 0;
1025
1026 out_exit_flush_rq:
1027 if (q->exit_rq_fn)
1028 q->exit_rq_fn(q, q->fq->flush_rq);
1029 out_free_flush_queue:
1030 blk_free_flush_queue(q->fq);
1031 return -ENOMEM;
1032 }
1033 EXPORT_SYMBOL(blk_init_allocated_queue);
1034
1035 bool blk_get_queue(struct request_queue *q)
1036 {
1037 if (likely(!blk_queue_dying(q))) {
1038 __blk_get_queue(q);
1039 return true;
1040 }
1041
1042 return false;
1043 }
1044 EXPORT_SYMBOL(blk_get_queue);
1045
1046 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1047 {
1048 if (rq->rq_flags & RQF_ELVPRIV) {
1049 elv_put_request(rl->q, rq);
1050 if (rq->elv.icq)
1051 put_io_context(rq->elv.icq->ioc);
1052 }
1053
1054 mempool_free(rq, rl->rq_pool);
1055 }
1056
1057 /*
1058 * ioc_batching returns true if the ioc is a valid batching request and
1059 * should be given priority access to a request.
1060 */
1061 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1062 {
1063 if (!ioc)
1064 return 0;
1065
1066 /*
1067 * Make sure the process is able to allocate at least 1 request
1068 * even if the batch times out, otherwise we could theoretically
1069 * lose wakeups.
1070 */
1071 return ioc->nr_batch_requests == q->nr_batching ||
1072 (ioc->nr_batch_requests > 0
1073 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1074 }
1075
1076 /*
1077 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1078 * will cause the process to be a "batcher" on all queues in the system. This
1079 * is the behaviour we want though - once it gets a wakeup it should be given
1080 * a nice run.
1081 */
1082 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1083 {
1084 if (!ioc || ioc_batching(q, ioc))
1085 return;
1086
1087 ioc->nr_batch_requests = q->nr_batching;
1088 ioc->last_waited = jiffies;
1089 }
1090
1091 static void __freed_request(struct request_list *rl, int sync)
1092 {
1093 struct request_queue *q = rl->q;
1094
1095 if (rl->count[sync] < queue_congestion_off_threshold(q))
1096 blk_clear_congested(rl, sync);
1097
1098 if (rl->count[sync] + 1 <= q->nr_requests) {
1099 if (waitqueue_active(&rl->wait[sync]))
1100 wake_up(&rl->wait[sync]);
1101
1102 blk_clear_rl_full(rl, sync);
1103 }
1104 }
1105
1106 /*
1107 * A request has just been released. Account for it, update the full and
1108 * congestion status, wake up any waiters. Called under q->queue_lock.
1109 */
1110 static void freed_request(struct request_list *rl, bool sync,
1111 req_flags_t rq_flags)
1112 {
1113 struct request_queue *q = rl->q;
1114
1115 q->nr_rqs[sync]--;
1116 rl->count[sync]--;
1117 if (rq_flags & RQF_ELVPRIV)
1118 q->nr_rqs_elvpriv--;
1119
1120 __freed_request(rl, sync);
1121
1122 if (unlikely(rl->starved[sync ^ 1]))
1123 __freed_request(rl, sync ^ 1);
1124 }
1125
1126 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1127 {
1128 struct request_list *rl;
1129 int on_thresh, off_thresh;
1130
1131 WARN_ON_ONCE(q->mq_ops);
1132
1133 spin_lock_irq(q->queue_lock);
1134 q->nr_requests = nr;
1135 blk_queue_congestion_threshold(q);
1136 on_thresh = queue_congestion_on_threshold(q);
1137 off_thresh = queue_congestion_off_threshold(q);
1138
1139 blk_queue_for_each_rl(rl, q) {
1140 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1141 blk_set_congested(rl, BLK_RW_SYNC);
1142 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1143 blk_clear_congested(rl, BLK_RW_SYNC);
1144
1145 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1146 blk_set_congested(rl, BLK_RW_ASYNC);
1147 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1148 blk_clear_congested(rl, BLK_RW_ASYNC);
1149
1150 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1151 blk_set_rl_full(rl, BLK_RW_SYNC);
1152 } else {
1153 blk_clear_rl_full(rl, BLK_RW_SYNC);
1154 wake_up(&rl->wait[BLK_RW_SYNC]);
1155 }
1156
1157 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1158 blk_set_rl_full(rl, BLK_RW_ASYNC);
1159 } else {
1160 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1161 wake_up(&rl->wait[BLK_RW_ASYNC]);
1162 }
1163 }
1164
1165 spin_unlock_irq(q->queue_lock);
1166 return 0;
1167 }
1168
1169 /**
1170 * __get_request - get a free request
1171 * @rl: request list to allocate from
1172 * @op: operation and flags
1173 * @bio: bio to allocate request for (can be %NULL)
1174 * @gfp_mask: allocation mask
1175 *
1176 * Get a free request from @q. This function may fail under memory
1177 * pressure or if @q is dead.
1178 *
1179 * Must be called with @q->queue_lock held and,
1180 * Returns ERR_PTR on failure, with @q->queue_lock held.
1181 * Returns request pointer on success, with @q->queue_lock *not held*.
1182 */
1183 static struct request *__get_request(struct request_list *rl, unsigned int op,
1184 struct bio *bio, gfp_t gfp_mask)
1185 {
1186 struct request_queue *q = rl->q;
1187 struct request *rq;
1188 struct elevator_type *et = q->elevator->type;
1189 struct io_context *ioc = rq_ioc(bio);
1190 struct io_cq *icq = NULL;
1191 const bool is_sync = op_is_sync(op);
1192 int may_queue;
1193 req_flags_t rq_flags = RQF_ALLOCED;
1194
1195 lockdep_assert_held(q->queue_lock);
1196
1197 if (unlikely(blk_queue_dying(q)))
1198 return ERR_PTR(-ENODEV);
1199
1200 may_queue = elv_may_queue(q, op);
1201 if (may_queue == ELV_MQUEUE_NO)
1202 goto rq_starved;
1203
1204 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1205 if (rl->count[is_sync]+1 >= q->nr_requests) {
1206 /*
1207 * The queue will fill after this allocation, so set
1208 * it as full, and mark this process as "batching".
1209 * This process will be allowed to complete a batch of
1210 * requests, others will be blocked.
1211 */
1212 if (!blk_rl_full(rl, is_sync)) {
1213 ioc_set_batching(q, ioc);
1214 blk_set_rl_full(rl, is_sync);
1215 } else {
1216 if (may_queue != ELV_MQUEUE_MUST
1217 && !ioc_batching(q, ioc)) {
1218 /*
1219 * The queue is full and the allocating
1220 * process is not a "batcher", and not
1221 * exempted by the IO scheduler
1222 */
1223 return ERR_PTR(-ENOMEM);
1224 }
1225 }
1226 }
1227 blk_set_congested(rl, is_sync);
1228 }
1229
1230 /*
1231 * Only allow batching queuers to allocate up to 50% over the defined
1232 * limit of requests, otherwise we could have thousands of requests
1233 * allocated with any setting of ->nr_requests
1234 */
1235 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1236 return ERR_PTR(-ENOMEM);
1237
1238 q->nr_rqs[is_sync]++;
1239 rl->count[is_sync]++;
1240 rl->starved[is_sync] = 0;
1241
1242 /*
1243 * Decide whether the new request will be managed by elevator. If
1244 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1245 * prevent the current elevator from being destroyed until the new
1246 * request is freed. This guarantees icq's won't be destroyed and
1247 * makes creating new ones safe.
1248 *
1249 * Flush requests do not use the elevator so skip initialization.
1250 * This allows a request to share the flush and elevator data.
1251 *
1252 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1253 * it will be created after releasing queue_lock.
1254 */
1255 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1256 rq_flags |= RQF_ELVPRIV;
1257 q->nr_rqs_elvpriv++;
1258 if (et->icq_cache && ioc)
1259 icq = ioc_lookup_icq(ioc, q);
1260 }
1261
1262 if (blk_queue_io_stat(q))
1263 rq_flags |= RQF_IO_STAT;
1264 spin_unlock_irq(q->queue_lock);
1265
1266 /* allocate and init request */
1267 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1268 if (!rq)
1269 goto fail_alloc;
1270
1271 blk_rq_init(q, rq);
1272 blk_rq_set_rl(rq, rl);
1273 rq->cmd_flags = op;
1274 rq->rq_flags = rq_flags;
1275
1276 /* init elvpriv */
1277 if (rq_flags & RQF_ELVPRIV) {
1278 if (unlikely(et->icq_cache && !icq)) {
1279 if (ioc)
1280 icq = ioc_create_icq(ioc, q, gfp_mask);
1281 if (!icq)
1282 goto fail_elvpriv;
1283 }
1284
1285 rq->elv.icq = icq;
1286 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1287 goto fail_elvpriv;
1288
1289 /* @rq->elv.icq holds io_context until @rq is freed */
1290 if (icq)
1291 get_io_context(icq->ioc);
1292 }
1293 out:
1294 /*
1295 * ioc may be NULL here, and ioc_batching will be false. That's
1296 * OK, if the queue is under the request limit then requests need
1297 * not count toward the nr_batch_requests limit. There will always
1298 * be some limit enforced by BLK_BATCH_TIME.
1299 */
1300 if (ioc_batching(q, ioc))
1301 ioc->nr_batch_requests--;
1302
1303 trace_block_getrq(q, bio, op);
1304 return rq;
1305
1306 fail_elvpriv:
1307 /*
1308 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1309 * and may fail indefinitely under memory pressure and thus
1310 * shouldn't stall IO. Treat this request as !elvpriv. This will
1311 * disturb iosched and blkcg but weird is bettern than dead.
1312 */
1313 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1314 __func__, dev_name(q->backing_dev_info->dev));
1315
1316 rq->rq_flags &= ~RQF_ELVPRIV;
1317 rq->elv.icq = NULL;
1318
1319 spin_lock_irq(q->queue_lock);
1320 q->nr_rqs_elvpriv--;
1321 spin_unlock_irq(q->queue_lock);
1322 goto out;
1323
1324 fail_alloc:
1325 /*
1326 * Allocation failed presumably due to memory. Undo anything we
1327 * might have messed up.
1328 *
1329 * Allocating task should really be put onto the front of the wait
1330 * queue, but this is pretty rare.
1331 */
1332 spin_lock_irq(q->queue_lock);
1333 freed_request(rl, is_sync, rq_flags);
1334
1335 /*
1336 * in the very unlikely event that allocation failed and no
1337 * requests for this direction was pending, mark us starved so that
1338 * freeing of a request in the other direction will notice
1339 * us. another possible fix would be to split the rq mempool into
1340 * READ and WRITE
1341 */
1342 rq_starved:
1343 if (unlikely(rl->count[is_sync] == 0))
1344 rl->starved[is_sync] = 1;
1345 return ERR_PTR(-ENOMEM);
1346 }
1347
1348 /**
1349 * get_request - get a free request
1350 * @q: request_queue to allocate request from
1351 * @op: operation and flags
1352 * @bio: bio to allocate request for (can be %NULL)
1353 * @gfp_mask: allocation mask
1354 *
1355 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1356 * this function keeps retrying under memory pressure and fails iff @q is dead.
1357 *
1358 * Must be called with @q->queue_lock held and,
1359 * Returns ERR_PTR on failure, with @q->queue_lock held.
1360 * Returns request pointer on success, with @q->queue_lock *not held*.
1361 */
1362 static struct request *get_request(struct request_queue *q, unsigned int op,
1363 struct bio *bio, gfp_t gfp_mask)
1364 {
1365 const bool is_sync = op_is_sync(op);
1366 DEFINE_WAIT(wait);
1367 struct request_list *rl;
1368 struct request *rq;
1369
1370 lockdep_assert_held(q->queue_lock);
1371 WARN_ON_ONCE(q->mq_ops);
1372
1373 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1374 retry:
1375 rq = __get_request(rl, op, bio, gfp_mask);
1376 if (!IS_ERR(rq))
1377 return rq;
1378
1379 if (op & REQ_NOWAIT) {
1380 blk_put_rl(rl);
1381 return ERR_PTR(-EAGAIN);
1382 }
1383
1384 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1385 blk_put_rl(rl);
1386 return rq;
1387 }
1388
1389 /* wait on @rl and retry */
1390 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1391 TASK_UNINTERRUPTIBLE);
1392
1393 trace_block_sleeprq(q, bio, op);
1394
1395 spin_unlock_irq(q->queue_lock);
1396 io_schedule();
1397
1398 /*
1399 * After sleeping, we become a "batching" process and will be able
1400 * to allocate at least one request, and up to a big batch of them
1401 * for a small period time. See ioc_batching, ioc_set_batching
1402 */
1403 ioc_set_batching(q, current->io_context);
1404
1405 spin_lock_irq(q->queue_lock);
1406 finish_wait(&rl->wait[is_sync], &wait);
1407
1408 goto retry;
1409 }
1410
1411 static struct request *blk_old_get_request(struct request_queue *q,
1412 unsigned int op, gfp_t gfp_mask)
1413 {
1414 struct request *rq;
1415
1416 WARN_ON_ONCE(q->mq_ops);
1417
1418 /* create ioc upfront */
1419 create_io_context(gfp_mask, q->node);
1420
1421 spin_lock_irq(q->queue_lock);
1422 rq = get_request(q, op, NULL, gfp_mask);
1423 if (IS_ERR(rq)) {
1424 spin_unlock_irq(q->queue_lock);
1425 return rq;
1426 }
1427
1428 /* q->queue_lock is unlocked at this point */
1429 rq->__data_len = 0;
1430 rq->__sector = (sector_t) -1;
1431 rq->bio = rq->biotail = NULL;
1432 return rq;
1433 }
1434
1435 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1436 gfp_t gfp_mask)
1437 {
1438 struct request *req;
1439
1440 if (q->mq_ops) {
1441 req = blk_mq_alloc_request(q, op,
1442 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1443 0 : BLK_MQ_REQ_NOWAIT);
1444 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1445 q->mq_ops->initialize_rq_fn(req);
1446 } else {
1447 req = blk_old_get_request(q, op, gfp_mask);
1448 if (!IS_ERR(req) && q->initialize_rq_fn)
1449 q->initialize_rq_fn(req);
1450 }
1451
1452 return req;
1453 }
1454 EXPORT_SYMBOL(blk_get_request);
1455
1456 /**
1457 * blk_requeue_request - put a request back on queue
1458 * @q: request queue where request should be inserted
1459 * @rq: request to be inserted
1460 *
1461 * Description:
1462 * Drivers often keep queueing requests until the hardware cannot accept
1463 * more, when that condition happens we need to put the request back
1464 * on the queue. Must be called with queue lock held.
1465 */
1466 void blk_requeue_request(struct request_queue *q, struct request *rq)
1467 {
1468 lockdep_assert_held(q->queue_lock);
1469 WARN_ON_ONCE(q->mq_ops);
1470
1471 blk_delete_timer(rq);
1472 blk_clear_rq_complete(rq);
1473 trace_block_rq_requeue(q, rq);
1474 wbt_requeue(q->rq_wb, &rq->issue_stat);
1475
1476 if (rq->rq_flags & RQF_QUEUED)
1477 blk_queue_end_tag(q, rq);
1478
1479 BUG_ON(blk_queued_rq(rq));
1480
1481 elv_requeue_request(q, rq);
1482 }
1483 EXPORT_SYMBOL(blk_requeue_request);
1484
1485 static void add_acct_request(struct request_queue *q, struct request *rq,
1486 int where)
1487 {
1488 blk_account_io_start(rq, true);
1489 __elv_add_request(q, rq, where);
1490 }
1491
1492 static void part_round_stats_single(struct request_queue *q, int cpu,
1493 struct hd_struct *part, unsigned long now,
1494 unsigned int inflight)
1495 {
1496 if (inflight) {
1497 __part_stat_add(cpu, part, time_in_queue,
1498 inflight * (now - part->stamp));
1499 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1500 }
1501 part->stamp = now;
1502 }
1503
1504 /**
1505 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1506 * @q: target block queue
1507 * @cpu: cpu number for stats access
1508 * @part: target partition
1509 *
1510 * The average IO queue length and utilisation statistics are maintained
1511 * by observing the current state of the queue length and the amount of
1512 * time it has been in this state for.
1513 *
1514 * Normally, that accounting is done on IO completion, but that can result
1515 * in more than a second's worth of IO being accounted for within any one
1516 * second, leading to >100% utilisation. To deal with that, we call this
1517 * function to do a round-off before returning the results when reading
1518 * /proc/diskstats. This accounts immediately for all queue usage up to
1519 * the current jiffies and restarts the counters again.
1520 */
1521 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1522 {
1523 struct hd_struct *part2 = NULL;
1524 unsigned long now = jiffies;
1525 unsigned int inflight[2];
1526 int stats = 0;
1527
1528 if (part->stamp != now)
1529 stats |= 1;
1530
1531 if (part->partno) {
1532 part2 = &part_to_disk(part)->part0;
1533 if (part2->stamp != now)
1534 stats |= 2;
1535 }
1536
1537 if (!stats)
1538 return;
1539
1540 part_in_flight(q, part, inflight);
1541
1542 if (stats & 2)
1543 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1544 if (stats & 1)
1545 part_round_stats_single(q, cpu, part, now, inflight[0]);
1546 }
1547 EXPORT_SYMBOL_GPL(part_round_stats);
1548
1549 #ifdef CONFIG_PM
1550 static void blk_pm_put_request(struct request *rq)
1551 {
1552 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1553 pm_runtime_mark_last_busy(rq->q->dev);
1554 }
1555 #else
1556 static inline void blk_pm_put_request(struct request *rq) {}
1557 #endif
1558
1559 void __blk_put_request(struct request_queue *q, struct request *req)
1560 {
1561 req_flags_t rq_flags = req->rq_flags;
1562
1563 if (unlikely(!q))
1564 return;
1565
1566 if (q->mq_ops) {
1567 blk_mq_free_request(req);
1568 return;
1569 }
1570
1571 lockdep_assert_held(q->queue_lock);
1572
1573 blk_pm_put_request(req);
1574
1575 elv_completed_request(q, req);
1576
1577 /* this is a bio leak */
1578 WARN_ON(req->bio != NULL);
1579
1580 wbt_done(q->rq_wb, &req->issue_stat);
1581
1582 /*
1583 * Request may not have originated from ll_rw_blk. if not,
1584 * it didn't come out of our reserved rq pools
1585 */
1586 if (rq_flags & RQF_ALLOCED) {
1587 struct request_list *rl = blk_rq_rl(req);
1588 bool sync = op_is_sync(req->cmd_flags);
1589
1590 BUG_ON(!list_empty(&req->queuelist));
1591 BUG_ON(ELV_ON_HASH(req));
1592
1593 blk_free_request(rl, req);
1594 freed_request(rl, sync, rq_flags);
1595 blk_put_rl(rl);
1596 }
1597 }
1598 EXPORT_SYMBOL_GPL(__blk_put_request);
1599
1600 void blk_put_request(struct request *req)
1601 {
1602 struct request_queue *q = req->q;
1603
1604 if (q->mq_ops)
1605 blk_mq_free_request(req);
1606 else {
1607 unsigned long flags;
1608
1609 spin_lock_irqsave(q->queue_lock, flags);
1610 __blk_put_request(q, req);
1611 spin_unlock_irqrestore(q->queue_lock, flags);
1612 }
1613 }
1614 EXPORT_SYMBOL(blk_put_request);
1615
1616 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1617 struct bio *bio)
1618 {
1619 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1620
1621 if (!ll_back_merge_fn(q, req, bio))
1622 return false;
1623
1624 trace_block_bio_backmerge(q, req, bio);
1625
1626 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1627 blk_rq_set_mixed_merge(req);
1628
1629 req->biotail->bi_next = bio;
1630 req->biotail = bio;
1631 req->__data_len += bio->bi_iter.bi_size;
1632 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1633
1634 blk_account_io_start(req, false);
1635 return true;
1636 }
1637
1638 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1639 struct bio *bio)
1640 {
1641 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1642
1643 if (!ll_front_merge_fn(q, req, bio))
1644 return false;
1645
1646 trace_block_bio_frontmerge(q, req, bio);
1647
1648 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1649 blk_rq_set_mixed_merge(req);
1650
1651 bio->bi_next = req->bio;
1652 req->bio = bio;
1653
1654 req->__sector = bio->bi_iter.bi_sector;
1655 req->__data_len += bio->bi_iter.bi_size;
1656 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1657
1658 blk_account_io_start(req, false);
1659 return true;
1660 }
1661
1662 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1663 struct bio *bio)
1664 {
1665 unsigned short segments = blk_rq_nr_discard_segments(req);
1666
1667 if (segments >= queue_max_discard_segments(q))
1668 goto no_merge;
1669 if (blk_rq_sectors(req) + bio_sectors(bio) >
1670 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1671 goto no_merge;
1672
1673 req->biotail->bi_next = bio;
1674 req->biotail = bio;
1675 req->__data_len += bio->bi_iter.bi_size;
1676 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1677 req->nr_phys_segments = segments + 1;
1678
1679 blk_account_io_start(req, false);
1680 return true;
1681 no_merge:
1682 req_set_nomerge(q, req);
1683 return false;
1684 }
1685
1686 /**
1687 * blk_attempt_plug_merge - try to merge with %current's plugged list
1688 * @q: request_queue new bio is being queued at
1689 * @bio: new bio being queued
1690 * @request_count: out parameter for number of traversed plugged requests
1691 * @same_queue_rq: pointer to &struct request that gets filled in when
1692 * another request associated with @q is found on the plug list
1693 * (optional, may be %NULL)
1694 *
1695 * Determine whether @bio being queued on @q can be merged with a request
1696 * on %current's plugged list. Returns %true if merge was successful,
1697 * otherwise %false.
1698 *
1699 * Plugging coalesces IOs from the same issuer for the same purpose without
1700 * going through @q->queue_lock. As such it's more of an issuing mechanism
1701 * than scheduling, and the request, while may have elvpriv data, is not
1702 * added on the elevator at this point. In addition, we don't have
1703 * reliable access to the elevator outside queue lock. Only check basic
1704 * merging parameters without querying the elevator.
1705 *
1706 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1707 */
1708 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1709 unsigned int *request_count,
1710 struct request **same_queue_rq)
1711 {
1712 struct blk_plug *plug;
1713 struct request *rq;
1714 struct list_head *plug_list;
1715
1716 plug = current->plug;
1717 if (!plug)
1718 return false;
1719 *request_count = 0;
1720
1721 if (q->mq_ops)
1722 plug_list = &plug->mq_list;
1723 else
1724 plug_list = &plug->list;
1725
1726 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1727 bool merged = false;
1728
1729 if (rq->q == q) {
1730 (*request_count)++;
1731 /*
1732 * Only blk-mq multiple hardware queues case checks the
1733 * rq in the same queue, there should be only one such
1734 * rq in a queue
1735 **/
1736 if (same_queue_rq)
1737 *same_queue_rq = rq;
1738 }
1739
1740 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1741 continue;
1742
1743 switch (blk_try_merge(rq, bio)) {
1744 case ELEVATOR_BACK_MERGE:
1745 merged = bio_attempt_back_merge(q, rq, bio);
1746 break;
1747 case ELEVATOR_FRONT_MERGE:
1748 merged = bio_attempt_front_merge(q, rq, bio);
1749 break;
1750 case ELEVATOR_DISCARD_MERGE:
1751 merged = bio_attempt_discard_merge(q, rq, bio);
1752 break;
1753 default:
1754 break;
1755 }
1756
1757 if (merged)
1758 return true;
1759 }
1760
1761 return false;
1762 }
1763
1764 unsigned int blk_plug_queued_count(struct request_queue *q)
1765 {
1766 struct blk_plug *plug;
1767 struct request *rq;
1768 struct list_head *plug_list;
1769 unsigned int ret = 0;
1770
1771 plug = current->plug;
1772 if (!plug)
1773 goto out;
1774
1775 if (q->mq_ops)
1776 plug_list = &plug->mq_list;
1777 else
1778 plug_list = &plug->list;
1779
1780 list_for_each_entry(rq, plug_list, queuelist) {
1781 if (rq->q == q)
1782 ret++;
1783 }
1784 out:
1785 return ret;
1786 }
1787
1788 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1789 {
1790 struct io_context *ioc = rq_ioc(bio);
1791
1792 if (bio->bi_opf & REQ_RAHEAD)
1793 req->cmd_flags |= REQ_FAILFAST_MASK;
1794
1795 req->__sector = bio->bi_iter.bi_sector;
1796 if (ioprio_valid(bio_prio(bio)))
1797 req->ioprio = bio_prio(bio);
1798 else if (ioc)
1799 req->ioprio = ioc->ioprio;
1800 else
1801 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1802 req->write_hint = bio->bi_write_hint;
1803 blk_rq_bio_prep(req->q, req, bio);
1804 }
1805 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1806
1807 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1808 {
1809 struct blk_plug *plug;
1810 int where = ELEVATOR_INSERT_SORT;
1811 struct request *req, *free;
1812 unsigned int request_count = 0;
1813 unsigned int wb_acct;
1814
1815 /*
1816 * low level driver can indicate that it wants pages above a
1817 * certain limit bounced to low memory (ie for highmem, or even
1818 * ISA dma in theory)
1819 */
1820 blk_queue_bounce(q, &bio);
1821
1822 blk_queue_split(q, &bio);
1823
1824 if (!bio_integrity_prep(bio))
1825 return BLK_QC_T_NONE;
1826
1827 if (op_is_flush(bio->bi_opf)) {
1828 spin_lock_irq(q->queue_lock);
1829 where = ELEVATOR_INSERT_FLUSH;
1830 goto get_rq;
1831 }
1832
1833 /*
1834 * Check if we can merge with the plugged list before grabbing
1835 * any locks.
1836 */
1837 if (!blk_queue_nomerges(q)) {
1838 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1839 return BLK_QC_T_NONE;
1840 } else
1841 request_count = blk_plug_queued_count(q);
1842
1843 spin_lock_irq(q->queue_lock);
1844
1845 switch (elv_merge(q, &req, bio)) {
1846 case ELEVATOR_BACK_MERGE:
1847 if (!bio_attempt_back_merge(q, req, bio))
1848 break;
1849 elv_bio_merged(q, req, bio);
1850 free = attempt_back_merge(q, req);
1851 if (free)
1852 __blk_put_request(q, free);
1853 else
1854 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1855 goto out_unlock;
1856 case ELEVATOR_FRONT_MERGE:
1857 if (!bio_attempt_front_merge(q, req, bio))
1858 break;
1859 elv_bio_merged(q, req, bio);
1860 free = attempt_front_merge(q, req);
1861 if (free)
1862 __blk_put_request(q, free);
1863 else
1864 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1865 goto out_unlock;
1866 default:
1867 break;
1868 }
1869
1870 get_rq:
1871 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1872
1873 /*
1874 * Grab a free request. This is might sleep but can not fail.
1875 * Returns with the queue unlocked.
1876 */
1877 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1878 if (IS_ERR(req)) {
1879 __wbt_done(q->rq_wb, wb_acct);
1880 if (PTR_ERR(req) == -ENOMEM)
1881 bio->bi_status = BLK_STS_RESOURCE;
1882 else
1883 bio->bi_status = BLK_STS_IOERR;
1884 bio_endio(bio);
1885 goto out_unlock;
1886 }
1887
1888 wbt_track(&req->issue_stat, wb_acct);
1889
1890 /*
1891 * After dropping the lock and possibly sleeping here, our request
1892 * may now be mergeable after it had proven unmergeable (above).
1893 * We don't worry about that case for efficiency. It won't happen
1894 * often, and the elevators are able to handle it.
1895 */
1896 blk_init_request_from_bio(req, bio);
1897
1898 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1899 req->cpu = raw_smp_processor_id();
1900
1901 plug = current->plug;
1902 if (plug) {
1903 /*
1904 * If this is the first request added after a plug, fire
1905 * of a plug trace.
1906 *
1907 * @request_count may become stale because of schedule
1908 * out, so check plug list again.
1909 */
1910 if (!request_count || list_empty(&plug->list))
1911 trace_block_plug(q);
1912 else {
1913 struct request *last = list_entry_rq(plug->list.prev);
1914 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1915 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1916 blk_flush_plug_list(plug, false);
1917 trace_block_plug(q);
1918 }
1919 }
1920 list_add_tail(&req->queuelist, &plug->list);
1921 blk_account_io_start(req, true);
1922 } else {
1923 spin_lock_irq(q->queue_lock);
1924 add_acct_request(q, req, where);
1925 __blk_run_queue(q);
1926 out_unlock:
1927 spin_unlock_irq(q->queue_lock);
1928 }
1929
1930 return BLK_QC_T_NONE;
1931 }
1932
1933 static void handle_bad_sector(struct bio *bio)
1934 {
1935 char b[BDEVNAME_SIZE];
1936
1937 printk(KERN_INFO "attempt to access beyond end of device\n");
1938 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1939 bio_devname(bio, b), bio->bi_opf,
1940 (unsigned long long)bio_end_sector(bio),
1941 (long long)get_capacity(bio->bi_disk));
1942 }
1943
1944 #ifdef CONFIG_FAIL_MAKE_REQUEST
1945
1946 static DECLARE_FAULT_ATTR(fail_make_request);
1947
1948 static int __init setup_fail_make_request(char *str)
1949 {
1950 return setup_fault_attr(&fail_make_request, str);
1951 }
1952 __setup("fail_make_request=", setup_fail_make_request);
1953
1954 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1955 {
1956 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1957 }
1958
1959 static int __init fail_make_request_debugfs(void)
1960 {
1961 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1962 NULL, &fail_make_request);
1963
1964 return PTR_ERR_OR_ZERO(dir);
1965 }
1966
1967 late_initcall(fail_make_request_debugfs);
1968
1969 #else /* CONFIG_FAIL_MAKE_REQUEST */
1970
1971 static inline bool should_fail_request(struct hd_struct *part,
1972 unsigned int bytes)
1973 {
1974 return false;
1975 }
1976
1977 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1978
1979 /*
1980 * Remap block n of partition p to block n+start(p) of the disk.
1981 */
1982 static inline int blk_partition_remap(struct bio *bio)
1983 {
1984 struct hd_struct *p;
1985 int ret = 0;
1986
1987 /*
1988 * Zone reset does not include bi_size so bio_sectors() is always 0.
1989 * Include a test for the reset op code and perform the remap if needed.
1990 */
1991 if (!bio->bi_partno ||
1992 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
1993 return 0;
1994
1995 rcu_read_lock();
1996 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
1997 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
1998 bio->bi_iter.bi_sector += p->start_sect;
1999 bio->bi_partno = 0;
2000 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2001 bio->bi_iter.bi_sector - p->start_sect);
2002 } else {
2003 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2004 ret = -EIO;
2005 }
2006 rcu_read_unlock();
2007
2008 return ret;
2009 }
2010
2011 /*
2012 * Check whether this bio extends beyond the end of the device.
2013 */
2014 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2015 {
2016 sector_t maxsector;
2017
2018 if (!nr_sectors)
2019 return 0;
2020
2021 /* Test device or partition size, when known. */
2022 maxsector = get_capacity(bio->bi_disk);
2023 if (maxsector) {
2024 sector_t sector = bio->bi_iter.bi_sector;
2025
2026 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2027 /*
2028 * This may well happen - the kernel calls bread()
2029 * without checking the size of the device, e.g., when
2030 * mounting a device.
2031 */
2032 handle_bad_sector(bio);
2033 return 1;
2034 }
2035 }
2036
2037 return 0;
2038 }
2039
2040 static noinline_for_stack bool
2041 generic_make_request_checks(struct bio *bio)
2042 {
2043 struct request_queue *q;
2044 int nr_sectors = bio_sectors(bio);
2045 blk_status_t status = BLK_STS_IOERR;
2046 char b[BDEVNAME_SIZE];
2047
2048 might_sleep();
2049
2050 if (bio_check_eod(bio, nr_sectors))
2051 goto end_io;
2052
2053 q = bio->bi_disk->queue;
2054 if (unlikely(!q)) {
2055 printk(KERN_ERR
2056 "generic_make_request: Trying to access "
2057 "nonexistent block-device %s (%Lu)\n",
2058 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2059 goto end_io;
2060 }
2061
2062 /*
2063 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2064 * if queue is not a request based queue.
2065 */
2066
2067 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2068 goto not_supported;
2069
2070 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2071 goto end_io;
2072
2073 if (blk_partition_remap(bio))
2074 goto end_io;
2075
2076 if (bio_check_eod(bio, nr_sectors))
2077 goto end_io;
2078
2079 /*
2080 * Filter flush bio's early so that make_request based
2081 * drivers without flush support don't have to worry
2082 * about them.
2083 */
2084 if (op_is_flush(bio->bi_opf) &&
2085 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2086 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2087 if (!nr_sectors) {
2088 status = BLK_STS_OK;
2089 goto end_io;
2090 }
2091 }
2092
2093 switch (bio_op(bio)) {
2094 case REQ_OP_DISCARD:
2095 if (!blk_queue_discard(q))
2096 goto not_supported;
2097 break;
2098 case REQ_OP_SECURE_ERASE:
2099 if (!blk_queue_secure_erase(q))
2100 goto not_supported;
2101 break;
2102 case REQ_OP_WRITE_SAME:
2103 if (!q->limits.max_write_same_sectors)
2104 goto not_supported;
2105 break;
2106 case REQ_OP_ZONE_REPORT:
2107 case REQ_OP_ZONE_RESET:
2108 if (!blk_queue_is_zoned(q))
2109 goto not_supported;
2110 break;
2111 case REQ_OP_WRITE_ZEROES:
2112 if (!q->limits.max_write_zeroes_sectors)
2113 goto not_supported;
2114 break;
2115 default:
2116 break;
2117 }
2118
2119 /*
2120 * Various block parts want %current->io_context and lazy ioc
2121 * allocation ends up trading a lot of pain for a small amount of
2122 * memory. Just allocate it upfront. This may fail and block
2123 * layer knows how to live with it.
2124 */
2125 create_io_context(GFP_ATOMIC, q->node);
2126
2127 if (!blkcg_bio_issue_check(q, bio))
2128 return false;
2129
2130 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2131 trace_block_bio_queue(q, bio);
2132 /* Now that enqueuing has been traced, we need to trace
2133 * completion as well.
2134 */
2135 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2136 }
2137 return true;
2138
2139 not_supported:
2140 status = BLK_STS_NOTSUPP;
2141 end_io:
2142 bio->bi_status = status;
2143 bio_endio(bio);
2144 return false;
2145 }
2146
2147 /**
2148 * generic_make_request - hand a buffer to its device driver for I/O
2149 * @bio: The bio describing the location in memory and on the device.
2150 *
2151 * generic_make_request() is used to make I/O requests of block
2152 * devices. It is passed a &struct bio, which describes the I/O that needs
2153 * to be done.
2154 *
2155 * generic_make_request() does not return any status. The
2156 * success/failure status of the request, along with notification of
2157 * completion, is delivered asynchronously through the bio->bi_end_io
2158 * function described (one day) else where.
2159 *
2160 * The caller of generic_make_request must make sure that bi_io_vec
2161 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2162 * set to describe the device address, and the
2163 * bi_end_io and optionally bi_private are set to describe how
2164 * completion notification should be signaled.
2165 *
2166 * generic_make_request and the drivers it calls may use bi_next if this
2167 * bio happens to be merged with someone else, and may resubmit the bio to
2168 * a lower device by calling into generic_make_request recursively, which
2169 * means the bio should NOT be touched after the call to ->make_request_fn.
2170 */
2171 blk_qc_t generic_make_request(struct bio *bio)
2172 {
2173 /*
2174 * bio_list_on_stack[0] contains bios submitted by the current
2175 * make_request_fn.
2176 * bio_list_on_stack[1] contains bios that were submitted before
2177 * the current make_request_fn, but that haven't been processed
2178 * yet.
2179 */
2180 struct bio_list bio_list_on_stack[2];
2181 blk_qc_t ret = BLK_QC_T_NONE;
2182
2183 if (!generic_make_request_checks(bio))
2184 goto out;
2185
2186 /*
2187 * We only want one ->make_request_fn to be active at a time, else
2188 * stack usage with stacked devices could be a problem. So use
2189 * current->bio_list to keep a list of requests submited by a
2190 * make_request_fn function. current->bio_list is also used as a
2191 * flag to say if generic_make_request is currently active in this
2192 * task or not. If it is NULL, then no make_request is active. If
2193 * it is non-NULL, then a make_request is active, and new requests
2194 * should be added at the tail
2195 */
2196 if (current->bio_list) {
2197 bio_list_add(&current->bio_list[0], bio);
2198 goto out;
2199 }
2200
2201 /* following loop may be a bit non-obvious, and so deserves some
2202 * explanation.
2203 * Before entering the loop, bio->bi_next is NULL (as all callers
2204 * ensure that) so we have a list with a single bio.
2205 * We pretend that we have just taken it off a longer list, so
2206 * we assign bio_list to a pointer to the bio_list_on_stack,
2207 * thus initialising the bio_list of new bios to be
2208 * added. ->make_request() may indeed add some more bios
2209 * through a recursive call to generic_make_request. If it
2210 * did, we find a non-NULL value in bio_list and re-enter the loop
2211 * from the top. In this case we really did just take the bio
2212 * of the top of the list (no pretending) and so remove it from
2213 * bio_list, and call into ->make_request() again.
2214 */
2215 BUG_ON(bio->bi_next);
2216 bio_list_init(&bio_list_on_stack[0]);
2217 current->bio_list = bio_list_on_stack;
2218 do {
2219 struct request_queue *q = bio->bi_disk->queue;
2220
2221 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
2222 struct bio_list lower, same;
2223
2224 /* Create a fresh bio_list for all subordinate requests */
2225 bio_list_on_stack[1] = bio_list_on_stack[0];
2226 bio_list_init(&bio_list_on_stack[0]);
2227 ret = q->make_request_fn(q, bio);
2228
2229 blk_queue_exit(q);
2230
2231 /* sort new bios into those for a lower level
2232 * and those for the same level
2233 */
2234 bio_list_init(&lower);
2235 bio_list_init(&same);
2236 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2237 if (q == bio->bi_disk->queue)
2238 bio_list_add(&same, bio);
2239 else
2240 bio_list_add(&lower, bio);
2241 /* now assemble so we handle the lowest level first */
2242 bio_list_merge(&bio_list_on_stack[0], &lower);
2243 bio_list_merge(&bio_list_on_stack[0], &same);
2244 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2245 } else {
2246 if (unlikely(!blk_queue_dying(q) &&
2247 (bio->bi_opf & REQ_NOWAIT)))
2248 bio_wouldblock_error(bio);
2249 else
2250 bio_io_error(bio);
2251 }
2252 bio = bio_list_pop(&bio_list_on_stack[0]);
2253 } while (bio);
2254 current->bio_list = NULL; /* deactivate */
2255
2256 out:
2257 return ret;
2258 }
2259 EXPORT_SYMBOL(generic_make_request);
2260
2261 /**
2262 * submit_bio - submit a bio to the block device layer for I/O
2263 * @bio: The &struct bio which describes the I/O
2264 *
2265 * submit_bio() is very similar in purpose to generic_make_request(), and
2266 * uses that function to do most of the work. Both are fairly rough
2267 * interfaces; @bio must be presetup and ready for I/O.
2268 *
2269 */
2270 blk_qc_t submit_bio(struct bio *bio)
2271 {
2272 /*
2273 * If it's a regular read/write or a barrier with data attached,
2274 * go through the normal accounting stuff before submission.
2275 */
2276 if (bio_has_data(bio)) {
2277 unsigned int count;
2278
2279 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2280 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2281 else
2282 count = bio_sectors(bio);
2283
2284 if (op_is_write(bio_op(bio))) {
2285 count_vm_events(PGPGOUT, count);
2286 } else {
2287 task_io_account_read(bio->bi_iter.bi_size);
2288 count_vm_events(PGPGIN, count);
2289 }
2290
2291 if (unlikely(block_dump)) {
2292 char b[BDEVNAME_SIZE];
2293 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2294 current->comm, task_pid_nr(current),
2295 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2296 (unsigned long long)bio->bi_iter.bi_sector,
2297 bio_devname(bio, b), count);
2298 }
2299 }
2300
2301 return generic_make_request(bio);
2302 }
2303 EXPORT_SYMBOL(submit_bio);
2304
2305 /**
2306 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2307 * for new the queue limits
2308 * @q: the queue
2309 * @rq: the request being checked
2310 *
2311 * Description:
2312 * @rq may have been made based on weaker limitations of upper-level queues
2313 * in request stacking drivers, and it may violate the limitation of @q.
2314 * Since the block layer and the underlying device driver trust @rq
2315 * after it is inserted to @q, it should be checked against @q before
2316 * the insertion using this generic function.
2317 *
2318 * Request stacking drivers like request-based dm may change the queue
2319 * limits when retrying requests on other queues. Those requests need
2320 * to be checked against the new queue limits again during dispatch.
2321 */
2322 static int blk_cloned_rq_check_limits(struct request_queue *q,
2323 struct request *rq)
2324 {
2325 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2326 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2327 return -EIO;
2328 }
2329
2330 /*
2331 * queue's settings related to segment counting like q->bounce_pfn
2332 * may differ from that of other stacking queues.
2333 * Recalculate it to check the request correctly on this queue's
2334 * limitation.
2335 */
2336 blk_recalc_rq_segments(rq);
2337 if (rq->nr_phys_segments > queue_max_segments(q)) {
2338 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2339 return -EIO;
2340 }
2341
2342 return 0;
2343 }
2344
2345 /**
2346 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2347 * @q: the queue to submit the request
2348 * @rq: the request being queued
2349 */
2350 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2351 {
2352 unsigned long flags;
2353 int where = ELEVATOR_INSERT_BACK;
2354
2355 if (blk_cloned_rq_check_limits(q, rq))
2356 return BLK_STS_IOERR;
2357
2358 if (rq->rq_disk &&
2359 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2360 return BLK_STS_IOERR;
2361
2362 if (q->mq_ops) {
2363 if (blk_queue_io_stat(q))
2364 blk_account_io_start(rq, true);
2365 /*
2366 * Since we have a scheduler attached on the top device,
2367 * bypass a potential scheduler on the bottom device for
2368 * insert.
2369 */
2370 blk_mq_request_bypass_insert(rq);
2371 return BLK_STS_OK;
2372 }
2373
2374 spin_lock_irqsave(q->queue_lock, flags);
2375 if (unlikely(blk_queue_dying(q))) {
2376 spin_unlock_irqrestore(q->queue_lock, flags);
2377 return BLK_STS_IOERR;
2378 }
2379
2380 /*
2381 * Submitting request must be dequeued before calling this function
2382 * because it will be linked to another request_queue
2383 */
2384 BUG_ON(blk_queued_rq(rq));
2385
2386 if (op_is_flush(rq->cmd_flags))
2387 where = ELEVATOR_INSERT_FLUSH;
2388
2389 add_acct_request(q, rq, where);
2390 if (where == ELEVATOR_INSERT_FLUSH)
2391 __blk_run_queue(q);
2392 spin_unlock_irqrestore(q->queue_lock, flags);
2393
2394 return BLK_STS_OK;
2395 }
2396 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2397
2398 /**
2399 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2400 * @rq: request to examine
2401 *
2402 * Description:
2403 * A request could be merge of IOs which require different failure
2404 * handling. This function determines the number of bytes which
2405 * can be failed from the beginning of the request without
2406 * crossing into area which need to be retried further.
2407 *
2408 * Return:
2409 * The number of bytes to fail.
2410 */
2411 unsigned int blk_rq_err_bytes(const struct request *rq)
2412 {
2413 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2414 unsigned int bytes = 0;
2415 struct bio *bio;
2416
2417 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2418 return blk_rq_bytes(rq);
2419
2420 /*
2421 * Currently the only 'mixing' which can happen is between
2422 * different fastfail types. We can safely fail portions
2423 * which have all the failfast bits that the first one has -
2424 * the ones which are at least as eager to fail as the first
2425 * one.
2426 */
2427 for (bio = rq->bio; bio; bio = bio->bi_next) {
2428 if ((bio->bi_opf & ff) != ff)
2429 break;
2430 bytes += bio->bi_iter.bi_size;
2431 }
2432
2433 /* this could lead to infinite loop */
2434 BUG_ON(blk_rq_bytes(rq) && !bytes);
2435 return bytes;
2436 }
2437 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2438
2439 void blk_account_io_completion(struct request *req, unsigned int bytes)
2440 {
2441 if (blk_do_io_stat(req)) {
2442 const int rw = rq_data_dir(req);
2443 struct hd_struct *part;
2444 int cpu;
2445
2446 cpu = part_stat_lock();
2447 part = req->part;
2448 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2449 part_stat_unlock();
2450 }
2451 }
2452
2453 void blk_account_io_done(struct request *req)
2454 {
2455 /*
2456 * Account IO completion. flush_rq isn't accounted as a
2457 * normal IO on queueing nor completion. Accounting the
2458 * containing request is enough.
2459 */
2460 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2461 unsigned long duration = jiffies - req->start_time;
2462 const int rw = rq_data_dir(req);
2463 struct hd_struct *part;
2464 int cpu;
2465
2466 cpu = part_stat_lock();
2467 part = req->part;
2468
2469 part_stat_inc(cpu, part, ios[rw]);
2470 part_stat_add(cpu, part, ticks[rw], duration);
2471 part_round_stats(req->q, cpu, part);
2472 part_dec_in_flight(req->q, part, rw);
2473
2474 hd_struct_put(part);
2475 part_stat_unlock();
2476 }
2477 }
2478
2479 #ifdef CONFIG_PM
2480 /*
2481 * Don't process normal requests when queue is suspended
2482 * or in the process of suspending/resuming
2483 */
2484 static struct request *blk_pm_peek_request(struct request_queue *q,
2485 struct request *rq)
2486 {
2487 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2488 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2489 return NULL;
2490 else
2491 return rq;
2492 }
2493 #else
2494 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2495 struct request *rq)
2496 {
2497 return rq;
2498 }
2499 #endif
2500
2501 void blk_account_io_start(struct request *rq, bool new_io)
2502 {
2503 struct hd_struct *part;
2504 int rw = rq_data_dir(rq);
2505 int cpu;
2506
2507 if (!blk_do_io_stat(rq))
2508 return;
2509
2510 cpu = part_stat_lock();
2511
2512 if (!new_io) {
2513 part = rq->part;
2514 part_stat_inc(cpu, part, merges[rw]);
2515 } else {
2516 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2517 if (!hd_struct_try_get(part)) {
2518 /*
2519 * The partition is already being removed,
2520 * the request will be accounted on the disk only
2521 *
2522 * We take a reference on disk->part0 although that
2523 * partition will never be deleted, so we can treat
2524 * it as any other partition.
2525 */
2526 part = &rq->rq_disk->part0;
2527 hd_struct_get(part);
2528 }
2529 part_round_stats(rq->q, cpu, part);
2530 part_inc_in_flight(rq->q, part, rw);
2531 rq->part = part;
2532 }
2533
2534 part_stat_unlock();
2535 }
2536
2537 /**
2538 * blk_peek_request - peek at the top of a request queue
2539 * @q: request queue to peek at
2540 *
2541 * Description:
2542 * Return the request at the top of @q. The returned request
2543 * should be started using blk_start_request() before LLD starts
2544 * processing it.
2545 *
2546 * Return:
2547 * Pointer to the request at the top of @q if available. Null
2548 * otherwise.
2549 */
2550 struct request *blk_peek_request(struct request_queue *q)
2551 {
2552 struct request *rq;
2553 int ret;
2554
2555 lockdep_assert_held(q->queue_lock);
2556 WARN_ON_ONCE(q->mq_ops);
2557
2558 while ((rq = __elv_next_request(q)) != NULL) {
2559
2560 rq = blk_pm_peek_request(q, rq);
2561 if (!rq)
2562 break;
2563
2564 if (!(rq->rq_flags & RQF_STARTED)) {
2565 /*
2566 * This is the first time the device driver
2567 * sees this request (possibly after
2568 * requeueing). Notify IO scheduler.
2569 */
2570 if (rq->rq_flags & RQF_SORTED)
2571 elv_activate_rq(q, rq);
2572
2573 /*
2574 * just mark as started even if we don't start
2575 * it, a request that has been delayed should
2576 * not be passed by new incoming requests
2577 */
2578 rq->rq_flags |= RQF_STARTED;
2579 trace_block_rq_issue(q, rq);
2580 }
2581
2582 if (!q->boundary_rq || q->boundary_rq == rq) {
2583 q->end_sector = rq_end_sector(rq);
2584 q->boundary_rq = NULL;
2585 }
2586
2587 if (rq->rq_flags & RQF_DONTPREP)
2588 break;
2589
2590 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2591 /*
2592 * make sure space for the drain appears we
2593 * know we can do this because max_hw_segments
2594 * has been adjusted to be one fewer than the
2595 * device can handle
2596 */
2597 rq->nr_phys_segments++;
2598 }
2599
2600 if (!q->prep_rq_fn)
2601 break;
2602
2603 ret = q->prep_rq_fn(q, rq);
2604 if (ret == BLKPREP_OK) {
2605 break;
2606 } else if (ret == BLKPREP_DEFER) {
2607 /*
2608 * the request may have been (partially) prepped.
2609 * we need to keep this request in the front to
2610 * avoid resource deadlock. RQF_STARTED will
2611 * prevent other fs requests from passing this one.
2612 */
2613 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2614 !(rq->rq_flags & RQF_DONTPREP)) {
2615 /*
2616 * remove the space for the drain we added
2617 * so that we don't add it again
2618 */
2619 --rq->nr_phys_segments;
2620 }
2621
2622 rq = NULL;
2623 break;
2624 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2625 rq->rq_flags |= RQF_QUIET;
2626 /*
2627 * Mark this request as started so we don't trigger
2628 * any debug logic in the end I/O path.
2629 */
2630 blk_start_request(rq);
2631 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2632 BLK_STS_TARGET : BLK_STS_IOERR);
2633 } else {
2634 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2635 break;
2636 }
2637 }
2638
2639 return rq;
2640 }
2641 EXPORT_SYMBOL(blk_peek_request);
2642
2643 static void blk_dequeue_request(struct request *rq)
2644 {
2645 struct request_queue *q = rq->q;
2646
2647 BUG_ON(list_empty(&rq->queuelist));
2648 BUG_ON(ELV_ON_HASH(rq));
2649
2650 list_del_init(&rq->queuelist);
2651
2652 /*
2653 * the time frame between a request being removed from the lists
2654 * and to it is freed is accounted as io that is in progress at
2655 * the driver side.
2656 */
2657 if (blk_account_rq(rq)) {
2658 q->in_flight[rq_is_sync(rq)]++;
2659 set_io_start_time_ns(rq);
2660 }
2661 }
2662
2663 /**
2664 * blk_start_request - start request processing on the driver
2665 * @req: request to dequeue
2666 *
2667 * Description:
2668 * Dequeue @req and start timeout timer on it. This hands off the
2669 * request to the driver.
2670 */
2671 void blk_start_request(struct request *req)
2672 {
2673 lockdep_assert_held(req->q->queue_lock);
2674 WARN_ON_ONCE(req->q->mq_ops);
2675
2676 blk_dequeue_request(req);
2677
2678 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2679 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2680 req->rq_flags |= RQF_STATS;
2681 wbt_issue(req->q->rq_wb, &req->issue_stat);
2682 }
2683
2684 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2685 blk_add_timer(req);
2686 }
2687 EXPORT_SYMBOL(blk_start_request);
2688
2689 /**
2690 * blk_fetch_request - fetch a request from a request queue
2691 * @q: request queue to fetch a request from
2692 *
2693 * Description:
2694 * Return the request at the top of @q. The request is started on
2695 * return and LLD can start processing it immediately.
2696 *
2697 * Return:
2698 * Pointer to the request at the top of @q if available. Null
2699 * otherwise.
2700 */
2701 struct request *blk_fetch_request(struct request_queue *q)
2702 {
2703 struct request *rq;
2704
2705 lockdep_assert_held(q->queue_lock);
2706 WARN_ON_ONCE(q->mq_ops);
2707
2708 rq = blk_peek_request(q);
2709 if (rq)
2710 blk_start_request(rq);
2711 return rq;
2712 }
2713 EXPORT_SYMBOL(blk_fetch_request);
2714
2715 /**
2716 * blk_update_request - Special helper function for request stacking drivers
2717 * @req: the request being processed
2718 * @error: block status code
2719 * @nr_bytes: number of bytes to complete @req
2720 *
2721 * Description:
2722 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2723 * the request structure even if @req doesn't have leftover.
2724 * If @req has leftover, sets it up for the next range of segments.
2725 *
2726 * This special helper function is only for request stacking drivers
2727 * (e.g. request-based dm) so that they can handle partial completion.
2728 * Actual device drivers should use blk_end_request instead.
2729 *
2730 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2731 * %false return from this function.
2732 *
2733 * Return:
2734 * %false - this request doesn't have any more data
2735 * %true - this request has more data
2736 **/
2737 bool blk_update_request(struct request *req, blk_status_t error,
2738 unsigned int nr_bytes)
2739 {
2740 int total_bytes;
2741
2742 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2743
2744 if (!req->bio)
2745 return false;
2746
2747 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2748 !(req->rq_flags & RQF_QUIET)))
2749 print_req_error(req, error);
2750
2751 blk_account_io_completion(req, nr_bytes);
2752
2753 total_bytes = 0;
2754 while (req->bio) {
2755 struct bio *bio = req->bio;
2756 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2757
2758 if (bio_bytes == bio->bi_iter.bi_size)
2759 req->bio = bio->bi_next;
2760
2761 /* Completion has already been traced */
2762 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2763 req_bio_endio(req, bio, bio_bytes, error);
2764
2765 total_bytes += bio_bytes;
2766 nr_bytes -= bio_bytes;
2767
2768 if (!nr_bytes)
2769 break;
2770 }
2771
2772 /*
2773 * completely done
2774 */
2775 if (!req->bio) {
2776 /*
2777 * Reset counters so that the request stacking driver
2778 * can find how many bytes remain in the request
2779 * later.
2780 */
2781 req->__data_len = 0;
2782 return false;
2783 }
2784
2785 req->__data_len -= total_bytes;
2786
2787 /* update sector only for requests with clear definition of sector */
2788 if (!blk_rq_is_passthrough(req))
2789 req->__sector += total_bytes >> 9;
2790
2791 /* mixed attributes always follow the first bio */
2792 if (req->rq_flags & RQF_MIXED_MERGE) {
2793 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2794 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2795 }
2796
2797 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2798 /*
2799 * If total number of sectors is less than the first segment
2800 * size, something has gone terribly wrong.
2801 */
2802 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2803 blk_dump_rq_flags(req, "request botched");
2804 req->__data_len = blk_rq_cur_bytes(req);
2805 }
2806
2807 /* recalculate the number of segments */
2808 blk_recalc_rq_segments(req);
2809 }
2810
2811 return true;
2812 }
2813 EXPORT_SYMBOL_GPL(blk_update_request);
2814
2815 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2816 unsigned int nr_bytes,
2817 unsigned int bidi_bytes)
2818 {
2819 if (blk_update_request(rq, error, nr_bytes))
2820 return true;
2821
2822 /* Bidi request must be completed as a whole */
2823 if (unlikely(blk_bidi_rq(rq)) &&
2824 blk_update_request(rq->next_rq, error, bidi_bytes))
2825 return true;
2826
2827 if (blk_queue_add_random(rq->q))
2828 add_disk_randomness(rq->rq_disk);
2829
2830 return false;
2831 }
2832
2833 /**
2834 * blk_unprep_request - unprepare a request
2835 * @req: the request
2836 *
2837 * This function makes a request ready for complete resubmission (or
2838 * completion). It happens only after all error handling is complete,
2839 * so represents the appropriate moment to deallocate any resources
2840 * that were allocated to the request in the prep_rq_fn. The queue
2841 * lock is held when calling this.
2842 */
2843 void blk_unprep_request(struct request *req)
2844 {
2845 struct request_queue *q = req->q;
2846
2847 req->rq_flags &= ~RQF_DONTPREP;
2848 if (q->unprep_rq_fn)
2849 q->unprep_rq_fn(q, req);
2850 }
2851 EXPORT_SYMBOL_GPL(blk_unprep_request);
2852
2853 void blk_finish_request(struct request *req, blk_status_t error)
2854 {
2855 struct request_queue *q = req->q;
2856
2857 lockdep_assert_held(req->q->queue_lock);
2858 WARN_ON_ONCE(q->mq_ops);
2859
2860 if (req->rq_flags & RQF_STATS)
2861 blk_stat_add(req);
2862
2863 if (req->rq_flags & RQF_QUEUED)
2864 blk_queue_end_tag(q, req);
2865
2866 BUG_ON(blk_queued_rq(req));
2867
2868 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2869 laptop_io_completion(req->q->backing_dev_info);
2870
2871 blk_delete_timer(req);
2872
2873 if (req->rq_flags & RQF_DONTPREP)
2874 blk_unprep_request(req);
2875
2876 blk_account_io_done(req);
2877
2878 if (req->end_io) {
2879 wbt_done(req->q->rq_wb, &req->issue_stat);
2880 req->end_io(req, error);
2881 } else {
2882 if (blk_bidi_rq(req))
2883 __blk_put_request(req->next_rq->q, req->next_rq);
2884
2885 __blk_put_request(q, req);
2886 }
2887 }
2888 EXPORT_SYMBOL(blk_finish_request);
2889
2890 /**
2891 * blk_end_bidi_request - Complete a bidi request
2892 * @rq: the request to complete
2893 * @error: block status code
2894 * @nr_bytes: number of bytes to complete @rq
2895 * @bidi_bytes: number of bytes to complete @rq->next_rq
2896 *
2897 * Description:
2898 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2899 * Drivers that supports bidi can safely call this member for any
2900 * type of request, bidi or uni. In the later case @bidi_bytes is
2901 * just ignored.
2902 *
2903 * Return:
2904 * %false - we are done with this request
2905 * %true - still buffers pending for this request
2906 **/
2907 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
2908 unsigned int nr_bytes, unsigned int bidi_bytes)
2909 {
2910 struct request_queue *q = rq->q;
2911 unsigned long flags;
2912
2913 WARN_ON_ONCE(q->mq_ops);
2914
2915 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2916 return true;
2917
2918 spin_lock_irqsave(q->queue_lock, flags);
2919 blk_finish_request(rq, error);
2920 spin_unlock_irqrestore(q->queue_lock, flags);
2921
2922 return false;
2923 }
2924
2925 /**
2926 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2927 * @rq: the request to complete
2928 * @error: block status code
2929 * @nr_bytes: number of bytes to complete @rq
2930 * @bidi_bytes: number of bytes to complete @rq->next_rq
2931 *
2932 * Description:
2933 * Identical to blk_end_bidi_request() except that queue lock is
2934 * assumed to be locked on entry and remains so on return.
2935 *
2936 * Return:
2937 * %false - we are done with this request
2938 * %true - still buffers pending for this request
2939 **/
2940 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
2941 unsigned int nr_bytes, unsigned int bidi_bytes)
2942 {
2943 lockdep_assert_held(rq->q->queue_lock);
2944 WARN_ON_ONCE(rq->q->mq_ops);
2945
2946 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2947 return true;
2948
2949 blk_finish_request(rq, error);
2950
2951 return false;
2952 }
2953
2954 /**
2955 * blk_end_request - Helper function for drivers to complete the request.
2956 * @rq: the request being processed
2957 * @error: block status code
2958 * @nr_bytes: number of bytes to complete
2959 *
2960 * Description:
2961 * Ends I/O on a number of bytes attached to @rq.
2962 * If @rq has leftover, sets it up for the next range of segments.
2963 *
2964 * Return:
2965 * %false - we are done with this request
2966 * %true - still buffers pending for this request
2967 **/
2968 bool blk_end_request(struct request *rq, blk_status_t error,
2969 unsigned int nr_bytes)
2970 {
2971 WARN_ON_ONCE(rq->q->mq_ops);
2972 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2973 }
2974 EXPORT_SYMBOL(blk_end_request);
2975
2976 /**
2977 * blk_end_request_all - Helper function for drives to finish the request.
2978 * @rq: the request to finish
2979 * @error: block status code
2980 *
2981 * Description:
2982 * Completely finish @rq.
2983 */
2984 void blk_end_request_all(struct request *rq, blk_status_t error)
2985 {
2986 bool pending;
2987 unsigned int bidi_bytes = 0;
2988
2989 if (unlikely(blk_bidi_rq(rq)))
2990 bidi_bytes = blk_rq_bytes(rq->next_rq);
2991
2992 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2993 BUG_ON(pending);
2994 }
2995 EXPORT_SYMBOL(blk_end_request_all);
2996
2997 /**
2998 * __blk_end_request - Helper function for drivers to complete the request.
2999 * @rq: the request being processed
3000 * @error: block status code
3001 * @nr_bytes: number of bytes to complete
3002 *
3003 * Description:
3004 * Must be called with queue lock held unlike blk_end_request().
3005 *
3006 * Return:
3007 * %false - we are done with this request
3008 * %true - still buffers pending for this request
3009 **/
3010 bool __blk_end_request(struct request *rq, blk_status_t error,
3011 unsigned int nr_bytes)
3012 {
3013 lockdep_assert_held(rq->q->queue_lock);
3014 WARN_ON_ONCE(rq->q->mq_ops);
3015
3016 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3017 }
3018 EXPORT_SYMBOL(__blk_end_request);
3019
3020 /**
3021 * __blk_end_request_all - Helper function for drives to finish the request.
3022 * @rq: the request to finish
3023 * @error: block status code
3024 *
3025 * Description:
3026 * Completely finish @rq. Must be called with queue lock held.
3027 */
3028 void __blk_end_request_all(struct request *rq, blk_status_t error)
3029 {
3030 bool pending;
3031 unsigned int bidi_bytes = 0;
3032
3033 lockdep_assert_held(rq->q->queue_lock);
3034 WARN_ON_ONCE(rq->q->mq_ops);
3035
3036 if (unlikely(blk_bidi_rq(rq)))
3037 bidi_bytes = blk_rq_bytes(rq->next_rq);
3038
3039 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3040 BUG_ON(pending);
3041 }
3042 EXPORT_SYMBOL(__blk_end_request_all);
3043
3044 /**
3045 * __blk_end_request_cur - Helper function to finish the current request chunk.
3046 * @rq: the request to finish the current chunk for
3047 * @error: block status code
3048 *
3049 * Description:
3050 * Complete the current consecutively mapped chunk from @rq. Must
3051 * be called with queue lock held.
3052 *
3053 * Return:
3054 * %false - we are done with this request
3055 * %true - still buffers pending for this request
3056 */
3057 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3058 {
3059 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3060 }
3061 EXPORT_SYMBOL(__blk_end_request_cur);
3062
3063 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3064 struct bio *bio)
3065 {
3066 if (bio_has_data(bio))
3067 rq->nr_phys_segments = bio_phys_segments(q, bio);
3068 else if (bio_op(bio) == REQ_OP_DISCARD)
3069 rq->nr_phys_segments = 1;
3070
3071 rq->__data_len = bio->bi_iter.bi_size;
3072 rq->bio = rq->biotail = bio;
3073
3074 if (bio->bi_disk)
3075 rq->rq_disk = bio->bi_disk;
3076 }
3077
3078 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3079 /**
3080 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3081 * @rq: the request to be flushed
3082 *
3083 * Description:
3084 * Flush all pages in @rq.
3085 */
3086 void rq_flush_dcache_pages(struct request *rq)
3087 {
3088 struct req_iterator iter;
3089 struct bio_vec bvec;
3090
3091 rq_for_each_segment(bvec, rq, iter)
3092 flush_dcache_page(bvec.bv_page);
3093 }
3094 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3095 #endif
3096
3097 /**
3098 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3099 * @q : the queue of the device being checked
3100 *
3101 * Description:
3102 * Check if underlying low-level drivers of a device are busy.
3103 * If the drivers want to export their busy state, they must set own
3104 * exporting function using blk_queue_lld_busy() first.
3105 *
3106 * Basically, this function is used only by request stacking drivers
3107 * to stop dispatching requests to underlying devices when underlying
3108 * devices are busy. This behavior helps more I/O merging on the queue
3109 * of the request stacking driver and prevents I/O throughput regression
3110 * on burst I/O load.
3111 *
3112 * Return:
3113 * 0 - Not busy (The request stacking driver should dispatch request)
3114 * 1 - Busy (The request stacking driver should stop dispatching request)
3115 */
3116 int blk_lld_busy(struct request_queue *q)
3117 {
3118 if (q->lld_busy_fn)
3119 return q->lld_busy_fn(q);
3120
3121 return 0;
3122 }
3123 EXPORT_SYMBOL_GPL(blk_lld_busy);
3124
3125 /**
3126 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3127 * @rq: the clone request to be cleaned up
3128 *
3129 * Description:
3130 * Free all bios in @rq for a cloned request.
3131 */
3132 void blk_rq_unprep_clone(struct request *rq)
3133 {
3134 struct bio *bio;
3135
3136 while ((bio = rq->bio) != NULL) {
3137 rq->bio = bio->bi_next;
3138
3139 bio_put(bio);
3140 }
3141 }
3142 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3143
3144 /*
3145 * Copy attributes of the original request to the clone request.
3146 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3147 */
3148 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3149 {
3150 dst->cpu = src->cpu;
3151 dst->__sector = blk_rq_pos(src);
3152 dst->__data_len = blk_rq_bytes(src);
3153 dst->nr_phys_segments = src->nr_phys_segments;
3154 dst->ioprio = src->ioprio;
3155 dst->extra_len = src->extra_len;
3156 }
3157
3158 /**
3159 * blk_rq_prep_clone - Helper function to setup clone request
3160 * @rq: the request to be setup
3161 * @rq_src: original request to be cloned
3162 * @bs: bio_set that bios for clone are allocated from
3163 * @gfp_mask: memory allocation mask for bio
3164 * @bio_ctr: setup function to be called for each clone bio.
3165 * Returns %0 for success, non %0 for failure.
3166 * @data: private data to be passed to @bio_ctr
3167 *
3168 * Description:
3169 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3170 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3171 * are not copied, and copying such parts is the caller's responsibility.
3172 * Also, pages which the original bios are pointing to are not copied
3173 * and the cloned bios just point same pages.
3174 * So cloned bios must be completed before original bios, which means
3175 * the caller must complete @rq before @rq_src.
3176 */
3177 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3178 struct bio_set *bs, gfp_t gfp_mask,
3179 int (*bio_ctr)(struct bio *, struct bio *, void *),
3180 void *data)
3181 {
3182 struct bio *bio, *bio_src;
3183
3184 if (!bs)
3185 bs = fs_bio_set;
3186
3187 __rq_for_each_bio(bio_src, rq_src) {
3188 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3189 if (!bio)
3190 goto free_and_out;
3191
3192 if (bio_ctr && bio_ctr(bio, bio_src, data))
3193 goto free_and_out;
3194
3195 if (rq->bio) {
3196 rq->biotail->bi_next = bio;
3197 rq->biotail = bio;
3198 } else
3199 rq->bio = rq->biotail = bio;
3200 }
3201
3202 __blk_rq_prep_clone(rq, rq_src);
3203
3204 return 0;
3205
3206 free_and_out:
3207 if (bio)
3208 bio_put(bio);
3209 blk_rq_unprep_clone(rq);
3210
3211 return -ENOMEM;
3212 }
3213 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3214
3215 int kblockd_schedule_work(struct work_struct *work)
3216 {
3217 return queue_work(kblockd_workqueue, work);
3218 }
3219 EXPORT_SYMBOL(kblockd_schedule_work);
3220
3221 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3222 {
3223 return queue_work_on(cpu, kblockd_workqueue, work);
3224 }
3225 EXPORT_SYMBOL(kblockd_schedule_work_on);
3226
3227 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3228 unsigned long delay)
3229 {
3230 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3231 }
3232 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3233
3234 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3235 unsigned long delay)
3236 {
3237 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3238 }
3239 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3240
3241 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3242 unsigned long delay)
3243 {
3244 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3245 }
3246 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3247
3248 /**
3249 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3250 * @plug: The &struct blk_plug that needs to be initialized
3251 *
3252 * Description:
3253 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3254 * pending I/O should the task end up blocking between blk_start_plug() and
3255 * blk_finish_plug(). This is important from a performance perspective, but
3256 * also ensures that we don't deadlock. For instance, if the task is blocking
3257 * for a memory allocation, memory reclaim could end up wanting to free a
3258 * page belonging to that request that is currently residing in our private
3259 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3260 * this kind of deadlock.
3261 */
3262 void blk_start_plug(struct blk_plug *plug)
3263 {
3264 struct task_struct *tsk = current;
3265
3266 /*
3267 * If this is a nested plug, don't actually assign it.
3268 */
3269 if (tsk->plug)
3270 return;
3271
3272 INIT_LIST_HEAD(&plug->list);
3273 INIT_LIST_HEAD(&plug->mq_list);
3274 INIT_LIST_HEAD(&plug->cb_list);
3275 /*
3276 * Store ordering should not be needed here, since a potential
3277 * preempt will imply a full memory barrier
3278 */
3279 tsk->plug = plug;
3280 }
3281 EXPORT_SYMBOL(blk_start_plug);
3282
3283 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3284 {
3285 struct request *rqa = container_of(a, struct request, queuelist);
3286 struct request *rqb = container_of(b, struct request, queuelist);
3287
3288 return !(rqa->q < rqb->q ||
3289 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3290 }
3291
3292 /*
3293 * If 'from_schedule' is true, then postpone the dispatch of requests
3294 * until a safe kblockd context. We due this to avoid accidental big
3295 * additional stack usage in driver dispatch, in places where the originally
3296 * plugger did not intend it.
3297 */
3298 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3299 bool from_schedule)
3300 __releases(q->queue_lock)
3301 {
3302 lockdep_assert_held(q->queue_lock);
3303
3304 trace_block_unplug(q, depth, !from_schedule);
3305
3306 if (from_schedule)
3307 blk_run_queue_async(q);
3308 else
3309 __blk_run_queue(q);
3310 spin_unlock(q->queue_lock);
3311 }
3312
3313 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3314 {
3315 LIST_HEAD(callbacks);
3316
3317 while (!list_empty(&plug->cb_list)) {
3318 list_splice_init(&plug->cb_list, &callbacks);
3319
3320 while (!list_empty(&callbacks)) {
3321 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3322 struct blk_plug_cb,
3323 list);
3324 list_del(&cb->list);
3325 cb->callback(cb, from_schedule);
3326 }
3327 }
3328 }
3329
3330 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3331 int size)
3332 {
3333 struct blk_plug *plug = current->plug;
3334 struct blk_plug_cb *cb;
3335
3336 if (!plug)
3337 return NULL;
3338
3339 list_for_each_entry(cb, &plug->cb_list, list)
3340 if (cb->callback == unplug && cb->data == data)
3341 return cb;
3342
3343 /* Not currently on the callback list */
3344 BUG_ON(size < sizeof(*cb));
3345 cb = kzalloc(size, GFP_ATOMIC);
3346 if (cb) {
3347 cb->data = data;
3348 cb->callback = unplug;
3349 list_add(&cb->list, &plug->cb_list);
3350 }
3351 return cb;
3352 }
3353 EXPORT_SYMBOL(blk_check_plugged);
3354
3355 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3356 {
3357 struct request_queue *q;
3358 unsigned long flags;
3359 struct request *rq;
3360 LIST_HEAD(list);
3361 unsigned int depth;
3362
3363 flush_plug_callbacks(plug, from_schedule);
3364
3365 if (!list_empty(&plug->mq_list))
3366 blk_mq_flush_plug_list(plug, from_schedule);
3367
3368 if (list_empty(&plug->list))
3369 return;
3370
3371 list_splice_init(&plug->list, &list);
3372
3373 list_sort(NULL, &list, plug_rq_cmp);
3374
3375 q = NULL;
3376 depth = 0;
3377
3378 /*
3379 * Save and disable interrupts here, to avoid doing it for every
3380 * queue lock we have to take.
3381 */
3382 local_irq_save(flags);
3383 while (!list_empty(&list)) {
3384 rq = list_entry_rq(list.next);
3385 list_del_init(&rq->queuelist);
3386 BUG_ON(!rq->q);
3387 if (rq->q != q) {
3388 /*
3389 * This drops the queue lock
3390 */
3391 if (q)
3392 queue_unplugged(q, depth, from_schedule);
3393 q = rq->q;
3394 depth = 0;
3395 spin_lock(q->queue_lock);
3396 }
3397
3398 /*
3399 * Short-circuit if @q is dead
3400 */
3401 if (unlikely(blk_queue_dying(q))) {
3402 __blk_end_request_all(rq, BLK_STS_IOERR);
3403 continue;
3404 }
3405
3406 /*
3407 * rq is already accounted, so use raw insert
3408 */
3409 if (op_is_flush(rq->cmd_flags))
3410 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3411 else
3412 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3413
3414 depth++;
3415 }
3416
3417 /*
3418 * This drops the queue lock
3419 */
3420 if (q)
3421 queue_unplugged(q, depth, from_schedule);
3422
3423 local_irq_restore(flags);
3424 }
3425
3426 void blk_finish_plug(struct blk_plug *plug)
3427 {
3428 if (plug != current->plug)
3429 return;
3430 blk_flush_plug_list(plug, false);
3431
3432 current->plug = NULL;
3433 }
3434 EXPORT_SYMBOL(blk_finish_plug);
3435
3436 #ifdef CONFIG_PM
3437 /**
3438 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3439 * @q: the queue of the device
3440 * @dev: the device the queue belongs to
3441 *
3442 * Description:
3443 * Initialize runtime-PM-related fields for @q and start auto suspend for
3444 * @dev. Drivers that want to take advantage of request-based runtime PM
3445 * should call this function after @dev has been initialized, and its
3446 * request queue @q has been allocated, and runtime PM for it can not happen
3447 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3448 * cases, driver should call this function before any I/O has taken place.
3449 *
3450 * This function takes care of setting up using auto suspend for the device,
3451 * the autosuspend delay is set to -1 to make runtime suspend impossible
3452 * until an updated value is either set by user or by driver. Drivers do
3453 * not need to touch other autosuspend settings.
3454 *
3455 * The block layer runtime PM is request based, so only works for drivers
3456 * that use request as their IO unit instead of those directly use bio's.
3457 */
3458 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3459 {
3460 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3461 if (q->mq_ops)
3462 return;
3463
3464 q->dev = dev;
3465 q->rpm_status = RPM_ACTIVE;
3466 pm_runtime_set_autosuspend_delay(q->dev, -1);
3467 pm_runtime_use_autosuspend(q->dev);
3468 }
3469 EXPORT_SYMBOL(blk_pm_runtime_init);
3470
3471 /**
3472 * blk_pre_runtime_suspend - Pre runtime suspend check
3473 * @q: the queue of the device
3474 *
3475 * Description:
3476 * This function will check if runtime suspend is allowed for the device
3477 * by examining if there are any requests pending in the queue. If there
3478 * are requests pending, the device can not be runtime suspended; otherwise,
3479 * the queue's status will be updated to SUSPENDING and the driver can
3480 * proceed to suspend the device.
3481 *
3482 * For the not allowed case, we mark last busy for the device so that
3483 * runtime PM core will try to autosuspend it some time later.
3484 *
3485 * This function should be called near the start of the device's
3486 * runtime_suspend callback.
3487 *
3488 * Return:
3489 * 0 - OK to runtime suspend the device
3490 * -EBUSY - Device should not be runtime suspended
3491 */
3492 int blk_pre_runtime_suspend(struct request_queue *q)
3493 {
3494 int ret = 0;
3495
3496 if (!q->dev)
3497 return ret;
3498
3499 spin_lock_irq(q->queue_lock);
3500 if (q->nr_pending) {
3501 ret = -EBUSY;
3502 pm_runtime_mark_last_busy(q->dev);
3503 } else {
3504 q->rpm_status = RPM_SUSPENDING;
3505 }
3506 spin_unlock_irq(q->queue_lock);
3507 return ret;
3508 }
3509 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3510
3511 /**
3512 * blk_post_runtime_suspend - Post runtime suspend processing
3513 * @q: the queue of the device
3514 * @err: return value of the device's runtime_suspend function
3515 *
3516 * Description:
3517 * Update the queue's runtime status according to the return value of the
3518 * device's runtime suspend function and mark last busy for the device so
3519 * that PM core will try to auto suspend the device at a later time.
3520 *
3521 * This function should be called near the end of the device's
3522 * runtime_suspend callback.
3523 */
3524 void blk_post_runtime_suspend(struct request_queue *q, int err)
3525 {
3526 if (!q->dev)
3527 return;
3528
3529 spin_lock_irq(q->queue_lock);
3530 if (!err) {
3531 q->rpm_status = RPM_SUSPENDED;
3532 } else {
3533 q->rpm_status = RPM_ACTIVE;
3534 pm_runtime_mark_last_busy(q->dev);
3535 }
3536 spin_unlock_irq(q->queue_lock);
3537 }
3538 EXPORT_SYMBOL(blk_post_runtime_suspend);
3539
3540 /**
3541 * blk_pre_runtime_resume - Pre runtime resume processing
3542 * @q: the queue of the device
3543 *
3544 * Description:
3545 * Update the queue's runtime status to RESUMING in preparation for the
3546 * runtime resume of the device.
3547 *
3548 * This function should be called near the start of the device's
3549 * runtime_resume callback.
3550 */
3551 void blk_pre_runtime_resume(struct request_queue *q)
3552 {
3553 if (!q->dev)
3554 return;
3555
3556 spin_lock_irq(q->queue_lock);
3557 q->rpm_status = RPM_RESUMING;
3558 spin_unlock_irq(q->queue_lock);
3559 }
3560 EXPORT_SYMBOL(blk_pre_runtime_resume);
3561
3562 /**
3563 * blk_post_runtime_resume - Post runtime resume processing
3564 * @q: the queue of the device
3565 * @err: return value of the device's runtime_resume function
3566 *
3567 * Description:
3568 * Update the queue's runtime status according to the return value of the
3569 * device's runtime_resume function. If it is successfully resumed, process
3570 * the requests that are queued into the device's queue when it is resuming
3571 * and then mark last busy and initiate autosuspend for it.
3572 *
3573 * This function should be called near the end of the device's
3574 * runtime_resume callback.
3575 */
3576 void blk_post_runtime_resume(struct request_queue *q, int err)
3577 {
3578 if (!q->dev)
3579 return;
3580
3581 spin_lock_irq(q->queue_lock);
3582 if (!err) {
3583 q->rpm_status = RPM_ACTIVE;
3584 __blk_run_queue(q);
3585 pm_runtime_mark_last_busy(q->dev);
3586 pm_request_autosuspend(q->dev);
3587 } else {
3588 q->rpm_status = RPM_SUSPENDED;
3589 }
3590 spin_unlock_irq(q->queue_lock);
3591 }
3592 EXPORT_SYMBOL(blk_post_runtime_resume);
3593
3594 /**
3595 * blk_set_runtime_active - Force runtime status of the queue to be active
3596 * @q: the queue of the device
3597 *
3598 * If the device is left runtime suspended during system suspend the resume
3599 * hook typically resumes the device and corrects runtime status
3600 * accordingly. However, that does not affect the queue runtime PM status
3601 * which is still "suspended". This prevents processing requests from the
3602 * queue.
3603 *
3604 * This function can be used in driver's resume hook to correct queue
3605 * runtime PM status and re-enable peeking requests from the queue. It
3606 * should be called before first request is added to the queue.
3607 */
3608 void blk_set_runtime_active(struct request_queue *q)
3609 {
3610 spin_lock_irq(q->queue_lock);
3611 q->rpm_status = RPM_ACTIVE;
3612 pm_runtime_mark_last_busy(q->dev);
3613 pm_request_autosuspend(q->dev);
3614 spin_unlock_irq(q->queue_lock);
3615 }
3616 EXPORT_SYMBOL(blk_set_runtime_active);
3617 #endif
3618
3619 int __init blk_dev_init(void)
3620 {
3621 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3622 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3623 FIELD_SIZEOF(struct request, cmd_flags));
3624 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3625 FIELD_SIZEOF(struct bio, bi_opf));
3626
3627 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3628 kblockd_workqueue = alloc_workqueue("kblockd",
3629 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3630 if (!kblockd_workqueue)
3631 panic("Failed to create kblockd\n");
3632
3633 request_cachep = kmem_cache_create("blkdev_requests",
3634 sizeof(struct request), 0, SLAB_PANIC, NULL);
3635
3636 blk_requestq_cachep = kmem_cache_create("request_queue",
3637 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3638
3639 #ifdef CONFIG_DEBUG_FS
3640 blk_debugfs_root = debugfs_create_dir("block", NULL);
3641 #endif
3642
3643 return 0;
3644 }