]> git.ipfire.org Git - people/ms/linux.git/blob - block/blk-core.c
Merge tag 'tegra-for-5.20-arm-dt' of git://git.kernel.org/pub/scm/linux/kernel/git...
[people/ms/linux.git] / block / blk-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
41 #include <linux/part_stat.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47
48 #include "blk.h"
49 #include "blk-mq-sched.h"
50 #include "blk-pm.h"
51 #include "blk-cgroup.h"
52 #include "blk-throttle.h"
53
54 struct dentry *blk_debugfs_root;
55
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
62
63 DEFINE_IDA(blk_queue_ida);
64
65 /*
66 * For queue allocation
67 */
68 struct kmem_cache *blk_requestq_cachep;
69 struct kmem_cache *blk_requestq_srcu_cachep;
70
71 /*
72 * Controlling structure to kblockd
73 */
74 static struct workqueue_struct *kblockd_workqueue;
75
76 /**
77 * blk_queue_flag_set - atomically set a queue flag
78 * @flag: flag to be set
79 * @q: request queue
80 */
81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82 {
83 set_bit(flag, &q->queue_flags);
84 }
85 EXPORT_SYMBOL(blk_queue_flag_set);
86
87 /**
88 * blk_queue_flag_clear - atomically clear a queue flag
89 * @flag: flag to be cleared
90 * @q: request queue
91 */
92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93 {
94 clear_bit(flag, &q->queue_flags);
95 }
96 EXPORT_SYMBOL(blk_queue_flag_clear);
97
98 /**
99 * blk_queue_flag_test_and_set - atomically test and set a queue flag
100 * @flag: flag to be set
101 * @q: request queue
102 *
103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104 * the flag was already set.
105 */
106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107 {
108 return test_and_set_bit(flag, &q->queue_flags);
109 }
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111
112 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
113 static const char *const blk_op_name[] = {
114 REQ_OP_NAME(READ),
115 REQ_OP_NAME(WRITE),
116 REQ_OP_NAME(FLUSH),
117 REQ_OP_NAME(DISCARD),
118 REQ_OP_NAME(SECURE_ERASE),
119 REQ_OP_NAME(ZONE_RESET),
120 REQ_OP_NAME(ZONE_RESET_ALL),
121 REQ_OP_NAME(ZONE_OPEN),
122 REQ_OP_NAME(ZONE_CLOSE),
123 REQ_OP_NAME(ZONE_FINISH),
124 REQ_OP_NAME(ZONE_APPEND),
125 REQ_OP_NAME(WRITE_ZEROES),
126 REQ_OP_NAME(DRV_IN),
127 REQ_OP_NAME(DRV_OUT),
128 };
129 #undef REQ_OP_NAME
130
131 /**
132 * blk_op_str - Return string XXX in the REQ_OP_XXX.
133 * @op: REQ_OP_XXX.
134 *
135 * Description: Centralize block layer function to convert REQ_OP_XXX into
136 * string format. Useful in the debugging and tracing bio or request. For
137 * invalid REQ_OP_XXX it returns string "UNKNOWN".
138 */
139 inline const char *blk_op_str(unsigned int op)
140 {
141 const char *op_str = "UNKNOWN";
142
143 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
144 op_str = blk_op_name[op];
145
146 return op_str;
147 }
148 EXPORT_SYMBOL_GPL(blk_op_str);
149
150 static const struct {
151 int errno;
152 const char *name;
153 } blk_errors[] = {
154 [BLK_STS_OK] = { 0, "" },
155 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
156 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
157 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
158 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
159 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
160 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
161 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
162 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
163 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
164 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
165 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
166 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
167
168 /* device mapper special case, should not leak out: */
169 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
170
171 /* zone device specific errors */
172 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
173 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
174
175 /* everything else not covered above: */
176 [BLK_STS_IOERR] = { -EIO, "I/O" },
177 };
178
179 blk_status_t errno_to_blk_status(int errno)
180 {
181 int i;
182
183 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
184 if (blk_errors[i].errno == errno)
185 return (__force blk_status_t)i;
186 }
187
188 return BLK_STS_IOERR;
189 }
190 EXPORT_SYMBOL_GPL(errno_to_blk_status);
191
192 int blk_status_to_errno(blk_status_t status)
193 {
194 int idx = (__force int)status;
195
196 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
197 return -EIO;
198 return blk_errors[idx].errno;
199 }
200 EXPORT_SYMBOL_GPL(blk_status_to_errno);
201
202 const char *blk_status_to_str(blk_status_t status)
203 {
204 int idx = (__force int)status;
205
206 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
207 return "<null>";
208 return blk_errors[idx].name;
209 }
210
211 /**
212 * blk_sync_queue - cancel any pending callbacks on a queue
213 * @q: the queue
214 *
215 * Description:
216 * The block layer may perform asynchronous callback activity
217 * on a queue, such as calling the unplug function after a timeout.
218 * A block device may call blk_sync_queue to ensure that any
219 * such activity is cancelled, thus allowing it to release resources
220 * that the callbacks might use. The caller must already have made sure
221 * that its ->submit_bio will not re-add plugging prior to calling
222 * this function.
223 *
224 * This function does not cancel any asynchronous activity arising
225 * out of elevator or throttling code. That would require elevator_exit()
226 * and blkcg_exit_queue() to be called with queue lock initialized.
227 *
228 */
229 void blk_sync_queue(struct request_queue *q)
230 {
231 del_timer_sync(&q->timeout);
232 cancel_work_sync(&q->timeout_work);
233 }
234 EXPORT_SYMBOL(blk_sync_queue);
235
236 /**
237 * blk_set_pm_only - increment pm_only counter
238 * @q: request queue pointer
239 */
240 void blk_set_pm_only(struct request_queue *q)
241 {
242 atomic_inc(&q->pm_only);
243 }
244 EXPORT_SYMBOL_GPL(blk_set_pm_only);
245
246 void blk_clear_pm_only(struct request_queue *q)
247 {
248 int pm_only;
249
250 pm_only = atomic_dec_return(&q->pm_only);
251 WARN_ON_ONCE(pm_only < 0);
252 if (pm_only == 0)
253 wake_up_all(&q->mq_freeze_wq);
254 }
255 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
256
257 /**
258 * blk_put_queue - decrement the request_queue refcount
259 * @q: the request_queue structure to decrement the refcount for
260 *
261 * Decrements the refcount of the request_queue kobject. When this reaches 0
262 * we'll have blk_release_queue() called.
263 *
264 * Context: Any context, but the last reference must not be dropped from
265 * atomic context.
266 */
267 void blk_put_queue(struct request_queue *q)
268 {
269 kobject_put(&q->kobj);
270 }
271 EXPORT_SYMBOL(blk_put_queue);
272
273 void blk_queue_start_drain(struct request_queue *q)
274 {
275 /*
276 * When queue DYING flag is set, we need to block new req
277 * entering queue, so we call blk_freeze_queue_start() to
278 * prevent I/O from crossing blk_queue_enter().
279 */
280 blk_freeze_queue_start(q);
281 if (queue_is_mq(q))
282 blk_mq_wake_waiters(q);
283 /* Make blk_queue_enter() reexamine the DYING flag. */
284 wake_up_all(&q->mq_freeze_wq);
285 }
286
287 /**
288 * blk_cleanup_queue - shutdown a request queue
289 * @q: request queue to shutdown
290 *
291 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
292 * put it. All future requests will be failed immediately with -ENODEV.
293 *
294 * Context: can sleep
295 */
296 void blk_cleanup_queue(struct request_queue *q)
297 {
298 /* cannot be called from atomic context */
299 might_sleep();
300
301 WARN_ON_ONCE(blk_queue_registered(q));
302
303 /* mark @q DYING, no new request or merges will be allowed afterwards */
304 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
305 blk_queue_start_drain(q);
306
307 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
308 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
309
310 /*
311 * Drain all requests queued before DYING marking. Set DEAD flag to
312 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
313 * after draining finished.
314 */
315 blk_freeze_queue(q);
316
317 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
318
319 blk_sync_queue(q);
320 if (queue_is_mq(q)) {
321 blk_mq_cancel_work_sync(q);
322 blk_mq_exit_queue(q);
323 }
324
325 /* @q is and will stay empty, shutdown and put */
326 blk_put_queue(q);
327 }
328 EXPORT_SYMBOL(blk_cleanup_queue);
329
330 /**
331 * blk_queue_enter() - try to increase q->q_usage_counter
332 * @q: request queue pointer
333 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
334 */
335 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
336 {
337 const bool pm = flags & BLK_MQ_REQ_PM;
338
339 while (!blk_try_enter_queue(q, pm)) {
340 if (flags & BLK_MQ_REQ_NOWAIT)
341 return -EBUSY;
342
343 /*
344 * read pair of barrier in blk_freeze_queue_start(), we need to
345 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
346 * reading .mq_freeze_depth or queue dying flag, otherwise the
347 * following wait may never return if the two reads are
348 * reordered.
349 */
350 smp_rmb();
351 wait_event(q->mq_freeze_wq,
352 (!q->mq_freeze_depth &&
353 blk_pm_resume_queue(pm, q)) ||
354 blk_queue_dying(q));
355 if (blk_queue_dying(q))
356 return -ENODEV;
357 }
358
359 return 0;
360 }
361
362 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
363 {
364 while (!blk_try_enter_queue(q, false)) {
365 struct gendisk *disk = bio->bi_bdev->bd_disk;
366
367 if (bio->bi_opf & REQ_NOWAIT) {
368 if (test_bit(GD_DEAD, &disk->state))
369 goto dead;
370 bio_wouldblock_error(bio);
371 return -EBUSY;
372 }
373
374 /*
375 * read pair of barrier in blk_freeze_queue_start(), we need to
376 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
377 * reading .mq_freeze_depth or queue dying flag, otherwise the
378 * following wait may never return if the two reads are
379 * reordered.
380 */
381 smp_rmb();
382 wait_event(q->mq_freeze_wq,
383 (!q->mq_freeze_depth &&
384 blk_pm_resume_queue(false, q)) ||
385 test_bit(GD_DEAD, &disk->state));
386 if (test_bit(GD_DEAD, &disk->state))
387 goto dead;
388 }
389
390 return 0;
391 dead:
392 bio_io_error(bio);
393 return -ENODEV;
394 }
395
396 void blk_queue_exit(struct request_queue *q)
397 {
398 percpu_ref_put(&q->q_usage_counter);
399 }
400
401 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
402 {
403 struct request_queue *q =
404 container_of(ref, struct request_queue, q_usage_counter);
405
406 wake_up_all(&q->mq_freeze_wq);
407 }
408
409 static void blk_rq_timed_out_timer(struct timer_list *t)
410 {
411 struct request_queue *q = from_timer(q, t, timeout);
412
413 kblockd_schedule_work(&q->timeout_work);
414 }
415
416 static void blk_timeout_work(struct work_struct *work)
417 {
418 }
419
420 struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu)
421 {
422 struct request_queue *q;
423 int ret;
424
425 q = kmem_cache_alloc_node(blk_get_queue_kmem_cache(alloc_srcu),
426 GFP_KERNEL | __GFP_ZERO, node_id);
427 if (!q)
428 return NULL;
429
430 if (alloc_srcu) {
431 blk_queue_flag_set(QUEUE_FLAG_HAS_SRCU, q);
432 if (init_srcu_struct(q->srcu) != 0)
433 goto fail_q;
434 }
435
436 q->last_merge = NULL;
437
438 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
439 if (q->id < 0)
440 goto fail_srcu;
441
442 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
443 if (ret)
444 goto fail_id;
445
446 q->stats = blk_alloc_queue_stats();
447 if (!q->stats)
448 goto fail_split;
449
450 q->node = node_id;
451
452 atomic_set(&q->nr_active_requests_shared_tags, 0);
453
454 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
455 INIT_WORK(&q->timeout_work, blk_timeout_work);
456 INIT_LIST_HEAD(&q->icq_list);
457
458 kobject_init(&q->kobj, &blk_queue_ktype);
459
460 mutex_init(&q->debugfs_mutex);
461 mutex_init(&q->sysfs_lock);
462 mutex_init(&q->sysfs_dir_lock);
463 spin_lock_init(&q->queue_lock);
464
465 init_waitqueue_head(&q->mq_freeze_wq);
466 mutex_init(&q->mq_freeze_lock);
467
468 /*
469 * Init percpu_ref in atomic mode so that it's faster to shutdown.
470 * See blk_register_queue() for details.
471 */
472 if (percpu_ref_init(&q->q_usage_counter,
473 blk_queue_usage_counter_release,
474 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
475 goto fail_stats;
476
477 blk_queue_dma_alignment(q, 511);
478 blk_set_default_limits(&q->limits);
479 q->nr_requests = BLKDEV_DEFAULT_RQ;
480
481 return q;
482
483 fail_stats:
484 blk_free_queue_stats(q->stats);
485 fail_split:
486 bioset_exit(&q->bio_split);
487 fail_id:
488 ida_simple_remove(&blk_queue_ida, q->id);
489 fail_srcu:
490 if (alloc_srcu)
491 cleanup_srcu_struct(q->srcu);
492 fail_q:
493 kmem_cache_free(blk_get_queue_kmem_cache(alloc_srcu), q);
494 return NULL;
495 }
496
497 /**
498 * blk_get_queue - increment the request_queue refcount
499 * @q: the request_queue structure to increment the refcount for
500 *
501 * Increment the refcount of the request_queue kobject.
502 *
503 * Context: Any context.
504 */
505 bool blk_get_queue(struct request_queue *q)
506 {
507 if (likely(!blk_queue_dying(q))) {
508 __blk_get_queue(q);
509 return true;
510 }
511
512 return false;
513 }
514 EXPORT_SYMBOL(blk_get_queue);
515
516 #ifdef CONFIG_FAIL_MAKE_REQUEST
517
518 static DECLARE_FAULT_ATTR(fail_make_request);
519
520 static int __init setup_fail_make_request(char *str)
521 {
522 return setup_fault_attr(&fail_make_request, str);
523 }
524 __setup("fail_make_request=", setup_fail_make_request);
525
526 bool should_fail_request(struct block_device *part, unsigned int bytes)
527 {
528 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
529 }
530
531 static int __init fail_make_request_debugfs(void)
532 {
533 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
534 NULL, &fail_make_request);
535
536 return PTR_ERR_OR_ZERO(dir);
537 }
538
539 late_initcall(fail_make_request_debugfs);
540 #endif /* CONFIG_FAIL_MAKE_REQUEST */
541
542 static inline bool bio_check_ro(struct bio *bio)
543 {
544 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
545 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
546 return false;
547 pr_warn("Trying to write to read-only block-device %pg\n",
548 bio->bi_bdev);
549 /* Older lvm-tools actually trigger this */
550 return false;
551 }
552
553 return false;
554 }
555
556 static noinline int should_fail_bio(struct bio *bio)
557 {
558 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
559 return -EIO;
560 return 0;
561 }
562 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
563
564 /*
565 * Check whether this bio extends beyond the end of the device or partition.
566 * This may well happen - the kernel calls bread() without checking the size of
567 * the device, e.g., when mounting a file system.
568 */
569 static inline int bio_check_eod(struct bio *bio)
570 {
571 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
572 unsigned int nr_sectors = bio_sectors(bio);
573
574 if (nr_sectors && maxsector &&
575 (nr_sectors > maxsector ||
576 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
577 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
578 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
579 current->comm, bio->bi_bdev, bio->bi_opf,
580 bio->bi_iter.bi_sector, nr_sectors, maxsector);
581 return -EIO;
582 }
583 return 0;
584 }
585
586 /*
587 * Remap block n of partition p to block n+start(p) of the disk.
588 */
589 static int blk_partition_remap(struct bio *bio)
590 {
591 struct block_device *p = bio->bi_bdev;
592
593 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
594 return -EIO;
595 if (bio_sectors(bio)) {
596 bio->bi_iter.bi_sector += p->bd_start_sect;
597 trace_block_bio_remap(bio, p->bd_dev,
598 bio->bi_iter.bi_sector -
599 p->bd_start_sect);
600 }
601 bio_set_flag(bio, BIO_REMAPPED);
602 return 0;
603 }
604
605 /*
606 * Check write append to a zoned block device.
607 */
608 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
609 struct bio *bio)
610 {
611 sector_t pos = bio->bi_iter.bi_sector;
612 int nr_sectors = bio_sectors(bio);
613
614 /* Only applicable to zoned block devices */
615 if (!blk_queue_is_zoned(q))
616 return BLK_STS_NOTSUPP;
617
618 /* The bio sector must point to the start of a sequential zone */
619 if (pos & (blk_queue_zone_sectors(q) - 1) ||
620 !blk_queue_zone_is_seq(q, pos))
621 return BLK_STS_IOERR;
622
623 /*
624 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
625 * split and could result in non-contiguous sectors being written in
626 * different zones.
627 */
628 if (nr_sectors > q->limits.chunk_sectors)
629 return BLK_STS_IOERR;
630
631 /* Make sure the BIO is small enough and will not get split */
632 if (nr_sectors > q->limits.max_zone_append_sectors)
633 return BLK_STS_IOERR;
634
635 bio->bi_opf |= REQ_NOMERGE;
636
637 return BLK_STS_OK;
638 }
639
640 static void __submit_bio(struct bio *bio)
641 {
642 struct gendisk *disk = bio->bi_bdev->bd_disk;
643
644 if (unlikely(!blk_crypto_bio_prep(&bio)))
645 return;
646
647 if (!disk->fops->submit_bio) {
648 blk_mq_submit_bio(bio);
649 } else if (likely(bio_queue_enter(bio) == 0)) {
650 disk->fops->submit_bio(bio);
651 blk_queue_exit(disk->queue);
652 }
653 }
654
655 /*
656 * The loop in this function may be a bit non-obvious, and so deserves some
657 * explanation:
658 *
659 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
660 * that), so we have a list with a single bio.
661 * - We pretend that we have just taken it off a longer list, so we assign
662 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
663 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
664 * bios through a recursive call to submit_bio_noacct. If it did, we find a
665 * non-NULL value in bio_list and re-enter the loop from the top.
666 * - In this case we really did just take the bio of the top of the list (no
667 * pretending) and so remove it from bio_list, and call into ->submit_bio()
668 * again.
669 *
670 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
671 * bio_list_on_stack[1] contains bios that were submitted before the current
672 * ->submit_bio, but that haven't been processed yet.
673 */
674 static void __submit_bio_noacct(struct bio *bio)
675 {
676 struct bio_list bio_list_on_stack[2];
677
678 BUG_ON(bio->bi_next);
679
680 bio_list_init(&bio_list_on_stack[0]);
681 current->bio_list = bio_list_on_stack;
682
683 do {
684 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
685 struct bio_list lower, same;
686
687 /*
688 * Create a fresh bio_list for all subordinate requests.
689 */
690 bio_list_on_stack[1] = bio_list_on_stack[0];
691 bio_list_init(&bio_list_on_stack[0]);
692
693 __submit_bio(bio);
694
695 /*
696 * Sort new bios into those for a lower level and those for the
697 * same level.
698 */
699 bio_list_init(&lower);
700 bio_list_init(&same);
701 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
702 if (q == bdev_get_queue(bio->bi_bdev))
703 bio_list_add(&same, bio);
704 else
705 bio_list_add(&lower, bio);
706
707 /*
708 * Now assemble so we handle the lowest level first.
709 */
710 bio_list_merge(&bio_list_on_stack[0], &lower);
711 bio_list_merge(&bio_list_on_stack[0], &same);
712 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
713 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
714
715 current->bio_list = NULL;
716 }
717
718 static void __submit_bio_noacct_mq(struct bio *bio)
719 {
720 struct bio_list bio_list[2] = { };
721
722 current->bio_list = bio_list;
723
724 do {
725 __submit_bio(bio);
726 } while ((bio = bio_list_pop(&bio_list[0])));
727
728 current->bio_list = NULL;
729 }
730
731 void submit_bio_noacct_nocheck(struct bio *bio)
732 {
733 /*
734 * We only want one ->submit_bio to be active at a time, else stack
735 * usage with stacked devices could be a problem. Use current->bio_list
736 * to collect a list of requests submited by a ->submit_bio method while
737 * it is active, and then process them after it returned.
738 */
739 if (current->bio_list)
740 bio_list_add(&current->bio_list[0], bio);
741 else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
742 __submit_bio_noacct_mq(bio);
743 else
744 __submit_bio_noacct(bio);
745 }
746
747 /**
748 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
749 * @bio: The bio describing the location in memory and on the device.
750 *
751 * This is a version of submit_bio() that shall only be used for I/O that is
752 * resubmitted to lower level drivers by stacking block drivers. All file
753 * systems and other upper level users of the block layer should use
754 * submit_bio() instead.
755 */
756 void submit_bio_noacct(struct bio *bio)
757 {
758 struct block_device *bdev = bio->bi_bdev;
759 struct request_queue *q = bdev_get_queue(bdev);
760 blk_status_t status = BLK_STS_IOERR;
761 struct blk_plug *plug;
762
763 might_sleep();
764
765 plug = blk_mq_plug(q, bio);
766 if (plug && plug->nowait)
767 bio->bi_opf |= REQ_NOWAIT;
768
769 /*
770 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
771 * if queue does not support NOWAIT.
772 */
773 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
774 goto not_supported;
775
776 if (should_fail_bio(bio))
777 goto end_io;
778 if (unlikely(bio_check_ro(bio)))
779 goto end_io;
780 if (!bio_flagged(bio, BIO_REMAPPED)) {
781 if (unlikely(bio_check_eod(bio)))
782 goto end_io;
783 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
784 goto end_io;
785 }
786
787 /*
788 * Filter flush bio's early so that bio based drivers without flush
789 * support don't have to worry about them.
790 */
791 if (op_is_flush(bio->bi_opf) &&
792 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
793 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
794 if (!bio_sectors(bio)) {
795 status = BLK_STS_OK;
796 goto end_io;
797 }
798 }
799
800 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
801 bio_clear_polled(bio);
802
803 switch (bio_op(bio)) {
804 case REQ_OP_DISCARD:
805 if (!bdev_max_discard_sectors(bdev))
806 goto not_supported;
807 break;
808 case REQ_OP_SECURE_ERASE:
809 if (!bdev_max_secure_erase_sectors(bdev))
810 goto not_supported;
811 break;
812 case REQ_OP_ZONE_APPEND:
813 status = blk_check_zone_append(q, bio);
814 if (status != BLK_STS_OK)
815 goto end_io;
816 break;
817 case REQ_OP_ZONE_RESET:
818 case REQ_OP_ZONE_OPEN:
819 case REQ_OP_ZONE_CLOSE:
820 case REQ_OP_ZONE_FINISH:
821 if (!blk_queue_is_zoned(q))
822 goto not_supported;
823 break;
824 case REQ_OP_ZONE_RESET_ALL:
825 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
826 goto not_supported;
827 break;
828 case REQ_OP_WRITE_ZEROES:
829 if (!q->limits.max_write_zeroes_sectors)
830 goto not_supported;
831 break;
832 default:
833 break;
834 }
835
836 if (blk_throtl_bio(bio))
837 return;
838
839 blk_cgroup_bio_start(bio);
840 blkcg_bio_issue_init(bio);
841
842 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
843 trace_block_bio_queue(bio);
844 /* Now that enqueuing has been traced, we need to trace
845 * completion as well.
846 */
847 bio_set_flag(bio, BIO_TRACE_COMPLETION);
848 }
849 submit_bio_noacct_nocheck(bio);
850 return;
851
852 not_supported:
853 status = BLK_STS_NOTSUPP;
854 end_io:
855 bio->bi_status = status;
856 bio_endio(bio);
857 }
858 EXPORT_SYMBOL(submit_bio_noacct);
859
860 /**
861 * submit_bio - submit a bio to the block device layer for I/O
862 * @bio: The &struct bio which describes the I/O
863 *
864 * submit_bio() is used to submit I/O requests to block devices. It is passed a
865 * fully set up &struct bio that describes the I/O that needs to be done. The
866 * bio will be send to the device described by the bi_bdev field.
867 *
868 * The success/failure status of the request, along with notification of
869 * completion, is delivered asynchronously through the ->bi_end_io() callback
870 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
871 * been called.
872 */
873 void submit_bio(struct bio *bio)
874 {
875 if (blkcg_punt_bio_submit(bio))
876 return;
877
878 if (bio_op(bio) == REQ_OP_READ) {
879 task_io_account_read(bio->bi_iter.bi_size);
880 count_vm_events(PGPGIN, bio_sectors(bio));
881 } else if (bio_op(bio) == REQ_OP_WRITE) {
882 count_vm_events(PGPGOUT, bio_sectors(bio));
883 }
884
885 /*
886 * If we're reading data that is part of the userspace workingset, count
887 * submission time as memory stall. When the device is congested, or
888 * the submitting cgroup IO-throttled, submission can be a significant
889 * part of overall IO time.
890 */
891 if (unlikely(bio_op(bio) == REQ_OP_READ &&
892 bio_flagged(bio, BIO_WORKINGSET))) {
893 unsigned long pflags;
894
895 psi_memstall_enter(&pflags);
896 submit_bio_noacct(bio);
897 psi_memstall_leave(&pflags);
898 return;
899 }
900
901 submit_bio_noacct(bio);
902 }
903 EXPORT_SYMBOL(submit_bio);
904
905 /**
906 * bio_poll - poll for BIO completions
907 * @bio: bio to poll for
908 * @iob: batches of IO
909 * @flags: BLK_POLL_* flags that control the behavior
910 *
911 * Poll for completions on queue associated with the bio. Returns number of
912 * completed entries found.
913 *
914 * Note: the caller must either be the context that submitted @bio, or
915 * be in a RCU critical section to prevent freeing of @bio.
916 */
917 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
918 {
919 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
920 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
921 int ret = 0;
922
923 if (cookie == BLK_QC_T_NONE ||
924 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
925 return 0;
926
927 blk_flush_plug(current->plug, false);
928
929 if (bio_queue_enter(bio))
930 return 0;
931 if (queue_is_mq(q)) {
932 ret = blk_mq_poll(q, cookie, iob, flags);
933 } else {
934 struct gendisk *disk = q->disk;
935
936 if (disk && disk->fops->poll_bio)
937 ret = disk->fops->poll_bio(bio, iob, flags);
938 }
939 blk_queue_exit(q);
940 return ret;
941 }
942 EXPORT_SYMBOL_GPL(bio_poll);
943
944 /*
945 * Helper to implement file_operations.iopoll. Requires the bio to be stored
946 * in iocb->private, and cleared before freeing the bio.
947 */
948 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
949 unsigned int flags)
950 {
951 struct bio *bio;
952 int ret = 0;
953
954 /*
955 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
956 * point to a freshly allocated bio at this point. If that happens
957 * we have a few cases to consider:
958 *
959 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
960 * simply nothing in this case
961 * 2) the bio points to a not poll enabled device. bio_poll will catch
962 * this and return 0
963 * 3) the bio points to a poll capable device, including but not
964 * limited to the one that the original bio pointed to. In this
965 * case we will call into the actual poll method and poll for I/O,
966 * even if we don't need to, but it won't cause harm either.
967 *
968 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
969 * is still allocated. Because partitions hold a reference to the whole
970 * device bdev and thus disk, the disk is also still valid. Grabbing
971 * a reference to the queue in bio_poll() ensures the hctxs and requests
972 * are still valid as well.
973 */
974 rcu_read_lock();
975 bio = READ_ONCE(kiocb->private);
976 if (bio && bio->bi_bdev)
977 ret = bio_poll(bio, iob, flags);
978 rcu_read_unlock();
979
980 return ret;
981 }
982 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
983
984 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
985 {
986 unsigned long stamp;
987 again:
988 stamp = READ_ONCE(part->bd_stamp);
989 if (unlikely(time_after(now, stamp))) {
990 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
991 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
992 }
993 if (part->bd_partno) {
994 part = bdev_whole(part);
995 goto again;
996 }
997 }
998
999 unsigned long bdev_start_io_acct(struct block_device *bdev,
1000 unsigned int sectors, unsigned int op,
1001 unsigned long start_time)
1002 {
1003 const int sgrp = op_stat_group(op);
1004
1005 part_stat_lock();
1006 update_io_ticks(bdev, start_time, false);
1007 part_stat_inc(bdev, ios[sgrp]);
1008 part_stat_add(bdev, sectors[sgrp], sectors);
1009 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1010 part_stat_unlock();
1011
1012 return start_time;
1013 }
1014 EXPORT_SYMBOL(bdev_start_io_acct);
1015
1016 /**
1017 * bio_start_io_acct_time - start I/O accounting for bio based drivers
1018 * @bio: bio to start account for
1019 * @start_time: start time that should be passed back to bio_end_io_acct().
1020 */
1021 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
1022 {
1023 bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1024 bio_op(bio), start_time);
1025 }
1026 EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
1027
1028 /**
1029 * bio_start_io_acct - start I/O accounting for bio based drivers
1030 * @bio: bio to start account for
1031 *
1032 * Returns the start time that should be passed back to bio_end_io_acct().
1033 */
1034 unsigned long bio_start_io_acct(struct bio *bio)
1035 {
1036 return bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1037 bio_op(bio), jiffies);
1038 }
1039 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1040
1041 void bdev_end_io_acct(struct block_device *bdev, unsigned int op,
1042 unsigned long start_time)
1043 {
1044 const int sgrp = op_stat_group(op);
1045 unsigned long now = READ_ONCE(jiffies);
1046 unsigned long duration = now - start_time;
1047
1048 part_stat_lock();
1049 update_io_ticks(bdev, now, true);
1050 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1051 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1052 part_stat_unlock();
1053 }
1054 EXPORT_SYMBOL(bdev_end_io_acct);
1055
1056 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1057 struct block_device *orig_bdev)
1058 {
1059 bdev_end_io_acct(orig_bdev, bio_op(bio), start_time);
1060 }
1061 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1062
1063 /**
1064 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1065 * @q : the queue of the device being checked
1066 *
1067 * Description:
1068 * Check if underlying low-level drivers of a device are busy.
1069 * If the drivers want to export their busy state, they must set own
1070 * exporting function using blk_queue_lld_busy() first.
1071 *
1072 * Basically, this function is used only by request stacking drivers
1073 * to stop dispatching requests to underlying devices when underlying
1074 * devices are busy. This behavior helps more I/O merging on the queue
1075 * of the request stacking driver and prevents I/O throughput regression
1076 * on burst I/O load.
1077 *
1078 * Return:
1079 * 0 - Not busy (The request stacking driver should dispatch request)
1080 * 1 - Busy (The request stacking driver should stop dispatching request)
1081 */
1082 int blk_lld_busy(struct request_queue *q)
1083 {
1084 if (queue_is_mq(q) && q->mq_ops->busy)
1085 return q->mq_ops->busy(q);
1086
1087 return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(blk_lld_busy);
1090
1091 int kblockd_schedule_work(struct work_struct *work)
1092 {
1093 return queue_work(kblockd_workqueue, work);
1094 }
1095 EXPORT_SYMBOL(kblockd_schedule_work);
1096
1097 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1098 unsigned long delay)
1099 {
1100 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1101 }
1102 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1103
1104 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1105 {
1106 struct task_struct *tsk = current;
1107
1108 /*
1109 * If this is a nested plug, don't actually assign it.
1110 */
1111 if (tsk->plug)
1112 return;
1113
1114 plug->mq_list = NULL;
1115 plug->cached_rq = NULL;
1116 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1117 plug->rq_count = 0;
1118 plug->multiple_queues = false;
1119 plug->has_elevator = false;
1120 plug->nowait = false;
1121 INIT_LIST_HEAD(&plug->cb_list);
1122
1123 /*
1124 * Store ordering should not be needed here, since a potential
1125 * preempt will imply a full memory barrier
1126 */
1127 tsk->plug = plug;
1128 }
1129
1130 /**
1131 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1132 * @plug: The &struct blk_plug that needs to be initialized
1133 *
1134 * Description:
1135 * blk_start_plug() indicates to the block layer an intent by the caller
1136 * to submit multiple I/O requests in a batch. The block layer may use
1137 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1138 * is called. However, the block layer may choose to submit requests
1139 * before a call to blk_finish_plug() if the number of queued I/Os
1140 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1141 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1142 * the task schedules (see below).
1143 *
1144 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1145 * pending I/O should the task end up blocking between blk_start_plug() and
1146 * blk_finish_plug(). This is important from a performance perspective, but
1147 * also ensures that we don't deadlock. For instance, if the task is blocking
1148 * for a memory allocation, memory reclaim could end up wanting to free a
1149 * page belonging to that request that is currently residing in our private
1150 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1151 * this kind of deadlock.
1152 */
1153 void blk_start_plug(struct blk_plug *plug)
1154 {
1155 blk_start_plug_nr_ios(plug, 1);
1156 }
1157 EXPORT_SYMBOL(blk_start_plug);
1158
1159 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1160 {
1161 LIST_HEAD(callbacks);
1162
1163 while (!list_empty(&plug->cb_list)) {
1164 list_splice_init(&plug->cb_list, &callbacks);
1165
1166 while (!list_empty(&callbacks)) {
1167 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1168 struct blk_plug_cb,
1169 list);
1170 list_del(&cb->list);
1171 cb->callback(cb, from_schedule);
1172 }
1173 }
1174 }
1175
1176 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1177 int size)
1178 {
1179 struct blk_plug *plug = current->plug;
1180 struct blk_plug_cb *cb;
1181
1182 if (!plug)
1183 return NULL;
1184
1185 list_for_each_entry(cb, &plug->cb_list, list)
1186 if (cb->callback == unplug && cb->data == data)
1187 return cb;
1188
1189 /* Not currently on the callback list */
1190 BUG_ON(size < sizeof(*cb));
1191 cb = kzalloc(size, GFP_ATOMIC);
1192 if (cb) {
1193 cb->data = data;
1194 cb->callback = unplug;
1195 list_add(&cb->list, &plug->cb_list);
1196 }
1197 return cb;
1198 }
1199 EXPORT_SYMBOL(blk_check_plugged);
1200
1201 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1202 {
1203 if (!list_empty(&plug->cb_list))
1204 flush_plug_callbacks(plug, from_schedule);
1205 if (!rq_list_empty(plug->mq_list))
1206 blk_mq_flush_plug_list(plug, from_schedule);
1207 /*
1208 * Unconditionally flush out cached requests, even if the unplug
1209 * event came from schedule. Since we know hold references to the
1210 * queue for cached requests, we don't want a blocked task holding
1211 * up a queue freeze/quiesce event.
1212 */
1213 if (unlikely(!rq_list_empty(plug->cached_rq)))
1214 blk_mq_free_plug_rqs(plug);
1215 }
1216
1217 /**
1218 * blk_finish_plug - mark the end of a batch of submitted I/O
1219 * @plug: The &struct blk_plug passed to blk_start_plug()
1220 *
1221 * Description:
1222 * Indicate that a batch of I/O submissions is complete. This function
1223 * must be paired with an initial call to blk_start_plug(). The intent
1224 * is to allow the block layer to optimize I/O submission. See the
1225 * documentation for blk_start_plug() for more information.
1226 */
1227 void blk_finish_plug(struct blk_plug *plug)
1228 {
1229 if (plug == current->plug) {
1230 __blk_flush_plug(plug, false);
1231 current->plug = NULL;
1232 }
1233 }
1234 EXPORT_SYMBOL(blk_finish_plug);
1235
1236 void blk_io_schedule(void)
1237 {
1238 /* Prevent hang_check timer from firing at us during very long I/O */
1239 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1240
1241 if (timeout)
1242 io_schedule_timeout(timeout);
1243 else
1244 io_schedule();
1245 }
1246 EXPORT_SYMBOL_GPL(blk_io_schedule);
1247
1248 int __init blk_dev_init(void)
1249 {
1250 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1251 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1252 sizeof_field(struct request, cmd_flags));
1253 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1254 sizeof_field(struct bio, bi_opf));
1255 BUILD_BUG_ON(ALIGN(offsetof(struct request_queue, srcu),
1256 __alignof__(struct request_queue)) !=
1257 sizeof(struct request_queue));
1258
1259 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1260 kblockd_workqueue = alloc_workqueue("kblockd",
1261 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1262 if (!kblockd_workqueue)
1263 panic("Failed to create kblockd\n");
1264
1265 blk_requestq_cachep = kmem_cache_create("request_queue",
1266 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1267
1268 blk_requestq_srcu_cachep = kmem_cache_create("request_queue_srcu",
1269 sizeof(struct request_queue) +
1270 sizeof(struct srcu_struct), 0, SLAB_PANIC, NULL);
1271
1272 blk_debugfs_root = debugfs_create_dir("block", NULL);
1273
1274 return 0;
1275 }