]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-core.c
tracing/uprobe: Fix NULL pointer dereference in trace_uprobe_create()
[thirdparty/kernel/stable.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-pm.h"
46 #include "blk-rq-qos.h"
47
48 #ifdef CONFIG_DEBUG_FS
49 struct dentry *blk_debugfs_root;
50 #endif
51
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
57
58 DEFINE_IDA(blk_queue_ida);
59
60 /*
61 * For queue allocation
62 */
63 struct kmem_cache *blk_requestq_cachep;
64
65 /*
66 * Controlling structure to kblockd
67 */
68 static struct workqueue_struct *kblockd_workqueue;
69
70 /**
71 * blk_queue_flag_set - atomically set a queue flag
72 * @flag: flag to be set
73 * @q: request queue
74 */
75 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
76 {
77 set_bit(flag, &q->queue_flags);
78 }
79 EXPORT_SYMBOL(blk_queue_flag_set);
80
81 /**
82 * blk_queue_flag_clear - atomically clear a queue flag
83 * @flag: flag to be cleared
84 * @q: request queue
85 */
86 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
87 {
88 clear_bit(flag, &q->queue_flags);
89 }
90 EXPORT_SYMBOL(blk_queue_flag_clear);
91
92 /**
93 * blk_queue_flag_test_and_set - atomically test and set a queue flag
94 * @flag: flag to be set
95 * @q: request queue
96 *
97 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
98 * the flag was already set.
99 */
100 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
101 {
102 return test_and_set_bit(flag, &q->queue_flags);
103 }
104 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
105
106 void blk_rq_init(struct request_queue *q, struct request *rq)
107 {
108 memset(rq, 0, sizeof(*rq));
109
110 INIT_LIST_HEAD(&rq->queuelist);
111 rq->q = q;
112 rq->__sector = (sector_t) -1;
113 INIT_HLIST_NODE(&rq->hash);
114 RB_CLEAR_NODE(&rq->rb_node);
115 rq->tag = -1;
116 rq->internal_tag = -1;
117 rq->start_time_ns = ktime_get_ns();
118 rq->part = NULL;
119 }
120 EXPORT_SYMBOL(blk_rq_init);
121
122 static const struct {
123 int errno;
124 const char *name;
125 } blk_errors[] = {
126 [BLK_STS_OK] = { 0, "" },
127 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
128 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
129 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
130 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
131 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
132 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
133 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
134 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
135 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
136 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
137 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
138
139 /* device mapper special case, should not leak out: */
140 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
141
142 /* everything else not covered above: */
143 [BLK_STS_IOERR] = { -EIO, "I/O" },
144 };
145
146 blk_status_t errno_to_blk_status(int errno)
147 {
148 int i;
149
150 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
151 if (blk_errors[i].errno == errno)
152 return (__force blk_status_t)i;
153 }
154
155 return BLK_STS_IOERR;
156 }
157 EXPORT_SYMBOL_GPL(errno_to_blk_status);
158
159 int blk_status_to_errno(blk_status_t status)
160 {
161 int idx = (__force int)status;
162
163 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
164 return -EIO;
165 return blk_errors[idx].errno;
166 }
167 EXPORT_SYMBOL_GPL(blk_status_to_errno);
168
169 static void print_req_error(struct request *req, blk_status_t status)
170 {
171 int idx = (__force int)status;
172
173 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
174 return;
175
176 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n",
177 __func__, blk_errors[idx].name,
178 req->rq_disk ? req->rq_disk->disk_name : "?",
179 (unsigned long long)blk_rq_pos(req),
180 req->cmd_flags);
181 }
182
183 static void req_bio_endio(struct request *rq, struct bio *bio,
184 unsigned int nbytes, blk_status_t error)
185 {
186 if (error)
187 bio->bi_status = error;
188
189 if (unlikely(rq->rq_flags & RQF_QUIET))
190 bio_set_flag(bio, BIO_QUIET);
191
192 bio_advance(bio, nbytes);
193
194 /* don't actually finish bio if it's part of flush sequence */
195 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
196 bio_endio(bio);
197 }
198
199 void blk_dump_rq_flags(struct request *rq, char *msg)
200 {
201 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
202 rq->rq_disk ? rq->rq_disk->disk_name : "?",
203 (unsigned long long) rq->cmd_flags);
204
205 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
206 (unsigned long long)blk_rq_pos(rq),
207 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
208 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
209 rq->bio, rq->biotail, blk_rq_bytes(rq));
210 }
211 EXPORT_SYMBOL(blk_dump_rq_flags);
212
213 /**
214 * blk_sync_queue - cancel any pending callbacks on a queue
215 * @q: the queue
216 *
217 * Description:
218 * The block layer may perform asynchronous callback activity
219 * on a queue, such as calling the unplug function after a timeout.
220 * A block device may call blk_sync_queue to ensure that any
221 * such activity is cancelled, thus allowing it to release resources
222 * that the callbacks might use. The caller must already have made sure
223 * that its ->make_request_fn will not re-add plugging prior to calling
224 * this function.
225 *
226 * This function does not cancel any asynchronous activity arising
227 * out of elevator or throttling code. That would require elevator_exit()
228 * and blkcg_exit_queue() to be called with queue lock initialized.
229 *
230 */
231 void blk_sync_queue(struct request_queue *q)
232 {
233 del_timer_sync(&q->timeout);
234 cancel_work_sync(&q->timeout_work);
235
236 if (queue_is_mq(q)) {
237 struct blk_mq_hw_ctx *hctx;
238 int i;
239
240 queue_for_each_hw_ctx(q, hctx, i)
241 cancel_delayed_work_sync(&hctx->run_work);
242 }
243 }
244 EXPORT_SYMBOL(blk_sync_queue);
245
246 /**
247 * blk_set_pm_only - increment pm_only counter
248 * @q: request queue pointer
249 */
250 void blk_set_pm_only(struct request_queue *q)
251 {
252 atomic_inc(&q->pm_only);
253 }
254 EXPORT_SYMBOL_GPL(blk_set_pm_only);
255
256 void blk_clear_pm_only(struct request_queue *q)
257 {
258 int pm_only;
259
260 pm_only = atomic_dec_return(&q->pm_only);
261 WARN_ON_ONCE(pm_only < 0);
262 if (pm_only == 0)
263 wake_up_all(&q->mq_freeze_wq);
264 }
265 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
266
267 void blk_put_queue(struct request_queue *q)
268 {
269 kobject_put(&q->kobj);
270 }
271 EXPORT_SYMBOL(blk_put_queue);
272
273 void blk_set_queue_dying(struct request_queue *q)
274 {
275 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
276
277 /*
278 * When queue DYING flag is set, we need to block new req
279 * entering queue, so we call blk_freeze_queue_start() to
280 * prevent I/O from crossing blk_queue_enter().
281 */
282 blk_freeze_queue_start(q);
283
284 if (queue_is_mq(q))
285 blk_mq_wake_waiters(q);
286
287 /* Make blk_queue_enter() reexamine the DYING flag. */
288 wake_up_all(&q->mq_freeze_wq);
289 }
290 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
291
292 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
293 void blk_exit_queue(struct request_queue *q)
294 {
295 /*
296 * Since the I/O scheduler exit code may access cgroup information,
297 * perform I/O scheduler exit before disassociating from the block
298 * cgroup controller.
299 */
300 if (q->elevator) {
301 ioc_clear_queue(q);
302 elevator_exit(q, q->elevator);
303 q->elevator = NULL;
304 }
305
306 /*
307 * Remove all references to @q from the block cgroup controller before
308 * restoring @q->queue_lock to avoid that restoring this pointer causes
309 * e.g. blkcg_print_blkgs() to crash.
310 */
311 blkcg_exit_queue(q);
312
313 /*
314 * Since the cgroup code may dereference the @q->backing_dev_info
315 * pointer, only decrease its reference count after having removed the
316 * association with the block cgroup controller.
317 */
318 bdi_put(q->backing_dev_info);
319 }
320
321 /**
322 * blk_cleanup_queue - shutdown a request queue
323 * @q: request queue to shutdown
324 *
325 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
326 * put it. All future requests will be failed immediately with -ENODEV.
327 */
328 void blk_cleanup_queue(struct request_queue *q)
329 {
330 /* mark @q DYING, no new request or merges will be allowed afterwards */
331 mutex_lock(&q->sysfs_lock);
332 blk_set_queue_dying(q);
333
334 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
335 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
336 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
337 mutex_unlock(&q->sysfs_lock);
338
339 /*
340 * Drain all requests queued before DYING marking. Set DEAD flag to
341 * prevent that q->request_fn() gets invoked after draining finished.
342 */
343 blk_freeze_queue(q);
344
345 rq_qos_exit(q);
346
347 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
348
349 /*
350 * make sure all in-progress dispatch are completed because
351 * blk_freeze_queue() can only complete all requests, and
352 * dispatch may still be in-progress since we dispatch requests
353 * from more than one contexts.
354 *
355 * We rely on driver to deal with the race in case that queue
356 * initialization isn't done.
357 */
358 if (queue_is_mq(q) && blk_queue_init_done(q))
359 blk_mq_quiesce_queue(q);
360
361 /* for synchronous bio-based driver finish in-flight integrity i/o */
362 blk_flush_integrity();
363
364 /* @q won't process any more request, flush async actions */
365 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
366 blk_sync_queue(q);
367
368 /*
369 * I/O scheduler exit is only safe after the sysfs scheduler attribute
370 * has been removed.
371 */
372 WARN_ON_ONCE(q->kobj.state_in_sysfs);
373
374 blk_exit_queue(q);
375
376 if (queue_is_mq(q))
377 blk_mq_exit_queue(q);
378
379 percpu_ref_exit(&q->q_usage_counter);
380
381 /* @q is and will stay empty, shutdown and put */
382 blk_put_queue(q);
383 }
384 EXPORT_SYMBOL(blk_cleanup_queue);
385
386 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
387 {
388 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
389 }
390 EXPORT_SYMBOL(blk_alloc_queue);
391
392 /**
393 * blk_queue_enter() - try to increase q->q_usage_counter
394 * @q: request queue pointer
395 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
396 */
397 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
398 {
399 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
400
401 while (true) {
402 bool success = false;
403
404 rcu_read_lock();
405 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
406 /*
407 * The code that increments the pm_only counter is
408 * responsible for ensuring that that counter is
409 * globally visible before the queue is unfrozen.
410 */
411 if (pm || !blk_queue_pm_only(q)) {
412 success = true;
413 } else {
414 percpu_ref_put(&q->q_usage_counter);
415 }
416 }
417 rcu_read_unlock();
418
419 if (success)
420 return 0;
421
422 if (flags & BLK_MQ_REQ_NOWAIT)
423 return -EBUSY;
424
425 /*
426 * read pair of barrier in blk_freeze_queue_start(),
427 * we need to order reading __PERCPU_REF_DEAD flag of
428 * .q_usage_counter and reading .mq_freeze_depth or
429 * queue dying flag, otherwise the following wait may
430 * never return if the two reads are reordered.
431 */
432 smp_rmb();
433
434 wait_event(q->mq_freeze_wq,
435 (atomic_read(&q->mq_freeze_depth) == 0 &&
436 (pm || (blk_pm_request_resume(q),
437 !blk_queue_pm_only(q)))) ||
438 blk_queue_dying(q));
439 if (blk_queue_dying(q))
440 return -ENODEV;
441 }
442 }
443
444 void blk_queue_exit(struct request_queue *q)
445 {
446 percpu_ref_put(&q->q_usage_counter);
447 }
448
449 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
450 {
451 struct request_queue *q =
452 container_of(ref, struct request_queue, q_usage_counter);
453
454 wake_up_all(&q->mq_freeze_wq);
455 }
456
457 static void blk_rq_timed_out_timer(struct timer_list *t)
458 {
459 struct request_queue *q = from_timer(q, t, timeout);
460
461 kblockd_schedule_work(&q->timeout_work);
462 }
463
464 static void blk_timeout_work(struct work_struct *work)
465 {
466 }
467
468 /**
469 * blk_alloc_queue_node - allocate a request queue
470 * @gfp_mask: memory allocation flags
471 * @node_id: NUMA node to allocate memory from
472 */
473 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
474 {
475 struct request_queue *q;
476 int ret;
477
478 q = kmem_cache_alloc_node(blk_requestq_cachep,
479 gfp_mask | __GFP_ZERO, node_id);
480 if (!q)
481 return NULL;
482
483 INIT_LIST_HEAD(&q->queue_head);
484 q->last_merge = NULL;
485
486 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
487 if (q->id < 0)
488 goto fail_q;
489
490 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
491 if (ret)
492 goto fail_id;
493
494 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
495 if (!q->backing_dev_info)
496 goto fail_split;
497
498 q->stats = blk_alloc_queue_stats();
499 if (!q->stats)
500 goto fail_stats;
501
502 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
503 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
504 q->backing_dev_info->name = "block";
505 q->node = node_id;
506
507 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
508 laptop_mode_timer_fn, 0);
509 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
510 INIT_WORK(&q->timeout_work, blk_timeout_work);
511 INIT_LIST_HEAD(&q->icq_list);
512 #ifdef CONFIG_BLK_CGROUP
513 INIT_LIST_HEAD(&q->blkg_list);
514 #endif
515
516 kobject_init(&q->kobj, &blk_queue_ktype);
517
518 #ifdef CONFIG_BLK_DEV_IO_TRACE
519 mutex_init(&q->blk_trace_mutex);
520 #endif
521 mutex_init(&q->sysfs_lock);
522 spin_lock_init(&q->queue_lock);
523
524 init_waitqueue_head(&q->mq_freeze_wq);
525
526 /*
527 * Init percpu_ref in atomic mode so that it's faster to shutdown.
528 * See blk_register_queue() for details.
529 */
530 if (percpu_ref_init(&q->q_usage_counter,
531 blk_queue_usage_counter_release,
532 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
533 goto fail_bdi;
534
535 if (blkcg_init_queue(q))
536 goto fail_ref;
537
538 return q;
539
540 fail_ref:
541 percpu_ref_exit(&q->q_usage_counter);
542 fail_bdi:
543 blk_free_queue_stats(q->stats);
544 fail_stats:
545 bdi_put(q->backing_dev_info);
546 fail_split:
547 bioset_exit(&q->bio_split);
548 fail_id:
549 ida_simple_remove(&blk_queue_ida, q->id);
550 fail_q:
551 kmem_cache_free(blk_requestq_cachep, q);
552 return NULL;
553 }
554 EXPORT_SYMBOL(blk_alloc_queue_node);
555
556 bool blk_get_queue(struct request_queue *q)
557 {
558 if (likely(!blk_queue_dying(q))) {
559 __blk_get_queue(q);
560 return true;
561 }
562
563 return false;
564 }
565 EXPORT_SYMBOL(blk_get_queue);
566
567 /**
568 * blk_get_request - allocate a request
569 * @q: request queue to allocate a request for
570 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
571 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
572 */
573 struct request *blk_get_request(struct request_queue *q, unsigned int op,
574 blk_mq_req_flags_t flags)
575 {
576 struct request *req;
577
578 WARN_ON_ONCE(op & REQ_NOWAIT);
579 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
580
581 req = blk_mq_alloc_request(q, op, flags);
582 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
583 q->mq_ops->initialize_rq_fn(req);
584
585 return req;
586 }
587 EXPORT_SYMBOL(blk_get_request);
588
589 void blk_put_request(struct request *req)
590 {
591 blk_mq_free_request(req);
592 }
593 EXPORT_SYMBOL(blk_put_request);
594
595 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
596 struct bio *bio)
597 {
598 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
599
600 if (!ll_back_merge_fn(q, req, bio))
601 return false;
602
603 trace_block_bio_backmerge(q, req, bio);
604
605 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
606 blk_rq_set_mixed_merge(req);
607
608 req->biotail->bi_next = bio;
609 req->biotail = bio;
610 req->__data_len += bio->bi_iter.bi_size;
611
612 blk_account_io_start(req, false);
613 return true;
614 }
615
616 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
617 struct bio *bio)
618 {
619 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
620
621 if (!ll_front_merge_fn(q, req, bio))
622 return false;
623
624 trace_block_bio_frontmerge(q, req, bio);
625
626 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
627 blk_rq_set_mixed_merge(req);
628
629 bio->bi_next = req->bio;
630 req->bio = bio;
631
632 req->__sector = bio->bi_iter.bi_sector;
633 req->__data_len += bio->bi_iter.bi_size;
634
635 blk_account_io_start(req, false);
636 return true;
637 }
638
639 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
640 struct bio *bio)
641 {
642 unsigned short segments = blk_rq_nr_discard_segments(req);
643
644 if (segments >= queue_max_discard_segments(q))
645 goto no_merge;
646 if (blk_rq_sectors(req) + bio_sectors(bio) >
647 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
648 goto no_merge;
649
650 req->biotail->bi_next = bio;
651 req->biotail = bio;
652 req->__data_len += bio->bi_iter.bi_size;
653 req->nr_phys_segments = segments + 1;
654
655 blk_account_io_start(req, false);
656 return true;
657 no_merge:
658 req_set_nomerge(q, req);
659 return false;
660 }
661
662 /**
663 * blk_attempt_plug_merge - try to merge with %current's plugged list
664 * @q: request_queue new bio is being queued at
665 * @bio: new bio being queued
666 * @same_queue_rq: pointer to &struct request that gets filled in when
667 * another request associated with @q is found on the plug list
668 * (optional, may be %NULL)
669 *
670 * Determine whether @bio being queued on @q can be merged with a request
671 * on %current's plugged list. Returns %true if merge was successful,
672 * otherwise %false.
673 *
674 * Plugging coalesces IOs from the same issuer for the same purpose without
675 * going through @q->queue_lock. As such it's more of an issuing mechanism
676 * than scheduling, and the request, while may have elvpriv data, is not
677 * added on the elevator at this point. In addition, we don't have
678 * reliable access to the elevator outside queue lock. Only check basic
679 * merging parameters without querying the elevator.
680 *
681 * Caller must ensure !blk_queue_nomerges(q) beforehand.
682 */
683 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
684 struct request **same_queue_rq)
685 {
686 struct blk_plug *plug;
687 struct request *rq;
688 struct list_head *plug_list;
689
690 plug = current->plug;
691 if (!plug)
692 return false;
693
694 plug_list = &plug->mq_list;
695
696 list_for_each_entry_reverse(rq, plug_list, queuelist) {
697 bool merged = false;
698
699 if (rq->q == q && same_queue_rq) {
700 /*
701 * Only blk-mq multiple hardware queues case checks the
702 * rq in the same queue, there should be only one such
703 * rq in a queue
704 **/
705 *same_queue_rq = rq;
706 }
707
708 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
709 continue;
710
711 switch (blk_try_merge(rq, bio)) {
712 case ELEVATOR_BACK_MERGE:
713 merged = bio_attempt_back_merge(q, rq, bio);
714 break;
715 case ELEVATOR_FRONT_MERGE:
716 merged = bio_attempt_front_merge(q, rq, bio);
717 break;
718 case ELEVATOR_DISCARD_MERGE:
719 merged = bio_attempt_discard_merge(q, rq, bio);
720 break;
721 default:
722 break;
723 }
724
725 if (merged)
726 return true;
727 }
728
729 return false;
730 }
731
732 void blk_init_request_from_bio(struct request *req, struct bio *bio)
733 {
734 if (bio->bi_opf & REQ_RAHEAD)
735 req->cmd_flags |= REQ_FAILFAST_MASK;
736
737 req->__sector = bio->bi_iter.bi_sector;
738 req->ioprio = bio_prio(bio);
739 req->write_hint = bio->bi_write_hint;
740 blk_rq_bio_prep(req->q, req, bio);
741 }
742 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
743
744 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
745 {
746 char b[BDEVNAME_SIZE];
747
748 printk(KERN_INFO "attempt to access beyond end of device\n");
749 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
750 bio_devname(bio, b), bio->bi_opf,
751 (unsigned long long)bio_end_sector(bio),
752 (long long)maxsector);
753 }
754
755 #ifdef CONFIG_FAIL_MAKE_REQUEST
756
757 static DECLARE_FAULT_ATTR(fail_make_request);
758
759 static int __init setup_fail_make_request(char *str)
760 {
761 return setup_fault_attr(&fail_make_request, str);
762 }
763 __setup("fail_make_request=", setup_fail_make_request);
764
765 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
766 {
767 return part->make_it_fail && should_fail(&fail_make_request, bytes);
768 }
769
770 static int __init fail_make_request_debugfs(void)
771 {
772 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
773 NULL, &fail_make_request);
774
775 return PTR_ERR_OR_ZERO(dir);
776 }
777
778 late_initcall(fail_make_request_debugfs);
779
780 #else /* CONFIG_FAIL_MAKE_REQUEST */
781
782 static inline bool should_fail_request(struct hd_struct *part,
783 unsigned int bytes)
784 {
785 return false;
786 }
787
788 #endif /* CONFIG_FAIL_MAKE_REQUEST */
789
790 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
791 {
792 const int op = bio_op(bio);
793
794 if (part->policy && op_is_write(op)) {
795 char b[BDEVNAME_SIZE];
796
797 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
798 return false;
799
800 WARN_ONCE(1,
801 "generic_make_request: Trying to write "
802 "to read-only block-device %s (partno %d)\n",
803 bio_devname(bio, b), part->partno);
804 /* Older lvm-tools actually trigger this */
805 return false;
806 }
807
808 return false;
809 }
810
811 static noinline int should_fail_bio(struct bio *bio)
812 {
813 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
814 return -EIO;
815 return 0;
816 }
817 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
818
819 /*
820 * Check whether this bio extends beyond the end of the device or partition.
821 * This may well happen - the kernel calls bread() without checking the size of
822 * the device, e.g., when mounting a file system.
823 */
824 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
825 {
826 unsigned int nr_sectors = bio_sectors(bio);
827
828 if (nr_sectors && maxsector &&
829 (nr_sectors > maxsector ||
830 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
831 handle_bad_sector(bio, maxsector);
832 return -EIO;
833 }
834 return 0;
835 }
836
837 /*
838 * Remap block n of partition p to block n+start(p) of the disk.
839 */
840 static inline int blk_partition_remap(struct bio *bio)
841 {
842 struct hd_struct *p;
843 int ret = -EIO;
844
845 rcu_read_lock();
846 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
847 if (unlikely(!p))
848 goto out;
849 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
850 goto out;
851 if (unlikely(bio_check_ro(bio, p)))
852 goto out;
853
854 /*
855 * Zone reset does not include bi_size so bio_sectors() is always 0.
856 * Include a test for the reset op code and perform the remap if needed.
857 */
858 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
859 if (bio_check_eod(bio, part_nr_sects_read(p)))
860 goto out;
861 bio->bi_iter.bi_sector += p->start_sect;
862 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
863 bio->bi_iter.bi_sector - p->start_sect);
864 }
865 bio->bi_partno = 0;
866 ret = 0;
867 out:
868 rcu_read_unlock();
869 return ret;
870 }
871
872 static noinline_for_stack bool
873 generic_make_request_checks(struct bio *bio)
874 {
875 struct request_queue *q;
876 int nr_sectors = bio_sectors(bio);
877 blk_status_t status = BLK_STS_IOERR;
878 char b[BDEVNAME_SIZE];
879
880 might_sleep();
881
882 q = bio->bi_disk->queue;
883 if (unlikely(!q)) {
884 printk(KERN_ERR
885 "generic_make_request: Trying to access "
886 "nonexistent block-device %s (%Lu)\n",
887 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
888 goto end_io;
889 }
890
891 /*
892 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
893 * if queue is not a request based queue.
894 */
895 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
896 goto not_supported;
897
898 if (should_fail_bio(bio))
899 goto end_io;
900
901 if (bio->bi_partno) {
902 if (unlikely(blk_partition_remap(bio)))
903 goto end_io;
904 } else {
905 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
906 goto end_io;
907 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
908 goto end_io;
909 }
910
911 /*
912 * Filter flush bio's early so that make_request based
913 * drivers without flush support don't have to worry
914 * about them.
915 */
916 if (op_is_flush(bio->bi_opf) &&
917 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
918 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
919 if (!nr_sectors) {
920 status = BLK_STS_OK;
921 goto end_io;
922 }
923 }
924
925 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
926 bio->bi_opf &= ~REQ_HIPRI;
927
928 switch (bio_op(bio)) {
929 case REQ_OP_DISCARD:
930 if (!blk_queue_discard(q))
931 goto not_supported;
932 break;
933 case REQ_OP_SECURE_ERASE:
934 if (!blk_queue_secure_erase(q))
935 goto not_supported;
936 break;
937 case REQ_OP_WRITE_SAME:
938 if (!q->limits.max_write_same_sectors)
939 goto not_supported;
940 break;
941 case REQ_OP_ZONE_RESET:
942 if (!blk_queue_is_zoned(q))
943 goto not_supported;
944 break;
945 case REQ_OP_WRITE_ZEROES:
946 if (!q->limits.max_write_zeroes_sectors)
947 goto not_supported;
948 break;
949 default:
950 break;
951 }
952
953 /*
954 * Various block parts want %current->io_context and lazy ioc
955 * allocation ends up trading a lot of pain for a small amount of
956 * memory. Just allocate it upfront. This may fail and block
957 * layer knows how to live with it.
958 */
959 create_io_context(GFP_ATOMIC, q->node);
960
961 if (!blkcg_bio_issue_check(q, bio))
962 return false;
963
964 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
965 trace_block_bio_queue(q, bio);
966 /* Now that enqueuing has been traced, we need to trace
967 * completion as well.
968 */
969 bio_set_flag(bio, BIO_TRACE_COMPLETION);
970 }
971 return true;
972
973 not_supported:
974 status = BLK_STS_NOTSUPP;
975 end_io:
976 bio->bi_status = status;
977 bio_endio(bio);
978 return false;
979 }
980
981 /**
982 * generic_make_request - hand a buffer to its device driver for I/O
983 * @bio: The bio describing the location in memory and on the device.
984 *
985 * generic_make_request() is used to make I/O requests of block
986 * devices. It is passed a &struct bio, which describes the I/O that needs
987 * to be done.
988 *
989 * generic_make_request() does not return any status. The
990 * success/failure status of the request, along with notification of
991 * completion, is delivered asynchronously through the bio->bi_end_io
992 * function described (one day) else where.
993 *
994 * The caller of generic_make_request must make sure that bi_io_vec
995 * are set to describe the memory buffer, and that bi_dev and bi_sector are
996 * set to describe the device address, and the
997 * bi_end_io and optionally bi_private are set to describe how
998 * completion notification should be signaled.
999 *
1000 * generic_make_request and the drivers it calls may use bi_next if this
1001 * bio happens to be merged with someone else, and may resubmit the bio to
1002 * a lower device by calling into generic_make_request recursively, which
1003 * means the bio should NOT be touched after the call to ->make_request_fn.
1004 */
1005 blk_qc_t generic_make_request(struct bio *bio)
1006 {
1007 /*
1008 * bio_list_on_stack[0] contains bios submitted by the current
1009 * make_request_fn.
1010 * bio_list_on_stack[1] contains bios that were submitted before
1011 * the current make_request_fn, but that haven't been processed
1012 * yet.
1013 */
1014 struct bio_list bio_list_on_stack[2];
1015 blk_mq_req_flags_t flags = 0;
1016 struct request_queue *q = bio->bi_disk->queue;
1017 blk_qc_t ret = BLK_QC_T_NONE;
1018
1019 if (bio->bi_opf & REQ_NOWAIT)
1020 flags = BLK_MQ_REQ_NOWAIT;
1021 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
1022 blk_queue_enter_live(q);
1023 else if (blk_queue_enter(q, flags) < 0) {
1024 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
1025 bio_wouldblock_error(bio);
1026 else
1027 bio_io_error(bio);
1028 return ret;
1029 }
1030
1031 if (!generic_make_request_checks(bio))
1032 goto out;
1033
1034 /*
1035 * We only want one ->make_request_fn to be active at a time, else
1036 * stack usage with stacked devices could be a problem. So use
1037 * current->bio_list to keep a list of requests submited by a
1038 * make_request_fn function. current->bio_list is also used as a
1039 * flag to say if generic_make_request is currently active in this
1040 * task or not. If it is NULL, then no make_request is active. If
1041 * it is non-NULL, then a make_request is active, and new requests
1042 * should be added at the tail
1043 */
1044 if (current->bio_list) {
1045 bio_list_add(&current->bio_list[0], bio);
1046 goto out;
1047 }
1048
1049 /* following loop may be a bit non-obvious, and so deserves some
1050 * explanation.
1051 * Before entering the loop, bio->bi_next is NULL (as all callers
1052 * ensure that) so we have a list with a single bio.
1053 * We pretend that we have just taken it off a longer list, so
1054 * we assign bio_list to a pointer to the bio_list_on_stack,
1055 * thus initialising the bio_list of new bios to be
1056 * added. ->make_request() may indeed add some more bios
1057 * through a recursive call to generic_make_request. If it
1058 * did, we find a non-NULL value in bio_list and re-enter the loop
1059 * from the top. In this case we really did just take the bio
1060 * of the top of the list (no pretending) and so remove it from
1061 * bio_list, and call into ->make_request() again.
1062 */
1063 BUG_ON(bio->bi_next);
1064 bio_list_init(&bio_list_on_stack[0]);
1065 current->bio_list = bio_list_on_stack;
1066 do {
1067 bool enter_succeeded = true;
1068
1069 if (unlikely(q != bio->bi_disk->queue)) {
1070 if (q)
1071 blk_queue_exit(q);
1072 q = bio->bi_disk->queue;
1073 flags = 0;
1074 if (bio->bi_opf & REQ_NOWAIT)
1075 flags = BLK_MQ_REQ_NOWAIT;
1076 if (blk_queue_enter(q, flags) < 0) {
1077 enter_succeeded = false;
1078 q = NULL;
1079 }
1080 }
1081
1082 if (enter_succeeded) {
1083 struct bio_list lower, same;
1084
1085 /* Create a fresh bio_list for all subordinate requests */
1086 bio_list_on_stack[1] = bio_list_on_stack[0];
1087 bio_list_init(&bio_list_on_stack[0]);
1088 ret = q->make_request_fn(q, bio);
1089
1090 /* sort new bios into those for a lower level
1091 * and those for the same level
1092 */
1093 bio_list_init(&lower);
1094 bio_list_init(&same);
1095 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1096 if (q == bio->bi_disk->queue)
1097 bio_list_add(&same, bio);
1098 else
1099 bio_list_add(&lower, bio);
1100 /* now assemble so we handle the lowest level first */
1101 bio_list_merge(&bio_list_on_stack[0], &lower);
1102 bio_list_merge(&bio_list_on_stack[0], &same);
1103 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1104 } else {
1105 if (unlikely(!blk_queue_dying(q) &&
1106 (bio->bi_opf & REQ_NOWAIT)))
1107 bio_wouldblock_error(bio);
1108 else
1109 bio_io_error(bio);
1110 }
1111 bio = bio_list_pop(&bio_list_on_stack[0]);
1112 } while (bio);
1113 current->bio_list = NULL; /* deactivate */
1114
1115 out:
1116 if (q)
1117 blk_queue_exit(q);
1118 return ret;
1119 }
1120 EXPORT_SYMBOL(generic_make_request);
1121
1122 /**
1123 * direct_make_request - hand a buffer directly to its device driver for I/O
1124 * @bio: The bio describing the location in memory and on the device.
1125 *
1126 * This function behaves like generic_make_request(), but does not protect
1127 * against recursion. Must only be used if the called driver is known
1128 * to not call generic_make_request (or direct_make_request) again from
1129 * its make_request function. (Calling direct_make_request again from
1130 * a workqueue is perfectly fine as that doesn't recurse).
1131 */
1132 blk_qc_t direct_make_request(struct bio *bio)
1133 {
1134 struct request_queue *q = bio->bi_disk->queue;
1135 bool nowait = bio->bi_opf & REQ_NOWAIT;
1136 blk_qc_t ret;
1137
1138 if (!generic_make_request_checks(bio))
1139 return BLK_QC_T_NONE;
1140
1141 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1142 if (nowait && !blk_queue_dying(q))
1143 bio->bi_status = BLK_STS_AGAIN;
1144 else
1145 bio->bi_status = BLK_STS_IOERR;
1146 bio_endio(bio);
1147 return BLK_QC_T_NONE;
1148 }
1149
1150 ret = q->make_request_fn(q, bio);
1151 blk_queue_exit(q);
1152 return ret;
1153 }
1154 EXPORT_SYMBOL_GPL(direct_make_request);
1155
1156 /**
1157 * submit_bio - submit a bio to the block device layer for I/O
1158 * @bio: The &struct bio which describes the I/O
1159 *
1160 * submit_bio() is very similar in purpose to generic_make_request(), and
1161 * uses that function to do most of the work. Both are fairly rough
1162 * interfaces; @bio must be presetup and ready for I/O.
1163 *
1164 */
1165 blk_qc_t submit_bio(struct bio *bio)
1166 {
1167 /*
1168 * If it's a regular read/write or a barrier with data attached,
1169 * go through the normal accounting stuff before submission.
1170 */
1171 if (bio_has_data(bio)) {
1172 unsigned int count;
1173
1174 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1175 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1176 else
1177 count = bio_sectors(bio);
1178
1179 if (op_is_write(bio_op(bio))) {
1180 count_vm_events(PGPGOUT, count);
1181 } else {
1182 task_io_account_read(bio->bi_iter.bi_size);
1183 count_vm_events(PGPGIN, count);
1184 }
1185
1186 if (unlikely(block_dump)) {
1187 char b[BDEVNAME_SIZE];
1188 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1189 current->comm, task_pid_nr(current),
1190 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1191 (unsigned long long)bio->bi_iter.bi_sector,
1192 bio_devname(bio, b), count);
1193 }
1194 }
1195
1196 return generic_make_request(bio);
1197 }
1198 EXPORT_SYMBOL(submit_bio);
1199
1200 /**
1201 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1202 * for new the queue limits
1203 * @q: the queue
1204 * @rq: the request being checked
1205 *
1206 * Description:
1207 * @rq may have been made based on weaker limitations of upper-level queues
1208 * in request stacking drivers, and it may violate the limitation of @q.
1209 * Since the block layer and the underlying device driver trust @rq
1210 * after it is inserted to @q, it should be checked against @q before
1211 * the insertion using this generic function.
1212 *
1213 * Request stacking drivers like request-based dm may change the queue
1214 * limits when retrying requests on other queues. Those requests need
1215 * to be checked against the new queue limits again during dispatch.
1216 */
1217 static int blk_cloned_rq_check_limits(struct request_queue *q,
1218 struct request *rq)
1219 {
1220 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1221 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1222 return -EIO;
1223 }
1224
1225 /*
1226 * queue's settings related to segment counting like q->bounce_pfn
1227 * may differ from that of other stacking queues.
1228 * Recalculate it to check the request correctly on this queue's
1229 * limitation.
1230 */
1231 blk_recalc_rq_segments(rq);
1232 if (rq->nr_phys_segments > queue_max_segments(q)) {
1233 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1234 return -EIO;
1235 }
1236
1237 return 0;
1238 }
1239
1240 /**
1241 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1242 * @q: the queue to submit the request
1243 * @rq: the request being queued
1244 */
1245 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1246 {
1247 if (blk_cloned_rq_check_limits(q, rq))
1248 return BLK_STS_IOERR;
1249
1250 if (rq->rq_disk &&
1251 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1252 return BLK_STS_IOERR;
1253
1254 if (blk_queue_io_stat(q))
1255 blk_account_io_start(rq, true);
1256
1257 /*
1258 * Since we have a scheduler attached on the top device,
1259 * bypass a potential scheduler on the bottom device for
1260 * insert.
1261 */
1262 return blk_mq_request_issue_directly(rq, true);
1263 }
1264 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1265
1266 /**
1267 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1268 * @rq: request to examine
1269 *
1270 * Description:
1271 * A request could be merge of IOs which require different failure
1272 * handling. This function determines the number of bytes which
1273 * can be failed from the beginning of the request without
1274 * crossing into area which need to be retried further.
1275 *
1276 * Return:
1277 * The number of bytes to fail.
1278 */
1279 unsigned int blk_rq_err_bytes(const struct request *rq)
1280 {
1281 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1282 unsigned int bytes = 0;
1283 struct bio *bio;
1284
1285 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1286 return blk_rq_bytes(rq);
1287
1288 /*
1289 * Currently the only 'mixing' which can happen is between
1290 * different fastfail types. We can safely fail portions
1291 * which have all the failfast bits that the first one has -
1292 * the ones which are at least as eager to fail as the first
1293 * one.
1294 */
1295 for (bio = rq->bio; bio; bio = bio->bi_next) {
1296 if ((bio->bi_opf & ff) != ff)
1297 break;
1298 bytes += bio->bi_iter.bi_size;
1299 }
1300
1301 /* this could lead to infinite loop */
1302 BUG_ON(blk_rq_bytes(rq) && !bytes);
1303 return bytes;
1304 }
1305 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1306
1307 void blk_account_io_completion(struct request *req, unsigned int bytes)
1308 {
1309 if (blk_do_io_stat(req)) {
1310 const int sgrp = op_stat_group(req_op(req));
1311 struct hd_struct *part;
1312
1313 part_stat_lock();
1314 part = req->part;
1315 part_stat_add(part, sectors[sgrp], bytes >> 9);
1316 part_stat_unlock();
1317 }
1318 }
1319
1320 void blk_account_io_done(struct request *req, u64 now)
1321 {
1322 /*
1323 * Account IO completion. flush_rq isn't accounted as a
1324 * normal IO on queueing nor completion. Accounting the
1325 * containing request is enough.
1326 */
1327 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1328 const int sgrp = op_stat_group(req_op(req));
1329 struct hd_struct *part;
1330
1331 part_stat_lock();
1332 part = req->part;
1333
1334 update_io_ticks(part, jiffies);
1335 part_stat_inc(part, ios[sgrp]);
1336 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1337 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1338 part_dec_in_flight(req->q, part, rq_data_dir(req));
1339
1340 hd_struct_put(part);
1341 part_stat_unlock();
1342 }
1343 }
1344
1345 void blk_account_io_start(struct request *rq, bool new_io)
1346 {
1347 struct hd_struct *part;
1348 int rw = rq_data_dir(rq);
1349
1350 if (!blk_do_io_stat(rq))
1351 return;
1352
1353 part_stat_lock();
1354
1355 if (!new_io) {
1356 part = rq->part;
1357 part_stat_inc(part, merges[rw]);
1358 } else {
1359 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1360 if (!hd_struct_try_get(part)) {
1361 /*
1362 * The partition is already being removed,
1363 * the request will be accounted on the disk only
1364 *
1365 * We take a reference on disk->part0 although that
1366 * partition will never be deleted, so we can treat
1367 * it as any other partition.
1368 */
1369 part = &rq->rq_disk->part0;
1370 hd_struct_get(part);
1371 }
1372 part_inc_in_flight(rq->q, part, rw);
1373 rq->part = part;
1374 }
1375
1376 update_io_ticks(part, jiffies);
1377
1378 part_stat_unlock();
1379 }
1380
1381 /*
1382 * Steal bios from a request and add them to a bio list.
1383 * The request must not have been partially completed before.
1384 */
1385 void blk_steal_bios(struct bio_list *list, struct request *rq)
1386 {
1387 if (rq->bio) {
1388 if (list->tail)
1389 list->tail->bi_next = rq->bio;
1390 else
1391 list->head = rq->bio;
1392 list->tail = rq->biotail;
1393
1394 rq->bio = NULL;
1395 rq->biotail = NULL;
1396 }
1397
1398 rq->__data_len = 0;
1399 }
1400 EXPORT_SYMBOL_GPL(blk_steal_bios);
1401
1402 /**
1403 * blk_update_request - Special helper function for request stacking drivers
1404 * @req: the request being processed
1405 * @error: block status code
1406 * @nr_bytes: number of bytes to complete @req
1407 *
1408 * Description:
1409 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1410 * the request structure even if @req doesn't have leftover.
1411 * If @req has leftover, sets it up for the next range of segments.
1412 *
1413 * This special helper function is only for request stacking drivers
1414 * (e.g. request-based dm) so that they can handle partial completion.
1415 * Actual device drivers should use blk_end_request instead.
1416 *
1417 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1418 * %false return from this function.
1419 *
1420 * Note:
1421 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1422 * blk_rq_bytes() and in blk_update_request().
1423 *
1424 * Return:
1425 * %false - this request doesn't have any more data
1426 * %true - this request has more data
1427 **/
1428 bool blk_update_request(struct request *req, blk_status_t error,
1429 unsigned int nr_bytes)
1430 {
1431 int total_bytes;
1432
1433 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1434
1435 if (!req->bio)
1436 return false;
1437
1438 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1439 !(req->rq_flags & RQF_QUIET)))
1440 print_req_error(req, error);
1441
1442 blk_account_io_completion(req, nr_bytes);
1443
1444 total_bytes = 0;
1445 while (req->bio) {
1446 struct bio *bio = req->bio;
1447 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1448
1449 if (bio_bytes == bio->bi_iter.bi_size)
1450 req->bio = bio->bi_next;
1451
1452 /* Completion has already been traced */
1453 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1454 req_bio_endio(req, bio, bio_bytes, error);
1455
1456 total_bytes += bio_bytes;
1457 nr_bytes -= bio_bytes;
1458
1459 if (!nr_bytes)
1460 break;
1461 }
1462
1463 /*
1464 * completely done
1465 */
1466 if (!req->bio) {
1467 /*
1468 * Reset counters so that the request stacking driver
1469 * can find how many bytes remain in the request
1470 * later.
1471 */
1472 req->__data_len = 0;
1473 return false;
1474 }
1475
1476 req->__data_len -= total_bytes;
1477
1478 /* update sector only for requests with clear definition of sector */
1479 if (!blk_rq_is_passthrough(req))
1480 req->__sector += total_bytes >> 9;
1481
1482 /* mixed attributes always follow the first bio */
1483 if (req->rq_flags & RQF_MIXED_MERGE) {
1484 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1485 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1486 }
1487
1488 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1489 /*
1490 * If total number of sectors is less than the first segment
1491 * size, something has gone terribly wrong.
1492 */
1493 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1494 blk_dump_rq_flags(req, "request botched");
1495 req->__data_len = blk_rq_cur_bytes(req);
1496 }
1497
1498 /* recalculate the number of segments */
1499 blk_recalc_rq_segments(req);
1500 }
1501
1502 return true;
1503 }
1504 EXPORT_SYMBOL_GPL(blk_update_request);
1505
1506 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1507 struct bio *bio)
1508 {
1509 if (bio_has_data(bio))
1510 rq->nr_phys_segments = bio_phys_segments(q, bio);
1511 else if (bio_op(bio) == REQ_OP_DISCARD)
1512 rq->nr_phys_segments = 1;
1513
1514 rq->__data_len = bio->bi_iter.bi_size;
1515 rq->bio = rq->biotail = bio;
1516
1517 if (bio->bi_disk)
1518 rq->rq_disk = bio->bi_disk;
1519 }
1520
1521 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1522 /**
1523 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1524 * @rq: the request to be flushed
1525 *
1526 * Description:
1527 * Flush all pages in @rq.
1528 */
1529 void rq_flush_dcache_pages(struct request *rq)
1530 {
1531 struct req_iterator iter;
1532 struct bio_vec bvec;
1533
1534 rq_for_each_segment(bvec, rq, iter)
1535 flush_dcache_page(bvec.bv_page);
1536 }
1537 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1538 #endif
1539
1540 /**
1541 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1542 * @q : the queue of the device being checked
1543 *
1544 * Description:
1545 * Check if underlying low-level drivers of a device are busy.
1546 * If the drivers want to export their busy state, they must set own
1547 * exporting function using blk_queue_lld_busy() first.
1548 *
1549 * Basically, this function is used only by request stacking drivers
1550 * to stop dispatching requests to underlying devices when underlying
1551 * devices are busy. This behavior helps more I/O merging on the queue
1552 * of the request stacking driver and prevents I/O throughput regression
1553 * on burst I/O load.
1554 *
1555 * Return:
1556 * 0 - Not busy (The request stacking driver should dispatch request)
1557 * 1 - Busy (The request stacking driver should stop dispatching request)
1558 */
1559 int blk_lld_busy(struct request_queue *q)
1560 {
1561 if (queue_is_mq(q) && q->mq_ops->busy)
1562 return q->mq_ops->busy(q);
1563
1564 return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(blk_lld_busy);
1567
1568 /**
1569 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1570 * @rq: the clone request to be cleaned up
1571 *
1572 * Description:
1573 * Free all bios in @rq for a cloned request.
1574 */
1575 void blk_rq_unprep_clone(struct request *rq)
1576 {
1577 struct bio *bio;
1578
1579 while ((bio = rq->bio) != NULL) {
1580 rq->bio = bio->bi_next;
1581
1582 bio_put(bio);
1583 }
1584 }
1585 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1586
1587 /*
1588 * Copy attributes of the original request to the clone request.
1589 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1590 */
1591 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1592 {
1593 dst->__sector = blk_rq_pos(src);
1594 dst->__data_len = blk_rq_bytes(src);
1595 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1596 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1597 dst->special_vec = src->special_vec;
1598 }
1599 dst->nr_phys_segments = src->nr_phys_segments;
1600 dst->ioprio = src->ioprio;
1601 dst->extra_len = src->extra_len;
1602 }
1603
1604 /**
1605 * blk_rq_prep_clone - Helper function to setup clone request
1606 * @rq: the request to be setup
1607 * @rq_src: original request to be cloned
1608 * @bs: bio_set that bios for clone are allocated from
1609 * @gfp_mask: memory allocation mask for bio
1610 * @bio_ctr: setup function to be called for each clone bio.
1611 * Returns %0 for success, non %0 for failure.
1612 * @data: private data to be passed to @bio_ctr
1613 *
1614 * Description:
1615 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1616 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1617 * are not copied, and copying such parts is the caller's responsibility.
1618 * Also, pages which the original bios are pointing to are not copied
1619 * and the cloned bios just point same pages.
1620 * So cloned bios must be completed before original bios, which means
1621 * the caller must complete @rq before @rq_src.
1622 */
1623 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1624 struct bio_set *bs, gfp_t gfp_mask,
1625 int (*bio_ctr)(struct bio *, struct bio *, void *),
1626 void *data)
1627 {
1628 struct bio *bio, *bio_src;
1629
1630 if (!bs)
1631 bs = &fs_bio_set;
1632
1633 __rq_for_each_bio(bio_src, rq_src) {
1634 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1635 if (!bio)
1636 goto free_and_out;
1637
1638 if (bio_ctr && bio_ctr(bio, bio_src, data))
1639 goto free_and_out;
1640
1641 if (rq->bio) {
1642 rq->biotail->bi_next = bio;
1643 rq->biotail = bio;
1644 } else
1645 rq->bio = rq->biotail = bio;
1646 }
1647
1648 __blk_rq_prep_clone(rq, rq_src);
1649
1650 return 0;
1651
1652 free_and_out:
1653 if (bio)
1654 bio_put(bio);
1655 blk_rq_unprep_clone(rq);
1656
1657 return -ENOMEM;
1658 }
1659 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1660
1661 int kblockd_schedule_work(struct work_struct *work)
1662 {
1663 return queue_work(kblockd_workqueue, work);
1664 }
1665 EXPORT_SYMBOL(kblockd_schedule_work);
1666
1667 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1668 {
1669 return queue_work_on(cpu, kblockd_workqueue, work);
1670 }
1671 EXPORT_SYMBOL(kblockd_schedule_work_on);
1672
1673 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1674 unsigned long delay)
1675 {
1676 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1677 }
1678 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1679
1680 /**
1681 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1682 * @plug: The &struct blk_plug that needs to be initialized
1683 *
1684 * Description:
1685 * blk_start_plug() indicates to the block layer an intent by the caller
1686 * to submit multiple I/O requests in a batch. The block layer may use
1687 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1688 * is called. However, the block layer may choose to submit requests
1689 * before a call to blk_finish_plug() if the number of queued I/Os
1690 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1691 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1692 * the task schedules (see below).
1693 *
1694 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1695 * pending I/O should the task end up blocking between blk_start_plug() and
1696 * blk_finish_plug(). This is important from a performance perspective, but
1697 * also ensures that we don't deadlock. For instance, if the task is blocking
1698 * for a memory allocation, memory reclaim could end up wanting to free a
1699 * page belonging to that request that is currently residing in our private
1700 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1701 * this kind of deadlock.
1702 */
1703 void blk_start_plug(struct blk_plug *plug)
1704 {
1705 struct task_struct *tsk = current;
1706
1707 /*
1708 * If this is a nested plug, don't actually assign it.
1709 */
1710 if (tsk->plug)
1711 return;
1712
1713 INIT_LIST_HEAD(&plug->mq_list);
1714 INIT_LIST_HEAD(&plug->cb_list);
1715 plug->rq_count = 0;
1716 plug->multiple_queues = false;
1717
1718 /*
1719 * Store ordering should not be needed here, since a potential
1720 * preempt will imply a full memory barrier
1721 */
1722 tsk->plug = plug;
1723 }
1724 EXPORT_SYMBOL(blk_start_plug);
1725
1726 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1727 {
1728 LIST_HEAD(callbacks);
1729
1730 while (!list_empty(&plug->cb_list)) {
1731 list_splice_init(&plug->cb_list, &callbacks);
1732
1733 while (!list_empty(&callbacks)) {
1734 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1735 struct blk_plug_cb,
1736 list);
1737 list_del(&cb->list);
1738 cb->callback(cb, from_schedule);
1739 }
1740 }
1741 }
1742
1743 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1744 int size)
1745 {
1746 struct blk_plug *plug = current->plug;
1747 struct blk_plug_cb *cb;
1748
1749 if (!plug)
1750 return NULL;
1751
1752 list_for_each_entry(cb, &plug->cb_list, list)
1753 if (cb->callback == unplug && cb->data == data)
1754 return cb;
1755
1756 /* Not currently on the callback list */
1757 BUG_ON(size < sizeof(*cb));
1758 cb = kzalloc(size, GFP_ATOMIC);
1759 if (cb) {
1760 cb->data = data;
1761 cb->callback = unplug;
1762 list_add(&cb->list, &plug->cb_list);
1763 }
1764 return cb;
1765 }
1766 EXPORT_SYMBOL(blk_check_plugged);
1767
1768 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1769 {
1770 flush_plug_callbacks(plug, from_schedule);
1771
1772 if (!list_empty(&plug->mq_list))
1773 blk_mq_flush_plug_list(plug, from_schedule);
1774 }
1775
1776 /**
1777 * blk_finish_plug - mark the end of a batch of submitted I/O
1778 * @plug: The &struct blk_plug passed to blk_start_plug()
1779 *
1780 * Description:
1781 * Indicate that a batch of I/O submissions is complete. This function
1782 * must be paired with an initial call to blk_start_plug(). The intent
1783 * is to allow the block layer to optimize I/O submission. See the
1784 * documentation for blk_start_plug() for more information.
1785 */
1786 void blk_finish_plug(struct blk_plug *plug)
1787 {
1788 if (plug != current->plug)
1789 return;
1790 blk_flush_plug_list(plug, false);
1791
1792 current->plug = NULL;
1793 }
1794 EXPORT_SYMBOL(blk_finish_plug);
1795
1796 int __init blk_dev_init(void)
1797 {
1798 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1799 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1800 FIELD_SIZEOF(struct request, cmd_flags));
1801 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1802 FIELD_SIZEOF(struct bio, bi_opf));
1803
1804 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1805 kblockd_workqueue = alloc_workqueue("kblockd",
1806 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1807 if (!kblockd_workqueue)
1808 panic("Failed to create kblockd\n");
1809
1810 blk_requestq_cachep = kmem_cache_create("request_queue",
1811 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1812
1813 #ifdef CONFIG_DEBUG_FS
1814 blk_debugfs_root = debugfs_create_dir("block", NULL);
1815 #endif
1816
1817 return 0;
1818 }